I A R E

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

EMBEDDED SYSTEMS PROGRAMMING LABORATORY								
I Semester: M.TECH - ES								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
BESD11	CORE	L	T	P	С	CIA	SEE	Total
		3	-	-	3	40	60	100
Contact Classes: 48	Tutorial Classes: Nil	Practical Classes: Nil				Total Classes: 48		
Prerequisite:								

I. COURSE OVERVIEW:

This course outlines the design and implementation of embedded systems using suitable hardware and Keil Embedded C software tools. The instruction set, Embedded C programming for I/O and memory interfacing techniques are covered. The hands-on experience acquired by the student's during the course makes them to carry out processor/controller-based projects and extend their knowledge on the latest trends and technologies in the field of embedded system.

II. COURSES OBJECTIVES:

The students will try to learn

- I. Use embedded C for reading data from port pins.
- II. he interfacing of data I/O devices with microcontroller.
- III. The serial communication and port RTOS on microcontroller

III. COURSE OUTCOMES:

At the end of the course students should be able to:

- CO 1 Make use of emulators and cross compilers for writing, compiling and running an embedded C language programs on training boards.
- CO 2 Develop Embedded C language programs for accomplishing code to reading the data from ports, blinking the LED and interfacing of switch and buzzer and temperature sensors to the microcontrollers.
- CO 3 Select suitable RTOS of microcontroller and write Embedded C language program to run 2 to 3 task simultaneously.
- CO 4 Chooseserialorparallelcommunicationfortransmittingthedatabetweenmicrocontrollerandperipherals.
- CO 5 UtilizetheAnalogtoDigitalandDigitaltoAnalogconverterswithmicro-controllerfordataconversion.
- CO 6 Buildaninterfacebetweenmicrocontrollerandperipheralstoprovidesolutionstotherealworldproblems.

IV. LISTOFEXPERIMENTS:

Week-1: LED BLINKING

Program to toggle all the bits of port P1continuouslywith250msdelay.

Week-2: INTERFACINGOFSWITCHANDBUZZER

Program to interface a switch and a buzzer to two different pins of a port such that the buzzer should sound as long as the switch is pressed.

Week-3: INTERFACINGOFLCD

Program to interface LCD data pins to port P1 and display a message on it.

Week-4: INTERFACINGSEVENSEGMENTDISPLAY

Program to interface seven segment display. Week-5: INTERFACINGOFKEYPAD

Program to interface keypad. Whenever a key is pressed, it should be displayed on LCD.

Week-6: SERIALCOMMUNICATION

Program to transmit message from microcontroller to PC serially using RS232. Program to receive a message from PC to microcontroller serially using RS232

Week-7: INTERFACINGOFSTEPPERMOTOR

ProgramtointerfaceStepperMotortorotatethemotorinclockwiseandanticlockwisedirections Program to toggle all the bits of port P1continuouslywith250msdelay.

Week-8: INTERFACINGTEMPERATURESENSOR

Program to read data from temperature sensor and display the temperature value.

Week-9: PORTINGOFRTOS

Port RTOS on to 89V51 Microcontroller and verify. Run 2 to 3 tasks simultaneously on 89V51 SDK. Use LCD interface, LED interface, Serial communication.

Week-10: INTERFACINGOFADC

Program to convert analog signal into digital (ADC).

Week-11: INTERFACINGOFDAC

Program to convert Digital into Analog (DAC).

Week-12: INTERFACINGOFELEVATOR

Program to interface Elevator.

V. Reference Books:

1. Michael J. Pont, "Embedded C", Pearson Education, 2nd Edition, 2008. 2. Nigel Gardner, "The Microchip PIC in CCS C". Ccs Inc, 2nd Revision Edition, 2002.

SOFTWARE AND HARDWARE REQUIREMENTS FOR 18 STUDENTS SOFTWARE:

System Software: Microsoft windows/ Linux Programming Languages: Keil Embedded C.

HARDWARE:

18 numbers of Intel Desktop Computers with 2 GB RAM Dot matrix Printers: 02