INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

FRACTURE MECHANICS OF CONCRETE STRUCTURES								
III Semester: ST								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
BSTD28	Elective	L	Т	Р	С	CIA	SEE	Total
		3	0	0	3	40	60	100
Contact Classes: 48	Total Tutorials: Nil	Total Practical Classes: Nil				Total Classes: 48		
Prerequisite: Theory of Elasticity and Plasticity								

I. COURSE OVERVIEW:

Over the last twenty years, many theoretical, numerical and experimental methods have evolved in the field of Fracture Mechanics of Concrete. These have led to practical applications in reinforced-concrete design, assessment, monitoring and retrofitting, as well as innovative high-performance and durable cementations materials. Although Fracture Mechanics of Concrete is now mature as a framework for defining and solving a variety of engineering problems, there is still much work to be done in improving previous theoretical and numerical models, and for re-interpreting established phenomena. In particular, there are new developments in the treatment of scale effects; the implementation of 3D-discretisation; and the combination of continuous and discontinuous models. Other areas of rapid progress are the development of innovative testing techniques; the proposal of non-local and anisotropic constitutive laws; the formulation of lattice and multistage models, and the development of coupled multifold theories.

II. COURSE OBJECTIVES:

The student will try to learn:

- I. The concepts and principles of fracture mechanics for the analysis of structural components.
- II. The analytical and computational tools needed to solve the idealized problems.
- III. The fracture and fatigue behavior of different materials to focus on research in this area.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO 1 Describe the fracture types and micro mechanism for concrete structures
- CO 2 Explain the energy concepts in crack and crack resistance for the analysis of structural components.
- CO 3 Demonstrate the linear elastic fracture mechanics for the propagation of cracks.
- CO 4 Interpret the importance of Crack tip plastic zone for durable concrete structures.
- CO 5 Explain micromechanics and various models in crack for fracture mechanics models.
- CO 6 Describe the crack propagation concepts for the applications of concrete structures.

IV. COURSE CONTENT:

MODULE-I: INTRODUCTION (09)

Fracture mechanics, crack in a structure, mechanisms of fracture and crack growth, cleavage fracture

MODULE-II: CRACKING MECHANISM (09)

Ductile fracture, fatigue cracking, environment assisted cracking, service failure analysis

MODULE-III: STRESS AT CRACK TIP (10)

Stress at crack tip, linear elastic fracture mechanics, Griffith's criteria, stress intensity factors.

Crack tip plastic zone, Erwin's plastic zone correction, R curves, compliance, J integral, concept of CTOD and CMD.

MODULE-IV: MATERIAL MODELS (10)

General concepts, crack models, band models, models based on continuum damage mechanics

MODULE-V: APPLICATIONS TO CONCRETE STRUCTURES (10)

Applications to High Strength Concrete, Fibre Reinforced Concrete, Crack Concepts and Numerical Modeling

V. TEXT BOOKS:

- 1. Suri C. T. and Jin Z.H., "Fracture Mechanics", Elsevier Academic Press, 1st Edition, 2012.
- 2. Broek David, "Elementary Engineering Fracture Mechanics", Springer, 3rd Rev, 1982.
- 3. Elfgreen L, "Fracture Mechanics of Concrete Structures Theory and Applications", RILEM Report, Chapman and Hall, 1989.

VI. REFERENCE BOOKS:

1. Victor, Li C., Bazant Z. P, "Fracture Mechanics – Applications to Concrete", ACI SP 118, ACI Detroit, 1989.

VII. ELECTRONICS RESOURCES:

- 1. http://www.nptel.ac.in/courses/112106065/#
- 2. http://www.civil.northwestern.edu/people/bazant/PDFs/Papers/P90.pdf

VIII. MATERIALS ONLINE:

- 1. Course Template
- 2. Tutorial Question Bank
- 3. Assignments
- 4. Model Question Paper I
- 5. Model Question Paper II
- 6. Lecture Notes
- 7. Power point presentation