

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AEROSPACE ENGINEERING

COURSE DESCRIPTOR

Course Title	ADVAN	ADVANCED MATHEMATICS IN AEROSPACE ENGINEERING							
Course Code	BAEBO	BAEB01							
Programme	M. Tech	M. Tech							
Semester	Ι	I AE							
Course Type	Core								
Regulation	IARE - R18								
	Theory Practical				tical				
Course Structure	Lectu	res	Tutorials	Credits	Practicals	Credits			
	3 -		-	3	-	-			
Chief Coordinator	Ms. P Srilatha, Assistant Professor								
Course Faculty	Ms. P Srilatha, Assistant Professor								

I. COURSE OVERVIEW:

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes probability theory, discrete and continuous random variables, probability distributions, sampling distribution, testing of hypothesis, ordinary differential equations and partial differential equations. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	Basic principles of Statistics and Algebra	-

III. MARKS DISTRIBUTION

Subject	SEE Examination	CIA Examination	Total Marks
Advanced Mathematics in Aerospace Engineering	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Seminars	~	Videos	×	MOOCs
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each Unit carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each Unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:				
	The emphasis on the c	mostions is broad	where he had a the follow	ing oritoria.
	The chiphasis on the c	Jueshons is broaur	y based on the ronow	mg cincina.

ſ	^	
	50 %	To test the objectiveness of the concept.
	30 %	To test the analytical skill of the concept.
	20 %	To test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Component			
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	Total Marks
CIA Marks	25	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations and the term paper with overview of topic are conducted during II semester. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1 Identify, formulate, and solve complex aerospace engineering		Presentation on
problems by applying advanced principles of engineering.	3	real-world
		problems
PO 2 Apply aerospace engineering design to produce solutions that meet specified needs with frontier technologies.	2	Seminar
PO 3 Formulate and solve complex engineering problems related to aerospace materials, propulsion, aerodynamics, structures, avionics, stability and control.	1	Term Paper

3 = High; **2** = Medium; **1** = Low

VII. COURSE OBJECTIVES:

The course should enable the students to:

Ι	Develop a basic understanding of a range of mathematics tools with emphasis on engineering applications.
Π	Solve problems with techniques from advanced linear algebra, ordinary differential equations and multivariable differentiation.
III	Develop skills to think quantitatively and analyze problems critically.

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe the basic concepts of probability,	CLO 1	Describe the basic concepts of probability, discrete and continuous random variables
	discrete, continuous random variables and	CLO 2	Determine the probability distribution to find mean and variance.
	determine probability distribution, sampling distribution of statistics like t, F and chi-square.	CLO 3	Discuss the concept of sampling distribution of statistics like t, F and chi-square.
CO 2	Understand the foundation	CLO 4	Understand the foundation for hypothesis testing.
	for hypothesis testing to predict the significance	CLO 5	Apply testing of hypothesis to predict the significance difference in the sample means.
	difference in the sample means and the use of ANOVA technique.	CLO 6	Understand the assumptions involved in the use of ANOVA technique.
CO 3	Determine Ordinary linear differential equations	CLO 7	Solve differential equation using single step method.
	solvable by nonlinear ODE's.	CLO 8	Solve differential equation using multi step methods.
		CLO 9	Understand the concept of non- linear ordinary differential equations.
CO 4	Explore First and second order partial differential equations.	CLO 10	Understand partial differential equation for solving linear equations.

		CLO 11	Solving the first order ordinary differential equations
			subject to boundary conditions.
		CLO 12	Solving the higher order ordinary differential
			equations subject to boundary conditions.
CO 5	Analyze the methods for	CLO 13	Understand the concept of methods for elliptic partial
	partial differential equations.		differential equations.
		CLO 14	Understand the concept of Neumann and mixed
			problems.
		CLO 15	Analyze the concept of parabolic and hyperbolic
			partial differential equations.

IX. COURSE LEARNING OUTCOMES(CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
BAEB01.01	CLO 1	Describe the basic concepts of probability, discrete and continuous random variables	PO 2	2
BAEB01.02	CLO 2	Determine the probability distribution to find mean and variance.	PO 1, PO 2	3
BAEB01.03	CLO 3	Discuss the concept of sampling distribution of statistics like t, F and chi-square.	PO 1, PO 2	3
BAEB01.04	CLO 4	Understand the foundation for hypothesis testing.	PO 2	2
BAEB01.05	CLO 5	Apply testing of hypothesis to predict the significance difference in the sample means.	PO 1	3
BAEB01.06	CLO 6	Understand the assumptions involved in the use of ANOVA technique.	PO 3	1
BAEB01.07	CLO 7	Solve differential equation using single step method.	PO 2	2
BAEB01.08	CLO 8	Solve differential equation using multi step methods.	PO 2	2
BAEB01.09	CLO 9	Understand the concept of non- linear ordinary differential equations.	PO 1, PO 2	3
BAEB01.10	CLO 10	Understand partial differential equation for solving linear equations.	PO 1, PO 2	3
BAEB01.11	CLO 11	Solving the first order ordinary differential equations subject to boundary conditions.	PO 1, PO 3	2
BAEB01.12	CLO 12	Solving the higher order ordinary differential equations subject to boundary conditions.	PO 2	2
BAEB01.13	CLO 13	Understand the concept of methods for elliptic partial differential equations.	PO 1	3
BAEB01.14	CLO 14	Understand the concept of Neumann and mixed problems.	PO 1	3
BAEB01.15	CLO 15	Analyze the concept of parabolic and hyperbolic partial differential equations.	PO 3	1

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes (COs)	Program Outcomes (POs)					
	PO 1	PO 2	PO 3			
CO 1	3	2	1			
CO 2		2	1			
CO 3	3	2				
CO 4	3	2				
CO 5		2	1			

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Learning		Program Outcome (PO)										
Outcomes (CLOs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CLO 1		2										
CLO 2	3	2										
CLO 3	3	2										
CLO 4		2	1									
CLO 5	3											
CLO 6			1									
CLO 7		2										
CLO 8		2										
CLO 9	3	2										
CLO 10	3	2										
CLO 11	3		1									
CLO 12		2										
CLO 13	3											
CLO 14	3											
CLO 15			1									

3 = High; **2** = Medium; **1** = Low

XII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO3	SEE Exams	PO1, PO2, PO3	Seminar and Term Paper	PO1, PO2, PO3
Viva	-	Mini Project	-	Laboratory Practices	-

XIII. ASSESSMENT METHODOLOGIES -INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

UNIT-I	PROBABILITY THEORY AND DISTRIBUTIONS				
Theory Probability Theory and Sampling Distributions. Basic probability theory along with examples. Standard discrete and continuous distributions like Binomial, Poisson, Normal, Exponential etc. Central Limit Theorem and its significance. Some sampling distributions like chi-square, t, F distributions.					
UNIT-II	TESTING OF STATISTICAL HYPOTHESIS				
Testing a stati ANOVA: One	stical hypothesis, tests on single sample and two samples concerning means and variances. e – way, Two – way with/without interactions.				
UNIT-III	ORDINARY DIFFERENTIAL EQUATIONS				
Ordinary linea	r differential equations solvable by direct solution methods.				
Non-linear dif	ferential equations solvable by direct solution methods.				
UNIT-IV	PARTIAL DIFFERENTIAL EQUATIONS AND CONCEPTS IN SOLUTION TO BOUNDARY VALUE PROBLEMS				
First and seco	nd order partial differential equations; canonical forms				
UNIT-V	NUMERIC'S FOR ORDINARY DIFFERENTIAL EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS				
Methods for	first order ordinary differential equations, multistep methods, methods for systems and				
higher order ordinary differential equations, methods for elliptic partial differential equations, Neumann					
and mixed problems, irregular boundary, methods for parabolic and hyperbolic partial differential					
equations.					
Text Books:					
1. J. B. Doshi, "Differential Equations for Scientists and Engineers", Narosa, New Delhi.					
2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43 rd Edition, Delhi.					
Reference Books:					
1. S. P. Gupta, "Statistical Methods", S. Chand & Sons, 37 th revised edition.					
2. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley India (9th Edition)".					

XV. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture	Topics to be covered	Course	Reference
No		Learning	
		Outcomes	
		(CLOs)	
1	Define the concept of probability.	CLO 1	T2:26.1
			R2:22.3
2-4	Describe the concept of Random variables, Contrast discrete	CLO I	12:26.7
	Random variables and also calculate the mean and variance of discrete Random variables probability distribution		R2:22.5
5-6	Recall characteristics of the Binomial Distribution and find	CLO 2	T2·26 14
5.0	mean . variance		R2:22.7
7-8	Recognize cases where Poisson Distribution could be	CLO 2	T2:26.15
	appropriate model to find mean and variance		R2:22.7
9-11	Apply Normal Distributions find the probability over a set of	CLO 2	T2:26.16
	values, mean and variance		R2:22.8
11-12	Recall the definition of a t-statistics in terms of statistics of	CLO 3	T2:27.14
	sample from a normal distribution		R2:23.1
13	Apply the definition of F-distribution	CLO 3	T2:27.19
	2		R2:23.4
14-15	Apply the definition of χ^2 –Distribution	CLO 3	T2:27.17
16		CT O O	R2:23.7
16	Apply χ^2 - distribution of goodness of fit	CLO 3	12:27.18
17 10	Understand the foundation for electical information involving		K2:23.7
1/-18	Understand the foundation for classical inference involving	CLO 4	12:27.12 D2:22.4
10	Explain level of significance and confidence interval	CLO 4	K2:23.4
19	Explain level of significance and confidence interval.	CLO 4	P2.27.11
20-22	Determine the testing of hypothesis for single and difference of	CLO 5	T2:23.3
20 22	means	CLO J	R2:23.4
23-24	Understand the assumptions involved in the use of ANOVA	CLO 6	T2:27.20
-	one-way classification technique.		
25-26	Understand the assumptions involved in the use of ANOVA	CLO 6	T2:27.20
	two-way classification technique.		
27	Solve differential equation using Taylor series method	CLO 7	T2:32.3
			R2:19.1
28-30	Solve differential equation using Eulers method, Euler's	CLO 8	T2:32.6
	modified method and Runge kutta method.		R2:19.2
31-32	Understand the concept of non- linear ordinary differential	CLO 9	T2:32.8
22.24	equations.	CL 0.10	R2:19.3
33-34	Understand partial differential equation for solving linear	CLO 10	T2:17.2
25.26	equations.	CL Q 11	K2:11.1
55-50	Solving the one-dimensional heat equation in subject to	CLO II	12:16.5 P2:11.5
37.38	Solving the one dimensional wave equation in subject to	CLO 12	T2.11.3
57-50	boundary conditions	CLO 12	R2.11.4
39	Apply canonical forms for boundary value problems.	CLO 12	T2:18.3
	Tippi, outoinout tottus tot ooutoutig vuine proceedus.	02012	R2:11.4
40-41	Understand the concept of methods for elliptic partial	CLO 13	T2:33.4
	differential equations.		R2:19.4
42-43	Understand the concept of Neumann and mixed problems.	CLO 14	T2:33.6
			R2: 19.5
44	Analyze the concept of parabolic partial differential equations.	CLO 15	T2:33.7
			R2:19.6
45	Analyze the concept of hyperbolic partial differential	CLO 15	T2:33.9
	equations.		R2:19.7

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION **REQUIREMENTS:**

S No	Description	Proposed Actions	Relevance with POs
1	To improve standards and analyze the concepts.	Seminars	PO 1
2	Probability, Sampling distribution, ordinary and partial differential equations.	Seminars / NPTEL	PO 3
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 2

Prepared By: Ms. P Srilatha, Assistant Professor

HOD, AE