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Course outcomes

Analyzing real roots of algebraic and transcendental equations
by Bisection method, False position and Newton -Raphson
method. Applying Laplace transform and evaluating given
functions using shifting theorems, derivatives, multiplications of
a variable and periodic function.

Understanding symbolic relationship between operators using
finite differences. Applyiing Newton’s forward, Backward, Gauss
forward and backward for equal intervals and Lagrange’s
method for unequal interval to obtain the unknown value.
Evaluating inverse Laplace transform using derivatives, integrals,
convolution method. Finding solution to linear differential
equation .




CO3

Course Outcome

Applying linear and nonlinear curves by method of least
squares. Understanding Fourier integral, Fourier
transform, sine and cosine Fourier transforms, finite and
infinite and inverse of above said transformes.

CO4

Using Numericals methods such as Taylors, Eulers,
Modified Eulers and Runge-Kutta methods to solve
ordinary differential equations.

CO5

Analyzing order and degree of partial differential
equation, formation of PDE by eliminating arbitrary
constants and functions, evaluating linear equation b
Lagrange’s method. Applying the heat equation and wave
equation in subject to boundary conditions.
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MODULE-|
ROOTS FINDING TECHNIQUES AND LAPLACE TRANSFORMS



CLOs Course Learning Outcome

CLO1 Evaluate the real roots of algebraic and
transcendental equations by Bisection method, False
position and Newton -Raphson method

CLO2 Apply the nature of properties to Laplace transform
of the given function.

CLO3 Solving Laplace transforms of a given function using
shifting theorems.

CLO4 Evaluate Laplace transforms using derivatives and

integrals of a given function.




CLOs Course Learning Outcome

CLo5 Evaluate Laplace transforms using multiplication
and division of a variable to a given function

cLo6 Apply Laplace transforms to periodic functions




BISECTION METHOD

PROBLEMS

1). Find a root of the equation X° ~5x+1=0 using the bisection

method in 5 — stages

Sol Let f(x) = x3 —5x + 1. We note that
f(0)>0
F(1D) <0 and

- One root lies between O and 1

Consider % =0 and x =1

By Bisection method the next approximation is

+ 1
X, =¥=5(0+1)=0.5
= f(x,)=f(0:5)=-1.375<0and f(0)>0

We have the root lies between O and 0.5



BISECTION METHOD

Now X — O+20.5 _0.25

We find f(x;)=-0.234375<0 and f(0)>0

Since f(0)>0, we conclude that root lies between x and x,

The third approximation of the root is

Xo+x3
2

xy =23 = 2(0 4 0.25) = 0.125
We have f(X4):0.37495>0
Since f(x)>0and f(x)<0, the root lies between

X,=0.125 and %,=0.25




BISECTION METHOD

Considering the 4™ approximation of the roots

AL :%(0.125+0.25):0.1875

f(x)=000910>0, since f(X)>0adf(x)<0 the root must lie between

x: = 0.18758 and x3 = 0.25

Here the fifth approximation of the root is

1
X =E(X5 + X3)

—1(0.1875+0.25)
2
—0.21875

We are asked to do up to 5 stages

We stop here 0.21875 is taken as an approximate value of

the root and it

lies between O and 1



REGULAR-FLASE POSITION METHOD
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REGULAR-FLASE POSITION METHOD

1.By using Regula - Falsi method, find an approximate root of
the equation x'-x-10=0 that lies between 1.8 and 2. Carry out
three approximations

Sol. Let ustake f(X)=x"-x-10 and %=18%=2
Then f(x)=f(18)=-13<0 and f(x)=f(2)=4>0
Since f(x) and f(x)are of opposite signs,the equation f(x)=0
has a
root between X andx
The first order approximation of this root is

X, =X, —

X1_X0 X
TORIO I

52718 ()

4+1.3
=1.849



REGULAR-FLASE POSITION METHOD %

We find that f(x)=-016l so that f(x,) and f(x) are of opposite
signs. Hence the root lies between x and x and the second
order approximation of the root is

xszxz—[ el )}.f (x,)

f (X1)_ f (Xz
}x(—0.159)

_1.8490— 2-1.849
0.159

=1.8548

we find that f(xs): f (1-8548)

=—0.019
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REGULAR-FLASE POSITION METHOD %

So that f(x)and f(x,) are of the same sign. Hence, the root does

not lie between % ad¥%. But f(x)ad f(x) are of opposite signs.
So the root lies between xadx and the third order

approximate value of the root is
t T3 [f(xﬁ:;ixg)]f (x3)
2 —1.8548
= 1.8548 — 210015 X (—0.019)
= 1.8557

This gives the approximate value of x.



NEWTON-RAPHSON METHOD

Let the given equation be f{x)=0
Find f'(x) and initial approximation x,

The first approximation is x,=x,-f(x,)/ f1(x,)

The second approximation is X,=X-f(x, )/

fl(x,)

The n'" approximation is X,=x,, -f(X,)/ f'(




NEWTON-RAPHSON METHOD

1. Apply Newton — Raphson method to find an approximate
root, correct to three decimal places, of the equation
X'-3x-5=0, which lies near x = 2

Sol:- Here f(x)=x"-3x-5=0 and fl(x):S(xz—l)

- The Newton — Raphson iterative formula

x°—3x. -5 2x°+5 .
Xiyg =X — -

i 3(Xi2 _1) = 3(xi2 _1) ,i=0,1,2....(2)

To find the root near x=2, we take =2 then (1) gives

2%,°+5 _ 16+5 _ 21
3(%°—1) 3(4-1) 9

= 2.3333

L 2% +5 =2x(2.3333)3+5:22806
©3(x’-1) 3[(23333)-1]




NEWTON-RAPHSON METHOD

_ 2x+5  2x(2.2806)° 45
S 3(x2—-1)  3[(2.2806)2 — 1]
~ 2x(2.2790)° + 5

X3 = 2.2790

= 2.2790

X4

~ 3[(2.2790)2 — 1]
Since x, and  are identical up to 3 places of decimal, we take
=227 aS the required root, correct to three places of the
decimal




LAPLACE TRANSFORM

Let f(t) be a given function which is defined for all positive
values of t, if

o0

F(s)= | e™f(t) dt
0
exists, then F(s) is called Laplace transform of f(t) and is denoted

by

o0
L{f(t)} = F(s) = | ™ f(t) dt
0
The inverse transform, or inverse of L{f(t)} or F(s), is
f(t) = L{F(s)}
where s is real or complex value.




LAPLACE TRANSFORM

Laplace Transform of Basic Functions

[e'e]

1.L [1] = Jome—stdt _ _le—st

S o s
a1 _ [ “4anq—st _ Ooua—udu_ 1 © a.—u _r(a+1)
2.L [t°]1=[ t%e dt—fo(g)e s_sa“-[oue du = —"7~
- —(s—a)t |
3|_ [eat]:I eate—Stdt:e— — 1
© —(s—a)|, s—a
iat 1 . S . a
4. L [e™] = — —> L [cosat +isinat] = — >+ 11— >
s—ia s +a s“ +a
. L [cosat] = — >, and L [sinat] = — a 5
s“ +a s +a
. edt —e ™ 1, 1 1 a
5.L [sinhat]=L [———]=— — =
} I [ 2 ] 2(s—a s+a) s? —a-’
at —at
L [coshat]=L [ﬁ]zl( 1 .1

2 2 s—a S+




LAPLACE TRANSFORM

EX:Find the Laplace transform of cos2t.

Solution: - L [cost] =

s +1

S

L [oos2t]=s—2 S

)




LAPLACE TRANSFORM

EX: Find the Laplace transform of te".

Solution: L(et):ijL(tet):—d( 1 j:( -

5-1 dsls-1 3_1)2




LAPLACE TRANSFORM

t?, 0<t<

1
,find L[ (t
0. t>1 [f'(O1,

EX: f(t)={
Solution : f (t) =t*[u(t) —u(t —1)]

L [f(t)]=L [tu)]-L [tzu(t—l)]:g—L {[t-1)+1%u(t-1)}

:S%— L {[(t-1)° +2(t-1) +1u(t - 1)}
:%—e_s(%-FZiz'i'l)
S S 8% s
L [f'()]=sF(s)- f(0)-e [f(1") - F(17)]
:[%—e‘s(%+g+1)]—O—e‘S(O—l):%—e‘s(gﬁg)
S S S S




LAPLACE TRANSFORM

1—e_t 1_e_t

EX: Find @ L [———1 ®L [—5—1.
Solution: (a)L [1—e™']= 11
s s+1
1—e_t o 1 1 . S 0
L =| G-—)ds=Ins—In(s+1)|” =In——
[ t ] L (s s+1) (s+1), s+1],
_0-In——jp3*
s+1 S
1-e™t, =, s+1 s+1|” = 1 1
b)L = In>==ds=sin>— —| s(—->)d
)L 1= > SR e
=S|ns—+1 + wids={slns—+1+ln(s+l)}

S s s+1 S

S

=[(s+1)In(s +1)—sIns]” =sins—(s+1)In(s +1)




LAPLACE TRANSFORM

st

sin kte smx
EX: Find (a )j dt (b)j
st H
Solution - (a)j sin kte™ dt — L [sm kt]
t t
] k
‘oL [sinkt]=———
L ] s? + k?
L [smkt]_j-s %ds=lj‘:} S1 ds
S —+ k k (k)z + 1
—tan*>2] —T_tant2
ki 2 k
(b)j smde:ZJ-oosmde
X
) = sin kte st

s—0

=2I|m(——tan 13) = 7T
502 K




LAPLACE TRANSFORM

Convolution theorem

L (] ; f(mgt-7dd =] Otf (1)g(t - 7)dve dt

= 0°° | T°° f(r)g(t-r)e dtdr = | 0°° f(0)] T°° g(t—t)e*dtdr
Let u=t-r, du=dt, then

L [f ; f(t)g(t-r)dt] = | 0°° f(r)] 0°° g(u)e“"dudz

= [ f(x)e"dr[ "g(u)edu=F(s)G(s)




LAPLACE TRANSFORM

Find the Laplace transform of j;et‘r sin 2t dr.

2
¢ +4

Solution: "L [e']= il L [sin2t]=
S -

L [j;et-f sin2td] =L [e *sin2t] = L [¢']-L [sin2t]
1 2 2

Tso1 § 44 (s-1)(s2+4)




LAPLACE TRANSFORM

Periodic Function: f (t + T) =f (t)

L [f(O]=] fe=dt=[ fedt+[  f(t)edt+--

and [ f()edt=[ fu+T)e " du=e~"[  f(u)e*du
Similarly,
3T —st _ A~—2sT T —su
jZT f(t)eS'dt = e jof(u)e du
SLLEO]=@re T +e T )| (et

1 T .
= jo f (t)e Sdt

1_ e—ST




LAPLACE TRANSFORM

Findthe Laplace  transform  of f(t)=£t, O<t<p, ft+p)=1(t)
p []

L jpht St
1—e ™70 p

— [ t —st

Solution: L [f(t)]=

j e~dt)]

p
K (te™" + 1 e™)

0




LAPLACE TRANSFORM

Initial Value Theorem:

0]

L [F(]=5F(s) - £(0) = lim [ " (e dt =lim sF(5) - £ (0) = 0 = lim sF(5) - £ (0)

sow v 0 S—0 S—m

we get initial value theorem lim f (t) = lim sF(s)

t—0 S5

O _ i F6)

Deduce general initial value theorem: lim —= = lim ——=
t—0 g(t) S0 G(S)




LAPLACE TRANSFORM

Final Value Theorem:

L [f'(t)]=sF(s)— f(0) = LILI‘(I) _[: f'(t)e*'dt :Ilerg sF(s)— f(0) =
!EE! f(t)— f(0) = Islgg sF(s) — f(0) = final value theorem: !m f(t) = Ilerg sF(s)

General final value theorem : lim E = |lim &

5= g() =0 G(s)




LAPLACE TRANSFORM

Find L [L‘” € dx}
X .

t

Solution : Let f(t) = [~ eXX dx = f(t) =—et lim £ (t) =0
L I =L [e']1=——
s+1
d 1
—E[SF(S)— f(o)]=—m

d 1
—[sF(s)]=——
ds[ ()] s+1
sF(s)=In(s+1)+C
From the final value theorem : Ilim f (t) = Iirrg sF(s)

t—oo
In(s +1)

0=0+C =C =0,and F(s) =
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MODULE Il
INTERPOLATION AND INVERSE LAPLACE TRANSFORMS

31



CLOs Course Learning Outcome

CLO7 Apply the symbolic relationship between the
operators using finite differences.

CLO8 Apply the Newtons forward and Backward, Gauss
forward and backward Interpolation method to
determine the desired values of the given data at
equal intervals, also unequal intervals.

CLO9 Solving inverse Laplace transform using derivatives
and integrals.

CLO 10 Evaluate inverse Laplace transform by the method of
convolution.




CLOs Course Learning Outcome

CLO11 Solving the linear differential equations using
Laplace transform.

CLO12 Understand the concept of Laplace transforms to the
real-world problems of electrical circuits, harmonic
oscillators, optical devices, and mechanical systems




INTERPOLATION

If we consider the statement V=f(X)x<x<x we understand that
we can find the value of y, corresponding to every value of x in
the range x<x<x. If the function ¢ is single valued and
continuous and is known explicitly then the values of (x) for
certain values of x like x,.x......x, can be calculated. The problem
now is if we are given the set of tabular values



INTERPOLATION

Forward Differences:-

Consider a function y=f(x)of an independent variable x. let
vovovary, D€ the values of y corresponding to the values x.x.x..x, of x
respectively. Then the differences vy,-Y.y,-%—- are called the first
forward differences of y, and we denote them by ay,.ay.,..... that is

NYo =Y, Yor A = Yo = V1, AY, = Y = Yororeee

In general &y, =y,.,-y,.r=012--———-

Here, the symbol A is called the forward difference operator

The first forward differences of the first forward differences are
called second forward differences and are denoted by a%,%.... that
is

A%y, = Ay, — Ay,

A%y, = Ay, — Ay,



INTERPOLATION

In general A’y,=Ay,,—-Ay, r=012.... similarly,
h . .

the n"" forward differences are defined by the

formula.

While using this formula for -1, use the
notation A°y., — v, and we have
Ay, =0¥n=12.... and r=02...... the symbol » is referred

as the n™ forward difference operator.




INTERPOLATION

Backward Differences:-
As mentioned earlier, let Yo:Yi------ Yeeene-- be the values of a

function y = f (x) corresponding to the values Xp: X, X e Kpwoens of x
respectively. Then, W, =YYW =Y, %1, V¥:=Y¥;:—Y,.,... are called the first
backward differences

In general VY, =Y, — Y., r=123......... — (1)

The symbol vis called the backward difference operator,
like the operator a, this operator is also a linear operator

Comparing expression (1) above with the expression (1) of
section we immediately note that Vy, =Vy,,,r=0,1,2....... —(2)

The first backward differences of the first background
differences are called second differences and are denoted by
VY, VY, ——=V? ————j.e.,..



INTERPOLATION

VY, = VY, = VY, V7Y, =Vy, —Vy,

In general VY, =V, =y, 1,1 =23...-(3)
similarly, the n" backward differences are
defined by the formula

formula, for n = 1 we employ the notation
VoY, =Y,

If v—f(x) is a constant function ,
then y = c is a constant, for all x, and we get

V'y, =0vn the symbol <~ is referred to as the
n" backward difference operator



INTERPOLATION

Central Differences:-

With Yo: Y1:¥2----¥Yy as the wvalues of a function y = f (%)
corresponding to the values x,x,....x...of x, we define the first central
differences

Y12, 0Ya2,0Ys, ———— as follows
Yy =Y1— Y0122 = Yo — Y1, Y5 =Ya — Yo ————
OV, 12 =Yy — Y1 —> (1)

The symbol s is called the central differences operator. This
operator is a linear operator

Comparing expressions (1) above with expressions earlier used

on forward and backward differences we get
OV =AYy =VVY,;,0Y3, =AY, =VY,.....
In general Sy, =Ay, =Vy,,,n=0,12...... —(2)




INTERPOLATION

In general 6y, =AY, =VY,..,n=012.... —>(2)

The first central differences of the first central
differences are called the second central differences
and are denoted by sy,.6%,.

Thus 52)’1 = Oy _5)’1/2’52)’2 =055 =0 gpeenene-
5%y, = OYniarz —OYn a2 _>(3)

Higher order central differences are similarly
defined. In general the n™ central differences are given
by

i) forodd N:3"Y, 4, =0"Y, =Sy, r=12....—>(4)



Given f(-2)=12, f(-1)=16, f (0)=15, f (1)=18, f (2)=20from the central difference

table and write down the values of 8Ys,.8°y, and 5°y,, by taking
X, = 0O Sol. The central difference table is

X y=f(x) 5y 5y 5’y sy

-2 12
4

-1 16 -5
-1 S

0 15 4 -14
3 -5

1 18 -1




INTERPOLATION

Symbolic Relations and Separation of symbols:
We will define more operators and symbols in addition to A,
vV and ¢ already defined and establish difference formulae by

symbolic methods
Definition:- The averaging operator u« is defined by the equation

Y, = %[yr+1/2 -+ yr—1/2]
Definition:- The shift operator E is defined by the equation
EY, = ¥,.1. This shows that the effect of E is to shift the functional

value y.to the next higher value Yra1. A second operation with E
gives Ezyr - E(Eyr): E(yr+1) - yr+2

n,,r __
Generalizing E'y = Yein



INTERPOLATION

Relationship Between A and E

We have
Ayo =Y1— Yo
=By, — ¥, =(E-1)Y,
=A=E-y(or)E=1+A

Some more relations
A%y, =(E-1)'y, =(E*-3E”+3E-1)y,
=Y, _3y2 +3Y1 —Yo




INTERPOLATION

-1 .
Inverse operator £ is defined as E7Y, =Y.

In general E7'Y, =Y.,
We can easily establish the following

relations
i) V=1-E*
ii) 55 E1/2 _ E—1/2

i) = (e +E™)
iv) A=VE=E"

2 __ 1 2
V) y?/ =1+Z5




INTERPOLATION

The operator D is defined as Dy(x) =§[y(><)]

Relation Between The Operators D And E

Using Taylor’s series we have,

y(x+h):y(x)+hyl(x)+r2]—2!y“(x)+2—3;y“1(x)+____

This can be written in symbolic form

22 33
nyz{1+hD+h D" D +————}§ =e™.y,

21l
We obtain in the relation E=¢e" —(3)

7

< If T(X)isa polynomial of degree n and the

values of x are equally spaced then A () is
constant



INTERPOLATION

Evaluate
(i) Acos x
(ii)A%sin(px+q)
(iii)AneaX+b

Sol.Let h be the interval of differencing

(i)Acos x =cos(x+h)—cos x

. [ h). h
=-2SIin| X+ — |SIn —
2 2

(ii)Asin(px+q)=sin[ p(x+h)+q]-sin(px+q)

ph) . ph
= 2C0S — [sIn —
(px+q+ 2). )

= 2sin p—hsin(£+ px+q+p—hj
2 2 2

A?sin(px+q)=2sin p?hA[sin(px+q)+%(7r+ ph)}

. ph ‘. 1
= 25|n7 sin px+q+§(7z+ph)



INTERPOLATION

Using the method of separation of symbols

show that

n(n _1) Hy +____+(_1)” Hy_n

An:ux—n =Hy o Nl

Sol.To prove this result, we start with the right

hand side. Thus
(n-1)

n n
UX—NpuX—1+ UX =24 ————— +(-1) pux—n
=,ux—nE‘1yx+@E 2UX A+ ————— +(-1)" E™"ux
_ 1—nE‘1+n(n2_1) E24o—— +(-1) E_n:|,uX=(1—E Y ux
1 (E-1)
= 1—— =
Ej pn = =
=—ux=A"E™" ux

=A"u., which is left hand side



INTERPOLATION

Find the melting point of the alloy containing 54% of lead, using

appropriate  interpolation formula

Percentage
of lead(p) 50 |60 |70 |80
(TchTperat“re 205 |225 | 248 |274
Sol.The difference table is

X Y A A? A?
50 205

20
60 225 3

23 0
70 248 3

26
80 274

Let temperature = (x)




INTERPOLATION

X, + pPh=24,%x, =50,h =10
50+ p(10)=54 (or)p=0.4

By Newton’s forward interpolation formula

p(P-1) .., P(P-1)(P-2)
21

f(XO+ph):yO+pAyo+ Yo+ o Yo+———
( (54)= 205+ 0.4(20) + 0.4(0.4-1) 3+ (0.4)(0.4-1)(0.4—2) )
2! 3!
=205+8-0.36
=212.64

Melting point =212.64




INTERPOLATION

The population of a town in the decimal census was given
below. Estimate the population for the 1895

) Year 11891 1901 (1911 |1921 | 1931
Population | o |ee g1 |93 |101
ofy
Sol.
X Y A Az A3 A4
1891 |46
20
1901 66 ]




INTERPOLATION

y(1895) = 46+ (0.4)(20)+ CAO4=Y _ oy
) (0.4_1)064(0.4_2) 2)
(04)(04-1)(04-2)(04-9)

24
=54.45 thousands




INTERPOLATION

Gauss’s Interpolation Formula:- We take x, as one of the specified
of x that lies around the middle of the difference table and denote
x-m by x-r and the corresponding value of y by y-r. Then the middle
part of the forward difference table will appear as shown in the

next page

X Y Ay Ay A%y Aty Ay
X4 Y4

X4 Yo Ay,

X, Yo, Ay, APy,

X, Y A\ Ay, Ay,

X Yo Ay, Ay, Ay, Ay,

X Y AY, APy, Ay, Ay, Ay,
X, Y AY, Ay, Ay, Ay, Ay,




INTERPOLATION




INTERPOLATION

By using the expressions (1) and (2), we now
obtain two versions of the following Newton’s

forward interpolation formula

Y, =¥ + p(AyO)+%(AZyO)+ p(p_l)(p_z)A3y0

L P)(P=2)(P=3) juy | 3
4 ° -

Here Yp is the value of y at x=x,=x+ph




INTERPOLATION

Substituting for from (1)in the formula (3),

we get
-1 . -1)(p-2
yp :[y0+ p(AyO)_F%(A y_1+A3y_1)+ p(p 3)|(p )A3y_1
saty s PRDCR=2)(P=8) oy sy

41

v, =Ly, + p(Ayo)+¥(Azy_l)+ p(p+;)!(p—1) Ay,

L P(p+Y)(P-1)(P-2)
41

(A4y—1)+____]

Substituting A'y, from (2), this becomes




INTERPOLATION

Using Lagrange’s formula calculate ¢ from the following table
x (01 |2 |4 |56
f(x) 1114 |15 |5 |6 |19
Sol. Given % =0,% =1X, =2,%=4,% =6,X, =5
f(%)=1f(x)=14,f(x,)=15,f (x;)=5,f(x,)=6, f (x;)=19
From langrange’s interpolation formula
_ (X=X ) (X =% ) (X =% ) (X =X, ) (X — X5)
F = B0 (=) (o) (6~ %) (6 —0) | %)
(X=X ) (X =%, ) (X=X ) (X=X, )(X—Xs)
) (% 3) (5= %0) (% =) (=) | )
(X=X ) (X =% ) (X =% ) (X =%, ) (X=X ) f(x,)
(% = %0 ) (% =% ) (X = %5 ) (X =X ) (X, — %5 ) :

+

(X =% ) (X=X ) (X =%, ) (X=X, ) (X=X, ) £ (%)
(X6 =% ) (X6 = %) (%5 =%, ) (X5 = %5 ) (X5 — %, ) ’




INTERPOLATION

Here x-3 then

3y (3-D(E-2)(3-4)(3-5)(3-6) _

(3)={0-1)(0-2)(0—2)(0-5)(0—6) **
(3-0)(3-2)(3-4)(3-5)(3-6) .,
(1-0)(1—2)(1—4)(1-5)(1—6)
(3-0)(3-1)(3-4)(3-5)(3-6) _

(2-0)(2-1)(2—-4)(2—-5)(2—- 6)

(3—0)(3—1)(83—2)(3—5)(3—- 6)
(4—0)(4—1)(4—2)(4—5)(4— 6)
(3—0)(3—1)(83—2)(3—4)(3— 6)
(5—-0)(5—-1)(5—2)(5—4)(5— 6)

(3-0)(3-1)(3-2)(3—4)(3-5) 12 18 36 36 . 18 __ 12
(6-0)(6—1)(6—2)(6—4)(6-5) "> "240 60 " 28 " 28"° 60 °" 20"

~0.05-4.2+11.25+3.75-1.8+0.95
=10
f(x)=10




INVERSE LAPLACE TRANSFORM

Linearity
Ex. 1.
23+1 L A(s+1)
a)L - )L
@L ] O T
Solution:(a)L ™ St 12 ° 2+1 -] = 2c032t+1sm2t
244 $°+2 25 +2 2

4(s+1) S

(b)L =L 4

] =4 cosh 4t +sinh 4t

_|_
s° -16 s° —4° 32—42




INVERSE LAPLACE TRANSFORM

Shifting
Ex. 1.
4. e 4 2543
@)L [52+25+2] ()L [32+3s+2]'
. e—TCS e—TES
Solution: (a) L =L 7
@ [32+25+2] [(s+1)2+1]
L = e 'sint
[(s+1)2+1]
and L [f(t-a)u(t-a)]=e"F(s)
e™ . .
L =e " sin(t - n)u(t - n) = —e " sintu(t -
[(s+1)2+1] (t-mu(t-mn) (t-m)
3
2(s+-) 3
OL L2 ol -2 7 aoon!
S +3S‘|‘2 (S+3)2_(1)2 2

2. 2



INVERSE LAPLACE TRANSFORM

Scaling
Ex. 1
4s
L -1
[1632—4]-
Solution: L [ A;S =L 7 L:S 2]:Ecoshz-ltzlcosh1
16s° -4 (45)°=2°" 4 4 4 2




INVERSE LAPLACE TRANSFORM

Derivative
Ex. 1.
1 1 1 s+a
(a)L [m] ()L In +b]'
) ) 2mS
solution: (a)L [sinwt]= —
@)L [sinot]=5 ds(s + ®° 7) = (s® + ®?)?
Let F(t) =tsinot =L [F'(t)]=s-%—F(0)
(s° +®°)
s? (s> +0’)— o’ 1 0%
L [F'()]=20——— 2 -
[FW]=20ra e =2el aronz 1720l e~ o)
] 2m°
=2L [sinot]-————
[ (’0] (SZ+(,02)2

1 1 : ,
(571 o) =S -L [2sinot — F'(1)]
1 1
(s® + »*)?

1 ] 1
= [2sihot—F'(t)] =
1 P [ (t)] P



INVERSE LAPLACE TRANSFORM

Integration
Ex. 1.
el ,s-1 1. St+a
(a)L [— (—)] (b)L I —]
. 41 ,5-1 1 -t -t
Solution: (@)L [ (1= & 1= j e'dt - j j e 'dtdt

s(s+1) S (s+1)
= (e —1)+j0(e- ~Ddt=—(et -1) - (et -1)—t=2-2e" -t

(b)L [e-b‘—e-a‘]zi—i
s+b s+a

s+b _p St

s s+b s+a s+a s+b
L _1[|ns+a]_e‘b‘—e“"lt

s+b t




INVERSE LAPLACE TRANSFORM

Convolution
Ex. 1.
@L L] O] ——
(82+m2)2 (SZ+(1)2)2 .
Solution : ( 1sinmt]: T
® S“+o
L —Tﬁ] = %J‘tsin otsino(t-1)dt
:éj = [cos(@t — ot + 1) — cos(wT + ot — ®r)]dt

2 2

iz [cos(2mt — wt) — cos wt]dt = iz {i sin(2wt — ot) — tCos wt}
®° 70 20° | 20

t

0

:—{[—(smo)t sin(-wt)] - tcosoat}—zi(smcot ot cos wt)
()]



INVERSE LAPLACE TRANSFORM

s+1

L -1
[s3+s 63]'

Solution : s+1 s+1 Al AZ A3
s’ —6s s(s—2)(s+3) s 22 513
A=lim— St _ 1

-0 (s—2)(s+3) 6
s+1 3
= lim =
s=>25(s+3) 10
s+1 -2
I —
A= H—3s(s 2) 15
I A 4
L s+1 _ 6+10+15_1 32t ge—m

1 65t s s-2 si3 6 10° 15




INVERSE LAPLACE TRANSFORM

S2

L ]
st +47"
I 2 SZ SZ
Solution : = =
s*+4 (s*)°+2-87-2+422-2-5-2 (s*+2)*—(29)
B s? __As+B | As+B,
(s> +2s+2)(s*—25+2) (s+1)*+1 (s—-1)?*+1
: s? : —2i :
Iim ——=A(1+i)+B, = =(—A +B)+i
e e Al )+ B, 1 2i (—A +B,) +IiA
8—8i . 1
=(—A +B))+I =——,B, =0
2 (-A +B)+iA = A !
IimL—Az(1+i)+B — 2 _(A+B)+IA,
s> (s +1)% +1 27 44 4i 2
8+ 8i . 1
2 =(A2+Bz)+|A2:>A2=Z’BZ=O
2 —1(s+1)+1 1(3—1)4—1
L 71[ S ]:L 71[ 4 4 4 4]

4 2 + 2
s"+4 (s+D° +1 (s-D°+1




INVERSE LAPLACE TRANSFORM

. 1
= [(82 +032)2]'
. d 1 -20 d 1 -20
Solution : = =L * =L *
doo(82+002) (SZ+0)) [dm(s + o 2l [(Sz+c02)2]
1 d 1. 1 .
-20L = = —SInwt) =——SIn®
® [(S +oo)2] d [82+0)2] d(o((o o) o’ ¢
1

_ 1 .
L -] =—— (sin ot - ot cos ot)

(s° +0°)"" 2w




INVERSE LAPLACE TRANSFORM

L e *].

—Js —Js —s
Solution: y = eVs y' © ©

=y =

, 77 — +
2Vs Y 4s 4+/s3

we get the equation 4sy”" +2y'— y=0—= 4L[% (t?y)]+2L[-ty]—L[y]=0

4%(t2y)—2ty—y — 0= 4t?y (6t —1)y—0— I |

3 1
Iny+=Int+—=c¢;, = y=ct 2e 4
4t
1 1"(1) — 1 1
oLt 2]=—2- =7 and L[ty] = L[ct 2e 4t]
Z Vs
s2
e s e T G
while L[ty] =—-VY' = = L[ct 2e 4] =
2\/s 2+/s
1
. ct 2e 4t
Apply general final value theorem Ilim ——— =
t—>oo =
t 2

1

4t

1
y=—-———¢€
2\/7rt3/2

6t—1

dt =0

4t?

e—JE

2s 1
— C =

Nz N

Js




INVERSE LAPLACE TRANSFORM

L . 1 0<x<3
y'+y'+y =9g(x), y(0) =1, y'(0) =0, where g(x) = _
3 X>3
Solution : g(x) = u(x) + 2u(x —3)
[sY = sy(0)— y' (O)] + [sY — y(O)] +Y = % 12

-3s

e—35

S

(s> +s+1)Y Cs+lti42®
s s
s+1 1 2e%

T2 t o t o
s°+s+1 s(s“+s+1) s(s“+s+1)

s+1 1 s+1 _as 1 s+1
=— +(=—— ) +2e7 (= ——
S°+s+1 s s“°+s+1 S Ss°+s+1
(S+1)+iﬁ
s+1 2" J3 2 4 S+l X J3 1 .43
= =1L =e 2(c0S— X + —Sin — X
[ ] ( 5 735 )

1., ,V3,, s?+s+1
S+) +(—
( 2) (2)

s2+s+1

33 1 .3

Y(X) = u(X) + 2u(x - 3){L - e‘2[cos,73(x _3) +Esin73(x _3p




m =
2 IARE §
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CLOs Course Learning Outcome

CLO 13 Ability to curve fit data using several linear and non
linear curves by method of least squares.

CLO 14 Understand the nature of the Fourier integral.

CLO15 Ability to compute the Fourier transforms of the
given function.

CLO 16 Ability to compute the Fourier sine and cosine
transforms of the function




MODULE-II

CLOs Course Learning Outcome

CLO 17 Evaluate the inverse Fourier transform, Fourier sine
and cosine transform of the given function.

CLO 18 Evaluate finite and infinite Fourier transforms.

CLO 19 Understand the concept of Fourier transforms to the
real-world problems of circuit analysis, control
system design




CURVE FITTING

Suppose that a data is given in two variables x & y the
problem of finding an analytical expression of the form
y=f(x) which fits the given data is called curve fitting

experiment and y-¢(x be the given relation x&yLetEE,...E

are the error of approximations then we have

E1:Y1_f(xi)

E2:Y2_f(xz)

E3:Y3_f(x3)

E=y,-f(x) where f(x).f(%).....f(x) are called the expected
values of y corresponding to x=x x=x...x=x,



CURVE FITTING

Y, Yoy, are called the observed values of y

corresponding to X=X, X=X,........ X=X, the differences
E.E...E, Detween expected values of y and observed
values of y are called the errors, of all curves
approximating a given set of points, the curve for which

E=E’+E’+..E} is a minimum is called the best fitting

curve (or) the least square curve
This is called the method of least squares (or)
principles of least squares




CURVE FITTING

1. EITTING OF A STRAIGHT LINE:-
L et the straight line be y=a+bx—(1)

Let the straight line (1) passes through the data
points

(X0 Y1) (%0 ¥ ) e (X0 Vi )i, (X, Y3 )1 =1,2...0
So we have Yi=a-+bxi—(2)

The error between the observed values and
expected values of y=yi is defined as
Ei=y,—(a+bxi)i=12....n—(3)

The sum of squares of these error is

E=_anEi2 =_an[yi—(a+bxi)]2 now for E to be minimum
a_E — 0, a_E — O

oa ob

These equations will give normal equati




CURVE FITTING

Zn: yi=na+ bzn: Xi

i=1 i=1

Zn:xiyi = azn: Xi +bZn:xi2
i=1 i=1 i=1

The normal equations can also be written as

D y=na+b) x

Y xy=a) x+b) x*

Solving these equation for a, b substituting in (1)
we get required line of best fit to the given data.




CURVE FITTING

1. Let the equation of the parabola to be fit
The parabola (1) passes through the data
points
(X Y1)y (%o Yo )i (X Yo )vie, (X, Y )31 =12..0.x
We have yi=a+bx +cx* —(2)

y =a-+bx+cx* —(1)

The error Ei between the observed an
expected value of y-y, is defined as

Ei =yi—(a+bxi+cxi?),i=123...n—(3)

The sum of the squares of these error is

E=g', Ei’=¢, (yi—a-bxi—cxi?) —(4)




CURVE FITTING

For E to be minimum, we have

E _H%E _,E

da b ac

The normal equations can also be written
as

gy =na+bex+cex’
Xy = agx+bex? +cex’ use Y instead of ¢

ex’y = aex” +bex’ +cex*

Solving these equations for a, b, c and
satisfying (1) we get required parabola of
best fit




CURVE FITTING

1. POWER CURVE:-

The power curve is given by y=ax" —(1)

Taking logarithms on both sides

Iogloy — Iogloa"‘blogmx
(or)y =A+bX —(2)

Where y = Iogloy1 A = Iog1oa and X - Iogle




CURVE FITTING

Equation (2) is a linear equation in X &y
- The normal equations are given by

gy =nA+beX
exy =AsX +beX?®  use Xsymbol

From these equations, the values Aand b
can be calculated then a = antilog (A)
substitute a & b in (1) to get the required
curve of best fit

EXPONENTIAL CURVE :-
(1)y =ae™ (2)y=ab"




CURVE FITTING

y=ae”™ —(1)

Taking logarithms on both sides
log,, y =log,, a+bxlog,, e
(or)y=A+BX —(2)

Where y:|0910 y’Azlogloa&B:blogloe
Equation (2) is a linear equation in X and Y

So the normal equation are given by
SY =nA+ BEX
Xy = AZX + BZX?

Solving the equation for A & B, we can
find




CURVE FITTING

B

a=antilogA&b=
log, e

Substituting the values of a and b so
obtained in (1) we get The curve of best fir
to the given data.

2. y=ab*—(1) Taking log on both sides
log,, y =log,, a+xlog,, b (or)Y = A+ Bx
Y =log,, y,A=log,,a,B=1og,,b

The normal equation (2) are given by
>y = nA+ BEX
>xy = AZX + BxXX?

Solving these equations for A and B we

can find a = antilog A,b =antilog B
Substituting a and b in (1)



CURVE FITTING

1. By the method of least squares, find the straight
line that best fits the following data
X /1 |12 |3 |4 |5

Y |14 |27 |40 |55 |68
y =a+bx
ANns. The values of &xey,ex? and exy are

calculated as follows

Xi

yi

Xiyi

14 1 14
27 4 54
40 9 120

OB~ W N




CURVE FITTING

Replace Al Yl by Xi 1 yi and use s instead of &
exi =15;yi = 204, exi* =55 and exiyi =748
The normal equations are

gy =na+bex — (1)
exy =aex+bex* —(2)
204 =15a+5b

748 =55a+15b

Solving we get a=0,b=13.6

Substituting these values a & b we get

y=0+13.6x =y =13.6X



CURVE FITTING

1. Fit asecond degree parabola to the
following data

y =a+bx+cx’
Ans. Equation of parabola
y =a+bx+cx® —(1)

Normal equations &y =na+bex+cex’

exXy = aex+bex® +cex®

ex’y =aex’ +bex® +cex* —



CURVE FITTING

X y Xy X X’y X x*
0 1 0 0 0 0 0
1 5 5 1 5 1 1
2 10 | 20 4 40 8 16
3 22 | 66 9 1198 | 27 | 81
4 38 [152 | 16 |608 | 64 |256




CURVE FITTING

1. Fitacurve y=axX’ to the following data
X |1 2 3 4 5 6

Y 298 [4.26 |5.21 [6.10 [6.80 |7.50

Ans. Let the equation of the curve be
y=ax’ —(1)
Taking log on both sides
log y =loga+blog x
y=A+bX —(2)

y=Ilogy,A=loga, X =log x
ey=nA+beX

exy = Aex+bex’ —(3)



CURVE FITTING

1. Fitacurve y=ab* —(1)
X 2 3 4 5 6

Y 144 |172.8 [207.4 |248.8 |298.5
logy =loga+xlogh — (1)
y=A+xB—(2)
y=Ilogy,A=loga,B =logbh
Xy =nA+BegX

Ans.

exy = Aex+Bex? > (3)




CURVE FITTING

X y X2 Y =logy Xy

2 1440 | 4 |2.1584 | 4.3168

3 11728 | 9 [2.2375 | 6.7125

4 12074 | 16 |2.3168 | 9.2672

5 |248.8 | 25 [2.3959 |11.9795
6 2985 | 36 |[2.4749 [14.8494




CURVE FITTING

Equation of parabola ¥ = a-+bx+cx® —(1)

Normal equations ¢y =na+bsx+cex’

Xy = asX+bex® +cex’

X y Xy X2 Xy X’ X’
0 1 0 0 0 0 0
1 1.8 | 1.8 1 1.8 1 1
2 13 |26 | 4 5.2 8 16
3 |25 |75 9 225 | 27 | 81
4 163 |25.2 | 16 |100.8 | 64 |256

Yxi= 10, Yy, =12.9, ¥ x* =30, Y x;° = 100,
Y xit =354, ¥ x%y; = 130.3

2 x; ¥, =37.1




CURVE FITTING

2 x;yi,=37.1

Normal equations
5a+ 10b +30c=12.9

10a + 30b +100c =37.1

30a + 100b +354c = 130.3

Solving a=1.42 b =-1.07 c=.55
Substitute in (1) y = 1.42- 1.07x+.55x"




FOURIER TRANSFORM

Fourier integral theorem

If f(x) is a given function defined in (-/,/) and
satisfies the Dirichlet conditions then

f(Xx) = f(t) cos A(t —x)dtdA

1
I

O t—3
8'—.8




FOURIER TRANSFORM

Fourier Sine Integral

If f (t) is an odd function

o0

f(x) 2 j sinax j f (t) sin Atdtda
T 0

0

Fourier Cosine Integral

If f (t) is an even function

f(x) = 2 j COSAX j f (t) cos Atdtd)
% 0




FOURIER TRANSFORM

Fourier Sine Integral

If f (t) is an odd function

o0

f(x) 2 j sinax j f (t) sin Atdtda
T 0

0

Fourier Cosine Integral

If f (t) is an even function

f(x) = 2 j COSAX j f (t) cos Atdtd)
% 0




FOURIER TRANSFORM

1, (x|<1 .
Expressf)={; ||X|| o1 as a Fourier
integral. Hence evaluate [2"22** gnd

(o]
also find the value of y=sinox
(<) — ijz T f (D) cos A (t— x) d adt
7T 5 o
1 oo L
f (x) — ;.glflcosx(t— <) d Aadt
172 .
f (x) = ;_([x5|n7\,cos7\,xd7\.
ISinxCOS?\'XdX=£f(x) ={g|x| =1
A 2 O,|x<| =1
|><| =1
wsinxcosxxdx £[1+O:|=£
2 4




FOURIER TRANSFORM

Using  Fourier Integral show that

TAZ 2
442

cosAxdA

e COSX——J‘

f(xX) =e *cosx

2 8
8

f(x) = % cosxx[_.f(t) cosAtdt]d A
(6] (6]
f(x) = 2 [ cos ax[[ et costcosatdt]da
o 0
f(x) = % [ cos Ax[ [ e (cos(n +1) t+cos(x —1) tdtld &
0 (0}
1% 1 1
f(x) =—|cosAx + da
S Ty [(k+1)2 +1 (A—2D)° +1]
2 2
F(x) =2 [ 2 2 cosaxdn
T AT +2




FOURIER TRANSFORM

FOURIER TRANSFORMS
The complex form of Fourier integral of any
function f(x) is in the form

_ 1 T —ikxoo At
f(x)_z—n_[oe _[Of(t)e dtd

Replacing » by s
F(x) = i T e *ds of £ (t)e™dt

—O0

Let

F(s) = T f (t)e"™'dt

f(x) = 2—1n T F(s)e **ds



FOURIER TRANSFORM

Fourier Cosine Transform
Infinite

FLf®]=F.(s) =, IET f (t) cos stdt
7T 0
f(x) =, IET F.[ f (t)]cos sxds
7T 0
Finite

Folf (0]=Fo(s) = \E J f©cos(

() = TFe (@) +[ 23 Fa(9)cos(T)




FOURIER TRANSFORM

Fourier Sine Transform
Infinite

FLf()]=F(s) = \/z]o f (t) sin stdt
T%
f(x) = \/z]g F [ f (t)]sin sxds
T°%
Finite
F.[ f (] = Fy (s) = \EJ f()sin(™ )t

f (%) =\Ei F, ($)sin(=7=)




FOURIER TRANSFORM

Linear

Heaf, (x) + bf,(x)] =aF,(s) + bF,(s)

Flaf,(x) +bf,(X)] = —=




FOURIER TRANSFORM

Shifting Theorem: (a) Fif(x-a)]=¢™ F(s)
(b) F[eiax f(x)] =F(s+a)

1 [ —aeat

Flf(x—a)] = Ton
t—a=z

dt =dz

F[f(X— a)] — iszeiasdZ

—\/;_n [f@e

1

F[f(x—a)] =e™ T f(z)e"*dz

V2r

F[f(x—a)] =e"™ F(s)




FOURIER TRANSFORM

Change of scale property:

Flf(ax)] = % C)e>0)

F[f(a><)] = \/;_n T f (at)e'stdt

at — =z

dt — idz

[ f(ax = i 1 N F (=z ei(gjzdz
[F(a>)1 a Vo< =)

FLF(2>0] — = F(S)




FOURIER TRANSFORM

Multiplication  Property:
d"F

FIX"()] = ()" e

FIFGO1 = —=— [ f(e™at

z: — J;_n J' t.f (He'stdt
2 =2 >
_‘;'IS'Z: :—Iz_n [ t2.f(®e™tdt
continuing
d"F i 7 ;
— t" . f (e'stdt
ds"” 27T _'..

FIx" O] = (—iy" S F

ds"




FOURIER TRANSFORM

Modulation

FIf(x) cosax] = = ~[Fls+2)++F(s ~2)] FIs] =F{f(x)

/ 2 —00
1 OO

FIf(X)] = 7= f(t){e'a +2 oia }ei“dt

F[f(x)] = f (t) cosat e"'dt

F[f(x)]=—|: . j f(0)e ™t + —=— J_ j f(0)e'Cdt

F[f(x) cosax] = %[F(S +a)+F(s—a)]




FOURIER TRANSFORM

Find the Fourier transform of f(x):{l_o’]x’ﬂ"'fl
x| >
Hence evaluate TXCOS))((—;Sianosgdx
FLF ()1 — [ F(O<e<dx
FLT (<)] = j. @A — x*)e'™*dx
f _ o > eisx L 2 eisx 2 eisx

FLT (<)1 ‘(1 ><=) =2 > —(is)2 —+ —(is)3 -
I:[f (X)] _ > [ eis 4 i—is j— > eis __ es—is j

— s —I1SsS
FLF (<)] = ;:' (scoss —sins)

- 1 T —isx

TOOD = J F[s]le ds
f(x) = 1 T _:I' (scoss —sins)e '*ds

2T1 s

—oo

211
< =1/ 2
1 F —a
211 -r s

T (scoss —sins)
) —=

—oo

—oo

2= (scoss —sins
C ))
) =

o

1 J- ;:I' (scoss —sin S)e*iSXdSZ{l

— (scoss —sins)e Fds = %

[cos % — 1sin %]ds

311

cosids _ — —
2

16

— xZ,|x| =1
O, |x| =1




FOURIER TRANSFORM

Find the Fourier cosine transforme=.

F. (e_xz) = J'e_xz cossxdx = |
(0]

dr = —I xe <" sins xdx = i_f(—erxz)sins xdx
ds > 2%
Al _ =S [e* cossxdx — —2 1
ds 2
ﬂ — __Sds
| 2
int egratingonbosthsides
2
log!l = J'—ds +logc = +log c = log(ce5'%)
_ Ce—52/4

s?/4

|

= 2

je_x cossxdx =ce~
(0]

s




FOURIER TRANSFORM

Find the Fourier sine transforme*.Hence
show that

oo

J-x3|nrr21de:He‘ ’m>o
5 1+Xx 2

X being positive in the interval (o «)

T . s
FR(e ™) = |e *sinsxdx =
-,!,. 1+ s”
2 F R
F(x) = — | F (e ™)sinsxds
€9) H{ (e
£ (> =T S __sinsxds
> 1+ S
s s N
e > = sin sxds
-..1—1—82

o

Replace x by m

s
1+ s?

e M = sin smds

0=

2
1
S

+s?

. IT _
sinsmds = —e™ ™

=

X >-sin mxds = Ee*m
+ X 2 7

Ot=—§ Ot=m3§

[




FOURIER TRANSFORM

Find the Fourier cosine transform

X, 0<x <1l
f(x)={2—x,1<x<2
O, x>2
F.(F(x)) = [ f(x) cossxdx

0
1

2 o0
F.(f(x)) = | xcossxdx + j (2—x)cossxdx + j 0.cossxdx
0 1 2

F.(f(x)) :(%+ €055 _ijJr(_SlnS _ C0s2s N cossj
S

2 g2 S §2 §?

2c0ss 1 cos2s

2 2

F.(F(x)) =

82 S S




FOURIER TRANSFORM

If the Fourier sine transform of
1—cosnIl

f(x) = (nID)? then find f(x).

f(x) = %ia(n)sin nx

1—cosnIlIl
F ()=
.(N) (nID)2

2 H1—cosnll .
f(x =—§ in Nx
( ) H n=1 (nH)z

f(x) = 1123 Z_;l_cof N Gin nx

n
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CLOs Course Learning Outcome

CLO 20 Apply numerical methods to obtain approximate
solutions to Taylors, Eulers, Modified Eulers

CLO 21 Runge-Kutta methods of ordinary differential
equations.




ORDINARY DIFFERENTIAL EQUATION

The important methods of solving ordinary differential equations of
first order numerically are as follows
1)  Taylors series method
2)  Euler’s method
3) Modified Euler’s method of successive approximations
4)  Runge- kutta method
To describe various numerical methods for the solution of ordinary
differential eqn’s,we consider the general 1% order differential eqn
dy/dx=f(x,y)------- (1) with the initial condition y(x)=Yo
The methods will yield the solution in one of the two forms:
i) A series for y in terms of powers of x,from which the value of y can
be obtained by direct substitution
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Using Taylor’s expansion evaluate the integral of
y'—2y=3¢",y(0) :O, ata) X=0.2
b) compare the numerical solution obtained with exact solution .

Sol: Given equation can be written as 2y +3e* =y’ y(0) =0

Differentiating repeatedly w.r.t to ‘x” and evaluating at x=o

y'(x) =2y +3e*, y'(0) = 2y(0) +3e° =2(0) +3(1) =3
y'(X) =2y'+3e*,y"(0) =2y'(0) +3e’ =2(3) +3=9

y"(x) = 2.y"(X) +3e*, y"(0) =2y"(0) +3e° =2(9) +3 =21
yY(x) =2.y"(x)+3e*, y"(0) = 2(21) +3e° =45

y'(x) =2.y" +3e*, y'(0) = 2(45) +3e° =90+ 3=93

In general, y™(x)=2.y™(x)+3e* or y(”“’ (0)= 2.y(”) (0) +3¢e°
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The Taylor’s series expansion of Y(X) about X =0 is

/ X2 XS X4 m X5 mn
y(X)=y(0)+>w(0)+Ey(0) 3Iy(O) s (0)+5y 0)+...
Substituting the values of

y(0), y'(0), y"(0), y"(0),..........

y(x) = O+3x+9x +21 3 45x“+£x5+ ........
2 6 24 120

y(x)—3x+gx2+zx +Ex4+§x +
5 5 3 a0 e equl
Now put X=0.1 in equl

y(0.1)=3(o.1)+§(o,1) _(O e 4 15

=0.34869

5 O’ 4—(0.1)5
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Now put x-02 in equal
y(0.2) =3(0.2) +%(o.2)2 Loy +E(o.2)4 +§(o.2)5 =0.811244

;15 431

5 03+

y(0.3) =3(0.3) +§(o.3) L0037+ > 09"

=1.41657075
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. : .Gy
Using Taylor’s series method, solve the equation = X*+y’

for Xx=04 given that y=0when x=0

d 2 2 .
Sol:Given that d—i=x +Y¥* and y=0 when x=0i.e. Y(0)=0

Here y,=0, x=0

Differentiating repeatedly w.r.t ‘X’ and evaluating at x-o
V' (X)=x*+y%,y'(0)=0+y*(0)=0+0=0

y'(x)=2x+y'2y,y"(0) =2(0)+y'(0)2.y =0

y"(X) =2+2yy"+2y"y', y"(0) =2+2.y(0).y"(0) +2.y'(0)* =2
yﬂH(X) — 2.y.ym+ 2.y”.y’ ‘|‘4.y”.y’, ylm(o) — 0
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The Taylor’s series for f(x) about x-o is

2 3 4

y(X) = y(0) + xy'(0) + % y'(0)+ % y"(0)+ % y"(0) + .

Substituting the values of y(0),y'(0), y"(0)......

3 3

2
y(x)=0+x(0)+0+?x!+0+ ........ :§+(Higher

order terms are neglected)

3
- y(0.4) = 04)° _ 0'%64 =0.02133

3
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Solve y =x-y?,y(0)=1 using Taylor’s series
method and compute y(0.1),y(0.2)

Sol:Given that y =x-y? y(0)=1
Here y, =1, x,=0

Differentiating repeatedly w.r.t ‘x” and
evaluating at x=0

y'(x)=x-y%y'(0)=0-y(0)*=0-1=-1

y'(x) =1-2y.y", y"(0) =1-2.y(0)y'(0) =1-2(-1) =3

y"(x) =1-2yy'-2(y")*, y"(0) = -2.y(0).y"(0) - 2.(y'(0))* =—6—-2=-8
y"(x)=-2.y.y" =2.y"y'=4.y"y’, y"'(0) = -2.y(0).y"(0) - 6.y"(0).y'(0) -
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The Taylor’s series for f(x) about xo =0 is

y(x) = y(0) + 2y*(0) + £y*(0) + £y *(0) +

Substituting the value of y(0), y*(0), y**(0),
v(ix)=1—x +§x2 -

%x?’ + 2xt +

y(x)=1—x+gx2— 3

4>+ x4
3
now put x=0.1in (1)

y(0.1) =1 —-0.1+ 2(0.1)* + £ (0.1)° + (0.1)" +
= 0.91380333 ~ 0.91381

Similarly put x=0.2 in (1)

y(0.2) =1—-0.2 +3(0.2)* - £ (0.2)° + 2(0.2)* +
0.8516.
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Solve y' = x° -y, y(0) = 1, using Taylor’s series method and
compute y(0.1), y(0.2), y(0.3) and y(0.4) (correct to 4 decimal
places).

Sol. Given thaty'=x"—yandy(0)=1

Here xo =0, yo=1 ory =1 when x=0

Differentiating repeatedly w.r.t ‘x” and evaluating at x = 0.
Yix)=x*-y, Vy(0)=0-1=-1

y'(x) = 2x~y, y'(0)=2(0)-y/(0) =0~ (-1) =1
v'(x)=2-y", y(0)=2-y(0)=2-1=1,

yIV(X) — . yIII ’ yIV(O) — _yIII (O) =1
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The Taylor’s servies for f(x) about xo=0 is
y(x) = y(0) + 2y'(0) + £y'(0) + £y"(0) + £y"(0) +......
substituting the values of y(0), y*(0), y'*(0), y***(0) ,......
y(x) =1+ x(-1) + 2 (1) + (1) + 2 (-1) + ......
y(x):l—x+§+§-;_;+ ...... —2>(1)
Now put x=0.11in (1),
y(0.1) =1—-0.1+ @0 + O _ O 4

6 24

=1-0.1+0.005+ 0.01666 —0.0000416 -
0.905125 ~ 0.9051

(4 decimal places)
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Now put x=0.2 in eq (1),
y(0.2) =1-0.2 + 02" 4 (02 . (02

6 64

=1-0.2+0.02 +0.001333 -
0.000025

=1.021333 - 0.200025
= (0.821308 ~ 0.8213 (4 decimals)

Similarly y(0.3) =0.7492 and y (0.4) = 0.6897
(4 decimal places).
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Solve ¢ -1 = xy and y(0) = 1 using Taylor’s series method and
ompute y(0.1).
Sol. Given that 2 - 1 =xy and y(0) = 1
Here £ =1+xyandyp=1, X%, =0.

Differentiating repeatedly w.r.t ‘x’ and evaluating at xo =0

y'(x) =1 +xy, v'(0) = 1+0(1) =1 .
v'(x) = x.y'+y, v'(0) = 0+1=1
y'(X) = xy Y Y, v"'(0) = 0.(1) + 2.(1) =2

yIV(X) _ Xym + y” + 2y”' yIV(O) - 0+3(1) =3.
yv(x) _ XyIV + y'” +2y'”, yV(O) =0+2+2(3)=8

The Taylor series for f(x) about xo =0 is
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1. Using Euler’s method solve for x = 2 from £ = 3x* + 1,y(1) =

2,taking step size (I) h = 0.5 and (Il) h=0.25

Sol: here f(x,y) =3x° + 1, Xo = 1,yo = 2

Euler’s algorithmisy,.. =y, + h f(x,y,), n=0,1,2,3,.....

~>(1)

h=0.5 X1=Xo+h=1+0.5=1.5
akingn=0in (1), we havex; =x;+h=15+05=2

Y1= Yo+ h f(xo,Yo)
i.,e. y1=vy(0.5)=2+(0.5)f(1,2)=2+(0.5)(3+1)=2+(0.5)(4)
Here x;=xo+h=1+0.5=1.5

y(15) =4 = Y1
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Taking n=1in (1),we have
Y2=Yi1+ h f(xy,y1) i.e.y(x2)=y>=4+(0.5)f(1.5,4)=4 +
(0.5)[3(1.5)’ + 1] =7.875 Herex, =x;,+ h =15+ 0.5 =2
-y(2) =7.875
(1) h=0.25 X7 =1.25, x5 = 1.50, x5 = 1.75, x4 =
2
Taking n=0in (1), we have
Y1 = Yo+ h f(xo,Y0)
i,e. y(x1) =y1 =2+ (0.25)f(1,2) =2+ (0.25) (3 + 1) =3 vy(x3) =Vv>
=vy1 + h f(xq1,y1)

i.e. y(x2) =y>=3+ (0.25) f(1.25,3)
=3 + (0.25)[3(1.25)% + 1]

=4.42188
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Here x; = x4 +h=1.25+0.25=1.5
~y(1.5) =5.42188
Taking n=2in (1), we have
i.e. y(x3) = y3 = h f(x3,y2)
=5.42188 + (0.25) f(1.5,2)
= 5.42188 + (0.25) [3(1.5)% + 1]
= 6.35938 Here x3=x, + h=1.5+0.25=1.75

~y(1.75) =7. 35938
Taking n =4 in (1),we have y(x4) = ya=YVy3 + h f(X3,y3)
i.e. y(x4) =ys=7.35938 + (0.25) f(1.75,2)

= 7.35938 + (0.25)[3(1.75)° + 1]
= 8.90626
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3.  Given that ¢ =xy ,Y(0) = 1 determine y(0.1),using

Euler’s method. h =0.1

d
Sol:  The given differentiating equation is - y = xy, y(0) =

a=0
Here f(x,y) =xy, xo=0andyy=1

Since h is not given much better accuracy is obtained by
breaking up the interval (0,0.1) in to five steps.
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Euler’s algorithm is y,.1 =y, + h f(x,,yn)
2> (1)

-From (1) form = 0, we have

y1=Yo+h f(x0,yo)
=1+ (0.02) f(0,1)
=1+ (0.02) (0)
=1
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Next we have x; =xo+ h =0+ 0.02 =0.02
~From (1), form = 1,we have
Y2 = Y1+ hf(xy,y1)

=1+ (0.02) f(0.02,1)

=1+ (0.02) (0.02)

= 1.0004
Next we have x, = x; + h=0.02 + 0.02 =0.04
~From (1), form = 2,we have

yz = Y2 + h f(x3,y,)

=1.004 + (0.02) (0.04) (1.0004)
=1.0012
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Next we have x5 = x>, + h =0.04 + 0.02 =0.06
~From (1), form = 3,we have
Ya =Ys + h f(x3,y3)
= 1.0012 + (0.02) (0.06) (1.00012)
=1.0024.
Next we have x; = x5+ h =0.06 + 0.02 =0.08
~From (1), form = 4,we have
Ys = Ya + h f(Xa,ya)
= 1.0024 + (0.02) (0.08) (1.00024)
= 1.0040.

Next we have x5 = x4, + h =0.08 + 0.02 =0.1
When x = X5, y™Ys
~y =1.0040 when x=0.1
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using modified Euler’s method find the
approximate value of xwhen x=o03
given that dy/dx=x+y and y(0)=1
sol:  Given dy/dx=x+yand y(0)=1
Here f(x,y)=x+y,x,=0,and y, =1
Take h = 0.1 which is sufficiently small
Here
X, =0, X =%X+h=01LX%x,=x+h=0.2Xx,=%X,+h=0.3
The formula for modified Euler’s method is

given by
yk+1(i) = yk + h / 2|: f (Xk + yk)+ f (Xk+17 yk+1(i_1) )i| - (1)
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YK+1(i) =Y, +h/ 2|:f (Xk + Yk)"' f (Xk+1’ yk+1(i_1) ):| — (1)

Stepl: To find y,=y(x1) =y (0.1)
Taking k =0 in egn(1)

Vel =Y, +h/2[ f (X +Yo)+ T (x1 yl(i‘l))] —(2)
when ii=1 ineqn (2)

O = Yo /2| £ (%, ¥0)+ T (30 %:”) |

First apply Euler’s method to calculate y* =vy;
Y =y, +h T (X, Y,)
= 1+(0.1)f(0.1)
= 1+(0.1)
=1.10
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ORDINARY DIFFERENTIAL EQUATION %

Yk+1(i) =Y, +h/ 2|:f (Xk + Yk)"' f (Xk+1' yk+1(i_1) ):I — (1)

Stepl: To find y;=y(x;) =y (0.1)
Taking k =0 in eqn(1)

Ve =Y, +h/2[f (Xo+ Yo )+ f ()(1 yl(i‘l))] —(2)
when i=1 ineqgn(2)

= Yo +h 12 f (%) + T (%, %) ]

First apply Euler’s method to calculate y* =y,
P =y +h (%, Y,)
= 1+(0.1)f(0.1)
= 1+(0.1)
=1.10
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2D =¥ #0172 T (%, ¥o)+ F (3. 1,@) |
= 1+0.1/2[f(0,1) + f(0.1,1.10)
= 1+0.1/2[(0+1)+(0.1+1.10)]
=1.11

When i=2 in egn (2)

Vi@ =y +h/2] (X ¥0)+ F (%) |
= 1+0.1/2[f(0.1)+f(0.1,1.11)]
=1+0.1/2[(0+1)+(0.1+1.11)]
=1.1105

Vi@ = yo+h/2[ (% ¥o)+ T (50, v:®) |

= 1+0.1/2[f(0,1)+f(0.1, 1.1105)]
=1+0.1/2[(0+1)+(0.1+1.1105)]
=1.1105

Since v, =y, . y,=1.1105
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Step:2 To find y, = y(x5) = y(0.2)
Taking k=1 in egn (1) , we get

y, W = y1+h/2[ f(x,y, )+ f (xz, yz(i_l))] —(3)

Fori=1

y, = y1+h/2[f (%, ¥,)+ f (xz, yz(o))]
v,©is to be calculate from Euler’s method
Y>? =y, +h f(x,y,)

=1.1105 + (0.1) f(0.1, 1.1105)

= 1.1105+(0.1)[0.1+1.1105]
=1.2316
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~y? = 1.1105+0.1/2[ f(0.11.1105)+ f (0.2,1.2316) |

=1.1105 +0.1/2[0.1+1.1105+0.2+1.2316] =1.2426
y,? =y, +h/2[f (%, y,)+ f (xzyz(l))]
= 1.1105 + 0.1/2[f(0.1, 1.1105) , f(0.2 . 1.2426)]
=1.1105 + 0.1/2[1.2105 + 1.4426]
= 1.1105 +0.1(1.3266) = 1.2432
Vo = yi+hi2) 04 y)+ f(%y.7)]
= 1.1105+0.1/2[f(0.1,1.1105)+f(0.2 , 1.2432)]

=1.1105+0.1/2[1.2105+1.4432)] = 1.1105 + 0.1(1.3268) =
1.2432 Since ¥, =y,)  Hencey, =1.2432
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Step:3
To find y3 = y(x3) =y y(0.3)
Taking k =2 in eqn (1) we get
Vo =y +012] £ (0, y,)+ f (06,3 ) | > (4)
For i=1,

v =y, #0172 (%) + T (%57 |

v.? is to be evaluated from Euler’s method .
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Y3(0) =Yy, +hf (X27 YZ)
- 1.2432 +(0.1) f(0.2 , 1.2432)
=1.2432+(0.1)(1.4432)
=1.3875

0 =1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3, 1.3875)]
=1.2432 +0.1/2[1.4432+1.6875]
=1.2432+0.1(1.5654) =1.3997

V& =y, 01 2] £ (%0 ¥5)+ T (%0327

= 1.2432+0.1/2[1.4432+(0.3+1.3997)]
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V¥ =y, +h /2] () + T (%, v,

= 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3 , 1.4003)]
= 1.2432 + 0.1(1.5718)
= 1.4004

Y3(4) =Y, +h/2[ f (X2’ yz)"' f (Xs’ Y3(3))]
=1.2432 + 0.1/2[1.4432+1.7004]
=1.2432+(0.1)(1.5718)

= 1.4004

Since y3(‘°’) = y3(4)

Hence Y, =1.4004 - The value of y at x = 0.3 is 1.4004
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CLOs Course Learning Outcome

CLO 22 Understand the concept of order and degree with
reference to partial differential equation

CLO 23 Formulate and solve partial differential equations by
elimination of arbitrary constants and functions

CLO 24 Understand partial differential equation for solving
linear equations by Lagrange method.




CLOs Course Learning Outcome

CLO 25 Learning method of separation of variables

CLO 26 Solving the heat equation and wave equation in
subject to boundary conditions

CLO 27 Understand the concept of partial differential
equations to the real-world problems of
electromagnetic and fluid dynamics
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similarly differentiating (1) w.r.t. y, we get

—f1 (u ) —f1 W2y

ie.g=fF'(W(—2y)........... 3)
. . . P __ ffwzx . x
- (2) = () gives | = Fnc—em v

i.e., pytqx=0

This is the required partial differential equation.

2) Form a partial differential equation by eliminating the
arbitrary functions from Z=yf(x)+xf(y)

given Z=yf(x)+xf(y) ........... (1)

Differentiating (1) partially with respect to x and y, we have

P=yf 1 (x)+g(y) ........... (2)and
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Since the reletions (1),(2) and (3) are not sufficient to eliminate f,g,f* g’

So we find the second order partial derivatives

a2z 9%z _ __
axoy SO+ () e (5)

From (2) and (3) ,we have

1) =S [p—g(]and g'(y) = [a— (0] ..ooonves (M
From (5), we have

S=F1(x) + g' ()

«s=2[p—gW]+[a—fCO], [using (7)]
i.e., xys=x[p — g(y)] + ylq — f(x)]

e, xys=pxt+qy-[yf(x)+xg(y)] or Xys= pxtqy-z [using (1)]

this is the required partial differential equation.
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Let us consider a Partial Differential Equation of the form F (x,y,z,
D,

q )=0. If itis Linear in p and g, it is called a Linear Partial
Differential Equation (i.e. Order and Degree of p and g is one) If it
is Not Linear in p and g, it is called as nonlinear Partial Differential
Equation (i.e. Order and Degree of p and ¢ is other than one)
Consider a relation of the type F (x,y,z,a,b) =0 By eliminating the
arbitrary constants a and b from this equation, we get F( x,y,z,p,q
) =0, which is called a complete integral or complete solution of
the PDE. A solution of (,y,z,p,z ) =0 obtained by giving particular
values to a and b in the complete Integral is called a particular
Integral.
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LAGRANGE’S LINEAR EQUATION
A linear Partial Differential Equation of order one, involving a dependent variable z and two independent variables x
and y, and is of the form Pp+Qq=R, where P,Q,R are functions of x,y,z i called Lagrange’s Linear Equation.

Solution of the Linear Equation

Consider Pp+Qq=R Now, =S Qy E]l:

Case I: If it is possible to scparate variables then, consider any two equations, solve them by integrating. Let the
solutions of these equations are u=a,=b

. (,v) =0 15 the required solution of given equation,

Case 2: If it 1s not possible to separate variables then dxP(x,y,z)=dyQ(x,y,2)=dzR(x.y,z) To solve above type of
problems we have following methods
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Lagrange’s solution:

The partial differential equation of the Pp+Qqg=R where P.QQ and R are functions
of x,y.z is the standard form of linear partial differential equation of first order
.therefore .is called Lagrange’s linear equation

Lagrange’s method of solving the linear partial differential equation of order
one, namely, Pp+Qqg=R

The general solution of the linear differential equation

Pp+Qg=R -—(1 )is, {u.v)=0-—(2) Where ) is an arbitrary function
u(x,y,z)=C; and v(x,y,z)=C; from a solution of the equations its auxiliary
= _? = :sulul:inn for these auxiliary equations .There are two
methods for solving the above auxiliary equations

equations

Method 1

Take two members and solve the equation, then take two other members and
solve that equation. Then proceed to step (2)




2 000

PARTIAL DIFFERENTIAL EQUATION AND APPLICATION %

m
1)
[
o
'V

Method2

Method of multipliers.

dx dy dz ldx+mdy+ndz
Let —_—— = —= AT
P Q R IP+mQ+nR

dx _dy _ dz Iiir+m1d}r+n1dz
P Q R 11P+m1 Q+ni1 R
that ldx+mdy+ndz=0 and 11dx+mldy+nldz=0 and solve these Then proceed to
step (2)

Where |, m, n andl, ,m,.n, are chosen such

Method of grouping:
In some problems, it is possible to solve any two of the equations,
M (or) M (or] g — E

p Q Q R p R

In such cases, solve the differential equation, get the solution and then substitute in the other differ
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Example:

Find the general solution of y’zp+x°zq=y°x.

Solution:

Given equation is Y2ZP+X2Za=Y*Xu.. ceeeeeeeeen... (1)

The auxiliary equations are dx/y’z =dy/x°z = dz/ y°x
From dx/y°z =dy/x°z

Or x’dx= y° dy

We have x°/ 3 —vy>/ 3 =a

Or x>-y> =c,
And from dx/y°z =dz/ y°x
x’/2-y?’/2 =b (or) x> —y° =cC,

Thus the general solution is d( x°- y>, x> —y?) =0
Or x>-y>=f(x*>—vy°) Where f is arbitrary function.
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Method of Multipliers

Consider 2=2=% " SR —l dx+m dytndz

Q R

In this, we have to choose [,, so that denominator=0.

That will give us solution by integrating [ dx+m dy+n dz
L.Solve (x%-yz) pt+ (y*-xz)q = 2> — Xy
Solution;

The equationis  (x*-yz) p+ (y?—xz)q = 2% — xy
Here P=x%-yz, Q=y*—xz,R =z% —xy

F . dx
The auxiliary equations are —=—=—

dx _ dy _ dz (1)

Le,. myd) - (Foxs) By
Taking 1,-1,0 and 0, 1,-1 as multifliers, we get

dx-dy
(x*-yz)-(¥y?

dy-dz
(y2-x2)-(22-xy)

and also =

Each fraction =

—XZ)
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dx-dy _ dy-dz
(x2=y2)+z(x=y) (y2-z2)+x(y-2)

dix-y)  _ _ d(y-2z)
T (=) (x+y+z)  (y=z)(x+y+2)

d(x-y) _ d(y-2)
x-y y-2z

Therefore

1.e

or

Integrating both sides we get

d(x-y) _ dy-2)
—— e, = —+
[ T o= *e

1.e., log(x-y) =log(y-z) +logcl

Again taking x,y,z are multipliers, we have

. xdx+ydy+zdz _ xdx+ydy+zdz

Each fraction x(x2=yz)+y(y*-zx)+z(z2-xy) x3+y3+z3-3xyz
xdx+ydy+zdz

.................. 3)

(x+y+z}(xz+yz+zz—x}' yz-2X)
Now 1,1,1 as multipliers , we get

xdx+ydy+zdz _ xdx+ydy+zdz
(x2=yz)+(y*-zx)+(z2-xy)  x*+y?+z2-xy-yz-ix

Each fraction =
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Equating (3) and (4) and on simplification we get

xdx+ydy+zdz
XY+

Le.(xtytz)d(xtytz)xdxtydytzdz
Integrating, we get

- ity

(x4y+2) x lyz 7
=4,

2222

= [T [from(2)and(5)]
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Problem 1:
Find the general solution of y’zp+x°zg=y°Xx.

Solution:

Given equation is Y2zp+X°Zg=yY Xeeeueeueeeeeen... (1)

The auxiliary equations are dx/y’z =dy/x°z = dz/ y°x
From dx/y’z =dy/x°z

Or x°dx= y° dy

We have x°/ 3 — y3/ 3 =a

Or x>- y3 =Cq
And from dx/y’z = dz/ y°x
x°/2-vy°/2 =b (or) x> —vy® =cCy

Thus the general solution is d( x>- y>, x> — y°) =0
Or x>-y> =f(x>—vy’) Where f is arbitrary function.
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Problem 2:
Find the general solution of p+g=1

Solution:

The given equation is p+g=1

The subsidiary equations are dx/1=dy/1=dz/1 ............... (1)
Taking the first two members, we get dx=dy

By integrating we get x=y+a i.e, x-y=a

By taking the last two members we get dy=dz

By integrating we get y=z+bi.e, y-z=b

Hence the general solution of (1) is ®(a,b)=0
i.e, ®(x-y,y-z)=0 where ® is arbitrary
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Problem 3:
Solve px+qy=z

Solution:
The subsidiary equations are dx/x=dy/y=dz/z
Now taking the first two members,
we have dx/x=dy/y
Integrating and simplifying we get
logx=logy+logc; or x/y=c;
taking the last two members we have dy/y=dz/z
Integrating and simplifying we get
logy=logz+logc, or y/z=c,
Hence the general solution is f(c,,c5)=0
i.e, f(x/y,y/z)=0 where f is arbitrary.
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Problem 4:

Solve (mz-ny)p+(nx-1z)g=ly-mx

Solution:
The given equation is
(mz-ny)p+(nx-lz)g=ly-mx
Here P=mz-ny,Q=nx-lz, R+ly-mx
The auxiliary equations are
dx/P=dy/Q=dz/R
i.e, dx/mz-ny=dy/nx-lz=dz/ly-mx
Choosing x,y,z as multipliers,we get
Each fraction=xdx+ydy+zdz/0O,which gives xdx+ydy+zdz=0
By integrating we get x2+y2+22=c1
Again by choosing I,m,n as multipliers we obtain
Each fraction=ldx+mdy+ndz/0O,which gives
Idx+mdy+ndz=0
Integrating,Ix+my+nz=c,
Hence the general solution is f(x°+y°+z%, Ix+my+nz)=0
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Problem 5:
Solve z(z°+xy)(px-qy)=x"

Solution:

Given equation is

xz(z°+xy)p-yz(z°+xy)g=x"

the auxiliary equations are
dx/xz(z°+xy)=dy/-z(z°+xy)=dz/x*.....(1)

From first two ratios we get

dx/x=dy/-y
By integrating we get logx=-logy+c, (or)
XY+Clueerennannnnn. (2)
By taking first and last ratios and by integrating we get

Therefore the required general solution is f(xy,x*-y*-2xyz*)=0
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Method of Separation of variables

This method involves a solution which breaks up into product of functions, each of which contains only one of the
independent variables.

Procedure:
For the given PDE, let us consider the solution to be z=(x). Y(y )

= =S VY S K Y
Substitute these values in the given equation, from which we can separate variables.
Write the equation such that X', and x terms are on one side and
similarly Y"Y and y terms are on the other side.
Letitbe FX',,=G Y'Y, y=A=F X' Xx=Aand G Y'Y,y=1

Solve these equations; finally substitute in z=X (x)( )

which gives the required solution.



2 00OD0

PARTIAL DIFFERENTIAL EQUATION AND APPLICATION %%

S 3
[ &\o
o

7, P\

“ &
¥ For \*

PROBLEMS
1) Solve % = 2 2—‘: + u where u(x,0) = 6e~%%,

Solution; Given that % = 2‘;—1: + U (1)

Subject to the condition u(x,0) = 6e™3* ......... (2)

Using the method of separation of variables , we seek a solution of (1) in the form
U(x,t) = X(x) T(t) ......... (3)

If (3) is a solution of (1),(3) must satisfy the equation.

We have g—: = X1(x)T(t): ‘;—:: =X)T(E) ......... (4)

Using (3) and (4) in (1), we get

XLCO)T(E) = 2XCOTH(E) + X(x)T(E)

ie.,
X1)T(t) = X(x)[2T(t) + T(0)]

X1(x) _ 2TY(t)+T(1)
x(x) ~ T()

or

Since L.H.S is a function of x and R.H.S is a function of t, the equality is valid for all x and t if and only if each is e
constant A for all x and t.
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X1(x) _ 2TH()+T(t) -2
X(x) T(t)

e, X1(x)— AX(x) =0
ie., X(x) = Ae?*
and 2T (t) + T(t) == AT(t)

ie. TI(E) + “; A

T(t) =0

(A-1)¢t
-~ T(t) = Be 2

(A—1)¢t
~u(x,t) = Ae**.Be 2

(A—1)t
ie., u(x,t) =Ce?*.e 2

Using condition (2), u(x, 0) = 6e 3%
Ce?* = e 3%

s A=-3,C=6

Hence the required solution i1s

w(ax, t) = 6e 3Xe 2°F

w(x,t) = 6e ExX+20
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EXERCISE

| Solve by the method of separation of variables 212, - 3yz, = 0

3, Solve by the method ofseparation of variables 4u, + 1, = 3u and (0,y) = ¢

3.S0lve by the method of separation of variables Solve t, = ¢ cosx with w(x,0)=0and u(0,)=0
e . i i i
4- Solve = 0 CsK Given that u=0 when =0 and == 0 when x=0,

3, Solve by the method of separation of variables u, - 4u, = 0 and u(0,) = g
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one-dimensional heat equation: ou_ .».0%u

ot OX 2

Before we start to solve this equation, let’s mention a few more
conditions that we will need to know to nail down a specific
solution. If the metal bar that we’re studying has a specific length,
/, then we need to know the temperatures at the ends of the bars.
These temperatures will give us boundary conditions similar to the
ones we worked with for the wave equation. To make life a bit
simpler for us as we solve the heat equation, let’s start with the
case when the ends of the bar, at x-o and x-1 both have
temperature equal to O for all time (you can picture this situation
as a metal bar with the ends stuck against blocks of ice, or some
other cooling apparatus keeping the ends exactly at O degrees).
Thus we will be working with the same boundary conditions as

before, namely

(2) von=0 and ugv=0 for all values of t
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let’s start by writing

(3) uxt)=F)G®)
where F, and G, are single variable functions. Differentiating this
equation for uxn with respect to each variable yields

(4) aUI—F”(X)G(t) and %JzF(X)G’(t)

ox?2

When we substitute these two equations back into the original
heat equation

G'(t) _F"(¥)
(7) c’G() FX)

Left-hand side only depends on the variable ¢, and the right-hand
side just depends on x. As a result, to have these two be equal
can only mean one thing, that they are both equal to the same
constant, k:

G'(t)y F"(x)_
(8) c’G() F(x) =k

let’s first take a look at the implications for F(x) as the boundary conditions will again limit the
possible solution functions. From (8) we get that E(x) has to satisfy
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These solutions are just the same as before, namely the general
solution is:

where again A and B are constants and now we have »=v-k. Next,
let’s consider the boundary conditions u(0t)=0 and u(.t)=0. These are

equivalent to stating that ro-rn-o. Substitutingin O for xin (11) leads
to F(0) = Acos(0) + Bsin(0) = A=0

so that F(x=8sin). Next, consider F()=8sin(@)=0. As before, we check that
B can’t equal 0, otherwise rFx -0 which would then mean that
u(x,t)=F(xG()=0-G6(t)=0, the trivial solution, again. With =0, then it must be
the case that sin)=0 in order to have ssin)-0. Again, the only way that
this can happen is for «to be a multiple of . This means that once
again
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Heat Equation with Non-Zero Temperature Boundaries
In this section we want to expand one of the cases from the previous section a little bit. In the

previous section we look at the following heat problem.
2

Qe _ ;(a_ij

ot ax

u(x,0)=f(x) u{0,£)=0 u( L,t)=0

What we’d like to do in this section is instead look at the following problem.
2

au_,0u
ot ax (1)
u(x,O):f(x) u(O,r):Tl u(L,r):TE

In this case we’ll allow the boundaries to be any fixed temperature, I ordy | The problem here
is that separation of variables will no longer work on this problem because the boundary
conditions are no longer homogeneous. Recall that separation of variables will only work if both
the partial differential equation and the boundary conditions are linear and homogeneous. So,
we’re going to need to deal with the boundary conditions in some way before we actually try and

solve this
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It makes some sense that we should expect that as ¥ —» o2 our temperature distribution,
should behave as,

limzs (x, £) = 245 ( x)
T —=o
where ¥ = (.x) is called the equilibrium temperature. Note as well that is should still satisfy the
heat equation and boundary conditions. It won’t satisfy the initial condition however because it is
the temperature distribution as ¥ —» o2 whereas the initial condition is at # =0. So, the
equilibrium temperatuge distribution should satisfy,
0:% 2, (0) =T, 2, (L)=T, (2)

This is a really easy 2" order ordinary differential equation to solve. If we integrate twice we get,
5 (_x): cix+ oy
and applying the boundary conditions (we’ll leave this to you to verify) gives us,

gy (x)= T—!—%x

let’s define the function,
v(ix, ) =u(x,1)—25(x) (3)
where ¥ (‘XDI) is the solution to (1) and Hy (.x) is the equilibrium temperature for (1).

Now let’s rewrite this as,

t(x2)=v(x t)+ug(x)
and let’s take some derivatives.

u _Ov Oup Ov &*u o'v Suy, &'v

E
2

ax?

= = +
ar  &r ot ot ax? &xt Hx
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In both of these derivatives we used the fact that is the equilibrium temperature and so is
independent of time t and must satisfy the differential equation in (2).

What this tells us is that both ¥ (x,r) and V(J@’r) must satisfy the same partial differential
equation. Let’s see what the initial conditions and boundary conditions would need to be

or V(7).
vix, 0)=u(x0)—uz(x)= F(x)—uy (x)
(0. 8)=2(0.2)—u, (0)=7,—7, =0
v L ty=u(L,t)—u, (L)=7,—7,=0
So, the initial condition just gets potentially messier, but the boundary conditions are now

homogeneous! The partial differential equation that v(x,f) must satisfy is,

We know how to solve this in the previous section and so we the solution is,

v(x2) = ZB 5'111[ ”1‘”‘] RCIE

where the coefficients are given by,

B, :%J:(f(x)—ug(x))sm[:ﬂ]dx =123, .

The solution to (1) is then,
ui{xt)=uz(x)+v(x,r)

T —T oo . i i
=T, +#x+28n31n[”?rx] [ :I
L ) L
and the coefficients are given above.
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Example 1:
Find a solution to the following partial differential equation that will also satisfy the boundary
conditions.

bu_ , 8%u
or @ ax’
u(x,0)= F(x) 2(0,7)=0 w( L,£)=0

Solution:

First, we assume that the solution will take the form,

u(xt) = @(x)G(7)
and we plug this into the partial differential equation and boundary conditions. We separate the
equation to get a function of only t on one side and a function of only x on the other side and then
introduce a separation constant. This leaves us with two ordinary differential equations.

The two ordinary differential equations are,

e g
LT kAG Ag = 0
s a7
@(0) =0 P(L)=0

The time dependent equation can really be solved at any time, but since we don’t know
what A 2 is yet let’s hold off on that one. Also note that in many problems only the boundary
value problem can be solved at this point so don’t always expect to be able to solve either one at

this point.

Now, we actually solved the spatial problem,
g
&
»(0)=0 @(L)=0

+ A= 0
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A =0

In this case we know the solution to the differential equation is,

-;z:!(.x) = q cos(ﬁx)—i— c, sm(ﬁ x)

Applying the first boundary condition gives,
0= g;o( O) —

Now applying the second boundary condition, and using the above result of course, gives,

0= @(L)=c, sm(ﬁﬁ)

Now, we are after non-trivial solutions and so this means we must have,
sm(LJA):() — A =nr n=12.3.

The positive eigenvalues and their corresponding eigenfunctions of this boundary value problem
are then,
2
FET . T X
,H,H:[Tj gpn(x):sm[ 7 j =123 _.

Note that we don’t need the £z <=: in the eigenfunction as it will just get absorbed into another
constant that we’ll be picking up later on.

A=0
The solution to the differential equation in this case is,
go(x) = +to,x
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Applying the boundary conditions gives,
02(;0(0)2::?1 OZQ(L):CQL = c, =0

So, in this case the only solution is the trivial solution and so A= 0 is not an eigenvalue for this
boundary value problem.

A=< 0

Here the solution to the differential equation is,

gp(x) =q ccrsh(\f—_/lx)—kcg sinh(sf—_)ix)

Applying the first boundary condition gives,
0= (;0( 0) =,
and applying the second gives,

0= @(L)= c;sinh{ L1

We therefore

, — | sinh(f,«f—)l)i 0
So, we are assuming A < 0 and so L~—A = 0 and this means .
we must have €z =0 and so we can only get the trivial solution in this case.

Therefore, there will be no negative eigenvalues for this boundary value problem.

The complete list of eigenvalues and eigenfunctions for this problem are then,
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A, = — X)= sin| —— Frr=1,2.3____
Now let’s solve the time differential equation,
b (e
—=—kA G
gt &

and note that even though we now know A we’re not going to plug it in quite yet to keep the
mess to a minimum. We will however now use “% to remind us that we actually have an infinite
number of possible values here.

This is a simple linear (and separable for that matter) 1° order differential equation and so we’ll
let you verify that the solution is,

G (£) = coint — pa ()"

Okay, now that we’ve gotten both of the ordinary differential equations solved we ca n finally
write down a solution. Note however that we have in fact found infinitely many solutions since
there are infinitely many solutions (i.e. eigenfunctions) to the spatial problem.

Our product solution are then,
2
i

—i[ 25 ¢
4, (.x,r):_Bn Sin[nf;x]e & r=1.2.3.___

We’ve denoted the product solution #4: to acknowledge that each value of n will yield a different
solution. Also note that we’ve changed the c in the solution to the time problem to B, 3. to
denote the fact that it will probably be different for each value of n as well and because had we
kept the €2 with the eigen function we’d have absorbed it into the c to get a single constant in
our solution.
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Example 2:
Solve the following BVP.
Ens kﬁzu

ar enc
t{ x,0) =20 t({0.£) =0 t( L.2)=0

Solution:
There isn’t really all that much to do here as we’ve done most of it in the
examples and discussion above.

First, the solution is,

u(_x:j): i.:llﬁn Sl—-‘l‘l[ni—x]e_k[Tj £

The coefficients are given by,

5 :%jLQU sin[%]dx: %[205(1—-::05(”;;))]_ 40{1—(—1)")

FRFT FIFT

If we plug these in we get the solution,

) = 3 g () 5

=1
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One-dimensional wave equation is given by otz C o 2

Solution of the Wave Equation by Separation of Variables:

There are several approaches to solving the wave equation. The first one we will work with, using
a technique called separation of variables.

First, note that for a specific wave equation situation, in addition to the actual PDE, we will also
have boundary conditions arising from the fact that the endpoints of the string are attached
solidly, at the left end of the string, when x = 0 and at the other end of the string, which we
suppose has overall length /. Let’s start the process of solving the PDE by first figuring out what
these boundary conditions imply for the solution function, u(x,t).

Answer: for all values of t, the time variable, it must be the case that the vertical displacement at
the endpoints is O, since they don’t move up and down at all, so that

(1) u(0,t)=0 and u(l,t)=0 for all values of t

are the boundary conditions for our wave equation. These will be key when we later on need to
sort through possible solution functions for functions that satisfy our particular vibrating string
set-up.

Note that we probably need to specify what the shape of the string is right when time t = 0, and
you’re right - to come up with a particular solution function, we would need to know Uu(x,0). In fact

we would also need to know the initial velocity of the string, which is just U (X,0). These two
requirements are called the initial conditions for the wave equation, and are also necessary to
specify a particular vibrating string solution. For instance, as
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the simplest example of initial conditions, if no one is plucking the string, and it’s perfectly flat to
start with, then the initial conditions would just be u(x,0) =0 (a perfectly flat string) with initial
velocity, U, (X,00=0. Here, then, the solution function is pretty unenlightening — it’s just u(x,t) = 0,

i.e. no movement of the string through time.

To start the separation of variables technique we make the key assumption that whatever the
solution function is, that it can be written as the product of two independent functions, each one
of which depends on just one of the two variables, x or t. Thus, imagine that the solution
function, u(x,t) can be written as

(2)  uxt)=FQ)G()
where F, and G, are single variable functions of x and t respectively. Differentiating this equation
for u(x,t) twice with respect to each variable yields

o2u . o%u ”
(3) o7 = F"(xX)G(() and o = F(X)G"(t)

Thus when we substitute these two equations back into the original wave equation, which is

4 o%u _ ez o%u
( ) atz 8X2

then we get

o%u wren 2 OFU 5,
(5) pn F(X)G"(t) =c pE =Cc“F"(X)G(1)

> =
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Using separation of variables assumption we get

G”(t) o I:rr(x)
(6) c?G () F ()

G”(t) - I:rr(x) -
(7) c?G@) F(x)

where k is a constant. First let’s examine the possible cases for k.
Case One: k=0

Suppose kK equals 0. Then the equations in (7) can be rewritten
as

(8) G"(t)=0-c2G(t)=0 and F"(x) =0-F(x) =0

vielding with very little effort two solution functions for Fand G-

(11) F(O)=F()=0
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But how can a linear function have two roots? Only by being
identically equal to O, thus it must be the case that x-0. Sigh,
then we still get that uxn-0, and we end up with the dull solution
again, the only possible solution if we start with kK = 0.

Case Two: k>0

So now if k is positive, then from equation (7) we again start with
(12) G"(t) = kc®G(t)

and (13) F"(x)=kF®X)

where now A and B are constants and ~»-w«. Knowing that
Fo=rFmn=-0, then unfortunately the only possible values of A and B
that work are a-B-o, i.e. that Fx-0. Thus, once again we end up
with uxtvy-rFxew=-0cm-=-0, i.e. the dull solution once more.
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Case Three: k<O

So now we go back to equations (12) and (13) again, but now working with k as a negative
constant. So, again we have

(12) G”(t) = kc*G(1)
and (13) F"(xX) = kF(x)

Exponential functions won’t satisfy these two ODEs, but now the sine and cosine functions will.
The general solution function for (13) is now

(15) F(X) = Acos(ax) + B sin(wx)

where again A and B are constants and now we have «? =—k. Again, we consider the boundary
conditions that specified that F©)=F0)=0. Substituting in O for x in (15) leads to

(16) F(0) = Acos(0)+Bsin(0)=A=0

so that F(x) = Bsin(ex). Next, consider F(l) =Bsin(wl) =0. We can assume that B isn’t equal to O,
otherwise F(x) =0 which would mean that u(x,t) = F(x)G(t) =0-G(t) =0, again, the trivial unplucked
string solution. With B =0, then it must be the case that sin(el) =0 in order to have Bsin(wl) =0. The
only way that this can happen is for ol to be a multiple of . This means that

(17) owl=nz or w-= nl—” (where n is an integer)

This means that there is an infinite set of solutions to consider (letting the constant B be equal to
1 for now), one for each possible integer n.

(18) F(x) = sin[nl—7r x)
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Well, we would be done at this point, except that the solution function u(x,t) = F(x)G(@)and we’ve
neglected to figure out what the other function, G(), equals. So, we return to the ODE in (12):

(12) G"(t) = kc*G(t)
where, again, we are working with k, a negative number. From the solution for F(x) we have
determined that the only possible values that end up leading to non-trivial solutions are with
k = —w? =—[”l—”j2 for n some integer. Again, we get an infinite set of solutions for (12) that can be
written in the form

(19) G(t)=Ccos(A,t)+ Dsin(A,t)

where C and D are constants and A4, =c/—k =cw= Cr:”, where n is the same integer that showed up

in the solution for F(x) in (18) (we’re labeling 4 with a subscript “n” to identify which value of n is
used).

Now we really are done, for all we have to do is to drop our solutions for F(x)andG() into
u(x,t) = F(xX)G(@t), and the result is

(20) Un (X, ) =FX)G(@{) = (C cos(A4,t) + Dsin(ﬂnt))sin[nl—” XJ

where the integer n that was used is identified by the subscript in u,(x,t) and 4,, and C and D are
arbitrary constants.
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Example:
Find a solution to the following partial differential equation.
o5y, _ 3 &
ot ax?
O
u(x,0)= £(x) % (x.0) = g ()
u(O,I):Cl u(I,,f):O
Solution

So, let’s start off with the product solution.
u(%1)= @(*)h (1)
Plugging this into the two boundary conditions gives,
@(0)=0 @(L)=0
Plugging the product solution into the differential equation, separating and introducing a
separation constant gives,

2 (P () 7(2)) = e 2 (o () 72( 1))
()DL~ crn ()DL

1 .-:fzk: 1 dzgz}:_ﬁ
c it @ Ix’

We moved the & to the left side for convenience and chose —.A for the separation constant so the
differential equation for ¥ would match a known (and solved) case.

The two ordinary differential equations we get from separation of variables are then,



PARTIAL DIFFERENTIAL EQUATION AND APPLICATION -’

IARE

=
o
S
<

m
o
<
o
7,

<
O poa\®
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Afr =0 —+ A
s 2 P
@(0)=0 P(L)=0

We solved the boundary value problem above in example 1 of the Solving the Heat Equation
section of this chapter and so the eigen values and eigen functions for this problem are,

2
A, :[j—ﬁj g)n(x):sm[n?;x] r=12.3,__.

The first ordinary differential equation is now,

2 2
dk+[n1rc] PR

At

and because the coefficient of the h is clearly positive the solution to this is,

h(t)=c cos [ n;‘rc.tj_k C, S1n [E]
L

L

Because there is no reason to think that either of the coefficients above are zero we then get two
product solutions,

u, (x,1) = A, cos [ﬂ] S1n [n:rrx]

L = =123 ___
. f .
24, (x, r) = 5 511‘1[”?3.6 jsm [n;‘r.x]
L L

The solution is then,
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Now, in order to apply the second initial condition we’ll need to differentiate this with respect
to t so,

@:i —nﬁCAnsin Fir e ol 4 sin 1T X +HECBMCOS Fir e ol 4 sin TITX
of L L L L L L

n

L]+B ¢in
i

n=l1

If we now apply the initial conditions we get,

7] = HTC } RITX
E(x,())—g(x)—; 7 anm[T]

Both of these are Fourier sine series. The first is for f( .x) on 0= x = f. while the second is

for g(x) on 0= x = f. with a slightly messy coefficient. As in the last few sections we’re faced
with the choice of either using the orthogonality of the sines to derive formulas for A, and B, or
we could reuse formula from previous work.

It’s easier to reuse formulas so using the formulas form the Fourier sine series we get,

L
AHZEJ f(x)sin[ﬂ]dx =1,2.3, .
LJ, I

L
HECBH :gj g(x)sm[ﬂ]dx =123, __
z ), I

Upon solving the second one we get,
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AH:EJ f(x)sm[m]dx n=12.3. .
L), I3

L
B, = 2 J g(x)sin[m]dx =123 ___

rre ) g L

So, there is the solution to the 1-D wave equation and with that we’ve solved

the final partial differential equation




