

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

# **COURSE CONTENT**

| ARM CORTEX ARCHITECTURE AND PROGRAMMING |                       |                        |   |   |         |                   |     |       |
|-----------------------------------------|-----------------------|------------------------|---|---|---------|-------------------|-----|-------|
| II Semester: ES                         |                       |                        |   |   |         |                   |     |       |
| Course Code                             | Category              | Hours / Week           |   |   | Credits | Maximum Marks     |     |       |
| BESD14                                  | Core                  | L                      | Т | Р | С       | CIA               | SEE | Total |
|                                         |                       | 3                      | 0 | 0 | 3       | 40                | 60  | 100   |
| Contact Classes: 48                     | Tutorial Classes: Nil | Practical Classes: Nil |   |   |         | Total Classes: 48 |     |       |
| Prerequisite: Embedded                  | system Design         |                        |   |   |         |                   |     |       |

# I. COURSE OVERVIEW:

This course focuses on the fundamental concepts and practical aspects of ARM Cortex-M-based microprocessor, incorporates architecture, programming and interfacing aspects. ARM Cortex-M processor-based microcontroller, TM4C123, Cortex-M programming, the basics of Cortex-M assembly programming, interfacing different real-life hardware devices to the ARM Cortex-M controller. the workings of general-purpose input-output (GPIO) pins, their features, possible alternate functionalities, and interfacing of Output (LED, LCD displays) as well as input (switches and keypads) devices.

#### **II. COURSES OBJECTIVES:**

### The students will try to learn

- I. Architectural features of ARM cortex-M Processor.
- II. Programming of ARM using assembly language.
- III. TM4C123 Microcontroller architecture and interfacing.
- IV. Configuration of TM4C123 microcontroller communication interfaces.

# **III. COURSE OUTCOMES:**

#### At the end of the course students should be able to:

- CO 1 Describe the features of ARM Cortex-M processors for signal description and architecture.
- CO 2 Illustrate the programmer 's model of ARM processor and test.
- CO 3 programming model using high level and low-level languages.
- CO 4 Demonstrate the internal architecture and TM4C123 Microcontroller various modes of operation of the devices used for interfacing memory and I/O devices with ARM processor.
- CO 5 Apply the memory management architecture for allocating the MMU.
- CO 6 Analyze floating point processor architecture and its architectural.

# **IV. COURSE CONTENT:**

# **MODULE - I: INTRODUCTION TO EMBEDDED SYSTEMS (10)**

Overview of microcontrollers and microprocessors architecture, memory organization, and I/O operations, selection criteria for choosing microcontrollers, definition and characteristics of embedded systems, embedded system applications and real- world examples, challenges and constraints in embedded system design.

#### MODULE -II: TYPICAL EMBEDDED SYSTEM (09)

Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), memory: ROM, RAM, memory according to the type of interface, memory shadowing, memory selection for embedded systems, sensors and actuators, communication interface: Onboard and external communication Interfaces.

#### MODULE -III: EMBEDDED SYSTEM SOFTWARE (10)

Embedded software development process, embedded programming languages (C, Assembly), real-time operating systems (RTOS) and scheduling.

Hardware/Software Co-design: Hardware-software partitioning, communication between hardware and software components, trade-offs and optimization techniques.

# MODULE -IV: RTOS BASED EMBEDDED SYSTEM DESIGN (09)

Operating System Basics, types of Operating Systems, Tasks, process and Threads, multiprocessing and Multitasking, task scheduling.

### MODULE -V: EMBEDDED NETWORKING AND COMMUNICATION (10)

Network protocols (TCP/IP, MQTT, etc.), wireless communication (Wi-Fi, Bluetooth, etc.), IoT (Internet of Things) concepts.

#### **V. TEXT BOOKS:**

1. Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley Publications, 3rd edition, 2006.

#### **VI. REFERENCE BOOKS:**

- 1. Raj Kamal, "Embedded Systems", TMH, 2<sup>nd</sup> edition, 2008.
- 2. Shibu K.V, "Introduction to Embedded Systems", McGraw Hill, 3rd edition, 2012.
- 3. Lyla, "Embedded Systems", Pearson Education 2<sup>nd</sup> edition, 2013.

#### VII. MATERIALS ONLINE

- 1. Course template
- 2. Tutorial question bank
- 3. Assignments
- 4. Model question paper I
- 5. Model question paper II
- 6. Lecture notes
- 7. Power point presentations