

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

AUGMENTED REALITY AND VIRTUAL REALITY							
II Semester: CSE							
Course Code	Category	Hours / Week			Credits	Maximum Marks	
BCSE28	Elective	L	T	P	C	CIA	SEE
		3	0	0	3	40	60
Contact Classes: 45	Total Tutorials: Nil	Total Practical Classes: Nil			Total Classes: 45		
Prerequisites: Computer Vision							

I. COURSE OVERVIEW:

An Augmented Reality (AR) and Virtual Reality (VR) course aims to cover various aspects of these immersive technologies, providing students or participants with a comprehensive understanding of their concepts, applications, development, and implementation.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. the fundamentals of sensation, perception, and perceptual training.
- II. the scientific, technical, and engineering aspects of augmented and virtual reality systems.
- III. The technology of augmented reality and its implementation

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to

- CO1 Identify, examine, and use the software that reflects fundamental techniques for the design and deployment of VR and AR experience.
- CO2 Describe how VR and AR systems work.
- CO3 Choose, develop, explain, and defend the use of particular designs for AR and VR experiences.
- CO4 Evaluate the benefits and drawbacks of specific AR and VR techniques on the human body
- CO5 Identify and examine state-of-the-art AR and VR design problems and solutions

IV. COURSE CONTENT:

MODULE-I: INTRODUCTION (9)

Introduction of Virtual Reality: Fundamental Concept and Components of Virtual Reality. Primary Features and Present Development on Virtual Reality.

Multiple Models of Input and Output Interface in Virtual Reality: Input -- Tracker, Sensor, Digital Glove, Movement Capture, Video-based Input, 3D Menus & 3DScanner etc. Output -- Visual /Auditory / Haptic Devices.

MODULE-II: VISUAL COMPUTATION IN VIRTUAL REALITY (9)

Fundamentals of Computer Graphics. Software and Hardware Technology on Stereoscopic Display. Advanced Techniques in CG: Management of Large Scale Environments & Real Time Rendering.

MODULE-III: INTERACTIVE TECHNIQUES IN VIRTUAL REALITY (9)

Body Track, Hand Gesture, 3D Manus, Object Grasp. **Development Tools and Frameworks in Virtual Reality:** Frameworks of Software Development Tools in VR. X3D Standard; Vega, MultiGen, Virtools etc.

MODULE-IV: APPLICATION OF VR IN DIGITAL ENTERTAINMENT (9)

VR Technology in Film & TV Production. VR Technology in Physical Exercises and Games. Demonstration of Digital Entertainment by VR.

MODULE-V: 3D INTERACTION TECHNIQUES (9)

3D Manipulation Tasks, Manipulation Techniques and Input Devices, Interaction Techniques for 3D Manipulation.

V. TEXT BOOKS:

1. Burdea, G. C. and P. Coffet. Virtual Reality Technology, Second Edition. Wiley-IEEE Press, 2003/2006.
2. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.

VI. REFERENCE BOOKS:

1. Alan Craig, William Sherman and Jeffrey Will, "Developing Virtual Reality Applications, Foundations of Effective Design", Morgan Kaufmann, 2009.

VII. WEB REFERENCES:

1. https://www.w3.org/WAI/APA/task-forces/research-questions/wiki/Virtual_Reality_and_Accessibility_References
2. <https://nap.nationalacademies.org/read/4761/chapter/18>
3. <https://www.coursera.org/courses?query=augmented%20reality>
4. <https://www.udemy.com/topic/augmented-reality/>

VIII. E-TEXT BOOKS:

1. https://www.researchgate.net/publication/322137851_Augmented_Reality_Books_An_Immersive_Approach_to_Learning
2. <https://link.springer.com/book/10.1007/978-3-030-79062-2>
3. <https://link.springer.com/book/10.1007/978-3-030-79062-2>

IX. MATERIALS ONLINE:

1. Course Outline Description
2. Tutorial question bank
3. Tech talk topics
4. Open-ended experiments
5. Definitions and terminology
6. Assignments
7. Model question paper – I
8. Model question paper – II
9. Lecture notes
10. PowerPoint presentation
11. E-Learning Readiness Videos (ELRV)