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The course should enable the students to: 

I   Understand basic concepts of mechanical vibrations and phenomena of transmissibility 

II  Analyze mechanical systems with/ without damping for 1/ multi degrees of freedom    
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III Application of vibration measuring instruments and machine monitoring systems. 

IV  Develop competency in analytical methods in solving problems of vibrations along with mode  

 shapes. 
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 COURSE LEARNING OUTCOMES: 

 

Students, who complete the course, will have demonstrated the ability to do the following: 

CLO Code Description 

AME524.01 Understand the degree of freedom of systems. 

AME524.02 Understand the simple harmonic motion of various systems. 

AME524.03 Understand the undamped and damped free vibrations. 

AME524.04 Understand the forced vibrations and columb damping. 

AME524.05 Understand the vibration isolation and transmissibility. 

AME524.06 Compute the natural frequency of single degree of freedom systems. 

AME524.07 Understand the non-periodic excitations. 

AME524.08 Understand the two degree of freedom systems. 

AME524.09 Determine the mode shapes of two degree of freedom systems. 

AME524.10 Understand the multi degree of freedom systems.  
AME524.11 Determine the Eigen values. 

AME524.12 Determine the normal modes and their properties. 

AME524.13 Determine the free and forced vibration by Modal analysis. 

AME524.14 Understand the vibration measuring instruments. 

AME524.15 Understand the frequency domain vibration analysis. 

AME524.16 Understand the trending analysis of various systems. 

AME524.17 Understand  the  Raleigh‟s  method  of  multi degree of freedom system. 

AME524.18 Understand the matrix iteration method of multi degree of freedom system. 
AME524.19 Understand  the  Raleigh‟s  Ritz  method  of multi degree of freedom system. 

AME524.120 Understand the Holzerd‟s method of multi degree of freedom system. 

 

SYLLABUS: 

MECHANICAL VIBRATIONS 

 VI Semester: ME 

Course Code Category  Hours / Week Credits Maximum Marks 

AME524 Elective  

L T P C CIA SEE Total 

3 - - 3 30 70 100 

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes:  60 

 

OBJECTIVES:  

The course should enable the students to: 

I. Understand basic concepts of mechanical vibrations and phenomena of transmissibility 
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II. Analyze mechanical systems with/ without damping for 1/ multi degrees of freedom environment. 

III.  Application of vibration measuring instruments and machine monitoring systems. 

IV. Develop competency in analytical methods in solving problems of vibrations along with mode 

shapes. 

 

COURSE OUTCOMES (CO’S): 

CO 1. Understand the equations of motion of single degree of freedom systems. 

CO 2. Understand the equations of motion of two degree of freedom systems. 

CO 3. Understand the equations of motion of multi degree of freedom systems. 

CO 4. Explore the concept of frequency domain of vibration analysis. 

CO 5. Explore the natural frequencies by using numerical methods. 
  

COURSE LEARNING OUTCOMES (CLOs): 

1. Understand of fundamentals of the non-traditional machining methods and industrial applications. 

2. Compare Conventional and Non-Conventional machining and analyze the different elements of Ultrasonic 

Machining and its applications. 

3. Identify and utilize fundamentals of metal cutting as applied to machining. 

4. Understand a problem and apply the fundamental concepts and enable to solve problems arising in metal 

removal process.  

5. Explore the ability to define and formulate the properties of cutting tool materials and characteristics. 

6. Illustrate the variables in Abrasive Jet Machining 

7. Explain the different elements of Chemical and Electro chemical Machining and its applications  

8. Comparison between non-traditional machining process with the traditional parameters, energy sources, 

economics of processes, shape and size of the material. 

9. Illustrate different parameters of Electrical Discharge Machining  

10. Develop methods of working for minimizing the production cost. 

11. Apply the best suitable advanced manufacturing process for processing of unconventional materials employed 

in modern manufacturing industries. 

12. Study the parametric influences during processing of materials using developed models. 

13. Analyze the different elements of Laser and Electronic Beam machining. 

14. Apply unconventional machining process in various industrial applications. 

15. Analyze and simulate various industrial problems in advanced machining processes using EBM and LBM  

16. Understand the applications of plasma machining and chemical machining. 

17. Explain the process and mechanism in Plasma Arc Machining  

18. Explore the use of modern engineering tools, software and equipment to prepare for competitive exams, higher 

studies. 
 

UNIT I SINGLE DEGREE OF FREEDOM SYSTEMS Classes: 09 

 

Single degree of freedom systems: Undamped and damped free vibrations; forced vibrations coulomb 

damping; Response to excitation; rotating unbalance and support excitation; vibration isolation and 

transmissibility, response to non Periodic Excitations: Unit impulse, unit step and unit ramp functions; 

response to arbitrary excitations, the convolution integral; shock spectrum; System response by the 

laplace transformation method. 

UNIT II TWO DEGREE FREEDOM SYSTEMS Classes: 09 

Two degree freedom systems: Principal modes, undamped and damped free and forced vibrations; 

undamped vibration absorbers. 
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UNIT III MULTI DEGREE FREEDOM SYSTEMS Classes: 09 

 

Multi degree freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen 

value problem; normal modes and their properties; Free and forced vibration by Modal analysis. Method 

of matrix inversion; Torsional vibrations of multi-rotor systems and geared systems; DiscreteTime 

systems; Vibration measuring instruments: Vibrometer, velocity meters and accelerometers.  

UNIT IV FREQUENCY DOMAIN VIBRATION ANALYSIS Classes: 09 

 

Frequency domain vibration analysis: Overview, machine train monitoring parameters, data base 

development, vibration data acquisition, trending analysis, failure node analysis, root cause analysis.  

UNIT V NUMERICAL METHODS Classes: 09 

 

Numerical methods: Raleigh‘s stodola's, Matrix iteration, Rayleigh- Ritz Method and Holzer's methods. 

Text Books: 

 

1.Singiresu S Rao, “Mechanical Vibration”, 4th Edition, 2013.  

2. G. K. Grover, “Mechanical Vibration”, Nemchand & Brothers, 8th Edition, 2009.  

3. J.S. Rao and K. Gupta, “Introductory Course On Theory & Practice Of Mechanical Vibrations”, New 

Age International (p) Ltd , 2nd  Edition, 2012  

4. Leonard Meirovitch, “Elements of vibration analysis”, Tata McGraw-Hill, 2nd Edition, 2007.  

5. John S. Mitchell, “Introduction to Machinery Analysis and Monitoring”, Pennwell books, 2nd Edition, 

1993. 
 

Reference Books: 

1.Singh V. P, “Mechanical Vibration”, Dhanpat Rai & Co (p) Ltd, 3rd  Edition, 2012.  

2. AD Dimarogonas, SA Paipetis, “Analytical Methods In Rotor Dynamics”, Applied Science Publishers 

London, 1983.  

3. J. S. Rao, “Rotor Dynamics”, New Age International (p) Ltd., 3rd Edition, 2012.  

4. B.C. Nakra and K. K. Chowdary, “Mechanical Measurements”, 2nd  Edition, Tata McGraw-Hill, New 

Delhi, 2004  

5. Collacott, R.A., “Mechanical Fault Diagnosis and Condition Monitoring”‖, 1st  Edition, Chapman and 

Hall, London, 1977. 
 

Web References: 

1. http://www.math.psu.edu/tseng/class/Math251/Notes-MechV.pdf 2. 

2.https://engineering.purdue.edu/~deadams/ME563/notes_10.pdf 3. 

3.http://nptel.ac.in/courses/112103111/# 4. 

4.https://engfac.cooper.edu/pages/tzavelis/uploads/Vibration%20Theory.pdf 5. 

5.http://vdol.mae.ufl.edu/CourseNotes/EML4220/vibrations.pdf 

E-Text Books: 
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2.https://aerocastle.files.wordpress.com/2012/10/mechanical_vibrations_5th-edition_s-s-rao.pdf 3. 
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UNIT - I 

SINGLE-DEGREE-OF-FREEDOM LINEAR SYSTEMS 

Introduction to Theory of Vibration: 

Introduction to theory of vibration, equation of motion, free vibration, response to harmonic excitation, 

response to an impulsive excitation, response to a step excitation, response to periodic excitation (Fourier 

series), response to a periodic excitation (Fourier transform), Laplace transform (Transfer Function).  

This chapter introduces the subject of vibrations in a relatively simple manner. It begins with a brief 

history of the subject and continues with an examination of the importance of vibration. The basic 

concepts of degrees of freedom and of discrete and continuous systems are introduced, along with a 

description of the elementary parts of vibrating systems. The various classifications of vibration namely, 

free and forced vibration, undamped and damped vibration, linear and nonlinear vibration, and 

deterministic and random vibration are indicated. The various steps involved in vibration analysis of an 

engineering system are outlined, and essential definitions and concepts of vibration are introduced. 

The concept of harmonic motion and its representation using vectors and complex numbers is described. 

The basic definitions and terminology related to harmonic motion, such as cycle, amplitude, period, 

frequency, phase angle, and natural frequency, are given. Finally, the harmonic analysis, dealing with the 

representation of any periodic function in terms of harmonic functions, using Fourier series, is outlined. 

The concepts of frequency spectrum, time- and frequency-domain representations of periodic functions, 

half-range expansions, and numerical computation of Fourier coefficients are discussed in detail. 

Learning Objectives: 

After completing this chapter, the reader should be able to do the following: 

* Describe briefly the history of vibration 

* Indicate the importance of study of vibration 

* Give various classifications of vibration 

* State the steps involved in vibration analysis 

* Compute the values of spring constants, masses, and damping constants 

* Define harmonic motion and different possible representations of harmonic motion 

* Add and subtract harmonic motions 

* Conduct Fourier series expansion of given periodic functions 
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* Determine Fourier coefficients numerically using the MATLAB program 

The subject of vibration is introduced here in a relatively simple manner. The chapter begins with 

a brief history of vibration and continues with an examination of its importance. The various steps 

involved in vibration analysis of an engineering system are outlined, and essential definitions and 

concepts of vibration are introduced. We learn here that all mechanical and structural systems can be 

modeled as mass-spring-damper systems. In some systems, such as an automobile, the mass, spring and 

damper can be identified as separate components (mass in the form of the body, spring in the form of 

suspension and damper in the form of shock absorbers). In some cases, the mass, spring and damper do 

not appear as separate components; they are inherent and integral to the system. For example, in an 

airplane wing, the mass of the wing is distributed throughout the wing. Also, due to its elasticity, the wing 

undergoes noticeable deformation during flight so that it can be modeled as a spring. In addition, the 

deflection of the wing introduces damping due to relative motion between components such as joints, 

connections and support as well as internal friction due to microstructural defects in the material. The 

chapter describes the modeling of spring, mass and damping elements, their characteristics and the 

combination of several springs, masses or damping elements appearing in a system. There follows a 

presentation of the concept of harmonic analysis, which can be used for the analysis of general periodic 

motions. 

Importance of the Study of Vibration: 

Most human activities involve vibration in one form or other. For example, we hear because our 

eardrums vibrate and see because light waves undergo vibration. Breathing is associated with the 

vibration of lungs and walking involves (periodic) oscillatory motion of legs and hands. Human speech 

requires the oscillatory motion of larynges (and tongues). In recent times, many investigations have been 

motivated by the engineering applications of vibration, such as the design of machines, foundations, 

structures, engines, turbines, and control systems. 

Most prime movers have vibrational problems due to the inherent unbalance in the engines. The 

unbalance may be due to faulty design or poor manufacture. Imbalance in diesel engines, for example, 

can cause ground waves sufficiently powerful to create a nuisance in urban areas. The wheels of some 

locomotives can rise more than a centimeter off the track at high speeds due to imbalance. In turbines, 

vibrations cause spectacular mechanical failures. 

Whenever the natural frequency of vibration of a machine or structure coincides with the 

frequency of the external excitation, there occurs a phenomenon known as resonance, which leads to 

excessive deflections and failure. In many engineering systems, a human being acts as an integral part of 
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the system. The transmission of vibration to human beings results in discomfort and loss of efficiency. 

The vibration and noise generated by engines causes annoyance to people and, sometimes, damage to 

property. Vibration of instrument panels can cause their malfunction or difficulty in reading the meters. 

Thus one of the important purposes of vibration study is to reduce vibration through proper design of 

machines and their mountings. 

 

Fig. Vibration testing of the space shuttle Enterprise. 

In spite of its detrimental effects, vibration can be utilized profitably in several consumer and 

industrial applications. In fact, the applications of vibratory equipment have increased considerably in 

recent years. For example, vibration is put to work in vibratory conveyors, hoppers, sieves, compactors, 

washing machines, electric toothbrushes, dentist’s drills, clocks, and electric massaging units. Vibration is 

also used in pile driving, vibratory testing of materials, vibratory finishing processes, and electronic 

circuits to filter out the unwanted frequencies. Vibration has been found to improve the efficiency of 

certain machining, casting, forging, and welding processes. It is employed to simulate earthquakes for 

geological research and also to conduct studies in the design of nuclear reactors. 

Basic Concepts of Vibration: 

Vibration: Any motion that repeats itself after an interval of time is called vibration or oscillation. The 

swinging of a pendulum and the motion of a plucked string are typical examples of vibration. The theory 

of vibration deals with the study of oscillatory motions of bodies and the forces associated with them. 

Elementary Parts of Vibrating Systems: A vibratory system, in general, includes a means for storing 

potential energy (spring or elasticity), a means for storing kinetic energy (mass or inertia), and a means by 

which energy is gradually lost (damper).  
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The vibration of a system involves the transfer of its potential energy to kinetic energy and of kinetic 

energy to potential energy, alternately. If the system is damped, some energy is dissipated in each cycle 

of vibration and must be replaced by an external source if a state of steady vibration is to be 

maintained. 

Example: 

 

Fig.  A simple pendulum. 

As an example, consider the vibration of the simple pendulum shown in Fig. Let the bob of mass m be 

released after being given an angular displacement θ. At position 1 the velocity of the bob and hence its 

kinetic energy is zero. But it has a potential energy of magnitude mgl(1-cosθ) with respect to the datum 

position 2. Since the gravitational force mg induces a torque mglsinθ about the point O, the bob starts 

swinging to the left from position 1. This gives the bob certain angular acceleration in the clockwise 

direction, and by the time it reaches position 2, all of its potential energy will be converted into kinetic 

energy. Hence the bob will not stop in position 2 but will continue to swing to position 3. However, as it 

passes the mean position 2, a counterclockwise torque due to gravity starts acting on the bob and causes 

the bob to decelerate. The velocity of the bob reduces to zero at the left extreme position. By this time, all 

the kinetic energy of the bob will be converted to potential energy. Again due to the gravity torque, the 

bob continues to attain a counterclockwise velocity. Hence the bob starts swinging back with 

progressively increasing velocity and passes the mean position again. This process keeps repeating, and 

the pendulum will have oscillatory motion. However, in practice, the magnitude of oscillation gradually 

decreases and the pendulum ultimately stops due to the resistance (damping) offered by the surrounding 
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medium (air). This means that some energy is dissipated in each cycle of vibration due to damping by the 

air. 

Number of Degrees of Freedom:  

The minimum number of independent coordinates required to determine completely the positions of all 

parts of a system at any instant of time defines the number of degrees of freedom of the system. 

 

Fig. Single-degree-of-freedom systems. 

 

Fig. Three degree-of-freedom systems. 
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Fig. Two-degree-of-freedom systems. 

 

Fig. A cantilever beam (an infinite-number-of-degrees-of-freedom system). 

A large number of practical systems can be described using a finite number of degrees of freedom, such 

as the simple systems shown in Figs. 1.3 to 1.5. Some systems, especially those involving continuous 

elastic members, have an infinite number of degrees of freedom. As a simple example, consider the 

cantilever beam shown in Fig. 1.6. Since the beam has an infinite number of mass points, we need an 

infinite number of coordinates to specify its deflected configuration. The infinite number of coordinates 

defines its elastic deflection curve. Thus the cantilever beam has an infinite number of degrees of 

freedom. Most structural and machine systems have deformable (elastic) members and therefore have an 

infinite number of degrees of freedom. 

Discrete and Continuous Systems: 

Systems with a finite number of degrees of freedom are called discrete or lumped parameter systems, and 

those with an infinite number of degrees of freedom are called continuous or distributed systems. 
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Classification of Vibration: 

Vibration can be classified in several ways. Some of the important classifications are as follows. 

1. Free and Forced Vibration: 

Free Vibration: If a system, after an initial disturbance, is left to vibrate on its own, the ensuing vibration 

is known as free vibration. No external force acts on the system. The oscillation of a simple pendulum is 

an example of free vibration.  

Forced Vibration: If a system is subjected to an external force (often, a repeating type of force), the 

resulting vibration is known as forced vibration. The oscillation that arises in machines such as diesel 

engines is an example of forced vibration.  

If the frequency of the external force coincides with one of the natural frequencies of the system, a 

condition known as resonance occurs, and the system undergoes dangerously large oscillations. Failures 

of such structures as buildings, bridges, turbines, and airplane wings have been associated with the 

occurrence of resonance. 

2. Undamped and Damped Vibration: 

If no energy is lost or dissipated in friction or other resistance during oscillation, the vibration is known as 

undamped vibration. If any energy is lost in this way, however, it is called damped vibration.  

In many physical systems, the amount of damping is so small that it can be disregarded for most 

engineering purposes. However, consideration of damping becomes extremely important in analyzing 

vibratory systems near resonance. 

3. Linear and Nonlinear Vibration: 

If all the basic components of a vibratory system the spring, the mass, and the damper behave linearly, the 

resulting vibration is known as linear vibration. If, however, any of the basic components behave 

nonlinearly, the vibration is called nonlinear vibration.  

The differential equations that govern the behavior of linear and nonlinear vibratory systems are linear 

and nonlinear, respectively. If the vibration is linear, the principle of superposition holds, and the 

mathematical techniques of analysis are well developed. For nonlinear vibration, the superposition 

principle is not valid, and techniques of analysis are less well known. Since all vibratory systems tend to 

behave nonlinearly with increasing amplitude of oscillation, knowledge of nonlinear vibration is desirable 

in dealing with practical vibratory systems. 
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4. Deterministic and Random Vibration: 

If the value or magnitude of the excitation (force or motion) acting on a vibratory system is known at any 

given time, the excitation is called deterministic. The resulting vibration is known as deterministic 

vibration. 

 

Fig. Deterministic and random excitations. 

In some cases, the excitation is nondeterministic or random; the value of the excitation at a given time 

cannot be predicted. In these cases, a large collection of records of the excitation may exhibit some 

statistical regularity. It is possible to estimate averages such as the mean and mean square values of the 

excitation. Examples of random excitations are wind velocity, road roughness, and ground motion during 

earthquakes. If the excitation is random, the resulting vibration is called random vibration. In this case the 

vibratory response of the system is also random; it can be described only in terms of statistical quantities. 

Figure 1.7 shows examples of deterministic and random excitations. 

Vibration Analysis Procedure: 

A vibratory system is a dynamic one for which the variables such as the excitations (inputs) and responses 

(outputs) are time dependent. The response of a vibrating system generally depends on the initial 

conditions as well as the external excitations. Most practical vibrating systems are very complex, and it is 

impossible to consider all the details for a mathematical analysis. Only the most important features are 

considered in the analysis to predict the behavior of the system under specified input conditions. Often the 

overall behavior of the system can be determined by considering even a simple model of the complex 

physical system. Thus the analysis of a vibrating system usually involves mathematical modeling, 

derivation of the governing equations, solution of the equations, and interpretation of the results. 

Step 1: Mathematical Modeling. The purpose of mathematical modeling is to represent all the 

important features of the system for the purpose of deriving the mathematical (or analytical) equations 

governing the system’s behavior. The mathematical model should include enough details to allow 
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describing the system in terms of equations without making it too complex. The mathematical model may 

be linear or nonlinear, depending on the behavior of the system s components. Linear models permit 

quick solutions and are simple to handle; however, nonlinear models sometimes reveal certain 

characteristics of the system that cannot be predicted using linear models. Thus a great deal of 

engineering judgment is needed to come up with a suitable mathematical model of a vibrating system. 

To illustrate the procedure of refinement used in mathematical modeling, consider the forging hammer 

shown in Fig. 1.8. 

  

 

Fig. Modeling of a forging hammer. 

In Fig. (a). It consists of a frame, a falling weight known as the tup, an anvil, and a foundation block. The 

anvil is a massive steel block on which material is forged into desired shape by the repeated blows of the 

tup. The anvil is usually mounted on an elastic pad to reduce the transmission of vibration to the 

foundation block and the frame. For a first approximation, the frame, anvil, elastic pad, foundation block, 

and soil are modeled as a single degree of freedom system as shown in Fig. (b). For a refined 

approximation, the weights of the frame and anvil and the foundation block are represented separately 
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with a two-degree-of-freedom model as shown in Fig. (c). Further refinement of the model can be made 

by considering eccentric impacts of the tup, which cause each of the masses shown in Fig. (c) to have 

both vertical and rocking (rotation) motions in the plane of the paper. 

Step 2: Derivation of Governing Equations. Once the mathematical model is available, we use the 

principles of dynamics and derive the equations that describe the vibration of the system. The equations 

of motion can be derived conveniently by drawing the free-body diagrams of all the masses involved. The 

free-body diagram of a mass can be obtained by isolating the mass and indicating all externally applied 

forces, the reactive forces, and the inertia forces. The equations of motion of a vibrating system are 

usually in the form of a set of ordinary differential equations for a discrete system and partial differential 

equations for a continuous system. The equations may be linear or nonlinear, depending on the behavior 

of the components of the system. Several approaches are commonly used to derive the governing 

equations. Among them are Newton’s second law of motion, D’Alembert’s principle, and the principle of 

conservation of energy. 

Step 3: Solution of the Governing Equations. The equations of motion must be solved to find the 

response of the vibrating system. Depending on the nature of the problem, we can use one of the 

following techniques for finding the solution: standard methods of solving differential equations, Laplace 

transform methods, matrix methods, and numerical methods. If the governing equations are nonlinear, 

they can seldom be solved in closed form. Furthermore, the solution of partial differential equations is far 

more involved than that of ordinary differential equations. Numerical methods involving computers can 

be used to solve the equations. However, it will be difficult to draw general conclusions about the 

behavior of the system using computer results.  

Step 4: Interpretation of the Results. The solution of the governing equations gives the displacements, 

velocities, and accelerations of the various masses of the system. These results must be interpreted with a 

clear view of the purpose of the analysis and the possible design implications of the results. 
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EXAMPLE 1. Mathematical Model of a Motorcycle 

 

Figure (a) shows a motorcycle with a rider. Develop a sequence of three mathematical models of the 

system for investigating vibration in the vertical direction. Consider the elasticity of the tires, elasticity 

and damping of the struts (in the vertical direction), masses of the wheels, and elasticity, damping, and 

mass of the rider. 

Solution:  
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Fig. Motorcycle with a rider a physical system and mathematical model. 

We start with the simplest model and refine it gradually. When the equivalent values of the mass, 

stiffness, and damping of the system are used, we obtain a single-degree-of-freedom model of the 

motorcycle with a rider as indicated in Fig. (b). 

 

In this model, the equivalent stiffness (keq) includes the stiffnesses of the tires, struts, and rider. The 

equivalent damping constant (Ceq) includes the damping of the struts and the rider. The equivalent mass 

includes the masses of the wheels, vehicle body, and the rider. This model can be refined by representing 

the masses of wheels, elasticity of the tires, and elasticity and damping of the struts separately, as shown 

in Fig (c). In this model, the mass of the vehicle body (mv) and the mass of the rider (mr) are shown as a 

single mass, mv + mr. When the elasticity (as spring constant kr ) and damping (as damping constant Cr ) 

of the rider are considered, the refined model shown in Fig.(d) can be obtained.  

Note that the models shown in Figs.(b) to (d) are not unique. For example, by combining the spring 

constants of both tires, the masses of both wheels, and the spring and damping constants of both struts as 

single quantities, the model shown in Fig. (e) can be obtained instead of Fig. (c). 

Equation of Motion: 
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Consider the single-degree-of-freedom mechanical system shown in Fig. The system consists of a 

concentrated mass m (kg), a spring with a spring constant k (N-m), and a dashpot having a viscous 

damping coefficient c (N-s/m). The external applied load is F(t)(N) and the displacement x(t)(m) is 

measured from the position of equilibrium.  

 

The potential energy stored at any instance of time t, measured from the position of equilibrium, can be 

written as 

 

The kinetic energy of the mass m reads  

 

Applying Lagrange's equation of motion, 

 

Where L = T — U and Q is the generalized force corresponding to the degree of freedom x, we obtain 

 

 

 

Fig. Single-degree-of-freedom mechanical systems. 

Free Vibration: 
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We consider first the response of the system because of initial conditions x(0) and x’(0) in free vibration, 

i.e., F(t) = 0. The equation of motion reads 

 

is a homogeneous differential equation that admits solutions in the form  

 

Where x0 is an arbitrary constant to be determined from the initial conditions and p is a parameter that 

depends on the system properties. Substituting the solution into the equation of motion, we obtain the 

system characteristic equation 

 

and has solutions p1 and P2, given by 

 

 

Fig. Free vibration of an undamped single-degree-of-freedom system 

Response to Harmonic Excitation: 

The external force F(t) can be written as  

 

the equation of motion 
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The solution can be written as 

 

 

 

Fig. Curves of the dynamic amplification factor vs Ω for different values of ɤ 

Response to an Impulsive Excitation: 

A Dirac-delta function or a unit impulse function 8(t — a) is defined as 
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Fig.  Dirac-delta function definition. 

we can write 

  

 

Hence, if F = 1, we will have the impulsive response h(t) given by 

 

And for a unit impulse applied at t = r, the response reads 
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Fig. Deterministic function. 

Response to a step excitation: 

A unit step function is defined as 
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Fig. Definition of a unit step function. 

Applying Duhamel's integral for the case of a step function applied at t = 0 with null initial conditions, we 

get 

 

 

 

 

 

 

 

Response to periodic excitation (Fourier series): 
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Fig. Periodic function. 

Figure represents a periodic external applied load F(t) with a period T. We call 2n/ T the fundamental 

frequency of excitation and denote it by  

 

Now, if the function F(t) is periodic and possesses a finite number of discontinuities and if the following 

relation is satisfied: 

 
Then from the theory of Fourier analysis, we can write F(t) as 

 

 
we can write the permanent solution response as 

 

Response to a periodic excitation (Fourier transform): 
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Consider again the exponential expansion: 

 

And the series coefficient given by 

We obtain  

 

Laplace transforms (Transfer Function): 

The Laplace transform of a function x(t) is defined as 

 

we can obtain the Laplace transform of the velocity and the acceleration as 

 

And 

 

 

 

 

 

UNIT - II 



   IARE        Mechanical Vibrations                 P a g e | 25 

Source from “Mechanical Vibrations” by SS RAO. 

MULTI-DEGREE-OF-FREEDOM LINEAR SYSTEMS 

Equations of Motion: 

Applying Lagrange equations, 

 

We obtain the equations of motion of a discrete elastic mechanical system of n degrees of freedom written 

in matrix form as  

 

Where {Q} is the column of the generalized external forces. 

Free Vibration: The Eigen Value Problem 

• Undamped Systems: 

Equations of motion for undamped free vibration read 

 

The system of equations is a system of second-order differential equations with constant coefficients, 

whose solution can be written as 

 

 

Defining 

 

We get 

 

This represents an eigenvalue problem. 

• Damped Systems: 

For free vibration of a damped system, the equations of motion read 

 

The system of equations admits solutions in the form 
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Where s and {q0} are in general complex. After substitution we obtain 

 

This represents an eigenvalue problem of the second order. 

Response to an External Applied Load: 

For an externally applied load, the equations of motion read 

 
The solution falls into two categories, the modal superposition technique and numerical methods. 

• The Modal Superposition Technique: 

The modal superposition technique consists of transforming the equations of motion into the modal base 

of the associated conservative system. The associated conservative system is obtained by the elimination 

of the damping from the equations of motion. For free vibration, the equations of motion of the associated 

conservative system read 

 
The solution will give the eigenvalue matrix [λ] and the eigenvector matrix [Q]. Making the 

transformation 

 
Where {η} is the vector of the modal amplitude, the equations of motion read 

 

 
The result reads 

 

• Numerical Methods: 

The modal superposition technique described needs the determination of the modal values of the 

associated conservative system as a first step in the solution procedure, which is a time-consuming 

process, especially if such information will not be used in further analyses. Numerical methods, on the 
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other hand, work directly on the coupled equations of motion and can be basically described as a step-by-

step successive extrapolation procedure. 

Damping Effect: 

To include a damping effect in the dynamic formulation, we need to consider the work done by the 

damping forces and include it in Hamilton's principle. Damping forces are difficult, if not impossible, to 

calculate. However, two types of damping forces have been extensively used and will be treated here, 

namely viscous damping and structural damping. 

• Viscous Damping: 

A viscous damping arises when a body is moving in a fluid (e.g., a dashpot); in such a case, we can 

assume that the damping force is proportional to the velocity, and we write 

 

 

The equations of motion of the whole structure read

. 

• Structural Damping: 

Structural damping, also known as hysteretic or solid damping, is due to internal friction or friction 

among components of the system and is proportional to elastic internal forces and acts in the velocity 

direction. In such cases, if a harmonic motion was assumed for the solution of the problem, we can write 

the damping force as  

 

Modeling of continuous systems as multi-degree-of-freedom systems: 

Different methods can be used to approximate a continuous system as a multi degree-of-freedom system. 

A simple method involves replacing the distributed mass or inertia of the system by a finite number of 

lumped masses or rigid bodies. The lumped masses are assumed to be connected by mass less elastic and 

damping members. Linear (or angular) coordinates are used to describe the motion of the lumped masses 

(or rigid bodies). Such models are called lumped-parameter or lumped-mass or discrete-mass systems. 

The minimum number of coordinate’s necessary to describe the motion of the lumped masses and rigid 
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bodies define the number of degrees of freedom of the system. Naturally, the larger the number of lumped 

masses used in the model, the higher the accuracy of the resulting analysis. 

Using Newton’s second law to derive equations of motion: 

The following procedure can be adopted to derive the equations of motion of a multi degree of- freedom 

system using Newton s second law of motion: 

1. Set up suitable coordinates to describe the positions of the various point masses and rigid bodies in the 

system. Assume suitable positive directions for the displacements, velocities, and accelerations of the 

masses and rigid bodies. 

2. Determine the static equilibrium configuration of the system and measure the displacements of the 

masses and rigid bodies from their respective static equilibrium positions. 

3. Draw the free-body diagram of each mass or rigid body in the system. Indicate the spring, damping, 

and external forces acting on each mass or rigid body when positive displacement and velocity are given 

to that mass or rigid body. 

4. Apply Newton s second law of motion to each mass or rigid body shown by the free body diagram as 

 
or  

 

Influence coefficients: 

The equations of motion of a multi degree-of-freedom system can also be written in terms of influence 

coefficients, which are extensively used in structural engineering. Basically, one set of influence 

coefficients can be associated with each of the matrices involved in the equations of motion. The 

influence coefficients associated with the stiffness and mass matrices are, respectively, known as the 

stiffness and inertia influence coefficients. In some cases, it is more convenient to rewrite the equations of 

motion using the inverse of the stiffness matrix (known as the flexibility matrix) or the inverse of the 

mass matrix. The influence coefficients corresponding to the inverse stiffness matrix are called the 

flexibility influence coefficients, and those corresponding to the inverse mass matrix are known as the 

inverse inertia coefficients.  

 

Stiffness influence coefficients: 
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For a simple linear spring, the force necessary to cause a unit elongation is called the stiffness of the 

spring. In more complex systems, we can express the relation between the displacements at a point and 

the forces acting at various other points of the system by means of stiffness influence coefficients. 

 

 
Multi degree-of-freedom spring-mass system. 

The following aspects of stiffness influence coefficients are to be noted: 

1. Since the force required at point i to cause a unit deflection at point j and zero deflection at all other 

points is the same as the force required at point j to cause a unit deflection at point i and zero deflection at 

all other points.  

2. The stiffness influence coefficients can be calculated by applying the principles of statics and solid 

mechanics. 

3. The stiffness influence coefficients for torsional systems can be defined in terms of unit angular 

displacement and the torque that causes the angular displacement. 

Flexibility influence coefficients: 

The generation of the flexibility influence coefficients, proves to be simpler and more convenient than 

stiffness influence coefficients. 
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The flexibility influence coefficients of a multi degree-of-freedom system can be determined as follows: 

1. Assume a unit load at point j. By definition, the displacements of the various points resulting from this 

load give the flexibility influence coefficients, thus can be found by applying the simple principles of 

statics and solid mechanics. 

2. After completing Step 1 for the procedure is repeated for  

3. Instead of applying Steps 1 and 2, the flexibility matrix, [a], can be determined by finding the inverse 

of the stiffness matrix, [k], if the stiffness matrix is available. 

Inertia influence coefficients: 

The elements of the mass matrix, mij, are known as the inertia influence coefficients. 

 
In matrix form  

 
The velocity and impulse vectors given by   

 
The mass matrix given by    
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Potential and kinetic energy expressions in matrix form: 

The elastic potential energy (also known as strain energy or energy of deformation) of the ith spring is 

given by      

 
The total potential energy can be expressed as 

 
In matrix form as     

 
The stiffness matrix is given by 

 
The kinetic energy associated with mass mi is, by definition, equal to 

 
In matrix form as    

 
It can be seen that the potential energy is a quadratic function of the displacements, and the kinetic energy 

is a quadratic function of the velocities. Hence they are said to be in quadratic form. Since kinetic energy, 

by definition, cannot be negative and vanishes only when all the velocities vanish, and are called positive 

definite quadratic forms and the mass matrix [m] is called a positive definite matrix. 

Generalized Coordinates and Generalized Forces: 

The equations of motion of a vibrating system can be formulated in a number of different coordinate 

systems. As stated earlier, n independent coordinates are necessary to describe the motion of a system 

having n degrees of freedom. Any set of n independent coordinates is called generalized coordinates, 

usually designated by q1, q2, q3…..qn. The generalized coordinates may be lengths, angles, or any other 

set of numbers that define the configuration of the system at any time uniquely. They are also independent 

of the conditions of constraint. 
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The configuration of the system can be specified by the six coordinates 

 
Triple pendulum 

(xj, yj), j = 1, 2, 3. However, these coordinates are not independent but are constrained by the relations 

 

Lagrange s Equations to Derive Equations of Motion: 

The equations of motion of a vibrating system can often be derived in a simple manner in terms of 

generalized coordinates by the use of Lagrange s equations. Lagrange equations can be stated, for an n-

degree-of-freedom system, as 

 
The generalized force can be computed as follows: 
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Thus the equations of motion of the vibrating system can be derived, provided the energy expressions are 

available. 

Equations of Motion of Undamped Systems in Matrix Form: 

The equations of motion of a multi degree-of-freedom system in matrix form from Lagrange s equations. 

 
The kinetic and potential energies of a multi degree-of-freedom system can be expressed in matrix form 

as 

 
Where the column vector of the generalized coordinates 

 
From the theory of matrices, 

 
All the relations represented can be expressed as 

 
Differentiation of Equation with respect to time gives 



   IARE        Mechanical Vibrations                 P a g e | 34 

Source from “Mechanical Vibrations” by SS RAO. 

 
So the equations of motion become 

 

Eigen value Problem: 

Assuming a solution of the form 

 
The configuration of the system, given by the vector 

is known as the mode shape of the system. 

From which we can obtain the relations 

 
The solution of Equation can be expressed as 

 
Where constants known as the amplitude and the phase angle, respectively. 

Solution of the Eigen value Problem: 

Equation 
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Can also be expressed as 

 
By premultiplying we obtain 

 
Where [I] is the identity matrix and 

 
is called the dynamical matrix. The eigenvalue problem is known as the standard eigenvalue problem. 

Expansion Theorem: 

The eigenvectors, due to their property of orthogonality, are linearly independent. If x is an arbitrary 

vector in n-dimensional space, it can be expressed as 

 

The value of the constant Ci can be determined as 

 

is known as the expansion theorem . 

It is very useful in finding the response of multi degree-of-freedom systems subjected to arbitrary forcing 

conditions according to a procedure called modal analysis. 

Unrestrained Systems: 

Consider the equation of motion for free vibration in normal coordinates: 

 
The eigenvalue problem can be expressed as 

 
That is, 
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If the system under goes rigid-body translation. The potential energy is given by 

 

An unrestrained system is also called a semidefinite system. 

Free Vibration of Undamped Systems: 

The equation of motion for the free vibration of an undamped system can be expressed in matrix form as 

 
The most general solution can be expressed as a linear combination of all possible solutions given by  

 

If 

 
Denote the initial displacements and velocities given to the system,  

 
It can be solved to find the n values of Ai. 
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Forced Vibration of Undamped Systems Using Modal Analysis: 

When external forces act on a multi degree-of-freedom system, the system undergoes forced vibration. 

For a system with n coordinates or degrees of freedom, the governing equations of motion are a set of n 

coupled ordinary differential equations of second order. The solution of these equations becomes more 

complex when the degree of freedom of the system (n) is large and/or when the forcing functions are 

nonperiodic.  

In such cases, a more convenient method known as modal analysis can be used to solve the problem. In 

this method, the expansion theorem is used, and the displacements of the masses are expressed as a linear 

combination of the normal modes of the system. This linear transformation uncouples the equations of 

motion so that we obtain a set of n uncoupled differential equations of second order. The solution of these 

equations, which is equivalent to the solution of the equations of n single-degree-of-freedom systems, can 

be readily obtained. 

Modal Analysis:-  

The equations of motion of a multi degree-of-freedom system under external forces are given by 

 
To solve Equation by modal analysis, it is necessary first to solve the eigenvalue problem. 

 
the solution vector of Equation can be expressed by a linear combination of the normal modes 

 
can be rewritten as 

 
Where 

 

The initial generalized displacements and the initial generalized velocities can be obtained from the initial 

values of the physical displacements and physical velocities as: 
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Where 

  

Forced Vibration of Viscously Damped Systems: 

Modal analysis, applies only to undamped systems. In many cases, the influence of damping upon the 

response of a vibratory system is minor and can be disregarded. However, it must be considered if the 

response of the system is required for a relatively long period of time compared to the natural periods of 

the system. Further, if the frequency of excitation (in the case of a periodic force) is at or near one of the 

natural frequencies of the system, damping is of primary importance and must be taken into account. In 

general, since the effects are not known in advance, damping must be considered in the vibration analysis 

of any system. In this section, we shall consider the equations of motion of a damped multidegree-of-

freedom system and their solution using Lagrange s equations. If the system has viscous damping, its 

motion will be resisted by a force whose magnitude is proportional to that of the velocity but in the 

opposite direction. 

It is convenient to introduce a function R, known as Rayleigh s dissipation function, in deriving the 

quations of motion by means of Lagrange s equations. This function is defined as 

 
Where the matrix [c] is called the damping matrix and is positive definite, like the mass and stiffness 

matrices. Lagrange s equations can be written as 

 
The equations of motion of a damped  multi degree-of-freedom system in matrix form: 
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After substitution, we obtain 

 
can be rewritten as 

 
The solution can be expressed as 

 
Where 
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UNIT - III 

NONLINEAR AND RANDOM VIBRATION 

Introduction to Nonlinear Vibrations: 

The progress achieved in the past decades in the applied mechanics field is attributed to the representation 

of complex physical problems by simple mathematical equations. In many applications, these equations 

are nonlinear. In spite of this fact, simplifications consistent with the physical situation permit, in most 

cases, a linearization process that simplifies the mathematical solution of the problem while conserving 

the precision of the physical results. However, in few cases, the linear solutions are not sufficient to 

describe adequately the problem at hand because new physical phenomena are introduced and can be 

explained only if nonlinearity is considered. 

Simple Examples of Nonlinear Systems: 

• Simple Pendulum in Free Vibrations:-    

Consider the simple pendulum in free vibrations shown in Figure.  

 
Simple pendulum in free vibrations 
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The equation of motion of the pendulum can be written as 

 
Can be written as 

. 

Physical Properties of Nonlinear Systems:    

• Undamped Free Vibrations: 

Physical considerations reveal that, for a mechanical system with nonlinear stiffness in free vibrations, the 

period (and thus the frequency) of the response will be a function of the amplitude of vibration. This is 

expected mathematically since k = k(x) and therefore T = T(x). It is to be emphasized that the natural 

frequency is a constant and is a property of the mechanical system, despite whether the system is linear. 

The frequency of response in free vibration of a linear system is constant and is equal to the natural 

frequency of the system, while a nonlinear system in free vibration responds with a frequency that is a 

function of the amplitude of vibration. As an example (the proof will be given in the next sections), for 

the dependence of the period of free vibration on the amplitude of the response, it can be shown that the 

period of the simple pendulum of Fig. is given by 

 
Where TO is the period of the linear system. A plot of T / To vs 0 is shown in Fig. 

 
Period of free vibrations of a simple pendulum 
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• Damped Free Vibrations 

Consider a nonlinear damped system having a hard spring nonlinearity characteristic in free vibrations. 

The system equation of motion can be written as 

 

With initial conditions different from zero and an initial displacement value in the nonlinear regime, 

physical considerations and Eq. (5.10) reveal that the response will appear as the curve sketched in Fig. 

We notice that, for nonlinear amplitude values, we will have smaller periods of response (thus higher 

frequencies) compared to the linear part. Thus, we expect that the amplitude of the response will begin 

with a certain value in the nonlinear regime, and the system will oscillate with frequencies higher than the 

damped natural frequency; with the increase of time, the amplitude of the response will decrease due to 

the system damping. As a result, we will have an amplitude response oscillating with a decrease in 

amplitude and frequency values until it reaches the linear amplitude where the system responds with 

damped amplitude and a constant frequency equal to the system damped natural frequency. 

 
Damped free vibration response of a nonlinear system 

 

• Forced Vibrations 

Consider an undamped linear single degree of freedom with a harmonic external excitation. The equation 

of motion of the system reads 
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The amplitude of the permanent response is sketched in Fig.  We notice that for P = 0, i.e., for free 

vibration, we will have a harmonic response with a frequency of response equal to the undamped natural 

frequency of the system. 

 
Permanent response amplitude of a linear undamped system due to harmonic external excitation.  We 

expect that the amplitude of the response when plotted against the frequency of excitation will have the 

form sketched in Fig. for soft and hard springs, respectively. 

 
Free vibration response of linear and nonlinear systems 
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Solutions of the Equation of Motion of a Single-Degree-of-Freedom Nonlinear System: 

• Exact Solutions: 

Very few nonlinear differential equations have exact solutions. Exact mathematical solutions of nonlinear 

systems are studied not only because of their importance for the cases where they exist but also because 

these exact solutions can be used in the studies of the performance and convergence of nonlinear 

numerical algorithm solvers that are to be used for the solution of the problems that do not have exact 

solutions. 

• Free vibration: 

Consider an undamped single-degree-of- freedom system with stiffness nonlinearity in free vibration. The 

related equation of motion can be written as 

 

Can be written as 

 
Integrating, we obtain 

 
We now consider the case when f ( x ) is given by 

 
We obtain 

 
Where 

 

The extension to the case of a higher-order polynomial is straightforward. 

• Forced vibration: 

There is no exact solution for the general case of forced vibration of a nonlinear dynamic single-degree-

of-freedom system. The solutions are therefore obtained using numerical methods that will be discussed 

in the next section. 
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Multi degree-of-Freedom Nonlinear Systems: 

The step-by-step numerical integration methods given in previous chapter are directly extended for the 

analysis of arbitrary nonlinear systems with multiple degrees of freedom. As in the linear case, the time-

history response is divided into short, normally equal time increments, and the response is calculated at 

the end of the time interval for a linearized system having properties determined at the beginning of the 

interval. The system nonlinear properties are then modified at the end of the interval to conform to the 

state of deformations and stresses at that time. The mass matrix is usually constant in most practical 

applications so that its inverse is evaluated once at the beginning of the solution procedure. The stiffness 

and the damping matrices are modified at the beginning of each step. Therefore, during each step of the 

nonlinear solution, a triangular decomposition of the equivalent stiffness matrix must be done to obtain 

the end displacements and velocities. As in the linear case, the acceleration vectors are obtained solving 

the equations of motion at the beginning of the interval to avoid accumulation of errors during the 

solution procedure. The modal transformation technique can be used in the solution of the nonlinear 

system with multiple degrees of freedom; however, in this case, the related matrices are coupled, but the 

system will have a smaller number of equations compared to the original system written in the physical 

coordinates. The step-by-step integration procedures are applied to the transformed smaller system of 

equations. 

Introduction to random vibrations: 

Consider the record of a measured variable x (t), illustrated in Fig.1, which can represent for instance the 

displacement of a point in a structure as a function of time. In Fig.la, we can conclude that the variable 

x(t) is predominantly harmonic, while x(t) of Fig.1b is predominantly irregular. If we repeat the process 

of measuring and recording the response of the displacement several times and if in all cases we obtain 

the same responses in both processes, we define such processes as being deterministic processes. Now if, 

in the process of Fig.la, during the repeated measurements of the records at each time, we obtain a 

different angle of phase and if, in the process of Fig.1b, the responses are different from each other during 

the repeated measurements, we call such processes random processes. Random processes are 

characterized by the fact that their behavior cannot be predicted in advance and therefore can be treated 

only in a statistical manner. We will begin this chapter by studying random processes and their statistical 

properties. In the sequence, we will study the response of linear systems due to random excitations. 
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1 Record of a variable as a function of time 

 

Classification of Random Processes: 

• Stationary Random Processes: 

Consider n records of a random variable as given in Fig.2. We define the complete set of xk(t),k = 1 , 2 , . 

. . , n as a random process, and each record of the set will be called a sample of the random process. 

Consider now the values of xk(t) for the instant of time t = t\; we can write the mean value of the random 

process at that instant of time as 
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2 Time history of a random process 

 
For an instant of time t = t^ separated from t\ by an interval of time r, we can write a statistical 

measurement of the behavior of the mean value in relation to a shift r as a function Rx(t\, t\ + r), given by 

 

For example, for two shifts, we can write an expression in the form 

 

In general, iix(t\\ Rx(t\ , t\ + T), Rx(t\ ,ti+T,t\+ cr), etc., will be functions of t\ where the mean values have 

been calculated. Now if in a random process these mean values do not depend on t\, i.e., ^x(t\) = JJLX = 

const and Rx(t\, t\ + r) = Rx(r) and Rx(t\, t\ + r, t\ + a) = Rx(r, a), etc., we call the random process a 

process that is heavily stationary. 
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Probability Distribution and Density Functions: 

Consider a sample of an ergodic process as shown in Fig. 3. We define the probability distribution 

function as 

 
We will define the probability density function as 

 

 
3 Probability distribution function 

We verify the following relations: 

 
In many statistical applications where the number of samples is very great and none of the samples 

represents a significant weight in the process, the probability density function can be represented by the 

so-called Gaussian distribution. The probability density function for the Gaussian or normal distribution 

reads 
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And thus the probability distribution function is given by 

 

Description of the Mean Values in Terms of the Probability Density Function: 

Considering a stationary random process (x(t)} for a continuous function g(x), we can write the mean 

value g(x) as 

 

We note that { l / n } represents the probability of the process to have the value of g(x). Thus, we can 

write 

 

We call g(x) the mean value or the mathematical expectation, and we write 

 

Thus, we can write for the mean values the following expressions in terms of the probability density 

function: 

1) For the mean value g(x) = x, 

 

2) For the mean square value g(x) = x2, 

 

3) For the variance g(x) = (x — x)2, 
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Properties of the Autocorrelation Function: 

The autocorrelation function for an ergodic process reads 

 

Making the transformation t — r = X, we get 

 

and because the integration is made for T -> ∞, we can write 

 

Hence we conclude that the autocorrelation function is an even function. 

Power Spectral Density Function: 

Consider the sample f ( t ) of an ergodic process and its autocorrelation function, which can be written as 

 

This implies that the autocorrelation function is the inverse Fourier transform of Sf(ω), or 

 

and we observe the following: 

Sf(a>) does not furnish any new information since Rf(ω) is its Fourier transform, and thus the information 

contained in one is the same as the information contained in its transform. However, Sf(co) gives us the 

information in the frequency domain while Rf(r) gives us the information in the time domain, and 

depending on the application, one may be more convenient than the other. 

Properties of the Power Spectral Density Function: 

1 The Power Spectral Density Function Is a Positive Function 

2 The Power Spectral Density Function Is an Even Function 

3 Representation of the Power Spectral Density Function in the Positive Domain 
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White Noise and Narrow and Large Bandwidth: 

The power spectral density function provides the necessary information on the frequency decomposition 

of a random process. Now if the frequency decomposition is concentrated in turns of a peak frequency 

a)Q as shown in Fig.a, we call such distribution a narrow bandwidth distribution. This is in contrast to the 

distribution given in Fig.4b, where we have an equal frequency distribution in a large band, and we call 

such distribution a large bandwidth distribution. Now, if Sf(a>) is a constant for all the frequency 

decompositions, i.e., from -∞ to ∞ as shown in Fig.4c,  

We define such distribution as white noise; this is in comparison with the white light distribution, which 

has a plain spectral distribution in the large visible band frequency. In many practical cases, processes 

having distributions as shown in Fig.4d with an equal distribution in a large band of frequency can be 

considered as white noise distribution for practical purposes. 

 
Narrow, large bandwidth and white noise distributions 
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Single-Degree-of-Freedom Response: 

The response x(t) of a linear single-degree-of-freedom system due to an external applied load f(t), whether 

a deterministic or random excitation, can be written in terms of Duhamel's convolution integral as 

 

Now, for random excitation, we can extend the integration to —∞, and we write 

 

The Fourier transform of the response reads 

 

Considering now a random ergodic excitation f ( t ) to a single-degree-of- freedom mechanical system, we 

can write the mean value of the response jc as 

 

And, because the system is linear, we can invert the order of the mean and the integration operations to 

write 

 

In the sequel, we will calculate the autocorrelation function of the response to a single degree of freedom 

due to an ergodic external excitation. Using Eq. we can write 

 

Using the definition of the power spectral density function and Eq. we can write 

 

We conclude that 
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It represents an algebraic relation between three functions, is a very important relation in structural 

dynamics. 

Response to a White Noise: 

Consider a single-degree-of-freedom mechanical system subjected to an external random ergodic 

excitation having a power spectral density function given by a white noise with intensity so- Thus, we can 

write 

 

Now, for a single-degree-of-freedom system, the complex frequency response function H(ω) reads 

 

The autocorrelation function of the response can be obtained from the inverse Fourier transform of Sx(a>) 

and reads 

 

Integrating, we obtain 

 

And the mean square value of the response reads 

. 
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UNIT – IV 

DYNAMICS OF CONTINUOUS ELASTIC BODIES  

Introduction: 

We have so far dealt with discrete systems where mass, damping, and elasticity were assumed to be 

present only at certain discrete points in the system. In many cases, known as distributed or continuous 

systems, it is not possible to identify discrete masses, dampers, or springs. We must then consider the 

continuous distribution of the mass, damping, and elasticity and assume that each of the infinite number 

of points of the system can vibrate. This is why a continuous system is also called a system of infinite 

degrees of freedom. 

If a system is modeled as a discrete one, the governing equations are ordinary differential equations, 

which are relatively easy to solve. On the other hand, if the system is modeled as a continuous one, the 

governing equations are partial differential equations, which are more difficult. However, the information 

obtained from a discrete model of a system may not be as accurate as that obtained from a continuous 

model. The choice between the two models must be made carefully, with due consideration of factors 

such as the purpose of the analysis, the influence of the analysis on design, and the computational time 

available.  

 

A vibrating string 
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Transverse Vibration of a String or Cable: 

Consider a tightly stretched elastic string or cable of length l subjected to a transverse force f(x, t) per unit 

length, as shown in Fig.(a). The transverse displacement of the string, w(x, t), is assumed to be small. 

Equilibrium of the forces in the z direction gives  

 

The net force acting on an element is equal to the inertia force acting on the element, or 

 
For an elemental length dx, 

 
And 

 
Hence the forced-vibration equation of the non uniform string, Equation, can be simplified to 

 
If the string is uniform and the tension is constant, Equation reduces to 

 
We obtain the free-vibration equation 

 
Or 

 Is also known as the wave equation. 

Longitudinal Vibration of a Bar or Rod:   

Consider an elastic bar of length l with varying cross-sectional area A(x), The forces acting on the cross 

sections of a small element of the bar are given by P and P + dP with 

 

Where σ is the axial stress, E is Young s modulus, u is the axial displacement, and du/dx is the axial 

strain. If f(x, t) denotes the external force per unit length, the summation of the forces in the x direction 

gives the equation of motion 
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Longitudinal vibration of a bar 

 

The equation of motion for the forced longitudinal vibration of a non uniform bar, Equation, can be 

expressed as 

 

For a uniform bar, Equation reduces to 

 

The free-vibration equation can be obtained from Equation, by setting f = 0, as 

 

Where 

 

Torsional Vibration of a Shaft or Rod:    

Figure, represents a non uniform shaft subjected to an external torque f(x, t) per unit length. If u(x, t) 

denotes the angle of twist of the cross section, the relation between the torsional deflection and the 

twisting moment Mt(x, t) is given by 
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Where G is the shear modulus and GJ(x) is the torsional stiffness, with J(x) denoting the polar moment of 

inertia of the cross section in the case of a circular section. If the mass polar moment of inertia of the shaft 

per unit length is the inertia torque acting on an element of length dx becomes 

 

 
Torsional vibration of a shaft 

 

If an external torque f (x, t) acts on the shaft per unit length, the application of Newton  second law yields 

the equation of motion: 
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By expressing dMt as 

 
The forced torsional vibration equation for a nonuniform shaft can be obtained: 

 
For a uniform shaft, takes the form 

 
Which, in the case of free vibration, reduces to 

 
Where 

. 

Lateral Vibration of Beams: 

Consider the free-body diagram of an element of a beam shown in Figure, where M(x, t) is the bending 

moment, V(x, t) is the shear force, and f(x, t) is the external force per unit length of the beam. Since the 

inertia force acting on the element of the beam is 

 

The force equation of motion in the z direction gives 

 

Where ρ is the mass density and A(x) is the cross-sectional area of the beam. The moment equation of 

motion about the y-axis passing through point O in Figure leads to 
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A beam in bending 

By writing 

 

By using the relation V = dM/dx 

 

From the elementary theory of bending of beams (also known as the Euler-Bernoulli or thin beam theory), 

the relationship between bending moment and deflection can be expressed as 

 

Where E is Young s modulus and I(x) is the moment of inertia of the beam cross section about the y-axis. 

We obtain the equation of motion for the forced lateral vibration of a nonuniform beam: 

 

Reduces to 

 

For free vibration, f(x, t) = 0, and so the equation of motion becomes 

 

Where 
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. 

Rayleigh s Method: 

Rayleigh s method can be applied to find the fundamental natural frequency of continuous systems. This 

method is much simpler than exact analysis for systems with varying distributions of mass and stiffness. 

Although the method is applicable to all continuous systems, we shall apply it only to beams in this 

section.4 Consider the beam shown in Figure. In order to apply Rayleigh s method, we need to derive 

expressions for the maximum kinetic and potential energies and Rayleigh s quotient. The kinetic energy 

of the beam can be expressed as 

 

The maximum kinetic energy can be found by assuming a harmonic variation w(x, t) = W(x) cos vt: 

 

The potential energy of the beam V is the same as the work done in deforming the beam. By disregarding 

the work done by the shear forces, we have 

 

Can be rewritten as 

 

Since the maximum value of w(x, t) is W(x), the maximum value of V is given by 

 

By equating Tmax  to Vmax,  we obtain Rayleigh s quotient: 

 

For a stepped beam, can be more conveniently written as 
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Where and correspond t Ei, Ii, Ai, li o the ith step (i = 1, 2, Á). 

The Rayleigh-Ritz Method:    

The Rayleigh-Ritz method can be considered an extension of Rayleigh s method. It is based on the 

premise that a closer approximation to the exact natural mode can be obtained by superposing a number 

of assumed functions than by using a single assumed function, as in Rayleigh s method. If the assumed 

functions are suitably chosen, this method provides not only the approximate value of the fundamental 

frequency but also the approximate values of the higher natural frequencies and the mode shapes. An 

arbitrary number of functions can be used, and the number of frequencies that can be obtained is equal to 

the number of functions used. A large number of functions, although it involves more computational 

work, leads to more accurate results. 

In the case of transverse vibration of beams, if n functions are chosen for approximating the deflection 

W(x), we can write 

 

Where w1(x), w2(x), Á , wn(x)  are known linearly independent functions of the spatial coordinate x, 

which satisfy all the boundary conditions of the problem, and c1, c2, Á , cn are coefficients to be found. 

To make the natural frequency stationary, we set each of the partial derivatives equal to zero and obtain 

. 
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UNIT – V 

INTRODUCTION TO AEROELASTICITY 

Introduction: 

Aeroelasticity is a notably new branch of applied mechanics that studies the interaction between 

fluid matters and flexible solid bodies. The typical application of aeroelasticity is in the branch 

of aircraft engineering. However, aeroelastic issues are applicable also for civil engineering (e.g., 

slender buildings, towers, smokestacks, suspension bridges, electric lines, and pipelines) or 

transportation engineering (cars, ships, submarines). Also important are its applications in 

machine engineering (compressors, turbines). 

In the following text we will focus on aerospace aeroelasticity. Aeroelasticity in regard to aircraft 

structures is defined as the branch that investigates the phenomena that emerge due to the 

interaction of aerodynamic (in particular unsteady), inertial and elastic forces emerging during 

the relative movement of a fluid (air) and a flexible body (aircraft). 

Two factors drive aviation development: 1) the quest for speed; and, 2) the competition for new 

air vehicle military and commercial applications. These factors trigger the appearance of new 

aircraft shapes, devices and materials, as well as applications of new technologies such as 

avionics. These factors have created and continue to create new challenges for the engineering 

discipline known as aeroelasticity. 

 
 

Three-ring aeroelastic interaction Venn diagram. 

 

https://www.sciencedirect.com/topics/engineering/aircraft-engineering
https://www.sciencedirect.com/topics/engineering/civil-engineering
https://www.sciencedirect.com/topics/engineering/suspension-bridges
https://www.sciencedirect.com/topics/engineering/electric-lines
https://www.sciencedirect.com/topics/engineering/aircraft-structure
https://www.sciencedirect.com/topics/engineering/aircraft-structure
https://www.sciencedirect.com/topics/engineering/inertial-force
https://www.sciencedirect.com/topics/engineering/relative-movement
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Collar's aeroelastic triangle: 

Aeroelastic phenomena may be divided according to the diagrammed definition of aeroelasticity 

(Collar’s triangle of forces – Figure 1.1). The sides of the triangle represent the relationships 

among the particular pairs of forces representing specific areas of mechanics, including 

aeroelasticity, whereas the triangle’s interior represents the interference of all three groups of 

forces typical for dynamic aeroelastic phenomena. Static aeroelastic phenomena that exclude 

inertial forces are characterised by the unidirectional deformation of the structure, whereas 

dynamic aeroelastic phenomena that include inertial forces are typical in 

their oscillatory property of structure deformation. 

Collar’s triangle of forces: 

Problems with aeroelasticity have been occurring since the birth of aviation. The first famous 

event caused by an aeroelastic phenomenon was the crash of Langley’s monoplane, which 

occurred only eight days before the Wright brothers’ first successful flight. Thus, the Wrights 

became famous as the first fliers and Langley is only remarked in aeroelastic textbooks. The 

cause of the crash was the torsional divergence of the wing with low torsional stiffness. 

Therefore, the early stage of aviation is characterised by biplanes that allow for the design of a 

torsionally stiffer structure. At this time, torsional divergence was the dominant aeroelastic 

phenomenon. Torsional divergence was also the cause of several crashes of Fokker’s high-wing 

monoplane D-8. The low stiffness of the fuselage and tail planes, as well as the unsuitable design 

of the control system, caused the crashes of the British Handley-Page O/400 twin-engine 

biplane bomber and the DH-9 biplane fighter during the First World War. 

After the First World War, during tests in the USA, a further aeroelastic phenomenon emerged 

with the D-8 aircraft – wing aileron flutter. This phenomenon was eliminated using static 

balancing of the ailerons. With increasing flight velocities, as well as the design of monoplanes, 

the flutter phenomenon became increasingly important. The basic theories of flutter were 

formulated by Küssner in Germany and by Frazer and Duncan in the UK at the end of the 1920s. 

In the 1930s Theodorsen formulated the theory of unsteady forces distribution on a harmonically 

vibrating airfoil with a control surface. Similar problems were also solved in Russia. 

With the attainment of sonic speed after the Second World War, qualitatively new aeroelastic 

issues, such as panel flutter or control buzz, gained prominence. These phenomena are caused by 

shock waves and pressure oscillations over the airfoil in the transonic region. In the supersonic 

velocity range, the aerodynamic heat effect also became an important contributing factor (aero-

thermo-elasticity). Apart from this, further phenomena are connected to the effects of servo-

systems in the control circuits (aero-servoelasticity). Currently, new aeroelastic problems are 

emerging in connection with the active control systems that are used for gust alleviation and the 

suppression of structural loads. Additionally, aeroelastic optimisation methods enable the 

https://www.sciencedirect.com/topics/engineering/deformation
https://www.sciencedirect.com/topics/engineering/oscillatory
https://www.sciencedirect.com/topics/engineering/deformation-of-structure
https://www.sciencedirect.com/topics/engineering/divergence
https://www.sciencedirect.com/topics/engineering/fuselages
https://www.sciencedirect.com/topics/engineering/bombers
https://www.sciencedirect.com/topics/engineering/fighter-aircraft
https://www.sciencedirect.com/topics/engineering/ailerons
https://www.sciencedirect.com/topics/engineering/ailerons
https://www.sciencedirect.com/topics/engineering/flight-velocity
https://www.sciencedirect.com/topics/engineering/theodorsen
https://www.sciencedirect.com/topics/engineering/airfoils
https://www.sciencedirect.com/topics/engineering/control-surfaces
https://www.sciencedirect.com/topics/engineering/servo-system
https://www.sciencedirect.com/topics/engineering/servo-system
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potential of structural adjustments to, for instance, decrease mass and increase flight 

performance. 

In general, a new aircraft design concept or a part or system may cause new aeroelastic 

problems. A typical example is the whirl flutter phenomenon that is the subject of this book. In 

the late 1950s, a new aircraft category (turboprop airliners) emerged. These aircraft were 

characterised by wing-mounted gas turbine engines and heavy propellers placed somewhat far in 

front of the wing. The gyroscopic effect of the rotating masses of the propeller, compressor and 

turbine combined with the wing dynamics, consequently created a new aeroelastic issue – whirl 

flutter. 

Aeroelastic interactions determine airplane loads and influence flight performance in four 

primary areas: 1) wing and tail surface lift redistribution that change external loads from 

preliminary loads computed on rigid surfaces; 2) stability derivatives, including lift 

effectiveness, that affects flight static and dynamic control features such as aircraft trim and 

dynamic response; 3) control effectiveness, including aileron reversal, that limits 

maneuverability; 4) aircraft structural dynamic response to atmospheric turbulence and buffeting, 

as well as structural stability, in particular flutter. 

 

As indicated in Figure this chapter begins with a discussion of aeroelastic models and the 

introduction to special terminology required to define the features of these models. This includes 

a brief discussion of structural analysis matrix methods and concepts such as the shear center, 

aerodynamic coefficients and aerodynamic center of pressure. 

 

https://www.sciencedirect.com/topics/engineering/aircraft-category
https://www.sciencedirect.com/topics/engineering/gas-turbine-engine
https://www.sciencedirect.com/topics/engineering/propellers
https://www.sciencedirect.com/topics/engineering/gyroscopic-effect
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DEFINITIONS: 

Aeroelasticity:  

1. Aeroelastic problems would not exist if airplane structures where perfectly rigid.  

2. Many important aeroelastic phenomena involve inertia forces as well as aerodynamic and 

elastic forces.  

Static Aeroelasticity:  

Science which studies the mutual interaction between aerodynamic forces and elastic forces, and 

the influence of this interaction on airplane design.  

Dynamic Aeroelasticity:  

Phenomena involving interactions of inertial, aerodynamic, and elastic forces.  

Collar diagram:  

Describes the aeroelastic phenomena by means of a triangle of forces 
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DYNAMIC AEROELASTICITY: - Phenomena involving all three types of forces:  

1. F – Flutter: dynamic instability occurring for aircraft in flight at a speed called flutter 

speed  

2. B – Buffeting: transient vibrations of aircraft structural components due to aerodynamic 

impulses produced by wake behind wings, nacelles, fuselage pods, or other components 

of the airplane  

3. Z – Dynamic response: transient response of aircraft structural components produced by 

rapidly applied loads due to gusts, landing, gun reactions, abrupt control motions, and 

moving shock waves 

STATIC AEROELASTICITY: - Phenomena involving only elastic and aerodynamic forces:  

1. L – Load distribution: influence of elastic deformations of the structure on the 

distribution of aerodynamic pressures over the structure  

2. D – Divergence: a static instability of a lifting surface of an aircraft in flight, at a speed 

called the divergence speed, where elasticity of the lifting surface plays an essential role 

in the instability.  

3. R – Control system reversal: A condition occurring in flight, at a speed called the control 

reversal speed, at which the intended effect of displacing a given component of the 

control system are completely nullified by elastic deformations of the structure. 

 

The structures enterprise and its relation to aeroelasticity: 

Every aircraft company has a large engineering division with a name such as “Structures 

Technology.” The purpose of the structures organization is to create an airplane flight structure 

with structural integrity. This organization also has the responsibility for determining and 

fulfilling structural design objectives and structural certification of production aircraft. In 

addition, the organization conducts research and develops or identifies new materials, techniques 

and information that will lead to new aircraft or improvements in existing aircraft. The structures 

group has primary responsibility for loads prediction, component strength analysis and structural 

component stability prediction. There is strong representation within this group of people with 

expertise in structural mechanics, metallurgy, aerodynamics and academic disciplines such as 

civil engineering, mechanical engineering, chemical engineering, and engineering mechanics, as 

well as the essential aeronautical engineering representation.  

 

 

 



   IARE        Mechanical Vibrations                 P a g e | 67 

Source from “Mechanical Vibrations” by SS RAO. 

 

The structural design process begins with very general, sometimes “fuzzy,” customer 

requirements that lead to clearly stated engineering design criteria with numbers attached. A 

summary of these general design criteria is shown in Figure. 

 

 
Structural design requirements 

Beginning at the top of the “wheel” we have design loads. These loads include airframe loads 

encountered during landing and take-off, launch and deployment as well as in-flight loads and 

other operational loadings. There are thousands of such “load sets.” Once these load sets are 

identified, there are at least nine design criteria that must be taken into account. On the wheel in 

Figure stiffness and flutter are one important set of criteria that must be addressed. 

The traditional airframe design and development process can be viewed as six interconnected 

blocks, shown in Figure. During Block 1 the external shape is chosen with system performance 

objectives in mind (e.g. range, lift and drag). Initial estimates of aircraftft component weights use 

empirical data gathered from past experience. On the other hand, if the designs considered at this 

early stage have radical new forms, these estimates may be in error; but these errors will only be 

discovered later. 
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Static aeroelasticity phenomena: 

All structures deform when external loads are applied although the deflections may be barely 

discernible. In most cases, the external and internal loads do not depend on the structural 

deformation. From an analysis perspective this means we can compute the internal loads and the 

external deflections independently. 

These structural analysis problems are called statically determinate and include structural 

stability problems such as column buckling. However, if the loads and structural deflection 

interact the structural analysis problem becomes very different, both physically and 

computationally, because the problem is statically indeterminate. Both loads and deflections 

must be determined simultaneously. This load/deflection interaction is represented graphically 

by the Venn diagram in Figure in which the overlapping orange area represents the statically 

indeterminate problem area. 

 
 

Static aeroelasticity encompasses problems involving the intersection between steady-state 

aerodynamic and structural deformation interactions. 
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Scope and purpose: 

As indicated in Figure, this chapter begins with a discussion of aero elastic models and the 

introduction to special terminology required defining the features of these models. This includes 

a brief discussion of structural analysis matrix methods and concepts such as the shear center, 

aerodynamic coefficients and aerodynamic center of pressure. 

STRUCTURAL DESIGN REQUIREMENTS:- 

Every aircraft company has a large engineering division with a name such as “Structures 

Technology.” The purpose of the structures organization is to create an airplane flight structure 

with 

Structural integrity: This organization also has the responsibility for determining and fulfilling 

structural design objectives and structural certification of production aircraft. In addition, the 

organization conducts research and develops or identifies new materials, techniques and 

information that will lead to new aircraft or improvements in existing aircraft. 
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The structural design and development process requires testing, analysis and feedback 

Modern aircraftft are increasingly designed to be highly maneuverable in order to achieve high-

performance mission objectives. Toward this goal, aircraft designers have been adopting light-

weight, flexible, high aspect ratio wings in modern aircraft. Aircraft design concepts that take 

advantage of wing flexibility to increase maneuverability have been investigated. By twisting a 

wing structure, an aerodynamic moment can be generated to enable an aircraft to execute a 

maneuver in place of the use of traditional control surfaces. For example, a rolling moment can 

be induced by twisting the left and right wings in the opposite direction. Similarly, a pitching 

moment can be generated by twisting both wings in the same direction. Wing twisting or 

warping for flight control is not a new concept and was used in the Wright Flyer in the 1903. The 

U.S. Air Force conducted the Active Flexible Wing program in the 1980’s and 1990’s to explore 

potential use of leading edge slats and trailing edge flaps to increase control effectiveness of F-

16 aircraft for high speed maneuvers.1 In the recent years, the Active Aeroelastic Wing research 

program also investigated a similar technology to induce wing twist in order to improve roll 

maneuverability of F/A-18 aircraftft.2  

Structural deflections of lifting surfaces interact with aerodynamic forces to create aeroelastic 

coupling that can affect aircraft performance. Understanding these effects can improve the 

prediction of aircraft flight dynamics and can provide insight into how to design a flight control 

system that can reduce aeroelastic interactions with a rigid-body flight controller. Generally, high 
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aspect ratio lifting surfaces undergo a greater degree of structural deflections than low aspect 

ratio lifting surfaces. In general, a wing section possesses a lower stiffness than a horizontal 

stabilizer or a vertical stabilizer. As a result, its natural frequency is normally present inside a 

flight control frequency bandwidth that potentially can result in flight control interactions. For 

example, when a pilot commands a roll maneuver, the aileron deflections can cause one or more 

elastic modes of the wings to excite. The wing elastic modes can result in changes to the 

intended aerodynamics of the wings, thereby potentially causing undesired aircraft responses.  

Aero-servoelastic filtering is a traditional method for suppressing elastic modes, but this usually 

comes at an expense in terms of reducing the phase margin in a flight control system.3 if the 

phase margin is significantly reduced, aircraft responses may become more sluggish to pilot 

commands. Consequently, with a phase lag in the control inputs, potential pilot induced 

oscillations (PIOs) can occur. Numerous studies have been made to increase the understanding of 

the role of aero-servoelasticity in the design of flight control systems. 
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TRANSONIC FLUTTER: 

Aeroelasticity is the study of aerodynamic, elastic, and inertial forces on a body in a fluid flow. 

Flutter is an aeroelastic phenomenon where these forces start exciting each other, leading to 

instability in the structure. In an aircraft wing, this results in large cyclic bending and twisting 

motions of the wing, likely leading to structural failure of the wing. The onset of flutter, 

therefore, has to be avoided at all times and rigorous flight testing procedures are in place to 

ensure that flutter does not occur within an aircraft’s operational envelope. Ideally, engineers 

design around aeroelastic issues as early as possible in the design process by analyzing the 

aeroelastic behavior of aircraft wings well before such flight tests. Incorporating flutter 

prediction into early-stage design, however, is a considerable challenge for the transonic flow 

regime relevant to most civil transport aircraft designs, since existing accurate models for 

transonic flutter prediction typically require extensive Computational Fluid Dynamics (cfd) 

analyses. Such simulations are too expensive to conduct in early design stages where potentially 

thousands of wing designs might be considered. A wealth of literature is available on static 

aeroelastic optimization of aircraft wings for both conventional tube-wing configurations, and 

next-generation con_gurations.10 Dynamic aeroelasticity, however, is o en not included in these 

studies. Flutter constraints can be included in state-of-the-art multidisciplinary design 

optimization settings, but even if the static aeroelastic methods are high fidelity, the methods for 

unsteady (compressible) flow usually either linearize the unsteady response or use a Prandtl-

Glauert correction, which is limited to subsonic flow. Moreover, all afore   mentioned methods 

use high-fidelity aerodynamic and structural analysis methods, and are therefore too expensive to 

use in conceptual aircraft design. Conceptual aircraft design tools, such as suave, typically do not 

include flutter constraints.  

While flutter for low subsonic flows can, in general, is accurately predicted with linearized 

small-disturbance theories, such methods fail for transonic flow where the traditional small-

disturbance formulation is inherently nonlinear. For example, linear theory predicts that thinner 

wings would be less susceptible to flutter, but wind tunnel tests have shown the opposite to be 

true. Another interesting phenomenon that occurs in transonic flows is the transonic dip in the 

flutter boundary. In subsonic flow, information travels in all directions, but in supersonic flow, 

information can only travel in the direction of the flow. Thus, for an airfoil in transonic flow, 
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pressure perturbations from e.g. the trailing edge take a much longer time to reach the leading 

edge of the airfoil compared to subsonic flow. This is illustrated in Figure 1.1, where in transonic 

flow, the information travel from B to A has to take a much longer route than the information 

travel from A to B. this results in phase lag in the aerodynamic response, which in turn—together 

with other processes at work—leads to a very different flutter response: a dip in the transonic 

flutter boundary. 

 
Information travel for airfoil in transonic flow.  

The path from B to A is much longer than from A to B. 

 

Transonic flutter boundary with typical transonic dip, which linear theory cannot predict. 
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Aeroelastic tailoring: 

Novel manufacturing techniques open up additional design space for aerospace vehicles. High 

aspect ratio wings in novel aircraft concepts, for example, over the benefits of higher 

aerodynamic efficiency, but present the challenge of being more susceptible to aero elastic 

problems such as flutter. Novel manufacturing techniques present an opportunity to address this 

challenge via improved material properties (e.g., increased stiffness) and also by enabling 

unconventional internal wing layouts. This thesis examines the possibility of designing the 

internal structure of aircraft wings as a lattice structure, while mitigating flutter. The fabrication 

of these lattice structures is enabled by advances in additive manufacturing technology. 

To date, the aeroelastic optimization of aircraft wings has mostly focused on conventional 

internal wing structures—i.e., an orthogonal array of ribs and spars. The structural efficiency of 

the wing can be further improved by using novel manufacturing techniques, which allow for 

moving away from the conventional orthogonal rib-spar lay- out. Several ways to parametrize 

the internal structure of the wing have been demonstrated.  

Active flutter suppression: 

1. Wing flutter model aerodynamic model: 

Three of the most common methods to predict unsteady loads on an aircraft are strip 

theory (2D unsteady airfoil theory with 3D corrections), the doublet-lattice method, and 

the unsteady vortex-lattice method (uvlm). Considering that our goal is to investigate 

aircraft concepts with high aspect ratios, the use of strip theory here is appropriate. 

In strip theory, one assumes that the flow along a cut in the wing perpendicular to a span-wise 

axis of the wing is two-dimensional (Figure 3.1). For this work, that means we can use our 

calibrated two- dimensional flutter model (Chapter 2) also for three-dimensional wings. 
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In strip theory, one assumes that the flow is two dimensional in cuts perpendicular to the span. 

 

Swept wing considered in model 
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2. Structural model: 

For the structural part of the model, we use Bernoulli-Euler beam theory.  

The beam equations are, 

 

The appropriate boundary conditions here are, 
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Discretized beam model used in structural part of the flutter model. 

The beam equations can be rewritten as 

 
 

Where 

 

With boundary conditions 

 

Effect of aeroelasticity in flight vehicle design:- 

STRUCTURAL ANALYSIS: 

i. Supersonic Wing Characteristics: 

The present work utilizes a wing platform with an aspect ratio of 5 and taper ratio of 0.5. 

The wing leading edge swept back angle is 30°. The airfoil of this supersonic wing is a 

double wedge shape as shown in Fig. 1. The wedge angle of the airfoil is 10°. Along the 

wing span, the airfoil is divided into three parts which are the main wing box and two 

control surfaces at the leading and trailing edge. The portions of the leading and trailing 

edge have been specified as 15% and 20% of the chord length, respectively. The 

performance of the selected airfoil uses the characteristics provided by for higher 

supersonic region analysis. The present wing design is used as a baseline for further work 

where the wing geometry as well as wing composite structure is set as the sensitivity 

parameter to obtain an optimum supersonic wing design. 
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Source from “Mechanical Vibrations” by SS RAO. 

 
 

Double wedge airfoil 

For the external store, Fig. shows the configuration of the loaded missile on the wing. 

The external stores for each station of wing are specified in Table 1. There are two types 

of missiles used which are AMRAAM and Sidewinder. 

 

 
External stores configuration of the wing 

 

 
External stores technical data 
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Source from “Mechanical Vibrations” by SS RAO. 

ii. Wing Loading: 

Based on, the load factor for the fighter aircraft is set atnz = 5.5. The load for this wing, 

as shown in Fig. 3, is assumed to be elliptic load acting along the wing span wise (y-axis) 

direction and symmetric quadratic load along chord wise (x-axis) direction. With this 

load assumption, the sizing of the wing box can be conducted. 

 

Wing loading estimation equation 

The formula to calculate the load factor is given by Eq. (1) in which L is the lift and W is 

the weight of one side of the aircraft wing based on; 

 

Here the lift can be calculated 

 

The span wise elliptic load can be formulated as: 
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Source from “Mechanical Vibrations” by SS RAO. 

Where the value of parameter a is half the span length since it is the length of the major 

axis, and parameter b is the minor axis. The value of b can be calculated using (6). The 

chord wise quadratic load distribution is given by: 

 

The area of the quadratic load in chord wise direction can be calculated by integrating Eq.  

acting along the x axis. 

 

Then, the volume of the elliptic load can be found by integrating Eq. (5) along the y axis 

in Eq 

 

To find the minor axis of the elliptic equation, Eq. (3), equation (2) is divided by 2 since 

this is only applicable for the half wing, equal to the volume found in Eq. (3). This 

expression can be written as: 

 

The wing can be assumed as a beam along y axis to find the shear force Q and moment M 

of each section as denoted in Eq. (8) and Eq. (9), respectively. 
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Source from “Mechanical Vibrations” by SS RAO. 

iii. Wing Sizing: 

To calculate the skin thickness of the overall wing, the wing is divided into 4 regions 

along the span and the thickness in each region is calculated based on the maximum load 

in the respective region as shown in Fig. 4 and Fig. 5. 

 

Top view of skin thickness division region 

 

Skin thickness segment in a region 

The moment of inertia formula is given as: 
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Source from “Mechanical Vibrations” by SS RAO. 

The moment of inertia for the front and rear spar are calculated as a vertical segment in 

 

The moment of inertia for the inclined segments which has an inclination angle of θ, can 

be derived using Eq. (10). This can be done by setting the limit for integration along z 

axis starting from 0 to the end of each inclination segment denoted as./. The final formula 

is given by Eq. 

 

By assuming the thickness to be constant at every skin and spar, equation (12) reduces to 

form an equation to find the thickness in any region based on the associated moment 

Macting in that region as shown in Eq. 

 

Where 7 is calculated based on Eq. (9), 89: is the height of the inclination for the front 

spar of the wing only and ( is the summation moment of inertia of the wing box in terms 

of t as given in Eq. (11) and Eq. (12). 

iv. Safety Factor: 

The safety factor FS for the structural strength analysis  

 

. 


