

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

FUNDAMENTALS OF AEROSPACE PROPULSION							
III Semester: OE							
Course Code	Category	Hours / Week		Credits	Maximum Marks		
BAEE31	Elective	L	T	P	C	CIA	SEE
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil			Total Classes: 45		
Prerequisite:							

I. COURSE OVERVIEW:

The Fundamentals of Aerospace Propulsion is a crucial course in aerospace engineering that covers the principles and technologies related to propulsion systems used in aircraft and spacecraft. This course provides students with a comprehensive understanding of the key concepts, components, and operating principles of propulsion systems.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. The Historical evaluation of propulsion systems.
- II. The different component systems in gas turbine engines and their functions.
- III. The various types of power plants used in aircraft propulsion.

III. COURSE OUTCOMES:

After successful completion of the course, students will be able to:

- CO 1 Classify the various gas turbine engines for their suitable section.
- CO 2 Understand the basic concepts of propeller theory for calculating thrust generated by the propeller.
- CO 3 Understand the basic concepts of inlet and nozzle operation under different operating conditions.
- CO 4 Classify the various combustion chambers used in gas turbine engines for their suitable selection.
- CO 5 Explain the operating principles of compressor and turbine for their efficient design.
- CO 6 Illustrate thermal and electric rocket motors for describing their operating principle.

IV. COURSE CONTENT:

MODULE-I: ELEMENTS OF AIRCRAFT PROPULSION (9)

Classification of power plants – Methods of aircraft propulsion – Propulsive efficiency – Specific fuel consumption – Thrust and power- Factors affecting thrust and power- Illustration of working of piston engines and Gas turbine engines – Characteristics of piston engine, turboprop, turbofan and turbojet engines, Ram jet, Scram jet – Methods of Thrust augmentation.

MODULE-II: PROPELLER THEORY (09)

Momentum theory, Blade element theory, combined blade element and momentum theory, propeller power losses, propeller performance parameters, prediction of static thrust- and in flight, negative thrust, prop fans, ducted propellers, propeller noise, propeller selection, propeller charts.

MODULE-III: INLETS, NOZZLES AND COMBUSTION CHAMBERS (09)

Subsonic and supersonic inlets – Relation between minimum area ratio and external deceleration ratio- Starting problem in supersonic inlets - Modes of inlet operation, jet nozzle- Efficiencies - Over expanded, under and optimum expansion in nozzles - Thrust reversal.

Classification of Combustion chambers - Combustion chamber performance - Flame tube cooling – Flame Stabilization

MODULE-IV: AXIAL FLOW COMPRESSORS, FANS AND TURBINES (09)

Introduction to centrifugal compressors- Axial flow compressor- geometry- twin spools- three spools- stage analysis- velocity polygons- degree of reaction - radial equilibrium theory performance maps- axial flow turbines- geometry- velocity polygons- stage analysis- performance maps- thermal limit of blades and vanes.

MODULE-V: ROCKET AND ELECTRIC PROPULSION (09)

Introduction to rocket propulsion – Reaction principle - Thrust equation - Classification of rockets based on propellants used - solid, liquid and hybrid - Comparison of these engines with special reference to rocket performance - electric propulsion - classification- electro thermal – electro static - electromagnetic thrusters- geometries of Ion thrusters- beam/plume characteristics - hall thrusters

V. TEXT BOOKS:

1. Cohen, H, Saravanamuttoo, HIH., Rogers, GFC, Paul Straznicky and Andrew Nix, “Gas Turbine Theory”, Pearson Education Canada; 7th edition, 2017.
2. Gill, WP, Smith, HJ & Ziurys, JE, “Fundamentals of Internal Combustion Engines as applied to reciprocating, Gas turbine & Jet Propulsion Power Plants”, Oxford & IBH Publishing Co., 1980.
3. Hill, PG. & Peterson, CR. “Mechanics & Thermodynamics of Propulsion” Pearson education, 2nd edition, 2014.

VI. REFERENCE BOOKS:

1. Oates, GC, “Aerothermodynamics of Aircraft Engine Components”, AIAA Education Series, 2007.
2. Sutton, GP, “Rocket Propulsion Elements”, John Wiley & Sons Inc., New York, 9th edition, 2017.

VII. ELECTRONICS RESOURCES:

1. <http://memberfiles.freewebs.com/94/47/55224794/documents/airport%20planning%20and%20management.pdf>
2. https://books.google.co.in/books?id=RYR6cu4YSBcC&dq=Planning%20and%20Design%20of%20Aircrafts&source=gbs_similarbooks

VIII. MATERIALS ONLINE

1. Course template.
2. Assignments.
3. Tutorial question bank.
4. Model question paper – I.
5. Model question paper – II.
6. Lecture notes.
7. Power point presentations.