

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

(Approved by AICTE | NAAC Accreditation with ‘A’ Grade | Accredited by NBA | Affiliated to JNTUH)

Dundigal, Hyderabad - 500 043, Telangana

OUTCOME BASED EDUCATION

WITH

CHOICE BASED CREDIT SYSTEM

BACHELOR OF TECHNOLOGY

CSE (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

ACADEMIC REGULATIONS, COURSE CATALOGUE and SYLLABUS

BT23

B.Tech Regular Four Year Degree Program

 (for the batches admitted from the academic year 2023 - 2024)

&

B.Tech (Lateral Entry Scheme)

 (for the batches admitted from the academic year 2024 - 2025)

These rules and regulations may be altered / changed from time to time by the academic council

FAILURE TO READ AND UNDERSTAND THE RULES IS NOT AN EXCUSE

ii | P a g e

VISION

To bring forth professionally competent and socially sensible engineers, capable of working

across cultures meeting the global standards ethically.

MISSION

To provide students with an extensive and exceptional education that prepares them to excel

in their profession, guided by dynamic intellectual community and be able to face the

technically complex world with creative leadership qualities.

Further, be instrumental in emanating new knowledge through innovative research that

emboldens entrepreneurship and economic development for the benefit of wide spread

community.

QUALITY POLICY

Our policy is to nurture and build diligent and dedicated community of engineers providing a

professional and unprejudiced environment, thus justifying the purpose of teaching and

satisfying the stake holders.

A team of well qualified and experienced professionals ensure quality education with its

practical application in all areas of the Institute.

iii | P a g e

PROGRAM OUTCOMES (PO's)

Engineering Graduates will be able to:

PO1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO2: Problem Analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

PO3: Design/Development of Solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4: Conduct Investigations of Complex Problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

PO5: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

PO6: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

PO7: Environment and Sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9: Individual and Team Work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

PO11: Project Management and Finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-Long Learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

iv | P a g e

CONTENTS

Section Particulars Page

1 Choice Based Credit System 1

2 Medium of Instruction 1

3 Programs Offered 1

4 Semester Structure 2

5 Registration / Dropping / Withdrawal 3

6 Credit System 3

7 Curricular Components 4

8 Evaluation Methodology 5

9 Attendance Requirements and Detention Policy 12

10 Conduct of Semester End Examinations and Evaluation 13

11 Scheme for the Award of Grade 13

12 Letter Grades and Grade Points 13

13 Computation of SGPA and CGPA 14

14 Illustration of Computation of SGPA and CGPA 15

15 Review of SEE Theory Answer Books 16

16 Promotion Policies 16

17 Graduation Requirements 17

18 Award of Degree 17

19 B.Tech with Honours or Minor in Engineering 18

20 Temporary Break of Study from the Program 21

21 Termination from the Program 21

22 With-holding of Results 22

23 Graduation Day 22

24 Discipline 22

25 Grievance Redressal Committee 22

26 Transitory Regulations 22

27 Revision of Regulations and Curriculum 23

28 Frequently asked Questions and Answers about autonomy 24

29 Malpractice Rules 28

30 Course Catalogue 31

31 Undertaking by Student / Parent 677

“Take up one idea.

Make that one idea your life-think of it, dream of it, live on that idea.

Let the brain muscles, nerves, every part of your body be full of that idea and just leave every other idea

alone. This is the way to success”

 Swami Vivekananda

v | P a g e

PRELIMINARY DEFINITIONS AND NOMENCLATURES

AICTE: Means All India Council for Technical Education, New Delhi.

Autonomous Institute: Means an institute designated as Autonomous by University Grants

Commission (UGC), New Delhi in concurrence with affiliating University (Jawaharlal Nehru

Technological University, Hyderabad) and State Government.

Academic Autonomy: Means freedom to an institute in all aspects of conducting its academic

programs, granted by UGC for Promoting Excellence.

Academic Council: The Academic Council is the highest academic body of the institute and is

responsible for the maintenance of standards of instruction, education and examination within the

institute. Academic Council is an authority as per UGC regulations and it has the right to take

decisions on all academic matters including academic research.

Academic Year: It is the period necessary to complete an actual course of study within a year. It

comprises two main semesters i.e., (one odd + one even) and one supplementary semester.

Branch: Means specialization in a program like B.Tech degree program in Aeronautical Engineering,

B.Tech degree program in Computer Science and Engineering etc.

Board of Studies (BOS): BOS is an authority as defined in UGC regulations, constituted by Head of

the Organization for each of the departments separately. They are responsible for curriculum design

and updation in respect of all the programs offered by a department.

Backlog Course: A course is considered to be a backlog course, if the student has obtained a failure

grade (F) in that course.

Basic Sciences: The courses offered in the areas of Mathematics, Physics, Chemistry etc., are

considered to be foundational in nature.

Betterment: Betterment is a way that contributes towards improvement of the students’ grade in any

course(s). It can be done by either (a) re-appearing or (b) re-registering for the course.

Commission: Means University Grants Commission (UGC), New Delhi.

Choice Based Credit System: The credit based semester system is one which provides flexibility in

designing curriculum and assigning credits based on the course content and hours of teaching along

with provision of choice for the student in the course selection.

Certificate Course: It is a course that makes a student to have hands-on expertise and skills required

for holistic development in a specific area/field.

Compulsory course: Course required to be undertaken for the award of the degree as per the

program.

Continuous Internal Examination: It is an examination conducted towards sessional assessment.

Core: The courses that are essential constituents of each engineering discipline are categorized as

professional core courses for that discipline.

Course: A course is offered by a department for learning in a particular semester.

Course Outcomes: The essential skills that need to be acquired by every student through a course.

Credit: A credit is a unit that gives weight to the value, level or time requirements of an academic

course. The number of 'Contact Hours' in a week of a particular course determines its credit value.

One credit is equivalent to one lecture/tutorial hour per week.

Credit point: It is the product of grade point and number of credits for a course.

vi | P a g e

Cumulative Grade Point Average (CGPA): It is a measure of cumulative performance of a student

over all the completed semesters. The CGPA is the ratio of total credit points secured by a student in

various courses in all semesters and the sum of the total credits of all courses in all the semesters. It is

expressed up to two decimal places.

Curriculum: Curriculum incorporates the planned interaction of students with instructional content,

materials, resources, and processes for evaluating the attainment of Program Educational Objectives.

Department: An academic entity that conducts relevant curricular and co-curricular activities,

involving both teaching and non-teaching staff, and other resources in the process of study for a

degree.

Detention in a Course: Student who does not obtain minimum prescribed attendance in a course

shall be detained in that particular course.

Dropping from Semester: Student who doesn’t want to register for any semester can apply in writing

in prescribed format before the commencement of that semester.

Elective Course: A course that can be chosen from a set of courses. An elective can be Professional

Elective and / or Open Elective.

Evaluation: Evaluation is the process of judging the academic performance of the student in her/his

courses. It is done through a combination of continuous internal assessment and semester end

examinations.

Experiential Engineering Education (ExEEd): Engineering entrepreneurship requires strong

technical skills in engineering design and computation with key business skills from marketing to

business model generation. Our students require sufficient skills to innovate in existing companies or

create their own.

Grade: It is an index of the performance of the students in a said course. Grades are indicated by

alphabets.

Grade Point: It is a numerical weight allotted to each letter grade on a 10 - point scale.

Honours: An Honours degree typically refers to a higher level of academic achievement at an

undergraduate level.

Institute: Means Institute of Aeronautical Engineering, Hyderabad unless indicated otherwise by the

context.

Massive Open Online Courses (MOOC): MOOC courses inculcate the habit of self learning.

MOOC courses would be additional choices in all the elective group courses.

Minor: Minor are coherent sequences of courses which may be taken in addition to the courses

required for the B.Tech degree.

Pre-requisite: A specific course, the knowledge of which is required to complete before student

register another course at the next grade level.

Professional Elective: It indicates a course that is discipline centric. An appropriate choice of

minimum number of such electives as specified in the program will lead to a degree with

specialization.

Program: Means, UG degree program: Bachelor of Technology (B.Tech); PG degree program:

Master of Technology (M.Tech) / Master of Business Administration (MBA).

Program Educational Objectives: The broad career, professional and personal goals that every

student will achieve through a strategic and sequential action plan.

Project work: It is a design or research-based work to be taken up by a student during his/her final

year to achieve a particular aim. It is a credit based course and is to be planned carefully by the

student.

vii | P a g e

Re-Appearing: A student can reappear only in the semester end examination for theory component of

a course to the regulations contained herein.

Registration: Process of enrolling into a set of courses in a semester of a program.

Regulations: The regulations, common to all B.Tech programs offered by Institute, are designated as

“BT23” and are binding on all the stakeholders.

Semester: It is a period of study consisting of 16 weeks of academic work equivalent to normally

minimum of 90 working days. Odd semester commences usually in July and even semester in

December of every year.

Semester End Examinations: It is an examination conducted for all courses offered in a semester at

the end of the semester.

S/he: Means “she” and “he” both.

Student Outcomes: The essential skill sets that need to be acquired by every student during her/his

program of study. These skill sets are in the areas of employability, entrepreneurial, social and

behavioral.

University: Means Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, is

an affiliating University.

Withdraw from a Course: Withdrawing from a course means that a student can drop from a course

within the first two weeks of odd or even semester (deadlines are different for summer sessions).

However, s/he can choose a substitute course in place of it, by exercising the option within 5 working

days from the date of withdrawal.

viii | P a g e

PREFACE

Dear Students,

The focus at IARE is to deliver value-based education with academically well qualified faculty and

infrastructure. It is a matter of pride that IARE continues to be the preferred destination for students to

pursue an engineering degree.

In the year 2015, IARE was granted academic autonomy status by University Grants Commission,

New Delhi under Jawaharlal Nehru Technology University Hyderabad. From then onwards, our prime

focus is on developing and delivering a curriculum which caters to the needs of various stakeholders.

The curriculum has unique features enabling students to develop critical thinking, solve problems,

analyze socially relevant issues, etc. The academic cycle designed on the basis of Outcome Based

Education (OBE) strongly emphasizes continuous improvement and this has made our curriculum

responsive to current requirements.

The curriculum at IARE has been developed by experts from academia and industry and it has unique

features to enhance problem solving skills apart from academic enrichment. The curriculum of B.Tech

program has been thoroughly revised as per AICTE / UGC / JNTUH guidelines and have incorporated

unique features such as competency training / coding, industry driven elective, internship and many

more. The curriculum is designed in a way so as to impart engineering education in a holistic

approach towards Excellence.

I hope you will have a fruitful stay at IARE.

Dr. L V Narasimha Prasad

Principal

1 | P a g e

 INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

ACADEMIC REGULATIONS – BT23

B.Tech. Regular Four-Year Degree Program
 (for the batches admitted from the academic year 2023 - 2024)

&

B.Tech. (Lateral Entry Scheme)
 (for the batches admitted from the academic year 2024 - 2025)

For pursuing four year undergraduate Bachelor of Technology (B.Tech) degree program of study

in engineering offered by Institute of Aeronautical Engineering under Autonomous status.

A student shall undergo the prescribed courses as given in the program curriculum to obtain his / her

degree in major in which he/she is admitted with 160 credits in the entire program of 4 years. Additional

20/18 credits can be acquired for the degree of B.Tech with Honours or Minor in Engineering. These

additional 20/18 credits will have to be acquired with massive open online courses (MOOCs) / courses

offered by the respective department, to tap the zeal and excitement of learning beyond the classrooms.

This creates an excellent opportunity for students to acquire the necessary skill set for employability

through massive open online courses where the rare expertise of world-famous experts from academics

and industry are available.

Separate certificate will be issued in addition to major degree program mentioning that the student has

cleared Honours / Minor specialization in respective courses.

1. CHOICE BASED CREDIT SYSTEM

The credit-based semester system provides flexibility in designing program curriculum and assigning

credits based on the course content and hours of teaching. The Choice Based Credit System (CBCS)

provides a ‘cafeteria’ type approach in which the students can take courses of their choice, learn at their

own pace, undergo additional courses and acquire more than the required credits, and adopt an

interdisciplinary approach to learning.

A course defines learning objectives and learning outcomes and comprises lectures / tutorials / laboratory

work / field work / project work / seminars / assignments / MOOCs / alternative assessment tools /

presentations / self-study etc., or a combination of some of these. Under the CBCS, the requirement for

awarding a degree is prescribed in terms of number of credits to be completed by the students.

2. MEDIUM OF INSTRUCTION

The medium of instruction shall be English for all courses, examinations, seminar presentations and

project work. The program curriculum will comprise courses of study as given in course structure, in

accordance with the prescribed syllabi.

3. PROGRAMS OFFERED

Presently, the institute is offering Bachelor of Technology (B.Tech) degree programs in eleven

disciplines. The various programs and their two-letter unique codes are given in Table 1.

2 | P a g e

Table 1: B.Tech Programs offered

S. No Name of the Program Title Code

1 Aeronautical Engineering AE 07

2 Computer Science and Engineering CS 05

3 Computer Science and Engineering (AI & ML) CA 34

4 Computer Science and Engineering (Data Science) CD 35

5 Computer Science and Engineering (Cyber Security) CC 36

6 Information Technology IT 06

7 Electronics and Communication Engineering EC 04

8 Electrical and Electronics Engineering EE 02

9 Mechanical Engineering ME 03

10 Civil Engineering CE 01

4. SEMESTER STRUCTURE

Each academic year is divided into two semesters, ODD and EVEN semester. Both the semesters have

regular class work.

4.1 Each semester shall be of 21 weeks (Table 2) duration, and this period includes time for course

registration, regular class work, examination preparation, and conduction of examinations.

4.2 Each semester shall have a minimum of 90 Instructional / working days.

4.3 The academic calendar for both Odd and Even semester shown in Table 2 is declared at the

beginning of the academic year.

Table 2: Academic Calendar

FIRST

SEMESTER

(21 weeks)

I Spell Instruction Period 8 weeks

19 weeks

I Continuous Internal Assessment

Examinations (Mid-term)
1 week

II Spell Instruction Period 8 weeks

II Continuous Internal Assessment

Examinations (Mid-term)
1 week

Preparation and Practical Examinations 1 week

Semester End Examinations 2 weeks

Semester Break and Supplementary Exams 5 weeks

SECOND SEMESTER

(21 weeks)

I Spell Instruction Period 8 weeks

19 weeks

I Continuous Internal Assessment

Examinations (Mid-term)
1 week

II Spell Instruction Period 8 weeks

II Continuous Internal Assessment

Examinations (Mid-term)
1 week

Preparation and Practical Examinations 1 week

Semester End Examinations 2 weeks

Semester Break and Supplementary Exams 5 weeks

3 | P a g e

4.4 Students admitted on transfer from JNTUH affiliated institutes, Universities and other institutes in

the courses in which they are required to earn credits so as to be on par with regular students as

prescribed by concerned ‘Board of Studies’.

5 REGISTRATION / DROPPING / WITHDRAWAL

The academic calendar includes important academic activities to assist the students and the faculty.

These include, dates assigned for registration of courses, dropping of courses and withdrawal from

courses. This enables the students to be well prepared and take full advantage of the flexibility provided

by the credit system.

5.1. Each student has to compulsorily register for course work at the beginning of each semester as per

the schedule mentioned in the Academic Calendar. It is compulsory for the student to register for

courses in time. The registration will be organized departmentally under the supervision of the

Head of the department.

5.2. In ABSENTIA, registration will not be permitted under any circumstances.

5.3. At the time of registration, students should have cleared all the dues of Institute and Hostel for the

previous semesters, paid the prescribed fees for the current semester and not been debarred from

the institute for a specified period on disciplinary or any other ground.

5.4. In the first two semesters, the prescribed course load per semester is fixed and is mandated to

register all courses. Withdrawal / dropping of courses in the first and second semester is not

allowed.

5.5. In all semesters, the average load is 20 credits / semester, with its minimum and maximum limits

being set at 16 and 24 credits. This flexibility enables students (from IV semester onwards) to

cope-up with the course work considering the academic strength and capability of student.

Note: A course may be offered to the students, only if a minimum of 20 students opt for it.

5.6. Dropping of Courses:

Within one week after the last date of first continuous internal examination, the student may in

consultation with his / her faculty mentor / adviser, drop one or more courses without prejudice to

the minimum number of credits as specified in clause 5.5. The dropped courses are not recorded in

the memorandum of grades. Student must complete the dropped course(s) by registering in the

forthcoming semester in order to earn the required credits.

5.7. Withdrawal from Courses:

A student is permitted to withdraw from a course before commencement first continuous internal

examination. Such withdrawals will be permitted without prejudice to the minimum number of

credits as specified in clause 5.5. A student cannot withdraw a course more than once and

withdrawal of reregistered courses is not permitted.

6. CREDIT SYSTEM

The B.Tech Program shall consist of a number of courses and each course shall be assigned with credits.

The curriculum shall comprise Program Core Courses (PCC), Program Elective Courses (PEC), Open

Elective Courses (OEC), Laboratory Courses, Mandatory Courses (MC), Value Added Courses (VAC),

Experiential Engineering Education (ExEEd), Internship and Project work.

Depending on the complexity and volume of the course, the number of contact periods per week will be

assigned. Each theory and laboratory course carries credits based on the number of hours / week.

• Contact classes (Theory): 1 credit per lecture hour per week, 1 credit per tutorial hour per week.

• Laboratory hours (Practical): 1 credit for 2 practical hours per week.

• Project work: 1 credit for 2 hours of project work per week.

4 | P a g e

• Experiential Engineering Education (ExEEd): 1 credit for two per hours.

• Mandatory courses / Value added courses : No credit is awarded.

Credit distribution for courses offered is given in Table 3.

Table 3: Credit distribution

S. No Course Hours Credits

1 Theory courses 2 / 3 / 4 2 / 3 / 4

2 Program elective courses / Open elective courses 3 / 2 3 / 2

3 Laboratory courses 2 / 3 / 4 1 / 1.5 / 2

4 Mandatory course / Value added course - 0

5 Project Work: Phase - I and II - 14

6 Full Semester Internship (FSI) Project work - 14

Major benefits of adopting the credit system are listed below:

• Quantification and uniformity in the listing of courses for all programs at institute, like core, electives

and project work.

• Ease of allocation of courses under different heads by using their credits to meet national

/international practices in technical education.

• Convenience to specify the minimum / maximum limits of course load and its average per semester

in the form of credits to be earned by a student.

• Flexibility in program duration for students by enabling them to pace their course load within

minimum/maximum limits based on their preparation and capabilities.

• Wider choice of courses available from any department of the same institute or even from other

similar institute, either for credit or for audit.

• Improved facility for students to optimize their learning by availing of transfer of credits earned by

them from one College to another.

7. CURRICULAR COMPONENTS

Courses in a curriculum may be of three kinds: Foundation / Skill, Program core courses, Program

elective courses and Open elective courses.

Foundation / Skill Course:

Foundation courses are the courses based upon the content leads to enhancement of skill and knowledge

as well as value based and are aimed at man making education. Skill courses are those areas in which one

needs to develop a set of skills to learn anything at all. They are fundamental to learning any course.

Program core courses (PCC):

There may be a program core course in every semester. This is the course which is to be compulsorily

studied by a student as a core requirement to complete the requirement of a program in the said discipline

of study.

Program elective courses (PEC) / Open elective courses (OEC):

Electives provide breadth of experience in respective branch and application areas. The program elective

course(s) is a course which can be chosen from a pool of courses. It may be:

• Supportive to the discipline of study

• Providing an expanded scope

• Enabling an exposure to some other discipline / domain

• Nurturing student’s proficiency / skill.

5 | P a g e

An elective may be program elective, is a discipline centric focusing on those courses which add generic

proficiency to the students or may be Open elective course, chosen from unrelated disciplines.

There is list of professional elective courses; students can choose not more than two courses from each

track. Overall, students can opt for six professional elective courses which suit their project work in

consultation with the faculty advisor / mentor. Nevertheless, one course from each of the three open

electives has to be selected. A student may also opt for more elective courses in his/her area of interest.

Every course of the B.Tech program will be placed in one of the eight categories with minimum credits

as listed in the Table 4.

Table 4: Category Wise Distribution of Credits

S. No Category
Breakup of

Credits

1 Humanities and Social Sciences (HSMC), including Management. 07

2
Basic Science Courses (BSC) including Mathematics, Physics and

Chemistry.
28

3

Engineering Science Courses (ESC), including Workshop, Drawing,

ExEEd, Basics of Electrical / Electronics / Mechanical / Computer

Engineering.

09

4
Program Core Courses (PCC), relevant to the chosen specialization /

branch.
75

5
Program Elective Courses (PEC), relevant to the chosen specialization /

branch.
18

6
Open Elective Courses (OEC), from other technical and / or emerging

course areas.
09

7 Project work (PROJ) / Full Semester Internship (FSI) Project work 14

8 Mandatory Courses (MC) / Value Added Courses (VAC) Non-Credit

TOTAL 160

Semester wise course break-up

Following are the TWO models of course structure out of which any student shall choose or

will be allotted with one model based on their academic performance.

i. Full Semester Internship (FSI) Model and

ii. Non Full Semester Internship (NFSI) Model

A student who secures a minimum CGPA of 7.5 upto IV semester with no current arrears and

maintains the CGPA of 7.5 till VI semester shall be eligible to opt for FSI. Students can opt full semester

internship (FSI) either in VII or VIII semesters. In Non-FSI Model, all the selected students shall carry

out the course work and project work as specified in the course cataloge.

8. EVALUATION METHODOLOGY

Total marks for each course shall be based on Continuous Internal Assessment (CIA) and Semester End

Examinations (SEE). There shall have a uniform pattern of 40:60 for CIA and SEE of both theory and

practical courses. The institute shall conduct multiple continuous internal assessments (CIA) for theory

courses. All the performances of a student shall be considered for Continuous Internal Assessment (CIA)

marks.

6 | P a g e

Table 5: Outline for Continuous Internal Assessments (CIA-1 and CIA-2) and SEE:

Activities CIA-1 CIA-2 SEE Total Marks

Continuous Internal Examination (CIE) 10 marks 10 marks

20 marks

Definitions and Terminology / Quiz 5 marks 5 marks 10 marks

Tech Talk / Assignment 5 marks 5 marks 10 marks

Semester End Examination (SEE) 60 marks 60 marks

Total -- -- 100 marks

8.1 Continuous Internal Assessments (CIA-1 and CIA-2)

Assessment is an ongoing process that begins with establishing clear and measurable expected outcomes

of student learning, provides students with sufficient opportunities to achieve those outcomes, and

concludes with gathering and interpreting evidence to determine how well students’ learning matches

expectations.

The first component (CIA-1) of assessment is for 10 marks, definitions and terminology / quiz carry 05

marks and 05 marks allotted for Tech talk / Assignments. This assessment and score process should be

completed after completing of first 50% of syllabus (21/2) of the course/s and within 45 working days of

semester program.

The second component (CIA-2) of assessment is for 10 marks, definitions and terminology / quiz carry

05 marks and 05 marks are allotted for Tech talk / Assignments. This assessment and score process

should be completed after completing of remaining 50% of syllabus (21/2) of the course/s and within 45

working days of semester program.

In case of a student who has failed to attend the CIA1 or CIA2 on a scheduled date, shall be deemed that

the student has dropped the examination. However, in case a student could not take the test on scheduled

date due to genuine reasons, may appeal to the HOD / Principal. The HOD / Principal in consultation

with the class in-charge shall decide about the genuineness of the case and decide to conduct Make-Up

Examination to such candidate on the date fixed by the Examinations Control Office but before

commencement of the concerned semester end examinations.

8.2 Definitions and Terminology / Quiz

Definitions and Terminology: The conduction of definitions and terminology is completely online. The

faculty should prepare 30 to 35 questions from each and every module by clearly mentioning the answer.

The course handling faculty needs to submit detailed document to the respective department.

Mode of conducting examination: Online through e-Examdesk

Quiz: The faculty should prepare 50 multiple choice questions from each module (50 * 5 = 250

questions). Each question will have four choices / options, fill in the blanks etc. The course handling

faculty needs to submit detailed document to the respective department.

Mode of conducting examination: Online through e-Examdesk

8.3 Tech Talk / Assignment

Tech Talk: Technical talks cover a wide range of technical concepts and ideas. For conduction of Tech

Talk faculty has to submit latest topics from IEEE, CSI, magazines etc.

Assignments: The assignments develop different skills and increase their knowledge base significantly.

It provides the evidence for the faculty that the students have achieved the goals. It helps the faculty to

evaluate the student's understanding of the course. The output can be judged using sensory perception

(observing, reading, tasting etc.). Faculty should prepare 30 to 35 assignment questions from each

module and submit the same to respective department.

7 | P a g e

8.4 Semester End Examination (SEE)

The semester end examinations (SEE), for theory courses, will be conducted for 60 marks. The syllabus

for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of

marks distribution. The question paper has eight questions; module one and two has one question each,

and two questions each from modules three, four and five. There will be no choice for first and second

modules. From third module onwards there will be an “either” “or” choice, and the student should

answer either of the two questions. Each question carries 12 marks and has two parts (A and B). Part A

is a descriptive type question for 6 marks and Part B a critical thinking question / problem solving

question for 6 marks. The duration of semester end examination is 3 hours.

8.5 Passing Criteria:

To maintain high standards in all aspects of examinations at the institute, the institute shall follow the

standards of passing at CIA (CIA-1 and CIA-2) and SEE for each course. However, the student's

performance in a course shall be judged by taking into account the results of CIE and SEE individually

and also together, as shown below:

a) A minimum of 35% of marks to be secured by cumulating marks in CIA-1 and CIA-2 for appearing

for a SEE theory examination.

b) A minimum of 35% of marks to be scored in SEE for passing a theory course.

c) A minimum of 40% of marks in CIA+ SEE for passing a theory course.

8.5 Supplementary examinations

Supplementary examinations for the odd semester shall be conducted with the regular examinations of

even semester and vice versa. In case of failure in any course, a student may be permitted to register for

the same course when offered.

Advanced supplementary examination will be conducted for VIII semester courses at the end of the

program after declaration of results.

8.6 Laboratory Course

Evaluation methodology of laboratory course (CIA)

Each laboratory courses there shall be a CIA during the semester for 40 marks and 60 marks for SEE.

The 40 marks for internal evaluation marks are awarded as follows:

1. A write-up on day-to-day experiment in the laboratory (in terms of aim, components / procedure,

expected outcome) which shall be evaluated for 10 marks.

2. 10 marks for viva-voce (or) tutorial (or) case study (or) application (or) poster presentation of the

course concerned.

3. Internal practical examination conducted by the laboratory teacher concerned shall be evaluated for

10 marks.

4. The remaining 10 marks are for Laboratory Report/Project and Presentation, which consists of the

Design (or) Software / Hardware Model Presentation (or) App Development (or) Prototype

Presentation which shall be evaluated after completion of laboratory course and before semester end

practical examination.

Evaluation methodology of laboratory course (SEE)

The Semester End Examination shall be conducted by an external examiner and the laboratory handling

faculty. The external examiner shall be appointed from the other colleges which will be decided by the

Principal.

8 | P a g e

The Semester End Examination held for 3 hours. Total 60 marks are divided and allocated as shown

below:

1. 10 marks for write-up

2. 15 for experiment / program

3. 15 for evaluation of results

4. 10 marks for presentation on another experiment/program in the same laboratory course and

5. 10 marks for viva-voce on concerned laboratory course.

8.7 Mandatory Courses (MC)

These courses are among the compulsory courses will not carry any credits. However, a pass in each such

course during the program shall be necessary requirement for the student to qualify for the award of degree.

No marks or letter grades shall be allotted for mandatory/non-credit courses. Its result shall be declared as

“Satisfactory” or “Not Satisfactory” performance.

8.8 Additional Mandatory Courses for lateral entry B.Tech students

In addition to the non-credit mandatory courses for regular B.Tech students, the lateral entry students

shall take up the following three non-credit mandatory bridge courses (one in III semester, one in IV

semester and one in V semester) as listed in Table 6. The student shall pass the following non-credit

mandatory courses for the award of the degree and must clear these bridge courses before advancing to

the VII semester of the program.

Table-6: Additional Mandatory Courses for lateral entry students

S. No Additional mandatory courses for lateral entry students

1 Dip-Mathematics

2 Dip-English Communication Skills

3 Dip-Programming for Problem Solving / Essentials of Problem Solving

8.9 Value Added Courses (VAC)

1. Introduction

Value-Added courses are not part of the curriculum and designed to provide necessary skills to increase

the employability quotient and equip the students with essential skills to succeed in life.

Institute offers a wide variety of value-added Courses which shall be conducted after class hours. These

courses shall be conducted by experts or in-house staff and help students stand apart from the rest in the

job market by adding further value to their resume. These value-added courses will be mostly

independent to each type of the fields.

2. Objectives

Objectives of the value-added course are:

• Provide students an understanding of the expectations of industry.

• Improve employability skills of students.

• Bridge the skill gaps and make students industry ready.

• Provide an opportunity to students develop their inter-disciplinary skills.

• Mould students as job providers rather than job seekers.

3. Designing the Courses

• Before designing the syllabus, the feedback from the employers, alumni and industry people will

be analyzed and considered to select and design an appropriate course by identifying the gaps and

also understand the expectations for current and emerging trends.

9 | P a g e

• Any new value-added course developed by a department should be placed before the Board of

Studies for approval.

• The course offered should not be the same as any course listed in the curriculum of the respective

Program / or any other program offered in the institute.

• A unique course code is to be given for each course.

4. Guidelines for conducting value added courses

• Value Added Course is not mandatory to qualify for any program.

• It is a teacher assisted learning course open to all students without any additional fee.

• Classes for VAC will be conducted beyond the regular class work only.

• A student will be permitted to register only one value added course in a semester.

5. Duration and Venue

• The duration of value-added course should not be less than 30 hours.

• The respective Head of the department shall provide class room/s based on the number of

students/batches.

6. Procedure for Registration:

The list of value-added courses shall be displayed in the institute website along with the syllabus,

objectives and outcomes. A student shall register for a value-added course offered during the semester

by submitting the duly filled in registration form. The Head of the department shall segregate the list of

students enrolled for the value-added course and submit the details to Dean of academics before the start

of course.

7. Attendance

Value added course handling faculty shall be responsible for the maintenance of attendance and

assessment who have registered for the course.

• The record shall contain details of the students’ attendance, number of classes attended and also

Record shall also contain the organisation of lesson plan of the Course Instructor.

• The record shall be submitted to the Head of the department for monitoring the attendance.

• At the end of the semester, the record shall be duly signed by the course coordinator and the Head

of the Department and placed in safe custody for any future verification.

• Each student shall have a minimum of 75% attendance in all the courses of the particular semester

failing which he or she will not be permitted to write the semester end examination.

8. Passing Requirement and Grading

• The passing requirement for value added courses shall be 40% of the marks prescribed for the

course.

• A candidate who has not secured a minimum of 40% of marks in a course (internal and end-term)

shall reappear for the course in the next semester/year.

• The grades obtained in value-added courses will not be included for calculating the CGPA.

9. Course Completion

• Students will get a certificate after they have registered for, written the exam and successfully

passed.

• The students who have successfully completed the value-added Course shall be issued with a

Certificate duly signed by the Authorized signatories.

Note: Apart from the above, students can also register and get the value-added course completion

certificate by registering the courses from SWAYAM, e-PG patashala (NPTEL).

10 | P a g e

8.10 Experiential Engineering Education (ExEED)

Engineering entrepreneurship requires strong technical skills in engineering design and computation with

key business skills from marketing to business model generation. Students require sufficient skills to

innovate in existing companies or create their own.

This course will be evaluated for a total of 100 marks consisting of 40 marks for internal assessment and

60 marks for semester end Examination. Out of 40 marks of internal assessment, students has to submit

Innovative Idea in a team of four members in the given format. The semester end examination for 60

marks shall be conducted internally, students has to present the Innovative Idea and it will be evaluated by

internal ExEEd faculty with at least one faculty member as examiner from the industry, both nominated by

the Principal from the panel of experts recommended by the Dean-CLET.

Center for Outcome Based Teaching and Learning (OBTL) of the institute design and teach ExL power

skills courses, to shape the student’s future. All the below mentioned Experiential Engineering Education

(ExEED) courses are evaluated for one credit each.

• ExL – Essential of Innovation: This course creates platform where students experience a hands-on

approach to learning about engineering. It focuses on educating the students about diversified platforms

for learning the skills, career development, innovations, entrepreneurship etc. Based on the requirements

this course is offered in first or second semester.

• ExL – Prototype / Model Development: It covers the application of relevant technologies to create

interaction prototypes. Students learn about different kinds of prototyping activities involved in

designing low-fidelity and high-fidelity prototypes such as POC models, web pages and mobile

interfaces etc. This course introduces key concepts, processes and principles of industry driven digital

fabrication in a manufacturing environment. Students will undertake small-scale, team-based project

work to create fabricated objects that relate to a local industry, organisation or community need or

opportunity.

8.11 Project Work / FSI Project Work

This gives students a platform to experience a research driven career in engineering, while developing a

device / systems and publishing in reputed SCI / SCOPUS indexed journals and/or filing an Intellectual

Property (IPR-Patent/Copyright) to aid communities around the world. Students should work

individually as per the guidelines issued by head of the department concerned. The benefits to students of

this mode of learning include increased engagement, fostering of critical thinking and greater

independence.

The topic should be so selected that the students are enabled to complete the work in the stipulated time

with the available resources in the respective laboratories. The scope of the work be handling part of the

consultancy work, maintenance of the existing equipment, development of new experiment setup or can be

a prelude to the main project with a specific outcome.

Project report will be evaluated for 100 marks in total. Assessment will be done for 100 marks out of

which, the supervisor / guide will evaluate for 40 marks based on the work and presentation / execution of

the work. Subdivision for the remaining 60 marks is based on publication, report, presentation, execution

and viva-voce. Evaluation shall be done by a committee comprising the supervisor, Head of the

department, and an examiner nominated by the Principal.

8.12 Skill enhancement project

Students must submit the skill enhancement project report of the specified course which are included in

the course catalogue. If the student has failed to submit the report or not reached upto the mark, needs to

re-register the course in next semesters till completion.

8.13 Project work

The student’s project activity is spread over in VII semester and in VIII semesters. A student shall carry

out the project work under the supervision of a faculty member or in collaboration with an Industry,

11 | P a g e

R&D organization or another academic institution / University where sufficient facilities exist to carry

out the project work.

Project work (Phase - I) starts in VII semester as it takes a vital role in campus hiring process. Students

shall select project titles from their respective logins uploaded by the supervisors at the middle of the VI

semester. Two reviews are conducted by department review committee (DRC). Student must submit a

project report summarizing the work done up to design phase/prototype by the end of VII semester. The

semester end examination for project work (Phase-I) is evaluated based on the project report submitted

and a viva-voce exam for 60 marks by a committee comprising the head of the department, the project

supervisor and an external examiner nominated by the Principal.

Project Work (Phase - II) starts in VIII semester, and it shall be evaluated for 100 marks out of which

40 marks towards continuous internal assessment and 60 marks for semester end examination. Two

reviews are to be conducted by DRC on the progress of the project for 40 marks. The semester end

examination shall be based on the final report submitted and a viva-voce exam for 60 marks by a

committee comprising the head of the department, the project supervisor and an external examiner

nominated by the Principal.

A minimum of 50% of maximum marks shall be obtained to earn the corresponding credits.

8.14 Full Semester Internship (FSI)

FSI is a full semester internship program carry 14 credits. The FSI shall be opted in VII semester or in

VIII semester. During the FSI, student has to spend one full semester in an identified industry / firm /

R&D organization or another academic institution/University where sufficient facilities exist to carry out

the project work.

Following are the evaluation guidelines:

• Quizzes: 2 times

• Quiz #1 - About the industry profile, weightage: 5%

• Quiz #2 - Technical-project related, weightage: 5%

• Seminars - 2 times (once in six weeks), weightage: 7.5% + 7.5%

• Viva-voce: 2 times (once in six weeks), weightage: 7.5% + 7.5%

• Project Report, weightage: 15%

• Internship Diary, weightage: 5 %

• Final Presentation, weightage: 40%

FSI shall be open to all the branches with a ceiling of maximum 10% distributed in both

semesters. The selection procedure is:

• Choice of the students.

• CGPA (> 7.5) upto IV semester having no credit arrears.

• Competency Mapping / Allotment.

It is recommended that the FSI Project work leads to a research publication in a reputed Journal /

Conference or the filing of patent / design with the patent office, or, the start-up initiative with a

sustainable and viable business model accepted by the incubation center of the institute together with the

formal registration of the startup.

8.15 Field projects / Internship Academic attachment:

The Field Projects (FP) / Internships are mandatory for the students admitted from the academic year

2023 -24 onwards. It is spreaded over from II semester to VI semester.

Field Project: Field project (FP) integrates theory and practice by providing students with an

opportunity to work on real-world challenges. It can be used to learn about the functioning and

manufacturing procedures of a factory. Besides this, student can also learn about the geographical factors

of the region for the specific products /equipment.

12 | P a g e

Internship is an integral part of the academic curriculum, it is a learning activity in which a student

fortifies and deepens his/her theoretical knowledge and skills attained in the classrooms by integrating

with practical activities. It offers the students an opportunity to gain hands-on industrial or

organizational exposure; to integrate the knowledge and skills acquired through the coursework; interact

with professionals and other interns; and to improve their presentation, writing, and communication

skills. Internship often acts as a gateway for final placement for many students.

 Table 7: Possibility of availing opportunities during semester breaks.

S.No Schedule Duration Type

1
At the end of II semester / Before commencement of III

semester
2 Weeks Field Project

2
At the end of IV semester / Before commencement of V

semester
2 Weeks Internship

3
At the end of VI semester / Before commencement of VII

semester
2 Weeks Internship

 Evaluation Methodology of Field Project / Internships:

The evaluation of the field project / field practicum / Internships will be done before commencement of

subsequent semester specified in Table: 7. The students have to submit a detailed report of field project /

field practicum / Internships through online portal and also carry hard copy of report with geo-tagged

photographs. The committee will evaluate by enclosing their comments like satisfactory or not

satisfactory. If students get not satisfactory results, reports need to be re-submit in the respective

department once again for evaluation.

8.16 Plagiarism index for Project report:

All project reports shall go through the plagiarism check and the plagiarism index has to be less than 20%.

Project reports with plagiarism more than 20% and less than 60% shall be asked for resubmission within a

stipulated period of six months. Project reports with plagiarism more than 60% shall be rejected.

9. ATTENDANCE REQUIREMENTS AND DETENTION POLICY

9.1 A student shall be eligible to appear for the semester end examinations, if the student acquires a

minimum of 75% of attendance in aggregate of all the courses (including attendance in mandatory

courses like Environmental Science, Constitution of India, and Gender Sensitization etc..) for that

semester. Two periods of attendance for each theory course shall be considered, if the student appears

for the mid-term examination of that course.

9.2 Shortage of attendance in aggregate upto 10% (65% and above, and below 75%) in each semester

may be condoned by the college academic committee on genuine and valid grounds, based on the

student’s representation with supporting evidence.

9.3 A stipulated fee shall be payable for condoning of shortage of attendance.

9.4 Shortage of attendance below 65% in aggregate shall in NO case be condoned.

9.5 Students whose shortage of attendance is not condoned in any semester are not eligible to take their

semester end examinations of that semester. They get detained and their registration for that semester

shall stand cancelled, including all academic credentials (internal marks etc.) of that semester. They

will not be promoted to the next semester. They may seek re-registration for all those courses

registered in that semester in which the student is detained, by seeking re-admission into that semester

as and when offered; if there are any program electives and / or open electives, the same may also be

re- registered if offered. However, if those electives are not offered in later semesters, then alternate

electives may be chosen from the same set of elective courses offered under that category.

9.6 A student fulfilling the attendance requirement in the present semester shall not be eligible for

readmission into the same class.

9.7 A student detained in a semester due to shortage of attendance may be re-admitted in the same

semester in the next academic year for fulfillment of academic requirements. The academic

regulations under which a student has been re-admitted shall be applicable. Further, no grade

13 | P a g e

allotments or SGPA/ CGPA calculations will be done for the entire semester in which the student has

been detained.

9.8 A student detained due to lack of credits, shall be promoted to the next academic year only after

acquiring the required number of academic credits. The academic regulations under which the

student has been readmitted shall be applicable to him.

10. CONDUCT OF SEMESTER END EXAMINATIONS AND EVALUATION

10.1 Semester end examination shall be conducted by the Controller of Examinations (COE) by inviting

question papers from the external examiners.

10.2 COE shall invite 3 - 9 internal / external examiners to evaluate all the semester end examination

answer books on a prescribed date(s). Practical laboratory examinations are conducted involving

external examiners.

10.3 Examinations control office shall consolidate the marks awarded by examiner/s and award the

grades.

11. SCHEME FOR THE AWARD OF GRADE

11.1 A student shall be deemed to have satisfied the minimum academic requirements and earn the

credits for each theory course, if s/he secures,

a) Not less than 35% marks for each theory course in the semester end examination, and

b) A minimum of 40% marks for each theory course considering Continuous Internal Assessment

(CIA) and Semester End Examination (SEE).

11.2 A student shall be deemed to have satisfied the minimum academic requirements and earn the

 credits for each Laboratory / Project work / FSI Project work, if s/he secures,

a) Not less than 40% marks for each Laboratory / Project work / FSI project work course in the

semester end examination,

b) A minimum of 40% marks for each Laboratory / Project work / FSI project work course

considering both internal and semester end examination.

11.3 If a candidate fails to secure a pass in a particular course, it is mandatory that s/he shall register

and reappear for the examination in that course during the next semester when examination is conducted

in that course. It is mandatory that s/he should continue to register and reappear for the examination

 till s/he secures a pass.

11.4 A student shall be declared successful or ‘passed’ in a semester, if he secures a Grade Point ≥ 5 (‘C’

 grade or above) in every course in that semester (i.e. when the student gets an SGPA ≥5.0 at the end

 of that particular semester); and he shall be declared successful or ‘passed’ in the entire under

 graduate programme, only when gets a CGPA ≥5.0 for the award of the degree as required.

12. LETTER GRADES AND GRADE POINTS

 12.1 Performances of students in each course are expressed in terms of marks as well

as in Letter Grades based on absolute grading system. The UGC recommends a 10-point grading system

with the following letter grades as given in the Table 8.

Table-8: Grade Points Scale (Absolute Grading)

% of Marks Secured in a Course

(Class Intervals)
Letter Grade Grade Point

Greater than or equal to 90% O (Outstanding) 10

80 and less than 90% A+ (Excellent) 9

70 and less than 80% A (Very Good) 8

60 and less than 70% B+ (Good) 7

14 | P a g e

50 and less than 60% B (Average) 6

40 and less than 50% C (Pass) 5

Below 40% F (Fail) 0

Absent AB (Absent) 0

12.2 A student is deemed to have passed and acquired to correspondent credits in particular course if s/he

obtains any one of the following grades: “O”, “A+”, “A”, “B+”, “B”, “C”.

12.3 A student obtaining Grade F shall be considered Failed and will be required to reappear in the

examination.

12.4 For non credit courses, ‘PP’ or “NP” is indicated instead of the letter grade and this will not be

counted for the computation of SGPA / CGPA.

12.5 At the end of each semester, the institute issues grade sheet indicating the SGPA and CGPA of the

student. However, grade sheet will not be issued to the student if s/he has any outstanding dues.

Table 09: Percentage Equivalence of Grade Points (for a 10 – Point Scale)

Grade Point Percentage of Marks / Class

5.5 50

6.0 55

6.5 60

7.0 65

7.5 70

8.0 75

Note:

 (1) The following Formula for Conversion of CGPA to percentage of marks to be used only after a

student has successfully completed the program:

 Percentage of Marks = (𝐶G𝑃𝐴 – 0.5) × 10

(2) Class designation:

 ≥75% (First Class with Distinction),

 ≥ 60% and <75 % (First Class),

 <60 % and ≥50% (Second Class),

 ≥40% and <50% (Pass Class).

(3) The SGPA will be computed and printed on the Memorandum of Grades only if the candidate passes

in all the courses offered and gets minimum C grade in all the courses.

(4) CGPA is calculated only when the candidate passes in all the courses offered in all the semesters.

13. COMPUTATION OF SGPA AND CGPA

The UGC recommends to compute the Semester Grade Point Average (SGPA) and Cumulative Grade

Point Average (CGPA). The credit points earned by a student are used for calculating the Semester Grade

Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both of which are important

performance indices of the student. SGPA is equal to the sum of all the total points earned by the student

in a given semester divided by the number of credits registered by the student in that semester. CGPA

gives the sum of all the total points earned in all the previous semesters and the current semester divided

by the number of credits registered in all these semesters. Thus,

15 | P a g e

()
= =

=
1 1

/
n n

i i i

i i

SGPA C G C

Where, Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith

course and n represent the number of courses in which a student is registered in the concerned semester.

Where, Sj is the SGPA of the jth semester and Cj is the total number of credits upto the semester and m

represent the number of semesters completed in which a student registered upto the semester.

The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

14.0 ILLUSTRATION OF COMPUTATION OF SGPA AND CGPA

14.1 Illustration for SGPA

Course Name Course Credits Grade letter Grade point
Credit Point

(Credit x Grade)

Course 1 4 A 8 4 x 8 = 32

Course 2 4 O 10 4 x 10 = 40

Course 3 4 C 5 4 x 5 = 20

Course 4 3 B 6 3 x 6 = 18

Course 5 3 A+ 9 3 x 9 = 27

Course 6 3 C 5 3 x 5 = 15

 21 152

Thus, SGPA = 152 / 21= 7.24

14.2 Illustration for calculation of CGPA upto 3rd semester

Semester Course Title
Credits

Allotted

Letter

Grade

Secured

Corresponding

Grade Point

(GP)

Credit Points

(CP)

I Course 1 3 A 8 24

I Course 2 3 O 10 30

I Course 3 3 B 6 18

I Course 4 4 A 8 32

I Course 5 3 A+ 9 27

I Course 6 4 C 5 20

II Course 7 4 B 6 24

II Course 8 4 A 8 32

II Course 9 3 C 5 15

II Course 10 3 O 10 30

II Course 11 3 B+ 7 21

II Course 12 4 B 6 24

II Course 13 4 A 8 32

II Course 14 3 O 10 30

III Course 15 2 A 8 16

III Course 16 1 C 5 5

III Course 17 4 O 10 40

()
= =

=
1 1

/
m m

j j j

j j

CGPA C S C

16 | P a g e

III Course 18 3 B+ 7 21

III Course 19 4 B 6 24

III Course 20 4 A 8 32

III Course 21 3 B+ 7 21

 Total Credits 69 Total Credits 518

Thus, CGPA = 518 / 69= 7.51

• The calculation process of CGPA illustrated above will be followed for each subsequent semester until

8th semester. The CGPA obtained at the end of 8th semester will become the final CGPA secured for

entire B.Tech. program.

• For merit ranking or comparison purposes or any other listing, only the rounded off’ values of the

CGPAs will be used.

• SGPA and CGPA of a semester will be mentioned in the semester Memorandum of Grades if all

courses of that semester are passed in first attempt, otherwise the SGPA and CGPA shall be

mentioned only on the Memorandum of Grades in which sitting s/he passed his last exam in that

semester. However, mandatory courses will not be taken into consideration.

15. REVIEW OF SEE THEORY ANSWER BOOKS

If the examinee is not satisfied with the marks awarded, s/he may apply for revaluation of answer book in

prescribed format online within three (3) working days from the date of declaration of result of the

examination or issue of the statement of marks, whichever is earlier. The revaluation facility shall be

for theory papers only. The revaluation of answer book shall not be permitted in respect of the marks

awarded to the scripts of practical examination / project work (including theory part) and in viva voce /

oral / comprehensive examinations.

The re-evaluation will be done by a second independent examiner. The result after re-evaluation

shall be as follows:

1. The revaluation marks are considered only if the difference between the original award and award on

reevaluation is more than equal to 15% of 60 marks (09 marks).

2. If the difference between the original award and the award on reevaluation is more than 20% (12

marks), a third evaluator is to be appointed and the average of two nearest awards (in the range of

15%) shall be considered.

16. PROMOTION POLICIES

The following academic requirements have to be satisfied in addition to the attendance requirements

mentioned in item no. 9.

16.1 For students admitted into B.Tech (Regular) program

16.1.1 A student will not be promoted from II semester to III semester unless s/he fulfills the

 academic requirement of securing 50% of the total credits (rounded to the next lowest integer)

 from I and II semester examinations, whether the candidate takes the examination(s) or not.

 16.1.2 A student will not be promoted from IV semester to V semester unless s/he fulfills the academic

 requirement of securing 60% of the total credits (rounded to the next lowest integer) upto III

 semester or 60% of the total credits (rounded to the next lowest integer) up to IV semester, from

 all the examinations, whether the candidate takes the examination(s) or not.

16.1.3 A student shall be promoted from VI semester to VII semester only if s/he fulfills the academic

 requirements of securing 60% of the total credits (rounded to the next lowest integer) up to V

 semester or 60% of the total credits (rounded to the next lowest integer) up to VI semester from

all the examinations, whether the candidate takes the examination(s) or not.

17 | P a g e

16.1.4 A student shall register for all the 160 credits and earn all the 160 credits. Marks obtained in all

the 160 credits shall be considered for the award of the Grade.

16.2 For students admitted into B.Tech (Lateral entry students)

16.2.1 A student will not be promoted from IV semester to V semester unless s/he fulfills the academic

requirement of securing 60% of the total credits (rounded to the next lowest integer) up to IV

semester, from all the examinations, whether the candidate takes the examination(s) or not.

16.2.2 A student shall be promoted from VI semester to VII semester only if s/he fulfills the academic

requirements of securing 60% of the total credits (rounded to the next lowest integer) up to V

semester or 60% of the total credits (rounded to the next lowest integer) up to VI semester from

all the examinations, whether the candidate takes the examination(s) or not.

16.2.3 A student shall register for all the 120 credits and earn all the 120 credits. Marks obtained in all

the 120 credits shall be considered for the award of the Grade.

17. GRADUATION REQUIREMENTS

The following academic requirements shall be met for the award of the B.Tech degree.

17.1 Student shall register and acquire minimum attendance in all courses and secure 160 credits

(with minimum CGPA of 5.0), for regular program and 120 credits (with minimum CGPA of

5.0), for lateral entry program. There is NO exemption of credits in any case.

17.2 A student of a regular program, who fails to earn 160 credits within eight consecutive academic

years from the year of his/her admission with a minimum CGPA of 5.0, shall forfeit his/her

degree and his/her admission stands cancelled.

17.3 A student of a lateral entry program who fails to earn 120 credits within six consecutive

academic years from the year of his/her admission with a minimum CGPA of 5.0, shall forfeit

his/her degree and his/her admission stands cancelled.

18. AWARD OF DEGREE

18.1 Classification of degree will be as follows:

CGPA > 8.0
CGPA ≥ 7.0 and

< 8.0

CGPA ≥ 6.0 and

< 7.0

CGPA ≥ 5.0 and

< 6.0
CGPA < 5.0

First Class with

Distinction
First Class Second Class Pass Class Fail

18.2 A student with final CGPA (at the end of the under graduate programme) >8.0, and fulfilling the

following conditions - shall be placed in ‘first class with distinction’. However,

a. Should have passed all the courses in ‘first appearance’ within the first 4 academic years (or

8 sequential semesters) from the date of commencement of first semester.

b. Should have secured a CGPA >8.0, at the end of each of the 8 sequential semesters, starting

from first semester onwards.

c. Should not have been detained or prevented from writing the semester end examinations in

any semester due to shortage of attendance or any other reason.

d. A student not fulfilling any of the above conditions with final CGPA >8.0 shall be placed in

‘first class’.

18.3 Students with final CGPA (at the end of the B.Tech program) ≥7.0 but <8.0 shall be placed in

‘first class’.

18.4 Students with final CGPA (at the end of the B.Tech program) ≥6.0 but <7.0, shall be placed in

‘second class’.

18.5 All other students who qualify for the award of the degree (as per item 18), with final CGPA (at

the end of the B.Tech program) ≥5.0 but <6.0, shall be placed in ‘pass class’.

18 | P a g e

18.6 A student with final CGPA (at the end of the B.Tech program) <5.0 will not be eligible for the

award of the degree.

18.7 Students fulfilling the conditions listed under item 18.2 alone will be eligible for award of ‘Gold

Medal’.

All the candidates who register for the semester end examination will be issued a memorandum of grades

sheet by the institute. Apart from the semester wise memorandum of grades sheet, the institute will issue

the provisional certificate and consolidated grades memorandum course to the fulfillment of all the

academic requirements.

19. B.TECH WITH HONOURS OR MINOR IN ENGINEERING

Students acquiring 160 credits are eligible to get B.Tech degree in Engineering. A student will be eligible

to get B.Tech degree with Honours or Minor in Engineering, if s/he completes an additional 20/18

credits (3/4 credits per course). These could be acquired through MOOCs from SWAYAM / NPTEL

only. The list for MOOCs will be a dynamic one, as new courses are added from time to time. Few

essential skill sets required for employability are also identified year wise. Students interested in doing

MOOC courses shall register the course title at their department office at the start of the semester against

the courses that are announced by the department. Any expense incurred for the MOOC course / summer

program should be met by the students.

Students having no credit arrears and a CGPA of 7.5 or above at the end of the fourth semester are

eligible to register for B.Tech (Honours / Minor). After registering for the B.Tech (Honours / Minor)

program, if a student fails in any course, s/he will not be eligible for B.Tech (Honours / Minor).

Every department should develop and submit a Honours / Minor – courses list of 5 - 6 theory courses,

laboratory and project work.

Honours Certificate for Vertical in his/her OWN Branch for Research orientation; Minor in any

other branch for Improving Employability.

Honours will be reflected in the degree certificate as “B.Tech (Honours) in XYZ Engineering”. Similarly,

Minor as “B.Tech in XYZ Engineering with Minor in ABC”.

19.1. B.Tech with Honours

The key objectives of offering B. Tech. with Honors program are:

• To expand the domain knowledge of the students laterally and vertically.

• To increase the employability of undergraduate students with expanded knowledge in one of the core

engineering disciplines.

• To provide an opportunity to students to pursue their higher studies in wider range of specializations.

Academic Regulations for B. Tech. Honours degree

1. The weekly instruction hours, internal and external evaluation and award of grades are on par with

regular 4-Years B. Tech. program.

2. For B. Tech with Honors program, a student needs to earn additional 20 credits (over and above the

required 160 credits for B. Tech degree). All these 20 credits required to be attained for B.Tech

Honors degree credits are distributed from V semester to VII semester.

3. After registering for the Honors program, if a student is unable to pass all courses in first attempt

and earn the required 20 credits, he/she shall not be awarded Honours degree. However, if the

student earns all the required 160 credits of B. Tech., he/she will be awarded only B. Tech degree in

the concerned branch.

4. There is no transfer of credits from courses of Honors program to regular B. Tech. degree course &

vice versa.

5. These 20 credits are to be earned from the additional courses offered by the host department in the

institute or from closely related departments in the institute as well as from the MOOCS platform

(NPTEL only).

19 | P a g e

6. The choice to opt/take the Honors program is purely on the choice of the students.

7. The student shall be given a choice of withdrawing all the courses registered and/or the credits

earned for Honours program at any time; and in that case the student will be awarded only B.Tech.

degree in the concerned branch on earning the required credits of 160.

8. The students of every branch can choose Honours program in their respective branches if they are

eligible for the Honors program. A student who chooses an Honors program is not eligible to

choose a Minor program and vice-versa.

9. A student can graduate with Honors if he/she fulfils the requirements for his/her regular B.Tech.

program as well as fulfills the requirements for Honours program.

10. The institute shall maintain a record of students registered and pursuing their Honors programs

branch-wise.

11. The department shall prepare the time-tables for each Honors program offered at their respective

departments without any overlap/clash with other courses of study in the respective semesters.

Eligibility conditions of the students for the B.Tech Honors degree

a) A student can opt for B.Tech. degree with Honors, if she/he passed all courses in first attempt in all

the semesters till the results announced and maintaining 7.5 or more CGPA.

b) If a student fails in any registered course of either B.Tech or Honours in any semester of four years

program, he/she will not be eligible for obtaining Honors degree. He will be eligible for only

c) Prior approval of mentor and Head of the Department for the enrolment into Honors program, before

commencement of V Semester, is mandatory.

d) If more than 30% of the students in a branch fulfill the eligibility criteria (as stated above), the

number of students given eligibility should be limited to 30%. The criteria to be followed for choosing

30% candidates in a branch may be the CGPA secured by the students till III semester.

e) Successful completion of 20 credits earmarked for Honours program with at least 7.5 CGPA along

with successful completion of 160 credits earmarked for regular B. Tech. Program with at least 7.5

CGPA and passing all courses in first attempt gives the eligibility for the award of B.Tech (Honors)

degree.

f) For CGPA calculation of B.Tech. course, the 20 credits of Honours program will not be considered.

Following are the details of such Honors which include some of the most interesting areas in the

profession today:

S.

No
Department Honors scheme

1 Aeronautical Engineering Aerospace Engineering / Space Science etc.

2

Computer Science and

Engineering / Information

Technology

Big data and Analytics / Cyber Physical Systems,

Information Security / Cognitive Science / Artificial

Intelligence/ Machine Learning / Data Science / Internet of

Things (IoT) / Cyber Security etc.

3
Electronics and Communication

Engineering

Digital Communication / Signal Processing /

Communication Networks / VLSI Design / Embedded

Systems etc.

4
Electrical and Electronics

Engineering

Renewable Energy systems / Energy and Sustainability /

IoT Applications in Green Energy Systems etc.

5 Mechanical Engineering
Industrial Automation and Robotics / Manufacturing

Sciences and Computation Techniques etc.

6 Civil Engineering Structural Engineering / Environmental Engineering etc.

20 | P a g e

19.2 B.Tech with Minor in Engineering

The key objectives of offering B.Tech with Minor program are:

• To expand the domain knowledge of the students in one of the other branches of engineering.

• To increase the employability of undergraduate students keeping in view of better opportunity in

interdisciplinary areas of engineering & technology.

• To provide an opportunity to students to pursue their higher studies in the inter-disciplinary areas in

addition to their own branch of study.

• To offer the knowledge in the areas which are identified as emerging technologies/thrust areas of

Engineering.

Advantages of Minor in Engineering

The minors mentioned above are having lots of advantages and a few are listed below:

• To enable students to pursue allied academic interest in contemporary areas.

• To provide an academic mechanism for fulfilling multidisciplinary demands of industries.

• To provide effective yet flexible options for students to achieve basic to intermediate level

competence in the Minor area.

• Provides an opportunity to students to become entrepreneurs and leaders by taking

business/management minor.

• Combination in the diverse fields of engineering e.g., CSE (Major) + Electronics (Minor)

combination increases placement prospects in chip designing companies.

• Provides an opportunity for applicants to pursue higher studies in an inter-disciplinary field of study.

• To increase the overall scope of the undergraduate degrees.

Academic Regulations for B.Tech Degree with Minor programs

1. The weekly instruction hours, internal & external evaluation and award of grades are on par with

regular 4-Years B. Tech. program.

2. For B. Tech. with Minor, a student needs to earn additional 18 credits (over and above the required

160 credits for B. Tech degree). The courses are offered from V semester to VII semester only, to

obtain minor degree studens required to obtain 18 credits.

3. After registering for the Minor program, if a student is unable to earn all the required 18 credits in a

specified duration (twice the duration of the course), he/she shall not be awarded Minor degree.

However, if the student earns all the required 160 credits of B.Tech, he/she will be awarded only

B. Tech degree in the concerned branch.

4. There is no transfer of credits from Minor program courses to regular B. Tech. degree course &

vice versa.

5. These 18 credits are to be earned from the additional courses offered by the host department in the

institute as well as from the MOOCs platform.

6. For the course selected under MOOCs platform (NPTEL) following guidelines may be followed:

a) Prior to registration of MOOCs courses, formal approval of the courses, by the institute is

essential, before the issue of approval considers the parameters like the institute / agency

which is offering the course, syllabus, credits, duration of the program and mode of evaluation

etc.

b) Minimum credits for MOOCs course must be equal to or more than the credits specified in the

Minor course structure provided by the institute.

c) Only Pass-grade / marks or above shall be considered for inclusion of grades in minor grade

memo.

d) Any expenses incurred for the MOOCs courses are to be met by the students only.

21 | P a g e

7. The choice to opt / take a Minor program is purely on the choice of the students.

8. The student shall be given a choice of withdrawing all the courses registered and / or the credits

earned for Minor program at any time; and in that case the student will be awarded only B. Tech.

degree in the concerned branch on earning the required credits of 160.

9. The student can choose only one Minor program along with his / her basic engineering degree. A

student who chooses an Honors program is not eligible to choose a Minor program and vice-

versa.

10. The institute shall maintain a record of students registered and pursuing their Minor programs,

minor program-wise and parent branch-wise.

11. The institute / department shall prepare the time-tables for each Minor course offered at their

respective institutes without any overlap/clash with other courses of study in the respective

semesters.

Eligibility conditions for the student to register for Minor course

a) A student can opt for B.Tech. degree with Minor program if she/he has no active backlogs till III

semester at the time of entering into III year I semester.

b) Prior approval of mentor and Head of the Department for the enrolment into Minor program,

before commencement of III year I Semester (V Semester), is mandatory.

c) If more than 50% of the students in a branch fulfill the eligibility criteria (as stated above), the

number of students given eligibility should be limited to 50%.

20.0 TEMPORARY BREAK OF STUDY FROM THE PROGRAM

20.1 A candidate is normally not permitted to take a break from the study. However, if a candidate

intends to temporarily discontinue the program in the middle for valid reasons (such as accident or

hospitalization due to prolonged ill health) and to rejoin the program in a later respective semester,

s/he shall seek the approval from the Principal in advance. Such application shall be submitted

before the last date for payment of examination fee of the semester and forwarded through the

Head of the Department stating the reasons for such withdrawal together with supporting

documents and endorsement of his / her parent / guardian.

20.2 The institute shall examine such an application and if it finds the case to be genuine, it may permit

the student to temporarily withdraw from the program. Such permission is accorded only to those

who do not have any outstanding dues / demand at the College / University level including tuition

fees, any other fees, library materials etc.

20.3 The candidate has to rejoin the program after the break from the commencement of the respective

semester as and when it is offered.

20.4 The total period for completion of the program reckoned from the commencement of the semester

to which the candidate was first admitted shall not exceed the maximum period specified in clause

17. The maximum period includes the break period.

20.5 If any candidate is detained for any reason, the period of detention shall not be considered as

‘Break of Study’.

21. TERMINATION FROM THE PROGRAM

The admission of a student to the program may be terminated and the student is asked to leave the

institute in the following circumstances:

a. The student fails to satisfy the requirements of the program within the maximum period stipulated

for that program.

22 | P a g e

b. A student shall not be permitted to study any semester more than three times during the entire

program of study.

c. The student fails to satisfy the norms of discipline specified by the institute from time to time.

22. WITH-HOLDING OF RESULTS

If the candidate has not paid any dues to the institute / if any case of indiscipline / malpractice is pending

against him, the results and the degree of the candidate will be withheld.

23. GRADUATION DAY

The institute shall have its own annual Graduation Day for the award of degrees to the students

completing the prescribed academic requirements in each case, in consultation with the University and by

following the provisions in the Statute. The college shall institute prizes and medals to meritorious

students and award them annually at the Graduation Day. This will greatly encourage the students to

strive for excellence in their academic work.

24. DISCIPLINE

Every student is required to observe discipline and decorum both inside and outside the institute and are

expected not to indulge in any activity which will tend to bring down the honour of the institute. If a

student indulges in malpractice in any of the theory / practical examination, continuous assessment

examinations, he/she shall be liable for punitive action as prescribed by the institute from time to time.

25. GRIEVANCE REDRESSAL COMMITTEE

The institute shall form a Grievance Redressal Committee for each course in each department with the

Course Teacher and the HOD as the members. The committee shall solve all grievances related to the

course under consideration.

26. TRANSITORY REGULATIONS

A candidate, who is detained or has discontinued a semester, on readmission shall be required to do all

the courses in the curriculum prescribed for the batch of students in which the student joins subsequently.

However, exemption will be given to those candidates who have already passed such courses in the

earlier semester(s) he was originally admitted into and substitute courses were offered in place of them as

decided by the Board of Studies. However, the decision of the Board of Studies will be final.

a) Transfer candidates (from non-autonomous college affiliated to JNTUH):

A student who is following JNTUH curriculum, transferred from other college to this institute in

third semester or subsequent semesters shall join with the autonomous batch in the appropriate

semester. Such candidates shall be required to pass in all the courses in the program prescribed by

the Board of Studies concerned for that batch of students from that semester onwards to be eligible

for the award of degree. However, exemption will be given in the courses of the semester(s) of the

batch which he had passed earlier and substitute courses are offered in their place as decided by

the Board of Studies. The student has to clear all his backlog courses up to previous semester by

appearing for the supplementary examinations conducted by JNTUH for the award of degree. The

total number of credits to be secured for the award of the degree will be the sum of the credits up

to the previous semester under JNTUH regulations and the credits prescribed for the semester in

which a candidate joined after transfer and subsequent semesters under the autonomous status. The

class will be awarded based on the academic performance of a student in the autonomous pattern.

b) Transfer candidates (from an autonomous college affiliated to JNTUH):

A student who has secured the required credits up to previous semester as per the regulations of

other autonomous institutions shall also be permitted to be transferred to this institute. A student

who is transferred from the other autonomous colleges to this institute in third semester or

subsequent semesters shall join with the autonomous batch in the appropriate semester. Such

candidates shall be required to pass in all the courses in the program prescribed by the Board of

Studies concerned for that batch of students from that semester onwards to be eligible for the

23 | P a g e

award of degree. However, exemption will be given in the courses of the semester(s) of the batch

which he had passed earlier and substitute courses are offered in their place as decided by the

Board of Studies. The total number of credits to be secured for the award of the degree will be the

sum of the credits up to previous semester as per the regulations of the college from which he is

transferred and the credits prescribed for the semester in which a candidate joined after transfer

and subsequent semesters under the autonomous status. The class will be awarded based on the

academic performance of a student in the autonomous pattern.

c) Readmission from R18 / UG20 to BT23 regulations

A student took admission in BT23 Regulations, detained due to lack of required number of credits

or shortage of attendance at the end of any semester is permitted to take re-admission at

appropriate level under any regulations prevailing in the institute course to the following rules and

regulations.

1. Student shall pass all the courses in the earlier scheme of regulations. However, in case of

having backlog courses, they shall be cleared by appearing for supplementary examinations

conducted under earlier regulations from time to time.

2. After readmission, the student is required to study the courses as prescribed in the new

regulations for the re-admitted program at that level and thereafter.

3. If the student has already passed any course(s) of readmitted program in the earlier regulation

/ semester of study, such courses are exempted.

4. The courses that are not done in the earlier regulations / semester as compared need to be

cleared after readmission by appearing for the examinations conducted time to time under the

new regulations.

5. In general, after transition, course composition and number of credits / semester shall be

balanced between old and new regulations on case to case basis.

6. In case, the students who do not have option of acquiring required credits with the existing

courses offered as per the new curriculum under autonomy, credit balance can be achieved by

clearing the additional courses offered. The additional courses that are offered can be of

theory or laboratory courses.

27. REVISION OF REGULATIONS AND CURRICULUM

The Institute from time to time may revise, amend or change the regulations, scheme of examinations

and syllabi if found necessary and on approval by the Academic Council and the Governing Body shall

be binding on the students, faculty, staff, all authorities of the Institute and others concerned.

24 | P a g e

FREQUENTLY ASKED QUESTIONS AND ANSWERS ABOUT AUTONOMY

1. Who grants Autonomy? UGC, Govt., AICTE or University

In case of Colleges affiliated to a university and where statutes for grant of autonomy are ready, it is

the respective University that finally grants autonomy but only after concurrence from the respective

state Government as well as UGC. The State Government has its own powers to grant autonomy

directly to Govt. and Govt. aided Colleges.

2 Shall IARE award its own Degrees?

No. Degree will be awarded by Jawaharlal Nehru Technological University, Hyderabad with a

mention of the name IARE on the Degree Certificate.

3 What is the difference between a Deemed University and an Autonomy College?

A Deemed University is fully autonomous to the extent of awarding its own Degree. A Deemed

University is usually a Non-Affiliating version of a University and has similar responsibilities like

any University. An Autonomous College enjoys Academic Autonomy alone. The University to

which an autonomous college is affiliated will have checks on the performance of the autonomous

college.

4 How will the Foreign Universities or other stake – holders know that we are an Autonomous

College?

Autonomous status, once declared, shall be accepted by all the stake holders. The Govt. of Telangana

mentions autonomous status during the First Year admission procedure. Foreign Universities and

Indian Industries will know our status through our website.

5 What is the change of Status for Students and Teachers if we become Autonomous?

An autonomous college carries a prestigious image. Autonomy is actually earned out of our

continued past efforts on academic performances, our capability of self- governance and the kind of

quality education we offer.

6 Who will check whether the academic standard is maintained / improved after Autonomy? How

will it be checked?

There is a built in mechanism in the autonomous working for this purpose. An Internal Committee

called Academic Program Evaluation Committee, which will keep a watch on the academics and

keep its reports and recommendations every year. In addition the highest academic council also

supervises the academic matters. The standards of our question papers, the regularity of academic

calendar, attendance of students, speed and transparency of result declaration and such other

parameters are involved in this process.

7 Will the students of IARE as an Autonomous College qualify for University Medals and Prizes

for academic excellence?

No. IARE has instituted its own awards, medals, etc. for the academic performance of the students.

However for all other events like sports, cultural on co-curricular organized by the University the

students shall qualify.

8 Can IARE have its own Convocation?

No. Since the University awards the degree the convocation will be that of the University, but there

will be Graduation Day at IARE.

9 Can IARE give a provisional degree certificate?

Since the examinations are conducted by IARE and the results are also declared by IARE, the college

sends a list of successful candidates with their final Grades and Grade Point Averages including

CGPA to the affiliating university. Therefore with the prior permission of the university the institute

will be entitled to give the provisional certificate.

10 Will Academic Autonomy make a positive impact on the Placements or Employability?

Certainly. The number of students qualifying for placement interviews is expected to improve, due to

25 | P a g e

rigorous and repetitive classroom teaching and continuous assessment. Also the autonomous status is

more responsive to the needs of the industry. As a result therefore, there will be a lot of scope for

industry oriented skill development built-in into the system. The graduates from an autonomous

college will therefore represent better employability.

11 What is the proportion of Internal and External Assessment as an Autonomous College?

Presently, it is 60% external and 40% internal. As the autonomy matures the internal assessment

component shall be increased at the cost of external assessment.

12 Is it possible to have complete Internal Assessment for Theory or Practicals?

Yes indeed. We define our own system. We have the freedom to keep the proportion of external and

internal assessment component to choose.

13 Why Credit based Grade System?

The credit based grade system is an accepted standard of academic performance the world over in all

Universities. The acceptability of our graduates in the world market shall improve.

14 What exactly is a Credit based Grade System?

The credit based grade system defines a much better statistical way of judging the academic

performance. One Lecture Hour per week of Teaching Learning process is assigned One Credit. One

hour of laboratory work is assigned half credit. Letter Grades like A, B,C,D, etc. are assigned for a

Range of Marks. (e.g. 91% and above is A+, 80 to 90 % could be A etc.) in Absolute Grading

System while grades are awarded by statistical analysis in relative grading system. We thus dispense

with sharp numerical boundaries. Secondly, the grades are associated with defined Grade Points in

the scale of 1 to 10. Weighted Average of Grade Points is also defined Grade Points are weighted by

Credits and averaged over total credits in a Semester. This process is repeated for all Semesters and a

CGPA defines the Final Academic Performance

15 What are the norms for the number of Credits per Semester and total number of Credits for

UG/PG program?

These norms are usually defined by UGC or AICTE. Usually around 25 Credits per semester is the

accepted norm.

16 What is a Semester Grade Point Average (SGPA)?

The performance of a student in a semester is indicated by a number called SGPA. The SGPA is the

weighted average of the grade points obtained in all the courses registered by the student during the

semester.

()
= =

=
1 1

/
n n

i i i

i i

SGPA C G C

Where, Ci is the number of credits of the ith course and Gi is the grade point scored by the student in

the ith course and i represent the number of courses in which a student registered in the concerned

semester. SGPA is rounded to two decimal places.

17 What is a Cumulative Grade Point Average (CGPA)?

An up-to-date assessment of overall performance of a student from the time of his first registration is

obtained by calculating a number called CGPA, which is weighted average of the grade points

obtained in all the courses registered by the students since he entered the Institute.

26 | P a g e

Where, Sj is the SGPA of the jth semester and Cj is the total number of credits upto the semester and

m represent the number of semesters completed in which a student registered upto the semester.

CGPA is rounded to two decimal places.

18 Is there any Software available for calculating Grade point averages and converting the

same into Grades?

Yes, The institute has its own MIS software for calculation of SGPA, CGPA, etc.

19 Will the teacher be required to do the job of calculating SGPAs etc. and convert the same into

Grades?

No. The teacher has to give marks obtained out of whatever maximum marks as it is. Rest is all done

by the computer.

20 Will there be any Revaluation or Re-Examination System?

No. There will double valuation of answer scripts. There will be a makeup Examination after a

reasonable preparation time after the End Semester Examination for specific cases mentioned in the

Rules and Regulations. In addition to this, there shall be a ‘summer term’ (compressed term)

followed by the End Semester Exam, to save the precious time of students.

21 How fast Syllabi can be and should be changed?

Autonomy allows us the freedom to change the syllabi as often as we need.

22 Will the Degree be awarded on the basis of only final year performance?

No. The CGPA will reflect the average performance of all the semester taken together.

23 What are Statutory Academic Bodies?

Governing Body, Academic Council, Examination Committee and Board of Studies are the different

statutory bodies. The participation of external members in everybody is compulsory. The institute

has nominated professors from IIT, NIT, University (the officers of the rank of Pro-vice Chancellor,

Deans and Controller of Examinations) and also the reputed industrialist and industry experts on

these bodies.

24 Who takes Decisions on Academic matters?

The Governing Body of institute is the top academic body and is responsible for all the academic

decisions. Many decisions are also taken at the lower level like Boards of Studies. Decisions taken at

the Boared of Studies level are to be ratified at the Academic Council and Governing Body.

25 What is the role of Examination committee?

The Examinations Committee is responsible for the smooth conduct of internal, End Semester and

make up Examinations. All matters involving the conduct of examinations spot valuations,

tabulations preparation of Grade Sheet etc fall within the duties of the Examination Committee.

26 Is there any mechanism for Grievance Redressal?

The institute has grievance redressal committee, headed by Dean - Student affairs and Dean - IQAC.

27 How many attempts are permitted for obtaining a Degree?

All such matters are defined in Rules & Regulation.

28 Who declares the result?

The result declaration process is also defined. After tabulation work wherein the SGPA, CGPA and

final Grades are ready, the entire result is reviewed by the Moderation Committee. Any unusual

()
= =

=
1 1

/
m m

j j j

j j

CGPA C S C

27 | P a g e

deviations or gross level discrepancies are deliberated and removed. The entire result is discussed in

the Examinations and Result Committee for its approval. The result is then declared on the institute

notice boards as well put on the web site and Students Corner. It is eventually sent to the University.

29 Who will keep the Student Academic Records, University or IARE?

It is the responsibility of the Examination Control Office of the institute to keep and preserve all the

records.

30 What is our relationship with the JNT University?

We remain an affiliated college of the JNT University. The University has the right to nominate its

members on the academic bodies of the college.

31 Shall we require University approval if we want to start any New Courses?

Yes, It is expected that approvals or such other matters from an autonomous college will receive

priority.

32 Shall we get autonomy for PG and Doctoral Programs also?

Yes, presently our PG programs also enjoying autonomous status.

28 | P a g e

MALPRACTICE RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

S. No Nature of Malpractices / Improper conduct

Punishment
 If the candidate:

1. (a) Possesses or keeps accessible in examination

hall, any paper, note book, programmable

calculator, cell phone, pager, palm computer or

any other form of material concerned with or

related to the course of the examination (theory

or practical) in which he is appearing but has

not made use of (material shall include any

marks on the body of the candidate which can

be used as an aid in the course of the

examination)

Expulsion from the examination hall and

cancellation of the performance in that course

only.

(b) Gives assistance or guidance or receives it from

any other candidate orally or by any other body

language methods or communicates through

cell phones with any candidate or persons in or

outside the exam hall in respect of any matter.

Expulsion from the examination hall and

cancellation of the performance in that course

only of all the candidates involved. In case of

an outsider, he will be handed over to the

police and a case is registered against him.

2. Has copied in the examination hall from any

paper, book, programmable calculators, palm

computers or any other form of material

relevant to the course of the examination

(theory or practical) in which the candidate is

appearing.

Expulsion from the examination hall and

cancellation of the performance in that course

and all other courses the candidate has already

appeared including practical examinations and

project work and shall not be permitted to

appear for the remaining examinations of the

courses of that Semester/year.

The Hall Ticket of the candidate is to be

cancelled and sent to the Controller of

Examinations.

3. Impersonates any other candidate in connection

with the examination.

The candidate who has impersonated shall be

expelled from examination hall. The

candidate is also debarred and forfeits the seat.

The performance of the original candidate,

who has been impersonated, shall be cancelled

in all the courses of the examination

(including practicals and project work) already

appeared and shall not be allowed to appear

for examinations of the remaining courses of

that semester/year. The candidate is also

debarred for two consecutive semesters from

class work and all semester end examinations.

The continuation of the course by the

candidate is course to the academic

regulations in connection with forfeiture of

seat. If the imposter is an outsider, he will be

handed over to the police and a case is

registered against him.

4.

Smuggles in the Answer book or additional

sheet or takes out or arranges to send out the

question paper during the examination or

answer book or additional sheet, during or after

the examination.

Expulsion from the examination hall and

cancellation of performance in that course and

all the other courses the candidate has already

appeared including practical examinations and

project work and shall not be permitted for the

29 | P a g e

remaining examinations of the courses of that

semester/year. The candidate is also debarred

for two consecutive semesters from class work

and all semester end examinations. The

continuation of the course by the candidate is

course to the academic regulations in

connection with forfeiture of seat.

5. Uses objectionable, abusive or offensive

language in the answer paper or in letters to the

examiners or writes to the examiner requesting

him to award pass marks.

Cancellation of the performance in that

course.

6. Refuses to obey the orders of the Controller of

Examinations /Additional Controller of

Examinations/any officer on duty or

misbehaves or creates disturbance of any kind

in and around the examination hall or organizes

a walk out or instigates others to walk out, or

threatens the COE or any person on duty in or

outside the examination hall of any injury to his

person or to any of his relations whether by

words, either spoken or written or by signs or

by visible representation, assaults the COE or

any person on duty in or outside the

examination hall or any of his relations, or

indulges in any other act of misconduct or

mischief which result in damage to or

destruction of property in the examination hall

or any part of the Institute premises or engages

in any other act which in the opinion of the

officer on duty amounts to use of unfair means

or misconduct or has the tendency to disrupt the

orderly conduct of the examination.

In case of students of the college, they shall be

expelled from examination halls and

cancellation of their performance in that

course and all other courses the candidate(s)

has (have) already appeared and shall not be

permitted to appear for the remaining

examinations of the courses of that

semester/year. The candidates also are

debarred and forfeit their seats. In case of

outsiders, they will be handed over to the

police and a police case is registered against

them.

7. Leaves the exam hall taking away answer script

or intentionally tears off the script or any part

thereof inside or outside the examination hall.

Expulsion from the examination hall and

cancellation of performance in that course and

all the other courses the candidate has already

appeared including practical examinations and

project work and shall not be permitted for the

remaining examinations of the courses of that

semester/year. The candidate is also debarred

for two consecutive semesters from class work

and all semester end examinations. The

continuation of the course by the candidate is

course to the academic regulations in

connection with forfeiture of seat.

8. Possess any lethal weapon or firearm in the

examination hall.

Expulsion from the examination hall and

cancellation of the performance in that course

and all other courses the candidate has already

appeared including practical examinations and

project work and shall not be permitted for the

remaining examinations of the courses of that

semester/year. The candidate is also debarred

and forfeits the seat.

9. If student of the college, who is not a candidate

for the particular examination or any person not

connected with the college indulges in any

Student of the colleges expulsion from the

examination hall and cancellation of the

performance in that course and all other

30 | P a g e

malpractice or improper conduct mentioned in

clause 6 to 8.

courses the candidate has already appeared

including practical examinations and project

work and shall not be permitted for the

remaining examinations of the courses of that

semester/year. The candidate is also debarred

and forfeits the seat.

Person(s) who do not belong to the College

will be handed over to police and, a police

case will be registered against them.

10. Comes in a drunken condition to the

examination hall.

Expulsion from the examination hall and

cancellation of the performance in that course

and all other courses the candidate has already

appeared including practical examinations and

project work and shall not be permitted for the

remaining examinations of the courses of that

semester/year.

11. Copying detected on the basis of internal

evidence, such as, during valuation or during

special scrutiny.

Cancellation of the performance in that course

and all other courses the candidate has

appeared including practical examinations and

project work of that semester/year

examinations.

12. If any malpractice is detected which is not

covered in the above clauses 1 to 11 shall be

reported to the University for further action to

award suitable punishment.

FAILURE TO READ AND UNDERSTAND

THE REGULATIONS IS NOT AN EXCUSE

31 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

 Dundigal, Hyderabad - 500 043

COURSE CATALOGUE

REGULATIONS: BT-23

CSE (ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)

I SEMESTER

Course

Code
Course Name

S
u

b
je

ct

A
re

a

Category

Periods Per

Week

C
re

d
it

s Scheme of

Examination

Max. Marks

L T P CIA SEE Total

 INDUCTION PROGRAM TWO WEEKS MANDATORY AUDIT COURSE

THEORY

AHSD01 Professional Communication HSMC Foundation 3 0 0 3 40 60 100

AHSD02 Matrices and Calculus BSC Foundation 3 1 0 4 40 60 100

AEED01
Elements of Electrical and

Electronics Engineering
ESC Foundation 3 0 0 3 40 60 100

ACSD01 Object Oriented Programming ESC Foundation 3 0 0 3 40 60 100

 PRACTICAL

AHSD04
Professional Communication

Laboratory
HSMC Foundation 0 0 2 1 40 60 100

ACSD02
Object Oriented Programming with

Java Laboratory
ESC Foundation 0 1 2 2 40 60 100

AMED02 Manufacturing Practice ESC Foundation 1 0 2 2 40 60 100

AEED03
Electrical and Electronics

Engineering Laboratory
ESC Foundation 0 0 2 1 40 60 100

 EXPERIENTIAL ENGINEERING EDUCATION (ExEED)

ACSD03 Essentials of Innovation Skill Skill 0 0 2 1 40 60 100

MANDATORY COURSE

AHSD06 Environmental Science MC MC - I Ref: Academic Regulations BT23

TOTAL 13 02 10 20 360 540 900

 II SEMESTER

Course

Code
Course Name

S
u

b
je

ct

A
re

a

Category

Periods Per

Week

C
re

d
it

s Scheme of

Examination

Max. Marks

L T P CIA SEE Total

THEORY

AHSD03 Engineering Chemistry BSC Foundation 3 0 0 3 40 60 100

AHSD07 Applied Physics BSC Foundation 3 0 0 3 40 60 100

AHSD08
Differential Equations and Vector

Calculus
BSC Foundation 3 1 0 4 40 60 100

ACSD05 Essentials of Problem Solving ESC Foundation 3 0 0 3 40 60 100

PRACTICAL

AHSD05 Engineering Chemistry Laboratory BSC Foundation 0 0 2 1 40 60 100

AHSD09 Applied Physics Laboratory BSC Foundation 0 0 2 1 40 60 100

ACSD06
Programming for Problem Solving

Laboratory
ESC Foundation 0 1 2 2 40 60 100

AMED03 Engineering Graphics ESC Foundation 1 0 2 2 40 60 100

SKILL ENHANCEMENT PROJECT

ACSD04 Mobile Applications Development Skill Skill 0 0 2 1 40 60 100

MANDATORY COURSE

AHSD10 Gender Sensitization MC MC - II Ref: Academic Regulations BT23

FIELD PROJECT

TOTAL 13 02 10 20 360 540 900

32 | P a g e

III SEMESTER

Course

Code
Course Name

S
u

b
je

ct

A
re

a

Category

Periods per

week

C
re

d
it

s Scheme of

Examination Max.

Marks

L T P CIA SEE Total

THEORY

AHSD11 Probability and Statistics PCC Core 3 1 0 4 40 60 100

AECD04 Computer System Architecture PCC Core 3 0 0 3 40 60 100

ACSD08 Data Structures PCC Core 3 0 0 3 40 60 100

ACSD09 Operating Systems PCC Core 3 0 0 3 40 60 100

ACAD01
Logic Programming for Artificial

Intelligence
PCC Core 3 0 0 3 40 60 100

PRACTICAL

ACSD11 Data Structures Laboratory PCC Core 0 0 2 1 40 60 100

ACAD02
Logic Programing for Artificial

Intelligence Laboratory
PCC Core 0 0 2 1 40 60 100

AITD02 Programing with Objects Laboratory PCC Core 0 0 2 1 40 60 100

 EXPERIENTIAL ENGINEERING EDUCATION (ExEED)

ACSD12 Prototype and Design Building Skill Skill 0 0 2 1 40 60 100

TOTAL 15 01 08 20 360 540 900

 IV SEMESTER

Course

Code
Course Name

S
u

b
je

ct

A
re

a

Category

Periods per

week
C

re
d

it
s Scheme of

Examination

Max. Marks

L T P CIA SEE Total

THEORY

ACSD13 Design and Analysis of Algorithms PCC Core 3 0 0 3 40 60 100

AITD03 Database Management Systems PCC Core 3 0 0 3 40 60 100

ACSD14 Web Systems Engineering PCC Core 3 0 0 3 40 60 100

AITD04 Computer Networks PCC Core 3 0 0 3 40 60 100

ACAD03 Applied Artificial Intelligence PCC Core 3 0 0 3 40 60 100

PRACTICAL

AITD05
Database Management Systems

Laboratory
PCC Core 0 0 2 1 40 60 100

ACSD17 Web Systems Engineering Laboratory PCC Core 0 0 2 1 40 60 100

ACAD04
Applied Artificial Intelligence

Laboratory
PCC Core 0 0 2 1 40 60 100

SKILL ENHANCEMENT PROJECT

ACSD18 DevOps Engineering Skill Skill 1 0 2 2 40 60 100

VALUE ADDED COURSE

INTERNSHIP

TOTAL 16 00 08 20 360 540 900

33 | P a g e

V SEMESTER

Course

Code
Course Name

S
u

b
je

ct

A
re

a

Category
Periods per week

C
re

d
it

s Scheme of

Examination

Max. Marks

L T P CIA SEE Total

THEORY

ACSD30 Theory of Computation PCC Core 3 0 0 3 40 60 100

ACSD15 Object Oriented Software Engineering PCC Core 3 0 0 3 40 60 100

ACAD05
Knoledge Representation and

Reasoning
PCC Core 3 0 0 3 40 60 100

ACAD06 Machine Learning Algorithms PCC Core 3 0 0 3 40 60 100

 Program Elective – I PEC Elective 3 0 0 3 40 60 100

PRACTICAL

ACAD11
Machine Learning Algorithms

Laboratory
PCC Core 0 0 2 1 40 60 100

ACSD28
Object Oriented Software Engineering

Laboratory
PCC Core 0 0 2 1 40 60 100

SKILL ENHANCEMENT PROJECT

ACSD29 Engineering Design Project Skill Skill 0 0 2 1 40 60 100

ACSD30 Java Full Stack Development Skill Skill 1 0 2 2 40 60 100

VALUE ADDED COURSE

TOTAL 16 00 08 20 360 540 900

 VI SEMESTER

Course

Code
Course Name

S
u

b
je

ct

A
re

a

Category
Periods per week

C
re

d
it

s Scheme of

Examination

Max. Marks

L T P CIA SEE Total

THEORY

ACSD19
Data Mining and Knowledge

Discovery
PCC Core 3 0 0 3 40 60 100

ACAD12 Fuzzy Logic and Inference Systems PCC Core 3 0 0 3 40 60 100

 Program Elective – II PEC Elective 3 0 0 3 40 60 100

 Program Elective – III PEC Elective 3 0 0 3 40 60 100

 Open Elective – I OEC Elective 3 0 0 3 40 60 100

PRACTICAL

ACSD43
Data Mining and Knowledge

Discovery Laboratory
PCC Core 0 0 2 1 40 60 100

ACAD21
Augment Reality and Virtual Reality

Laboratory
PCC Core 0 0 2 1 40 60 100

SKILL ENHANCEMENT PROJECT

ACSD44 Data Scientist / AI Specialist Skill Skill 1 0 2 2 40 60 100

ACSD45 Development Project Skill Skill 0 0 2 1 40 60 100

VALUE ADDED COURSE

INTERNSHIP

TOTAL 16 00 08 20 360 540 900

34 | P a g e

VII SEMESTER

Course

Code
Course Name

S
u

b
je

ct

A
re

a

Category

Periods per

week

C
re

d
it

s Scheme of

Examination

Max. Marks

L T P CIA SEE Total

THEORY

ACAD40 Language Modeling PCC Core 3 0 0 3 40 60 100

ACAD22 Deep Learning PCC Core 3 0 0 3 40 60 100

 Program Elective - IV PEC Elective 3 0 0 3 40 60 100

 Program Elective - V PEC Elective 3 0 0 3 40 60 100

 Open Elective - II OEC Elective 3 0 0 3 40 60 100

PRACTICAL

ACAD30
Natural Language Processing

Laboratory
PCC Core 0 0 2 1 40 60 100

ACAD31 Deep Learning Laboratory PCC Core 0 0 2 1 40 60 100

PROJECT WORK

ACAD32 Project Work (Phase - I) PROJ Project 0 0 6 3 40 60 100

MANDATORY COURSE

AHSD14
Essence of Indian Traditional

Knowledge
MC MC - 3 Ref: Academic Regulations BT23

TOTAL 15 00 10 20 320 480 800

VIII SEMESTER

Course

Code
Course Name

S
u

b
je

ct

A
re

a

Category

Periods per

week
C

re
d

it
s Scheme of

Examination

Max. Marks

L T P CIA SEE Total

THEORY

AHSD15
Managerial Economics and

Financial Analysis
BSC Foundation 3 0 0 3 40 60 100

 Program Elective - VI PEC Elective 3 0 0 3 40 60 100

 Open Elective - III OEC Elective 3 0 0 3 40 60 100

PROJECT WORK

ACAD39 Project Work (Phase - II) PCC Project 0 0 22 11 40 60 100

TOTAL 09 00 22 20 160 240 400

35 | P a g e

ELECTIVE COURSES

PROGRAM ELECTIVES COURSES (PEC)

Course Code Name of the Course Prerequisites
Preferred

Semester
Credits

ACAD07 Statistical Foundations of Data Science Probability and Statistics V 3

ACAD08 Information Retrieval System --- V 3

ACCD08 Principles of IoT
Digital Design and

Embedded Systems
V 3

ACAD09 Cyber Physical Systems --- V 3

ACAD10 Cognitive Computing --- V 3

ACSD57 Block Chain Technology --- VI 3

ACAD13 Computational Intelligence --- VI 3

ACAD14 Human Computer Interaction (UI & UX) --- VI 3

ACDD11 Cloud Computing --- VI 3

ACAD15 Speeech and Video Processing Image Processing VI 3

ACCD05 Computer Vision --- VI 3

ACAD16 Expert Systems
Logic Programming for

Artificial Intelligence
VI 3

ACDD17 Predictive Data Analytics --- VI 3

ACAD17 Evolutionary Computing --- VI 3

ACAD18
Automated Reasoning and Theorem

Proving
--- VI 3

ACAD23 Ensemble Learning --- VII 3

ACAD24 Bio-Inspired Computing --- VII 3

ACAD25 Randomized Algorithms
Machine Learning

Algorithms
VII 3

ACAD26 Augmented Reality & Virtual Reality --- VII 3

ACAD27 Federated Machine Learning
Machine Learning

Algorithms
VII 3

ACAD28 Machine Translation
Machine Learning

Algorithms
VII 3

AITD22 Software Testing Methodologies
Object Oriented

Software Engineering
VII 3

AITD14 Game Theory --- VII 3

AITD20 Big Data Tools and Techniques --- VII 3

ACAD40 Reinforcement Learning -- VII 3

ACAD33 Sequence Models in NLP
Natural Language

Processing
VIII 3

ACCD24 Applied Natural Language Processing
Natural Language

Processing
VIII 3

ACAD34 Computational AI
Logic Programming for

Artificial Intelligence
VIII 3

ACAD35 Application of AI in Bioinformatics
Logic Programming for

Artificial Intelligence
VIII 3

ACAD36 Robotic Process Automation
Machine Learning

Algorithms
VIII 3

AITD12 Quantum Computing
High-Performance

computing
VIII 3

36 | P a g e

OPEN ELECTIVE COURSES (OEC)

The courses listed below are offered by the Department of CSE (AI&ML) for students of other

departments.

Course

Code
Course Name Prerequisites Credits

ACAD19 Fundamentals of Artificial Intelligence - 3

ACAD20 Machine Learning Techniques and Practices - 3

ACDD28 Cluster Computing - 3

ACAD29 Virtual Reality - 3

ACAD37 Introduction to Natural Language Processing - 3

ACAD38 Deep Learning Paradigms for Computer Vision - 3

VALUE-ADDED COURSES

Objective:

Value added courses are provided to equip the students with knowledge and skills outside of the

curriculum or to meet any specific requirements of the industry. The following are the Value-Added

Courses provided to students by various departments in our institution.

ANY THREE FROM THE GIVEN BELOW THROUGH IARE ELRV – AKANKSHA /

CERTIFICATE - SWAYAM, e-PG pathshala, NPTEL etc.

1. Data Scalability and Distribution (Amazon Web Services, Microsoft Azure, Google Cloud Platform

etc.

2. Software Developer (Restful webservices / Microservices, Rust programming, MEAN, MERN,

MEVN)

3. Data Science (Data visualization, Data wrangling, Bigdata Technologies, Business Intelligence etc.)

4. Operating Systems (IBM I, Mac OS, Linux, Haiku etc.)

5. Debugging

6. Testing (Selenium, TestNG)

7. Cyber Security (Network Security, Threat Intelligence and Analysis / Risk Assessment and

Management

8. Software Architect

9. Blockchain Technology

37 | P a g e

COURSE CONTENT

PROFESSIONAL COMMUNICATION

I Semester: AE / ME / CE / CSE (AI &ML) / IT / ECE / EEE

II Semester: CSE | CSE (DS) | CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks

AHSD01

Foundation

L T P C CIA SEE Total

3 - - 3 40 60 100

Contact Classes: 64 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite:

I. COURSE OVERVIEW:

The principle aim of the course is that the students will have awareness about the importance of English

language in the contemporary times and also it emphasizes the students to learn this language as a skill (listening

skill, speaking skill, reading skill and writing skill). Moreover, the course benefits the students how to solve

their day-to-day problems in speaking English language. Besides, it assists the students to reduce the mother

tongue influence and acquire the knowledge of neutral accent. The course provides theoretical and practical

knowledge of English language and it enables students to participate in debates about informative,

persuasive, didactic, and commercial purposes.

II. COURSE OBJECTIVES:

The students will try to learn:

I Standard pronunciation, appropriate word stress, and necessary intonation patterns for effective

communication towards achieving academic and professional targets.

II Appropriate grammatical structures and also using the nuances of punctuation tools for practical

purposes.

III Critical aspect of speaking and reading for interpreting in-depth meaning between the sentences.

IV Conceptual awareness on writing in terms of unity, content, coherence, and linguistic accuracy.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1 Demonstrate the prime necessities of listening skills and communication skills for academic and

non-academic purposes.

CO 2 Explain effectively in spoken English on issues and ideas with a reasonable degree of fluency

and accuracy in different social settings and different kinds of social encounters.

CO 3 Strengthen acceptable language for developing life skills to overcome the challenges at

professional platform.

CO 4 Interpret the grammatical and lexical forms of English and use of these forms in specific

communicative contexts.

CO 5 Articulate main ideas, both stated and inferred, and important details in academic, journalistic,

and literary prose at advanced level.

CO 6 Extend writing skills for fulfilling academic and work-place requirements of various written

communicative functions.

IV. COURSE CONTENT:

MODULE – I: GENERAL INTRODUCTION AND LISTENING SKILLS (13)

Introduction to communication skills, communication process, elements of communication, soft skills and hard

skills, importance of soft skills for engineers, listening skills, significance of listening skills, stages of

listening, barriers and effectiveness of listening, listening comprehension.

MODULE – II: SPEAKING SKILL (13)

Significance of speaking skills, essentials of speaking skills, verbal and non-verbal communication, generating

talks based on visual prompts, public speaking, exposure to structured talks, delivering speech effectively, oral

presentation using power point slides.

38 | P a g e

MODULE – III: VOCABULARY AND GRAMMAR (13)

The concept of word formation, idioms and phrases, one-word substitutes, sentence structure (simple,

compound and complex), usage of punctuation marks, advanced level prepositions.

Tenses, subject verb agreement, degrees of comparison, direct and indirect speech, questions tags.

MODULE – IV: READING SKILL (12)

Significance of reading skills, techniques of reading, skimming-reading for the gist of a text, scanning–reading

for specific information, intensive, extensive reading, reading comprehension, metaphor and figurative

language.

MODULE – V: WRITING SKILL (13)

Significance of writing skills, effectiveness of writing, the role of a topic sentence and supporting sentences in a

paragraph, organizing principles of paragraphs in a document, writing introduction and conclusion, techniques

for writing precis, various formats for letter writing (block format, full block format, and semi bloc format), e-

mail writing, report writing.

V. TEXT BOOKS:

1. Anjana Tiwari, Communication Skills in English, Khanna Publishing House: New Delhi, 2022.

VI. REFERENCE BOOKS:

1. Norman Whitby, Business Benchmark: Pre-Intermediate to Intermediate – BEC Preliminary,

Cambridge University Press, 2nd Edition, 2008.

2. Devaki Reddy, Shreesh Chaudhary, Technical English, Macmillan, 1st Edition, 2009.

3. Rutherford, Andrea J, Basic Communication Skills for Technology, Pearson Education, 2nd Edition, 2010.

4. Raymond Murphy, Essential English Grammar with Answers, Cambridge University Press, 2nd

Edition, 2010.

VII. ELECTRONICS RESOURCES:

1. https://akanksha.iare.ac.in/index?route=course/details&course_id=954

2. https://akanksha.iare.ac.in/index?route=course/details&course_id=10

3. https://akanksha.iare.ac.in/index?route=course/details&course_id=352

4. https://akanksha.iareac.in/index?route=publicprofile&id=5075

VIII. MATERIALS ONLINE

1. Course template

2. Tech-talk topics

3. Assignments

4. Definition and terminology

5. Tutorial question bank

6. Model question paper – I

7. Model question paper – II

8. Lecture notes

9. Early lecture readiness videos (ELRV)

10. Power point presentations

https://akanksha.iareac.in/index?route=publicprofile&id=5075

39 | P a g e

COURSE CONTENT

MATRICES AND CALCULUS

I Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours/Week Credits Maximum Marks

AHSD02

Foundation
L T P C CIA SEE Total

3 1 - 4 40 60 100

Contact Classes: 48 Tutorial Classes: 16 Practical Classes: Nil Total Classes: 64

Prerequisite: Basic Principles of Algebra and Calculus

I. COURSE OVERVIEW:

This course Matrices and Calculus is a foundation course of mathematics for all engineering branches. The

concepts of Matrices, Eigen Values, Eigen Vectors, Functions of Single and Several Variables, Fourier

Series and Multiple Integrals. This course is applicable for simulations, colour imaging process, finding

optimal solutions in all fields of industries.

II. COURSE OBJECTIVES:

 The students will try to learn:

I The concept of the rank of a matrix, solve the system of linear equations, eigen values, eigen vectors.

II The geometrical approach to the mean value theorems and their application to the mathematical problems.

III The Fourier series expansion in standard intervals as well as arbitrary intervals.

IV The evaluation of multiple integrals and their applications.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO 1 Determine the rank and solutions of linear equations with elementary operations.

CO 2 Utilize the Eigen values, Eigen vectors for developing spectral matrices.

CO 3 Make use of Cayley-Hamilton theorem for finding powers of the matrix.

CO 4 Interpret the maxima and minima of given functions by finding the partial derivates.

CO 5 Apply the Fourier series expansion of periodic functions for analyzing the wave forms.

CO 6 Determine the area of solid bounded regions by using the integral calculus.

IV. COURSE CONTENT:

MODULE - I: MATRICES (09)

Rank of a matrix by echelon form and normal form, inverse of non-singular matrices by Gauss-Jordan

method, system of linear equations, solving system of homogeneous and non-homogeneous equations.

MODULE - II: EIGEN VALUES AND EIGEN VECTORS (10)

Eigen values, eigen vectors and their properties (without proof), Cayley-Hamilton theorem (without

proof), verification, finding inverse and power of a matrix by Cayley-Hamilton theorem,

diagonalization of a matrix.

MODULE - III: FUNCTIONS OF SINGLE and SEVERAL VARIABLES (10)

Mean value theorems Rolle’s theorem, Lagrange’s theorem, Cauchy’s theorem-without proof.

Functions of several variables: Partial differentiation, Jacobian, functional dependence, maxima and minima of

functions of two variables and three variables, method of Lagrange multipliers.

40 | P a g e

MODULE – IV: FOURIER SERIES (09)

Fourier expansion of periodic function in a given interval of length 2π, Fourier series of even and odd functions,

Fourier series in an arbitrary interval, half- range Fourier sine and cosine expansions.

MODULE – V: MULTIPLE INTEGRALS (10)

Evaluation of double integrals (cartesian and polar coordinates), change of order of integration (only

cartesian coordinates), evaluation of triple integrals (only cartesian coordinates).

 V. TEXT BOOKS:

1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.

2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

VI. REFERENCE BOOKS:

1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/ed, Narosa Publications,

5th Edition, 2016.

2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, Calculus, 13/e, Pearson Publishers,

2013.

3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications,

Reprint, 2008.

4. Dean G. Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press.

5. Peter O’Neil, Advanced Engineering Mathematics, Cengage Learning.

6. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill Education.

VII. ELECTRONICS RESOURCES:
1. Engineering Mathematics - I, By Prof. Jitendra Kumar | IIT Kharagpur

https://onlinecourses.nptel.ac.in/noc23_ma88/preview

2. Advanced Calculus for Engineers, By Prof. Jitendra Kumar, Prof. Somesh Kumar | IIT Kharagpur

 https://onlinecourses.nptel.ac.in/noc23_ma86/preview

3. http://www.efunda.com/math/math_home/math.cfm

4. http://www.ocw.mit.edu/resourcs/#Mathematics

5. http://www.sosmath.com

6. http://www.mathworld.wolfram.com

VIII. MATERIAL ONLINE:

1. Course template

2. Tech-talk topics

3. Assignments

4. Definition and terminology

5. Tutorial question bank

6. Model question paper – I

7. Model question paper – II

8. Lecture notes

9. Early lecture readiness videos (ELRV)

10. Power point presentations

41 | P a g e

COURSE CONTENT

ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING

I Semester: CSE (AI&ML) / IT / AERO / MECH / CIVIL

II Semester: CSE / CSE (DS) / CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks

AEED01 Foundation
L T P C CIA SEE Total

3 - - 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Physics

I. COURSE OVERVIEW:

This course enables knowledge on electrical quantities such as current, voltage, and power, energy to know the

impact of technology in global and societal context. It provides the knowledge on basic DC and AC circuits

used in electrical and electronic devices, highlights the importance of electrical machines and basics of

semiconductor devices like diodes and transistors.

II. COURSES OBJECTIVES:

The students will try to learn

I The fundamentals of electrical circuits and analysis of circuits with DC and AC excitation using

circuit laws.

II The construction and operation of Electrical machines.

III The operational characteristics of semiconductor devices with their applications.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO 1 Make use of basic electrical laws for solving DC and AC circuits.

CO 2 Apply network theorems for analysis of simple electrical circuits.

CO 3 Demonstrate the fundamentals of electromagnetism for the operation of DC and AC machines.

CO 4 Utilize the characteristics of semiconductor devices for the application of rectifiers and regulators.

CO 5 Interpret the transistor configurations for optimization of the operating point.

CO 6 Understand the amplifier circuits using transistors for calculating different parameters

IV. COURSE CONTENT:

MODULE-I: INTRODUCTION TO ELECTRICAL CIRCUITS (09)

Circuit concept: Ohm’s law, Kirchhoff’s laws, the equivalent resistance of networks, star to delta

transformation, mesh and nodal analysis (with DC source only).

Single phase AC circuits: representation of alternating quantities, RMS, average, form and peak factor, RLC

series circuit.

MODULE-II: NETWORK THEOREMS AND THREE-PHASE VOLTAGES (10)

Network Theorems: Superposition, reciprocity, Thevenin’s, Norton’s, Maximum power transfer theorems for

DC excitation circuits, three phase voltages (Definitions only): Voltage and current relationships in star and

delta connections.

MODULE-III: ELECTRICAL MACHINES AND SEMICONDUCTOR DIODES (10)

DC and AC machines: Motors and generators, principle of operation, parts, EMF equation, types, applications,

losses and efficiency.

Semiconductor diode: P-N Junction diode, symbol, V-I characteristics, half wave rectifier, full wave rectifier,

bridge rectifier and filters, diode as a switch, Zener diode as a voltage regulator.

42 | P a g e

MODULE-IV: BIPOLAR JUNCTION TRANSISTOR AND APPLICATIONS (10)

Bipolar junction transistor: Characteristics and configurations, working principle NPN and PNP transistor,

CE, CB, CC configurations – input and output characteristics, transistor as a switch.

MODULE-V: TRANSISTOR AMPLIFIERS (09)

Amplifier circuits: Two port devices and network, small signal models for transistors, concept of small signal

operation, amplification in CE amplifier, h parameter model of a BJT- CE, CB and emitter follower analysis.

V. TEXT BOOKS:

1. M. S. Sukhija, T. K. Nagsarkar, Basic Electrical and Electronics Engineering, Oxford, 1st Edition, 2012.

2. Salivahanan, Electronics Devices & Circuits, TMH 4th Edition 2012.

VI. REFERENCE BOOKS:

1. CL Wadhwa, Electrical Circuit Analysis including Passive Network Synthesis, International, 2nd Edition,

2009.
2. David A Bell, Electric circuits, Oxford University Press,7th Edition,2009.

3. PS Bimbra, Electrical Machines, Khanna Publishers, 2nd Edition,2008.

4. D.P. Kothari and I. J. Nagrath, Basic Electrical Engineering, Tata McGraw Hill, 4th Edition, 2019.

VII. ELECTRONICS RESOURCES:

1. https://www.kuet.ac.bd/webportal/ppmv2/uploads/1364120248DC%20Machines

2. https://www.eleccompengineering.files.wordpress.com/2014/08/a-textbook-of-electrical-

technologyvolume-ii-ac-and-dc-machines-b-l-thferaja.pdf

3. https://www.geosci.uchicago.edu/~moyer/GEOS24705/Readings/Klempner_Ch1.pdf

4. https://www.ibiblio.org/kuphaldt/electricCircuits/DC/DC.pdf

5. https://www.users.ece.cmu.edu/~dwg/personal/sample.pdf.

6. https://www.iare.ac.in

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech talk topics

4. Definitions and terminology

5. Open ended experiments

6. Model question paper-i

7. Model question paper-ii

8. Lecture notes

9. Early learning readiness videos (elrv)

10. Power point presentations

https://www.geosci.uchicago.edu/~moyer/GEOS24705/Readings/Klempner_Ch1.pdf
https://www.ibiblio.org/kuphaldt/electricCircuits/DC/DC.pdf
https://www.users.ece.cmu.edu/~dwg/personal/sample.pdf
https://www.iare.ac.in/

43 | P a g e

COURSE CONTENT

OBJECT ORIENTED PROGRAMMING

I Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSD01 Foundation
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisites: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

The course provides a solid foundation in object-oriented programming concepts in using them. It includes

concepts object-oriented concepts such as information hiding, encapsulation, and polymorphism. It contrasts the

use of inheritance and composition as techniques for software reuse. It provides an understanding of object-

oriented design using graphical design notations such as Unified Modeling Language (UML) as well as object

design patterns.

II. COURSES OBJECTIVES:

The students will try to learn

I. The fundamental concepts and principles of object-oriented programming in high-level programming

languages.

II. The advanced concepts for developing well-structured and efficient programs that involve complex data

structures, numerical computations, or domain-specific operations.

III. The design and implementation of features such as inheritance, polymorphism, and encapsulation for

tackling complex problems and creating well-organized, modular, and maintainable code.

IV. The usage of input/output interfaces to transmit and receive data to solve real-time computing problems.

III. COURSE OUTCOMES:

At the end of the course, students should be able to:

CO 1 Interpret the features of object-oriented programming languages, comparison, and evaluation of

programming languages.

CO 2 Model the real-world scenario using class diagrams and exhibit communication between objects.

CO 3 Estimate the need for special functions for data initialization.

CO 4 Outline the features of object-oriented programming for binding the attributes and behavior of a real-

world entity.

CO 5 Use the concepts of streams and files that enable data management to enhance programming skills.

CO 6 Develop contemporary solutions to software design problems using object-oriented principles.

IV. COURSE CONTENT:

MODULE - I: Object-oriented concepts (09)

Objects and legacy systems, procedural versus Object-oriented programming, top-down and bottom-up

approaches and their differences, benefits of OOP, applications of OOP, features of OOP.

Abstraction: Layers of abstraction, forms of abstraction, abstraction mechanisms.

MODULE - II: Classes and objects (09)

Classes and objects: Object data, object behaviors, creating objects, attributes, methods, messages, creating

class diagrams.

Access specifiers and initialization of class members: Accessing members and methods, access specifiers -

public, private, protected, memory allocation. Static members, static methods.

MODULE - III: Special member functions and overloading (09)

Constructors and destructors: Need for constructors and destructors, copy constructors, dynamic constructors,

parameterized constructors, destructors, constructors and destructors with static members.

44 | P a g e

Overloading: Function overloading, constructor overloading, and operator overloading - rules for overloading

operators, overloading unary and binary operators, friend functions.

MODULE – IV: Inheritance and polymorphism (09)

Inheritance: types of inheritance, base class, derived class, usage of final, ambiguity in multiple and multipath

inheritance, virtual base class, overriding member functions, order of execution of constructors and destructors.

Polymorphism and virtual functions: Virtual functions, pure virtual functions, abstract classes, introduction to

polymorphism, static polymorphism, dynamic polymorphism.

MODULE –V: Console I/O and working with files (09)

Console I/O: Concept of streams, hierarchy of console stream classes, unformatted I/O operations, managing

output with manipulators.

Working with files: Opening, reading, writing, appending, processing, and closing different types of files,

command line arguments.

V. TEXTBOOKS:

1. Matt Weisfeld, The Object-Oriented Thought Process, Addison Wesley Object Technology Series,

4th Edition, 2013.

VI. REFERENCE BOOKS:

1. Timothy Budd, Introduction to object-oriented programming, Addison Wesley Object Technology

Series, 3rd Edition, 2002.

2. Gaston C. Hillar, Learning Object-Oriented Programming, Packt Publishing, 2015.

3. Kingsley Sage, Concise Guide to Object-Oriented Programming, Springer International Publishing, 1st

Edition, 2019.

4. Rudolf Pecinovsky, OOP - Learn Object Oriented Thinking and Programming, Tomas Bruckner, 2013.

5. Grady Booch, Object-oriented analysis and design with applications, Addison Wesley Object

Technology Series, 3rd Edition, 2007.

VII. ELECTRONICS RESOURCES:

1. https://docs.oracle.com/javase/tutorial/java/concepts/

2. https://www.w3schools.com/cpp/

3. https://www.edx.org/learn/object-oriented-programming/

4. https://www.geeksforgeeks.org/introduction-of-object-oriented-programming/

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech talk topics

4. Open-ended experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I

8. Model question paper – II

9. Lecture notes

10. PowerPoint presentation

11. E-Learning Readiness Videos (ELRV)

45 | P a g e

COURSE CONTENT

PROFESSIONAL COMMUNICATION LABORATORY

I Semester: CSE (AI&ML) | IT | AE | ECE | EEE | ME |CE |

II Semester: CSE | CSE(DS) | CSE(CS)

Course Code Category Hours / Week Credits Maximum Marks

AHSD04 Foundation
L T P C CIA SEE Total

- - 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Nil

I. COURSE OVERVIEW:

This laboratory course is designed to introduce students to create a wide exposure on language learning

techniques of the basic elements of listening skills, speaking skills, reading skills and writing skills. In this

laboratory, students are trained in communicative English language skills, phonetics, word accent, word

stress, rhythm, intonation, oral presentations and extempore speeches. Students are also taught in terms of

seminars, group-discussions, presenting techniques of writing, participating in role plays, telephonic

etiquettes, asking and giving directions, information transfer, debates, description of persons, places and

objects etc. The laboratory encourages students to work in a group, engage in peer-reviews and inculcate team

spirit through various exercises on grammar, vocabulary, and pronunciation games etc. Students will make

use of all these language skills in academic, professional and real time situations.

II. COURSES OBJECTIVES

 The students will try to learn:

I. English speech sounds, word accent, intonation and stress patterns for effective pronunciation.

II. Critical aspect of speaking and reading for interpreting in-depth meaning between the sentences.

III. Language techniques for social interactions such as public speaking, group discussions and

interviews.

IV. Computer-assisted multi-media instructions and independent language learning.

III. COURSE OUTCOMES:

 At the end of the course, students will be able to:

CO 1 Articulate acceptable accent in order to execute formal and informal communication.

CO 2 Differentiate stress shifts, syllabification and make use of past tense and plural markers effectively in

connected speech; besides participate in role plays with confidence.

CO 3 Use weak forms and strong forms in spoken language and maintain intonation patterns as a native

speaker to avoid mother tongue influence; moreover, practice various etiquettes at professional

platform.

CO 4 Demonstrate errors in pronunciation and the decorum of oral presentations; for that reason, take part

joining in group discussions and debates with much critical observations.

CO 5 Strengthen writing effective messages, notices, summaries and also able to write reviews very

critically of art and academical videos.

CO 6 Argue scholarly, giving the counters to open ended experiments, and also writing slogans for the

products talentedly.

Dos

1. Turn up in a neat and formal dress code regularly and maintain punctuality.

2. Bring observation books and worksheets for every laboratory session without fail.

3. Keep lab record book up to date.

4. Students must adhere to the acceptable use of ICT resources policy.

5. CD ROM ‘s, USB and other multimedia equipment are for college use only.

6. Replace headsets onto the monitor and rearrange your chairs back into their position as you leave

laboratory.

7. Get your lab worksheets evaluated and upload online within the stipulated time for online evaluation by

the faculty concerned.

8. Conduct yourself at the best to be a good learner.

Don’ts

46 | P a g e

1. Do not use the on/off switch to reboot the system.

2. Do not breach copyright regulations.

3. The not install or download any software or modify or delete any system files on any laboratory

computer.

4. Do not read or modify other users’ files.

5. Do not damage, remove, or disconnect any labels, parts, cables or equipment.

6. The not make undue noise in the laboratories. Be considerate of the other lab users- this is study area.

7. No food and the beverages are allowed into computer laboratories.

IV. COURSE CONTENT

Exercises for professional communication laboratory

Note: Students are encouraged to bring their own laptops for laboratory practice session

 Getting started exercises

1. Introduction to pronunciation

Experiments

CALL LAB: Introduction to pronunciation

ICS LAB: Introducing self and introducing others and feedback

Activities

a) Pronunciation practice among groups.

b) Follow formal rules of introducing self and others and giving the constructive feedback.

c) Pronunciation practice from the K-Van software

2. Introduction to phonetics

Experiments

CALL LAB: Introduction to phonetics, listening to English sounds, Vowel and Consonant sounds.

ICS LAB: Describing a person or place or a thing using relevant adjectives – feedback

Activities

a) Introduction to phonetics, listening to English sounds, Vowel and Consonant sounds

b) Describing a person or place or a thing using relevant adjectives and giving valid feedback.

c) Listening English phonemes from K-Van software

3. Syllabification of different lexemes

Experiments

CALL LAB: Structure of syllables.

ICS LAB: JAM Sessions using public address system

Activities

a) Participating in just a minute session

b) Practicing consonant clusters

c) Practicing different methods of dividing the syllables

4. Word accent and stress shift patterns

Experiments:

CALL LAB: Word accent and stress shifts.

ICS LAB: Asking for directions and giving directions

Activities:

a) Usage of appropriate lexical tools at the time of giving directions

b) Pronounce weak and strong forms using strategies in spoken language

5. Usage of markers in pronunciation

47 | P a g e

Experiments:

CALL LAB: Past tense and plural markers.

ICS LAB: Role plays on fixed expressions in various situations

Activities:

a) Addition of suffixes to verbs

b) Multiple exercises on nouns based its number

c) Execution of body language in different contexts

6. Use of form in connected speech

CALL LAB: Weak forms and strong forms

ICS LAB: Extempore-Picture

Activities:

a) Practice on recognition of objects

b) Preparation on connected speech based on tone boundaries

c) Execution while describing pictures

7. Intonation patterns

Experiments

CALL LAB: Intonation

ICS LAB: Interpretation of Proverbs and Idioms

Activities

a) Voce modulation in speech as per context

b) Application of proverbs in real life contexts

c) Exercises on idiomatic expressions

8. Neutralization of Mother Tongue influence (MTI)

Experiments

CALL LAB: Neutralization of Mother Tongue Influence (MTI).

ICS LAB: Etiquette

Activities

a) Mirror practicing to get rid of mother tongue influence

b) Listening to English speeches from native speakers

c) Etiquettes for social and professional behavior

9. Oral presentations

Experiments

CALL LAB: Common errors in pronunciation practice through tongue twisters.

ICS LAB: Oral Presentations

Activities

a) Practicing tongue twisters to accelerate language fluency

b) Practice on how to grab attention of audience

c) Formulating strategies for structured presentation

10. Minimal pairs and debates

Experiments

CALL LAB: Minimal pairs.

ICS LAB: Debates

Activities

a) Practicing minimal pair dominoes

b) Working on minimal pair-cards and counters

a) Executing interpersonal skills with argumentative issues

11. Listening comprehension skills

48 | P a g e

Experiments

CALL LAB: Listening comprehension.

ICS LAB: Group discussion

Activities

a) Listening to dialogues of native speakers

b) Listening and writing short stories

b) Exercising group discussion on various social issues

12. Enriching writing skills

Experiments

CALL LAB: Demonstration on how to write leaflets, messages and notices.

ICS LAB: Techniques and methods to write summaries and reviews of videos

Activities

a) Practice on writing suitable messages and notices

b) Summary writing techniques

c) Practice on writing reviews for sociopolitical videos

13. Activities on pronunciation skills

Experiments

CALL LAB: Pronunciation practice.

ICS LAB: Information transfer

Activities

a) Exercise on commonly mispronounced words

b) Preparation on similar words pronunciation

c) Practice on transferring information through chats and diagrams

14. Writing reviews after watching statements

Experiments

CALL LAB: Open ended experiments-phonetics practice.

ICS LAB: Providing reviews and remarks

Activities

a) Writing three term labels for vowels

b) Writing three term labels for consonants

c) Practice on giving reviews and remarks

15. Experiments on text to speech and writing slogans

Experiments

CALL LAB: Open-ended experiments-text to speech.

ICS LAB: Writing slogan related to the image

Activities

a) Practice through streaming video lessons

b) Training on creating dialogues and stories

c) Practice on designing and writing slogans

V. TEXT BOOKS:

1. Professional Communication laboratory manual

VI. REFERENCE BOOK

1. Meenakshi Raman, Sangeetha Sharma, Technical Communication Principles and Practices, Oxford

 University Press, New Delhi, 3rd Edition, 2015.

2. Rhirdion, Daniel, Technical Communication, Cengage Learning, New Delhi, 1st Edition, 2009.

49 | P a g e

VII. ELECTRONICS RESOURCES

1. Cambridge online pronunciation dictionary https://dictionary.cambridge.org/

2. Fluentu website https://www.fluentu.com/

3. Repeat after us https://brycs.org/clearinghouse/3018/

4. Language lab https://brycs.org/clearinghouse/3018/

5. Oxford online videos

VIII. MATERIALS ONLINE

1. Course template

2. Lab manual

50 | P a g e

COURSE CONTENT

OBJECT ORIENTED PROGRAMMING WITH JAVA LABORATORY

I Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSD02 Foundation
L T P C CIA SEE Total

0 1 2 2 40 60 100

 Contact Classes: 15 Tutorial Classes: NIL Practical Classes: 30 Total Classes: 45

Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

This course provides a solid foundation in object-oriented programming concepts and hands-on experience in

using them. It introduces the concepts of abstraction and reusable code design via the object-oriented paradigm.

Through a series of examples and exercises students gain coding skills and develop an understanding of

professional programming practices. Mastering Java facilitate the learning of other technologies.

II. COURSES OBJECTIVES:

 The students will try to learn

I. The strong foundation with the Java Virtual Machine, its concepts and features.

II. The systematic understanding of key aspects of the Java Class Library

III. The usage of a modern IDE with an object oriented programming language to develop programs.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO 1 Develop non-trivial programs in an modern programming language.

CO 2 Apply the principles of selection and iteration.

CO 3 Appreciate uses of modular programming concepts for handling complex problems.

CO 4 Recognize and apply principle features of object-oriented design such as abstraction and

encapsulation.

CO 5 Design classes with a view of flexibility and reusability.

CO 6 Code, test and evaluate small use cases to conform to a specification.

51 | P a g e

IV. COURE CONTENT:

EXERCISES FOR OBJECT ORIENTED PROGRAMMING WITH JAVA LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory practice sessions .

1. Getting Started Exercises

1.1 HelloWorld

1. Install JDK on your machine.

2. Write a Hello-world program using JDK and a source-code editor, such as:

o For All Platforms: Sublime Text, Atom

o For Windows: TextPad, NotePad++

o For macOS: jEdit, gedit

o For Ubuntu: gedit

3. Do ALL the exercises.

1.2 Writing Good Programs

The only way to learn programming is program, program and program. Learning programming is like learning

cycling, swimming or any other sports. You can't learn by watching or reading books. Start to program

immediately. On the other hands, to improve your programming, you need to read many books and study how

the masters program.

It is easy to write programs that work. It is much harder to write programs that not only work but also easy to

maintain and understood by others – I call these good programs. In the real world, writing program is not

meaningful. You have to write good programs, so that others can understand and maintain your programs.

Pay particular attention to:

1. Coding Style:

o Read "Java Code Convention" (@ https://www.oracle.com/technetwork/java/codeconventions-

150003.pdf or google "Java Code Convention").

o Follow the Java Naming Conventions for variables, methods, and classes STRICTLY.

Use CamelCase for names. Variable and method names begin with lowercase, while class names

begin with uppercase. Use nouns for variables (e.g., radius) and class names (e.g., Circle). Use

verbs for methods (e.g., getArea(), isEmpty()).

o Use Meaningful Names: Do not use names like a, b, c, d, x, x1, x2, and x1688 - they are

meaningless. Avoid single-alphabet names like i, j, k. They are easy to type, but usually

meaningless. Use single-alphabet names only when their meaning is clear, e.g., x, y, z for co-

ordinates and i for array index. Use meaningful names like row and col (instead

of x and y, i and j, x1 and x2), numStudents (not n), maxGrade, size (not n),

and upperbound (not n again). Differentiate between singular and plural nouns (e.g., use books for

an array of books, and book for each item).

o Use consistent indentation and coding style. Many IDEs (such as Eclipse/NetBeans) can re-format

your source codes with a single click.

2. Program Documentation: Comment! Comment! and more Comment to explain your code to other people

and to yourself three days later.

1.3 Check Pass Fail (if-else)

Write a program called CheckPassFail which prints "PASS" if the int variable "mark" is more than or equal

to 50; or prints "FAIL" otherwise. The program shall always print “DONE” before exiting.

Hints

Use >= for greater than or equal to comparison.

 /* Trying if-else statement.

 */

public class CheckPassFail { // Save as "CheckPassFail.java"

 public static void main(String[] args) { // Program entry point

 int mark = 49; // Set the value of "mark" here!

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf

52 | P a g e

 System.out.println("The mark is " + mark);

 // if-else statement

 if (......) {

 System.out.println(......);

 } else {

 System.out.println(......);

 }

 System.out.println(......);

 }

}

Try

mark = 0, 49, 50, 51, 100 and verify your results.

Take note of the source-code indentation!!! Whenever you open a block with '{', indent all the statements

inside the block by 3 (or 4 spaces). When the block ends, un-indent the closing '}' to align with the opening

statement.

1.4 CheckOddEven (if-else)

Write a program called CheckOddEven which prints "Odd Number" if the int variable “number” is odd, or

“Even Number” otherwise. The program shall always print “bye!” before exiting.

Hints

n is an even number if (n % 2) is 0; otherwise, it is an odd number. Use == for comparison, e.g., (n % 2) == 0.

/**

 * Trying if-else statement and modulus (%) operator.

 */

public class CheckOddEven { // Save as "CheckOddEven.java"

 public static void main(String[] args) { // Program entry point

 int number = 49; // Set the value of "number" here!

 System.out.println("The number is " + number);

 if (......) {

 System.out.println(......); // even number

 } else {

 System.out.println(......); // odd number

 }

 System.out.println(......);

 }

}

Try

number = 0, 1, 88, 99, -1, -2 and verify your results.

Again, take note of the source-code indentation! Make it a good habit to ident your code properly, for ease of

reading your program.

1.5 PrintNumberInWord (nested-if, switch-case)

Write a program called PrintNumberInWord which prints "ONE", "TWO",... , "NINE", "OTHER" if

the int variable "number" is 1, 2,... , 9, or other, respectively. Use (a) a "nested-if" statement; (b) a "switch-case-

default" statement.

Hints

/**

 * Trying nested-if and switch-case statements.

 */

public class PrintNumberInWord { // Save as "PrintNumberInWord.java"

53 | P a g e

 public static void main(String[] args) {

 int number = 5; // Set the value of "number" here!

 // Using nested-if

 if (number == 1) { // Use == for comparison

 System.out.println(......);

 } else if (......) {

 } else if (......) {

 } else {

 }

 // Using switch-case-default

 switch(number) {

 case 1:

 System.out.println(......); break; // Don't forget the "break" after each case!

 case 2:

 System.out.println(......); break;

 default: System.out.println(......);

 }

 }

}

Try

number = 0, 1, 2, 3, ..., 9, 10 and verify your results.

1.6 PrintDayInWord (nested-if, switch-case)

Write a program called PrintDayInWord which prints “Sunday”, “Monday”, ... “Saturday” if the int variable

"dayNumber" is 0, 1, ..., 6, respectively. Otherwise, it shall print "Not a valid day". Use (a) a "nested-if"

statement; (b) a "switch-case-default" statement.

Try

dayNumber = 0, 1, 2, 3, 4, 5, 6, 7 and verify your results.

2. Exercises on Number Systems (for Science/Engineering Students)

To be proficient in programming, you need to be able to operate on these number systems:

1. Decimal (used by human beings for input and output)

2. Binary (used by computer for storage and processing)

3. Hexadecimal (shorthand or compact form for binary)

2.1 Exercises (Number Systems Conversion)

1. Convert the following decimal numbers into binary and hexadecimal numbers:

a. 108

b. 4848

c. 9000

 Convert the following binary numbers into hexadecimal and decimal numbers:

a. 10000000

b. 101010101010

c. 1000011000

 Convert the following hexadecimal numbers into binary and decimal numbers:

54 | P a g e

a. 1234

b. 80F

c. ABCDE

 Convert the following decimal numbers into binary equivalent:

a. 123.456D

b. 19.25D

2.2 Exercise (Integer Representation)

1. What are the ranges of 8-bit, 16-bit, 32-bit and 64-bit integer, in "unsigned" and "signed"

representation?

2. Give the value of 88, 0, 1, 127, and 255 in 8-bit unsigned representation.

3. Give the value of +88, -88 , -1, 0, +1, -128, and +127 in 8-bit 2's complement signed representation.

4. Give the value of +88, -88 , -1, 0, +1, -127, and +127 in 8-bit sign-magnitude representation.

5. Give the value of +88, -88 , -1, 0, +1, -127 and +127 in 8-bit 1's complement representation.

2.3 Exercises (Floating-point Numbers)

1. Compute the largest and smallest positive numbers that can be represented in the 32-bit normalized

form.

2. Compute the largest and smallest negative numbers can be represented in the 32-bit normalized form.

3. Repeat (1) for the 32-bit denormalized form.

4. Repeat (2) for the 32-bit denormalized form.

Hints:

1. Largest positive number: S=0, E=1111 1110 (254), F=111 1111 1111 1111 1111 1111.

Smallest positive number: S=0, E=0000 00001 (1), F=000 0000 0000 0000 0000 0000.

2. Same as above, but S=1.

3. Largest positive number: S=0, E=0, F=111 1111 1111 1111 1111 1111.

Smallest positive number: S=0, E=0, F=000 0000 0000 0000 0000 0001.

4. Same as above, but S=1.

2.4 Exercises (Data Representation)

For the following 16-bit codes:

0000 0000 0010 1010;

1000 0000 0010 1010;

Give their values, if they are representing:

1. a 16-bit unsigned integer;

2. a 16-bit signed integer;

3. two 8-bit unsigned integers;

4. two 8-bit signed integers;

5. a 16-bit Unicode characters;

6. two 8-bit ISO-8859-1 characters.

3. Exercises on Decision and Loop

3.1 SumAverageRunningInt (Decision & Loop)

Write a program called SumAverageRunningInt to produce the sum of 1, 2, 3, ..., to 100. Store 1 and 100 in

variables lowerbound and upperbound, so that we can change their values easily. Also compute and display the

average.

The output shall look like:

The sum of 1 to 100 is 5050

55 | P a g e

The average is 50.5

Hints

/**

 * Compute the sum and average of running integers from a lowerbound to an upperbound using loop.

 */

public class SumAverageRunningInt { // Save as "SumAverageRunningInt.java"

 public static void main (String[] args) {

 // Define variables

 int sum = 0; // The accumulated sum, init to 0

 double average; // average in double

 final int LOWERBOUND = 1;

 final int UPPERBOUND = 100;

 // Use a for-loop to sum from lowerbound to upperbound

 for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {

 // The loop index variable number = 1, 2, 3, ..., 99, 100

 sum += number; // same as "sum = sum + number"

 }

 // Compute average in double. Beware that int / int produces int!

 // Print sum and average

 }

}

Try

1. Modify the program to use a "while-do" loop instead of "for" loop.

int sum = 0;

 int number = LOWERBOUND; // declare and init loop index variable

 while (number <= UPPERBOUND) { // test

 sum += number;

 ++number; // update

 }

2. Modify the program using do-while loop

int sum = 0;

 int number = LOWERBOUND; // declare and init loop index variable

 do {

 sum += number;

 ++number; // update

 } while (number <= UPPERBOUND); // test

3. What is the difference between "for" and "while-do" loops? What is the difference between "while-do" and

"do-while" loops?

4. Modify the program to sum from 111 to 8899, and compute the average. Introduce an int variable

called count to count the numbers in the specified range (to be used in computing the average).

5. Modify the program to find the "sum of the squares" of all the numbers from 1 to 100, i.e. 1*1 + 2*2 + 3*3 +

... + 100*100.

6. Modify the program to produce two sums: sum of odd numbers and sum of even numbers from 1 to 100.

Also computer their absolute difference.

3.2 Product1ToN (or Factorial) (Decision & Loop)

Write a program called Product1ToN to compute the product of integers from 1 to 10 (i.e., 1×2×3×...×10), as an

int. Take note that It is the same as factorial of N.

56 | P a g e

Hints

Declare an int variable called product, initialize to 1, to accumulate the product.

 // Define variables

 int product = 1; // The accumulated product, init to 1

 final int LOWERBOUND = 1;

 final int UPPERBOUND = 10;

Try

1. Compute the product from 1 to 11, 1 to 12, 1 to 13 and 1 to 14. Write down the product obtained and

decide if the results are correct.

HINTS: Factorial of 13 (=6227020800) is outside the range of int [-2147483648, 2147483647]. Take

note that computer programs may not produce the correct result even though the code seems correct!

2. Repeat the above, but use long to store the product. Compare the products obtained

with int for N=13 and N=14.

HINTS: With long, you can store factorial of up to 20.

3.3 HarmonicSum (Decision & Loop)

Write a program called HarmonicSum to compute the sum of a harmonic series, as shown below,

where n=50000. The program shall compute the sum from left-to-right as well as from the right-to-left. Are the

two sums the same? Obtain the absolute difference between these two sums and explain the difference. Which

sum is more accurate?

Hints

/**

 * Compute the sum of harmonics series from left-to-right and right-to-left.

 */

public class HarmonicSum { // Save as "HarmonicSum.java"

 public static void main (String[] args) {

 // Define variables

 final int MAX_DENOMINATOR = 50000; // Use a more meaningful name instead of n

 double sumL2R = 0.0; // Sum from left-to-right

 double sumR2L = 0.0; // Sum from right-to-left

 double absDiff; // Absolute difference between the two sums

 // for-loop for summing from left-to-right

 for (int denominator = 1; denominator <= MAX_DENOMINATOR; ++denominator) {

 // denominator = 1, 2, 3, 4, 5, ..., MAX_DENOMINATOR

 // Beware that int/int gives int, e.g., 1/2 gives 0.

 }

 System.out.println("The sum from left-to-right is: " + sumL2R);

 // for-loop for summing from right-to-left

 // Find the absolute difference and display

 if (sumL2R > sumR2L)

 else

 }

}

57 | P a g e

3.4 ComputePI (Decision & Loop)

Write a program called ComputePI to compute the value of π, using the following series expansion. Use the

maximum denominator (MAX_DENOMINATOR) as the terminating condition.

Try MAX_DENOMINATOR of 1000, 10000, 100000, 1000000 and compare the PI obtained. Is this series

suitable for computing PI? Why?

Hints

Add to sum if the denominator % 4 is 1, and subtract from sum if it is 3.

 double sum = 0.0;

 int MAX_DENOMINATOR = 1000; // Try 10000, 100000, 1000000

 for (int denominator = 1; denominator <= MAX_DENOMINATOR; denominator += 2) {

 // denominator = 1, 3, 5, 7, ..., MAX_DENOMINATOR

 if (denominator % 4 == 1) {

 sum +=;

 } else if (denominator % 4 == 3) {

 sum -=;

 } else { // remainder of 0 or 2

 System.out.println("Impossible!!!");

 }

 }

Try

1. Instead of using maximum denominator as the terminating condition, rewrite your program to use the

maximum number of terms (MAX_TERM) as the terminating condition.

int MAX_TERM = 10000; // number of terms used in computation

 int sum = 0.0;

 for (int term = 1; term <= MAX_TERM; term++) {

 // term = 1, 2, 3, 4, ..., MAX_TERM

 if (term % 2 == 1) { // odd term number: add

 sum += 1.0 / (term * 2 - 1);

 } else { // even term number: subtract

 }

 }

2. JDK maintains the value of π in a built-in double constant called Math.PI (=3.141592653589793). Add a

statement to compare the values obtained and the Math.PI, in percents of Math.PI, i.e., (piComputed / Math.PI)

* 100.

3.5 CozaLozaWoza (Decision & Loop)

Write a program called CozaLozaWoza which prints the numbers 1 to 110, 11 numbers per line. The program

shall print "Coza" in place of the numbers which are multiples of 3, "Loza" for multiples of 5, "Woza" for

multiples of 7, "CozaLoza" for multiples of 3 and 5, and so on. The output shall look like:

1 2 Coza 4 Loza Coza Woza 8 Coza Loza 11

Coza 13 Woza CozaLoza 16 17 Coza 19 Loza CozaWoza 22

23 Coza Loza 26 Coza Woza 29 CozaLoza 31 32 Coza

......

Hints

58 | P a g e

public class CozaLozaWoza { // Save as "CozaLozaWoza.java"

 public static void main(String[] args) {

 final int LOWERBOUND = 1, UPPERBOUND = 110;

 for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {

 // number = LOWERBOUND+1, LOWERBOUND+2, ..., UPPERBOUND

 // Print "Coza" if number is divisible by 3

 if (......) {

 System.out.print("Coza");

 }

 // Print "Loza" if number is divisible by 5

 if (......) {

 System.out.print(.....);

 }

 // Print "Woza" if number is divisible by 7

 // Print the number if it is not divisible by 3, 5 and 7 (i.e., it has not been processed above)

 if (......) {

 }

 // After processing the number, print a newline if number is divisible by 11;

 // else print a space

 if (......) {

 System.out.println(); // print newline

 } else {

 System.out.print(......); // print a space

 }

 }

 }

}

Notes

1. You cannot use nested-if (if ... else if ... else if ... else) for this problem. It is because the tests are not

mutually exclusive. For example, 15 is divisible by both 3 and 5. Nested-if is only applicable if the tests

are mutually exclusive.

2. The tests above look messy. A better solution is to use a boolean flag to keep track of whether the

number has been processed, as follows:

 final int LOWERBOUND = 1, UPPERBOUND = 110;

 boolean printed;

 for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {

 printed = false; // init before processing each number

 // Print "Coza" if number is divisible by 3

 if (......) {

 System.out.print(......);

 printed = true; // processed!

 }

 // Print "Loza" if number is divisible by 5

 if (......) {

 System.out.print(.....);

 printed = true; // processed!

 }

 // Print "Woza" if number is divisible by 7

 // Print the number if it has not been processed

 if (!printed) {

 }

 // After processing the number, print a newline if it is divisible by 11;

59 | P a g e

 // else, print a space

 }

3.6 Fibonacci (Decision & Loop)

Write a program called Fibonacci to print the first 20 Fibonacci numbers F(n), where F(n)=F(n–1)+F(n–

2) and F(1)=F(2)=1. Also compute their average. The output shall look like:

The first 20 Fibonacci numbers are:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

The average is 885.5

Hints

/**

 * Print first 20 Fibonacci numbers and their average

 */

public class Fibonacci {

 public static void main (String[] args) {

 int n = 3; // The index n for F(n), starting from n=3, as n=1 and n=2 are pre-defined

 int fn; // F(n) to be computed

 int fnMinus1 = 1; // F(n-1), init to F(2)

 int fnMinus2 = 1; // F(n-2), init to F(1)

 int nMax = 20; // maximum n, inclusive

 int sum = fnMinus1 + fnMinus2; // Need sum to compute average

 double average;

 System.out.println("The first " + nMax + " Fibonacci numbers are:");

 while (n <= nMax) { // n starts from 3

 // n = 3, 4, 5, ..., nMax

 // Compute F(n), print it and add to sum

 // Increment the index n and shift the numbers for the next iteration

 ++n;

 fnMinus2 = fnMinus1;

 fnMinus1 = fn;

 }

 // Compute and display the average (=sum/nMax).

 // Beware that int/int gives int.

 }

}

Try

1. Tribonacci numbers are a sequence of numbers T(n) similar to Fibonacci numbers, except that a

number is formed by adding the three previous numbers, i.e., T(n)=T(n-1)+T(n-2)+T(n-3), T(1) =T(2)=1,

and T(3)=2. Write a program called Tribonacci to produce the first twenty Tribonacci numbers.

3.7 ExtractDigits (Decision & Loop)

Write a program called ExtractDigits to extract each digit from an int, in the reverse order. For example, if

the int is 15423, the output shall be "3 2 4 5 1", with a space separating the digits.

Hints

60 | P a g e

The coding pattern for extracting individual digits from an integer n is:

1. Use (n % 10) to extract the last (least-significant) digit.

2. Use n = n / 10 to drop the last (least-significant) digit.

3. Repeat if (n > 0), i.e., more digits to extract.

Take note that n is destroyed in the process. You may need to clone a copy.

 int n = ...;

 while (n > 0) {

 int digit = n % 10; // Extract the least-significant digit

 // Print this digit

 n = n / 10; // Drop the least-significant digit and repeat the loop

 }

4. Exercises on Input, Decision and Loop

4.1 Add2Integer (Input)

Write a program called Add2Integers that prompts user to enter two integers. The program shall read the two

integers as int; compute their sum; and print the result. For example,

Enter first integer: 8

Enter second integer: 9

The sum is: 17

Hints

import java.util.Scanner; // For keyboard input

/**

 * 1. Prompt user for 2 integers

 * 2. Read inputs as "int"

 * 3. Compute their sum in "int"

 * 4. Print the result

 */

public class Add2Integers { // Save as "Add2Integers.java"

 public static void main (String[] args) {

 // Declare variables

 int number1, number2, sum;

 // Put up prompting messages and read inputs as "int"

 Scanner in = new Scanner(System.in); // Scan the keyboard for input

 System.out.print("Enter first integer: "); // No newline for prompting message

 number1 = in.nextInt(); // Read next input as "int"

 in.close(); // Close Scanner

 // Compute sum

 sum =

 // Display result

 System.out.println("The sum is: " + sum); // Print with newline

 }

}

4.2 SumProductMinMax3 (Arithmetic & Min/Max)

Write a program called SumProductMinMax3 that prompts user for three integers. The program shall read the

inputs as int; compute the sum, product, minimum and maximum of the three integers; and print the results. For

example,

61 | P a g e

Enter 1st integer: 8

Enter 2nd integer: 2

Enter 3rd integer: 9

The sum is: 19

The product is: 144

The min is: 2

The max is: 9

Hints

 // Declare variables

 int number1, number2, number3; // The 3 input integers

 int sum, product, min, max; // To compute these

 // Prompt and read inputs as "int"

 Scanner in = new Scanner(System.in); // Scan the keyboard

 in.close();

 // Compute sum and product

 sum =

 product =

 // Compute min

 // The "coding pattern" for computing min is:

 // 1. Set min to the first item

 // 2. Compare current min with the second item and update min if second item is smaller

 // 3. Repeat for the next item

 min = number1; // Assume min is the 1st item

 if (number2 < min) { // Check if the 2nd item is smaller than current min

 min = number2; // Update min if so

 }

 if (number3 < min) { // Continue for the next item

 min = number3;

 }

 // Compute max - similar to min

 // Print results

Try

1. Write a program called SumProductMinMax5 that prompts user for five integers. The program shall

read the inputs as int; compute the sum, product, minimum and maximum of the five integers; and print

the results. Use five int variables: number1, number2, ..., number5 to store the inputs.

4.3 CircleComputation (double & printf())

Write a program called CircleComputation that prompts user for the radius of a circle in floating point number.

The program shall read the input as double; compute the diameter, circumference, and area of the circle

in double; and print the values rounded to 2 decimal places. Use System-provided constant Math.PI for pi. The

formulas are:

diameter = 2.0 * radius;

area = Math.PI * radius * radius;

circumference = 2.0 * Math.PI * radius;

Hints

62 | P a g e

 // Declare variables

 double radius, diameter, circumference, area; // inputs and results - all in double

 // Prompt and read inputs as "double"

 System.out.print("Enter the radius: ");

 radius = in.nextDouble(); // read input as double

 // Compute in "double"

 // Print results using printf() with the following format specifiers:

 // %.2f for a double with 2 decimal digits

 // %n for a newline

 System.out.printf("Diameter is: %.2f%n", diameter);

Try

1. Write a program called SphereComputation that prompts user for the radius of a sphere in floating point

number. The program shall read the input as double; compute the volume and surface area of the sphere

in double; and print the values rounded to 2 decimal places. The formulas are:

surfaceArea = 4 * Math.PI * radius * radius;

volume = 4 /3 * Math.PI * radius * radius * radius; // But this does not work in programming?! Why?

Take note that you cannot name the variable surface area with a space or surface-area with a dash. Java's naming

convention is surfaceArea. Other languages recommend surface_area with an underscore.

2. Write a program called CylinderComputation that prompts user for the base radius and height of a cylinder

in floating point number. The program shall read the inputs as double; compute the base area, surface area, and

volume of the cylinder; and print the values rounded to 2 decimal places. The formulas are:

baseArea = Math.PI * radius * radius;

surfaceArea = 2.0 * Math.PI * radius + 2.0 * baseArea;

volume = baseArea * height;

4.4 Swap2Integers

Write a program called Swap2Integers that prompts user for two integers. The program shall read the inputs

as int, save in two variables called number1 and number2; swap the contents of the two variables; and print the

results. For examples,

Enter first integer: 9

Enter second integer: -9

After the swap, first integer is: -9, second integer is: 9

Hints

To swap the contents of two variables x and y, you need to introduce a temporary storage, say temp, and

do: temp ⇐ x; x ⇐ y; y ⇐ temp.

4.5 IncomeTaxCalculator (Decision)

The progressive income tax rate is mandated as follows:

Taxable Income Rate (%)

63 | P a g e

First $20,000 0

Next $20,000 10

Next $20,000 20

The remaining 30

For example, suppose that the taxable income is $85000, the income tax payable is $20000*0% + $20000*10%

+ $20000*20% + $25000*30%.

Write a program called IncomeTaxCalculator that reads the taxable income (in int). The program shall

calculate the income tax payable (in double); and print the result rounded to 2 decimal places. For examples,

Enter the taxable income: $41234

The income tax payable is: $2246.80

Enter the taxable income: $67891

The income tax payable is: $8367.30

Enter the taxable income: $85432

The income tax payable is: $13629.60

Enter the taxable income: $12345

The income tax payable is: $0.00

Hints

 // Declare constants first (variables may use these constants)

 // The keyword "final" marked these as constant (i.e., cannot be changed).

 // Use uppercase words joined with underscore to name constants

 final double TAX_RATE_ABOVE_20K = 0.1;

 final double TAX_RATE_ABOVE_40K = 0.2;

 final double TAX_RATE_ABOVE_60K = 0.3;

 // Declare variables

 int taxableIncome;

 double taxPayable;

 // Compute tax payable in "double" using a nested-if to handle 4 cases

 if (taxableIncome <= 20000) { // [0, 20000]

 taxPayable =;

 } else if (taxableIncome <= 40000) { // [20001, 40000]

 taxPayable =;

 } else if (taxableIncome <= 60000) { // [40001, 60000]

 taxPayable =;

 } else { // [60001,]

 taxPayable =;

 }

 // Alternatively, you could use the following nested-if conditions

 // but the above follows the table data

 //if (taxableIncome > 60000) { // [60001,]

 //

 //} else if (taxableIncome > 40000) { // [40001, 60000]

 //

 //} else if (taxableIncome > 20000) { // [20001, 40000]

 //

 //} else { // [0, 20000]

 //

 //}

 // Print results rounded to 2 decimal places

 System.out.printf("The income tax payable is: $%.2f%n", ...);

Try

64 | P a g e

Suppose that a 10% tax rebate is announced for the income tax payable, capped at $1,000, modify your program

to handle the tax rebate. For example, suppose that the tax payable is $12,000, the rebate is $1,000,

as 10% of $12,000 exceed the cap.

4.6 IncomeTaxCalculatorWithSentinel (Decision & Loop)

Based on the previous exercise, write a program called IncomeTaxCalculatorWithSentinel which shall repeat

the calculation until user enter -1. For example,

Enter the taxable income (or -1 to end): $41000

The income tax payable is: $2200.00

Enter the taxable income (or -1 to end): $62000

The income tax payable is: $6600.00

Enter the taxable income (or -1 to end): $73123

The income tax payable is: $9936.90

Enter the taxable income (or -1 to end): $84328

The income tax payable is: $13298.40

Enter the taxable income: $-1

bye!

The -1 is known as the sentinel value. (Wiki: In programming, a sentinel value, also referred to as a flag value,

trip value, rogue value, signal value, or dummy data, is a special value which uses its presence as a condition of

termination.)

Hints

The coding pattern for handling input with sentinel value is as follows:

 // Declare constants first

 final int SENTINEL = -1; // Terminating value for input

 // Declare variables

 int taxableIncome;

 double taxPayable;

 // Read the first input to "seed" the while loop

 System.out.print("Enter the taxable income (or -1 to end): $");

 taxableIncome = in.nextInt();

 while (taxableIncome != SENTINEL) {

 // Compute tax payable

 // Print result

 // Read the next input

 System.out.print("Enter the taxable income (or -1 to end): $");

 taxableIncome = in.nextInt();

 // Repeat the loop body, only if the input is not the SENTINEL value.

 // Take note that you need to repeat these two statements inside/outside the loop!

 }

 System.out.println("bye!");

Take note that we repeat the input statements inside and outside the loop. Repeating statements is NOT a good

programming practice. This is because it is easy to repeat (Cntl-C/Cntl-V), but hard to maintain and synchronize

the repeated statements. In this case, we have no better choices!

4.7 PensionContributionCalculatorWithSentinel (Decision & Loop)

65 | P a g e

Based on the previous PensionContributionCalculator,

write a program called PensionContributionCalculatorWithSentinel which shall repeat the calculations until

user enter -1 for the salary. For examples,

Enter the monthly salary (or -1 to end): $5123

Enter the age: 21

The employee's contribution is: $1024.60

The employer's contribution is: $870.91

The total contribution is: $1895.51

Enter the monthly salary (or -1 to end): $5123

Enter the age: 64

The employee's contribution is: $384.22

The employer's contribution is: $461.07

The total contribution is: $845.30

Enter the monthly salary (or -1 to end): $-1

bye!

Hints

 // Read the first input to "seed" the while loop

 System.out.print("Enter the monthly salary (or -1 to end): $");

 salary = in.nextInt();

 while (salary != SENTINEL) {

 // Read the remaining

 System.out.print("Enter the age: ");

 age = in.nextInt();

 // Read the next input and repeat

 System.out.print("Enter the monthly salary (or -1 to end): $");

 salary = in.nextInt();

 }

4.8 SalesTaxCalculator (Decision & Loop)

A sales tax of 7% is levied on all goods and services consumed. It is also mandatory that all the price tags

should include the sales tax. For example, if an item has a price tag of $107, the actual price is $100 and $7 goes

to the sales tax.

Write a program using a loop to continuously input the tax-inclusive price (in double); compute the actual price

and the sales tax (in double); and print the results rounded to 2 decimal places. The program shall terminate in

response to input of -1; and print the total price, total actual price, and total sales tax. For examples,

Enter the tax-inclusive price in dollars (or -1 to end): 107

Actual Price is: $100.00, Sales Tax is: $7.00

Enter the tax-inclusive price in dollars (or -1 to end): 214

Actual Price is: $200.00, Sales Tax is: $14.00

Enter the tax-inclusive price in dollars (or -1 to end): 321

Actual Price is: $300.00, Sales Tax is: $21.00

Enter the tax-inclusive price in dollars (or -1 to end): -1

Total Price is: $642.00

Total Actual Price is: $600.00

Total Sales Tax is: $42.00

66 | P a g e

Hints

 // Declare constants

 final double SALES_TAX_RATE = 0.07;

 final int SENTINEL = -1; // Terminating value for input

 // Declare variables

 double price, actualPrice, salesTax; // inputs and results

 double totalPrice = 0.0, totalActualPrice = 0.0, totalSalesTax = 0.0; // to accumulate

 // Read the first input to "seed" the while loop

 System.out.print("Enter the tax-inclusive price in dollars (or -1 to end): ");

 price = in.nextDouble();

 while (price != SENTINEL) {

 // Compute the tax

 // Accumulate into the totals

 // Print results

 // Read the next input and repeat

 System.out.print("Enter the tax-inclusive price in dollars (or -1 to end): ");

 price = in.nextDouble();

 }

 // print totals

4.9 ReverseInt (Loop with Modulus/Divide)

Write a program that prompts user for a positive integer. The program shall read the input as int; and print the

"reverse" of the input integer. For examples,

Enter a positive integer: 12345

The reverse is: 54321

Hints

Use the following coding pattern which uses a while-loop with repeated modulus/divide operations to extract

and drop the last digit of a positive integer.

 // Declare variables

 int inNumber; // to be input

 int inDigit; // each digit

 // Extract and drop the "last" digit repeatably using a while-loop with modulus/divide operations

 while (inNumber > 0) {

 inDigit = inNumber % 10; // extract the "last" digit

 // Print this digit (which is extracted in reverse order)

 inNumber /= 10; // drop "last" digit and repeat

 }

67 | P a g e

4.10 SumOfDigitsInt (Loop with Modulus/Divide)

Write a program that prompts user for a positive integer. The program shall read the input as int; compute and

print the sum of all its digits. For examples,

Enter a positive integer: 12345

The sum of all digits is: 15

Hints

See "ReverseInt".

4.11 InputValidation (Loop with boolean flag)

Your program often needs to validate the user's inputs, e.g., marks shall be between 0 and 100.

Write a program that prompts user for an integer between 0-10 or 90-100. The program shall read the input

as int; and repeat until the user enters a valid input. For examples,

Enter a number between 0-10 or 90-100: -1

Invalid input, try again...

Enter a number between 0-10 or 90-100: 50

Invalid input, try again...

Enter a number between 0-10 or 90-100: 101

Invalid input, try again...

Enter a number between 0-10 or 90-100: 95

You have entered: 95

Hints

Use the following coding pattern which uses a do-while loop controlled by a boolean flag to do input validation.

We use a do-while instead of while-do loop as we need to execute the body to prompt and process the input at

least once.

 // Declare variables

 int numberIn; // to be input

 boolean isValid; // boolean flag to control the loop

 // Use a do-while loop controlled by a boolean flag

 // to repeatably read the input until a valid input is entered

 isValid = false; // default assuming input is not valid

 do {

 // Prompt and read input

 // Validate input by setting the boolean flag accordingly

 if (numberIn) {

 isValid = true; // exit the loop

 } else {

 System.out.println(......); // Print error message and repeat

 }

 } while (!isValid);

4.12 AverageWithInputValidation (Loop with boolean flag)

Write a program that prompts user for the mark (between 0-100 in int) of 3 students; computes the average

(in double); and prints the result rounded to 2 decimal places. Your program needs to perform input validation.

For examples,

68 | P a g e

Enter the mark (0-100) for student 1: 56

Enter the mark (0-100) for student 2: 101

Invalid input, try again...

Enter the mark (0-100) for student 2: -1

Invalid input, try again...

Enter the mark (0-100) for student 2: 99

Enter the mark (0-100) for student 3: 45

The average is: 66.67

Hints

 // Declare constant

 final int NUM_STUDENTS = 3;

 // Declare variables

 int numberIn;

 boolean isValid; // boolean flag to control the input validation loop

 int sum = 0;

 double average;

 for (int studentNo = 1; studentNo <= NUM_STUDENTS; ++studentNo) {

 // Prompt user for mark with input validation

 isValid = false; // reset assuming input is not valid

 do {

 } while (!isValid);

 sum +=;

 }

5. Exercises on Nested-Loops

5.1 SquarePattern (nested-loop)

Write a program called SquarePattern that prompts user for the size (a non-negative integer in int); and prints

the following square pattern using two nested for-loops.

Enter the size: 5

Hints

The code pattern for printing 2D patterns using nested loops is:

 // Outer loop to print each of the rows

 for (int row = 1; row <= size; row++) { // row = 1, 2, 3, ..., size

 // Inner loop to print each of the columns of a particular row

 for (int col = 1; col <= size; col++) { // col = 1, 2, 3, ..., size

 System.out.print(......); // Use print() without newline inside the inner loop

 }

 // Print a newline after printing all the columns

 System.out.println();

69 | P a g e

 }

Notes

1. You should name the loop indexes row and col, NOT i and j, or x and y, or a and b, which are

meaningless.

2. The row and col could start at 1 (and upto size), or start at 0 (and upto size-1). As computer counts

from 0, it is probably more efficient to start from 0. However, since humans counts from 1, it is easier to

read if you start from 1.

Try

Rewrite the above program using nested while-do loops.

5.2 CheckerPattern (nested-loop)

Write a program called CheckerPattern that prompts user for the size (a non-negative integer in int); and prints

the following checkerboard pattern.

Enter the size: 7

 # # # # # # #

 # # # # # # #

 # # # # # # #

Hints

 // Outer loop to print each of the rows

 for (int row = 1; row <= size; row++) { // row = 1, 2, 3, ..., size

 // Inner loop to print each of the columns of a particular row

 for (int col = 1; col <= size; col++) { // col = 1, 2, 3, ..., size

 if ((row % 2) == 0) { // row 2, 4, 6, ...

 }

 System.out.print(......); // Use print() without newline inside the inner loop

 }

 // Print a newline after printing all the columns

 System.out.println();

 }

5.3 TimeTable (nested-loop)

Write a program called TimeTable that prompts user for the size (a positive integer in int); and prints the

multiplication table as shown:

Enter the size: 10

 * | 1 2 3 4 5 6 7 8 9 10

--

 1 | 1 2 3 4 5 6 7 8 9 10

 2 | 2 4 6 8 10 12 14 16 18 20

 3 | 3 6 9 12 15 18 21 24 27 30

 4 | 4 8 12 16 20 24 28 32 36 40

 5 | 5 10 15 20 25 30 35 40 45 50

 6 | 6 12 18 24 30 36 42 48 54 60

 7 | 7 14 21 28 35 42 49 56 63 70

 8 | 8 16 24 32 40 48 56 64 72 80

 9 | 9 18 27 36 45 54 63 72 81 90

70 | P a g e

10 | 10 20 30 40 50 60 70 80 90 100

Hints

1. Use printf() to format the output, e.g., each cell is %4d.

2. See "Java Basics" article.

5.4 TriangularPattern (nested-loop)

Write 4 programs called TriangularPatternX (X = A, B, C, D) that prompts user for the size (a non-negative

integer in int); and prints each of the patterns as shown:

Enter the size: 8

 (a) (b) (c) (d)

Hints

1. On the main diagonal, row = col. On the opposite diagonal, row + col = size + 1,

where row and col begin from 1.

2. You need to print the leading blanks, in order to push the # to the right. The trailing blanks are optional,

which does not affect the pattern.

3. For pattern (a), if (row >= col) print #. Trailing blanks are optional.

4. For pattern (b), if (row + col <= size + 1) print #. Trailing blanks are optional.

5. For pattern (c), if (row >= col) print #; else print blank. Need to print the leading blanks.

6. For pattern (d), if (row + col >= size + 1) print #; else print blank. Need to print the leading blanks.

7. The coding pattern is:

// Outer loop to print each of the rows

 for (int row = 1; row <= size; row++) { // row = 1, 2, 3, ..., size

 // Inner loop to print each of the columns of a particular row

 for (int col = 1; col <= size; col++) { // col = 1, 2, 3, ..., size

 if (......) {

 System.out.print("# ");

 } else {

 System.out.print(" "); // Need to print the "leading" blanks

 }

 }

 // Print a newline after printing all the columns

 System.out.println();

 }

5.5 BoxPattern (nested-loop)

Write 4 programs called BoxPatternX (X = A, B, C, D) that prompts user for the size (a non-negative integer

in int); and prints the pattern as shown:

Enter the size: 8

71 | P a g e

 (a) (b) (c) (d) (e)

Hints

1. On the main diagonal, row = col. On the opposite diagonal, row + col = size + 1,

where row and col begin from 1.

2. For pattern (a), if (row == 1 || row == size || col == 1 || col == size) print #; else print blank. Need to

print the intermediate blanks.

3. For pattern (b), if (row == 1 || row == size || row == col) print #; else print blank.

5.6 HillPattern (nested-loop)

Write 3 programs called HillPatternX (X = A, B, C, D) that prompts user for the size (a non-negative integer

in int); and prints the pattern as shown:

Enter the rows: 6

 # # # # # # # # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # # # # # # # #

 (a) (b) # # # # # # # # # # # # #

 # # # # # # # # # # # # #

 # # # # # # # # # # # # #

 # # # # # # # # # # # # #

 # # # # # # # # # # # #

 (c) (d)

Hints

For pattern (a):

for (int row = 1;) {

 // numCol = 2*numRows - 1

 for (int col = 1;) {

 if ((row + col >= numRows + 1) && (row >= col - numRows + 1)) {

 ;

 } else {

 ;

 }

 }

 ;

 }

or, use 2 sequential inner loops to print the columns:

 for (int row = 1; row <= rows; row++) {

 for (int col = 1; col <= rows; col++) {

 if ((row + col >= rows + 1)) {

 } else {

 }

72 | P a g e

 }

 for (int col = 2; col <= rows; col++) { // skip col = 1

 if (row >= col) {

 } else {

 }

 }

 }

5.7 NumberPattern (nested-loop)

Write 4 programs called NumberPatternX (X = A, B, C, D) that prompts user for the size (a non-negative

integer in int); and prints the pattern as shown:

Enter the size: 8

1 1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1

1 2 1 2 3 4 5 6 7 2 1 7 6 5 4 3 2 1

1 2 3 1 2 3 4 5 6 3 2 1 6 5 4 3 2 1

1 2 3 4 1 2 3 4 5 4 3 2 1 5 4 3 2 1

1 2 3 4 5 1 2 3 4 5 4 3 2 1 4 3 2 1

1 2 3 4 5 6 1 2 3 6 5 4 3 2 1 3 2 1

1 2 3 4 5 6 7 1 2 7 6 5 4 3 2 1 2 1

1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1 1

 (a) (b) (c) (d)

6. Magic(Special) Numbers

6.1. Amicable umbers

Two different numbers are said to be so Amicable numbers if each sum of divisors is equal to the other number.

Amicalble Numbers are: (220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368). For example,

Enter 1st number: 228

Enter 2nd number: 220

The numbers are Amicable Numbers.

Hints

220 and 284 are Amicable Numbers.

Divisors of 220 = 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110

1+2+4+5+10+11+20+22+44+55+110 = 284

Divisors of 284 = 1, 2, 4, 71, 142

1+2+4+71+142 = 220

6.2. Armstrong Number

Armstrong number is a positive number if it is equal to the sum of cubes of its digits is called Armstrong

number and if its sum is not equal to the number then it’s not a Armstrong number. For example,

Enter number=145

145 is not an Armstrong Number

Enter number = 153

73 | P a g e

153 is an Armstrong Number

Hints

Examples: 153 is Armstrong

(1*1*1)+(5*5*5)+(3*3*3) = 153

6.3. Capricorn Number

A number is called Capricorn or Kaprekar number whose square is divided into two parts in any conditions and

parts are added, the additions of parts is equal to the number, is called Capricorn or Kaprekar number. For

example,

Enter a number : 45

45 is a Capricorn/Kaprekar number

Enter a number : 297

297 is a Capricorn/Kaprekar number

Enter a number : 44

44 is not a Capricorn/Kaprekar number

Hints

Number = 45

(45)2 = 2025

All parts for 2025:

202 + 5 = 207 (not 45)

20 + 25 = 45

2+ 025 = 27 (not 45)

From the above we can see one combination is equal to number so that 45 is Capricorn or Kaprekar number.

Try

Write a Java program to generate and show all Kaprekar numbers less than 1000.

6.4. Circular Prime

A circular prime is a prime number with the property that the number generated at each intermediate step when

cyclically permuting its digits will be prime. For example, 1193 is a circular prime, since 1931, 9311 and 3119

all are also prime. For example,

Enter a number : 137

137 is a Circular Prime

Enter a number : 44

44 is not a Circular Prime

6.5. Happy Number

A happy number is a natural number in a given number base that eventually reaches 1 when iterated over the

perfect digital invariant function for. Those numbers that do not end in 1 are -unhappy numbers. For example,

Enter a number : 31

31 is a Happy number

Enter a number : 32

32 is not a Happy number

6.6. Automorphic Number

An Automorphic number is a number whose square “ends” in the same digits as the number itself. For example,

74 | P a g e

Enter a number : 5

5 is a Automorphic Number

Enter a number : 25

25 is a Automorphic Number

Enter a number : 2

2 is not a Automorphic Number

Hints

5*5 = 25, 6*6 = 36, 25*25 = 625

5,6,25 are automorphic numbers

6.7. Disarium Number

A number is called Disarium number if the sum of its power of the positions from left to right is equal to the

number. For example,

Enter a number : 135

135 is a Disarium Number

Enter a number : 32

32 is not a Disarium Number

Hints

11 + 32 + 53 = 1 + 9 + 125 = 135

6.8. Magic Number

Magic number is the if the sum of its digits recursively are calculated till a single digit If the single digit is 1

then the number is a magic number. Magic number is very similar with Happy Number. For example,

Enter a number : 226

226 is a Magic Number

Enter a number : 32

32 is not a Magic Number

Enter number = 541

153 is a Magic Number

Hints

226 is said to be a magic number

2+2+6=10 sum of digits is 10 then again 1+0=1 now we get a single digit number is 1.if we single digit number

will now 1 them it would not a magic number.

6.9. Neon Number

A neon number is a number where the sum of digits of square of the number is equal to the number. For

example if the input number is 9, its square is 9*9 = 81 and sum of the digits is 9. i.e. 9 is a neon number. For

example,

Enter a number: 9

9 is a Neon Number

Enter a number: 8

8 is not a Neon Number

75 | P a g e

6.10. Palindromic Number

A palindromic number is a number that remains the same when its digits are reversed. For example,

Enter a number : 16461

16461 is a Palendromic Number

Enter a number : 1234

1234 is not a Plaindromic Number

6.11. Perfect Number

A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number

itself. For instance, 6 has divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. For example,

Enter a number : 6

6 is a Perfect Number

Enter a number : 3

3 is not a Perfect Number

6.12. Special Number

A number is said to be special number when the sum of factorial of its digits is equal to the number itself.

Example- 145 is a Special Number as 1!+4!+5!=145. For example,

Enter a number : 145

145 is a Special Number

Enter a number : 23

23 is not a Special Number

6.13. Spy Number

A spy number is a number where the sum of its digits equals the product of its digits. For example, 1124 is a spy

number, the sum of its digits is 1+1+2+4=8 and the product of its digits is 1*1*2*4=8. For example,

Enter a number : 1124

1124 is a Spy Number

Enter a number : 12

12 is not a Spy Number

6.14. Ugly Number

A number is said to be an Ugly number if positive numbers whose prime factors only include 2, 3, 5. For

example, 6(2×3), 8(2x2x2), 15(3×5) are ugly numbers while 14(2×7) is not ugly since it includes another prime

factor 7. Note that 1 is typically treated as an ugly number. For example,

Enter a number : 6

6 is an Ugly Number

Enter a number : 14

14 is not an Ugly Number

7. Exercises on String and char Operations

7.1 ReverseString (String & char)

Write a program called ReverseString, which prompts user for a String, and prints the reverse of the String by

extracting and processing each character. The output shall look like:

Enter a String: abcdef

The reverse of the String "abcdef" is "fedcba".

76 | P a g e

Hints

For a String called inStr, you can use inStr.length() to get the length of the String; and inStr.charAt(idx) to

retrieve the char at the idx position, where idx begins at 0, up to instr.length() - 1.

 // Define variables

 String inStr; // input String

 int inStrLen; // length of the input String

 // Prompt and read input as "String"

 System.out.print("Enter a String: ");

 inStr = in.next(); // use next() to read a String

 inStrLen = inStr.length();

 // Use inStr.charAt(index) in a loop to extract each character

 // The String's index begins at 0 from the left.

 // Process the String from the right

 for (int charIdx = inStrLen - 1; charIdx >= 0; --charIdx) {

 // charIdx = inStrLen-1, inStrLen-2, ... ,0

 }

7.2 CountVowelsDigits (String & char)

Write a program called CountVowelsDigits, which prompts the user for a String, counts the number of vowels

(a, e, i, o, u, A, E, I, O, U) and digits (0-9) contained in the string, and prints the counts and the percentages

(rounded to 2 decimal places). For example,

Enter a String: testing12345

Number of vowels: 2 (16.67%)

Number of digits: 5 (41.67%)

Hints

1. To check if a char c is a digit, you can use boolean expression (c >= '0' && c <= '9'); or use built-

in boolean function Character.isDigit(c).

2. You could use in.next().toLowerCase() to convert the input String to lowercase to reduce the number of

cases.

3. To print a % using printf(), you need to use %%. This is because % is a prefix for format specifier

in printf(), e.g., %d and %f.

7.3 PhoneKeyPad (String & char)

On you phone keypad, the alphabets are mapped to digits as follows:

 ABC(2), DEF(3), GHI(4), JKL(5), MNO(6), PQRS(7), TUV(8), WXYZ(9).

Write a program called PhoneKeyPad, which prompts user for a String (case insensitive), and converts to a

sequence of keypad digits. Use (a) a nested-if, (b) a switch-case-default.

Hints

1. You can use in.next().toLowerCase() to read a String and convert it to lowercase to reduce your cases.

2. In switch-case, you can handle multiple cases by omitting the break statement, e.g.,

switch (inChar) {

 case 'a': case 'b': case 'c': // No break for 'a' and 'b', fall thru 'c'

 System.out.print(2); break;

77 | P a g e

 case 'd': case 'e': case 'f':

 default:

}

7.4 Caesar's Code (String & char)

Caesar's Code is one of the simplest encryption techniques. Each letter in the plaintext is replaced by a letter

some fixed number of position (n) down the alphabet cyclically. In this exercise, we shall pick n=3. That

is, 'A' is replaced by 'D', 'B' by 'E', 'C' by 'F', ..., 'X' by 'A', ..., 'Z' by 'C'.

Write a program called CaesarCode to cipher the Caesar's code. The program shall prompt user for a plaintext

string consisting of mix-case letters only; compute the ciphertext; and print the ciphertext in uppercase. For

example,

Enter a plaintext string: Testing

The ciphertext string is: WHVWLQJ

Hints

1. Use in.next().toUpperCase() to read an input string and convert it into uppercase to reduce the number

of cases.

2. You can use a big nested-if with 26 cases ('A'-'Z'). But it is much better to consider 'A' to 'W' as one

case; 'X', 'Y' and 'Z' as 3 separate cases.

3. Take note that char 'A' is represented as Unicode number 65 and char 'D' as 68. However, 'A' + 3 gives

68. This is because char + int is implicitly casted to int + int which returns an int value. To obtain

a char value, you need to perform explicit type casting using (char)('A' + 3). Try printing ('A' + 3) with

and without type casting.

7.5 Decipher Caesar's Code (String & char)

Write a program called DecipherCaesarCode to decipher the Caesar's code described in the previous exercise.

The program shall prompts user for a ciphertext string consisting of mix-case letters only; compute the plaintext;

and print the plaintext in uppercase. For example,

Enter a ciphertext string: wHVwLQJ

The plaintext string is: TESTING

7.6 Exchange Cipher (String & char)

This simple cipher exchanges 'A' and 'Z', 'B' and 'Y', 'C' and 'X', and so on.

Write a program called ExchangeCipher that prompts user for a plaintext string consisting of mix-case letters

only. You program shall compute the ciphertext; and print the ciphertext in uppercase. For examples,

Enter a plaintext string: abcXYZ

The ciphertext string is: ZYXCBA

Hints

1. Use in.next().toUpperCase() to read an input string and convert it into uppercase to reduce the number

of cases.

2. You can use a big nested-if with 26 cases ('A'-'Z'), or use the following relationship:

'A' + 'Z' == 'B' + 'Y' == 'C' + 'X' == ... == plainTextChar + cipherTextChar

Hence, cipherTextChar = 'A' + 'Z' - plainTextChar

7.7 TestPalindromicWord and TestPalindromicPhrase (String & char)

A word that reads the same backward as forward is called a palindrome, e.g., "mom", "dad", "racecar",

"madam", and "Radar" (case-insensitive).

78 | P a g e

Write a program called TestPalindromicWord, that prompts user for a word and prints ""xxx" is|is not a

palindrome".

A phrase that reads the same backward as forward is also called a palindrome, e.g., "Madam, I'm Adam", "A

man, a plan, a canal - Panama!" (ignoring punctuation and capitalization).

Modify your program (called TestPalindromicPhrase) to check for palindromic phrase. Use in.nextLine() to

read a line of input.

Hints

1. Maintain two indexes, forwardIndex (fIdx) and backwardIndex (bIdx), to scan the phrase forward

and backward.

 int fIdx = 0, bIdx = strLen - 1;

 while (fIdx < bIdx) {

 ++fIdx;

 --bIdx;

 }

 // or

 for (int fIdx = 0, bIdx = strLen - 1; fIdx < bIdx; ++fIdx, --bIdx) {

 }

2. You can check if a char c is a letter either using built-in boolean function Character.isLetter(c);

or boolean expression (c >= 'a' && c <= 'z'). Skip the index if it does not contain a letter.

7.8 CheckBinStr (String & char)

The binary number system uses 2 symbols, 0 and 1. Write a program called CheckBinStr to verify a binary

string. The program shall prompt user for a binary string; and decide if the input string is a valid binary string.

For example,

Enter a binary string: 10101100

"10101100" is a binary string

Enter a binary string: 10120000

"10120000" is NOT a binary string

Hints

Use the following coding pattern which involves a boolean flag to check the input string.

// Declare variables

 String inStr; // The input string

 int inStrLen; // The length of the input string

 char inChar; // Each char of the input string

 boolean isValid; // "is" or "is not" a valid binary string?

 isValid = true; // Assume that the input is valid, unless our check fails

 for (......) {

 inChar =;

 if (!(inChar == '0' || inChar == '1')) {

 isValid = false;

 break; // break the loop upon first error, no need to continue for more errors

 // If this is not encountered, isValid remains true after the loop.

 }

 }

 if (isValid) {

 System.out.println(......);

 } else {

79 | P a g e

 System.out.println(......);

 }

 // or using one liner

 //System.out.println(isValid ? ... : ...);

7.9 CheckHexStr (String & char)

The hexadecimal (hex) number system uses 16 symbols, 0-9 and A-F (or a-f). Write a program to verify a hex

string. The program shall prompt user for a hex string; and decide if the input string is a valid hex string. For

examples,

Enter a hex string: 123aBc

"123aBc" is a hex string

Enter a hex string: 123aBcx

"123aBcx" is NOT a hex string

Hints

if (!((inChar >= '0' && inChar <= '9')

 || (inChar >= 'A' && inChar <= 'F')

 || (inChar >= 'a' && inChar <= 'f'))) { // Use positive logic and then reverse

}

7.10 Bin2Dec (String & char)

Write a program called Bin2Dec to convert an input binary string into its equivalent decimal number. Your

output shall look like:

Enter a Binary string: 1011

The equivalent decimal number for binary "1011" is: 11

Enter a Binary string: 1234

error: invalid binary string "1234"

Hints

See "Code Example".

7.11 Hex2Dec (String & char)

Write a program called Hex2Dec to convert an input hexadecimal string into its equivalent decimal number.

Your output shall look like:

Enter a Hexadecimal string: 1a

The equivalent decimal number for hexadecimal "1a" is: 26

Enter a Hexadecimal string: 1y3

error: invalid hexadecimal string "1y3"

Hints

See "Code Example".

7.12 Oct2Dec (String & char)

Write a program called Oct2Dec to convert an input Octal string into its equivalent decimal number. For

example,

Enter an Octal string: 147

80 | P a g e

The equivalent decimal number "147" is: 103

8. Exercises on Arrays

8.1 PrintArray (Array)

Write a program called PrintArray which prompts user for the number of items in an array (a non-negative

integer), and saves it in an int variable called NUM_ITEMS. It then prompts user for the values of all the items

and saves them in an int array called items. The program shall then print the contents of the array in the form

of [x1, x2, ..., xn]. For example,

Enter the number of items: 5

Enter the value of all items (separated by space): 3 2 5 6 9

The values are: [3, 2, 5, 6, 9]

Hints

 // Declare variables

 tinal int NUM_ITEMS;

 int[] items; // Declare array name, to be allocated after NUM_ITEMS is known

 // Prompt for for the number of items and read the input as "int"

 NUM_ITEMS =

 // Allocate the array

 items = new int[NUM_ITEMS];

 // Prompt and read the items into the "int" array, if array length > 0

 if (items.length > 0) {

 for (int i = 0; i < items.length; ++i) { // Read all items

 }

 }

 // Print array contents, need to handle first item and subsequent items differently

 for (int i = 0; i < items.length; ++i) {

 if (i == 0) {

 // Print the first item without a leading commas

 } else {

 // Print the subsequent items with a leading commas

 }

 // or, using a one liner

 //System.out.print((i == 0) ? :);

 }

8.2 PrintArrayInStars (Array)

Write a program called printArrayInStars which prompts user for the number of items in an array (a non-

negative integer), and saves it in an int variable called NUM_ITEMS. It then prompts user for the values of all

the items (non-negative integers) and saves them in an int array called items. The program shall then print the

contents of the array in a graphical form, with the array index and values represented by number of stars. For

examples,

Enter the number of items: 5

Enter the value of all items (separated by space): 7 4 3 0 7

0: *******(7)

81 | P a g e

1: ****(4)

2: ***(3)

3: (0)

4: *******(7)

Hints

 // Declare variables

 final int NUM_ITEMS;

 int[] items; // Declare array name, to be allocated after NUM_ITEMS is known

 // Print array in "index: number of stars" using a nested-loop

 // Take note that rows are the array indexes and columns are the value in that index

 for (int idx = 0; idx < items.length; ++idx) { // row

 System.out.print(idx + ": ");

 // Print value as the number of stars

 for (int starNo = 1; starNo <= items[idx]; ++starNo) { // column

 System.out.print("*");

 }

 }

8.3 GradesStatistics (Array)

Write a program which prompts user for the number of students in a class (a non-negative integer), and saves it

in an int variable called numStudents. It then prompts user for the grade of each of the students (integer between

0 to 100) and saves them in an int array called grades. The program shall then compute and print the average

(in double rounded to 2 decimal places) and minimum/maximum (in int).

Enter the number of students: 5

Enter the grade for student 1: 98

Enter the grade for student 2: 78

Enter the grade for student 3: 78

Enter the grade for student 4: 87

Enter the grade for student 5: 76

The average is: 83.40

The minimum is: 76

The maximum is: 98

8.4 Hex2Bin (Array for Table Lookup)

Write a program called Hex2Bin that prompts user for a hexadecimal string and print its equivalent binary

string. The output shall look like:

Enter a Hexadecimal string: 1abc

The equivalent binary for hexadecimal "1abc" is: 0001 1010 1011 1100

Hints

1. Use an array of 16 Strings containing binary strings corresponding to hexadecimal number 0-9A-F (or a-f), as

follows

final String[] HEX_BITS = {"0000", "0001", "0010", "0011",

 "0100", "0101", "0110", "0111",

 "1000", "1001", "1010", "1011",

 "1100", "1101", "1110", "1111"};

82 | P a g e

8.5 Dec2Hex (Array for Table Lookup)

Write a program called Dec2Hex that prompts user for a positive decimal number, read as int, and print its

equivalent hexadecimal string. The output shall look like:

Enter a decimal number: 1234

The equivalent hexadecimal number is 4D2

9. Exercises on Methods

9.1 exponent() (method)

Write a method called exponent(int base, int exp) that returns an int value of base raises to the power of exp.

The signature of the method is:

 public static int exponent(int base, int exp);

Assume that exp is a non-negative integer and base is an integer. Do not use any Math library functions.

Also write the main() method that prompts user for the base and exp; and prints the result. For example,

Enter the base: 3

Enter the exponent: 4

3 raises to the power of 4 is: 81

Hints

......

public class Exponent {

 public static void main(String[] args) {

 // Declare variables

 int exp; // exponent (non-negative integer)

 int base; // base (integer)

 // Prompt and read exponent and base

 // Print result

 System.out.println(base + " raises to the power of " + exp + " is: " + exponent(base, exp));

 }

 // Returns "base" raised to the power "exp"

 public static int exponent(int base, int exp) {

 int product = 1; // resulting product

 // Multiply product and base for exp number of times

 for (......) {

 product *= base;

 }

 return product;

 }

}

9.2 isOdd() (method)

Write a boolean method called isOdd() in a class called OddEvenTest, which takes an int as input and

returns true if the it is odd. The signature of the method is as follows:

public static boolean isOdd(int number);

Also write the main() method that prompts user for a number, and prints "ODD" or "EVEN". You should test

for negative input. For examples,

Enter a number: 9

83 | P a g e

9 is an odd number

Enter a number: 8

8 is an even number

Enter a number: -5

-5 is an odd number

Hints

See Notes.

9.3 hasEight() (method)

Write a boolean method called hasEight(), which takes an int as input and returns true if the number contains the

digit 8 (e.g., 18, 168, 1288). The signature of the method is as follows:

public static boolean hasEight(int number);

Write a program called MagicSum, which prompts user for integers (or -1 to end), and produce the sum of

numbers containing the digit 8. Your program should use the above methods. A sample output of the program is

as follows:

Enter a positive integer (or -1 to end): 1

Enter a positive integer (or -1 to end): 2

Enter a positive integer (or -1 to end): 3

Enter a positive integer (or -1 to end): 8

Enter a positive integer (or -1 to end): 88

Enter a positive integer (or -1 to end): -1

The magic sum is: 96

Hints

The coding pattern to repeat until input is -1 (called sentinel value) is:

final int SENTINEL = -1; // Terminating input

int number;

// Read first input to "seed" the while loop

System.out.print("Enter a positive integer (or -1 to end): ");

number = in.nextInt();

while (number != SENTINEL) { // Repeat until input is -1

 // Read next input. Repeat if the input is not the SENTINEL

 // Take note that you need to repeat these codes!

 System.out.print("Enter a positive integer (or -1 to end): ");

 number = in.nextInt();

}

You can either repeatably use modulus/divide (n%10 and n=n/10) to extract and drop each digit in int; or

convert the int to String and use the String's charAt() to inspect each char.

9.4 print() (Array & Method)

Write a method called print(), which takes an int array and print its contents in the form of [a1, a2, ..., an]. Take

note that there is no comma after the last element. The method's signature is as follows:

public static void print(int[] array);

Also write a test driver to test this method (you should test on empty array, one-element array, and n-element

array).

84 | P a g e

How to handle double[] or float[]? You need to write a overloaded version for double[] and a overloaded

version for float[], with the following signatures:

public static void print(double[] array)

public static void print(float[] array)

The above is known as method overloading, where the same method name can have many versions,

differentiated by its parameter list.

Hints

For the first element, print its value; for subsequent elements, print commas followed by the value.

9.5 arrayToString() (Array & Method)

Write a method called arrayToString(), which takes an int array and return a String in the form of [a1, a2, ...,

an]. Take note that this method returns a String, the previous exercise returns void but prints the output. The

method's signature is as follows:

public static String arrayToString(int[] array);

Also write a test driver to test this method (you should test on empty array, one-element array, and n-element

array).

Notes: This is similar to the built-in function Arrays.toString(). You could study its source code.

9.6 contains() (Array & Method)

Write a boolean method called contains(), which takes an array of int and an int; and returns true if the array

contains the given int. The method's signature is as follows:

public static boolean contains(int[] array, int key);

Also write a test driver to test this method.

9.7 search() (Array & Method)

Write a method called search(), which takes an array of int and an int; and returns the array index if the array

contains the given int; or -1 otherwise. The method's signature is as follows:

public static int search(int[] array, int key);

Also write a test driver to test this method.

9.8 equals() (Array & Method)

Write a boolean method called equals(), which takes two arrays of int and returns true if the two arrays are

exactly the same (i.e., same length and same contents). The method's signature is as follows:

public static boolean equals(int[] array1, int[] array2)

Also write a test driver to test this method.

9.9 copyOf() (Array & Method)

Write a boolean method called copyOf(), which takes an int Array and returns a copy of the given array. The

method's signature is as follows:

public static int[] copyOf(int[] array)

Also write a test driver to test this method.

Write another version for copyOf() which takes a second parameter to specify the length of the new array. You

should truncate or pad with zero so that the new array has the required length.

85 | P a g e

public static int[] copyOf(int[] array, int newLength)

NOTES: This is similar to the built-in function Arrays.copyOf().

9.10 swap() (Array & Method)

Write a method called swap(), which takes two arrays of int and swap their contents if they have the same

length. It shall return true if the contents are successfully swapped. The method's signature is as follows:

public static boolean swap(int[] array1, int[] array2)

Also write a test driver to test this method.

Hints

You need to use a temporary location to swap two storage locations.

// Swap item1 and item2

int item1, item2, temp;

temp = item1;

item1 = item2;

item2 = item1;

// You CANNOT simply do: item1 = item2; item2 = item2;

9.11 reverse() (Array & Method)

Write a method called reverse(), which takes an array of int and reverse its contents. For example, the reverse

of [1,2,3,4] is [4,3,2,1]. The method's signature is as follows:

public static void reverse(int[] array)

Take note that the array passed into the method can be modified by the method (this is called "pass by

reference"). On the other hand, primitives passed into a method cannot be modified. This is because a clone is

created and passed into the method instead of the original copy (this is called "pass by value").

Also write a test driver to test this method.

Hints

You might use two indexes in the loop, one moving forward and one moving backward to point to the two

elements to be swapped.

for (int fIdx = 0, bIdx = array.length - 1; fIdx < bIdx; ++fIdx, --bIdx) {

 // Swap array[fIdx] and array[bIdx]

 // Only need to transverse half of the array elements

}

You need to use a temporary location to swap two storage locations.

// Swap item1 and item2

int item1, item2, temp;

temp = item1;

item1 = item2;

item2 = item1;

// You CANNOT simply do: item1 = item2; item2 = item2;

9.12 GradesStatistics (Array & Method)

Write a program called GradesStatistics, which reads in n grades (of int between 0 and 100, inclusive) and

displays the average, minimum, maximum, median and standard deviation. Display the floating-point values

upto 2 decimal places. Your output shall look like:

Enter the number of students: 4

Enter the grade for student 1: 50

Enter the grade for student 2: 51

86 | P a g e

Enter the grade for student 3: 56

Enter the grade for student 4: 53

The grades are: [50, 51, 56, 53]

The average is: 52.50

The median is: 52.00

The minimum is: 50

The maximum is: 56

The standard deviation is: 2.29

The formula for calculating standard deviation is:

Hints:

public class GradesStatistics {

 public static int[] grades; // Declare an int[], to be allocated later.

 // This array is accessible by all the methods.

 public static void main(String[] args) {

 readGrades(); // Read and save the inputs in global int[] grades

 System.out.println("The grades are: ");

 print(grades);

 System.out.println("The average is " + average(grades));

 System.out.println("The median is " + median(grades));

 System.out.println("The minimum is " + min(grades));

 System.out.println("The maximum is " + max(grades));

 System.out.println("The standard deviation is " + stdDev(grades));

 }

 // Prompt user for the number of students and allocate the global "grades" array.

 // Then, prompt user for grade, check for valid grade, and store in "grades".

 public static void readGrades() { }

 // Print the given int array in the form of [x1, x2, x3,..., xn].

 public static void print(int[] array) { }

 // Return the average value of the given int[]

 public static double average(int[] array) { }

 // Return the median value of the given int[]

 // Median is the center element for odd-number array,

 // or average of the two center elements for even-number array.

 // Use Arrays.sort(anArray) to sort anArray in place.

 public static double median(int[] array) { }

 // Return the maximum value of the given int[]

 public static int max(int[] array) {

 int max = array[0]; // Assume that max is the first element

 // From second element, if the element is more than max, set the max to this element.

 }

 // Return the minimum value of the given int[]

 public static int min(int[] array) { }

 // Return the standard deviation of the given int[]

 public static double stdDev(int[] array) { }

}

Take note that besides readGrade() that relies on global variable grades, all the methods are self-contained

87 | P a g e

general utilities that operate on any given array.

9.13 GradesHistogram (Array & Method)

Write a program called GradesHistogram, which reads in n grades (as in the previous exercise), and displays

the horizontal and vertical histograms. For example:

 0 - 9: ***

 10 - 19: ***

 20 - 29:

 30 - 39:

 40 - 49: *

 50 - 59: *****

 60 - 69:

 70 - 79:

 80 - 89: *

 90 -100: **

 *

 *

 * * *

 * * * *

 * * * * * *

 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100

10. Exercises on Command-line Arguments, Recursion

10.1 Arithmetic (Command-Line Arguments)

Write a program called Arithmetic that takes three command-line arguments: two integers followed by an

arithmetic operator (+, -, * or /). The program shall perform the corresponding operation on the two integers and

print the result. For example:

java Arithmetic 3 2 +

3+2=5

java Arithmetic 3 2 -

3-2=1

java Arithmetic 3 2 /

3/2=1

Hints

The method main(String[] args) takes an argument: "an array of String", which is often (but not necessary)

named args. This parameter captures the command-line arguments supplied by the user when the program is

invoked. For example, if a user invokes:

java Arithmetic 12345 4567 +

The three command-line arguments "12345", "4567" and "+" will be captured in a String array {"12345",

"4567", "+"} and passed into the main() method as the argument args. That is,

args is: {"12345", "4567", "+"} // args is a String array

args.length is: 3 // length of the array

args[0] is: "12345" // 1st element of the String array

args[1] is: "4567" // 2nd element of the String array

88 | P a g e

args[2] is: "+" // 3rd element of the String array

args[0].length() is: 5 // length of 1st String element

args[1].length() is: 4 // length of the 2nd String element

args[2].length() is: 1 // length of the 3rd String element

public class Arithmetic {

 public static void main (String[] args) {

 int operand1, operand2;

 char theOperator;

 // Check if there are 3 command-line arguments in the

 // String[] args by using length variable of array.

 if (args.length != 3) {

 System.err.println("Usage: java Arithmetic int1 int2 op");

 return;

 }

 // Convert the 3 Strings args[0], args[1], args[2] to int and char.

 // Use the Integer.parseInt(aStr) to convert a String to an int.

 operand1 = Integer.parseInt(args[0]);

 operand2 =

 // Get the operator, assumed to be the first character of

 // the 3rd string. Use method charAt() of String.

 theOperator = args[2].charAt(0);

 System.out.print(args[0] + args[2] + args[1] + "=");

 switch(theOperator) {

 case ('-'): System.out.println(operand1 - operand2); break;

 case ('+'):

 case ('*'):

 case ('/'):

 default:

 System.err.println("Error: invalid operator!");

 }

 }

}

Notes:

• To provide command-line arguments, use the "cmd" or "terminal" to run your program in the form

"java ClassName arg1 arg2".

• To provide command-line arguments in Eclipse, right click the source code ⇒ "Run As" ⇒ "Run

Configurations..." ⇒ Select "Main" and choose the proper main class ⇒ Select "Arguments" ⇒ Enter the

command-line arguments, e.g., "3 2 +" in "Program Arguments".

• To provide command-line arguments in NetBeans, right click the "Project" name ⇒ "Set

Configuration" ⇒ "Customize..." ⇒ Select categories "Run" ⇒ Enter the command-line arguments, e.g., "3

2 +" in the "Arguments" box (but make sure you select the proper Main class).

Question: Try "java Arithmetic 2 4 *" (in CMD shell and Eclipse/NetBeans) and explain the result obtained.

How to resolve this problem?

In Windows' CMD shell, * is known as a wildcard character, that expands to give the list of file in the directory

(called Shell Expansion). For example, "dir *.java" lists all the file with extension of ".java". You could double-

quote the * to prevent shell expansion. Eclipse has a bug in handling this, even * is double-quoted. NetBeans??

SumDigits (Command-line Arguments)

Write a program called SumDigits to sum up the individual digits of a positive integer, given in the command

line. The output shall look like:

java SumDigits 12345

The sum of digits = 1 + 2 + 3 + 4 + 5 = 15

89 | P a g e

Exercises on Recursion

In programming, a recursive function (or method) calls itself. The classical example is factorial(n), which can be

defined recursively as f(n)=n*f(n-1). Nonetheless, it is important to take note that a recursive function should

have a terminating condition (or base case), in the case of factorial, f(0)=1. Hence, the full definition is:

factorial(n) = 1, for n = 0

factorial(n) = n * factorial(n-1), for all n > 1

For example, suppose n = 5:

// Recursive call

factorial(5) = 5 * factorial(4)

factorial(4) = 4 * factorial(3)

factorial(3) = 3 * factorial(2)

factorial(2) = 2 * factorial(1)

factorial(1) = 1 * factorial(0)

factorial(0) = 1 // Base case

// Unwinding

factorial(1) = 1 * 1 = 1

factorial(2) = 2 * 1 = 2

factorial(3) = 3 * 2 = 6

factorial(4) = 4 * 6 = 24

factorial(5) = 5 * 24 = 120 (DONE)

10.2 Factorial Recursive

Write a recursive method called factorial() to compute the factorial of the given integer.

public static int factorial(int n)

The recursive algorithm is:

factorial(n) = 1, if n = 0

factorial(n) = n * factorial(n-1), if n > 0

Compare your code with the iterative version of the factorial():

factorial(n) = 1*2*3*...*n

Hints

Writing recursive function is straight forward. You simply translate the recursive definition into code

with return.

// Return the factorial of the given integer, recursively

public static int factorial(int n) {

 if (n == 0) {

 return 1; // base case

 } else {

 return n * factorial(n-1); // call itself

 }

 // or one liner

 // return (n == 0) ? 1 : n*factorial(n-1);

}

Notes

1. Recursive version is often much shorter.

2. The recursive version uses much more computational and storage resources, and it need to save its

current states before each successive recursive call, so as to unwind later.

10.3 Fibonacci (Recursive)

Write a recursive method to compute the Fibonacci number of n, defined as follows:

F(0) = 0

90 | P a g e

F(1) = 1

F(n) = F(n-1) + F(n-2) for n >= 2

Compare the recursive version with the iterative version written earlier.

Hints

// Translate the recursive definition into code with return statements

public static int fibonacci(int n) {

 if (n == 0) {

 return 0;

 } else if (n == 1) {

 return 1;

 } else {

 return fibonacci(n-1) + fibonacci(n-2);

 }

}

10.4 Length of a Running Number Sequence (Recursive)

A special number sequence is defined as follows:

S(1) = 1

S(2) = 12

S(3) = 123

S(4) = 1234

......

S(9) = 123456789 // length is 9

S(10) = 12345678910 // length is 11

S(11) = 1234567891011 // length is 13

S(12) = 123456789101112 // length is 15

......

Write a recursive method to compute the length of S(n), defined as follows:

len(1) = 1

len(n) = len(n-1) + numOfDigits(n)

Also write an iterative version.

10.5 GCD (Recursive)

Write a recursive method called gcd() to compute the greatest common divisor of two given integers.

public static void int gcd(int a, int b)

gcd(a,b) = a, if b = 0

gcd(a,b) = gcd(b, remainder(a,b)), if b > 0

11. More (Difficult) Exercises

11.1 JDK Source Code

Extract the source code of the class Math from the JDK source code (JDK Installed Directory ⇒ "lib" ⇒

"src.zip" ⇒ "java.base" ⇒ "java" ⇒ "lang" ⇒ "Math.java"). Study how constants such as E and PI are defined.

Also study how methods such as abs(), max(), min(), toDegree(), etc, are written.

Also study the "Integer.java", "String.java".

91 | P a g e

11.2 Matrices (2D Arrays)

Similar to Math class, write a Matrix library that supports matrix operations (such as addition, subtraction,

multiplication) via 2D arrays. The operations shall support both double and int. Also write a test class to

exercise all the operations programmed.

Hints

public class Matrix {

 // Method signatures

 public static void print(int[][] m);

 public static void print(double[][] m);

 public static boolean haveSameDimension(int[][] m1, int[][] m2); // Used in add(), subtract()

 public static boolean haveSameDimension(double[][] m1, double[][] m2);

 public static int[][] add(int[][] m1, int[][] m2);

 public static double[][] add(double[][] m1, double[][] m2);

 public static int[][] subtract(int[][] m1, int[][] m2);

 public static double[][] subtract(double[][] m1, double[][] m2);

 public static int[][] multiply(int[][] m1, int[][] m2);

 public static double[][] multiply(double[][] m1, double[][] m2);

}

11.3 PrintAnimalPattern (Special Characters and Escape Sequences)

Write a program called PrintAnimalPattern, which uses println() to produce this pattern:

 '__'

 (©©)

 /========\/

 / || %% ||

* ||----||

 ¥¥ ¥¥

 "" ""

Hints

Use escape sequence \uhhhh where hhhh are four hex digits to display Unicode characters such as ¥ and

©. ¥ is 165 (00A5H) and © is 169 (00A9H) in both ISO-8859-1 (Latin-1) and Unicode character sets.

Double-quote (") and black-slash (\) require escape sequence inside a String. Single quote (') does not

require escape sign.

Try

Print the same pattern using printf(). (Hints: Need to use %% to print a % in printf() because % is the

suffix for format specifier.)

11.4 Print Patterns (nested-loop)

Write a method to print each of the followings patterns using nested loops in a class called PrintPatterns. The

program shall prompt user for the sizde of the pattern. The signatures of the methods are:

public static void printPatternX(int size); // X: A, B, C,...; size is a positive integer.

 # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # # # # # #

92 | P a g e

 (a) (b) # # # # # # # # #

 # # # # # # #

 # # # # #

 # # #

 #

 (c)

1 1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1

1 2 1 2 3 4 5 6 7 2 1 7 6 5 4 3 2 1

1 2 3 1 2 3 4 5 6 3 2 1 6 5 4 3 2 1

1 2 3 4 1 2 3 4 5 4 3 2 1 5 4 3 2 1

1 2 3 4 5 1 2 3 4 5 4 3 2 1 4 3 2 1

1 2 3 4 5 6 1 2 3 6 5 4 3 2 1 3 2 1

1 2 3 4 5 6 7 1 2 7 6 5 4 3 2 1 2 1

1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1 1

 (d) (e) (f) (g)

 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1

 1 2 1 1 2 3 4 5 6 7 6 5 4 3 2 1

 1 2 3 2 1 1 2 3 4 5 6 5 4 3 2 1

 1 2 3 4 3 2 1 1 2 3 4 5 4 3 2 1

 1 2 3 4 5 4 3 2 1 1 2 3 4 3 2 1

 1 2 3 4 5 6 5 4 3 2 1 1 2 3 2 1

 1 2 3 4 5 6 7 6 5 4 3 2 1 1 2 1

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1

 (h) (i)

1 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1

1 2 2 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

1 2 3 3 2 1 1 2 3 4 5 6 6 5 4 3 2 1

1 2 3 4 4 3 2 1 1 2 3 4 5 5 4 3 2 1

1 2 3 4 5 5 4 3 2 1 1 2 3 4 4 3 2 1

1 2 3 4 5 6 6 5 4 3 2 1 1 2 3 3 2 1

1 2 3 4 5 6 7 7 6 5 4 3 2 1 1 2 2 1

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1 1

 (j) (k)

 1

 2 3 2

 3 4 5 4 3

 4 5 6 7 6 5 4

 5 6 7 8 9 8 7 6 5

 6 7 8 9 0 1 0 9 8 7 6

 7 8 9 0 1 2 3 2 1 0 9 8 7

8 9 0 1 2 3 4 5 4 3 2 1 0 9 8

93 | P a g e

 (l)

11.5 Print Triangles (nested-loop)

Write a method to print each of the following patterns using nested-loops in a class called PrintTriangles. The

program shall prompt user for the number of rows. The signatures of the methods are:

public static void printXxx(int numRows); // Xxx is the pattern's name

 1

 1 2 1

 1 2 4 2 1

 1 2 4 8 4 2 1

 1 2 4 8 16 8 4 2 1

 1 2 4 8 16 32 16 8 4 2 1

 1 2 4 8 16 32 64 32 16 8 4 2 1

1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

 (a) PowerOf2Triangle

1 1

1 1 1 1

1 2 1 1 2 1

1 3 3 1 1 3 3 1

1 4 6 4 1 1 4 6 4 1

1 5 10 10 5 1 1 5 10 10 5 1

1 6 15 20 15 6 1 1 6 15 20 15 6 1

(b) PascalTriangle1 (c) PascalTriangle2

11.6 Trigonometric Series

Write a method to compute sin(x) and cos(x) using the following series expansion, in a class

called TrigonometricSeries. The signatures of the methods are:

public static double sin(double x, int numTerms); // x in radians, NOT degrees

public static double cos(double x, int numTerms);

Compare the values computed using the series with the JDK

methods Math.sin(), Math.cos() at x=0, π/6, π/4, π/3, π/2 using various numbers of terms.

Hints

Do not use int to compute the factorial; as factorial of 13 is outside the int range. Avoid generating large

numerator and denominator. Use double to compute the terms as:

11.7 Exponential Series

Write a method to compute e and exp(x) using the following series expansion, in a class

called ExponentialSeries. The signatures of the methods are:

public static double exp(int numTerms); // x in radians

public static double exp(double x, int numTerms);

94 | P a g e

11.8 Special Series

Write a method to compute the sum of the series in a class called SpecialSeries. The signature of the method is:

public static double specialSeries(double x, int numTerms);

11.9 FactorialInt (Handling Overflow)

Write a program called FactorialInt to list all the factorials that can be expressed as an int (i.e., 32-bit signed

integer in the range of [-2147483648, 2147483647]). Your output shall look like:

The factorial of 1 is 1

The factorial of 2 is 2

...

The factorial of 12 is 479001600

The factorial of 13 is out of range

Hints

The maximum and minimum values of a 32-bit int are kept in

constants Integer.MAX_VALUE and Integer.MIN_VALUE, respectively. Try these statements:

System.out.println(Integer.MAX_VALUE);

System.out.println(Integer.MIN_VALUE);

System.out.println(Integer.MAX_VALUE + 1);

Take note that in the third statement, Java Runtime does not flag out an overflow error, but silently wraps the

number around. Hence, you cannot use F(n) * (n+1) > Integer.MAX_VALUE to check for overflow. Instead,

overflow occurs for F(n+1) if (Integer.MAX_VALUE / Factorial(n)) < (n+1), i.e., no more room for the next

number.

Try

Modify your program called FactorialLong to list all the factorial that can be expressed as a long (64-bit signed

integer). The maximum value for long is kept in a constant called Long.MAX_VALUE.

11.10 FibonacciInt (Handling Overflow)

Write a program called FibonacciInt to list all the Fibonacci numbers, which can be expressed as an int (i.e.,

32-bit signed integer in the range of [-2147483648, 2147483647]). The output shall look like:

F(0) = 1

F(1) = 1

F(2) = 2

...

F(45) = 1836311903

F(46) is out of the range of int

95 | P a g e

Hints

The maximum and minimum values of a 32-bit int are kept in

constants Integer.MAX_VALUE and Integer.MIN_VALUE, respectively. Try these statements:

System.out.println(Integer.MAX_VALUE);

System.out.println(Integer.MIN_VALUE);

System.out.println(Integer.MAX_VALUE + 1);

Take note that in the third statement, Java Runtime does not flag out an overflow error, but silently wraps the

number around. Hence, you cannot use F(n) = F(n-1) + F(n-2) > Integer.MAX_VALUE to check for overflow.

Instead, overflow occurs for F(n) if Integer.MAX_VALUE – F(n-1) < F(n-2) (i.e., no more room for the next

Fibonacci number).

Try

Write a similar program called TribonacciInt for Tribonacci numbers.

11.11 Number System Conversion

Write a method call toRadix() which converts a positive integer from one radix into another. The method has

the following header:

public static String toRadix(String in, int inRadix, int outRadix) // The input and output are treated as String.

Write a program called NumberConversion, which prompts the user for an input string, an input radix, and an

output radix, and display the converted number. The output shall look like:

Enter a number and radix: A1B2

Enter the input radix: 16

Enter the output radix: 2

"A1B2" in radix 16 is "1010000110110010" in radix 2.

11.12 NumberGuess

Write a program called NumberGuess to play the number guessing game. The program shall generate a random

number between 0 and 99. The player inputs his/her guess, and the program shall response with "Try higher",

"Try lower" or "You got it in n trials" accordingly. For example:

java NumberGuess

Key in your guess:

50

Try higher

70

Try lower

65

Try lower

61

You got it in 4 trials!

Hints

Use Math.random() to produce a random number in double between 0.0 (inclusive) and 1.0 (exclusive). To

produce an int between 0 and 99, use:

final int SECRET_NUMBER = (int)(Math.random()*100); // truncate to int

11.13 WordGuess

Write a program called WordGuess to guess a word by trying to guess the individual characters. The word to be

guessed shall be provided using the command-line argument. Your program shall look like:

java WordGuess testing

96 | P a g e

Key in one character or your guess word: t

Trial 1: t__t___

Key in one character or your guess word: g

Trial 2: t__t__g

Key in one character or your guess word: e

Trial 3: te_t__g

Key in one character or your guess word: testing

Congratulation!

You got in 4 trials

Hints

Set up a boolean array (of the length of the word to be guessed) to indicate the positions of the word that

have been guessed correctly.

Check the length of the input String to determine whether the player enters a single character or a

guessed word. If the player enters a single character, check it against the word to be guessed, and update

the boolean array that keeping the result so far.

Try

Try retrieving the word to be guessed from a text file (or a dictionary) randomly.

11.14 DateUtil

Complete the following methods in a class called DateUtil:

• boolean isLeapYear(int year): returns true if the given year is a leap year. A year is a leap year if it is

divisible by 4 but not by 100, or it is divisible by 400.

• boolean isValidDate(int year, int month, int day): returns true if the

given year, month and day constitute a given date. Assume that year is between 1 and 9999, month is

between 1 (Jan) to 12 (Dec) and day shall be between 1 and 28|29|30|31 depending on the month and

whether it is a leap year.

• int getDayOfWeek(int year, int month, int day): returns the day of the week, where 0 for SUN, 1 for

MON, ..., 6 for SAT, for the given date. Assume that the date is valid.

• String toString(int year, int month, int day): prints the given date in the format "xxxday d mmm yyyy",

e.g., "Tuesday 14 Feb 2012". Assume that the given date is valid.

Hints

To find the day of the week (Reference: Wiki "Determination of the day of the week"):

1. Based on the first two digit of the year, get the number from the following "century" table.

2. Take note that the entries 4, 2, 0, 6 repeat.

3. Add to the last two digit of the year.

4. Add to "the last two digit of the year divide by 4, truncate the fractional part".

5. Add to the number obtained from the following month table:

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Non-Leap Year 0 3 3 6 1 4 6 2 5 0 3 5

Leap Year 6 2 same as above

6. Add to the day.

1700- 1800- 1900- 2000- 2100- 2200- 2300- 2400-

4 2 0 6 4 2 0 6

97 | P a g e

7. The sum modulus 7 gives the day of the week, where 0 for SUN, 1 for MON, ..., 6 for SAT.

For example: 2012, Feb, 17

(6 + 12 + 12/4 + 2 + 17) % 7 = 5 (Fri)

The skeleton of the program is as follows:

/* Utilities for Date Manipulation */

public class DateUtil {

 // Month's name – for printing

 public static String[] strMonths

 = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",

 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

 // Number of days in each month (for non-leap years)

 public static int[] daysInMonths

 = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

 // Returns true if the given year is a leap year

 public static boolean isLeapYear(int year) { }

 // Return true if the given year, month, day is a valid date

 // year: 1-9999

 // month: 1(Jan)-12(Dec)

 // day: 1-28|29|30|31. The last day depends on year and month

 public static boolean isValidDate(int year, int month, int day) { }

 // Return the day of the week, 0:Sun, 1:Mon, ..., 6:Sat

 public static int getDayOfWeek(int year, int month, int day) { }

 // Return String "xxxday d mmm yyyy" (e.g., Wednesday 29 Feb 2012)

 public static String printDate(int year, int month, int day) { }

 // Test Driver

 public static void main(String[] args) {

 System.out.println(isLeapYear(1900)); // false

 System.out.println(isLeapYear(2000)); // true

 System.out.println(isLeapYear(2011)); // false

 System.out.println(isLeapYear(2012)); // true

 System.out.println(isValidDate(2012, 2, 29)); // true

 System.out.println(isValidDate(2011, 2, 29)); // false

 System.out.println(isValidDate(2099, 12, 31)); // true

 System.out.println(isValidDate(2099, 12, 32)); // false

 System.out.println(getDayOfWeek(1982, 4, 24)); // 6:Sat

 System.out.println(getDayOfWeek(2000, 1, 1)); // 6:Sat

 System.out.println(getDayOfWeek(2054, 6, 19)); // 5:Fri

 System.out.println(getDayOfWeek(2012, 2, 17)); // 5:Fri

 System.out.println(toString(2012, 2, 14)); // Tuesday 14 Feb 2012

 }

}

Notes

You can compare the day obtained with the Java's Calendar class as follows:

// Construct a Calendar instance with the given year, month and day

Calendar cal = new GregorianCalendar(year, month - 1, day); // month is 0-based

// Get the day of the week number: 1 (Sunday) to 7 (Saturday)

int dayNumber = cal.get(Calendar.DAY_OF_WEEK);

String[] calendarDays = { "Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday" };

98 | P a g e

// Print result

System.out.println("It is " + calendarDays[dayNumber - 1]);

The calendar we used today is known as Gregorian calendar, which came into effect in October 15, 1582 in

some countries and later in other countries. It replaces the Julian calendar. 10 days were removed from the

calendar, i.e., October 4, 1582 (Julian) was followed by October 15, 1582 (Gregorian). The only difference

between the Gregorian and the Julian calendar is the "leap-year rule". In Julian calendar, every four years is a

leap year. In Gregorian calendar, a leap year is a year that is divisible by 4 but not divisible by 100, or it is

divisible by 400, i.e., the Gregorian calendar omits century years which are not divisible by 400. Furthermore,

Julian calendar considers the first day of the year as march 25th, instead of January 1st.

This above algorithm work for Gregorian dates only. It is difficult to modify the above algorithm to handle pre-

Gregorian dates. A better algorithm is to find the number of days from a known date.

12. Exercises on Classes and Objects

12.1 The Rectangle Class

A class called Rectangle, which models a rectangle with a length and a width (in float), is designed as shown in

the following class diagram. Write the Rectangle class.

Hints:

The expected output is:

Rectangle[length=1.2,width=3.4]

Rectangle[length=1.0,width=1.0]

Rectangle[length=5.6,width=7.8]

length is: 5.6

width is: 7.8

area is: 43.68

perimeter is: 26.80

12.2 The Employee Class

A class called Employee, which models an employee with an ID, name and salary, is designed as shown in the

following class diagram. The method raiseSalary(percent) increases the salary by the given percentage. Write

the Employee class.

Hints:

99 | P a g e

The expected out is:

Employee[id=8,name=Peter Tan,salary=2500]

Employee[id=8,name=Peter Tan,salary=999]

id is: 8

firstname is: Peter

lastname is: Tan

salary is: 999

name is: Peter Tan

annual salary is: 11988

1098

Employee[id=8,name=Peter Tan,salary=1098]

12.3 The InvoiceItem Class

A class called InvoiceItem, which models an item of an invoice, with ID, description, quantity and unit price, is

designed as shown in the following class diagram. Write the InvoiceItem class.

Hints:

100 | P a g e

The expected output is:

InvoiceItem[id=A101,desc=Pen Red,qty=888,unitPrice=0.08]

InvoiceItem[id=A101,desc=Pen Red,qty=999,unitPrice=0.99]

id is: A101

desc is: Pen Red

qty is: 999

unitPrice is: 0.99

The total is: 989.01

12.4 The Account Class

A class called Account, which models a bank account of a customer, is designed as shown in the following class

diagram. The methods credit(amount) and debit(amount) add or subtract the given amount to the balance. The

method transferTo(anotherAccount, amount) transfers the given amount from this Account to the

given anotherAccount. Write the Account class.

Hints:

101 | P a g e

The expected output is:

Account[id=A101,name=Tan Ah Teck,balance=88]

Account[id=A102,name=Kumar,balance=0]

ID: A101

Name: Tan Ah Teck

Balance: 88

Account[id=A101,name=Tan Ah Teck,balance=188]

Account[id=A101,name=Tan Ah Teck,balance=138]

Amount exceeded balance

Account[id=A101,name=Tan Ah Teck,balance=138]

Account[id=A101,name=Tan Ah Teck,balance=38]

Account[id=A102,name=Kumar,balance=100]

102 | P a g e

12.5 The Date Class

A class called Date, which models a calendar date, is designed as shown in the following class diagram. Write

the Date class.

Hints:

The expected output is:

01/02/2014

09/12/2099

Month: 12

Day: 9

Year: 2099

03/04/2016

13. Exercises on Inheritance

13.1 An Introduction to OOP Inheritance - The Circle and Cylinder Classes

This exercise shall guide you through the important concepts in inheritance.

In this exercise, a subclass called Cylinder is derived from the superclass Circle as shown in the class diagram

(where an an arrow pointing up from the subclass to its superclass). Study how the subclass Cylinder invokes

the superclass' constructors (via super() and super(radius)) and inherits the variables and methods from the

superclass Circle.

103 | P a g e

You can reuse the Circle class that you have created in the previous exercise. Make sure that you keep

"Circle.class" in the same directory.

public class Cylinder extends Circle { // Save as "Cylinder.java"

 private double height; // private variable

 // Constructor with default color, radius and height

 public Cylinder() {

 super(); // call superclass no-arg constructor Circle()

 height = 1.0;

 }

 // Constructor with default radius, color but given height

 public Cylinder(double height) {

 super(); // call superclass no-arg constructor Circle()

 this.height = height;

 }

 // Constructor with default color, but given radius, height

 public Cylinder(double radius, double height) {

 super(radius); // call superclass constructor Circle(r)

 this.height = height;

 }

 // A public method for retrieving the height

 public double getHeight() {

 return height;

 }

 // A public method for computing the volume of cylinder

 // use superclass method getArea() to get the base area

 public double getVolume() {

 return getArea()*height;

 }

}

Method Overriding and "Super": The subclass Cylinder inherits getArea() method from its superclass

Circle. Try overriding the getArea() method in the subclass Cylinder to compute the surface area

(=2π×radius×height + 2×base-area) of the cylinder instead of base area. That is, if getArea() is called by

a Circle instance, it returns the area. If getArea() is called by a Cylinder instance, it returns the surface area of

the cylinder.

If you override the getArea() in the subclass Cylinder, the getVolume() no longer works. This is because

the getVolume() uses the overridden getArea() method found in the same class. (Java runtime will search the

superclass only if it cannot locate the method in this class). Fix the getVolume().

Hints: After overridding the getArea() in subclass Cylinder, you can choose to invoke the getArea() of the

superclass Circle by calling super.getArea().

Try:

Provide a toString() method to the Cylinder class, which overrides the toString() inherited from the

superclass Circle, e.g.,

@Override

public String toString() { // in Cylinder class

 return "Cylinder: subclass of " + super.toString() // use Circle's toString()

 + " height=" + height;

}

Try out the toString() method in TestCylinder.

104 | P a g e

13.2 Superclass Person and its subclasses

Write the classes as shown in the following class diagram. Mark all the overridden methods with

annotation @Override.

105 | P a g e

13.3 Point2D and Point3D

Write the classes as shown in the following class diagram. Mark all the overridden methods with

annotation @Override.

Hints:

1. You cannot assign floating-point literal say 1.1 (which is a double) to a float variable, you need to add

a suffix f, e.g. 0.0f, 1.1f.

2. The instance variables x and y are private in Point2D and cannot be accessed directly in the

subclass Point3D. You need to access via the public getters and setters. For example,

public void setXYZ(float x, float y, float z) {

 setX(x); // or super.setX(x), use setter in superclass

 setY(y);

 this.z = z;

 }

3. The method getXY() shall return a float array:

public float[] getXY() {

 float[] result = new float[2]; // construct an array of 2 elements

 result[0] = ...

 result[1] = ...

 return result; // return the array

 }

106 | P a g e

13.4 Point and MovablePoint

Write the classes as shown in the following class diagram. Mark all the overridden methods with

annotation @Override.

Hints

1. You cannot assign floating-point literal say 1.1 (which is a double) to a float variable, you need to add

a suffix f, e.g. 0.0f, 1.1f.

2. The instance variables x and y are private in Point and cannot be accessed directly in the

subclass MovablePoint. You need to access via the public getters and setters. For example, you cannot

write x += xSpeed, you need to write setX(getX() + xSpeed).

107 | P a g e

13.5 Superclass Shape and its subclasses Circle, Rectangle and Square

Write a superclass called Shape (as shown in the class diagram)

Write a test program to test all the methods defined in Shape.

Write two subclasses of Shape called Circle and Rectangle, as shown in the class diagram.

Write a class called Square, as a subclass of Rectangle. Convince yourself that Square can be modeled as a

subclass of Rectangle. Square has no instance variable, but inherits the instance variables width and length from

its superclass Rectangle.

• Provide the appropriate constructors (as shown in the class diagram).

Hints:

public Square(double side) {

 super(side, side); // Call superclass Rectangle(double, double)

}

108 | P a g e

• Override the toString() method to return "A Square with side=xxx, which is a subclass of yyy",

where yyy is the output of the toString() method from the superclass.

• Do you need to override the getArea() and getPerimeter()? Try them out.

• Override the setLength() and setWidth() to change both the width and length, so as to maintain the

square geometry.

14. Exercises on Polymorphism, Abstract Classes and Interfaces

14.1 Ex: Abstract Superclass Shape and Its Concrete Subclasses

Rewrite the superclass Shape and its subclasses Circle, Rectangle and Square, as shown in the class diagram.

Shape is an abstract class containing 2 abstract methods: getArea() and getPerimeter(), where its concrete

subclasses must provide its implementation. All instance variables shall have protected access, i.e., accessible by

its subclasses and classes in the same package. Mark all the overridden methods with annotation @Override.

In this exercise, Shape shall be defined as an abstract class, which contains:

• Two protected instance variables color(String) and filled(boolean). The protected variables can be accessed

by its subclasses and classes in the same package. They are denoted with a '#' sign in the class diagram.

• Getter and setter for all the instance variables, and toString().

• Two abstract methods getArea() and getPerimeter() (shown in italics in the class diagram).

109 | P a g e

• Subclasses Circle and Rectangle shall override the abstract methods getArea() and getPerimeter() and

provide the proper implementation. They also override the toString().

Write a test class to test these statements involving polymorphism and explain the outputs. Some statements

may trigger compilation errors. Explain the errors, if any.

Shape s1 = new Circle(5.5, "red", false); // Upcast Circle to Shape

System.out.println(s1); // which version?

System.out.println(s1.getArea()); // which version?

System.out.println(s1.getPerimeter()); // which version?

System.out.println(s1.getColor());

System.out.println(s1.isFilled());

System.out.println(s1.getRadius());

Circle c1 = (Circle)s1; // Downcast back to Circle

System.out.println(c1);

System.out.println(c1.getArea());

System.out.println(c1.getPerimeter());

System.out.println(c1.getColor());

System.out.println(c1.isFilled());

System.out.println(c1.getRadius());

Shape s2 = new Shape();

Shape s3 = new Rectangle(1.0, 2.0, "red", false); // Upcast

System.out.println(s3);

System.out.println(s3.getArea());

System.out.println(s3.getPerimeter());

System.out.println(s3.getColor());

System.out.println(s3.getLength());

Rectangle r1 = (Rectangle)s3; // downcast

System.out.println(r1);

System.out.println(r1.getArea());

System.out.println(r1.getColor());

System.out.println(r1.getLength());

Shape s4 = new Square(6.6); // Upcast

System.out.println(s4);

System.out.println(s4.getArea());

System.out.println(s4.getColor());

System.out.println(s4.getSide());

// Take note that we downcast Shape s4 to Rectangle,

// which is a superclass of Square, instead of Square

Rectangle r2 = (Rectangle)s4;

System.out.println(r2);

System.out.println(r2.getArea());

System.out.println(r2.getColor());

System.out.println(r2.getSide());

System.out.println(r2.getLength());

// Downcast Rectangle r2 to Square

Square sq1 = (Square)r2;

System.out.println(sq1);

System.out.println(sq1.getArea());

System.out.println(sq1.getColor());

System.out.println(sq1.getSide());

System.out.println(sq1.getLength());

110 | P a g e

Try:

Explain the usage of the abstract method and abstract class?

14.2 GeometricObject Interface and its Implementation

Classes Circle and Rectangle

Write an interface called GeometricObject, which contains 2 abstract methods: getArea() and getPerimeter(), as

shown in the class diagram. Also write an implementation class called Circle. Mark all the overridden methods

with annotation @Override.

111 | P a g e

14.3 Ex: Movable Interface and its Implementation MovablePoint Class

Write an interface called Movaable, which contains 4 abstract methods moveUp(), moveDown(), moveLeft()

and moveRight(), as shown in the class diagram. Also write an implementation class called MovablePoint. Mark

all the overridden methods with annotation @Override.

1 4 .4 Movable In ter fa ce a nd Cla sses MovablePoint a nd MovableCircle

Write an interface called Movaable, which contains 4 abstract methods moveUp(), moveDown(),

moveLeft() and moveRight(),

as shown in the class diagram.

Write the implementation classes called MovablePoint and MovableCircle. Mark all the overridden methods

with annotation @Override.

112 | P a g e

14.5 Interfaces Resizable and GeometricObject

Write the interface called GeometricObject, which declares two abstract methods: getParameter() and getArea(),

as specified in the class diagram.

113 | P a g e

Hints:

public interface GeometricObject {

 public double getPerimeter();

}

Write the implementation class Circle, with a protected variable radius, which implements the

interface GeometricObject.

Hints:

public class Circle implements GeometricObject {

 // Private variable

 // Constructor

 // Implement methods defined in the interface GeometricObject

 @Override

 public double getPerimeter() { }

}

Write a test program called TestCircle to test the methods defined in Circle.

The class ResizableCircle is defined as a subclass of the class Circle, which also implements an interface

called Resizable, as shown in class diagram. The interface Resizable declares an abstract method resize(), which

modifies the dimension (such as radius) by the given percentage. Write the interface Resizable and the

class ResizableCircle.

Hints:

public interface Resizable {

 public double resize(...);

}

public class ResizableCircle extends Circle implements Resizeable {

 // Constructor

 public ResizableCircle(double radius) {

 super(...);

 }

 // Implement methods defined in the interface Resizable

 @Override

 public double resize(int percent) { }

}

Try:

Write a test program called TestResizableCircle to test the methods defined in ResizableCircle.

14.6 Abstract Superclass Animal and its Implementation Subclasses

Write the codes for all the classes shown in the class diagram. Mark all the overridden methods with annotation

@Override.

114 | P a g e

14.7 Another View of Abstract Superclass Animal and its Implementation Subclasses

Examine the following codes and draw the class diagram.

abstract public class Animal {

 abstract public void greeting();

}

public class Cat extends Animal {

 @Override

 public void greeting() {

 System.out.println("Meow!");

 }

}

public class Dog extends Animal {

 @Override

 public void greeting() {

 System.out.println("Woof!");

 }

 public void greeting(Dog another) {

 System.out.println("Woooooooooof!");

 }

}

public class BigDog extends Dog {

 @Override

 public void greeting() {

 System.out.println("Woow!");

 }

 @Override

 public void greeting(Dog another) {

115 | P a g e

 System.out.println("Woooooowwwww!");

 }

}

Try:

Explain the outputs (or error) for the following test program.

public class TestAnimal {

 public static void main(String[] args) {

 // Using the subclasses

 Cat cat1 = new Cat();

 cat1.greeting();

 Dog dog1 = new Dog();

 dog1.greeting();

 BigDog bigDog1 = new BigDog();

 bigDog1.greeting();

 // Using Polymorphism

 Animal animal1 = new Cat();

 animal1.greeting();

 Animal animal2 = new Dog();

 animal2.greeting();

 Animal animal3 = new BigDog();

 animal3.greeting();

 Animal animal4 = new Animal();

 // Downcast

 Dog dog2 = (Dog)animal2;

 BigDog bigDog2 = (BigDog)animal3;

 Dog dog3 = (Dog)animal3;

 Cat cat2 = (Cat)animal2;

 dog2.greeting(dog3);

 dog3.greeting(dog2);

 dog2.greeting(bigDog2);

 bigDog2.greeting(dog2);

 bigDog2.greeting(bigDog1);

 }

}

15. Final Notes

The only way to learn programming is program, program and program on challenging problems. The problems

in this tutorial are certainly NOT challenging. There are tens of thousands of challenging problems available –

used in training for various programming contests (such as International Collegiate Programming Contest

(ICPC), International Olympiad in Informatics (IOI)). Check out these sites:

• The ACM - ICPC International collegiate programming contest (https://icpc.global/)

• The Topcoder Open (TCO) annual programming and design contest (https://www.topcoder.com/)

• Universidad de Valladolid’s online judge (https://uva.onlinejudge.org/).

• Peking University’s online judge (http://poj.org/).

• USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

• Google’s coding competitions (https://codingcompetitions.withgoogle.com/codejam,

https://codingcompetitions.withgoogle.com/hashcode)

• The ICFP programming contest (https://www.icfpconference.org/)

• BME International 24-hours programming contest (https://www.challenge24.org/)

• The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

• Internet Problem Solving Contest (https://ipsc.ksp.sk/)

• Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

• Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

• OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/
https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/

116 | P a g e

Students must solve problems and attain scores in the following coding contests:

 Name of the contest Minimum number of problems to solve Required score

• CodeChef 20 200

• Leetcode 20 200

• GeeksforGeeks 20 200

• SPOJ 5 50

• InterviewBit 10 1000

• Hackerrank 25 250

• Codeforces 10 100

• BuildIT 50 500

Total score need to obtain 2500

Student must have any one of the following certifications:

• HackerRank – Java Basic Skills Certification

• Oracle Certified Associate Java Programmer OCAJP

• CodeChef - Learn Java Certification

• NPTEL – Programming in Java

• NPTEL – Data Structures and Algorithms in Java

V. TEXT BOOKS:

1. Farrell, Joyce.Java Programming, Cengage Learning B S Publishers, 8th Edition, 2020

2. Schildt, Herbert. Java: The Complete Reference 11th Edition, McGraw-Hill Education, 2018.

VI. REFERENCE BOOKS:

1. Deitel, Paul and Deitel, Harvey. Java: How to Program, Pearson, 11th Edition, 2018.

2. Evans, Benjamin J. and Flanagan, David. Java in a Nutshell, O’Reilly Media, 7th Edition, 2018.

3. Bloch, Joshua. Effective Java, Addison-Wesley Professional, 3rd Edition, 2017.

4. Sierra, Kathy and Bates, Bert. Head First Java, O’Reilly Media, 2nd Edition, 2005

VII. ELECTRONICS RESOURCES:

1. https://docs.oracle.com/en/java/

2. https://www.geeksforgeeks.org/java

3. https://www.tutorialspoint.com/java/index.htm

4. https://www.coursera.org/courses?query=java

VIII. MATERIALS ONLINE;

1. Syllabus

2. Lab manual

https://docs.oracle.com/en/java/
https://www.geeksforgeeks.org/java
https://www.tutorialspoint.com/java/index.htm
https://www.coursera.org/courses?query=java

117 | P a g e

COURSE CONTENT

MANUFACTURING PRACTICE

I Semester: CSE (AI & ML) / IT / ECE / EEE

II Semester: CSE / CSE (DS) / CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks

AMED02 Foundation
L T P C CIA SEE Total

- 1 2 2 40 60 100

Contact Classes: Nil Tutorial Classes: 15 Practical Classes:30 Total Classes:45

Prerequisite: There is no prerequisite for this course.

I. COURSE OVERVIEW:

This course provides the opportunity to become confident with new tools, equipment, and techniques for

creating physical objects and mechanisms with a variety of materials. The students will learn the concepts of 3D

printing, laser cutting, circuit board soldering, wood carving and CNC machining. Skills learned in the course

enable the students about the design process in digital manufacturing used in various industrial applications.

II. COURSES OBJECTIVES:

The students will try to learn

I. The digital and additive manufacturing techniques used in various industrial applications in the current era

to develop prototype models.

II. The unconventional machining processes and their selective applications as an alternative to traditional

manufacturing methods.

III. The standard electrical wiring practices for domestic and industrial appliances.

IV. The soldering and de-soldering components on a circuit board safely and correctly.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO 1 Practice the various types of manufacturing methods for preparing the given material to desired shape

by using traditional and unconventional manufacturing practices.

CO 2 Execute the additive manufacturing technology for learning about the 3D printing processes and

techniques.

CO 3 Select computer numerical control laser techniques for preparing the required geometrical profiles on

non-metallic materials.

CO 4 Demonstrate the assembly and disassembly of electrical equipment’s and controls for safe domestic

applications.

CO 5 Make use of computer numerical technologies to create products using wood carving techniques.

CO 6 Apply the plumbing skills to work with fittings and pipes made of PVC and galvanized steel.

118 | P a g e

IV. COURSE CONTENT:

EXERCISES ON MANUFACTURING PRACTICES

Note: Students are encouraged to bring their own laptops for laboratory practice sessions.

All dimensions are in mm in experiments.

Safety

Safety is a vital issue in all workplaces. Before using any equipment and machines or attempt

practical work in a workshop everyone must understand basic safety rules. These rules will help

keep all safe in the workshop.

Safety Rules

1. Always listen carefully to the teacher and follow instructions.

2. When learning how to use a machine, listen very carefully to all the instructions given by the

faculty / instructor. Ask questions, especially if you do not fully understand.

3. Always wear an apron as it will protect your clothes and holds lose clothing such as ties in

place.

4. Wear good strong shoes.

5. Bags should not be brought into a workshop as people can trip over them.

6. Do not use a machine if you have not been shown how to operate it safely by the faculty /

instructors

7. Know where the emergency stop buttons are positioned in the workshop. If you see an

accident at the other side of the workshop you can use the emergency stop button to turn off

all electrical power to machines.

8. Wherever required, wear protective equipment, such as goggles, safety glasses, masks, gloves,

hair nets, etc.

9. Always be patient, never rush in the workshop.

10. Always use a guard when working on a machine.

11. Keep hands away from moving/rotating machinery.

12. Use hand tools carefully, keeping both hands behind the cutting edge.

13. Report any UNSAFE condition or acts to instructor.

14. Report any damage to machines/equipment as this could cause an accident.

15. Keep your work area clean.

119 | P a g e

1. Getting Started Exercises

1.1 Principles of 3D printing and additive manufacturing techniques

3D printing or additive manufacturing enables to produce geometrically complex objects, shapes and textures. It

often uses less material than traditional manufacturing methods and allows the production of prototypes /

products that are not possible to produce economically with conventional manufacturing.

i) Familiarization of 3D printing machine and its principle of operation.

ii) Standard use of Computer Aided Design (CAD) drawings .dwg format and Interface with CURA /

Simplify 3D software as .stl file.

iii) Selection of Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) materials and their

specifications.

1.2 Preparation of stepped pulley with PLA material as shown in Figure 1.1

• Slicing of stepped pulley using. stl format

• Laying of stepped pulley using 3D printing

Figure 1.1 Stepped pulley

Try

1. Preparation of spur gear with ABS material as shown in the Figure 1.2

• Slicing of spur gear using .stl format

• Laying of spur gear using 3D printing.

Figure 1.2 Spur gear

Dimensions:

D = 40mm

D1 = 44mm Module, m= 2mm

D2= 20mm B= 10mm

Hint: Set the appropriate nozzle and temperature for ABS material, compare with PLA material.

2. Introduction to computerized numerical control (CNC) laser engraving

CNC Engraving machine is the process of gradually removing a small amount of material from a surface along a

defined path. The process leaves a visible marking on the surface of the substrate (workpiece) with high

accuracy and precision control.

i) Familiarization of CNC engraving machine with action control.

ii) Create a visualization of the engraving pattern on CAD software. The student must have a solid grip on

CAD to be able to create complex patterns in a quick and accurate manner.

120 | P a g e

iii) Computer Aided Manufacturing (CAM) software is a special software that is used to generate programs

for the CNC engraving machine.

2.1 Preparation of acrylic gears using CNC laser engraving / cutting machine as shown in

Figure 2.1

i) The parts file is divided into two pages. The file is a pdf. As different laser cutters use different file

formats I leave it to you to convert it to a format suitable for your machine.

ii) All the parts apart for the dowel pieces cut out and ready to go. The blue piece is the clear acrylic front

with its protective film still attached. Having cut out all the parts follow the instructions below to

assemble the gear display.

iii) Glue together the two eighteen teeth gears. Make sure that they are aligned precisely.

Figure 2.1 Acrylic gear

Try

1. Preparation of artistic components IARE logo using CNC laser engraving as shown in the Figure 2.2

• Open your program and create new file (OPEN-NEW FILE), use the TEXT tool and write the word you

want to engrave.

• Shows how to transform this word into an objects, each letter will become an individual shape.

• When using the laser technology, you have to make sure the file is one whole object, not a group of

objects.

 Figure 2.2 IARE logo

Hint: Set the appropriate parameters to perform operation on the balsaw wood material.

3. Introduction to computerized numerical control wood carving machines

CNC wood carving is the process of gradually removing a small amount of material from a surface along a

defined path. The process leaves a visible marking on the surface of the substrate (workpiece) with high

accuracy and precision control.

i) Familiarization of CNC machine with action control.

ii) Create a visualization of the engraving pattern on CAD software. The student must have a solid grip on

CAD to be able to create complex patterns in a quick and accurate manner.

iii) Computer Aided Manufacturing (CAM) software is a special software that is used to generate programs

for the CNC engraving machine.

3.1 Preparation of wooden wheel using computerized wood carving machine as shown in the

Figure 3.1

• Preparation of CAD .dwg file

• Importing the file into wood carving machine for generating the profile using CAM software.

121 | P a g e

 Figure 3.1 Wooden wheel

Try

1. Preparation of IARE lettering using CNC wood carving as shown in the Figure 3.2.

Figure 3.2 IARE lettering

Hint: Set the appropriate parameters to perform operation on the medium density fibreboard (MDF) wood

material.

4. Introduction to pipe fitting and threading

Threaded fittings are used in non-critical applications and when service fluid is at ambient temperatures such

was instrument air, plant air, cooling water, potable water etc. As they do not require welding, they are used at

places where welding is not permitted.

i) Preparation of Polyvinyl Chloride (PVC) material for pipe fitting

ii) Making threads on PVC pipe using thread die sets

iii) Fitting the threaded PVC pipe for T-shape using Tee joint

4.1 Preparation of PVC material for pipe threading and fitting as shown in the figure 4.1

i) Start by cutting the two pipes to the required length, making sure that they are the same size and the

ends line up properly.

ii) Make the threads using die sets to one end of the pipes, then place it on top of the pipe where you want

to join.

iii) Then start rotating to get bonded together.

 Figure 4.1 T Joint

Try

1. Preparation of galvanized steel I joint as shown in the Figure 4.2.

122 | P a g e

i) Start by cutting the two pipes to the required length, making sure that they are the same size and the

ends line up properly.

ii) Make the threads using die sets to one end of the pipes, then place it on top of the pipe where you want

to join.

iii) Then start rotating to get bonded together.

 Figure 4.2. GI Elbow Joint

Dimensions:

A = 40mm

B = 30mm

Hint: Set the appropriate die sets in order to get perfect threading in pipe fittings.

5. Introduction to computer numerical control (CNC) lathe machines

A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as

cutting, sanding, knurling, drilling, deformation, facing, and turning, with tools that are applied to the workpiece

to create an object with symmetry about that axis.

i) Operate with Computer Numerical Control (CNC) systems and provided with precise design

instructions.

ii) CNC Lathes are machine tools where the material or part is clamped and rotated by the main spindle,

while the cutting tool that work on the material, is mounted and moved in various axis.

5.1 Preparation of Mild Steel (MS) material for step turning with grooving operation as

shown in the Figure 5.1

• Inspect the mild steel raw material using Vernier calipers. The work piece is held in the chuck by

placing it properly and tightening it using the chuck key.

• Now single point cutting tool is placed in the tool post and properly arranged to the centre of the work

piece.

• Work piece is rotated by switching on the motor.

• Perform the facing operations on both sides and maintain the given dimensions.

• First the plain turning operation is carried out by placing the tool at 1 mm feed to the lathe axis.

• After that step turning operation is performed till the desired diameter is obtained.

123 | P a g e

Figure 5.1. Step turning with grooving operation

Try

1. Preparation of Mild Steel (MS) material for step turning with tapper operation as shown in the Figure 5.2.

• Select a tool bit to the desired size and shape of the groove required.

• Lay out the location of the groove.

• Set the lathe to half the speed for turning.

• Mount the workpiece in the lathe and set the tool bit to centre height.

 Figure 5.2. Step turning with tapper operation

6. Introduction to conventional lathe machines

The conventional lathe machine is a standard lathe that is used for holding and turning various types of materials

such as metal, wood, plastic etc. against a cutting tool in order to produce a cylindrical object. Besides this it can

even perform many other functions like grinding, boring, threading, polishing, reaming, drilling etc.

i) Operate with conventional lathe provides with manual design instructions.

ii) Lathes are machine tools where the material or part is clamped and rotated by the main spindle, while

the cutting tool that work on the material, is mounted and moved in various axis.

6.1 Preparation of mild steel (MS) material for thread cutting and knurling operation as

shown in the Figure 6.1

• Fix the job on the machine by using chuck key. Turn the job to the required diameter by fixing the

single point cutting tool.

124 | P a g e

• Chamfer the edge and make an under cut at the other end.

• Engage the bed screw and perform the threading operation.

• Stop when the pitch is measured by the pitch gauge.

• Reverse the job and hold it carefully so that the threads are not damaged. Disengage the back gear and

lead screw

• Hold the knurling tool against the rotating job.

Figure 6.1. Thread cutting and knurling operation

Try

1. Preparation of aluminum material for step turning with tapper operation as shown in the Figure 6.2.

• Select a tool bit to the desired size and shape of the groove required.

• Lay out the location of the groove.

• Set the lathe to half the speed for turning.

• Mount the workpiece in the lathe and set the tool bit to centre height.

 Figure 6.2. Step turning with tapper operation

7. Introduction to milling machines

Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a

workpiece. This may be done by varying directions on one or several axes, cutter head speed, and pressure.

Milling covers a wide variety of different operations and machines, on scales from small individual parts to

large, heavy-duty gang milling operations. It is one of the most used processes for machining custom parts to

precise tolerances.

i) Milling machine employed in the metal removing operation in which the work is rigidly clamped on

the table of the machine and the revolving cutter which has multiple teeth is mounted on the arbor.

ii) The cutter revolves at high speed and the work is fed slowly past the cutter.

iii) The work can be fed in a vertical, longitudinal, or cross direction depending upon the type of milling

machine being used.

iv) As the work proceeds, the cutter-teeth removes the metal from the surface of the job(workpiece) to

produce the desired shape.

7.1 Preparation of slotting operation as shown in Figure 7.1

• Keep the work piece on the working table in req. position with the help of holding device.

125 | P a g e

• Keep the cutting tool in the spindle and move the working table upward to give touch the surface of the

work piece.

• Then give the power supply and move the work table forward and backward with the help of lever.

• Repeat the same procedure by changing the feed rate in upward and cross direction to get the req.

dimension of slot on the work piece.

Figure 7.1 Slotting operation

Try

1. Perform the boring and reaming operation on a rectangular work piece to obtain the required dimensions

using vertical milling machine as shown in Figure 7.2.

Figure 7.2. Boring and reaming operation

8. Introduction to shaping machines

A shaping machine is a mechanical device used to shape and form metal workpieces. It operates by removing

material through a reciprocating cutting motion, resulting in the desired shape or contour. Shaping machines are

commonly used in metalworking industries for various applications, including creating flat surfaces, slots, and

grooves.

i) A rigid table on the machine supports the workpiece. Over the workpiece, the ram moves back and forth

as shown in the animation above. A vertical tool slide is adjusted to either side of the vertical plane along

the stroke axis, which is located at the front of the ram.

ii) The geometry of the linkage causes the ram to travel more quickly on the return stroke than the forward

stroke (cutting stroke). As the shaper works on the quick return mechanism, the sliding action of the

slider is aided by the rotating link.

iii) One of the four mechanisms i.e. crank and slotted, whitworth quick return, hydraulic, and automatic table

feed mechanism, is responsible for the quick return mechanism and reciprocating movement of the ram.

The automatic table feed is commonly used today which employs a pawl and ratchet mechanism in a

shaping machine.

8.1 Preparation of V-groove operation as shown in Figure 8.1

• The job is fixed on a vice and the tool is fixed on tool post.

• The stroke of ram is adjusted to required length and machine is switched on.

• Always during machining, the job should be properly fixed with the half of try Square and vice to get a

right-angle surface after machining.

• After completion of work, the job should be filled help of file before fixing the job, V block

dimensions are marked on the job with the help of dot punch.

126 | P a g e

• The tool head should be rotated at 450 to make the V- groove.

• The feed is given such that the tool moves gradually on either side of the middle line.

•
Figure 8.1 V-groove operation

Try

1. Perform the key ways on a cylindrical work piece to obtain the required dimensions using shaping machine

as shown in Figure 8.2

Figure 8.2 Key ways on a cylindrical work piece

9. Introduction to electrical wiring practices for domestic appliances

The Electrical Wiring Systems are mostly standardized with several rules, regulations, and laws. Electrical

Wiring must be installed correctly and safely in accordance with electrical regulations and standards. If the

electrical wiring is carried out incorrectly or without confirming to any standard, then it may lead to incidents

like short circuits, electric shocks, damage the device / appliance or leads to the malfunctioning of device which

further causes for the reduction of device life.

i) Before starting any installation work, the first and foremost thing is the concern of safety of the

personnel. Electricity is dangerous and direct or indirect contact of electrical equipment or wires with

the power turned ON can result in serious injuries or sometimes even causes death. Follow the below

steps to maintain the safety at the workplace.

ii) Several factors must be considered before the actual installation work to be done for residential,

commercial, or industrial wiring. These factors include type of building construction, type of ceiling,

wall, and floor construction, wiring methods, installation requirements, etc.

9.1 Preparation of wiring for a stair case arrangement using a two -way switch as shown in

Figure 9.1

• Mark switch and bulb location points and draw lines for wiring on the wooden Board.

• Place wires along the lines and fix them with the help of clips.

• Fix the two-way switches and bulb holder in the marked position on the wooden Board.

• Complete the wiring as per the wiring diagram.

• Test the working of the bulbs by giving electric supply to the circuit

127 | P a g e

Figure 9.1 Circuit diagram-staircase wiring

Try

1. Prepare wiring for a tube light with switch control as shown in Figure 9.2.

• Mark the switch and tube light location points and draw lines for wiring on the wooden board.

• Place wires along the lines and fix them with the help of clips.

• Fix the switch and tube light fitting in the marked positions.

• Complete the wiring as per the wiring diagram.

• Test the working of the tube light by giving electric supply to the Circuit.

Figure 9.2 Circuit diagram-tube light

10. Introduction to soldering and desoldering practice

Soldering is defined as "the joining of metals by a fusion of alloys, which have relatively low melting points". In

other words, you use a metal that has a low melting point to adhere the surfaces to be soldered together.

Soldering is more like gluing with molten metal than anything else. Soldering is also a must have skill for all

sorts of electrical and electronics work. It is also a skill that can only be developed with practice.

i) Soldering requires two main things: a soldering iron and solder. Soldering irons are the heat source

used to melt solder. Irons of the 15W to 30W range are good for most electronics/printed circuit board

work.

ii) Using anything higher in wattage and you risk damaging either the component or the board. Note that

you should not use so-called soldering guns. These are very high wattage and generate most of their

heat by passing an electrical current through a wire. Because of this, the wire carries a stray voltage

that could damage circuits and components. The choice of solder is also important.

iii) One of the things to remember is to never use acid core solder. Acid core solder will corrode

component leads, board traces and form conductive paths between components.

10.1 Preparation of soldering from a circuit board as shown in Figure 10.1

• All parts must be clean and free from dirt and grease.

• Try to secure the work firmly.

• "Tin" the iron tip with a small amount of solder. Do this immediately, with new tips being used for the

first time.

128 | P a g e

• Clean the tip of the hot soldering iron on a damp sponge.

• Many people then add a tiny amount of fresh solder to the cleansed tip.

• Heat all parts of the joint with the iron for under a second or so.

• Continue heating, then apply sufficient solder only, to form an adequate joint.

• Remove and return the iron safely to its stand.

• It only takes two or three seconds at most, to solder the average printed circuit board (PCB). joint.

• Do not move parts until the solder has cooled.

Figure 10.1 Soldering operation

Try

1. Perform desoldering operation from a circuit board as shown in Figure 10.2.

• Heat up the solder with the iron.

• Slide the iron up the pins to bring most of the solder away from the joint.

• Using pliers, gently pull at the components to remove their pins from the pin holes while they are still hot.

It's a good idea to pull by their leads as opposed to on the components themselves to maintain the quality

of the component.

Figure 10.2 De-Soldering operation

11. Introduction to troubleshooting the ceiling fan and mixer grinder

In generally most ceiling fan and table fan have a capacitor start permanent capacitor motors which a difference

from usual motor that it central position (Rotor/ Armature) remains fixed, while the outer portion rotates blades

are mounted on the outer shaft when the motor is energized the blade cause to rotate and to circulate the

surroundings are depends on the speed of fan. A regulator is connected in series with fan at different tapings

hence the speed of the fan consist of a number of parts are connected together as a shaft to avoid loose fittings

the parts are located bolts, split, pins and bearing lock.

i) Usually, a ceiling fan and table fan consist of a capacitor start and run motor. Capacitor are always

connected in the circuit the advantages of leaving the capacitor permanently in circuit.

ii) It has one starting winding in series with one capacitor and running winding since the capacitor remains in

the circuit permanently. This motor is often referred to as permanent. Split capacitor runs motor and

behaves practically like an unbalanced 2phase motor.

11.1 Perform the maintenance of ceiling fan and ending the trouble shoot problems as shown

in Figure 11.1

129 | P a g e

• The rapid spinning and vibrations your fan’s components are subjected to can cause them to work loose

and wear out. Inspecting the fan every two or three months you use it helps keep the fan working

efficiently and extends its lifespan.

• One of the most common problems is a loose mount, which can cause your fan to wobble. A wobbling

fan is unlikely to fall, but it can cause the light fixture to fall, so it’s not something to ignore.

• Blades that are misaligned or out of balance can also cause wobbling. Over time, one or more blades

can become warped, bent or otherwise damaged. Even a minor difference can disrupt the fan’s normal

performance, so check each blade closely.

Figure 11.1 Celling fan circuit diagram

Try;

1. Perform the maintenance for mixer grinder from a circuit board as shown in Figure 11.2.

• Universal Series Motor

• Three Position Speed Control Rotary Switch

• Thermal Overload Relay or overload switch

• Indicator Light

• Power Switch

 Figure 11.2. Mixer grinder circuit diagram

12. Introduction to 6 axis articulated robotic arm

ARISTO is six axis articulated robotic arm of industrial for training and research and is manufactured to

industrial standards. The robot is capable of lifting up to 2.5kg of pay load. The robot can be used with

pneumatic or electrical grippers. ARISTO has simulation software that allows the user to learn robot functions,

application & programming.

• The evolution of the performance of robots and programming software provides new machining solutions.

For complex parts, six axes robots offer more accessibility than a machining center CNC 5 axis and allow

the integration of additional axes to extend the workspace.

• Robots have seen in recent years an expansion of their field of use with new requirements related to the

increasing use of composites. The robots are then considered for machining operations (polishing, cutting,

drilling etc.) that require high performance in terms of position, orientation, followed by trajectory

precision and stiffness.

12.1 Preparation of articulated robot for lifting load as shown in Figure 12.1

• A load lifting robot is a type of industrial robot that is used for handling and placing products on a

production line.

130 | P a g e

• They are typically used in high-volume manufacturing settings, where they can quickly and accurately

place products onto conveyor belts or other production equipment

Figure 12.1 Six Axis Aristo Robot

Try

1. Perform the pick and place operation for the articulated robot as shown in Figure 12.2

• A pick-and-place robot is a type of industrial robot that is used for handling and placing products on a

production line.

• They are typically used in high-volume manufacturing settings, where they can quickly and accurately

place products onto conveyor belts or other production equipment.

 Figure 12.2. Pick and place operation

131 | P a g e

13. Introduction to FANUC simulator

The FANUC CNC Simulator brings the world’s most popular control right into your workplace training room,

providing hands-on training for FANUC CNC operation without the need for a full machine. Add Machining

Simulation Software to the CNC Simulator for advanced machine simulation capability.

• This PC-based platform is perfect for training and designing part programming. The CNC Machining

Simulation software provides a digital twin of the machine tool producing the real-world cutting process.

This provides you with the most realistic simulation of the actual machining on your floor. To prepare the

industry for more complex machining knowhow, a 5-axis machining training option is now available.

• For companies needing a more tailored training offering, FANUC America’s CNC Hardware Simulators

are fully functional CNCs that include the panel and operating system. More robust than our CNC

Simulators, our CNC Hardware Simulators are complete control simulators customized to address your

specific workplace training needs. Operations needing a particular CNC model for their shopfloor training

will benefit from these simulators.

13.1 Preparation of milling and lathe system switchable on one simulator as shown in Figure

13.1

• Switchable mill and lathe (turning) system in one simulator

• 3-axis milling / 2-axis turning system plus one spindle

• Manual Guide is installed for conversational program creation and 3D simulation

• Imperial / metric switchable

• 512KB part-program storage, with 400 registered programs

• 32 tool offset pairs

• Workpiece coordinates G52 – G59 plus 48 additional on mill

 Figure 13.1 FANUC Simulator

Try

1. Perform the combination of CNC Simulator with CNC machining simulation software as shown in Figure

13.2.

• The CNC Machining Simulator carries all the same features as the standard simulator with the addition of

an internal PC, which will provide a virtual mill or lathe with real kinematics, allowing the user to view

the live machine movement, tooling and part machining.

• Tool and workpiece setup is required and colored back plot, collision detection and sound bring the

machine operating experience to life.

132 | P a g e

 Figure 13.2 CNC Simulator with CNC machining simulation

14. Demonstration to cylindrical grinding machine

Most commonly, cylindrical grinding is used for grinding pieces with a central axis of rotation, like rods and

cylinders. This process involves using a cylindrical grinder, which is a type of machinery categorized by

rotation style and wheel device.

• A grinding machine uses an abrasive product usually a rotating wheel to shape and finish a workpiece by

removing metal and generating a surface within a given tolerance. A grinding wheel is made with abrasive

grains bonded together. Each grain acts as a cutting tool, removing tiny chips from the workpiece.

14.1 Demonstration on industry standard grinding as shown in Figure 14.1

• The ECO-200 Micromatic industry standard universal cylindrical grinding machine is used for grinding of

components up to an accuracy of 5m and used for projects.

Figure 14.1 Cylindrical griding

Try

1. Demonstration grinding methods and machines

• Grinding, or abrasive machining, once performed on conventional milling machines, lathes and shapers,

is now performed on various types of grinding machines.

• Grinding machines have advanced in design, construction, rigidity and application far more in the last

decade than any other standard machine tool in the manufacturing industry. Grinding machines fall into

five categories: surface grinders, cylindrical grinders, centerless grinders, internal grinders and specials.

133 | P a g e

V. TEXT BOOKS:

1. Hajra Choudhury S.K., Hajra Choudhury A.K. and NirjharRoy S.K., Elements of Workshop

Technology, Media promoters and publishers private limited, Mumbai, 2020.

2. Kalpakjian S, Steven S. Schmid, Manufacturing Engineering and Technology, Pearson Education India

Edition, 7th Edition, 2019.

VI. REFERENCE BOOKS:

1. Gowri P. Hariharan, A. Suresh Babu, Manufacturing Technology – I, Pearson Education, 2018.

2. Roy A. Lindberg, Processes and Materials of Manufacture, Prentice Hall India, 4th Edition, 2017.

3. P.N., Manufacturing Technology, Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

4. Rupinder Singh, J. Paulo Davim, Additive Manufacturing: Applications and Innovations, CRC Press,

2nd Edition, August, 2021.

5. Jeyaprakash Natarajan, Muralimohan Cheepu, Che-Hua Yang, Advances in Additive Manufacturing

Processes, Bentham Books, 4th Edition, September, 2021.

VII. ELECTRONICS RESOURCES:

1. https://elearn.nptel.ac.in/shop/iit-workshops/ongoing/additive-manufacturing-technologies-for-

practicing-engineers/.

2. https://akanksha.iare.ac.in/index?route=course/details&course_id=94.

VIII. MATERIALS ONLINE:

1. Course Template

2. Lab manual

https://benthambooks.com/book/9789815036336/
https://benthambooks.com/book/9789815036336/
https://benthambooks.com/book/9789815036336/
https://elearn.nptel.ac.in/shop/iit-workshops/ongoing/additive-manufacturing-technologies-for-practicing-engineers/
https://elearn.nptel.ac.in/shop/iit-workshops/ongoing/additive-manufacturing-technologies-for-practicing-engineers/
https://akanksha.iare.ac.in/index?route=course/details&course_id=94

134 | P a g e

COURSE CONTENT

ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

I Semester: CSE (AI&ML) / IT / AERO / MECH / CIVIL

II Semester: CSE / CSE(DS) / CSE(CS)

Course Code Category Hours / Week Credits Maximum Marks

AEED03 Foundation
L T P C CIA SEE Total

- - 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Nil

I. COURSE OVERVIEW:

This course serves as a foundation course on electrical engineering. It covers a broad range of fundamental

electrical circuits and devices. The concepts of current, voltage, power, basic circuit elements, electrical and

electronic devices and their application in more complex electrical systems are to be imparted to the students.

II. COURSES OBJECTIVES:

 The students will try to learn:

I. The basic laws for different circuits.

II. The elementary experimental and modeling skills for handling problems with electrical

machines in the industries and domestic applications to excel in professional career.

III. The intuitive knowledge needed to test and test and analyze the performance leading to design

of electric machines by conducting various tests and calculate the performance parameters.

IV. The semiconductor devices like diode and transistor.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO1 Solve an electric circuit by providing laws and solving theorems.

CO2 Analyze the performance characteristics of DC shunt machine at various loading conditions

CO3 Examine the performance of induction motors by conducting a suitable test.

CO4 Acquire basic knowledge on the working of diodes to plot their characteristics

CO5 Identify transistor configuration and their working to deduce its working.

CO6
Use of the two port parameters to be measured easily, without solving for all the interna voltages

and currents in the different networks.

Dos

1) For safety purpose the students should compulsory wear leather shoes.

2) Students should come in uniform prescribed.

i. For boys, half sleeve shirts, tucked in trousers

ii. For ladies, half sleeve overcoat, hair put inside the overcoat

3) After giving connections, staff members should be asked to verify the circuit connections.

4) Before staring the circuit connections check whether the circuit breaker is in OFF condition.

5) Circuit should be switched ON only after getting permission from the staff member.

6) To be careful with moving parts in the machine.

7) To come prepared with procedure relevant to the experiment.

8) Unplug electrical equipment after use.

135 | P a g e

Dont’s

1) Don’t assume that the power is disconnected.

2) Don’t attempt to repair electrical equipment.

3) Don’t come with any ornaments when working with electrical machines.

4) Don’t use an earth connection as a neutral.

5) Don’t touch any parts unnecessarily.

6) Don’t keep any fluids and chemicals nearing instruments and circuits.

IV. COURSE CONTENT:

EXERCISES FOR ELECTRICAL AND ELECTRICAL ENGINEERING LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory practice session

1. Getting Started Exercises

1.1 Introduction to electrical circuits

1. Understand the basic electrical equipment’s used in the laboratory.

2. Become familiar with the operation and usage of basic DC electrical laboratory devices, namely DC power

supplies and digital multimeter’s.

3. Learn the measurement of resistance values using colour code and digital multimeter.

4. Learn the basics of circuit design using Simulink.

Try

1.Calculate the resistance value of Resistor – 1, Resistor – 2 and Resistor – 3 using colour code and verify using

a digital multimeter.

 Resistor – 1 Resistor – 2 Resistor – 3

2. Design Circuit – 1 using Simulink and find the voltages V1, V2, V3 and Current I. Where Vs = 6 V,

R1 = 100 Ω, R2 = 220 Ω, R3 = 1k Ω.

R1 R2 R3

V

V1 V2 V3I

Circuit – 1

3. Design Circuit – 2 using Simulink and find the currents I1, I2 and I3. Where Vs = 6 V, R1 = 100 Ω, R2 = 220

Ω, R3 = 1k Ω.

136 | P a g e

V R1 R2 R3

I1 I2 I3

Circuit – 2

2. Exercises on Basic Electrical Circuit Law’s

2.1 Ohm’s law

1.Examine Ohm’s law of Circuit – 3 and draw the V-I characteristic of linear resistors R = 1k Ω

I

R

A

VV

Circuit - 3

Try

1. Verify Ohm’s law of Circuit – 3 using Simulink and draw the V-I characteristics of a linear resistor R = 470

k Ω

2. An electric heater takes 1.48 kW from a voltage source of 220 V. Find the resistance of the heater.

2.2 Kirchhoff’s voltage law

1. Examine Kirchhoff’s voltage law using basic series DC Circuit - 4 with resistors. Where Vs = 6 V,

R1 = 100 Ω, R2 = 220 Ω, R3 = 1k Ω.

Circuit – 4

Try

1. Design and Verify Kirchhoff’s voltage law for Circuit – 4 using Simulink.

2. Determine the voltage V2 by replacing the resistor R2 = 150 Ω.

3. Find the total current I flowing through the Circuit – 4.

2.3 Kirchhoff’s current law

1. Examine Kirchhoff’s current law using basic parallel DC Circuits - 5 with resistors. Where Vs = 6 V,

 R1 = 100 Ω, R2 = 220 Ω, R3 = 1k Ω

137 | P a g e

Circuit – 5

Try

1. Design and Verify Kirchhoff’s current law for Circuit – 5 using Simulink.

2. Determine the voltage I2 by replacing the resistor R2 = 150 Ω.

3. Exercises on Mesh Analysis

1.Determine mesh currents in the complex electrical Circuit - 6 by using principles of basic electrical circuits.

Where R0 = 47Ω, R1 = 100 Ω, R2 = 220 Ω, R3 = 1k Ω, R4 = 150 Ω, R5 = 82 Ω, R6 = 100 Ω.

Circuit – 6

Try

1. Use Simulink to simulate the Circuit – 6 for determining the current flowing through each resistor and

compare these values to those you obtained from your experiments.

2. Find the current flowing through the resistor R2 and R3 by replacing the values of the resistors R2 = 100 Ω,

R3 = 470 Ω.

3. Find the current flowing through the resistor R3 for Circuit – 7 using mesh analysis when V1 = 10V, V2 =

6V, R1 = 100 Ω, R2 = 220 Ω and R3 = 1k Ω.

R1 R3

R2V1 V2

Circuit – 7

4. Exercises on Nodal Analysis

1. Determine nodal voltages in complex electrical Circuit – 8 by using principles of basic electrical circuits.

Where R0 = 47Ω, R1 = 100 Ω, R2 = 220 Ω, R3 = 1k Ω, R4 = 150 Ω, R5 = 82 Ω, R6 = 100 Ω.

138 | P a g e

Circuit – 8

Try

1. Use Simulink to simulate the Circuit – 8 for determining the voltage across each resistor and compare these

values to those you obtained from your experiments

2. Determine the voltage at node - II by replacing the resistor R2 = 150 Ω

3. Find the voltage V1 for Circuit – 7 using nodal analysis when V1 = 10V, V2 = 6V, R1 = 100 Ω, R2 = 220 Ω

and R3 = 1k Ω.

5. Exercises on Thevenin’s Theorem

1. Determine Thevenin’s equivalent voltage (Vth) and resistance (Rth) at the load terminals by applying

Thevenin’s theorem for Circuit – 9.

2. Determine load or unknown current through a R4 resistor using Thevenin’s equivalent circuit. Where V =

10V, R1 = 100 Ω, R2 = 220 Ω, R3 = 1k Ω and R4 = 150 Ω

R1 R3

R2V R4

Circuit – 9

Try

1. Use Simulink to simulate the Circuit – 13 for determining the current thought R4 resistor using Thevenin’s

theorem and compare this value to those you obtained from your experiment.

2. Find the current thought R4 resistor using any circuit reduction technique and verify this value to those you

obtained from Thevenin’s theorem.

Find the current flowing through R2 resistor in Circuit – 10 using Thevenin’s theorem for the below circuit.

Where V1 = 10V, V2 = 5V, R1 = 100 Ω, R2 = 220 Ω, R3 = 1k Ω

R1 R3

R2V1 V2

Circuit – 10

6. Exercises on Norton’s Theorem

1. Find Norton equivalent current (IN) and resistance (RN) by considering RL = 150 Ω resistor for the Circuit –

15 by applying Norton’s theorem.

2. Find load or unknown current through RL resistor using Norton’s equivalent circuit. Where V = 10V, R1 =

100 Ω, R2 = 220 Ω and R3 = 1k Ω.

139 | P a g e

R1 R3

R2V RL

Circuit – 11

Try

1. Use Simulink to simulate the Circuit – 11 for determining the current through RL resistor and compare this

value to those you obtained from your experiment

2. Find the current thought RL using any circuit reduction technique and verify this value to those you obtained

from Norton’s theorem.

7. Exercises on Superposition Theorem

1. Investigate the current thought R2 resistor using superposition theorem to multiple DC source

Circuit - 16

R1 R3

R2V1 V2

Circuit – 12

Try

1. Use Simulink to simulate the Circuit – 12 for determining the current through a R2 resistor and compare this

value to those you obtained from your experiment

2. Find the current thought R2 in Circuit – 12 using any circuit reduction technique and verify this value to

those you obtained from the superposition theorem.

3. Find the current through the R4 resistor using the superposition theorem for the Circuit – 13.

R1 R3

R2V R4I

Circuit – 13

8. Exercises on Reciprocity Theorem

1. Understand the reciprocity theorem by analyzing Circuit – 14 with interconnected components using

fundamental circuit laws where V = 10 V, R1 = 100 Ω, R2 = 220 Ω, R3 = 1k Ω, R4 = 150 Ω and R5 = 82 Ω.

140 | P a g e

R1

R4

R3

V

R5

R2

Circuit – 14

Try

1. Use Simulink to simulate Circuit–14 for determining the current through R5 and R1 by interchanging the

voltage source in series with the R5 resistor and compare this value to those you obtained from your

experiment

2. Find the current thought R3 using Thevenin’s theorem.

9. Swinburne’s test and speed control of dc shunt motor

1. Design the suitable test under no load conditions to measure no load losses in Dc shunt machines and speed

control of DC shunt motor.

Try

1. Calculate the output power and efficiency when motor takes 10A on full load and 5A on half

Load.

2. Measure the no load machine losses by using indirect method of testing.

3. Perform the speed control by varying the armature circuit resistance and field circuit resistance of DC shunt

motor.

10 magnetization characteristics of dc shunt generator

1. Develop the circuit for analyzing the magnetization characteristics of DC shunt generator.

Try

1. From the Open circuit characteristics calculate the critical resistance of field winding.

2. Using magnetization characteristics calculate the critical speed of DC shunt generator at 100 Ω

3. Determine the performance of DC generator using the magnetization curve.

4. Calculate the critical value of shunt field resistance at 1500 rpm

11 Exercises on PN junction diode characteristics

Study the characteristics of PN junction diode as shown in Figure. 1

Figure. 1 diode as forward bias

141 | P a g e

Try

1. Plot the V-I Characteristics of germanium diode and find the cut in voltage.

2. Design diode acts as switch and plot the switching times of diode.

12 Zener diode characteristics and voltage regulator

Study the characteristics of Zener diode as shown in Figure. 2

Figure. 2 Circuit diagram for Zener diode as forward bias

Try

1. Design a Zener voltage regulator circuit to drive a load of 6V, 100 mW from an unregulated

2. input supply of Vmin = 8V, Vmax = 12V using a 6V Zener diode. .

3. Design square wave generator using Zener diode

4. Design for a Zener Transistor series voltage regulator circuit to drive a load of 6V, 1w,

5. from a supply of 10V with a ±3V ripple voltage

13 Half wave rectifier with/without filter

1. Design a half-wave rectifier circuit and analyze its output as shown in Figure. 3

2. Analyze the rectifier output using a capacitor in shunt as a filter as shown in Figure. 3

Figure. 3 Circuit Diagram for Half Wave Rectifier without Filter

Try

1. Design half wave rectifier with an applied input AC power is 100 watts, and it is to deliver

an output power is 40 watts.

2. Design half wave rectifier with an AC supply of 230 V is applied through a transformer of turn ratio 10 : 1.

Observe the output DC voltage, peak inverse voltage and identify dc output voltage if transformer turns ratio

changed to 20:1.

14 Full wave rectifier with/without filter

1. Design a Full-wave rectifier circuit and analyse its output as shown in Figure. 4

2. Analyse the rectifier output using a capacitor in shunt as a filter as shown in Figure. 4

142 | P a g e

Figure 4: Circuit Diagram for Full Wave Rectifier without Filter

Try

1. Design a full wave rectifier with step down transformer and center tapped transformer. Justify the operation.

2. Design Full wave rectifier with capacitive filter using 10uF and 1uF. Observe the ripple

V. TEXT BOOKS:

1. A Chakrabarti, CircuitTheory, Dhanpat Rai Publications, 2004.

VI. REFERENCE BOOKS:

1. J P J Millman, C C Halkias, Satyabrata Jit, Millman’s Electronic Devices and Circuits, Tata McGraw
Hill, 2nd Edition, 1998.

2. RL Boylestad, Louis Nashelsky, Electronic Devices and Circuits, PEI/PHI, 9th Edition, 2006.

VII. ELECTRONICS RESOURCES:
1. https://www.nptel.ac.in/Courses/117106108
2. https://www.gnindia.dronacharya.info/EEEDept/labmanuals.html

3. https://www.textofvideo.nptel.iitm.ac.in

4. https://www.textofvideo.nptel.iitm.ac.in/

VIII. MATERIALS ONLINE

11. Course template

12. Lab manual

143 | P a g e

COURSE CONTENT

 ESSENTIALS OF INNOVATION

I Semester: AE / ME / CE / ECE / EEE / CSE (AI&ML) / IT

II Semester: CSE / CSE (DS) / CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks

ACSD03 Foundation
L T P C CIA SEE Total

- 2 - 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: There are no prerequisites to take this course

 I. COURSE OVERVIEW:

Essentials of Innovation and Design thinking is a strategic approach towards creative problem-solving by placing

users’/customers' needs above everything else. It is a process of questioning: questioning the problem, questioning

assumptions, and questioning the implications. As a process it is a great catalyst of change and evolution. A Design

thinking approach helps develop and build a culture of innovation across the students.

 II. COURSE OBJECTIVESS:

I. The implications of disruption and the role of innovation.

II. The various frameworks, tools, and techniques of design thinking.

III. How to design, develop and implement an innovation product or service or process.

III. COURSE CONTENT:

Module-I; Philosophy of Innovation and Design Thinking

• Introduction to Innovation and Design Thinking

• History and Philosophy of Design Thinking

• Design Thinking as Problem-Solving Tool

• Design Thinking and it's Benefits

• Design Thinking Mind-set

Module-2: Mechanics of Innovation and Design Thinking

• Integrative View of Design Thinking

• Design Thinking Process

• 5 Stages (Empathise, Define, Ideate, Prototype and Test)

• Conceptual Frameworks Used in Design Thinking Process

• Case Studeis

Module-3: Design Thinking for Understanding Customers

• Understanding the User and Context

• Market Research

• Visualization and Customer Journey Mapping

• Empathy Mapping

• Redefining Problems, Brainstorming

• Reframing the Perspectives

• Ideation and Creativity

• Creative Ideation Methodologies

• Sketching & Visualization

• Storytelling

Module-4: Implementing Design Thinking

• Innovating Products, Services and Business Models

• Concept Evaluation and Concept Development

• Applications of Design Thinking

• Designing for Tangibles and Intangibles

• Ideas and Opportunities for Products

144 | P a g e

Module-5: Innovation Management

• Introduction to Innovation Management

• Business, Product & Process Innovation

• Organization Innovation

• Innovating Products, Services and Business Models

• Crafting a Better World Using Design Thinking & Innovation

• Design Thinking, Innovation and Organization Strategy

• Idea Pitching and Validation

Text Books:

I. Nigel Cross, “Design Thinking: Understanding How Designers Think and Work”, Kindle Edition,

2011.

II. Tim Brown, Harper Bollins, “Change by Design”, 2009.

III. Idris Mootee, “Design Thinking for Strategic Innovation”, John Wiley & Sons, 2013.

145 | P a g e

COURSE CONTENT

ENVIRONMENTAL SCIENCE

I Semester: AE / ME / CE / ECE / EEE/ CSE (AI & ML) / CSE / CSE (CS) / CSE (DS) / IT

Course Code Category Hours / Week Credits Maximum Marks

AHSD06 Foundation
L T P C CIA SEE Total

 - - - - - - -

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: Nil Total Classes: Nil

Prerequisite: Basic Principles of earth science.

I. COURSE OVERVIEW:

This course is an interdisciplinary study which examines the interaction between humans and the environment,

with specific reference to the effects of modern technological advances. The students will be able to understand

the sustainable development, ecological sustainability, environmental pollution, environmental issues in order to

protect the environment and followed by the application of this knowledge to current environmental problems in

the later years.

II. COURSES OBJECTIVES:

The students will try to learn

I. The interrelationship between living organism and environment.

II. The importance of environment by assessing its impact on the human world

III. The knowledge on themes of biodiversity, natural resources, pollution control and waste management.

IV. The sustainability and unsustainability of various interactions between human society and the earth’s

natural systems

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Infer the basic ecological principles, biogeochemical cycles and its function for the flow of energy

in ecosystem.

CO2 Awareness on different natural resources and its conservation for sustainable development.

CO3 Use alternate energy resources for future growing energy needs.

CO4 Predict the of importance of biodiversity for its productive use.

CO5 Identify the global environmental problems by different types of environmental Pollution and

international summits for minimizing the problems.

CO6 Outline the features of laws and rules related to environment protection,

environmental impact assessment towards sustainable development.

IV. SYLLABUS:

MODULE–I: ECOSYSTEMS

Environment: definition, scope and importance of ecosystem, classification, structure and function of an

ecosystem, food chains, food webs and ecological pyramids, flow of energy; biogeochemical cycles,

hydrological cycle, phosphorous cycle, nitrogen cycle, biomagnifications.

MODULE-II: NATURAL RESOURCES

Natural resources: classification of resources, living and nonliving resources; water resources: use and over

utilization of surface and ground water, floods and droughts, dams, benefits and problems; mineral resources:

use and exploitation, environmental effects of extracting and using mineral resources; land resources; energy

resources: renewable and non-renewable energy sources, use of alternate energy source.

MODULE-III: BIODIVERSITY AND BIOTIC RESOURCES

Biodiversity and biotic resources: introduction, definition, genetic, species and ecosystem diversity; value of

biodiversity: consumptive use, productive use, social, ethical, aesthetic and optional values; Hot spots of

biodiversity.

Threats to biodiversity: habitat loss, poaching of wildlife, human-wildlife conflicts; Conservation of

146 | P a g e

biodiversity: In situ and ex situ conservation.

MODULE–IV: ENVIRONMENTAL POLLUTION AND CONTROL TECHNOLOGIES

Environmental pollution: definition, causes, effects and control measures of air pollution, water pollution, soil

pollution, impacts of modern agriculture and noise pollution; solid waste: municipal solid waste management,

composition and characteristics of e-waste and its management; Pollution control technologies: waste water

treatment methods, primary, secondary and tertiary; global environmental issues and global efforts: climate

change and impacts on human environment, ozone depletion, ozone depleting substances; International

conventions / protocols: Kyoto protocol and Montreal protocol.

MODULE–V:ENVIRONMENTAL POLICY AND LEGISLATION

Environmental legislations: environmental protection act, air act1981, water act, forest act. municipal solid

waste management and handling rules, biomedical waste management and handling rules, hazardous waste

management and handling rules, population and its explosion.

V. TEXT BOOKS:

1. Erach Bharucha, Text Book of Environmental Studies for Under Graduate Course, Orient Black Swan, 3rd

 Edition, 2021.

2. Anubha Kaushik and C P Kaushik, Perspectives in Environmental Studies, New Age International private

 limited, New Delhi,7th Edition, 2021.

3. Benny Joseph, Environmental Studies, Tata Mc Graw Hill Publishing Co. Ltd, New Delhi, 3rd Edition, 2017.

VI. REFERENCE BOOKS:

1. Dr.M Anji Reddy, Text Book of Environmental Science and Technology, BS Publications, 3rd Edition,

 2014.

2. Y Anjaneyulu, Introduction to Environmental Science, BSP Books Private Limited, 3rd Edition, 2020.

VII.ELECTRONICSRESOURCES:

1. https://www.meripustak.com/Environmental-Science-Isv-8th-Edition-121505

2. https://www.meripustak.com&gclid=CjwKCAjwtp2bBhAGEiwAOZZTuFwLEkGc6SGNUZjXpz0ffeN

wgBOHWQIKge-E-9UvXxTPxQJdjaTgJBoCrQIQAvD_BwE

VIII. MATERIALS ONLINE

1. Course Template

2. Tutorial Question Bank

3. Model Question Paper – I

4. Model Question Paper - II

5. Lecture Notes

6. Early Lecture Readiness Videos

7. Power Point Presentation

https://www.meripustak.com&gclid=cjwkcajwtp2bbhageiwaozztufwlekgc6sgnuzjxpz0ffenwgbohwqikge-e-9uvxxtpxqjdjatgjbocrqiqavd_bwe/
https://www.meripustak.com&gclid=cjwkcajwtp2bbhageiwaozztufwlekgc6sgnuzjxpz0ffenwgbohwqikge-e-9uvxxtpxqjdjatgjbocrqiqavd_bwe/

147 | P a g e

COURSE CONTENT

 ENGINEERING CHEMISTRY

I Semester: CSE / CSE (CS) / CSE (DS)

II Semester: AE / ME / CE / ECE / EEE / CSE (AI & ML) / IT

Course Code Category
Hours /

Week
Credits Maximum Marks

AHSD03 Foundation
L T P C CIA SEE Total

3 - - 3 40 60 100

Contact Classes: 64 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 64

Prerequisite: Basic principles of chemistry

I. COURSE OVERVIEW:

This course focuses on the fundamental concepts of chemistry and then builds an interface with their

industrial applications. The basic knowledge on chemical bonding and intermolecular forces which

together are responsible for determining the properties of materials. The students will be able to analyze

water purification processes to avoid industrial interruptions. The course concludes with an overview of

involving electron transfer, including their applications in corrosion and energy storage for portable

electronic devices. It should cultivate in students to identify chemistry in each piece of finely engineered

products used in households and industry.

II. COURSES OBJECTIVES:

The students will try to learn

I. The concepts of electrochemical principles and causes of corrosion in the new developments

and breakthroughs efficiently in engineering and technology.

II. The different parameters to remove causes of hardness of water and their reactions towards

complexometric method.

III. The properties, separation techniques of natural gas and crude oil along with potential

applications in major chemical reactions.

IV. The different types of materials with respect to mechanisms and its significance in industrial

applications.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Acquire the basic knowledge of electrochemical principles related to corrosion and its control

CO2 Interpret the basic properties of water for its usage in industrial and domestic applications.

CO3 Use complexometry for calculation of hardness of water to avoid industrial problems.

CO4 Extend the applications of polymers based on their degradability and properties.

CO5 Choose the appropriate fuel based on their calorific value for energy efficient processes.

CO6 Predict the knowledge on viability of advanced materials for technological improvements in

various sectors.

IV. COURSE CONTENT:

MODULE-I: BATTERIES CHEMISTRY AND CORROSION (10)

Introduction to electrochemical cells: Galvanic cell, electrolytic cell; electrochemical series and its

applications; Batteries: classification of batteries, construction, working and applications of Zinc-air

battery, Lead-acid battery, Li-ion battery, applications of Li-ion battery to electric vehicles;

Corrosion: causes and effects of corrosion, theories of chemical and electrochemical corrosion,

mechanism of electrochemical corrosion; Corrosion control methods: cathodic protection, sacrificial

anode and impressed current methods; Metallic coatings: Galvanization and tinning, electroplating of

Copper.

148 | P a g e

MODULE-II: WATER AND ITS TREATMENT (09)

Introduction: Hardness of water, causes of hardness; types of hardness, temporary and permanent

hardness, expression and units of hardness; estimation of hardness of water by complexometric

method; potable water and its specifications, steps involved in the treatment of water, disinfection of

water by chlorination and ozonization; external treatment of water; ion-exchange process; desalination

of water: reverse osmosis, numerical problems.

MODULE-III: POLYMER TECHNOLOGY (10)

Polymers: classification of polymers; types of polymerization-addition, condensation polymerization

with examples. Plastics: thermoplastic and thermosetting plastics; preparation, properties and

engineering applications of PVC, Nylon 6,6 and Bakelite.

Biodegradable polymers: polylactic acid and polyvinyl alcohol and their applications. Elastomers:

Introduction to natural rubber, vulcanization of natural rubber, preparation, properties and engineering

applications of Buna-S and Thiokol rubber.

MODULE–IV: ENERGY SOURCES (09)

Introduction to fuels; classification of fuels; Solid fuels: coal; analysis of coal, proximate and ultimate

analysis and their significance; Liquid fuels: petroleum and its refining; Gaseous fuels: composition,

characteristics and applications of natural gas, LPG and CNG; Alternative and non-conventional

sources of energy: solar, wind and hydropower advantages and disadvantages. Calorific value of fuel:

HCV and LCV, Dulongs formula, calculation of air quantity required for complete combustion of

fuel, numerical problems.

 MODULE–V: ENGINEERING MATERIALS (10)

 Nanomaterials: Introduction, preparation of nanoparticles by sol-gel method, chemical reduction

method

 and applications of nanomaterials. Smart materials and their engineering applications: shape

memory

 materials, Poly L-Lactic acid. Thermoresponse materials: Polyacryl amides, Poly vinyl amides.

 Cement: composition of Portland cement, setting and hardening of cement.

 Lubricants: characteristics of a good lubricant, mechanism of lubrication, thick film, thin film and

extreme

 pressure lubrication; properties of lubricants: viscosity, flash and fire point, cloud and pour point.

V. TEXT BOOKS:

1. JAIN &JAIN, P.C. Jain, Monika Jain, Engineering Chemistry , Dhanpat Rai publishing Company

(P) limited, 17th edition, 2022.

VI. REFERENCE BOOKS:

1. Shashi Chawla, Text Book of Engineering Chemistry, Dhanat Rai and Company (P) Limited, 1st

Edition, 2017.

2. Jayashree Anireddy, Textbook of Engineering chemistry, Wiley Publications, 2023

3. S.S.Dara, Text of Engineering Chemistry, S.Chand & Co, New Delhi, 12th edition, 2018.

4. Nitin K Puri, Nanomaterials Synthesis Properties and Applications, I K international publishing

house pvt Ltd,1st edition 2021.

VII. ELECTRONICS RESOURCES:

1. Engineering chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M.

S.Krishnan.http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering

%20Chemistry%201/About- Faculty.html

2. https://books.google.co.in/books?id=R1JtyILNIsAC&pg=PR3&source=gbs_selected_page

s&cad=3#v=onepage&q&f=false

3. https://books.google.co.in/books?id=eQTLCgAAQBAJ&pg=SA1PA53&source=gbs_selected_p

ages&cad=3#v=onepage&q&f=false

https://www.dhanpatraibooks.com/author.php?a=JAIN%20&%20JAIN
https://www.dhanpatraibooks.com/author.php?a=P.C.%20Jain
https://www.dhanpatraibooks.com/author.php?a=Monika%20Jain
http://www.tndte.com/
http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chemistry%201/About-%20Faculty.html
http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chemistry%201/About-%20Faculty.html

149 | P a g e

VIII. MATERIALS ONLINE

1. Course Template

2. Tutorial Question Bank

3. Tech talk Topics

4. Assignments

5. Definition and Terminology

6. Model Question Paper – I

7. Model Question Paper - II

8. Lecture Notes

9. Early Lecture Readiness Videos

10. Power point presentation

150 | P a g e

COURSE CONTENT

APPLIED PHYSICS

I Semester: CSE / CSE (CS) / CSE (DS)

II Semester: AE / ME / CE / ECE / EEE / CSE (AI & ML) / IT

Course Code Category Hours / Week Credits Maximum Marks

AHSD07 Foundation
L T P C CIA SEE Total

3 - - 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Basic principles of physics

I. COURSE OVERVIEW:

The aim of this course is to enhance understanding of fundamental knowledge in physics needed for the future

technological advances. The framework prepares students to engage in scientific questioning and extend

thinking to investigations. The concepts cover current topics in the fields of solid state physics, modern physics,

superconductors and nanotechnology. This knowledge helps to develop the ability to apply the principles in

many technological sectors such as nanotechnology, optical fiber communication, quantum technology etc.

II. COURSES OBJECTIVES:

The students will try to learn

V. Fundamental concepts needed to explain a crystal structure in terms of atom positions, unit cells, and

crystal symmetry.

VI. Basic formulations in wave mechanics for the evolution of energy levels and quantization of energies for

a particle in a potential box with the help of mathematical description.

VII. The metrics of optoelectronic components, lasers, optical fiber communication and be able to incorporate

them into systems for optimal performance.

VIII. The appropriate magnetic, superconducting and nanomaterials required for various engineering

applications.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO 1 Use the general rules of indexing of directions and planes in lattices to identify the crystal

systems and the Bravais lattices.

CO 2 Use the concepts of dual nature of matter and Schrodinger wave equation to a particle

enclosed in simple systems.

CO 3 Analyze the concepts of laser with normal light in terms of mechanism for applications in

different fields and scientific practices.

CO 4 Strengthen the knowledge on functionality of components in optical fiber communication

system by using the basics of signal propagation, attenuation and dispersion.

CO 5 Gain deeper understanding on properties of magnetic and superconducting materials suitable

for engineering applications.

CO 6 Review the principle factors, fabrication, characterization techniques and the applications of

nanomaterials .

IV. COURSE CONTENT:

MODULE - I: CRYSTAL STRUCTURES (10)

 Introduction, space lattice, basis, unit cell, lattice parameter, Bravais lattices, crystal systems, structure and

packing fractions of simple cubic, body centered cubic, face centered cubic crystals, directions and planes in

crystals, Miller indices, separation between successive [h k l] planes.

MODULE –II: QUANTUM PHYSICS (09)

Waves and particles, de Broglie hypothesis, matter waves, Davisson and Germer’s experiment, Schrödinger’s

time independent wave equation, physical significance of the wave function, infinite square well potential.

151 | P a g e

MODULE –III: LASERS AND FIBER OPTICS (10)

Characteristics of lasers, spontaneous and stimulated emission of radiation, population inversion, lasing action,

Ruby laser, He-Ne laser, applications of lasers.

Principle and construction of an optical fiber, acceptance angle, numerical aperture, types of optical fibers

(Single mode, multimode, step index, graded index), optical fiber communication system with block diagram,

applications of optical fibers.

MODULE –IV: MAGNETIC AND SUPERCONDUCTING PROPERTIES (10)

Permeability, field intensity, magnetic field induction, magnetization, magnetic susceptibility, origin of

magnetic moment, Bohr magneton, classification of dia, para and ferro magnetic materials on the basis of

magnetic moment, Hysteresis curve.

Superconductivity, general properties, Meissner effect, effect of magnetic field, type-I & type-II

superconductors, BCS theory, applications of superconductors.

MODULE –V: NANOTECHNOLOGY (09)

Nanoscale, quantum confinement, surface to volume ratio, bottom-up fabrication: Sol-gel, precipitation,

combustion methods, top-down fabrication: Ball milling, physical vapor deposition, chemical vapor

deposition, characterization techniques: X-ray diffraction, transmission electron microscopy, applications of

nanomaterials.

 V. TEXT BOOKS:

2. Arthur Beiser, Shobhit Mahajan and Rai Choudhary, Concepts of Modern Physics, Tata McGraw Hill, 7th

Edition, 2017.

VI. REFERENCE BOOKS:

2. H J Callister, A Textbook of Materials Science and Engineering, Wiley Eastern Edition, 8th Edition, 2013.

3. Halliday, Resnick and Walker, Fundamentals of Physics, John Wiley &Sons,11th Edition, 2018.

4. Charles Kittel, Introduction to Solid State Physics, Wiley Eastern, 2019.

5. S.L. Gupta and V. Kumar, Elementary Solid State Physics, Pragathi Prakashan, 2019.

6. K K Chattopadhyay and A N Banerjee, Introduction to Nanoscience and Nanotechnology, Prentice Hall

India, 2nd Edition, 2011.

VII. ELECTRONICS RESOURCES:

4. NPTEL :: Physics - NOC:Quantum Mechanics I

5. NPTEL :: Physics - NOC:Introduction to Solid State Physics

6. NPTEL :: Physics - NOC:Solid State Physics

7. https://nptel.ac.in/courses/104104085

8. NPTEL :: Metallurgy and Material Science - NOC: Nanotechnology, Science and Applications

VIII. MATERIALS ONLINE

11. Course template

12. Tutorial question bank

13. Definition and terminology

14. Tech-talk topics

15. Assignments

16. Model question paper - I

17. Model question paper - II

18. Lecture notes

19. Early learning readiness videos (ELRV)

20. Power point presentations

152 | P a g e

COURSE CONTENT

DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

II Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours/Week Credits Maximum Marks

AHSD08

Foundation
L T P C CIA SEE Total

3 1 - 4 40 60 100

Contact Classes: 48 Tutorial Classes: 16 Practical Classes: Nil Total Classes: 64

Prerequisite: Basic Principles of Matrices and Calculus

I. COURSE OVERVIEW:

This course serves as a foundation course on differential equations and vector calculus. It includes techniques for

solving ordinary differential equations, partial differential equations, vector differentiation and vector

integration. It is designed to extract the mathematical developments, skills, from basic concepts to advance level

of engineering problems to meet the technological challenges.

II. COURSE OBJECTIVES:

The students will try to learn:

I The analytical methods for solving first and higher order differential equations with constant coefficients.

II The analytical methods for formation and solving partial differential equations.

III The physical quantities of vector valued functions involved in engineering field.

IV The logic of vector theorems for finding line, surface and volume integrals.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO1 Utilize the methods of differential equations for solving the orthogonal trajectories and Newton’s

law of cooling. cooling.

 CO2 Solve the higher order linear differential equations with constant coefficients by using method of

variation of parameters.

CO3 Make use of analytical methods for PDE formation to solve boundary value problems.

CO4 Identify various techniques of Lagrange’s method for solving linear partial differential equations

which occur in science and engineering.

CO5 Interpret the vector differential operators and their relationships for solving engineering problems.

CO6 Apply the integral transformations to surface, volume and line of different geometrical models in

the domain of engineering.

IV. COURSE CONTENT:

MODULE-I: FIRSTORDERAND FIRST DEGREE ODE (10)

Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli’s

equations, Applications: Orthogonal Trajectories (Cartesian Coordinates) Newton’s law of cooling.

MODULE-II: ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER (10)

Second order linear differential equations with constant coefficients: non-homogeneous terms of the type 𝑒𝑎𝑥,

sin𝑎𝑥, cos𝑎𝑥, polynomials in 𝑥, 𝑒𝑎𝑥(𝑥)and method of variation of parameters.

MODULE-III: PARTIAL DIFFERNTIATIAL EQUATIONS (09)

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions.

Solutions of first order linear equations: method of grouping and method of multipliers.

MODULE–IV: VECTOR DIFFERNTIATION (09)

153 | P a g e

Scalar and vector point functions; definitions of gradient, divergent and curl with examples; solenoidal and

irrotational vector point functions; scalar potential function.

MODULE–V: VECTOR INTEGRATION (10)

Line integral, surface integral and volume integral, Green‘s theorem in a plane, Stoke’s theorem and Gauss

divergence theorem without proofs.

V. TEXT BOOKS:

1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.

2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

VI. REFERENCE BOOKS:

1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/ed, Narosa Publications, 5th

Edition, 2016.

2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, Calculus, 13/e, Pearson Publishers, 2013.

3. N.P.Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

4. Dean G. Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press.

5. Peter O’Neil Advanced Engineering Mathematics, Cengage Learning.

6. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill Education.

VII. ELECTRONIC RESOURCES:

1. Engineering Mathematics - I, By Prof. Jitendra Kumar

|https://onlinecourses.nptel.ac.in/noc23_ma88/preview

2. Advanced Calculus for Engineers, By Prof. Jitendra Kumar, Prof. Somesh Kumar

https://onlinecourses.nptel.ac.in/noc23_ma86/preview

3. http://www.efunda.com/math/math_home/math.cfm

4. http://www.ocw.mit.edu/resourcs/#Mathematics

5. http://www.sosmath.com

6. http://www.mathworld.wolfram.com

VIII. MATERIAL ONLINE:

1. Course template

2. Tech-talk topics

3. Assignments

4. Definition and terminology

5. Tutorial question bank

6. Model question paper – I

7. Model question paper – II

8. Lecture notes

9. Early lecture readiness videos (ELRV)

10. Power point presentations

http://www.mathworld.wolfram.com/

154 | P a g e

COURSE CONTENT

ESSENTIALS OF PROBLEM SOLVING

II Semester: CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT / ECE / EEE

Course Code Category Hours / Week Credits Maximum Marks

ACSD05 Foundation
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: There is no prerequisite to take this course

I. COURSE OVERVIEW:

This course aims to provide exposure to problem solving through programming. Useful graph theory

concepts, numerical techniques, and their applications to real world problems are discussed. Graph

theoretical notions and the use of algorithms, both in the mathematical theory of graphs and its applications

are discussed. Student will also learn how to implement and interpret numerical solutions by writing a well-

designed computer programs in regard to their efficiency and suitability for real-life applications.

II. COURSES OBJECTIVES:

 The students will try to learn

I. The fundamental concepts of graph theory and its properties.

II. The basics related to paths and cycles using Eulerian and Hamiltonian cycles.

III. The applications of graph colouring and traversal algorithms for solving real-time problems.

IV. The numerical methods to solve algebraic equations.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO1 Outline the graph terminologies, graph representation, and relate them to practical examples.

CO2 Build efficient graph routing algorithms for various optimization problems on graphs.

CO3 Use effective techniques from graph theory to solve problems in networking and

telecommunication.

CO4 Interpret the fundamental concepts of polynomials, roots of equations and solve corresponding

problems using computer programs.

CO5 Apply the knowledge of numerical methods to solve algebraic and transcendental equations

arising in real-life situations.

CO6 Solve numerical integrals and ordinary differential equations to simulate discrete time algorithms.

IV. COURSE CONTENT:

MODULE - I GRAPH THEORY (08)

Graph terminology, digraphs, weighted graphs, complete graphs, graph complements, bipartite graphs, graph

combinations, isomorphisms, matrix representations of graphs, incidence and adjacency matrices, degree

sequence.

MODULE - II GRAPH ROUTES (10)

Eulerian circuit: Konigsberg bridge problem, touring a graph; Eulerian graphs, Hamiltonian cycles, the

traveling salesman problem; Shortest paths: Dijkstra’s algorithm, walks using matrices.

MODULE - III GRAPH COLORING AND GRAPH ALGORITHMS (10)

Four color theorem, vertex coloring, edge coloring, coloring variations, first-fit coloring algorithm.

Graph traversal: depth-first search, bread-first search and its applications; Minimum spanning trees: Kruskal’s

and Prim’s algorithm, union-find structure.

155 | P a g e

MODULE - IV: ALGEBRAIC AND TRANSCENDENTAL EQUATIONS (10)

Algebraic equations, method of false position, bisection method, iteration method, Newton-Raphson method,

Secant method, Ramanujan’s Method, Muller’s method (Approximation up to 2 decimals only).

MODULE - V: NUMERICAL INTEGRATION AND ORDINARY DIFFERENTIATIAL EQUATIONS

(10)

Trapezoidal rule, Simpson’s 1/3 rule, Simpson’s 3/8 rule, Solution by Taylor’s series, Euler’s method of

solving an ordinary differential equation numerically, Runge-Kutta’s second order method of solving ordinary

differential equations (Approximation up to 2 decimals only).

V. TEXT BOOKS:

2. Karin R Saoub, Graph Theory: An Introduction to Proofs, Algorithms, and Applications, 1st edition,

Chapman and Hall, 2021.

3. S S Sastry, Introductory Methods of Numerical Analysis, 5th edition, 2012.

VI. REFERENCE BOOKS:

1. Mahinder Kumar Jain, Numerical Methods: For Scientific and Scientific Computation, New Age

International Pvt. Ltd., 7th edition, 2019.

2. P Kandasamy, K Thilagavathy, K Gunavathi, Numerical Methods, S Chand and Company, 2006.

3. R Balakrishnan, K Ranganathan, A Textbook of Graph Theory, Springer Exclusive, 2nd edition, 2019.

4. Jann Kiusalaas, Numerical Methods in Engineering with Python, Cambridge University Press, 2nd

edition 2010.

5. Gary Chartrand, Ping Zhang, A First Course in Graph Theory, Dover Publications Inc., 2012.

6. James F. Epperson, An Introduction to Numerical Methods and Analysis, Wiley, 2nd edition, 2013.

VII. ELECTRONICS RESOURCES:

1. https://www.geeksforgeeks.org/numerical-methods-and-calculus-gq/

2. https://www.geeksforgeeks.org/program-for-bisection-method/

3. https://ocw.mit.edu/courses/2-993j-introduction-to-numerical-analysis-for-engineering-13-002j-spring-

2005/pages/lecture-notes/

4. https://www.tutorialspoint.com/graphs-and-its-traversal-algorithms

5. https://web.mit.edu/urban_or_book/www/book/chapter6/6.4.4.html

6. https://www.hackerearth.com/practice/algorithms/graphs/minimum-spanning-tree/tutorial/

7. https://www.codingninjas.com/studio/library/euler-and-hamilton-paths

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech-talk topics

4. Open-ended experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I

8. Model question paper – II

9. Lecture notes

10. PowerPoint presentation

11. E-Learning Readiness Videos (ELRV)

156 | P a g e

COURSE CONTENT

 ENGINEERING CHEMISTRY LABORATORY

I Semester: CSE / CSE (CS) / CSE (DS)

II Semester: AE / ME / CE / ECE / EEE / CSE (AI&ML) / IT

Course Code Category Hours / Week Credits Maximum Marks

AHSD05 Foundation
L T P C CIA SEE Total

- - 3 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

Prerequisite: Basic Principles of Chemistry

I. COURSE OVERVIEW:

The course encourages introducing analytical tools in an Engineering perspective. The course efforts to

provide the basic knowledge of analytical methodology, outlines the importance of volumetric analysis,

comprehensive instrumental analysis for properties of fuels, colorimetric analysis and spectroscopic analysis.

This practical approach gives the essence of analytical chemistry for skill development in determinations of

materials properties and its viability in the industry.

 II. COURSES OBJECTIVES:

 The students will try to learn:

I. The quantitative analysis to know the strength of unknown solutions by instrumental methods.

I. The troubles of hard water and its estimation by analytical techniques.

II. The applications of appropriate lubricant for finely tuned machinery.

III. The basic knowledge on quantity of light absorbed by the materials.

III. COURSE OUTCOMES:

After successful completion of the course students should be able to:

CO1 Use conductivity meter and potentiometer for measurement of conductance and electromotive force

of solutions

CO2 Examine the corrosion tendency in metals and its control by using inhibitor.

CO3 Make use of the principles of water analysis for domestic and industrial applications.

CO4 Demonstrate the characteristics of different fuels for finding the calorific value.

CO5 Use different types of lubricants to know its properties for the proper lubrication

of machinery in industries.

CO6 Interpret the absorption tendency of solids or liquids by using colorimetry and spectroscopy

techniques.

157 | P a g e

IV. COURSE CONTENT:

1. GETTING STARTED EXERCISES

1.1 Introduction to Chemistry Laboratory

The fundamental concepts and theories required for carrying out qualitative and quantitative analysis.

Detailed explanation on the analytical techniques used for qualitative analysis. Emphasis on

instrumental method of analysis and its advantages over conventional methods.

i. Types of analysis

ii. Difference between qualitative and quantitative analysis

iii. Common techniques of qualitative and quantitative analysis

iv. Introduction to instrumental method of analysis

v. Introduction to basic techniques and handling of common apparatus

vi. Discussion of Material Safety Data Sheet (MSDS) of chemicals

vii. Identification of toxic signs and safety procedures of chemical laboratory

1.2 Safety Guidelines to Chemistry Laboratory

 The chemistry laboratory must be a safe place in which to work and learn about chemistry.

i. Wear a chemical-resistant apron.

ii. Be familiar with your lab work sheet before you come to lab. Follow all written and verbal instructions

carefully. Observe the safety alerts in the laboratory directions. If you do not understand a direction or

part of a procedure, ask the teacher before proceeding.

iii. When entering the laboratory room, do not touch any equipment, chemicals, or other materials without

being instructed to do so. Perform only those experiments authorized by the instructor.

iv. If you take more of a chemical substance from a container than you need, you should not return the

excess to the container. This might cause contamination of the substance remaining. Dispose of the

excess as your instructor directs.

v. Never smell anything in the laboratory unless your teacher tells you it is safe. Do not smell a substance

by putting your nose directly over the container and inhaling. Instead, waft the vapors toward your nose

by gently fanning the vapors toward yourself.

vi. Do not directly touch any chemical with your hands. Never taste materials in the laboratory.

vii. Work areas should be kept clean and tidy at all times. Always replace lids or caps on bottles and jars.

1.3 Data recording and reports

Students must record their experimental values in the provided tables in this laboratory manual and reproduce

them in the laboratory worksheets. Worksheets are integral to recording the methodology and results of an

experiment. In engineering practice, the laboratory worksheets serve as a valuable reference to the technique

used in the laboratory. Note that the data collected will be an accurate and permanent record of the data obtained

during the experiment and the analysis of the results.

158 | P a g e

2. CONDUCTOMETRY

2.1 Determine the neutralization point between strong acid against strong base

i. The basic principle of conductometric titrations

ii. Titration of unknown solution of acid with base

iii. Graphical plots on volume of titrant vs. conductance

3. POTENTIOMETRY

3.1 Estimate the amount of Iron by using potentiometry

i. The basic principle of potentiometric titrations

ii. Titration of Mohr’s salt with potassium dichromate

iii. Graphical plots on volume of titrant vs. potential

4. pH METRY

4.1 Determine the pH of the unknown solution by pH metry

i. The basic principle of pH metry

ii. Titration of unknown solution with standard acid

iii. Graphical plots on volume of titrant vs. pH to obtain equivalence point

5. ARGENTOMETRIC TITRATIONS

5.1 Determination of chloride content of water by argentometry

i. Principle of Argentometric titration.

ii. Titration of water samples by using EDTA to find the total hardness in water.

6. MEASUREMENT OF TOTAL DISSOLVED SOLIDS IN WATER

6.1 Measurement of total dissolved solids (TDS) in different water samples

i. Specifications of potable water

ii. Measure the total dissolved solids in different water samples by TDS meter

7. COMPLEXOMETRY METHOD

7.1 Estimate the total hardness of water by EDTA

i. Principle of complexometric titration

ii. Titration of water samples by using EDTA to find the total hardness in water.

8. BOMB CALORIMETER

159 | P a g e

8.1 Determine the calorific value of solid or liquid fuels using Bomb calorimeter

i. Significance of bomb calorimeter

ii. Combustion of solid or liquid fuels in bomb calorimeter to find its calorific value

 9. VISCOSITY OF LUBRICANT

9.1 Determine the viscosity of the lubricants using Red Wood viscometer / Ostwald’s viscometer

i. The principle of viscosity of lubricant

ii. Significance of viscosity index of lubricant

iii. Viscosity of given lubricant at various temperature by using Red wood viscometer

 10. FLASH AND FIRE POINTS OF LUBRICANT

10.1 Determine the flash and fire points of lubricants

i. Significance of flash and fire point of lubricant in industries

ii. Flash and Fire points of a given lubricant by using Pensky Martens flash point apparatus

11. CLOUD AND POUR POINTS OF LUBRICANT

11.1 Determine cloud and pour points of lubricants

i. Significance of cloud and pour point of lubricants in industries

ii. Cloud and Pour points of a given lubricant by using cloud and pour point apparatus

12. COLORIMETRY

12.1 Estimate the metal ion concentration using colorimeter

i. Complexation of metal ion with ligands

ii. Detection of absorbance of the colored metal -ligand complex solution

iii. Graphical determination of concentration of the metal ions in the solution

13. SPECTROSCOPY

13.1Characterization of nanomaterials by UV-visible spectrophotometer

i. Synthesis of silver oxide nanomaterials

ii. Dispersion of nanoparticles in suitable solvent

iii. Determination of absorption edge of the nanoparticles using spectroscopic technique

 V. TEXTBOOKS:

1. K. Mukkanti et al. Practical Engineering Chemistry, B.S. Publications, Hyderabad.

2. Vogel’s, Quantitative chemical analysis, prentice Hall, 6th Edition, 2009.

 VI. REFERENCE BOOKS:

1. Solanki, M. K. Engineering Chemistry Laboratory Manual. (Edu creation Publishing, 2019).

2. Jeffery, G. H. in TEXTBOOK OF QUANTITATIVE CHEMICAL ANALYSIS (ed John Wiley and Sons)

(1989).

3. Gary-D-Christian, P. K. S. D., Kevin A. Schug. Analytical-Chemistry-by-Gary-D-Christian. 7 edn, Vol. 7

826 (Wiley, 2014).

4. Budinski, Kenneth G., Engineering materials: properties and selection, 5th edition, Prentice-Hall, 1996,

pg.423.

5. Engineering chemistry by Jain & Jain, 17th Edition, ISBN:978-93-5216-641-1

6. Nitin K Puri, “Nanomaterials synthesis properties and applications” I K international publishing house Pvt

Ltd, 1st Edition 2021.

7. B. Ramadevi and P. Aparna, S Chand publications, lab manual for engineering chemistry, S Chand

publications, NewDelhi,1st Edition 2022.

160 | P a g e

VII. ELECTRONICS RESOURCES:

1. https://nptel.ac.in/translation

2. https://nptel.ac.in/courses/115105120

3. https://archive.nptel.ac.in/courses/122/101/122101001/#

VIII. MATERIALS ONLINE

1. Course Template

2. Laboratory Manual

161 | P a g e

COURSE CONTENT

 APPLIED PHYSICS LABORATORY

 I Semester: CSE / CSE (CS) / CSE (DS)

 II Semester: AE / ME / CE / ECE / EEE / CSE (AI & ML) / IT

Course Code Category Hours / Week Credits Maximum Marks

AHSD09 Foundation
L T P C CIA SEE Total

- - 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Basic Principles of Physics

I. COURSE OVERVIEW:

The aim of the course is to provide hands on experience for experiments in different areas of physics. Students

will be able to perform the experiments with interest and an attitude of learning. This laboratory includes

experiments involving electromagnetism and optoelectronics. These also develop student’s expertise in

applying physical concepts to practical problem and apply it for different applications.

II. COURSES OBJECTIVES:

 The students will try to learn:

I Familiarize with the lab facilities, equipment, standard operating procedures.

II The different kinds of functional magnetic materials which paves a way for them to use in

various technical and engineering applications.

III The analytical techniques and graphical analysis to study the experimental data for

optoelectronic devices.

IV The application of characteristics of lasers and its propagation in optical fiber communication.

III. COURSE OUTCOMES:

 After successful completion of the course, students should be able to:

CO1 Identify the type of semiconductor using the principle of Hall effect and also determine the energy

gap and resistivity of a semiconductor diode using four probe methods.

CO2 Illustrate principle, working and application of wave propagation and compare the results of

frequency with theoretical harmonics and overtones.

CO3 Investigate the energy losses, curie temperature and properties associated with a given Ferro

magnetic material.

CO4 Examine launching of light through optical fiber from the concept of light gathering capacity of

numerical aperture and determine the divergence of Laser beam

CO5 Graph V-I /L-I characteristics of various optoelectronic devices like Light Emitting diode, Solar cell

at different intensities to understand their basic principle of functioning as well as to infer the value

of Planck’s constant.

CO6 Analyze the variation of magnetic field induction produced at various points along the axis of

current carrying coil.

162 | P a g e

IV. COURSE CONTENT:

1. GETTING STARTED EXCERCISES

1.1 On Errors and Uncertainty in a measurement:

When a number represents a physical measurement, it is never exact because of the limitations of the

instrument used or the way it was employed etc. It is essential, therefore, that each experimental result be

presented in a way that indicates its reliability. The accuracy of result is important, for example, the calibration

of the measuring instruments or systematic errors on the part of whoever is taking the data.

The following table is useful in thinking about these concepts:

Problem Remedy

Mistakes and blunders Repeat measurements several times to check yourself

Systematic errors Use calibrated instruments properly and carefully

Random errors Treat data statistically and report on the average magnitude of

errors

1.2 Making a good graph:

• Keep your axes straight: If you need to plot "A vs B", or "A as a function of B", then A is on the vertical

axis and B is on the horizontal axis.

• The crucial part is choosing the range and scale for each axis. The range must be just large enough to

accommodate all data and small enough that the scale is readable.

• The scale should be spread out enough so that data take up most of the graph area and labeled so that

plotting (and reading) is easy. Where appropriate, error bars should be included to indicate the uncertainty

in measurements.

• When a line is drawn, it should be a smooth one that best fits data. In general, there should be as many

points on one side of the line as on the other. If data is taken properly, the line should pass inside of the

error bars for each point.

• If graph shows that one quantity is proportional to another, it should be a straight line that starts at the

origin and passes through the plotted data with as many points on one side as the other.

• If the slope of the line is to be found, choose two points on the line that are as far apart as possible. This

will minimize the error that is introduced in reading the value of those points.

• The slope is the difference between the vertical values of those points divided by the difference in the

horizontal values of those points.

1.3 Data recording and worksheets

• Write the work sheets for the allotted experiment and keep them ready before the beginning of each lab.

• Perform the experiment and record the observations in the worksheets.

• Analyze the results and get the work sheets evaluated by the faculty.

• Upload the evaluated reports online from CMS LOGIN within the stipulated time.

2. HALL EFFECT (LORENTZ FORCE)

2.1 Study the phenomenon of Hall effect and determine the charge carrier density and Hall coefficient of a

given sample.

2.2 Hint whether the given semiconductor is p - type or n - type using the principle of Hall Effect.

163 | P a g e

ENERGY GAP OF A SEMICONDUCTOR DIODE

2.3 Determination of energy gap of a given semiconductor diode by measuring the variation of current as a

function of temperature.

2.4 Try to find the Fermi level of the given semiconductor

3. RESISTIVITY – FOUR PROBE METHOD

3.1 Determination of the resistivity by forcing current through two outer probes

3.2 Formulate the reading of voltage across the two inner probes of semiconductor by four probe method.

4. MELDE’E EXPERIMENT

4.1 Determination of frequency of a given tuning fork in longitudinal wave propagation.

4.2 Try to establish the transverse mode of wave propagation by understanding the theoretical harmonics and

overtones.

5. B-H CURVE WITH CRO

5.1 Evaluate the energy loss per unit volume of a given magnetic material per cycle by tracing the

hysteresis loop (B-H curve).

5.2 Observe the hysteresis loss of ferro magnetic materials.

6. MAGNETIC MATERIAL

6.1 Determine the curie temperature (Tc) of a ferromagnetic material.

6.2 Evaluate the relative permeability (µr) of a ferromagnetic material.

7. OPTICAL FIBER

7.1 Determine the numerical aperture of a given optical fiber.

7.2 Calculate the acceptance angle of a given optical fiber.

8. LASER DIVERGENCE

8.1 Determination of the beam divergence of the given laser beam.

8.2 Try to estimate the laser output

SOLAR CELL

8.3 Studying the characteristics of solar cell at different intensities

8.4 Try to get the maximum workable power.

9. LIGHT EMITTING DIODE

9.1 Studying V-I characteristics of LED in forward bias for different LEDs.

9.2 Measure the threshold voltage and forward resistance, and try for the dynamic Resistance

164 | P a g e

PLANCK’S CONSTANT

9.3 Determination of Planck’s constant by measuring threshold voltage of given LED.

9.4 Draw the L -I characteristics of the given LED.

10. STEWART GEE’S APPARATUS

10.1 Study the magnetic field along the axis of current carrying coil – Stewart and Gee’s method.

10.2 Estimate the magnetic lines of force.

11. BIASING OF DIODE

11.1 Study the forward bias of LED

11.2 Study the reverse bias of Photo diode

V. TEXT BOOKS:

1. Laboratory Experiments in College Physics”, C.H. Bernard and C.D. Epp, John Wiely and Sons, Inc., New

York, 1995.

VI. REFERENCE BOOKS:

1. C. L. Arora, “Practical Physics”, S. Chand & Co., New Delhi, 3rd Edition, 2012.

2. Vijay Kumar, Dr. T Radhakrishna, “Practical Physics for Engineering Students”, SM Enterprises, 2nd

Edition, 2014.

3. Dr. Rizwana, “Engineering Physics Manual”, Spectrum Techno Press, 2018.

VII. ELECTRONICS RESOURCES:

4. https://nptel.ac.in/translation

5. https://nptel.ac.in/courses/115105120

6. NPTEL:: courses-Sem 1 and 2 - Engineering Physics and Applied Physics I

7. Experimental Physics I - Course (nptel.ac.in)

8. NPTEL:: Physics - Waves and Oscillations

VIII. MATERIALS ONLINE:

1. Course template

2. Lab manual

https://nptel.ac.in/translation
https://onlinecourses.nptel.ac.in/noc23_ph37/preview
https://archive.nptel.ac.in/courses/115/106/115106119/

165 | P a g e

COURSE CONTENT

PROGRAMMING FOR PROBLEM SOLVING LABORATORY

II Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSD06 Foundation
L T P C CIA SEE Total

0 1 2 2 40 60 100

Contact Classes: Nil Tutorial Classes: 15 Practical Classes: 30 Total Classes: 45

Prerequisites: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

The course is designed with the fundamental programming skills and problem-solving strategies necessary to
tackle a wide range of computational challenges. Through hands-on programming exercises and projects,

students will learn how to write code, analyze problems and develop solutions using various programming
languages and tools. The course will cover fundamental programming concepts and gradually progress to
more advanced topics.

II. COURSE OBJECTIVES

The students will try to learn:

I. The fundamental programming constructs and use of collection data types in Python.

II. The ability to develop programs using object-oriented features.

III. Basic data structures and algorithms for efficient problem-solving.

IV. Principles of graph theory and be able to apply their knowledge to a wide range of practical problems

across various disciplines.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Adapt programming concepts, syntax, and data structures through hands on coding exercises.

CO2 Develop the ability to solve a variety of programming problems and algorithms using python.

CO3 Implement complex and custom data structures to solve real-world problems.

CO4 Demonstrate proficiency in implementing graph algorithms to solve variety of problems and

scenarios.

CO5 Develop critical thinking skills to solve the various real-world applications using graph theory.

CO6 Learn the importance of numerical methods and apply them to tackle a wide range of computational

problems.

166 | P a g e

IV. COURSE CONTENT:

EXERCISES FOR PROGRAMMING FOR PROBLEM SOLVING LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory practice sessions.

1. Getting Started Exercises

1.1 Two Sum

 Given an array of integers nums and an integer target, return indices of the two numbers such that they add up

to target. You may assume that each input would have exactly one solution, and you may not use the same

element twice. You can return the answer in any order.

Input: nums = [2, 7, 11, 15], target = 9

Output: [0, 1]

Explanation: Because nums[0] + nums[1] == 9, so return [0, 1].

Input: nums = [3, 2, 4], target = 6

Output: [1, 2]

Input: nums = [3, 3], target = 6

Output: [0, 1]

Hints:

def twoSum(self, nums: List[int], target: int) -> List[int]:

 a=[]

 # Write code here

 …

 return a

1.2 Contains Duplicate

Given an integer array nums, return true if any value appears at least twice in the array, and return false if every

element is distinct.

Input: nums = [1, 2, 3, 1]

Output: true

Input: nums = [1, 2, 3, 4]

Output: false

Input: nums = [1, 1, 1, 3, 3, 4, 3, 2, 4, 2]

Output: true

Hints:

def containsDuplicate(self, nums):

 a = set() # set can have only distinct elements

 # Write code here

 …

 return False

1.3 Roman to Integer

Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M.

Symbol Value

I 1

V 5

X 10

L 50

C 100

D 500

167 | P a g e

M 1000

For example, 2 is written as II in Roman numeral, just two ones added together. 12 is written as XII, which is

simply X + II. The number 27 is written as XXVII, which is XX + V + II.

Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not

IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four.

The same principle applies to the number nine, which is written as IX. There are six instances where

subtraction is used:

I can be placed before V (5) and X (10) to make 4 and 9.

X can be placed before L (50) and C (100) to make 40 and 90.

C can be placed before D (500) and M (1000) to make 400 and 900.

Given a roman numeral, convert it to an integer.

Input: s = "III"

Output: 3

Input: s = "LVIII"

Output: 58

Hints:

def romanToInt(self, s: str) -> int:

 # Write code here

 …

 return number

1.4 Plus One

You are given a large integer represented as an integer array digits, where each digits[i] is the i th digit of the

integer. The digits are ordered from most significant to least significant in left-to-right order. The large integer

does not contain any leading 0's. Increment the large integer by one and return the resulting array of digits.

Input: digits = [1, 2, 3]

Output: [1, 2, 4]

Explanation: The array represents the integer 123.

Incrementing by one gives 123 + 1 = 124.

Thus, the result should be [1, 2, 4].

Hints:

def plusOne(self, digits: List[int]) -> List[int]:

 n = len(digits)

 # Write code here

 …

 return digits

1.5 Majority Element

Given an array nums of size n, return the majority element. The majority element is the element that appears

more than ⌊n / 2⌋ times. You may assume that the majority element always exists in the array.

Input: nums = [3, 2, 3]

Output: 3

Input: nums = [2, 2, 1, 1, 1, 2, 2]

Output: 2

Hints:

def majorityElement(self, nums):

 # write code here

168 | P a g e

 …

1.6 Richest Customer Wealth

You are given an m x n integer grid accounts where accounts[i][j] is the amount of money the i th customer has in

the jth bank. Return the wealth that the richest customer has. A customer's wealth is the amount of money they

have in all their bank accounts. The richest customer is the customer that has the maximum wealth.

Input: accounts = [[1, 2, 3], [3,2,1]]

Output: 6

Explanation:

1st customer has wealth = 1 + 2 + 3 = 6

2nd customer has wealth = 3 + 2 + 1 = 6

Both customers are considered the richest with a wealth of 6 each, so return 6.

Input: accounts = [[1, 5], [7,3],[3,5]]

Output: 10

Explanation:

1st customer has wealth = 6

2nd customer has wealth = 10

3rd customer has wealth = 8

The 2nd customer is the richest with a wealth of 10.

Input: accounts = [[2,8,7],[7,1,3],[1,9,5]]

Output: 17

Hints:

def maximumWealth(self, accounts: List[List[int]]) -> int:

 # write code here

 …

1.7 Fizz Buzz

Given an integer n, return a string array answer (1-indexed) where:

answer[i] == "FizzBuzz" if i is divisible by 3 and 5.

answer[i] == "Fizz" if i is divisible by 3.

answer[i] == "Buzz" if i is divisible by 5.

answer[i] == i (as a string) if none of the above conditions are true.

Input: n = 3

Output: ["1","2","Fizz"]

Input: n = 5

Output: ["1","2","Fizz","4","Buzz"]

Input: n = 15

Output: ["1","2","Fizz","4","Buzz","Fizz","7","8","Fizz","Buzz","11","Fizz","13","14","FizzBuzz"]

Hints:

def fizzBuzz(self, n: int) -> List[str]:

 # write code here

 …

1.8 Number of Steps to Reduce a Number to Zero

Given an integer num, return the number of steps to reduce it to zero. In one step, if the current number is even,

169 | P a g e

you have to divide it by 2, otherwise, you have to subtract 1 from it.

Input: num = 14

Output: 6

Explanation:

• 14 is even; divide by 2 and obtain 7.

• 7 is odd; subtract 1 and obtain 6.

• 6 is even; divide by 2 and obtain 3.

• 3 is odd; subtract 1 and obtain 2.

• 2 is even; divide by 2 and obtain 1.

• 1 is odd; subtract 1 and obtain 0.

Input: num = 8

Output: 4

Explanation:

• 8 is even; divide by 2 and obtain 4.

• 4 is even; divide by 2 and obtain 2.

• 2 is even; divide by 2 and obtain 1.

• 1 is odd; subtract 1 and obtain 0.

Input: num = 123

Output: 12

Hints:

def numberOfSteps(self, n: int) -> int:

 # write code here

 …

1.9 Running Sum of 1D Array

Given an array nums. We define a running sum of an array as runningSum[i] = sum (nums[0]…nums[i]).

Return the running sum of nums.

Input: nums = [1, 2, 3, 4]

Output: [1, 3, 6, 10]

Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].

Input: nums = [1, 1, 1, 1, 1]

Output: [1, 2, 3, 4, 5]

Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1].

Input: nums = [3, 1, 2, 10, 1]

Output: [3, 4, 6, 16, 17]

Hints:

def runningSum(self, nums: List[int]) -> List[int]:

 # write code here

 …

 return answer

1.10 Remove Element

Given an integer array nums and an integer val, remove all occurrences of val in nums in-place. The order of the

elements may be changed. Then return the number of elements in nums which are not equal to val. Consider the

number of elements in nums which are not equal to val be k, to get accepted, you need to do the following

things:

170 | P a g e

• Change the array nums such that the first k elements of nums contain the elements which are not equal

to val. The remaining elements of nums are not important as well as the size of nums.

• Return k.

Input: nums = [3, 2, 2, 3], val = 3

Output: 2, nums = [2, 2, _, _]

Explanation: Your function should return k = 2, with the first two elements of nums being 2.

It does not matter what you leave beyond the returned k (hence they are underscores).

Input: nums = [0,1,2,2,3,0,4,2], val = 2

Output: 5, nums = [0,1,4,0,3,_,_,_]

Explanation: Your function should return k = 5, with the first five elements of nums containing 0, 0, 1, 3, and

4.

Note that the five elements can be returned in any order.

It does not matter what you leave beyond the returned k (hence they are underscores).

Hints:

def removeElement(self, nums: List[int], val: int) -> int:

 # write code here

 …

 return len(nums)

2. Matrix Operations

2.1 Add Two Matrices

Given two matrices X and Y, the task is to compute the sum of two matrices and then print it in Python.

Input:

 X= [[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]]

Y = [[9, 8, 7],

 [6, 5, 4],

 [3, 2, 1]]

Output:

 Result = [[10, 10, 10],

 [10, 10, 10],

 [10, 10, 10]]

Hints:

Program to add two matrices using nested loop

X = [[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]]

Y = [[9,8,7],

 [6,5,4],

 [3,2,1]]

result = [[0,0,0],

 [0,0,0],

 [0,0,0]]

iterate through rows

for i in range(len(X)):

171 | P a g e

 # write code here

 …

for r in result:

 print(r)

TRY

1. Take input as X = [[10, 20, 30],[41, 52, 63], [47, 58, 69]] Y = [[19,18,17],[66,35,49], [13,21,11]] and verify

the results.

2.2 Multiply Two Matrices

Given two matrices X and Y, the task is to compute the multiplication of two matrices and then print it.

Input:

 X= [[1, 7, 3],

 [3, 5, 6],

 [6, 8, 9]]

Y = [[1, 1, 1, 2],

 [6, 7, 3, 0],

 [4, 5, 9, 1]]

Output:

 Result = [[55, 65, 49, 5],

 [57, 68, 72, 12],

 [90, 107, 111, 21]]

Hints:

Program to multiply two matrices using list comprehension

take a 3x3 matrix

A = [[12, 7, 3],

 [4, 5, 6],

 [7, 8, 9]]

take a 3x4 matrix

B = [[5, 8, 1, 2],

 [6, 7, 3, 0],

 [4, 5, 9, 1]]

result will be 3x4

write code here

 …

for r in result:

 print(r)

TRY

1. Take input as X = [[11, 0, 30],[-41, -2, 63], [41, -5, -9]] Y = [[19,-48,17],[-6,35,19], [13,1,-9]] and verify the

results.

2.3 Transpose of a Matrix

A matrix can be implemented using a nested list. Each element is treated as a row of the matrix. Find the

transpose of a matrix in multiple ways.

Input: [[1, 2], [3, 4], [5, 6]]

Output: [[1, 3, 5], [2, 4, 6]]

Explanation: Suppose we are given a matrix

 [[1, 2],

 [3, 4],

 [5, 6]]

172 | P a g e

Then the transpose of the given matrix will be,

 [[1, 3, 5],

 [2, 4, 6]]

Hints:

Program to multiply two matrices using list comprehension

take a 3x3 matrix

A = [[12, 7, 3],

 [4, 5, 6],

 [7, 8, 9]]

result will be 3x4

write code here

 …

for r in result:

 print(r)

TRY

1. Take input as X = [[11, 0, 30],[-41, -2, 63], [41, -5, -9]] and verify the results.

2.4 Matrix Product

Matrix product problem we can solve using list comprehension as a potential shorthand to the conventional

loops. Iterate and find the product of the nested list and at the end return the cumulative product using function.

Input: The original list: [[1, 4, 5], [7, 3], [4], [46, 7, 3]]

Output: The total element product in lists is: 1622880

Hints:

Matrix Product using list comprehension + loop

def prod(val):

 # write code here

 …

initializing list

test_list = [[1, 4, 5], [7, 3], [4], [46, 7, 3]]

TRY

1. Take input list: [[1, 4, 5], [7, 3], [4], [46, 7, 3]] and verify the result.

3. Stack

3.1 Stack implementation using List

A stack is a linear data structure that stores items in a Last-In/First-Out (LIFO) or First-In/Last-Out (FILO)

manner. In stack, a new element is added at one end and an element is removed from that end only. The insert

and delete operations are often called push and pop.

The functions associated with stack are:

• empty() – Returns whether the stack is empty

• size() – Returns the size of the stack

173 | P a g e

• top() / peek() – Returns a reference to the topmost element of the stack

• push(a) – Inserts the element ‘a’ at the top of the stack

• pop() – Deletes the topmost element of the stack

Hints:

Stack implementation using list

top=0

mymax=5

def createStack():

 stack=[]

 return stack

def isEmpty(stack):

 # write code here

 …

def Push(stack,item):

 # write code here

 …

def Pop(stack):

 # write code here

 …

create a stack object

stack = createStack()

while True:

 print("1.Push")

 print("2.Pop")

 print("3.Display")

 print("4.Quit")

 # write code here

 …

TRY

1. Take input operations as [PUSH(A),PUSH(B),PUSH(C),POP,POP,POP,POP,PUSH(D)] and verify the result.

2. Take input operations as [POP, POP, PUSH (A), PUSH (B), POP, and PUSH(C)] and verify the result.

3.2 Balanced Parenthesis Checking

Given an expression string, write a python program to find whether a given string has balanced parentheses or

not.

Input: {[]{()}}

Output: Balanced

Input: [{}{}(]

Output: Unbalanced

Using stack One approach to check balanced parentheses is to use stack. Each time, when an open parentheses is

encountered push it in the stack, and when closed parenthesis is encountered, match it with the top of stack and

pop it. If stack is empty at the end, return Balanced otherwise, Unbalanced.

Hints:

Check for balanced parentheses in an expression

open_list = ["[","{","("]

174 | P a g e

close_list = ["]","}",")"]

Function to check parentheses

def check(myStr):

 # write code here

 …

TRY

1. Take input as {[]{()}[][]} and verify the result.

2. Take input as {[]{()}[]{}} and verify the result.

3.3 Evaluation of Postfix Expression

Given a postfix expression, the task is to evaluate the postfix expression. Postfix expression: The expression of

the form “a b operator” (ab+) i.e., when a pair of operands is followed by an operator.

Input: str = “2 3 1 * + 9 -“

Output: -4

Explanation: If the expression is converted into an infix expression, it will be 2 + (3 * 1) – 9 = 5 – 9 = -4.

Input: str = “100 200 + 2 / 5 * 7 +”

Output: 757

Procedure for evaluation postfix expression using stack:

• Create a stack to store operands (or values).

• Scan the given expression from left to right and do the following for every scanned element.

o If the element is a number, push it into the stack.

o If the element is an operator, pop operands for the operator from the stack. Evaluate the

operator and push the result back to the stack.

• When the expression is ended, the number in the stack is the final answer.

Hints:

Evaluate value of a postfix expression

Class to convert the expression

class Evaluate:

 # Constructor to initialize the class variables

 def __init__(self, capacity):

 self.top = -1

 self.capacity = capacity

 # This array is used a stack

 self.array = []

 # Check if the stack is empty

 def isEmpty(self):

 # write code here

 …

 def peek(self):

 # write code here

 …

 def pop(self):

 # write code here

 …

 def push(self, op):

175 | P a g e

 # write code here

 …

 def evaluatePostfix(self, exp):

 # write code here

 …

Driver code

exp = "231*+9-"

obj = Evaluate(len(exp))

Function call

print("postfix evaluation: %d" % (obj.evaluatePostfix(exp)))

TRY

1. Take input str = “A B + C* D / E +” and verify the result.

2. Take input str = “XYZ- + W+ R / S -” and verify the result.

4. Queue

4.1 Linear Queue using List

Linear queue is a linear data structure that stores items in First in First out (FIFO) manner. With a queue the

least recently added item is removed first. A good example of queue is any queue of consumers for a resource

where the consumer that came first is served first.

Hints:

Static implementation of linear queue

front=0

rear=0

mymax=5

def createQueue():

 queue=[] #empty list

 return queue

def isEmpty(queue):

 # write code here

 …

def enqueue(queue,item): # insert an element into the queue

 # write code here

 …

def dequeue(queue): #remove an element from the queue

 # write code here

 …

176 | P a g e

Driver code

queue = createQueue()

while True:

 print("1.Enqueue")

 print("2.Dequeue")

 print("3.Display")

 print("4.Quit")

 # write code here

 …

TRY

1. Take input operations as

[ENQUEUE(A),DEQUEUE(),ENQUEUE(B),DEQUEUE(),ENQUEUE(C),DEQUEUE(),] and verify the result.

2. Take input operations as [ENQUEUE(A), ENQUEUE(B),DEQUEUE(),ENQUEUE(C),

DEQUEUE(),ENQUEUE(D), DEQUEUE(), ENQUEUE(C),DEQUEUE(),] and verify the result.

4.2 Stack using Queues

Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the

functions of a normal stack (push, top, pop, and empty).

• void push(int x) Pushes element x to the top of the stack.

• int pop() Removes the element on the top of the stack and returns it.

• int top() Returns the element on the top of the stack.

• boolean empty() Returns true if the stack is empty, false otherwise.

Input:

["MyStack", "push", "push", "top", "pop", "empty"]

[[], [1], [2], [], [], []]

Output:

[null, null, null, 2, 2, false]

Hints:

class MyStack:

 def __init__(self):

 # write code here

 …

 def push(self, x: int) -> None:

 # write code here

 …

 def pop(self) -> int:

 # write code here

 …

 def top(self) -> int:

 # write code here

 …

 def empty(self) -> bool:

 # write code here

177 | P a g e

 …

Your MyStack object will be instantiated and called as such:

obj = MyStack()

obj.push(x)

param_2 = obj.pop()

param_3 = obj.top()

param_4 = obj.empty()

4.3 Implement Queue using Stacks

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the

functions of a normal queue (push, peek, pop, and empty).

• void push(int x) Pushes element x to the back of the queue.

• int pop() Removes the element from the front of the queue and returns it.

• int peek() Returns the element at the front of the queue.

• boolean empty() Returns true if the queue is empty, false otherwise.

Input:

["MyQueue", "push", "push", "peek", "pop", "empty"]

[[], [1], [2], [], [], []]

Output:

[null, null, null, 1, 1, false]

Hints:

class MyQueue:

 def __init__(self):

 # write code here

 …

 def push(self, x: int) -> None:

 # write code here

 …

 def pop(self) -> int:

 # write code here

 …

 def peek(self) -> int:

 # write code here

 …

 def empty(self) -> bool:

 # write code here

 …

Your MyQueue object will be instantiated and called as such:

obj = MyQueue()

obj.push(x)

param_2 = obj.pop()

param_3 = obj.peek()

param_4 = obj.empty()

178 | P a g e

4.4 Circular Queue

A Circular Queue is an extended version of a normal queue where the last element of the queue is connected to

the first element of the queue forming a circle. The operations are performed based on FIFO (First In First Out)

principle. It is also called ‘Ring Buffer’.

Operations on Circular Queue:

• Front: Get the front item from the queue.

• Rear: Get the last item from the queue.

• enQueue(value) This function is used to insert an element into the circular queue. In a circular queue, the

new element is always inserted at the rear position.

• Check whether the queue is full – [i.e., the rear end is in just before the front end in a circular manner].

• If it is full then display Queue is full.

• If the queue is not full then, insert an element at the end of the queue.

• deQueue() This function is used to delete an element from the circular queue. In a circular queue, the

element is always deleted from the front position.

• Check whether the queue is Empty.

• If it is empty then display Queue is empty.

• If the queue is not empty, then get the last element and remove it from the queue.

Implement Circular Queue using Array:

1. Initialize an array queue of size n, where n is the maximum number of elements that the queue can

hold.

2. Initialize two variables front and rear to -1.

3. Enqueue: To enqueue an element x into the queue, do the following:

• Increment rear by 1.

• If rear is equal to n, set rear to 0.

• If front is -1, set front to 0.

• Set queue[rear] to x.

4. Dequeue: To dequeue an element from the queue, do the following:

• Check if the queue is empty by checking if front is -1.

• If it is, return an error message indicating that the queue is empty.

• Set x to queue [front].

• If front is equal to rear, set front and rear to -1.

• Otherwise, increment front by 1 and if front is equal to n, set front to 0.

• Return x.

Hints:

class CircularQueue():

 # constructor

 def __init__(self, size): # initializing the class

 self.size = size

 # initializing queue with none

179 | P a g e

 self.queue = [None for i in range(size)]

 self.front = self.rear = -1

 def enqueue(self, data):

 # Write code here

 …

 def dequeue(self):

 # Write code here

 …

 def display(self):

 # Write code here

 …

 # Driver Code

ob = CircularQueue(5)

ob.enqueue(14)

ob.enqueue(22)

ob.enqueue(13)

ob.enqueue(-6)

ob.display()

print ("Deleted value = ", ob.dequeue())

print ("Deleted value = ", ob.dequeue())

ob.display()

ob.enqueue(9)

ob.enqueue(20)

ob.enqueue(5)

ob.display()

TRY

1. Take input operations as

[ENQUEUE(A,B,C,D,E,F),DEQUEUE(),DEQUEUE(),DEQUEUE(),ENQUEUE(G,H,I] and verify the result.

2. Take input operations as [DEQUEUE(),ENQUEUE(A,B,C,D,E,F),DEQUEUE(),ENQUEUE(G,H,I] and

verify the result.

5. Graph Representation

5.1 Build a graph

You are given an integer n. Determine if there is an unconnected graph with n vertices that contains at least two

connected components and contains the number of edges that is equal to the number of vertices. Each vertex

must follow one of these conditions:

• Its degree is less than or equal to 1.

• It's a cut-vertex.

Note:

• The graph must be simple.

• Loops and multiple edges are not allowed.

Input: First line: n

Output: Print Yes if it is an unconnected graph. Otherwise, print No.

Sample Input Sample Output

3 No

Constraints: 1 ≤ n ≤ 100

Explanation: There is only one graph with the number of edges equal to the number of vertices (triangle) which

is connected.

5.2 Number of Sink Nodes in a Graph

Given a Directed Acyclic Graph of n nodes (numbered from 1 to n) and m edges. The task is to find the number

of sink nodes. A sink node is a node such that no edge emerges out of it.

180 | P a g e

Input: n = 4, m = 2, edges[] = {{2, 3}, {4, 3}}

Only node 1 and node 3 are sink nodes.

Input: n = 4, m = 2, edges[] = {{3, 2}, {3, 4}}

Output: 3

The idea is to iterate through all the edges. And for each edge, mark the source node from which the edge

emerged out. Now, for each node check if it is marked or not. And count the unmarked nodes.

Algorithm:

1. Make any array A[] of size equal to the number of nodes and initialize to 1.

2. Traverse all the edges one by one, say, u -> v.

 (i) Mark A[u] as 1.

3. Now traverse whole array A[] and count number of unmarked nodes.

Hints:

Program to count number if sink nodes

Return the number of Sink Nodes.

def countSink(n, m, edgeFrom, edgeTo):

 # Write code here

 …

 return count

Driver Code

n = 4

m = 2

edgeFrom = [2, 4]

edgeTo = [3, 3]

print(countSink(n, m, edgeFrom, edgeTo))

5.3 Connected Components in a Graph

Given n, i.e. total number of nodes in an undirected graph numbered from 1 to n and an integer e, i.e. total

number of edges in the graph. Calculate the total number of connected components in the graph. A connected

component is a set of vertices in a graph that are linked to each other by paths.

Input: First line of input line contains two integers’ n and e. Next e line will contain two integers u and v

meaning that node u and node v are connected to each other in undirected fashion.

Output: For each input graph print an integer x denoting total number of connected components.

Sample Input Sample Output

8 5 3

1 2

2 3

2 4

3 5

181 | P a g e

6 7

Constraints: All the input values are well within the integer range.

5.4 Transpose Graph

Transpose of a directed graph G is another directed graph on the same set of vertices with all of the edges

reversed compared to the orientation of the corresponding edges in G. That is, if G contains an edge (u, v) then

the converse/transpose/reverse of G contains an edge (v, u) and vice versa. Given a graph (represented as

adjacency list), we need to find another graph which is the transpose of the given graph.

Input: figure (i) is the input graph.

Output: figure (ii) is the transpose graph of the given graph.

0--> 2

1--> 0 4

2--> 3

3--> 0 4

4--> 0

Explanation: We traverse the adjacency list and as we find a vertex v in the adjacency list of vertex u which

indicates an edge from u to v in main graph, we just add an edge from v to u in the transpose graph i.e. add u in

the adjacency list of vertex v of the new graph. Thus traversing lists of all vertices of main graph we can get the

transpose graph.

Hints:

find transpose of a graph.

function to add an edge from vertex source to vertex dest

def addEdge(adj, src, dest):

 adj[src].append(dest)

function to print adjacency list of a graph

def displayGraph(adj, v):

 …

 print()

function to get Transpose of a graph taking adjacency list of given graph and that of Transpose graph

def transposeGraph(adj, transpose, v):

 # traverse the adjacency list of given graph and for each edge (u, v) add

 # an edge (v, u) in the transpose graph's adjacency list

 …

Driver Code

v = 5

adj = [[] for i in range(v)]

addEdge(adj, 0, 1)

addEdge(adj, 0, 4)

addEdge(adj, 0, 3)

addEdge(adj, 2, 0)

addEdge(adj, 3, 2)

addEdge(adj, 4, 1)

addEdge(adj, 4, 3)

Finding transpose of graph represented by adjacency list adj[]

transpose = [[]for i in range(v)]

182 | P a g e

transposeGraph(adj, transpose, v)

Displaying adjacency list of transpose graph i.e. b

displayGraph(transpose, v)

TRY

1. Take input operations as addEdge(A, B), addEdge(A, D), addEdge(A, C), addEdge(C, A),addEdge(A, D),

addEdge(C, B), addEdge(B, C) and verify the result.

5.5 Counting Triplets

You are given an undirected, complete graph G that contains N vertices. Each edge is colored in either white or

black. You are required to determine the number of triplets (i, j, k) (1 ≤ i < j < k ≤ N) of vertices such that the

edges (i, j), (j, k), (i, k) are of the same color.

There are M white edges and (N (N-1)/2) – M black edges.

Input:

First line: Two integers – N and M (3 ≤ N ≤ 105, 1 ≤ M ≤ 3 * 105)

 (i+1)th line: Two integers – ui and vi (1 ≤ ui, vi ≤ N) denoting that the edge (ui, vi) is white in color.

Note: The conditions (ui, vi) ≠ (uj, vj) and (ui, vi) ≠ (vj, uj) are satisfied for all 1 ≤ i < j ≤ M.

.Output: Print an integer that denotes the number of triples that satisfy the mentioned condition.

Sample Input Sample Output

 5 3 4

1 5

2 5

3 5

Explanation: The triplets are: {(1, 2, 3), (1, 2, 4), (2, 3, 4), (1, 3, 4)}

The graph consisting of only white edges:

The graph consisting of only black edges:

183 | P a g e

6. Graph Routing Algorithms

6.1 Seven Bridges of Konigsberg

There was 7 bridges connecting 4 lands around the city of Königsberg in Prussia. Was there any way to start

from any of the land and go through each of the bridges once and only once? Euler first introduced graph theory

to solve this problem. He considered each of the lands as a node of a graph and each bridge in between as an

edge in between. Now he calculated if there is any Eulerian Path in that graph. If there is an Eulerian path then

there is a solution otherwise not.

There are n nodes and m bridges in between these nodes. Print the possible path through each node using each

edges (if possible), traveling through each edges only once.

Input: [[0, 1, 0, 0, 1],

 [1, 0, 1, 1, 0],

 [0, 1, 0, 1, 0],

 [0, 1, 1, 0, 0],

 [1, 0, 0, 0, 0]]

Output: 5 -> 1 -> 2 -> 4 -> 3 -> 2

Input: [[0, 1, 0, 1, 1],

 [1, 0, 1, 0, 1],

 [0, 1, 0, 1, 1],

 [1, 1, 1, 0, 0],

 [1, 0, 1, 0, 0]]

Output: "No Solution"

Hints:

A Python program to print Eulerian trail in a

given Eulerian or Semi-Eulerian Graph

from collections import defaultdict

class Graph:

Constructor and destructor

def __init__(self, V):

self.V = V

184 | P a g e

 self.adj = defaultdict(list)

functions to add and remove edge

def addEdge(self, u, v):

def rmvEdge(self, u, v):

 …

Methods to print Eulerian tour

def printEulerTour(self):

 # Find a vertex with odd degree

 …

 # Print tour starting from oddv

self.printEulerUtil(u)

 print()

def printEulerUtil(self, u):

 # Recur for all the vertices adjacent to this vertex

for v in self.adj[u]:

 # If edge u-v is not removed and it's a valid next edge

The function to check if edge u-v can be considered as next edge in Euler Tout

 def isValidNextEdge(self, u, v):

 # The edge u-v is valid in one of the following two cases:

 # 1) If v is the only adjacent vertex of u

 …

 # 2) If there are multiple adjacents, then u-v is not a bridge

 # Do following steps to check if u-v is a bridge

 # 2.a) count of vertices reachable from u

 …

 # 2.b) Remove edge (u, v) and after removing

 # the edge, count vertices reachable from u

 …

 # 2.c) Add the edge back to the graph

 self.addEdge(u, v)

 # 2.d) If count1 is greater, then edge (u, v) is a bridge

 return False if count1 > count2 else True

 # A DFS based function to count reachable vertices from v

 def DFSCount(self, v, visited):

 # Mark the current node as visited

 …

 # Recur for all the vertices adjacent to this vertex

 …

 # utility function to form edge between two vertices source and dest

 def makeEdge(src, dest):

 graph.addEdge(src, dest)

Driver code

Let us first create and test graphs shown in above figure

g1 = Graph(4)

g1.addEdge(0, 1)

g1.addEdge(0, 2)

g1.addEdge(1, 2)

185 | P a g e

g1.addEdge(2, 3)

g1.printEulerTour()

g3 = Graph(4)

g3.addEdge(0, 1)

g3.addEdge(1, 0)

g3.addEdge(0, 2)

g3.addEdge(2, 0)

g3.addEdge(2, 3)

g3.addEdge(3, 1)

g3.printEulerTour()

TRY

1. Take input: [[1, 0, 1, 0, 1], [1, 0, 1, 0, 0], [1, 1, 0, 1, 0], [0, 0, 1, 0, 0], [1, 0, 1, 0, 0]] and verify the result.

2. Take input: [[0, 0, 1, 0, 1], [0, 0, 1, 0, 0], [1, 0, 0, 1, 0], [1, 0, 1, 0, 0], [1, 1, 1, 0, 0]] and verify the result.

6.2 Hamiltonian Cycle

The Hamiltonian cycle of undirected graph G = <V, E> is the cycle containing each vertex in V. If graph

contains a Hamiltonian cycle, it is called Hamiltonian graph otherwise it is non-Hamiltonian.

Hamiltonian Path in an undirected graph is a path that visits each vertex exactly once. A Hamiltonian cycle (or

Hamiltonian circuit) is a Hamiltonian path such that there is an edge (in the graph) from the last vertex to the

first vertex of the Hamiltonian path. Consider a graph G, and determine whether a given graph contains

Hamiltonian cycle or not. If it contains, then prints the path. Following are the input and output of the required

function.

Input: A 2D array graph [V][V] where V is the number of vertices in graph and graph [V][V] is adjacency

matrix representation of the graph. A value graph[i][j] is 1 if there is a direct edge from i to j, otherwise

graph[i][j] is 0.

Output: An array path [V] that should contain the Hamiltonian Path. Path [i] should represent the i th vertex in

the Hamiltonian Path. The code should also return false if there is no Hamiltonian Cycle in the graph.

For example, a Hamiltonian Cycle in the following graph is {0, 1, 2, 4, 3, 0}.

(0)--(1)--(2)

 | / \ |

 | / \ |

 | / \ |

(3)-------(4)

And the following graph doesn’t contain any Hamiltonian Cycle.

(0)--(1)--(2)

 | / \ |

 | / \ |

 | / \ |

(3) (4)

Backtracking Algorithm: Create an empty path array and add vertex 0 to it. Add other vertices, starting from

the vertex 1. Before adding a vertex, check for whether it is adjacent to the previously added vertex and not

already added. If we find such a vertex, we add the vertex as part of the solution. If we do not find a vertex then

we return false.

186 | P a g e

Hints:

Python program for solution of Hamiltonian cycle problem

class Graph():

 def __init__(self, vertices):

 self.graph = [[0 for column in range(vertices)]

 for row in range(vertices)]

 self.V = vertices

 def isSafe(self, v, pos, path):

 # Check if current vertex and last vertex in path are adjacent

 …

 # A recursive utility function to solve Hamiltonian cycle problem

 def hamCycleUtil(self, path, pos):

 …

 def hamCycle(self):

 …

 def printSolution(self, path):

 print ("Solution Exists: Following","is one Hamiltonian Cycle")

 for vertex in path:

 print (vertex, end = " ")

 print (path[0], "\n")

Driver Code

''' Let us create the following graph

 (0)--(1)--(2)

 | / \ |

 | / \ |

 | / \ |

 (3)-------(4) '''

g1 = Graph(5)

g1.graph = [[0, 1, 0, 1, 0], [1, 0, 1, 1, 1],

 [0, 1, 0, 0, 1,],[1, 1, 0, 0, 1],

 [0, 1, 1, 1, 0],]

Print the solution

g1.hamCycle();

''' Let us create the following graph

 (0)--(1)--(2)

 | / \ |

 | / \ |

 | / \ |

 (3) (4) '''

g2 = Graph(5)

g2.graph = [[0, 1, 0, 1, 0], [1, 0, 1, 1, 1],

 [0, 1, 0, 0, 1,], [1, 1, 0, 0, 0],

 [0, 1, 1, 0, 0],]

Print the solution

g2.hamCycle();

TRY

1. Take a graph = [[1, 1, 0, 1, 0], [1, 1, 1, 1, 1], [0, 1, 0, 1, 1,], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0],] and verify the

results.

187 | P a g e

6.3 Number of Hamiltonian Cycle

Given an undirected complete graph of N vertices where N > 2. The task is to find the number of different

Hamiltonian cycle of the graph.

Complete Graph: A graph is said to be complete if each possible vertices is connected through an Edge.

Hamiltonian Cycle: It is a closed walk such that each vertex is visited at most once except the initial vertex.

and it is not necessary to visit all the edges.

Formula: (N – 1)! / 2

Input: N = 6

Output: Hamiltonian cycles = 60

Input: N = 4

Output: Hamiltonian cycles = 3

Explanation: Let us take the example of N = 4 complete undirected graph, The 3 different Hamiltonian cycle is

as shown below:

Hints:

Number of Hamiltonian cycles

import math as mt

Function that calculates number of Hamiltonian cycle

def Cycles(N):

 …

Driver code

N = 5

Number = Cycles(N)

print("Hamiltonian cycles = ", Number)

TRY

1. Take an input N=7 and verify the results.

2. Take an input N=10 and verify the results.

7. Shortest Path Algorithms

7.1 Travelling Salesman Problem

Given a set of cities and the distance between every pair of cities, the problem is to find the shortest possible

188 | P a g e

route that visits every city exactly once and returns to the starting point. The problem statement gives a list of

cities along with the distances between each city.

Objective: To start from the origin city, visit other cities only once, and return to the original city again. Our

target is to find the shortest possible path to complete the round-trip route.

189 | P a g e

Here a graph is given where 1, 2, 3, and 4 represent the cities, and the weight associated with every edge

represents the distance between those cities. The goal is to find the shortest possible path for the tour that starts

from the origin city, traverses the graph while only visiting the other cities or nodes once, and returns to the origin

city.

For the above graph, the optimal route is to follow the minimum cost path: 1 – 2 – 4 – 3 - 1. And this shortest

route would cost 10 + 25 + 30 + 15 =80

Algorithm for Traveling Salesman Problem: We will use the dynamic programming approach to solve the

Travelling Salesman Problem (TSP).

• A graph G=(V, E), which is a set of vertices and edges.

• V is the set of vertices.

• E is the set of edges.

• Vertices are connected through edges.

• Dist(i,j) denotes the non-negative distance between two vertices, i and j.

Let’s assume S is the subset of cities and belongs to {1, 2, 3, …, n} where 1, 2, 3…n are the cities and i, j are two

cities in that subset. Now cost(i, S, j) is defined in such a way as the length of the shortest path visiting node in S,

which is exactly once having the starting and ending point as i and j respectively.

For example, cost (1, {2, 3, 4}, 1) denotes the length of the shortest path where:

• Starting city is 1

• Cities 2, 3, and 4 are visited only once

• The ending point is 1

The dynamic programming algorithm would be:

• Set cost(i,, i) = 0, which means we start and end at i, and the cost is 0.

• When |S| > 1, we define cost(i, S, 1) = ∝ where i !=1 . Because initially, we do not know the exact cost to

reach city i to city 1 through other cities.

• Now, we need to start at 1 and complete the tour. We need to select the next city in such a way-

• cost(i, S, j) = min cost (i, S−{i}, j) + dist(i, j) where i ∈ S and i ≠ j

190 | P a g e

For the given figure above, the adjacency matrix would be the following:

dist(i, j) 1 2 3 4

1 0 10 15 20

2 10 0 35 25

3 15 35 0 30

4 20 25 30 0

Now S = {1, 2, 3, 4}. There are four elements. Hence the number of subsets will be 2^4 or 16. Those subsets are-

1) |S| = Null:

{Φ}

2) |S| = 1:

{{1}, {2}, {3}, {4}}

3) |S| = 2:

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

4) |S| = 3:

{{1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4}}

5) |S| = 4:

{{1, 2, 3, 4}}

As we are starting at 1, we could discard the subsets containing city 1. The algorithm calculation steps:

1) |S| = Φ:

cost (2, Φ, 1) = dist(2, 1) = 10

cost (3, Φ, 1) = dist(3, 1) = 15

cost (4, Φ, 1) = dist(4, 1) = 20

2) |S| = 1:

cost (2, {3}, 1) = dist(2, 3) + cost (3, Φ, 1) = 35+15 = 50

cost (2, {4}, 1) = dist(2, 4) + cost (4, Φ, 1) = 25+20 = 45

cost (3, {2}, 1) = dist(3, 2) + cost (2, Φ, 1) = 35+10 = 45

cost (3, {4}, 1) = dist(3, 4) + cost (4, Φ, 1) = 30+20 = 50

cost (4, {2}, 1) = dist(4, 2) + cost (2, Φ, 1) = 25+10 = 35

cost (4, {3}, 1) = dist(4, 3) + cost (3, Φ, 1) = 30+15 = 45

3) |S| = 2:

cost (2, {3, 4}, 1) = min [dist[2,3] + Cost(3,{4},1) = 35+50 = 85,

dist[2,4]+Cost(4,{3},1) = 25+45 = 70] = 70

cost (3, {2, 4}, 1) = min [dist[3,2] + Cost(2,{4},1) = 35+45 = 80,

dist[3,4]+Cost(4,{2},1) = 30+35 = 65] = 65

cost (4, {2, 3}, 1) = min [dist[4,2] + Cost(2,{3},1) = 25+50 = 75

dist[4,3] + Cost(3,{2},1) = 30+45 = 75] = 75

4) |S| = 3:

cost (1, {2, 3, 4}, 1) = min [dist[1,2]+Cost(2,{3,4},1) = 10+70 = 80

dist[1,3]+Cost(3,{2,4},1) = 15+65 = 80

dist[1,4]+Cost(4,{2,3},1) = 20+75 = 95] = 80

So the optimal solution would be 1-2-4-3-1

191 | P a g e

Hints:

from sys import maxsize

from itertools, import permutations

V = 4

def tsp(graph, s):

 …

Driver code

graph = [[0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0]]

s = 0

print(tsp(graph, s))

TRY

1. Take a below table values and verify the results.

dist(i, j) 1 2 3 4

1 0 40 25 40

2 20 0 35 25

3 25 35 0 60

4 40 25 30 0

7.2 Shortest Paths from Source to all Vertices (Dijkstra's Algorithm)

Given a graph and a source vertex in the graph, find the shortest paths from the source to all vertices in the given

graph.

Input: src = 0, the graph is shown below.

Output: 0 4 12 19 21 11 9 8 14

192 | P a g e

Explanation: The distance from 0 to 1 = 4.

The minimum distance from 0 to 2 = 12. 0->1->2

The minimum distance from 0 to 3 = 19. 0->1->2->3

The minimum distance from 0 to 4 = 21. 0->7->6->5->4

The minimum distance from 0 to 5 = 11. 0->7->6->5

The minimum distance from 0 to 6 = 9. 0->7->6

The minimum distance from 0 to 7 = 8. 0->7

The minimum distance from 0 to 8 = 14. 0->1->2->8

Hints:

Dijkstra's single source shortest path algorithm. The program is for adjacency matrix representation of the graph

Library for INT_MAX

import sys

class Graph():

 def __init__(self, vertices):

 self.V = vertices

 self.graph = [[0 for column in range(vertices)]

 for row in range(vertices)]

 def printSolution(self, dist):

 print("Vertex \tDistance from Source")

 for node in range(self.V):

 print(node, "\t", dist[node])

 # A utility function to find the vertex with minimum distance value,

 # from the set of vertices not yet included in shortest path tree

 def minDistance(self, dist, sptSet):

 …

 # Function that implements Dijkstra's single source shortest path

 # algorithm for a graph represented using adjacency matrix representation

 def dijkstra(self, src):

 …

Driver's code

g = Graph(9)

g.graph = [[0, 4, 0, 0, 0, 0, 0, 8, 0],

 [4, 0, 8, 0, 0, 0, 0, 11, 0],

 [0, 8, 0, 7, 0, 4, 0, 0, 2],

 [0, 0, 7, 0, 9, 14, 0, 0, 0],

 [0, 0, 0, 9, 0, 10, 0, 0, 0],

 [0, 0, 4, 14, 10, 0, 2, 0, 0],

 [0, 0, 0, 0, 0, 2, 0, 1, 6],

 [8, 11, 0, 0, 0, 0, 1, 0, 7],

 [0, 0, 2, 0, 0, 0, 6, 7, 0]

]

g.dijkstra(0)

TRY

1. Take a below graph and verify the results.

193 | P a g e

7.3 Shortest Cycle in an Undirected Unweighted Graph

Given an undirected unweighted graph. The task is to find the length of the shortest cycle in the given graph. If no

cycle exists print -1.

Input: Consider the graph given below

Output: 4

Cycle 6 -> 1 -> 5 -> 0 -> 6

Input: Consider the graph given below

Output: 3

Cycle 6 -> 1 -> 2 -> 6

Hints:

from sys import maxsize as INT_MAX

from collections import deque

N = 100200

gr = [0] * N

for i in range(N):

 gr[i] = []

194 | P a g e

Function to add edge

def add_edge(x: int, y: int) -> None:

 global gr

 gr[x].append(y)

 gr[y].append(x)

Function to find the length of the shortest cycle in the graph

def shortest_cycle(n: int) -> int:

 # To store length of the shortest cycle

 ans = INT_MAX

 # For all vertices

 # write code here

 …

 # If graph contains no cycle

 if ans == INT_MAX:

 return -1

 # If graph contains cycle

 else:

 return ans

Driver Code

Number of vertices

n = 7

Add edges

add_edge(0, 6)

add_edge(0, 5)

add_edge(5, 1)

add_edge(1, 6)

add_edge(2, 6)

add_edge(2, 3)

add_edge(3, 4)

add_edge(4, 1)

Function call

print(shortest_cycle(n))

TRY

1. Take a below graph and verify the results.

7.4 Count Unique and all Possible Paths in a M x N Matrix

Count unique paths: The problem is to count all unique possible paths from the top left to the bottom right of a

M X N matrix with the constraints that from each cell you can either move only to the right or down.

195 | P a g e

Input: M = 2, N = 2

Output: 2

Explanation: There are two paths

(0, 0) -> (0, 1) -> (1, 1)

(0, 0) -> (1, 0) -> (1, 1)

Input: M = 2, N = 3

Output: 3

Explanation: There are three paths

(0, 0) -> (0, 1) -> (0, 2) -> (1, 2)

(0, 0) -> (0, 1) -> (1, 1) -> (1, 2)

(0, 0) -> (1, 0) -> (1, 1) -> (1, 2)

Count all possible paths: We can recursively move to right and down from the start until we reach the destination

and then add up all valid paths to get the answer.

Procedure:

• Create a recursive function with parameters as row and column index

• Call this recursive function for N-1 and M-1

• In the recursive function

• If N == 1 or M == 1 then return 1

• else call the recursive function with (N-1, M) and (N, M-1) and return the sum of this

• Print the answer

Hints:

Python program to count all possible paths from top left to bottom right

Function to return count of possible paths to reach cell at row number m and column number n from the topmost

leftmost cell (cell at 1, 1)

def numberOfPaths(m, n):

 …

Driver program to test above function

m = 3

n = 3

print(numberOfPaths(m, n))

TRY

1. Take input : M = 3, N = 2 and verify the results.

2. Take input : M = 2, N = 1 and verify the results.

8. Graph Coloring

8.1 Graph Coloring using Greedy Algorithm

Greedy algorithm is used to assign colors to the vertices of a graph. It doesn’t guarantee to use minimum colors,

but it guarantees an upper bound on the number of colors. The basic algorithm never uses more than d+1 colors

where d is the maximum degree of a vertex in the given graph.

Basic Greedy Coloring Algorithm:

1. Color first vertex with first color.

2. Do following for remaining V-1 vertices.

196 | P a g e

a) Consider the currently picked vertex and color it with the lowest numbered color that has not been used on

any previously colored vertices adjacent to it. If all previously used colors appear on vertices adjacent to v,

assign a new color to it.

Hints:

Implement greedy algorithm for graph coloring

def addEdge(adj, v, w):

 adj[v].append(w)

 # Note: the graph is undirected

 adj[w].append(v)

 return adj

Assigns colors (starting from 0) to all

vertices and prints the assignment of colors

def greedyColoring(adj, V):

 …

Driver Code

g1 = [[] for i in range(5)]

g1 = addEdge(g1, 0, 1)

g1 = addEdge(g1, 0, 2)

g1 = addEdge(g1, 1, 2)

g1 = addEdge(g1, 1, 3)

g1 = addEdge(g1, 2, 3)

g1 = addEdge(g1, 3, 4)

print("Coloring of graph 1 ")

greedyColoring(g1, 5)

g2 = [[] for i in range(5)]

g2 = addEdge(g2, 0, 1)

g2 = addEdge(g2, 0, 2)

g2 = addEdge(g2, 1, 2)

g2 = addEdge(g2, 1, 4)

g2 = addEdge(g2, 2, 4)

g2 = addEdge(g2, 4, 3)

print("\nColoring of graph 2")

greedyColoring(g2, 5)

Output:

Coloring of graph 1

Vertex 0 ---> Color 0

Vertex 1 ---> Color 1

Vertex 2 ---> Color 2

Vertex 3 ---> Color 0

Vertex 4 ---> Color 1

Coloring of graph 2

Vertex 0 ---> Color 0

Vertex 1 ---> Color 1

Vertex 2 ---> Color 2

Vertex 3 ---> Color 0

Vertex 4 ---> Color 3

8.2 Coloring a Cycle Graph

Given the number of vertices in a Cyclic Graph. The task is to determine the Number of colors required to color

the graph so that no two adjacent vertices have the same color.

197 | P a g e

Approach:

• If the no. of vertices is Even then it is Even Cycle and to color such graph we require 2 colors.

• If the no. of vertices is Odd then it is Odd Cycle and to color such graph we require 3 colors.

Input: Vertices = 3

Output: No. of colors require is: 3

Input: vertices = 4

Output: No. of colors require is: 2

Example 1: Even Cycle: Number of vertices = 4

Color required = 2

Example 2: Odd Cycle: Number of vertices = 5

Color required = 3

Hints:

Find the number of colors required to color a cycle graph

198 | P a g e

Function to find Color required.

def Color(vertices):

 …

Driver Code

vertices = 3

print ("No. of colors require is:", Color(vertices))

8.3 m Coloring Problem

Given an undirected graph and a number m, determine if the graph can be colored with at most m colors such that

no two adjacent vertices of the graph are colored with the same color.

Note: Here coloring of a graph means the assignment of colors to all vertices

Following is an example of a graph that can be colored with 3 different colors:

Input: graph = {0, 1, 1, 1},

 {1, 0, 1, 0},

 {1, 1, 0, 1},

 {1, 0, 1, 0}

Output: Solution Exists: Following are the assigned colors: 1 2 3 2

Explanation: By coloring the vertices with following colors, adjacent vertices does not have same colors

Input: graph = {1, 1, 1, 1},

 {1, 1, 1, 1},

 {1, 1, 1, 1},

 {1, 1, 1, 1}

Output: Solution does not exist

Explanation: No solution exits

Generate all possible configurations of colors. Since each node can be colored using any of the m available colors,

the total number of color configurations possible is mV. After generating a configuration of color, check if the

adjacent vertices have the same color or not. If the conditions are met, print the combination and break the loop

Follow the given steps to solve the problem:

• Create a recursive function that takes the current index, number of vertices and output color array

• If the current index is equal to number of vertices. Check if the output color configuration is safe, i.e

check if the adjacent vertices do not have same color. If the conditions are met, print the configuration and

break

• Assign a color to a vertex (1 to m)

• For every assigned color recursively call the function with next index and number of vertices

• If any recursive function returns true break the loop and returns true.

Hints:

Number of vertices in the graph

define 4 4

199 | P a g e

check if the colored graph is safe or not

def isSafe(graph, color):

 # check for every edge

 for i in range(4):

 for j in range(i + 1, 4):

 if (graph[i][j] and color[j] == color[i]):

 return False

 return True

def graphColoring(graph, m, i, color):

 # write your code here

 …

/* A utility function to print solution */

def printSolution(color):

 print("Solution Exists:" " Following are the assigned colors ")

 for i in range(4):

 print(color[i], end=" ")

Driver code

/* Create following graph and test whether it is 3 colorable

(3)---(2)

| / |

| / |

| / |

(0)---(1)

*/

graph = [

 [0, 1, 1, 1],

 [1, 0, 1, 0],

 [1, 1, 0, 1],

 [1, 0, 1, 0],

]

m = 3 # Number of colors

Initialize all color values as 0.

This initialization is needed

correct functioning of isSafe()

color = [0 for i in range(4)]

Function call

if (not graphColoring(graph, m, 0, color)):

 print("Solution does not exist")

8.4 Edge Coloring of a Graph

Edge coloring of a graph is an assignment of “colors” to the edges of the graph so that no two adjacent edges have

the same color with an optimal number of colors. Two edges are said to be adjacent if they are connected to the

same vertex. There is no known polynomial time algorithm for edge-coloring every graph with an optimal number

of colors.

Input: u1 = 1, v1 = 4

 u2 = 1, v2 = 2

 u3 = 2, v3 = 3

200 | P a g e

 u4 = 3, v4 = 4

Output: Edge 1 is of color 1

 Edge 2 is of color 2

 Edge 3 is of color 1

 Edge 4 is of color 2

The above input shows the pair of vertices (ui, vi) who have an edge between them. The output shows the color

assigned to the respective edges.

Edge colorings are one of several different types of graph coloring problems. The above figure of a Graph shows

an edge coloring of a graph by the colors green and black, in which no adjacent edge have the same color.

Algorithm:

1. Use BFS traversal to start traversing the graph.

2. Pick any vertex and give different colors to all of the edges connected to it, and mark those edges as

colored.

3. Traverse one of it’s edges.

4. Repeat step to with a new vertex until all edges are colored.

Hints:

Edge Coloring

from queue import Queue

function to determine the edge colors

def colorEdges(ptr, gra, edgeColors, isVisited):

 # Write your code here

 …

Driver Function

empty=set()

declaring vector of vector of pairs, to define Graph

gra=[]

edgeColors=[]

isVisited=[False]*100000

ver = 4

edge = 4

gra=[[] for _ in range(ver)]

edgeColors=[-1]*edge

gra[0].append((1, 0))

gra[1].append((0, 0))

gra[1].append((2, 1))

gra[2].append((1, 1))

201 | P a g e

gra[2].append((3, 2))

gra[3].append((2, 2))

gra[0].append((3, 3))

gra[3].append((0, 3))

colorEdges(0, gra, edgeColors, isVisited)

printing all the edge colors

for i in range(edge):

 print("Edge {} is of color {}".format(i + 1,edgeColors[i] + 1))

TRY

1. Write a program to implement graph coloring and edge coloring by consider the below graph and verify the

results.

9. Graph Traversal

9.1 Breadth First Search

The Breadth First Search (BFS) algorithm is used to search a graph data structure for a node that meets a set of

criteria. It starts at the root of the graph and visits all nodes at the current depth level before moving on to the

nodes at the next depth level.

For a given graph G, print BFS traversal from a given source vertex.

Hints:

BFS traversal from a given source vertex.

from collections import defaultdict

This class represents a directed graph using adjacency list representation

class Graph:

 # Constructor

 def __init__(self):

 # Default dictionary to store graph

 self.graph = defaultdict(list)

 # Function to add an edge to graph

 def addEdge(self, u, v):

 self.graph[u].append(v)

 # Function to print a BFS of graph

 def BFS(self, s):

 # Write your code here

 …

Create a graph given in the above diagram

g = Graph()

g.addEdge(0, 1)

g.addEdge(0, 2)

g.addEdge(1, 2)

g.addEdge(2, 0)

202 | P a g e

g.addEdge(2, 3)

g.addEdge(3, 3)

print("Following is Breadth First Traversal" " (starting from vertex 2)")

g.BFS(2)

Output: Following is Breadth First Traversal (starting from vertex 2)

2 0 3 1

9.2 Depth First Search

Depth First Traversal (or DFS) for a graph is similar to Depth First Traversal of a tree. The only catch here is,

that, unlike trees, graphs may contain cycles (a node may be visited twice). To avoid processing a node more than

once, use a boolean visited array. A graph can have more than one DFS traversal.

For a given graph G, print DFS traversal from a given source vertex.

Input: n = 4, e = 6

0 -> 1, 0 -> 2, 1 -> 2, 2 -> 0, 2 -> 3, 3 -> 3

Output: DFS from vertex 1: 1 2 0 3

Explanation:

DFS Diagram:

Input: n = 4, e = 6

2 -> 0, 0 -> 2, 1 -> 2, 0 -> 1, 3 -> 3, 1 -> 3

Output: DFS from vertex 2: 2 0 1 3

Explanation:

DFS Diagram:

Hints:

DFS traversal from a given graph

from collections import defaultdict

https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

203 | P a g e

This class represents a directed graph using adjacency list representation

class Graph:

 # Constructor

 def __init__(self):

 # Default dictionary to store graph

 self.graph = defaultdict(list)

 # Function to add an edge to graph

 def addEdge(self, u, v):

 self.graph[u].append(v)

 # A function used by DFS

 def DFSUtil(self, v, visited):

 …

 # The function to do DFS traversal. It uses recursive DFSUtil()

 def DFS(self, v):

 # Write your code here

 …

Driver's code

g = Graph()

g.addEdge(0, 1)

g.addEdge(0, 2)

g.addEdge(1, 2)

g.addEdge(2, 0)

g.addEdge(2, 3)

g.addEdge(3, 3)

print("Following is Depth First Traversal (starting from vertex 2)")

Function call

g.DFS(2)

TRY

1. Write a program to implement breadth first search and depth first search by consider the below graph and verify

the results.

10. Minimum Spanning Tree (MST)

10.1 Kruskal’s Algorithm

In Kruskal’s algorithm, sort all edges of the given graph in increasing order. Then it keeps on adding new edges

and nodes in the MST if the newly added edge does not form a cycle. It picks the minimum weighted edge at first

and the maximum weighted edge at last.

MST using Kruskal’s algorithm:

1. Sort all the edges in non-decreasing order of their weight.

204 | P a g e

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If the cycle is not

formed, include this edge. Else, discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

Kruskal’s algorithm to find the minimum cost spanning tree uses the greedy approach. The Greedy Choice is to

pick the smallest weight edge that does not cause a cycle in the MST constructed so far.

Input: For the given graph G find the minimum cost spanning tree.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 – 1) = 8

edges.

After sorting:

Weight Source Destination

1 7 6

2 8 2

2 6 5

4 0 1

4 2 5

6 8 6

7 2 3

7 7 8

8 0 7

8 1 2

9 3 4

10 5 4

11 1 7

14 3 5

Now pick all edges one by one from the sorted list of edges.

Output:

Hints:

Kruskal's algorithm to find minimum Spanning Tree of a given connected,

undirected and weighted graph

Class to represent a graph

205 | P a g e

class Graph:

 def __init__(self, vertices):

 self.V = vertices

 self.graph = []

 # Function to add an edge to graph

 def addEdge(self, u, v, w):

 self.graph.append([u, v, w])

 def find(self, parent, i):

 …

 def union(self, parent, rank, x, y):

 …

 def KruskalMST(self):

 # write your code here

…

Driver code

g = Graph(4)

g.addEdge(0, 1, 10)

g.addEdge(0, 2, 6)

g.addEdge(0, 3, 5)

g.addEdge(1, 3, 15)

g.addEdge(2, 3, 4)

Function call

g.KruskalMST()

Output: Following are the edges in the constructed MST

2 -- 3 == 4

0 -- 3 == 5

0 -- 1 == 10

Minimum Cost Spanning Tree: 19

10.2 Prim’s Algorithm

The Prim’s algorithm starts with an empty spanning tree. The idea is to maintain two sets of vertices. The first set

contains the vertices already included in the MST, and the other set contains the vertices not yet included. At

every step, it considers all the edges that connect the two sets and picks the minimum weight edge from these

edges. After picking the edge, it moves the other endpoint of the edge to the set containing MST.

Prim’s Algorithm:

The working of Prim’s algorithm can be described by using the following steps:

1. Determine an arbitrary vertex as the starting vertex of the MST.

2. Follow steps 3 to 5 till there are vertices that are not included in the MST (known as fringe vertex).

3. Find edges connecting any tree vertex with the fringe vertices.

4. Find the minimum among these edges.

5. Add the chosen edge to the MST if it does not form any cycle.

6. Return the MST and exit

Input: For the given graph G find the minimum cost spanning tree.

206 | P a g e

Output: The final structure of the MST is as follows and the weight of the edges of the MST is (4 + 8 + 1 + 2 + 4

+ 2 + 7 + 9) = 37.

Hints:

Prim's Minimum Spanning Tree (MST) algorithm.

The program is for adjacency matrix representation of the graph

Library for INT_MAX

import sys

class Graph():

 def __init__(self, vertices):

 self.V = vertices

 self.graph = [[0 for column in range(vertices)]

 for row in range(vertices)]

 # A utility function to print

 # the constructed MST stored in parent[]

 def printMST(self, parent):

 print("Edge \tWeight")

 for i in range(1, self.V):

 print(parent[i], "-", i, "\t", self.graph[i][parent[i]])

 # A utility function to find the vertex with

 # minimum distance value, from the set of vertices

 # not yet included in shortest path tree

 def minKey(self, key, mstSet):

 …

 def primMST(self):

 …

Driver's code

g = Graph(5)

g.graph = [[0, 2, 0, 6, 0],

 [2, 0, 3, 8, 5],

 [0, 3, 0, 0, 7],

207 | P a g e

 [6, 8, 0, 0, 9],

 [0, 5, 7, 9, 0]]

g.primMST()

Output:

Edge Weight

0 - 1 2

1 - 2 3

0 - 3 6

1 - 4 5

TRY

1. Write a program to implement kruskal’s algorithm and prim’s algorithm by consider the below graph and verify

the results.

11. Roots of Equations

11.1 Bisection Method

The Bisection method is also called the interval halving method, the binary search method or the dichotomy

method. This method is used to find root of an equation in a given interval that is value of ‘x’ for which f(x) = 0.

The method is based on The Intermediate Value Theorem which states that if f(x) is a continuous function and

there are two real numbers a and b such that f(a) * f(b) 0 and f(b) < 0), then it is guaranteed that it has at least one

root between them.

Assumptions:

1. f(x) is a continuous function in interval [a, b]

2. f(a) * f(b) < 0

Steps:

1. Find middle point c= (a + b)/2.

2. If f(c) == 0, then c is the root of the solution.

3. Else f(c) != 0

• If value f(a)*f(c) < 0 then root lies between a and c. So we recur for a and c

• Else If f(b)*f(c) < 0 then root lies between b and c. So we recur b and c.

• Else given function doesn’t follow one of assumptions.

Since root may be a floating point number, we repeat above steps while difference between a and b is greater than

and equal to a value? (A very small value).

208 | P a g e

Hints:

An example function whose solution is determined using Bisection Method.

The function is x^3 - x^2 + 2

def func(x):

 return x*x*x - x*x + 2

Prints root of func(x) with error of EPSILON

def bisection(a,b):

 # Write your code here

 …

Driver code

Initial values assumed

a =-200

b = 300

bisection (a, b)

Output: The value of root is : -1.0025

TRY

1. Take an input function x^2 - x^3 + 2 and verify the results.

2. Take an input function x^3 - x^3 + 4 and verify the results.

11.2 Method of False Position

Given a function f(x) on floating number x and two numbers ‘a’ and ‘b’ such that f(a)*f(b) < 0 and f(x) is

continuous in [a, b]. Here f(x) represents algebraic or transcendental equation. Find root of function in interval [a,

b] (Or find a value of x such that f(x) is 0).

Input: A function of x, for example x3 – x2 + 2.

 And two values: a = -200 and b = 300 such that

 f(a)*f(b) < 0, i.e., f(a) and f(b) have opposite signs.

Output: The value of root is : -1.00

 OR any other value close to root.

Hints:

MAX_ITER = 1000000

An example function whose solution is determined using Regular Falsi Method.

The function is x^3 - x^2 + 2

def func(x):

209 | P a g e

 return (x * x * x - x * x + 2)

Prints root of func(x) in interval [a, b]

def regulaFalsi(a , b):

 # Write your code here

 …

Driver code to test above function

Initial values assumed

a =-200

b = 300

regulaFalsi(a, b)

TRY

1. Take an input function x^2 - x^3 + 2 and verify the results.

2. Take an input function x^3 - x^3 + 4 and verify the results.

11.3 Newton Raphson Method

Given a function f(x) on floating number x and an initial guess for root, find root of function in interval. Here f(x)

represents algebraic or transcendental equation.

Input: A function of x (for example x3 – x2 + 2), derivative function of x (3x2 – 2x for above example) and an

initial guess x0 = -20

Output: The value of root is: -1.00 or any other value close to root.

Algorithm:

Input: initial x, func(x), derivFunc(x)

Output: Root of Func()

1. Compute values of func(x) and derivFunc(x) for given initial x

2. Compute h: h = func(x) / derivFunc(x)

3. While h is greater than allowed error ε

• h = func(x) / derivFunc(x)

• x = x – h

Hints:

Implementation of Newton Raphson Method for solving equations

An example function whose solution is determined using Bisection Method.

The function is x^3 - x^2 + 2

def func(x):

 return x * x * x - x * x + 2

Derivative of the above function which is 3*x^x - 2*x

def derivFunc(x):

 return 3 * x * x - 2 * x

Function to find the root

def newtonRaphson(x):

 # Write your code here

 …

Driver program

x0 = -20

newtonRaphson(x0)

TRY

1. Take an input function x^2 - x^3 + 2 and verify the results.

2. Take an input function x^3 - x^3 + 4 and verify the results.

210 | P a g e

11.4 Secant Method

The secant method is used to find the root of an equation f(x) = 0. It is started from two distinct estimates x1 and

x2 for the root. It is an iterative procedure involving linear interpolation to a root. The iteration stops if the

difference between two intermediate values is less than the convergence factor.

Input: Equation = x3 + x – 1

 x1 = 0, x2 = 1, E = 0.0001

Output: Root of the given equation = 0.682326

 No. of iteration=5

Algorithm

Initialize: x1, x2, E, n // E = convergence indicator

calculate f(x1),f(x2)

if(f(x1) * f(x2) = E); //repeat the loop until the convergence

 print 'x0' //value of the root

 print 'n' //number of iteration

}

else

 print "cannot found a root in the given interval"

Hints:

Find root of an equations using secant method

Function takes value of x and returns f(x)

def f(x):

 # we are taking equation as x^3+x-1

 f = pow(x, 3) + x - 1;

 return f;

def secant(x1, x2, E):

 # Write your code here

 …

Driver code

initializing the values

x1 = 0;

x2 = 1;

E = 0.0001;

secant(x1, x2, E);

TRY

1. Take an input function x^2 - x + 2 and verify the results.

2. Take an input function x^3 - x^2 + 4 and verify the results.

11.5 Muller Method

Given a function f(x) on floating number x and three initial distinct guesses for root of the function, find the root

of function. Here, f(x) can be an algebraic or transcendental function.

Input: A function f(x) = x + 2x + 10x - 20 and three initial guesses - 0, 1 and 2 .

Output: The value of the root is 1.3688 or any other value within permittable deviation from the root.

Input: A function f(x) = x - 5x + 2 and three initial guesses - 0, 1 and 2.

Output: The value of the root is 0.4021 or any other value within permittable deviation from the root.

Hints:

211 | P a g e

Find root of a function, f(x)

import math;

MAX_ITERATIONS = 10000;

Function to calculate f(x)

def f(x):

 # Taking f(x) = x ^ 3 + 2x ^ 2 + 10x - 20

 return (1 * pow(x, 3) + 2 * x * x +

 10 * x - 20);

def Muller(a, b, c):

 # Write your code here

 …

Driver Code

a = 0;

b = 1;

c = 2;

Muller(a, b, c);

TRY

1. Take an input function x^2 - x^3 + 2 and verify the results.

2. Take an input function x^3 - x^3 + 4 and verify the results.

12. Numerical Integration

12.1 Trapezoidal Rule for Approximate Value of Definite Integral

Trapezoidal rule is used to find the approximation of a definite integral. The basic idea in Trapezoidal rule is to

assume the region under the graph of the given function to be a trapezoid and calculate its area.

Hints:

Implement Trapezoidal rule

A sample function whose definite integral's approximate value is

computed using Trapezoidal rule

def y(x):

 # Declaring the function

 # f(x) = 1/(1+x*x)

 return (1 / (1 + x * x))

Function to evaluate the value of integral

def trapezoidal (a, b, n):

 # Write your code here

 …

Driver code

Range of definite integral

x0 = 0

xn = 1

Number of grids. Higher value means more accuracy

n = 6

print ("Value of integral is ",

212 | P a g e

 "%.4f"%trapezoidal(x0, xn, n))

12.2 Simpson’s 1/3 Rule

Simpson’s 1/3 rule is a method for numerical approximation of definite integrals. Specifically, it is the following

approximation:

Procedure:

In order to integrate any function f(x) in the interval (a, b), follow the steps given below:

1. Select a value for n, which is the number of parts the interval is divided into.

2. Calculate the width, h = (b-a)/n

3. Calculate the values of x0 to xn as x0 = a, x1 = x0 + h, …..xn-1 = xn-2 + h, xn = b.

Consider y = f(x). Now find the values of y (y0 to yn) for the corresponding x (x0 to xn) values.

4. Substitute all the above found values in the Simpson’s Rule Formula to calculate the integral value.

Approximate value of the integral can be given by Simpson’s Rule:

Input: Evaluate logx dx within limit 4 to 5.2.

First we will divide interval into six equal parts as number of interval should be even.

x : 4 4.2 4.4 4.6 4.8 5.0 5.2

logx : 1.38 1.43 1.48 1.52 1.56 1.60 1.64

Output: Now we can calculate approximate value of integral using above formula:

 = h/3[(1.38 + 1.64) + 4 * (1.43 + 1.52 + 1.60) +2 *(1.48 + 1.56)]

 = 1.84

Hence the approximation of above integral is

1.827 using Simpson's 1/3 rule.

Hints:

Simpson's 1 / 3 rule

import math

Function to calculate f(x)

def func(x):

 return math.log(x)

Function for approximate integral

def simpsons_(ll, ul, n):

 # Write your code here

 …

Driver code

lower_limit = 4 # Lower limit

upper_limit = 5.2 # Upper limit

https://en.wikipedia.org/wiki/Simpson%27s_rule

213 | P a g e

n = 6 # Number of interval

print("%.6f"% simpsons_(lower_limit, upper_limit, n))

12.3 Simpson’s 3/8 Rule

The Simpson’s 3/8 rule was developed by Thomas Simpson. This method is used for performing numerical

integrations. This method is generally used for numerical approximation of definite integrals. Here, parabolas are

used to approximate each part of curve.

Input: lower_limit = 1, upper_limit = 10, interval_limit = 10

Output: integration_result = 0.687927

Input: lower_limit = 1, upper_limit = 5, interval_limit = 3

Output: integration_result = 0.605835

Hints:

Implement Simpson's 3/8 rule

Given function to be integrated

def func(x):

 return (float(1) / (1 + x * x))

Function to perform calculations

def calculate(lower_limit, upper_limit, interval_limit):

 # Write your code here

 …

driver function

interval_limit = 10

lower_limit = 1

upper_limit = 10

integral_res = calculate(lower_limit, upper_limit, interval_limit)

rounding the final answer to 6 decimal places

print (round(integral_res, 6))

13. Ordinary Differential Equations

13.1 The Euler Method

Given a differential equation dy/dx = f(x, y) with initial condition y(x0) = y0. Find its approximate solution

using Euler method.

Euler Method:

In mathematics and computational science, the Euler method (also called forward Euler method) is a first-order

numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.

Consider a differential equation dy/dx = f(x, y) with initial condition y(x0) = y0

then a successive approximation of this equation can be given by:

y(n+1) = y(n) + h * f(x(n), y(n))

where h = (x(n) – x(0)) / n, h indicates step size. Choosing smaller values of h leads to more accurate results and

more computation time.

Example:

Consider below differential equation dy/dx = (x + y + xy) with initial condition y(0) = 1 and step size h = 0.025.

Find y(0.1).

https://en.wikipedia.org/wiki/Euler_method

214 | P a g e

Solution:

f(x, y) = (x + y + xy)

x0 = 0, y0 = 1, h = 0.025

Now we can calculate y1 using Euler formula

y1 = y0 + h * f(x0, y0)

y1 = 1 + 0.025 *(0 + 1 + 0 * 1)

y1 = 1.025

y(0.025) = 1.025.

Similarly we can calculate y(0.050), y(0.075),y(0.1).

y(0.1) = 1.11167

Hints:

Find approximation of an ordinary differential equation using Euler method.

Consider a differential equation

dy / dx =(x + y + xy)

def func(x, y):

 return (x + y + x * y)

Function for Euler formula

def euler(x0, y, h, x):

 # write code here

 …

Driver Code

Initial Values

x0 = 0

y0 = 1

h = 0.025

Value of x at which we need approximation

x = 0.1

euler(x0, y0, h, x)

13.2 Runge-Kutta Second Order Method

Given the following inputs:

1. An ordinary differential equation that defines the value of dy/dx in the form x and y.

2. Initial value of y, i.e., y(0).

The task is to find the value of unknown function y at a given point x, i.e. y(x).

Input: x0 = 0, y0 = 1, x = 2, h = 0.2

Output: y(x) = 0.645590

Input: x0 = 2, y0 = 1, x = 4, h = 0.4;

Output: y(x) = 4.122991

Approach:

The Runge-Kutta method finds an approximate value of y for a given x. Only first-order ordinary differential

equations can be solved by using the Runge-Kutta 2nd-order method.

Below is the formula used to compute the next value yn+1 from the previous value yn. Therefore:

yn+1 = value of y at (x = n + 1)

yn = value of y at (x = n)

where 0 ? n ? (x - x0)/h, h is step height

 xn+1 = x0 + h

https://www.geeksforgeeks.org/second-order-linear-differential-equations/
https://www.geeksforgeeks.org/runge-kutta-4th-order-method-solve-differential-equation/

215 | P a g e

The essential formula to compute the value of y(n+1):

K1 = h * f(x, y)

K2 = h * f(x/2, y/2) or K1/2

yn+1 = yn + K2 + (h3)

The formula basically computes the next value yn+1 using current yn plus the weighted average of two

increments:

• K1 is the increment based on the slope at the beginning of the interval, using y.

• K2 is the increment based on the slope at the midpoint of the interval, using (y + h*K1/2).

Hints:

Implement Runge-Kutta method

A sample differential equation

"dy/dx = (x - y)/2"

def dydx(x, y):

 return (x + y - 2)

Finds value of y for a given x using step size h and initial value y0 at x0.

def rungeKutta(x0, y0, x, h):

 # write code here

 …

Driver Code

x0 = 0

y = 1

x = 2

h = 0.2

print("y(x) =", rungeKutta(x0, y, x, h))

14. Final Notes

The only way to learn programming is program, program and program on challenging problems. The problems in

this tutorial are certainly NOT challenging. There are tens of thousands of challenging problems available – used

in training for various programming contests (such as International Collegiate Programming Contest (ICPC),

International Olympiad in Informatics (IOI)). Check out these sites:

• The ACM - ICPC International collegiate programming contest (https://icpc.global/)

• The Topcoder Open (TCO) annual programming and design contest (https://www.topcoder.com/)

• Universidad de Valladolid’s online judge (https://uva.onlinejudge.org/).

• Peking University’s online judge (http://poj.org/).

• USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

• Google’s coding competitions (https://codingcompetitions.withgoogle.com/codejam,

https://codingcompetitions.withgoogle.com/hashcode)

• The ICFP programming contest (https://www.icfpconference.org/)

• BME International 24-hours programming contest (https://www.challenge24.org/)

• The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

• Internet Problem Solving Contest (https://ipsc.ksp.sk/)

• Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

• Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

• OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

Students must solve problems and attain scores in the following coding contests:

 Name of the contest Minimum number of problems to solve Required score

• CodeChef 20 200

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/
https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/

216 | P a g e

• Leetcode 20 200

• GeeksforGeeks 20 200

• SPOJ 5 50

• InterviewBit 10 1000

• Hackerrank 25 250

• Codeforces 10 100

• BuildIT 50 500

Total score need to obtain 2500

Student must have any one of the following certification:

1. HackerRank - Problem Solving Skills Certification (Basic and Intermediate)

2. GeeksforGeeks – Data Structures and Algorithms Certification

3. CodeChef - Learn Python Certification

4. Interviewbit – DSA pro / Python pro

5. NPTEL – Programming, Data Structures and Algorithms

6. NPTEL – The Joy of Computing using Python

V. TEXT BOOKS:

1. Eric Matthes, “Python Crash Course: A Hands-On, Project-based Introduction to Programming”, No Starch

Press, 3rd Edition, 2023.
2. John M Zelle, “Python Programming: An Introduction to Computer Science”, Ingram short title, 3rd Edition,

 2016.

VI. REFERENCE BOOKS:

1. Yashavant Kanetkar, Aditya Kanetkar, “Let Us Python”, BPB Publications, 2nd Edition, 2019.

2. Martin C. Brown, “Python: The Complete Reference”, Mc. Graw Hill, Indian Edition, 2018.

3. Paul Barry, “Head First Python: A Brain-Friendly Guide”, O’Reilly, 2nd Edition, 2016

4. Taneja Sheetal, Kumar Naveen, “Python Programming – A Modular Approach”, Pearson, 1st Edition,

2017.

5. R Nageswar Rao, “Core Python Programming”, Dreamtech Press, 2018.

VII. ELECTRONICS RESOURCES

8. https://realPython.com/Python3-object-oriented-programming/

9. https://Python.swaroopch.com/oop.html

10. https://Python-textbok.readthedocs.io/en/1.0/Object_Oriented_Programming.html

11. https://www.programiz.com/Python-programming/

12. https://www.geeksforgeeks.org/python-programming-language/

VIII. MATERIALS ONLINE

1. Course template

2. Lab Manual

https://python-textbok.readthedocs.io/en/1.0/Object_Oriented_Programming.html
http://www.programiz.com/Python-programming/

217 | P a g e

COURSE CONTENT

ENGINEERING GRAPHICS

I Semester: CSE / CSE(DS) / CSE(CS)

II Semester: ECE / EEE / CSE (AI&ML) / IT

Course Code Category Hours / Week Credits Maximum Marks

AMED03 Foundation
L T P C CIA SEE Total

0 1 2 2 40 60 100

Contact Classes: 15 Tutorial Classes: Nil Practical Classes: 30 Total Classes:45

Prerequisite: Fundamentals of Geometry

I. COURSE OVERVIEW:

Introduction to graphical representation using free hand drawing and computer-aided drafting. Engineering

graphics covers basic engineering drawing techniques such as lines & lettering, geometrical constructions,

principles of tangency, orthographic projections, sectional views, and dimensioning. This course assists to draw

2D drawings for industrial applications.

II. COURSES OBJECTIVES:

The students will try to learn

1. The basic engineering drawing formats.

2. Projections of points, lines, planes and solids at inclinations of horizontal plane and vertical plane.

3. Use of computer-aided design (CAD) to communicate concepts and ideas in the design of three-dimensional

engineering products.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Demonstrate an ability to dimension and annotate two-dimensional engineering graphics.

CO2 Demonstrate the freehand sketching to aid in the visualization process and to efficiently communicate

ideas graphically.

CO3 Make use of CAD software for the creation of 3D models and 2D engineering graphics.

CO4 Comprehend the principles and techniques for creating sectional views of three-dimensional solids in

engineering graphics.

CO5 Explain the application of industry standards and best practices applied in engineering graphics.

CO6 Apply the general projection theory with emphasis on orthographic projection to represent three-

dimensional objects in two-dimensional views

218 | P a g e

IV. COURE CONTENT:

EXCERCISES ON ENGINEERING GRAPHICS

Note: Students are encouraged to bring their own laptops for laboratory practice sessions.

1. Getting Started Exercises

1.1 Introduction to AUTOCAD

AutoCAD is a widely-used computer-aided design (CAD) software application developed by

Autodesk. It has been an industry standard for drafting and designing since its inception in the early

1980s. AutoCAD provides a versatile platform for creating and editing 2D and 3D drawings and

models, making it an essential tool in various fields such as architecture, engineering, construction,

manufacturing, and more.

i. Install AUTO CAD

ii. Purpose and Application

iii. Interface and Tools

iv. Precision and Accuracy

v. 2D and 3D Modeling

vi. Collaboration and Sharing

vii. Customization

viii. Industry Usage

ix. Versions and Licensing

1.1 Commands

The main purpose of using commands and shortcuts in AutoCAD boils down to increased

productivity. They allow you to execute functions more quickly, as you don't need to search through

the entire AutoCAD interface for the right tool. You can just type the command, and the function

window appears.

i. Basic Drawing Commands

ii. Editing Commands

iii. Dimensioning Commands

iv. Advanced and Miscellaneous Commands

Basic Drawing Commands:

o Line (LINE): Draws straight line segments between two points.

o Circle (CIRCLE): Creates circles by specifying a center point and radius.

o Rectangle (RECTANGLE): Constructs rectangles by defining two opposing corners.

o Arc (ARC): Draws arcs based on different methods, such as specifying start, end, and

radius or center, start, and angle.

Editing Commands:

o Erase (ERASE): Deletes selected objects from the drawing.

o Copy (COPY): Copies objects to a specified location.

o Move (MOVE): Relocates selected objects to a different position.

o Trim (TRIM): Cuts selected objects at the cutting edges defined by other objects.

o Extend (EXTEND): Extends objects to meet the boundaries of other objects.

Dimensioning Commands:

o Line Dimension (DIMLINEAR): Adds linear dimensions to objects.

o Aligned Dimension (DIMALIGNED): Creates dimensions aligned with an angle of the

object.

o Radial Dimension (DIMRADIUS): Add radius dimensions to arcs and circles.

o Diameter Dimension (DIMDIAMETER): Creates diameter dimensions for circles.

Advanced and Miscellaneous Commands:

o Hatch (HATCH): Fills enclosed areas with a pattern or gradient.

o Offset (OFFSET): Creates parallel copies of objects at a specified distance.

o Block (BLOCK): Defines reusable blocks (collections of objects) in the drawing.

o Insert (INSERT): Inserts predefined blocks into the drawing.

o Viewport (VPORTS): Manages viewports for layout and plotting in paper space.

219 | P a g e

o Layer (LAYER): Manages layers for organizing and controlling object visibility.

TRY: Observe Exercise 1.1 in Solid works and in Creo software.

2. Introduction to Engineering Drawing

Engineering drawing, often referred to as technical drawing or drafting, is a graphical representation

of an object, system, or structure used in various fields of engineering, manufacturing, and

architecture. These drawings serve as a universal language that communicates design ideas,

specifications, and instructions in a precise and standardized manner.

2.1 Basic Exercises

To be proficient in engineering drawing, basic exercises are required.

i. Identify the basic tools used for drafting

ii. Types of lines

iii. Arcs

iv. Circles

2.2 Practicing the standard lettering and numbering

Practicing standard lettering and numbering in engineering drawing is crucial for creating clear,

professional, and easily understandable technical drawings. Proper lettering and numbering enhance

communication and ensure that your drawings convey information accurately.

The following exercises are to be practiced to become proficient in lettering and numbering.

1. Use the correct fonts

2. Maintain uniformity

3. Lettering style

4. Height and spacing

Try: The following questions are to be answered in Solid works

1. How to use correct fonts in Solid Works

2. What are the commands are used to maintain uniformity of lettering and numbering.

3. Dimensioning

Dimensioning in engineering drawing is a crucial aspect that involves adding measurements and

annotations to convey the size, location, and tolerances of objects, features, and components

accurately. Proper dimensioning is essential for manufacturing, construction, and other engineering

processes.

3.1 Exercises on Dimensioning

1. Understanding and use of the conventional dimensioning techniques.

2. Placing the dimension lines

3. Extension lines

4. Dimensions on angles

Hint: 1. The following Fig.3.1 shows the type of dimensioning on 2D drawing.

220 | P a g e

Fig.3.1 Dimensioning on 2D drawing

Hint: 2. The following Fig.3.2 shows the type of dimensioning on concentric circles.

Fig.3.2 Dimensioning on Concentric circle

Try: Demonstrate the exercise 3 in Solid Works and CREO software.

4. Geometrical Constructions

Geometric construction is useful for learning how to use geometric tools like a ruler, compass, and

straightedge to draw various angles, line segments, bisectors, and other forms of polygons, arcs,

circles, and other geometric figures. Fig.4.1 shows the various geometric shapes to draw orthographic

projections of lines, planes and solids.

221 | P a g e

Fig.4.1 Geometric shapes

4.1. Exercises on Geometrical Constructions

To become proficient in engineering graphics geometrical constructions are required: Drawing lines,

angles, triangle, square, pentagon, hexagon, octagon. Dividing line into equal or proportional parts.

Drawing lines and arcs tangent to each other.

1. Divide a 16 cm straight line into a given number of equal parts say 5.

2. Divide a 8 cm line into 9 number of parts.

3. Bisect a given 45 degree sector.

4. Bisect a given straight line.

5. To draw a perpendicular to a given line from a point within it.

6. Construct a regular polygon, given the length of its side.

222 | P a g e

Hint: Dividing a line into equal number of parts

Try: The exercise 4 in Solid Works and CREO software.

5. Conic Sections

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a

plane. The three types of conic section are the hyperbola, the parabola, and the ellipse.

5.1. Exercises on Conic Sections

1. Draw an ellipse with the distance of the focus from the directrix at 50mm and eccentricity =

2/3 (Eccentricity method)

2. Draw an ellipse with the distance of the focus from the directrix at 60mm and eccentricity =

2/3 (Eccentricity method)

3. Draw an ellipse with the distance of the focus from the directrix at 80mm and eccentricity =

2/3 (Eccentricity method)

4. Draw a parabola with the distance of the focus from the directrix at 50 mm (Eccentricity

method).

5. Draw a parabola with the distance of the focus from the directrix at 40mm (Eccentricity

method).

6. A vertex of a hyperbola is 60 mm from its focus. Draw two parts of the hyperbola; if the

eccentricity is 3/2.

7. A vertex of a hyperbola is 50 mm from its focus. Draw two parts of the hyperbola; if the

eccentricity is 1.5.

Try: The exercise 5 in Solid Works and CREO software.

6. Technical Sketching and Shape Description

6.1. Projections of planes and regular solids

1. Draw the projections of a regular pentagon of 30 mm side, having its surface inclined at 30° to

the H.P. and a side parallel to the H.P. and inclined at an angle of 60° to the V.P.

2. Draw the projections of a regular hexagon of 40 mm side, having one of its sides in the H.P.

and inclined at 60° to the V.P., and its surface making an angle of 45° with the H.P.

3. Draw the projections of a regular hexagon of 35 mm side, having one of its sides in the H.P.

and inclined at 50° to the V.P., and its surface making an angle of 45° with the H.P.

4. Draw the projections of a regular pentagon of 40 mm side, having one of its sides in the H.P.

and inclined at 30° to the V.P., and its surface making an angle of 45° with the H.P.

Try: The exercise 6.3 in Solid Works and CREO software.

7. Sectional views

A sectional view represents the part of an object remaining after a portion is assumed to have been

cut and removed. The exposed cut surface is then indicated by section lines. Hidden features behind

the cutting plane are omitted, unless required for dimensioning or for definition of the part.

7.1. Exercise on Sectional views of right regular solids, prism, cylinder, pyramid, cone.

1. A pentagonal pyramid, base 40 mm side and axis 60 mm long has its base horizontal and an

223 | P a g e

edge of the base parallel to the V.P. A horizontal section plane cuts it at a distance of 20 mm

above the base. Draw its front view and sectional top view.

2. A hexagonal prism, side of base 40 mm and height 70 mm is resting on one of its corners on the

H.P. with a longer edge containing that corner inclined at 40° to the H.P. and a rectangular face

parallel to the V.P. Draw the front view and sectional top view of the cut prism when a

horizontal section plane cuts the prism in two equal halves. Draw the front view and sectional

top view of the cut prism.

3. A pentagonal pyramid, base 40 mm side and axis 70 mm long has one of its triangular faces in

the V.P. and the edge of the base contained by that face makes an angle of 40° with the H.P.

Draw its projections.

4. Draw the projections of a cone, base 50 mm diameter and axis 75 mm long, lying on a generator

on the ground with the top view of the axis making an angle of 45° with the V.P.

Try: The exercise 7.1 and 7.2 in Solid Works and CREO software.

8. Development of surfaces

Knowledge of development is very useful in sheet metal work, construction of storage vessels,

chemical vessels, boilers, and chimneys. Such vessels are manufactured from plates that are cut

according to these developments and then properly bend into desired shaped.

8.1. Exercise on Basics of development of surfaces

1. Draw the development of the lateral surfaces of a right square prism of edge of base 30 mm and

axis 50 mm long.

2. Draw the development of the complete surface of a cylindrical drum. Diameter is 40 mm and

height 60 mm.

8.2. Exercise on Development of surfaces of Prisms

1. A hexagonal prism of base side 20 mm and height 45 mm is resting on one of its ends on the HP

with two of its lateral faces parallel to the VP. It is cut by a plane perpendicular to the VP and

inclined at 30° to the HP. The plane meets the axis at a distance of 20 mm above the base. Draw

the development of the lateral surfaces of the lower portion of the prism.

2. A hexagonal prism, edge of base 20 mm and axis 50 mm long, rests with its base on HP such

that one of its rectangular faces is parallel to VP. It is cut by a plane perpendicular to VP,

inclined at 45° to HP and passing through the right corner of the top face of the prism. (i) Draw

the sectional top view. (ii)Develop the lateral surfaces of the truncated prism.

3. A pentagonal prism, side of base 25 mm and altitude 50 mm, rests on its base on the HP such

that an edge of the base is parallel to VP and nearer to the observer. It is cut by a plane inclined

at 45° to HP, perpendicular to VP and passing through the center of the axis. (i) Draw the

development of the complete surfaces of the truncated prism.

4. A pentagonal prism of side of base 30 mm and altitude 60 mm stands on its base on HP such that

a vertical face is parallel to VP and away from observer. It is cut by a plane perpendicular to

VP, inclined at an angle of 50° to HP and passing through the axis 35 mm above the base. Draw

the development of the lower portion of the prism.

Try : The exercise 8.1 and 8.2 in Solid Works and CREO software.

9. Exercise on Development of surfaces-2

9.1. Exercise on Development of surfaces of cylinder and cone

1. Draw the development of the lateral surface of the lower portion of a cylinder of diameter 50

mm and axis 70 mm when sectioned by a plane inclined at 40° to HP and perpendicular to VP

and bisecting axis.

2. A Cone of base diameter 60 mm and height 70 mm is resting on its base on HP. It is cut by a

plane perpendicular to VP and inclined at 30° to HP. The plane bisects the axis of the cone.

Draw the development of its lateral surface.

9.2. Exercise on Development of surfaces of pyramid

1. Draw the development of the lateral surfaces of a square pyramid, side of base 25 mm and

height 50 mm, resting with its base on HP and an edge of the base parallel to VP.

2. A square pyramid of base side 25 mm and altitude 50 mm rests on it base on the HP with two

224 | P a g e

sides of the base parallel to the VP. It is cut by a plane bisecting the axis and inclined a 30° to

the base. Draw the development of the lateral surfaces of the lower part of the cut pyramid.

3. A pentagonal pyramid side of base 30 mm and height 52 mm stands with its base on HP and an

edge of the base is parallel to VP and nearer to it. It is cut by a plane perpendicular to VP,

inclined at 40° to HP and passing through a point on the axis 32 mm above the base. Draw the

sectional top view. Develop the lateral surface of the truncated pyramid.

Try: The exercise 9.1 and 9.2 in Solid Works and CREO software.

10. Orthographic views

Orthographic views are two-dimensional views of three-dimensional objects. Orthographic views

are created by projecting a view of an object onto a plane which is usually positioned so that it is

parallel to one of the planes of the object.

10.1. Exercise on Conversion of isometric view to orthographic projections using CAD

1. Draw the front view, side view and top view for the below Fig.10.1

Fig.10.1

2. Draw the front view, side view and top view for the below Fig.10.2.

225 | P a g e

Fig.10.2

3. Draw the front view, side view and top view for the below Fig.10.3.

Fig.10.3

4. Draw the front view, side view and top view for the below Fig.10.4.

226 | P a g e

Fig.10.4

Try: Practice Exercise 10 in Solid Works

11. Isometric projection of planes

Isometric projection is a method for visually representing three-dimensional objects in two

dimensions in technical and engineering drawings. It is an axonometric projection in which the three

coordinate axes appear equally foreshortened and the angle between any two of them is 120 degrees.

11.1. Isometric scale

In engineering and technical drawing, an isometric scale is a method used to create an isometric

projection of a three-dimensional object onto a two-dimensional surface, such as a drawing sheet or a

computer screen. Isometric projection is a type of pictorial representation that shows an object in a

three-dimensional view with all three principal axes (x, y, and z) at equal angles to the picture plane.

An isometric scale is used to ensure that the dimensions and proportions of objects in the isometric

drawing are accurate and maintain the proper relationships.

11.2. Exercise on Isometric projections of circle, square and rectangle and solids

1. Draw the isometric view of a circle of 60 mm diameter whose surface is parallel to the V.P.

2. Draw the isometric view of a square of side 60 mm whose surface is parallel to the H.P.

3. Draw the isometric view of a circle of 40 mm radius whose surface is parallel to the H.P.

4. Draw the isometric view of a square prism, side of the base 20 mm long and the axis 40 mm

long, when its axis is i) Veritcal and ii) Horizontal.

5. Draw the isometric view of the semi-circle whose front view of its surface is parallel to the V.P..

The diameter of semi-circle is 60 mm.

Try : The exercise 11.2 in Solid Works and CREO software.

1. Isometric projections of solids

12.1. Exercise on conversion of orthographic view to isometric view using CAD

1. Draw the isometric view for the given orthographic views Fig.12.1

227 | P a g e

Fig.12.1

2. Draw the isometric view for the given orthographic views for Fig.12.2

Fig.12.2

3.Draw the isometric view for the given orthographic views by assuming the dimensions for Fig.12.3

Fig.12.3

Try : The exercise 12 in Solid Works and CREO software.

13.Demonstration of SOLID WORKS Software

1. Introduction to SOLID WORKS

2. Demonstration of commands

3. 2D drawings

228 | P a g e

3. 3D drawings

14.Demonstration of CREO Software

1. Introduction to SOLID WORKS

2. Demonstration of commands

3. 2D drawings

3. 3D drawings

V. TEXT BOOKS:

1. Frederick E Giesecke, Alva Mitchell, Henry C Spencer, Ivan L Hill, John T Dygdon, James E. Novak, R.

O. Loving, Shawna Lockhart, Cindy Johnson, Technical Drawing with Engineering Graphics, Pearson

Education, 15th Edition, 2016.

2. Kulkarni D.M, Rastogi A.P. and Sarkar A.K., Engineering Graphics with Auto CAD. (Revised Edition),

Prentice Hall India, New Delhi, 2011.

3. Donald Hearn, “Computer Graphics”, 12th Edition, Pearson, 2021.

VI. REFERENCE BOOKS:

1. Basant Agrawal and C M Agrawal, Engineering Drawing, McGraw Hill, 3rd Edition, 2018.

2. James M. Leake, Molly Hathaway Goldstein, Jacob L. Borgerson, Engineering Design

 Graphics, Modelling and Visualization, Wiley, 3rd Edition, 2020.

VII. ELECTRONICS RESOURCES:

1. https://archive.nptel.ac.in/courses/112/103/112103019.

2. https://archive.nptel.ac.in/courses/112/105/112105294.

VIII. MATERIALS ONLINE:

3. Course Template

4. Laboratory manual

229 | P a g e

COURSE CONTENT

MOBILE APPLICATIONS DEVELOPMENT

I Semester: Common for CSE / CSE(DS) / CSE(CS)

II Semester: Common for CSE (AI&ML) / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSD04 Skill
L T P C CIA SEE Total

0 0 2 1 40 60 100

 Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Object Oriented Programming

I. COURSE OVERVIEW:

This course focuses on hands-on experience in designing, developing, and testing mobile applications for various

platforms. It helps to gain practical skills in mobile app development, including user interface design, memory

management, input methods, data handling, network techniques and URL loading. Students will be able to

undertake engineering challenges such as designing and developing mobile applications.

II. COURSES OBJECTIVES:

 The students will try to learn

I. The mobile application development for different platforms using appropriate tools and frameworks.

II. The user interface design with best practices for usability and user experience.

III. The process of debugging and troubleshooting for common issues in mobile app development.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO 1 Apply layout management and multi layout techniques to create adaptable user interface.

CO 2 Develop user interface for mobile application using widgets with event handling.

CO 3 Design push notifications for incoming messages.

CO 4 Create mobile application models using appropriate range of methods provided.

CO 5 Evaluate applications on mobile platforms with different configurations.

CO 6 Deploy applications to the android marketplace for distribution to app store.

230 | P a g e

IV. COURSE CONTENT:

GETTING STARTED AN EXCERCISES

1.1 HELLOWORLD

4. Flutter and Kotlin are the two leading technologies used to build mobile applications. Kotlin has an easy

learning curve because it is very similar to Java. In Flutter, developers must have to learn Dart

programming to build an app.

5. In this laboratory students can use either kotlin / flutter.

6. Install Android studio, visual studio with kotlin / flutter on your machine.

7. Write a Hello-world program using android studio and kotlin / flutter source-code editor.

1. 2. FOOD ORDERING APPLICATION

Build a food ordering application with the following functionalities:

1. A ‘Welcome page’ which displays the logo and/or name of the app.

2. A ‘Login Page’ which asks for users’ mobile number and password.

3. A ‘Registration Page’ which enables users to sign up for the app.

4. A ‘Forgot Password Page’ which enables users to reset their password.

5. A ‘Navigation Drawer’ with the app logo and user name on top and menu options to open the following

pages:

a. Home

b. User Profile

c. Favorite Restaurants

d. Order History

e. Frequently Asked Questions (FAQs)

f. Log out

6. A ‘My Profile’ page (where the user’s name, phone number, and address is displayed).

7. A ‘Favorites’ page (where the list of all favorite restaurants is displayed).

8. An ‘Order History’ page which lists the previously placed orders of the user.

9. An ‘FAQ’ page which lists some frequently asked questions. You can create any random questions which

you feel could be relevant for a food delivery application. (Min. 5 questions)

10. A ‘Logout’ functionality which takes the user to the login page.

11. A ‘Restaurant Details’ page which displays the menu items of that particular restaurant, each item’s price and

the option to add an item to cart.

12. A ‘Cart’ page which lists the items added to cart and the total amount to be paid.

See also for authentic understanding, click the link https://www.swiggy.com; https://www.zomato.com/deliver-

food; https://www.ubereats.com; https://www.dineout.co.in and so on. Each student has to refer any one of

the web sites stated above.

2. MUSIC PLAYER APPLICATION

Build a music player application with the following functionalities:

1. A ‘Splash screen’ (gradient background and app logo in center)

2. A ‘Navigation drawer’ with app logo section at the top along with links to ‘All Songs’, ‘Favorites’,

‘Settings’ and ‘About Us’.

3. An ‘All songs’ screen (where of list all the tracks fetched from offline storage are displayed and

user can sort the tracks by name or recently added). This will the home screen of the app.

4. The app should be able to fetch and play .mp3 and .wav files.

5. A ‘Favorites’ screen (where list of all the favorite songs is displayed)

6. A ‘Settings’ screen (where the ‘Shake to change song’ feature can be enabled or disabled)

231 | P a g e

7. An ‘About us’ screen (where we will display information about the app developer and the app

version)

8. A ‘Now playing’ screen with following features:

a. Track title and track artist

b. Play / Pause button

c. Next button

d. Previous button

e. Shuffle button

f. Loop button

g. Seek bar

h. Mark track as favorite or unfavorite it

i. Third party visualizer in upper half background

j. A ‘Back to list’ button in the header which should take the user to the screen he came from (kind of

like back button behavior).

k. Shake to change song

9. A ‘Now playing’ bar at the bottom with name of the track playing and play or pause feature. This

would appear if the user has moved from ‘Now playing’ screen to ‘All songs’ screen or ‘Favorites’

screen without pausing the track.

10. Background play. The app will continue playing the track if the app gets closed (not killed) without

the music being paused.

11. A notification saying "A track is playing in the background" only if the app gets closed (not killed)

without the music being paused.

Primary color scheme: #9b2a58, #00032a

See also for authentic understanding, click the link https://open.spotify.com; https://gaana.com;

https://www.hungama.com; https://wynk.in/music and so on. Each student has to refer any one of the web

sites tated above.

232 | P a g e

3. SMART HEALTH PREDICTION

Build Android Smart Health Prediction application which can be used by all patients or their family members who

need help in emergency with the following functionalities:

This application comprises of 3 major modules with their sub-modules:

1. A ‘User page’ with menu options to open the following pages:

a. A ‘Patient Login page’ which displays patient Login to the application using his ID and Password.

b. A ‘Patient Registration page’ which asks if patient is a new user, he will enter his personal details and he

will user Id and password through which he can login to the application.

c. A ‘My Details page’ which patient can view his personal details.

d. A ‘Disease Prediction page’ patient will specify the symptoms caused due to his illness. Application will

ask certain question regarding his illness and application predict the disease based on the symptoms

specified by the patient and application will also suggest doctors based on the disease.

e. A ‘Search Doctor page’ which the patient can search for doctor by specifying name, address or type.

f. A ‘Feedback page’ which the patient will give feedback this will be reported to the admin.

g. A ‘Notification page’ which the user needs to enter his/her prescription and then the user need to select a

time on which he/she wants to receive notification. The application will send the notification regarding

the prescribed medicine to the user on their device.

2. A ‘Doctor page’ with menu options to open the following pages:

a. A ‘Doctor Login page’ will access the application using his User ID and Password.

b. A ‘Patient Details page’ can view patient’s personal details.

c. A ‘Patient’s Previous Details page’ will get all information about patient’s previous case history. That

will help him to serve him better.

3. A ‘Admin page’ with menu options to open the following pages:

a. A ‘Admin Login page’ can login to the application using his ID and Password.

b. A ‘Add Doctor page’ can add new doctor details into the database.

c. A ‘Add Disease page’ can add disease details along with symptoms and type.

d. A ‘View Doctor page’ can view various Doctors along with their personal details.

e. A ‘View Disease page’ can view various diseases details stored in database.

f. A ‘View Patient page’ can view various patient details who had accessed the application.

g. A ‘View Feedback page’ can view feedback provided by various users.

See also for authentic understanding, click the link https://www.apollohospitals.com;

https://nirogstreet.com; https://www.lybrate.com; https://www.portea.com and so on. Each student

has to refer any one of the web sites stated above.

4. HOSTEL MANAGEMENT APPLICATION

Develop the hostel management application which will help to manage the hostel. The hostel managers can keep track

of the hostellers’ in and out timings and their daily entries. This system is intended to help hostel admin by allowing

them to save student records and information about their rooms. It helps the admin from the manual work from which

it is very difficult to find the record of the students.

This application comprises of following functionalities:

1. A ‘Admin page’ with menu options to open the following pages:

a. A ‘Manage Rooms’ page which the admin can choose to add general rooms or bedrooms to the system. If

the admin chooses a bedroom, they can add beds. They can add, update or delete rooms.

b. A ‘Manage Students’ page which the admin can view, add, update or delete students from the system. They

can allocate rooms to the students. Also, they can view the attendance of a student.

c. A ‘View Attendance’ page which the admin can filter by date AND room OR student-id. They can view all

the student’s attendance.

2. A ‘Student page’ with menu options to open the following pages:

a. A ‘Login’ page which the student can log in to the system using a username and password.

b. A ‘Profile’ page which t he student can add or update their profile details.

c. A ‘Change Password’ which they can also change their password to the new one.

233 | P a g e

d. A ‘Home’ page the student can scan the QR Code and a log will be added. They can view their room

allocation details.

e. A ‘View Attendance’ page the students are able to view only their attendance, they can also filter it by

date.

3. A ‘Guardian page’ which the ward wishes to go out from campus for any purpose, the guardian will login through

the registered login then the guardian will send the permission request to warden’s android phone by specifying the

purpose and also duration. After successful sent, the message is available in

the warden login for further action.

4. A ‘Warden page’ after receiving the guardian’s message, warden has a choice with options approve and reject.

Based on the purpose of out campus, Warden Selects approve or reject. If approves then the message with the ward

details is sent to security check which indicates the request made by the guardian is permitted.

See also for authentic understanding, click the link https://www.hostelsnap.com;

http://www.ifnoss.com/edu/college-university-software/hostel-management-system.aspx;

https://www.ezeetechnosys.com/absolute; https://www.resbird.com and so on. Each student

has to refer any one of the web sites stated above.

5. STAY SAFE WOMEN SECURITY APPLICATION

Build stay safe women security project is used to provide highly reliable security system for the safety of women. The

proposed system is based upon advanced sensors and GPS. The basic aim of the system is to develop a low-cost

solution for GPS based women tracking system (Women Safety System). The main objective of the system is to track

the current location of the person which has an android enabled mobile by extracting the longitude and latitude of that

target person.

This application comprises of following functionalities:

1. A ‘Scream Alarm’ page used perfect for the females as well as other users that need some kind of safety alarm in

case, they found out that someone is following or stalking them. It also consists of two other types of scream alarm.

It’s an initial distraction which will buy some time and allow the user to escape from the trouble.

a. Male voice scream

b. Police siren.

The user could select one of his/her choice from the “Settings” of the application, as keeping in mind the two other

scream alarms are also added in this application as nowadays safety and security is everybody’s concern.

2. A ‘Fake Call Timer’ page which the fake call timer allows the user to make fake calls in the time of need. It helps

user to escape from an undesirable situation citing an important call from anyone who needs him/her urgently and

rest depends upon user creativity. This feature also helps the user to escape from boring social events

In order to make a fake call the user have to select the “Fake Call” icon and after that user could write any name from

which he/she wants a fake call. User could also set up the timer as per the requirement. The user could also set the

default timer from the “Settings” icon of the application.

In a critical situation, the user just has to long term press the fake call button and automatically get a fake call as per

the desired selected timer in the settings.

3. A ‘Where Are You’ which is used to find track friend. While first request is send by the sender. The sender will

have to select the “Where Are You” icon and then a new dialog box of “Pick a Friend” will open up. The sender

could select any friend and the request will be sent to the receiver. The receiver will accept that request from their

end and a message will be sent to the receiver with the present location of the user.

4. A ‘Track Me’ which will track the user to view the exact dynamic location of the victim. First user have to send the

Track Me request at the receivers end. The receiver will accept the request and then his/her name will appear on the

friends you are tracking on the bottom of the application. The user could select that friend from there and then it

will get automatically re-directed to the Google maps from where the user could view the exact location of the

victim and also where’s he/she heading to.

5. A ‘Friends List’ page which shows all the contact numbers of family and friends which are added by the user

through contacts. This could be done by selecting the contact icon on the bottom right corner of the friends list.

6. A ‘Settings’ page which consists of the following features -:

a. A ‘Emergency Services’ page allows the Stay Safe Application to send emergency notifications and

SMS with the exact location to the emergency contacts.

b. A ‘Low Battery Alert’ page alert feature allows the Stay Safe Application to send low battery alert and

SMS to the emergency contacts.

234 | P a g e

c. A ‘Set Scream Sound’ page which the user could select any scream sound as per the requirement.

d. A ‘Fake Call Timer (On Long press)’ page which the user could set the fake call default timer as per the

requirement.

7. A ‘Emergency Distress Signal (SOS)’ which the distress signal will be generated by the user in case of an

emergency. In order to generate the distress, signal the user have to shake up his/her phone, then a distress signal

will appear at the user end with a default timer of 5 sec. In the end distress signal will be sent to the emergency

contacts added by the user at the time of registration. The application sends SMS and user details as well as the

exact location of the user through a push notification at the receiver end, before sending a distress signal the user

first have to turn on the emergency services from the settings of the application.

When user launches the application in his/her Android phone, the very first screen which lands is the Login Screen.

First the user have to register himself by entering the details as the respective name and contact number of the user.

See also for authentic understanding, click the link https://womensafetywing.telangana.gov.in;

https://nirbhayaapp.com; https://safetipin.com; https://www.smart24x7.com and so on. Each

student has to refer any one of the web sites stated above.

6. CONTROLLING ANTI RAGGING APPLICATION

Controlling anti ragging system facilitate college students to register a criticism in opposition to ragging immediately.

Students would be required to log in, after which they would be capable to register their complaints. The grievance

will then be dispatched to the worried authorities for well-timed action and the motion will be initiated immediately.

Previous archives reveal that well timed action was once taken in every case, which in flip resulted in a fall in such

cases. Now, with the launch of the app, the Ministry hopes to wipe out the exercise completely.

This application comprises of following functionalities:

a. A ‘User Module’ page which the person can register with the machine then he/she will get the get entry to in the

app. After login done if the any ragging is happened then without delay update the details. Every other flexibility

is additionally on hand right here to contact the emergency wide variety also provided.

b. A ‘College Admin’ page which can operate the action on the failed complaints; complaints can be considered via

the admin and can take the perfect action on the complaint.

a. A ‘Add Complaint’ page users can a make complaint against ragging. In this, those who are filling

complaint as to fill some fields like Accused Name, Ragging Type, Mobile Number

b. A ‘View Complaint’ page which can view the complaints made by students.

See also for authentic understanding, click the link http://www.amanmovement.org;

https://www.nmc.org.in/ActivitiWebClient/open/initiateAntiRaggingHome;

https://www.antiragging.in; https://www.amanmovement.org/raggingmain.html and so on.

Each student has to refer any one of the web sites stated above.

7. EXTRACURRICULAR EVENT TRACKING APPLICATION

Build Extracurricular activities are sources that have long been a part of the educational system; students participate in

these activities, which are not part of the standard curriculum or teaching techniques. Participation in all of these

activities, or even just one of them has been linked to social and academic success. Students who engage in

extracurricular activities gain from the numerous options available to them. Having better grades, higher standardized

test scores and educational attainment, attending school more consistently, and having a greater self-concept were all

advantages of participating in extracurricular activities.

Our Extracurricular Event Tracking System is developed to track students’ hours organizing and participating in

cultural events and college fests. This system keeps students updated about upcoming events and maintains track of

the events they have attended and the hours they have spent organizing various cultural programs. Thereby,

encouraging participation.

This application comprises of following functionalities:

1. A ‘Admin’ page which contains the following features:

a. A ‘Login’ page which the admin can log in using their credentials.

b. A Manage Course which they can add, update, view and delete courses. The courses will be

BSC/MSC/Diploma/Engineering, etc. They can add total hours.

c. A ‘Manage Students’ page which the admin can add, update, view and delete students. They can assign

courses to the students.

d. A ‘Manage Events’ page which the admin can add, update, view and delete events. They can add details

about a particular event. They can choose courses. They can add the link to the Meet.

e. A ‘View Records’ page which to view the records, the admin can choose by course. They can view the

students’ list and list of records.

2. A ‘Student’ page which contains the following features:

235 | P a g e

a. A ‘Login’ page which the students can log in using their credentials.

b. A ‘Dashboard’ page which the students can see the hours completed or the total hours. They can see up

to 5 upcoming events ordered by date and time.

c. A ‘Calendar’ page the students can see the Day/Week/Month on the Calendar.

- Day: The system will show today’s events on the date. The user can also select any previous date to

check any events that happened on that day.

 - Week: By selecting any week, the system will show one week’s dates & events.

- Month: By selecting the month, the system will show the current month’s dates and events.

d. A ‘Records’ page which the system will show all the events attended.

e. A ‘Profile’ page which the user can view their profile and change the password.

f. A ‘Forgot Password’ page which if the user forgets their password, an OTP will be sent via Email or

Phone number (Any 1). They would require to enter the correct OTP and reset the password.

g. A ‘Notification’ page which the system will send a notification to the user before an event starts, and the

dashboard checks the event unattended or hours not completed.

See also for authentic understanding, click the link

https://www.k12.com/parent-student-resources/extracurriculars-events,

https://www.tes.com/for-schools/clubs-and-events/features,

https://www.london.edu/masters-degrees/activities-clubs-and-groups,

https://prepory.com/blog/best-extracurricular-activities-for-the-engineering-applicant and so on.

Each student has to refer any one of the web sites stated above.

8. STUDENT MANAGEMENT SYSTEM

Build a student management system will have data on every student, and check the daily attendance of every student.

The system comprises 3 major modules with their sub-modules as follows:

1. The ‘Admin’ page menu options to open the following pages

a. A ‘Login’ page the admin can log in to the system using a username and password.

b. A ‘Manage Students’ page the admin can manage student details and they can add, update and delete details.

Also, add a fingerprint while adding the student’s details.

c. A ‘Manage Teacher’ page admin will also add teacher’s details and add, update and delete details. Teachers

will be assigned subjects.

d. A ‘Manage Grades’ page can manage students’ grades and add, update or delete grades.

e. A ‘Manage Subjects’ page can also manage subjects by adding, updating and deleting subjects.

f. A ‘Manage Appointments’ page applies to meet parent and waits for a reply.

g. A ‘Appointments’ page parents applied to meet the teacher/admin. The admin will respond to the parent’s

appointment request.

h. A ‘Manage Leaves’ page able to manage pending and past student leave. They can view a list of all the applied

student’s leaves. The admin can view all the pending leaves applied by parents. The admin will approve or

reject the leave application. Leave Note: They will be able to send a note to the parent related to leaves.

i. A ‘Medical Certificate’ page will be able to view the medical certificate submitted by parents. They can send a

note with an acknowledgement in response.

j. A ‘View Complaint’ page can view pending and replied complaints. They will be able to respond to the

complaints.

k. A ‘Warning Letters’ page contains the admin can add and view a list of all students with attendance below 80%

/ total course work below 60%. They can send a warning letter to their parents. Admin will be able to view all

warning letters and replies by parent.

l. A ‘Attendance’ page contains Entry and Exit Lecture-wise Attendance. See the attendance list of all Students

grade-wise against 2 dates.

m. A ‘Reports’ page contains can view reports of all the student’s attendance lists, grade-wise. They can view

students’ attendance reports for 2,4,6-months with lecture, entry and exit details. They can also view the

academic reports of all the students.

n. A ‘Entry/Exit’ page can add entry and exit of the student biometric.

2. A ‘PARENTS’ page contains following features

a. A ‘Login’ page can log in to the system using login credentials.

b. A ‘Profile’ page can add or update details to their profile.

c. A ‘Change Password’ can also change their old password to the new one.

d. A ‘Forget Password’ used if they forget their login password, they can receive a link to change the password

on their registered email-id.

e. A ‘Appointments’ page contains the parent can apply to meet the admin/teacher and waits for their response.

236 | P a g e

The parent will also receive the admin’s request to meet them and they can respond to the request.

f. A ‘Leaves’ page contains Parents can view all the leaves including pending leaves. They can view the list of

all their applied leaves. Parents can view leaves that have not been replied to by an admin.They can also

cancel their applied leaves.

g. A ‘Medical Certificate’ page contains Add: Parents can upload the medical reports of their child while

applying for leave. They can view all the previously uploaded lists and replies from the admin.

h. A ‘Complaint’ page contains Parents can add a new complaint. They can view a list of all the complaints and

replies from the admin.

i. A ‘Warnings’ page list of the warning letters sent by admin and parents can respond to them.

j. A ‘Attendance’ page can view their child’s attendance, lecture-wise. Also, they can view the attendance list of

the child against 2 dates.

k. A ‘Reports’ page contains following features: Academic attendance reports can be viewed by the admin.

Parents can view attendance reports of 2/4/6 Months with lecture, entry and exit details. They can also view

their child’s academic report.

l. A ‘Notifications’ page will receive notifications such as when appointment status changes or admin applied,

leaves approved/rejected, medical certificate reply, complaint reply, warning letter, student entry/exit,

academic marks uploaded by teacher.

3. A ‘TEACHER’ page contains following features

a. A ‘Login’ page can log in to the system using a username and password.

b. A ‘Profile’ page can add or update details to their profile.

c. A ‘Change Password’ can also change their passwords.

d. A ‘Forget Password’ if they forget their login password, they can receive a link to change the password on

their registered email-id.

e. A ‘My Subjects’ page contains following features

Assigned Subjects: A list of all assigned subjects can be viewed grade-wise.

Students List: The teacher can view the list of the students in that Grade.

m. A ‘Attendance’ page contains they can select grade and subject to view attendance. Biometric Attendance:

They can take the biometric attendance of students. See the Attendance list of all Students grade-wise against

2 dates, lecture-wise.

n. A ‘Academics’ page contains teachers can choose the grade, subject and student for their academic reports.

They can view, add and update students’ academic details. Teachers can add marks on tests, assignments and

final exams. They can update existing marks on tests, assignments and final exams.

o. A ‘Complaint’ page contains teachers can add new student complaint. They can view list of all the complaints

and replies from admin.

See also for authentic understanding, click the link

https://www.iitms.co.in/products/student-information-system-sis; https://samvidha.iare.ac.in;

https://themeforest.net/item/clever-course-learning-management-system-theme/8645312;

https://markerspro.in and so on. Each student has to refer any one of the web sites stated above.

9. PHARM EASY APPLICATION

Build a pharm easy application for ordering medicines and tests. This application comprises of following

functionalities

1. A “Home Page” which consists of a list medicines & health care product.

2. A “Lab Tests page” contains different medical tests.

3. A “Health Care Products page” contains vitamins and necessary to our body.

4. A “Offers Page” offers on different products and coupons.

5. A “Account Page” contains details of individual customer.

6. A “Products Page” contains a list of products.

7. A “Detailed View of Product” detailed view of selected product.

8. A “Cart page” list of items we selected to buy.

9. A “Delivery Details Page” consists of customer address and contact details.

10. A “Payment Page” how to make payments (cod or online payments).

11. A “Success page” show transaction success.

12. A “Bottom APP Bar” consists of logos which opens the corresponding pages(fragments).

a. Home page

b. Test Page

c. Health Care Page

d. Offers Page

237 | P a g e

e. Account Page

See also for authentic understanding, click the link https://pharmeasy.in; https://www.netmeds.com;

https://www.medlife.com; https://www.practo.com and so on. Each student has to refer any one of the web sites

stated above.

10. NEWS APPLICATION

Build a news application is to connect news articles from all around the world and deliver it to user as fast as

possible in best visualize way. This application comprises of following functionalities:

1. A ‘User Interface’ page should be able to select from different categories, countries and newspaper. Short News

as list view with header, little description and image before showing full article can be helpful to user to

determine what type of news they are looking for. View Holder can be used for this list view for better and fast

experience.

2. A ‘Admin Panel’ page controls the User and Writers logins from database. Writers can add news, update and

delete from its database as per required. Main Admin can add Users, Writers, and News. He can also approve,

update and delete it. Using this approach, we can create network in local areas connect by writers and local

admins which will provide news at local level and we can also implement location feature which will update

local news of different location or city.

3. A ‘Global Support’ page contains different type of newspaper will be available from all around the world in

different languages with this user will be able to get news from all around the world.

4. A ‘Short News’ page News will be displayed in short format with title, image and little description in list view. It

will help user to access required news faster.

5. A ‘Search Option’ page which user will be able to search from not only one source but many different sources

available within API.

6. A ‘Favorites / Offline Reading’ page which News can be added as favorites which will automatically will be

saved for offline reading.

7. A ‘Sharing’ page which user will be able to share news easily on social media.

See also for authentic understanding, click the link https://indianexpress.com; https://www.bbc.com/news;

https://www.ndtv.com; https://www.hindustantimes.com and so on. Each student has to refer any one of the

web sites stated above.

11. AIR TRANSIT TRIP PLANNER APP

Build the air transit trip planner which This passenger on transit will spend their time at the airport while waiting for

the next flight without any planning to visit tourism places nearby due to short period of time and much information

needed to plan a short trip. This is such a waste because they actually can boost countries’ economy in the tourism

sector if they spend their time to visit some tourism places nearby the airport. Because of that, Air Transit Trip Planner

aims to help these passengers on transit by planning a short trip to the nearby tourism places within the transition hour

they have.

Air Transit Trip Planner also using Google Map API as a map to guide user and Google Places API as a data center to

grab all the tourism places and its details. The output of this calculation is a suggestion of short trip planner for the

user (passenger on transit). The trip planner will list down the tourism places user can visit within their flight transition

hour, the distance to go there and also time taken to go there. Indirectly, this Air Transit Trip Planner application also

helps to boost economy in the tourism sector of a country.

This application comprises of following functionalities:

1. A ‘Main Page’ which the user will see when they launch the application. In the background when this interface

prompts, the system actually will automatically detect user current location by using GPS or Google Places. If no

internet access or GPS is turn off, the system will prompt a pop up asking the user to turn on GPS or connect to

internet. But if everything is fine, user just need to key in their transit hour and departure time then click enter.

2. A ‘Tourism places’ page will calculate how many tourisms places the user can visit within the transit hour they

have by using the algorithm.

3. A ‘place details” page will direct to new user interface with scrollable list view.

4. A ‘pop up’ page when user click each mark on map. When the user clicks the mark, the pop up will show the

address of each location.

5. A ‘GPS Navigation’ page is using satellite and it is implementing context awareness concept where it will direct

user to their destination. This interface also has voice navigation which will help the user to hear the navigation

while driving rather than looking at the map continuously.

See also for authentic understanding, click the link https://travelplanner.co.in; https://www.expedia.com;

https://www.orbitz.com; https://www.kayak.com and so on. Each student has to refer any one of the web sites

238 | P a g e

stated above.

12. STUDENT-FACULTY DOCUMENT SHARING SYSTEM

Develop Student-Faculty Document Sharing System. This application is an online portal between students and faculty.

This innovative system allows college faculty to share important data as well as notifications with engineering

students. It consists of a faculty login along with student login. Since college faculty operate through pc and document

uploading is simpler through a pc, the faculty login is to be performed through a computer. Faculty may upload

documents of subject syllabus, timetable document, notifications, notes etc through their provided login. The

documents are uploaded by faculty to different corresponding departments. We propose to build this system on an

online server that allows faculty to upload data and students may view search and download required documents

through their android device. Here students only see and download data of their particular semester. Faculty may

access and upload/edit documents to any semester or add any notice as desired.

This application comprises of following functionalities:

1. A ‘User login’ page allows only the registered users to login in order to use this location tracking application.

2. A ‘Document details’ page stores documents in word and pdf format and also allows students to view particular

data.

3. A ‘Server management’ page which displays the server smartly handles data and allows students with an

android device to access data as well as faculty to upload document details.

4. A ‘Faculty Upload’ page allows faculty to upload documents to server.

5. A ‘Student Download’ page allows student to download only allowed semester data through his android phone

using an active internet connection

See also for authentic understanding, click the link https://akanksha.iare.ac.in; https://moodle.org;

https://classroom.google.com;

https://nevonprojects.com/student-faculty-document-sharing-android-project and so on.

Each student has to refer any one of the web sites stated above.

13. ONLINE RECRUITMENT SYSTEM

Build online recruitment system with the following functionalities:

1. A ‘Administrator’ page stores the information of the user’s login and the password data. This provides security

to the system and keeps the record of which user entered in the system at what instance of time. It has the

following attributes:

a. Username: It stores the name of the admin which acts as the unique name given to the manager of the

firm.

b. Password: This attribute holds the secured keyword given to every manager of the educational

institutions who need access to the system

c. Login-Time: The login time of the admin will be recorded in this field which helps in tracking the admin

performance.

d. Logout-Time: It stores the logout time of the admin from the system

2. A ‘Job Seeker’ page stores the information of the candidate who registers to the system for participation in the

recruitment process, the Job Seeker entity is created. It will have all the required data about the applicant. It has

following attributes

a. Can-Id: Candidate Id is a unique number given to each candidate who registers in the system

b. Can-Name: Candidate Name is the information required for details of the applicant who registers in the

system.

c. Resume/CV: In this attribute job, seekers can store their resumes which can be reviewed by the

organization if they want to further check the candidate

d. Projects: Every candidate has many projects which they have created or worked on, which they want to

share with them, recruiters.

e. Personal-Info: This attribute holds all the information the recruiters needed from the candidate apart

from its technical skills and eligibility.

f. Contact: This stores the contact information of the candidate like phone number and email id

3. A ‘Skill’ page is an essential part of the system as it works on both from recruiter and job seeker.

It has the following attributes

a. Skill-Id: As every set of skills is unique so every set is given a unique number that acts as its id in the

system.

b. Technical: It will store the technical skill by the applicant.

c. Academic-details: It will store the detailed information of the student in an academic field like high

school marks, senior secondary marks. It will also have the graduation percentage is necessary for the

skill.

239 | P a g e

d. Cocurricular-activities: Every skill does not only require the technical talent of the student it also needs

other social skills.

4. A ‘Requisition’ page every employer will make the requisition of the application for the given post. From the

application received from the number of the job seekers, the company will check their eligibility and decide

whether he/she is compatible for the post or not. Then the shortlisted student will go for further rounds of the

recruitment process as per the employer. It has following attributes

a. Req-Id: Every requisition present in the system given by each employer has unique numbers assigned to

it.

b. Emp-Id: This attribute will hold the information of the employer who is giving this requisition.

c. Post: Every requisition given by the employer belongs to a specific post

d. Skill-Id: It is a reference to a skilled entity that implies the required skill set for the specific post.

e. Package: This attribute stores the information regarding the pay scale or salary

f. Criteria: In the criteria attribute, data regarding the process of recruitment is stored.

5. A ‘Employer’ page will store the detailed information of the employer present or registered in the system.

Thus, making it one of the essential entities in the system. Before applying for any post, the applicant also

wants to know about the company or the employer who has given the requisition. It has the following

attributes

a. Emp-Id: It is the unique number given to the employer to differentiate from others.

b. Emp-Name: It will hold the name of the employer which is registered in the system.

c. Information: This entity will hold the information of the employer like when it is founded, what kind of

projects they are working on

d. Key-Persons: It holds the data of the important persons of the company and the point of the contact for

the interested candidates.

6. A ‘Interview’ page has information about the interviews that will happen for the specific requisition. As the

interview is an important part of any recruitment process as in this the employer and candidates come face to

face and they can judge each other. It has following attributes

a. Int-id: It is the unique number given to each interview process that happens in the system

b. Int-type-id: As there are many kinds of interviews that can happen during the recruitment process.

c. Req-Id: It will hold the reference of the requisition for which a specific employer is conducting this

interview.

d. Remarks: This has the remarks of the interviews which is given by the employers.

e. Emp-Id: It holds the data of the employer who is conducting this interview and managing the whole

process.

7. A ‘Interview-Type’ as there is various type of interview process which happens in the recruitment like

technical for checking the technical knowledge of the candidate or the HR interview to test the social and

interpersonal skill of the applicant. It has following attributes

a. Int-type-id: It is the unique number given to each type of interview

b. Int-type-Name: It holds the name of the type of interview.

8. A ‘Offer-Letter’ when candidates apply for the job and it takes every criterion provided for a specific post. If it

qualifies for the post the company will provide him/her with the offer letter. It is a document that makes the

offer to the candidate for joining the employer’s firm. It has detailed information regarding the package and the

work environment of the company.

It has following attributes

a. Of-id: Each offer letter is given a unique and distinct number

b. Emp-Id: It is the number given to the employer as it gives the information about which company has

given this letter.

9. A ‘Experience’ to show the talent each applicant writes the experience they have gain in the previous years. It

helps the employer to see which applicant has the relevant knowledge required for the post. So, they can hire a

person who has more potential than others. It has following attributes

a. Exp-Details: It holds the information candidate has learned during the work.

b. Exp-Organization: The name of the organization in which the applicant has gained the experience.

10. A ‘Feedback’ page is holds the feedback of the job seekers about their recruitment process for an employer or a

requisition. It has the following attributes:

a. Feed-Id: It is a unique number given to each feedback. It makes the remark distinct and identifiable for

the employers to take note of.

b. Emp-id: It is a reference to the employer for which this feedback is given

c. Feed-details: It holds the remark given by the applicant

See also for authentic understanding, click the link https://www.tracker-rms.com;

https://www.bullhorn.com/glossary/online-recruitment-system; https://www.manatal.com;

https://www.whatishumanresource.com and so on. Each student has to refer any one of the web sites stated

above.

240 | P a g e

14. STUDENT COUNSELING MANAGEMENT SYSTEM

Build Student Counseling Management System with the following functionalities

1. A ‘Student’ page will store the record of the student registered for the counseling. It is essential for the system

as a separate unit which has all the information regarding the student and their personal and professional data.

So, it will have the 10th and 12th percentage, rank in the entrance exam will also be asked from student to give

the preferences according to it. It has the following attributes:

a. Name: This will store the name of the student as it needed while saving the required

b. DOB: The date of birth of the student as mention in the high school certificate and will act as the

candidate key in the database model

c. Student-id: It is a unique alphanumeric number assigned to every student who registers for the

counseling

d. Password: It is an alphanumeric field that has the constraint of having a minimum of 8 digits and at least

one alphabet with numbers

e. 10th Percentage: This is used to get the student’s percentage in high school which some universities

check before giving admission to the student.

f. 12th Percentage: It is an academic field that requires the student to give information about the 12th

standard.

g. Rank-Entrance-Exam: This attribute gets the entrance exam rank from the student which they have got

according to their performance in the exam

2. A ‘Choices’ page is needed to get the preferences from the student based on their rank in the entrance exam.

The number of choices given to the student can be multiple based on the institution that requires the seats

available for the courses. These preferences will go to the courses entity which then checks which selection is

eligible for the student, this evaluation will be based on the number of seats available and the rank of the

student. This is also will be referenced in the allotment of the seats where the allotted seats are recorded. It has

the following attribute:

a. Rank-Entrance-Exam: This attribute gets the entrance exam rank from the student which they have got

according to their performance in the exam.

b. 1st Preference: This will be a simple attribute that holds the first preference of the student which he/she

will select from the pool of choices.

c. 2nd Preference: It will hold the second preference of the student as it is not always possible to get the

first selected choice as it may have got filled or the student with a higher rank got that seat.

3. A ‘Courses’ page will have all the courses provided by the institutes. All the courses will have institute code

will differentiate if the same courses are provided by the different institution. Every course has the define the

seats available and the allotted seats along with the total seats available which will provide transparency in the

system. It has the following attribute:

a. Course-code: A unique number given to every course not depends on which university to it belongs, it

helps in maintaining the record unique and distinct so act as the primary key for the entity.

b. Institute-code: Every institute that has register itself for the system of counseling has given a unique

code that differentiates it from other institutes which have the same courses.

c. Total-seats : It will have the total seats available for that course provided by the Institute.

d. No-of-seats: It is a composite attribute which has the further information about a number of seats

allotted and the vacant seat left for the course.

4. A ‘Course-Name’ page will contain the name of the course and the unique id of that course. As the many

institutes provide the same course it would be a difficult job to assign a different code to the same course. So,

this field will be normalized. It has the following attribute:

a. Course-code: A unique number is given to every unique course.

b. Course-name: The name of the course will be stored in this attribute.

5. A ‘Allotment of Seat’ page will store the information of the student after the seat is confirmed for allotment. It

has the following attribute:

a. Student-id: Student unique id number.

b. Rank-Entrance-exam: Rank gave to the student as per his/her performance in the entrance exam

c. Preference-no.: The preference which got allotted, as per the choices are given to him.

d. Course-code: The course code which got selected for.

e. Institute-code: The institute allotted the seat.

6. A ‘Institutes’ page will store the information regarding the institutes which are participating in the counseling.

Each one of them has to publish their courses for which they want students with the number of the total seats. It

has the following attributes:

a. Institute-code: Every institute that has register itself for the system of counseling has given a unique

code that differentiates it from other institutes which have the same courses.

b. Institute-name: It will hold the name of the institute as mention by them in the registration process.

241 | P a g e

c. City: It depicts the city to which the institute belongs to as it helps as a candidate key.

d. Password : It is an alphanumeric field that has the constraint of having a minimum of 8 digits and at

least one alphabet with numbers.

7. A ‘Admitted-Student’ page maintains their own record of which student has admitted to their institute and the

courses what courses they have opted for. It has the following attributes:

a. Student-id: Student unique id number.

b. Course-code : The course code which got selected for.

c. Institute-code: The Institute for which the seat is allotted. Institute is related to this entity as every

university will have a database of how many students have been admitted to its courses.

See also for authentic understanding, click the link https://www.academiaerp.com;

https://collegedunia.com/exams/cuet/counselling; https://nchmcounselling.nic.in;

https://www.cdac.in/index.aspx?id=edu_acts_Login_cv11 and so on. Each student has to refer any one of the

web sites stated above.

15. DATA MART MANAGEMENT SYSTEM

Build a Data Mart Management system with the following functionalities

1. A ‘Master Maintenance’ page maintains the following master details for various purposes. It has the following

attributes

a. Suppliers Details

b. Sub location In-charges Details

c. Retailers Details

d. Products Details

2. A ‘Shipment’ page provides you a number of functions to maintain the flow of goods in warehouse. It has the

following attributes

a. Transfer inventory

b. Put inventory on hold

c. View inventory balances

d. View inventory transactions

3. A ‘Billing’ page warehouse billing process allows the retailer to generate new bills and also allows

viewing of existing bills.

4. A ‘Reports’ page reports process allows the user to produce the reports necessary for day to day

warehouse operations. The standard reports are

a. Inventory Reports

b. Purchase Order Reports

c. Administrative Reports

See also for authentic understanding, click the link http://www.datamartsys.com;

https://netresultsgroup.com; https://www.indiamart.com; https://uniondatamart.com

and so on. Each student has to refer any one of the web sites stated above.

16. RESTAURANT RESERVATION AND TABLE MANAGEMENT SYSTEM

Build a Restaurant Reservation and Table Management system is a Web application designed to help you (and your

coworkers) to select the restaurant you are going to eat in. You can manage users, restaurants, menus, prices, give

notations to each lunch, etc.

1. A ‘Reservation Management’ page functionalities are

a. Easily enter or modify reservations while viewing guest histories.

b. Capture phone numbers, email and mailing addresses.

c. Allow management blocking and VIP pre-assignments.

d. Reduce no-shows with enhanced customer tracking.

e. Take reservations from your website or Open Table 24 hours.

2. A ‘Table Management’ page functionalities are

a. Maximize seat utilization with walk-in and waitlist functionality.

b. Instantly track covers for more efficient kitchen and server management. Increase table turns by tracking

party status. Store multiple reservation sheets for holidays and special events.

c. Hold and combine tables for large parties.

d. Record and view shift notes for each day

3. A ‘Guest Management’ page functionalities are

a. Identify regulars and VIPs

242 | P a g e

b. Track customer preferences to meet and anticipate special requests

c. View customer reservation histories at-a-glance

d. Track special occasions such as guest birthdays and anniversaries Marketing Management

e. Conduct powerful email marketing campaigns to increase repeat business.

f. Print mailing labels to reach select target audiences.

g. Track and reward concierge business.

4. A ‘Increase control’ page functionalities are

a. Manage reservations from the back-office or any other location. Simultaneously control multiple

restaurants from key centralized locations.

b. Share guest data across sister restaurants.

See also for authentic understanding, click the https://www.elluminatiinc.com/restaurant-reservation-system;

https://restaurant.opentable.com; https://www.tornosubitodubai.com; https://indiarestaurant.co.in and so

on. Each student has to refer any one of the web sites stated above.

17. SECURE STOCK EXCHANGE SYSTEM

Build a secure stock exchange system that is designed for the sale and purchase of securities of corporations and

municipalities. A stock exchange sells and buys stocks, shares, and other such securities. In addition, the stock

exchange sometimes buys and sells certificates representing commodities of trade.

The system “Secure Stock Exchange System using Web Services” consists of 3 modules

1. A ‘Stock Markets and Investments’ page functionalities are

a. Stock Exchange Listing

b. Stock Options & Analysis

c. Stock Market Crash

d. Selling Stock Certificates

e. Stock Market Forecasts

2. A ‘Stock Options’ page contains different types of Stocks

a. Stock Option Valuation

b. Restricted Stock Options

3. A ‘Related Information’ page functionalities are

a. Day Trading Stocks

b. Stock Quotes & Stock Ticker

c. Stock Charts

d. Share Portfolio Management

See also for authentic understanding, click the https://stocksandsecurities.adityabirlacapital.com;

https://www.nseindia.com; https://www.jpx.co.jp/english; https://www.mstock.com and so on. Each student has to

refer any one of the web sites stated above.

18. COUNTRY CARGO AND EXPRESS COURIERS SYSTEM

Build a project country cargo and express couriers system to deal with the queries of manger. How much more time it

will take to reach the place, and whether received in original state. Queries among the officers regarding handling etc.

User satisfaction guest book where user should put some notes about service and other suggestions. User complaint

registers to help us get better feedback for our failures as a hospitable interface. Providing an interactive interface for

the user query for online status of the packets booked and delivered.

Modules:

1. A ‘LOGIN MASTER’ page is the specific module, which only has to deal with the updating of the database. Two

types of user can login administrator and the employee. It checks for a valid candidate when the user enters his

user id password and link to the correct page and link to the registration page. It is divided into following

functions.

a. USER ID CHECKER: As user id rules the system for updating (control panel). So his uniqueness and

type of his user id know a person whether he is master or one of the employee. As it is to provide the

viable candidate system, so the user id is being validated with password in different cases to validate the

genuinely of the candidate.

b. THE LOGIN STATUS MASTER: This module keeps the status of who and when logged in and for

which purpose and for how much time.

2. A ‘REGISTRATION MASTER’ page as this module is only accessible through administrator password.

 This modules deal with the different state of registration as-

a. Registration form display

243 | P a g e

b. Client’s does validation being handles by validation master

c. Unique user id checker (checks that the user id being entered by the candidate is unique or no)

d. Auto user id generator (user id field by taking the email id of the user if it is unique or suggest by

combining it will some number).

3. A ‘COURIER STATUS NOTIFICATION MASTER’ module handles the query of customer and displays the

result according to that customer is asked to enter the booked id in the specified input area. On the basis of

input the detail regarding where material exactly is shown.

 This module contains the following sub modules-

a. QUERY HANDLER: This module handles to and from the courier and cargo differentiation

 master searches the data in the database, which through different conversion through

 numbers of tables shows the result regarding where exactly the cargo is?

 The booking id is first searched into the courier booked table. Each booking id has a unique number associated

with the different offices and also with the courier.

 On the basis of that booking id, matched with the lot id, and then with the medium and after that medium halted at

which station. These statuses are shown.

4. A ‘DELIVERY STATUS NOTIFICATION’ page module deals with the delivery status whether the following

courier has been delivered to the destination or not, how much time it will take to reach the destination. It has

following sub modules-

a. DISTANCE CALCULATOR: It takes the data from the route table that specifies distance

 between the current city (the city through which tile courier is passing and the destination).

b. TIME CALCULATOR: An average time is calculated on the basis of the average time taken to

 reach the two adjoining city subsequently to the destination.

c. DELEVERED STATUS: It checks the current status if the current status of the courier gives the

 destination address and after taking the received detail. It display whether the courier is on

 its way or delivered successfully.

5. A ‘BOOKING DETAILS FOR CARGO’ page for cargo booked, source office, destination office,

 container, truck detail, date dispatched etc regarding booking of new courier with a unique id.

 It includes the following sub modules-

a. CARGO STATUS : This specially deals with the updating at intermediate office about the truck

 number that passed through office.

b. LOADING UNLOADING DETAILE :This deals with the loading and unloading cargo from one

 truck to another truck or one container to another container and other entries to keep the

 site working.

6. A ‘CUSTOMER QUERY HANDLER MASTER’ module specially deals with the handling of query of the

customer. This module has following sub modules –

a. CUSTOMER QUERY HANDLING : This module generates a input form through which customer

 can directly interact with tile intermediate office where there courier & cargo is! Through

 different function and tables.

b. CUSTOMER COMPLAINT REGISTER : Customer can directly enter the complaint regarding end

 office, and the response is sending through the head office. This complaint is only viewable

 through administrator account.

7. A ‘CARGO STATUS NOTIFICATION MARKER’ page modules handles the query of customer and

 display the result according to that customer is asked to enter the booked id in the specified input

 area. On the basis of input the detail regarding where there material exactly is shown.

 This modules contains the following sub modules-

a. QUERY HANDLER : This modules handles the query of the customer searches the data in the

 database, through number of tables shows the result regarding where exactly the cargo is?

 The booking id is first searched in to the cargo booked table. Each booking id has unique

 number associated with the different offices and also with the cargo. On the basis that

 booking id, matched with the container, and then with the truck, and after that true halted at

 which station. The status is shown.

8. A ‘DELIVERY STATUS NOTIFICATION SYSTEM FOR CARGO’ system deals with the delivery status

 whether the following cargo has been delivered to the destination or not or how much time it will

 take to reach the destination. It has following sub modules-

a. DISTANCE CALCULATOR: It takes the data from the route table that specifies distance

 between the places then calculates the distance between the current cargo (the city through

 which the cargo is passing and the destination).

244 | P a g e

b. TIME CALCULATOR: An average time is calculated on the basis of the average time taken to

 reach the two adjoining city subsequently to the destination average truck halt time and a

 time in day returned.

c. DELEVERED STATUS: It checks the current status if the current status of the cargo gives the

 destination address and after taking the received detail. it display whether the cargo is

 delivered successfully or not.

See also for authentic understanding, click the https://worldwideexpresscouriers.com;

https://www.vxpress.in; https://www.tciexpress.in; https://www.bluedart.com and so on.

Each student has to refer any one of the web sites stated above.

V. TEXT BOOKS:

1. Reto Meier, Professional Android 4 Application Development, Wile Publication, 1st Edition, 2012.

VI. REFERENCE BOOKS:

1. Bill Phillips and Chris Stewart, Kristin Marsicano Android Programming, The Big Nerd Ranch Guide,

O’Reilly, 3rd Edition, 2017.

2. Dawn Griffiths, David Griffiths, Head First Android Development: A Learner's Guide to Building Android Apps

with Kotlin, Third Edition, O’Reilly, 3rd Edition, 2021.

3. Antonio Leiva, Kotlin for Android Developers: Learn Kotlin while developing an Android App, CreateSpace

Independent Publishing, 1st Edition, 2016.

VII. WEB REFERENCES:

1. https://www.javatpoint.com/android-tutorial

2. https://www.tutorialspoint.com/android/index.htm

3. https://docs.flutter.dev/

4. https://developer.android.com/courses/android-basics-compose/course

5. https://developer.android.com/guide

VIII. MATERIALS ONLINE

1. Course Template

2. Lab Manual

245 | P a g e

COURSE CONTENT

GENDER SENSITIZATION

II Semester: AE / ME / CE / ECE / EEE / CSE / CSE (CS) / CSE(DS) / CSE (AI & ML) / IT

Course Code Category Hours / Week Credits Maximum Marks

AHSD10 Mandatory
L T P C CIA SEE Total

- - - - - - -

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: Nil Total Classes: Nil

Prerequisite:

I. COURSE OVERVIEW:

The course aims at raising awareness of gender equality among students from sociological, cultural, psychological,

legal and economical perspectives, thereby empowering them to communicate better in a cross-cultural work

ambience. At the end of this course the students expose to better egalitarian interactions between men and women and

to enable them see diversity and inclusiveness as assets in a globalized scenario.

II. COURSES OBJECTIVES:

The students will try to learn

I. The basic gender concepts and their application to the long- term implementation of programming and

initiatives.

II. The gender roles, expectations and issues and their impact on as the community’s day-to-day life.

III. The more egalitarian interactions between men and women.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO 1 Develop a better understanding of important issues related to gender in contemporary India.

CO 2 Sensitize to the basic dimensions of the biological, sociological, psychological and legal

aspects of gender.

CO 3 Acquire insight into the gendered division of labor and its relation to politics and economics.

CO 4 Attain a finer grasp of how gender discrimination works in our society and how to counter it.

CO 5 Men, women and professionals will be better equipped to work and live together as equals.

CO 6 Know the new laws that provide protection and relief to women.

IV. SYLLABUS:

MODULE–I: UNDERSTANDING GENDER

Introduction: definition of gender, basic gender concepts and terminology, exploring attitudes towards gender,

construction of gender. Socialization: making women, making men, preparing for womanhood. growing up male,

first lessons in caste.

MODULE – II: GENDER ROLES AND RELATIONS

Two or many; struggles with discrimination; Gender roles and relations: types of gender roles, gender roles and

relationships matrix, missing women, sex selection and its consequences, declining sex ratio, demographic

consequences; Gender Spectrum: Beyond the Binary.

MODULE-III: GENDER AND LABOUR

Division and valuation of labour; Housework: the invisible labor, my mother doesn’t work. Share the load work:

its politics and economics, fact and fiction. unrecognized and unaccounted work; gender development issues

gender, governance and sustainable development; gender and human rights; gender and mainstreaming.

MODULE–IV: GENDER AND BASED VIOLENCE

The concept of violence; types of gender; based violence, gender, based violence from a human Rights

perspective, Sexual harassment: say no sexual harassment, not eve-teasing-, coping with everyday harassment,

246 | P a g e

further reading, chupulu. Domestic violence: speaking out is home a safe place, when women unite (Film).

rebuilding lives, thinking about sexual violence blaming the victim, i fought for my Life.

MODULE–V: GENDER AND CULTURE

Gender and film; gender and electronic media; gender and advertisement; gender and popular, literature, Gender

development issues, gender issues, gender sensitive language, gender and popular literature. Just relationships:

being together as equals; Mary kom and onler, love and acid just do not mix, love letters, mothers and fathers,

Rosa Parks, the brave heart.

V. TEXT BOOKS:

1. A. Suneetha, Uma Bhrugubanda, DuggiralaVasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu

Shyamala, Deepa Sreenivas and Susie Tharu The Textbook, Towards a World of Equal: A Bilingual Textbook on

Gender, published by Telugu Academy, Telangana Government, 1st Edition, 2015.

VI. REFERENCE BOOKS:

1. Kadambari V, Gender Studies: A Primer. Rajiv Gandhi National Institute of Youth Development,

Sriperumbudur. 1st Edition, 2009.

2. C. Rajya Lakshmi Kalyani, D.S. Vittal, A. Kanaka Lakshmi, P. Chandrakala, B. Lavanya., Gender

Sensitization, Himalaya Publishing House. 1st Edition, 2017.

VII.ELECTRONICSRESOURCES:

1. https://en.unesco.org/women-make-the-news-2017/resources

2. http://ncw.nic.in/sites/default/files/Booklet-%20Gender%20Sensitization_0.pdf

247 | P a g e

COURSE CONTENT

COMPUTER SYSTEM ARCHITECTURE

III Semester: CSE / IT / CSIT / CSE (AI&ML) / CSE (DS) / CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks

AECD04 Core
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisites: There are no prerequisites to take this course

I. COURSE OVERVIEW:

This course is designed to provide students with a deep understanding of the fundamental principles that govern the

design and operation of computer systems. The Course covers the organization of computer systems, memory

management, I/O management, and multiprocessor systems. The course forms the basis for advanced studies and

research in areas such as computer engineering, and related disciplines.

II. COURSE OBJECTIVES:

The students will try to learn:

I. The concepts of register transfer logic and arithmetic operations, instruction format, and instruction cycle.

II. The basic components of computer systems, functionality, and interactions with the components

III. Memory hierarchy, memory management, and I/O management.

IV. Pipelining and Multiprocessor techniques for the improvement of efficiency

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO1 Demonstrate a thorough understanding of the basic concepts and principles of computer system

architecture.

CO2 Analyze different types of instruction sets and addressing modes.

CO3 Evaluate memory management techniques such as paging, segmentation, and virtual memory.

CO4

Compare different I/O techniques, including programmed I/O, interrupt driven I/O, and direct

memory access (DMA)

CO5 Explore the implications of parallel processing and apply concepts of pipelining and parallelism to

enhance system performance.

IV. COURSE CONTENT:

MODULE – I: REGISTER TRANSFER AND MICROOPERATIONS (10)

Register transfer, Bus, and memory transfers, Arithmetic microoperations, Logic microoperations, Shift

microoperations, and Arithmetic logic shift unit. Computer arithmetic: Addition and subtraction, floating point

arithmetic operations, decimal arithmetic unit.

MODULE – II: ORGANIZATION OF A COMPUTER (09)

Instruction codes, Computer registers, Computer instructions, Timing and control, Instruction cycle, Program

Input-Output and Interrupt. Instruction formats, Addressing modes, Data Transfer and Manipulation, Program

Control, RISC.

MODULE – III: MICROPROGRAMMED CONTROL AND INPUT-OUTPUT ORGANIZATION (10)

Micro Programmed Control: Control memory, Address sequencing, Design of control unit, Hardwired control,

Micro programmed control.

Input-Output Organization: Peripheral devices, Input-Output interface, Modes of transfer, Priority interrupt –

Daisy chaining priority, Parallel priority interrupt, Priority encoder; Direct Memory Access, Input-Output

Processor – CPU-IOP communication; PCI Express - PCI physical and logical architecture.

248 | P a g e

MODULE - IV: MEMORY ORGANIZATION (09)

Memory organization: Memory hierarchy, main memory, auxiliary memory, associative memory, cache

memory, virtual memory; Semiconductor RAMs – Internal organization, Static memories, Dynamic RAMs,

Synchronous and Asynchronous DRAMs, Structure of larger memories; Read-only memories, Cache memories

– Mapping functions; Nonvolatile Solid-State Memory Technologies, Solid state drives.

MODULE – V: MULTIPROCESSORS (09)

Pipeline and Vector Processing: Parallel processing, Pipelining, Instruction pipeline, Vector processing, Array

processors. Multiprocessors: Characteristics of multiprocessors, Interconnection structures, Inter-processor

arbitration. Multicore Computers: Hardware performance issues, Software performance issues, Multicore

organization, Intel Core i7-990X.

V. TEXTBOOKS:

1. M. Morris Mano, “Computer Systems Architecture”, Pearson, 3rd edition, 2015.

2. Patterson, Hennessy, “Computer Organization and Design: The Hardware/Software Interface”, Morgan

Kaufmann, 5th edition, 2013.

VI. REFERENCE BOOKS:

1. John. P. Hayes, “Computer System Architecture”, McGraw-Hill, 3rd edition, 1998.

2. Carl Hamacher, Zvonko G Vranesic, Safwat G Zaky, “Computer Organization”, McGraw-Hill, 5th edition,

2002.

3. William Stallings, “Computer Organization and Architecture”, Pearson Edition, 8th edition, 2010.

VII. WEB REFERENCES:

1. https://www.tutorialspoint.com/computer_logical_organization/

2. https://www.courseera.org/learn/comparch

3. https://www.cssimplified.com/computer-organization-and-assembly-language-programming

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Definition and terminology

4. Tech-talk topics

5. Assignments

6. Model question paper - I

7. Model question paper - II

8. Lecture notes

9. Early learning readiness videos (ELRV)

10. Power point presentations

249 | P a g e

COURSE CONTENT

 OPERATING SYSTEMS

III Semester: CSE / CSE (CS) / CSE(DS) / CSE (AI & ML) / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSD09 Core
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Python Programming

I. COURSE OVERVIEW:

Operating system course gives you skills and ways to think about common services for computer programs.

It is designed to provide an in-depth critique of the problems of resource management, scheduling, concurrency,

synchronization, memory management, file management, peripheral management, protection, and security. It deals

with the transfer of programs in and out of memory; and organizes processing time between programs and users.

Learned knowledge will be implemented in the design and development of hybrid operating systems, command

control systems, and real-time environments.

II. COURSE OBJECTIVES:

The students will try to learn

I. The principles of operating systems, services and functionalities with its evolution.

II. The structures, functions and components of modern operating systems
III. The conventional hardware at different OS abstraction levels.
IV. The essential skills to examine issues and methods employed in design of operating systems with

identification of various functionalities.

III. COURSE OUTCOMES:

At the end of the course, students should be able to:

CO1 Demonstrate different architectures used in the design of modern operating systems.

CO2
Solve problems related to process scheduling, synchronization, and deadlock handling in uniprocessor

and multi-processing systems.

CO3 Implement memory allocation algorithms for effective utilization of resources.

CO4 Select various page replacement algorithms applied for the allocation of frames...

CO5
Analyze different file allocation methods and disk scheduling algorithms applied for efficient utilization

of storage.

CO6 Outline mechanisms used in the protection of resources in real-time environment

IV. COURSE CONTENT:

MODULE – I: INTRODUCTION (10)

Operating systems objectives and functions: Computer system architecture, operating systems structure, operating

systems operations; Evolution of operating systems: Simple batch, multi programmed, time shared, personal

computer, parallel distributed systems, real time systems, special purpose systems, operating system services, user

operating systems interface; Systems calls: Types of systems calls, system programs, protection and security,

operating system design and implementation, operating systems structure, virtual machines.

MODULE – II: PROCESS AND CPU SCHEDULING, PROCESS COORDINATION (09)

Process concepts: The process, process state, process control block, threads; Process scheduling: Scheduling queues,

schedulers, context switch, preemptive scheduling, dispatcher, scheduling criteria, scheduling algorithms, multiple

processor scheduling; Real time scheduling; Thread scheduling; Case studies Linux windows; Process

synchronization, the critical section problem; Peterson‘s solution, synchronization hardware, semaphores and classic

problems of synchronization, monitors

250 | P a g e

MODULE – III: MEMORY MANAGEMENT AND VIRTUAL MEMORY (10)

Logical and physical address space: Swapping, contiguous memory allocation, paging, structure of page table.

Segmentation: Segmentation with paging, virtual memory, demand paging; Performance of demand paging:

Page replacement, page replacement algorithms, allocation of frames, thrashing.

MODULE – IV: FILE SYSTEM INTERFACE, MASS-STORAGE STRUCTURE (9)

The concept of a file, access methods, directory structure, file system mounting, file sharing, protection, file system

structure, file system implementation, allocation methods, free space management, directory implementation,

efficiency and performance; Overview of mass storage structure: Disk structure, disk attachment, disk scheduling,

disk management, swap space management; Dynamic memory allocation: Basic concepts; Library functions.

MODULE –V: DEADLOCKS, PROTECTION (10)

System Model: Deadlock characterization, methods of handling deadlocks, deadlock prevention, dead lock

avoidance, dead lock detection and recovery form deadlock system protection, goals of protection, principles of

protection, domain of protection, access matrix, implementation of access matrix, access control, revocation of access

rights, capability-based systems, language-based protection.

V. TEXT BOOKS:

1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, “Operating System Principles”, Wiley Student Edition, 8 th

edition, 2010.

2. William Stallings, “Operating System- Internals and Design Principles”, Pearson Education, 6th edition, 2002.

VI. REFERENCE BOOKS:

1. Andrew S Tanenbaum, “Modern Operating Systems”, PHI, 3rd Edition, 2007.

2. D. M. Dhamdhere, “Operating Systems a Concept Based Approach”, Tata McGraw-Hill, 2nd Edition, 2006.

VII. ELECTRONICS RESOURCES:

1. www.smartzworld.com/notes/operatingsystems
2. www.scoopworld.in

3. www.sxecw.edu.in

4. www.technofest2u.blogspot.com

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech-talk topics

4. Open-ended experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I

8. Model question paper – II

9. Lecture notes

10. PowerPoint presentation

11. E-Learning Readiness Videos (ELRV)

http://www.smartzworld.com/notes/operatingsystems
http://www.scoopworld.in/
http://www.sxecw.edu.in/
http://www.technofest2u.blogspot.com/

251 | P a g e

COURSE CONTENT

DATA STRUCTURES

III Semester: AE / ME / CE / CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT / ECE / EEE

Course Code Category Hours / Week Credits Maximum Marks

ACSD08

Core
L T P C CIA SEE Total

3 - - 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Essentials of Problem Solving

I. COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics

covered include managing complexity, analysis, static data structures, dynamic data structures and hashing

mechanisms. The main objective of the course is to teach the students how to select and design data structures and

algorithms that are appropriate for problems that they might encounter in real life. This course reaches to student

by power point presentations, lecture notes, and lab which involve the problem solving in mathematical and

engineering areas.

II. COURSES OBJECTIVES:

The students will try to learn

I. The skills needed to understand and analyze performance trade-offs of different algorithms / implementations
and asymptotic analysis of their running time and memory usage.

II. The basic abstract data types (ADT) and associated algorithms: stacks, queues,
lists, tree, graphs, hashing and sorting, selection and searching.

III. The fundamentals of how to store, retrieve, and process data efficiently.
IV. The implementing these data structures and algorithms in Python.
V. The essential for future programming and software engineering courses.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO 1 Interpret the complexity of the algorithm using the asymptotic notations.

CO 2 Select the appropriate searching and sorting technique for a given problem

CO 3 Construct programs on performing operations on linear and nonlinear data structures for

organization of a data

CO 4 Make use of linear data structures and nonlinear data structures solving real-time applications.

CO 5 Describe hashing techniques and collision resolution methods for accessing data with respect to

performance
CO 6 Compare various types of data structures; in terms of implementation, operations and performance.

IV. COURSE CONTENT:

MODULE – I: INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING (09)

Basic concepts: Introduction to data structures, classification of data structures, operations on data structures,

Algorithm Specification, Recursive algorithms, Data Abstraction, Performance analysis- time complexity and

space complexity, Introduction to Linear and Non Linear data structures,Searching techniques: Linear and

Binary search, Uniform Binary Search, Interpolation Search, Fibonacci Search; Sorting techniques: Bubble,

Selection, Insertion, and Quick, Merge, Radix and Shell Sort and comparison of sorting algorithms.

MODULE – II: LINEAR DATA STRUCTURES (09)

Stacks: Stack ADT, definition and operations, Implementations of stacks using array, applications of stacks,

Arithmetic expression conversion and evaluation; Queues: Primitive operations; Implementation of queues using

Arrays, applications of linear queue, circular queue and double ended queue (deque).

252 | P a g e

MODULE – III: LINKED LISTS (09)

Linked lists: Introduction, singly linked list, representation of a linked list in memory, operations on a single

linked list; Applications of linked lists: Polynomial representation and sparse matrix manipulation.

Types of linked lists: Circular linked lists, doubly linked lists; Linked list representation and operations of Stack,

linked list representation and operations of queue.

MODULE – IV: NON LINEAR DATA STRUCTURES (09)

Trees: Basic concept, binary tree, binary tree representation, array and linked representations, binary tree

traversal, binary tree variants, threaded binary trees, application of trees, Graphs: Basic concept, graph

terminology, Graph Representations

- Adjacency matrix, Adjacency lists, graph implementation, Graph traversals – BFS, DFS, Application of

graphs, Minimum spanning trees – Prims and Kruskal algorithms.

MODULE – V: BINARY TREES AND HASHING (09)

Binary search trees: Binary search trees, properties and operations; Balanced search trees: AVL trees;

Introduction to M- Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash functions,

collisions, applications of hashing.

V. TEXT BOOKS:

1. Rance D. Necaise, “Data Structures and Algorithms using Python”, Wiley Student Edition.

2. Benjamin Baka, David Julian, “Python Data Structures and Algorithms”, Packt Publishers, 2017.

VI. REFERENCE BOOKS:

1. S. Lipschutz, “Data Structures”, Tata McGraw Hill Education, 1st Edition, 2008.

2. D. Samanta, “Classic Data Structures”, PHI Learning, 2nd Edition, 2004.

VII. ELECTRONICS RESOURCES:

1. https://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm

2. https://www.codechef.com/certification/data-structures-and-algorithms/prepare

3. https://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html

4. https://online-learning.harvard.edu/course/data-structures-and-algorithms

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Definition and terminology

4. Tech-talk topics

5. Assignments

6. Model question paper - I

7. Model question paper - II
8. Lecture notes

9. Early learning readiness videos (ELRV)

10. Power point presentations

http://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm
http://www.codechef.com/certification/data-structures-and-algorithms/prepare
http://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html

253 | P a g e

COURSE CONTENT

PROBABILITY AND STATISTICS

III Semester: AE / ME / CE / CSE / CSE(AI&ML) / CSE(DS) / CSE(CS) / IT

Course Code Category Hours/Week Credits Maximum Marks

AHSD11 Foundation
L T P C CIA SEE Total

3 1 - 4 40 60 100

Contact Classes: 48 Tutorial Classes: 16 Practical Classes: Nil Total Classes: 64

Prerequisite:

I. COURSE OVERVIEW:

Probability theory is the branch of mathematics that deals with modelling uncertainty. The course includes: Baye’s

theorem, random variables, probability distributions, hypothesis testing, confidence interval and linear regression.

The use of probability models and statistical methods is for analyzing data, designing, manufacturing a product

and the observed class frequencies for engineering and sciences.

II. COURSE OBJECTIVES:

 The students will try to learn:

 I The theory of random variables, basic random variate distributions and their applications.

II The methods and techniques for quantifying the degree of closeness among two or more variables

and the concept of linear regression analysis.

III The estimation statistics and hypothesis testing which play a vital role in the assessment of the

quality of the materials, products and ensuring the standards of the engineering process.

IV The statistical tools which are essential for translating an engineering problem into probability

model.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO 1 Explain the probability elementary theorems on probability conditional, multiplication, Baye’s

theorem under randomized probabilistic conditions.

CO 2 Apply the role of random variables and types of random variables, expected values of the discrete

and continuous random variables under randomized probabilistic conditions

CO 3 Apply the parameters of random variable Probability distributions such as Binomial, Poisson by

using their probability functions,

CO 4 Interpret the parameters of random variate Probability distributions such as Binomial, Poisson and

Normal distribution by using their probability functions, expectation and variance

CO 5 Make Use of estimation statistics in computing confidence intervals by Correlation Analysis,

Regression analysis

CO 6 Identify the role of statistical hypotheses, types of errors, confidence intervals, the tests of

hypotheses for large and small sample, in making decisions over statistical claims in hypothesis

testing.

IV. COURSE CONTENT:

MODULE-I: PROBABILITY (10)

Probability, axiomatic approach, elementary theorems on probability, conditional probability, multiplication theorem,

Bayes theorem (without proof).

MODULE-II: RANDOM VARIABLES (09)

Random variables: Discrete and continuous random variables, probability distribution, probability mass function and

probability density function.

MODULE-III: PROBABILITY DISTRIBUTION (10)

Binomial distribution: Mean and variance of Binomial distribution, Poisson distribution: Poisson distribution as a

limiting case of Binomial distribution, mean and variance of Poisson distribution.

254 | P a g e

Normal distribution: mean, variance, mode, median of Normal distribution.

MODULE-IV: CORRELATION AND REGRESSION (09)

Correlation- Karl Pearson’s coefficient of correlation, rank correlation, repeated ranks. Regression: Lines of regression,

regression coefficient, angle between two regression lines.

MODULE-V: TEST OF HYPOTHESIS (10)

Population, Sample, standard error; Test of significance: Null hypothesis, alternate hypothesis. Types of errors, level

of significance.

Large sample tests: Test of hypothesis for single mean, difference between means, single proportion and difference

between proportions. Small sample tests: Student’s t-distribution, F-distribution and Chi-square distribution.

V. TEXT BOOKS:

1. Erwin Kreyszig, “Advanced Engineering Mathematics”, John Wiley and Sons Publishers, 9th edition, 2014.

2. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.

VI. REFERENCE BOOKS:

1. S. C. Gupta, V. K. Kapoor, “Fundamentals of Mathematical Statistics”, S. Chand and Co., 10th edition, 2000.

2. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

3. Richard Arnold Johnson, Irwin Miller and John E. Freund, “Probability and Statistics for Engineers”, Prentice

Hall, 8th edition, 2013.

VII. ELECTRONIC RESOURCES:

1. http://e4uhu.com/down/Applied/9th

2. https://toaz.info/32fa2f50-8490-42cf-9e6a-f50cb7ea9a5

3. http://www.mathworld.wolfram.com

VIII. MATERIAL ONLINE:

1. Course template

2. Tech-talk topics

3. Assignments

4. Open end experiments

5. Definition and terminology

6. Tutorial question bank

7. Model question paper – I

8. Model question paper – II

9. Lecture notes

10. Early lecture readiness videos (ELRV)

11. Power point presentations

https://toaz.info/32fa2f50-8490-42cf-9e6a-f50cb7ea9a5
http://www.mathworld.wolfram.com/

255 | P a g e

COURSE CONTENT

LOGIC PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

III Semester: CSE (AI&ML)

Course Code Category Hours / Week Credits Maximum Marks

ACAD01 Core
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: NIL Practical Classes: NIL Total Classes: 48

Prerequisite: Python Programming

I. COURSE OVERVIEW:

Artificial intelligence (AI) is the simulation that examines to achieve intelligent human behaviors on machines

especially on a computer system. This course provides the ideas, methods, and problem-solving paradigms that

helps in providing solutions to real-world problems without human effort. Furthermore, it is a mathematical

language that enables knowledge to be expressed precisely and unambiguously, making it perfect for usage in

AI systems. AI applications are becoming increasingly common in a wide variety of applications including

machine language, deep learning, natural language processing, computer vision, and robotics.

II. COURSES OBJECTIVES:

The students will try to learn:

I Knowledge representation in solving AI problems and different search strategies and learn different search

strategies.

II The characteristics of Intelligent agents and the way the AI agents plan and act in the real world.

III Handling uncertainty, reasoning the complex problems and models behind the AI applications.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Explain the ability to design a plan for the real-world problems and mapping it to the digital world.

CO2 Choose appropriate problem-solving methods and optimize the search results.

CO3 Develop agents through knowledge representation for any given AI based problem using logic

programming.
CO4 Discover how planning helps to automate complicated tasks, manage complex procedures, and

optimize them for better results.
CO5 Examine the uncertainty in designing AI systems and propose methods for reasoning.

CO6 Model AI methods to identify problems that are amenably solved through their applications.

IV. COURSE SYLLABUS:

MODULE – 1: INTRODUCTION (09)

Introduction - Definition - Future of Artificial Intelligence - Characteristics of Intelligent Agents - Typical Intelligent

Agents - Problem Solving Approach to Typical AI problems.

MODULE – 2: PRODUCTION SYSTEMS (09)

Defining the Problem as a State Space Search, Production Systems, Problem Characteristics, Production System

Characteristics, Issues in the Design of Search Programs.

MODULE – 3: PROBLEM-SOLVING METHODS AND KNOWLEDGE REPRESENTATION (10)

Problem solving Methods - Search Strategies - Uninformed - Informed - Heuristics - Local Search Algorithms and

Optimization Problems - Searching with Partial Observations - Backtracking Search - Performance of Search

Algorithms.

Using Predicate Logic: Representing Simple Facts in Logic, Representing Instance and ISA Relationships,

Computable Functions and Predicates, Properties of Wff, Clausal Forms, Conversion to clausal forms, Resolution.

256 | P a g e

MODULE – 4: PLANNING AND LEARNING (10)

Planning with State-Space Search - Partial-Order Planning - Planning Graphs - Planning and Acting in the Real World

- Plan Generation Systems.

Learning – Learning and its types – Discovery – Clustering – Analogy - Neural Net and Genetic Learning -

Reinforcement Learning.

MODULE – 5: UNCERTAIN KNOWLEDGE AND REASONING (10)

Symbolic Reasoning Under Uncertainty: Introduction to Non monotonic Reasoning - Logics for Non monotonic

Reasoning - Implementation Issues - Augmenting a Problem-solver.

Uncertainty - review of probability - probabilistic Reasoning - Bayesian networks - inferences in Bayesian networks -

Temporal models - Hidden Markov models.

V. TEXT BOOKS:

1. S. Russel, P. Norvig, “Artificial Intelligence – A Modern Approach”, Third Edition, Pearson Education, 2015.

VI. REFERENCE BOOKS:

1. Kevin Night, Elaine Rich, Nair B., “Artificial Intelligence (SIE)”, Third Edition, McGraw Hill, 2017.

2. Dan W. Patterson, “Introduction to AI and ES”, Pearson Education, 2007.

VII. ELECTRONICS RESOURCES:

1. Department of Computer Science, University of California, Berkeley,

http://www.youtube.com/playlist?list=PLD52D2B739E4D1C5F

2. NPTEL: Artificial Intelligence, https://nptel.ac.in/courses/106105077/

3. http://www.udacity.com/ 4. http://www.library.thinkquest.org/2705/

4. http://www.ai.eecs.umich.edu/

VIII. MATERIALS ONLINE

1. Course Template

2. Tutorial Question Bank

3. Definition and Terminology

4. Tech-Talk topics

5. Assignments

6. Model question paper - I

7. Model question paper - II

8. Lecture notes

9. Early learning readiness videos (ELRV)

10. PowerPoint Presentations

http://www.ai.eecs.umich.edu/

257 | P a g e

COURSE CONTENT

DATA STRUCTURES LABORATORY

III Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSD11

Core
L T P C CIA SEE Total

- - 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Essentials of Problem Solving

I. COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics

covered include managing complexity, analysis, static data structures, dynamic data structures and hashing

mechanisms. The main objective of the course is to teach the students how to select and design data structures and

algorithms that are appropriate for problems that they might encounter in real life. This course reaches to student

by power point presentations, lecture notes, and lab which involve the problem solving in mathematical and

engineering areas.

II. COURSES OBJECTIVES:

The students will try to learn

I. To provide students with skills needed to understand and analyze performance trade-offs of different

algorithms / implementations and asymptotic analysis of their running time and memory usage.

II. To provide knowledge of basic abstract data types (ADT) and associated algorithms: stacks, queues, lists,

tree, graphs, hashing and sorting, selection and searching.

III. The fundamentals of how to store, retrieve, and process data efficiently.

IV. To provide practice by specifying and implementing these data structures and algorithms in Python.

V. Understand essential for future programming and software engineering courses.

III. COURSE OUTCOMES:

At the end of the course students should be able to:
CO 1 Interpret the complexity of algorithm using the asymptotic notations.

CO 2 Select appropriate searching and sorting technique for a given problem.

CO 3 Construct programs on performing operations on linear and nonlinear data structures for organization of a

data.

CO 4 Make use of linear data structures and nonlinear data structures solving real time applications.

CO 5 Describe hashing techniques and collision resolution methods for efficiently accessing data with respect to

performance.
CO 6 Compare various types of data structures; in terms of implementation, operations and performance.

258 | P a g e

IV. LIST OF EXPERIMENTS:

DATA STRUCTURES LABORATORY COURSE CONTENT

S No. Topic Name Page No.

1. Getting Started Exercises

a. Sum of last digits of two given numbers

b. Is N an exact multiple of M?

c. Combine Strings

d. Even or Odd

e. Second last digit of a given number

f. Alternate String Combiner

g. Padovan Sequence

h. Leaders in an array

i. Find the Value of a Number Raised to its Reverse

j. Mean of Array using Recursion

5

2. Searching

a. Linear / Sequential Search

b. Binary Search

c. Uniform Binary Search

d. Interpolation Search

e. Fibonacci Search

12

3. Sorting

a. Bubble Sorting

b. Selection Sort

c. Insertion Sort

17

4. Divide and Conquer

a. Quick Sort

b. Merge Sort

c. Heap Sort

d. Radix Sort

e. Shell Sort

21

5. Stack

a. Implementation of Stack

b. Balanced Parenthesis Checking

c. Evaluation of Postfix Expression

d. Infix to Postfix Expression Conversion

e. Reverse a Stack

28

6. Queue

a. Linear Queue

b. Stack using Queues

c. Queue using Stacks

d. Circular Queue

e. Deque (Doubly Ended Queue)

33

7. Linked List

a. Singly Linked List

b. Linked List Cycle

c. Remove Linked List Elements

d. Reverse Linked List

e. Palindrome Linked List

f. Middle of the Linked List

39

259 | P a g e

g. Convert Binary Number in a Linked List to Integer

8. Circular Single Linked List and Doubly Linked List

a. Circular Linked List

b. Doubly Linked List

c. Sorted Merge of Two Sorted Doubly Circular Linked Lists

d. Delete all occurrences of a given key in a Doubly Linked List

e. Delete a Doubly Linked List Node at a Given Position

46

9. Trees

a. Tree Creation and Basic Tree Terminologies

b. Binary Tree Traversal Techniques

c. Insertion in a Binary Tree in Level Order

d. Finding the Maximum Height or Depth of a Binary Tree

e. Deletion in a Binary Tree

53

10. Binary Search Tree (BST)

a. Searching in Binary Search Tree

b. Find the node with Minimum Value in a BST

c. Check if a Binary Tree is BST or not

d. Second Largest Element in BST

e. Insertion in Binary Search Tree (BST)

60

11. AVL Tree

a. Insertion in an AVL Tree

b. Deletion in an AVL Tree

c. Count Greater Nodes in AVL Tree

d. Minimum Number of Nodes in an AVL Tree with given Height

68

12. Graph Traversal

a. Breadth First Search

b. Depth First Search

c. Best First Search (Informed Search)

d. Breadth First Traversal of a Graph

e. Depth First Search (DFS) for Disconnected Graph

73

13. Minimum Spanning Tree (MST)

a. Kruskal’s Algorithm

b. Prim’s Algorithm

c. Total Number of Spanning Trees in a Graph

d. Minimum Product Spanning Tree

80

14. Final Notes 90

260 | P a g e

IV. COURSE CONTENT:

EXERCISES FOR DATA STRUCTURES LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory

practice sessions.

1. Getting Started Exercises

1.1 Sum of last digits of two given numbers

Rohit wants to add the last digits of two given numbers. For example, If the given numbers are 267 and 154,

the output should be 11.

Below is the explanation -

Last digit of the 267 is 7

Last digit of the 154 is 4

Sum of 7 and 4 = 11

Write a program to help Rohit achieve this for any given two numbers.

The prototype of the method should be -

int addLastDigits(int input1, int input2);

where input1 and input2 denote the two numbers whose last digits are to be added.

Note: The sign of the input numbers should be ignored.

if the input numbers are 267 and 154, the sum of last two digits should be 11

if the input numbers are 267 and -154, the sum of last two digits should be 11

if the input numbers are -267 and 154, the sum of last two digits should be 11

if the input numbers are -267 and -154, the sum of last two digits should be 11

Input: 267 154

Output: 11

Input: 267 -154

Output: 11

Input: -267 154

Output: 11

Input: -267 -154

Output: 11

import java.util.Scanner;

class AddLastDigitsFunction
{
 int addLastDigits(int n1, int n2)

{
 # Write code here
 }

 public static void main(String args[])
 {
 AddLastDigitsFunction obj = new AddLastDigitsFunction();
 # Write code here
 System.out.println(obj.addLastDigits(n1,n2));
 }

}

261 | P a g e

1.2 Is N an exact multiple of M?

Write a function that accepts two parameters and finds whether the first parameter is an exact multiple of

the second parameter. If the first parameter is an exact multiple of the second parameter, the function

should return 2 else it should return 1.

If either of the parameters are zero, the function should return 3.

Assumption: Within the scope of this question, assume that - the first parameter can be positive, negative

or zero the second parameter will always be >=0

Input: num1 = 10, num2 = 5

Output: 2

Input: num1 = -10, num2 = 5

Output: 2

Input: num1 = 0, num2 = 5

Output: 3

Input: num1 = 10, num2 = 3

Output: 1

public class MultipleChecker
{
 public static int checkMultiple(int num1, int num2)
 {
 # Write code here
 }

 public static void main(String[] args)
 {
 # Write code here
 }
}

1.3 Combine Strings

Given 2 strings, a and b, return a new string of the form short+long+short, with the shorter string on the

outside and the longer string in the inside. The strings will not be the same length, but they may be empty

(length 0).

If input is "hi" and "hello", then output will be "hihellohi"

Input: Enter the first string: “hi”

 Enter the second string: “hello”

Output: “hihellohi”

Input: Enter the first string: “iare”

 Enter the second string: “college”

Output: “iarecollegeiare”

public class StringCombiner
{
 public static void main(String[] args)
 {
 # Write code here
 }

 public static String combineStrings(String a, String b)
 {
 # Write code here
 }
}

1.4 Even or Odd

262 | P a g e

Write a function that accepts 6 input parameters. The first 5 input parameters are of type int. The sixth input

parameter is of type string. If the sixth parameter contains the value "even", the function is supposed to

return the count of how many of the first five input parameters are even. If the sixth parameter contains the

value "odd", the function is supposed to return the count of how many of the first five input parameters are

odd.

Example:

If the five input parameters are 12, 17, 19, 14, and 115, and the sixth parameter is "odd", the function must

return 3, because there are three odd numbers 17, 19 and 115.

If the five input parameters are 12, 17, 19, 14, and 115, and the sixth parameter is "even", the function must

return 2, because there are two even numbers 12 and 14.

Note that zero is considered an even number.

Input: num1 = 12;

 num2 = 17;

 num3 = 19;

 num4 = 14;

 num5 = 115;

 type = "odd"

Output: 3

Input: num1 = 12;

 num2 = 17;

 num3 = 19;

 num4 = 14;

 num5 = 115;

 type = "even"

Output: 2

public class NumberCounter
{
 public static int countNumbers(int num1, int num2, int num3, int num4, int num5,
String type)
 {
 # Write code here
 }

 public static void main(String[] args)
 {
 # Write code here
 }
}

1.5 Second last digit of a given number

Write a function that returns the second last digit of the given number. Second last digit is being referred to

the digit in the tens place in the given number.

Example: if the given number is 197, the second last digit is 9.

Note 1: The second last digit should be returned as a positive number. i.e. if the given number is -197, the

second last digit is 9.

Note 2: If the given number is a single digit number, then the second last digit does not exist. In such cases,

the function should return -1. i.e. if the given number is 5, the second last digit should be returned as -1.

Input: 197

Output: 9

Input: 5

Output: -1

Input: -197

Output: 9

263 | P a g e

public class SecondLastDigit
{
 public static int getSecondLastDigit(int number)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

1.6 Alternate String Combiner

Given two strings, a and b, print a new string which is made of the following combination-first character of

a, the first character of b, second character of a, second character of b and so on.

Any characters left, will go to the end of the result.

Hello,World

HWeolrllod

Input: “Hello,World”

Output: “HWeolrllod”

Input: “Iare,College”

Output: “ICaorlelege”

public class AlternateStringCombiner
{
 public static void main(String[] args)
 {
 # write code here
 }
 public static String combineStrings(String a, String b)
 {
 # write code here
 }
}

1.7 Padovan Sequence

The Padovan sequence is a sequence of numbers named after Richard Padovan, who attributed its discovery

to Dutch architect Hans van der Laan. The sequence was described by Ian Stewart in his Scientific American

column Mathematical Recreations in June 1996. The Padovan sequence is defined by the following

recurrence relation:

P(n) = P(n-2) + P(n-3)

with the initial conditions P(0) = P(1) = P(2) = 1.

In this sequence, each term is the sum of the two preceding terms, similar to the Fibonacci sequence.

However, the Padovan sequence has different initial conditions and exhibits different growth patterns.

The first few terms of the Padovan sequence are: 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, ...

Input: num = 10

Output: Padovan Sequence up to 10:

 1 1 1 2 2 3 4 5 7 9 12

Input: num = 20

Output: Padovan Sequence up to 20:

 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37 49 65 86 114 151 200
public class PadovanSequence

264 | P a g e

{
 public static int padovan(int n)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

1.8 Leaders in an array

Given an array arr of n positive integers, your task is to find all the leaders in the array. An element of the

array is considered a leader if it is greater than all the elements on its right side or if it is equal to the

maximum element on its right side. The rightmost element is always a leader.

Input: n = 6, arr[] = (16, 17, 4, 3, 5, 2}

Output: 17 5 2

Input: n = 5, arr[] = {10, 4, 2, 4, 1}

Output: 10 4 4 1

Input: n = 4, arr[] = {5, 10, 20, 40}

Output: 40

Input: n = 4, arr[] = {30, 10, 10, 5}

Output: 30 10 10 5

import java.util.ArrayList;
import java.util.List;
public class ArrayLeaders
{
 public static List<Integer> findArrayLeaders(int[] arr)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

1.9 Find the Value of a Number Raised to its Reverse

Given a number N and its reverse R. The task is to find the number obtained when the number is raised to

the power of its own reverse

Input : N = 2, R = 2

Output: 4

Explanation: Number 2 raised to the power of its reverse 2 gives 4 which gives 4 as a result after

performing modulo 109+7

Input: N = 57, R = 75

Output: 262042770

Explanation: 5775 modulo 109+7 gives us the result as 262042770

public class NumberPower
{
 public static long powerOfReverse(int N, int R)
 {
 # write code here
 }

265 | P a g e

 public static void main(String[] args)
 {
 # write code here
 }
}

1.10 Mean of Array using Recursion

Find the mean of the elements of the array.

Mean = (Sum of elements of the Array) / (Total no of elements in Array)

Input: 1 2 3 4 5

Output: 3.0

Input: 1 2 3

Output: 2.0

To find the mean using recursion assume that the problem is already solved for N-1 i.e. you have to find for

n

Sum of first N-1 elements = (Mean of N-1 elements) * (N-1)

Mean of N elements = (Sum of first N-1 elements + N-th elements) / (N)

public class ArrayMean
{
 public static double findArrayMean(int[] arr)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

Try:

1. Kth Smallest Element: Given an array arr[] and an integer k where k is smaller than the size of the array,

the task is to find the kth smallest element in the given array. It is given that all array elements are distinct.

Note: l and r denotes the starting and ending index of the array.

Input: n = 6, arr[] = {7, 10, 4, 3, 20, 15}, k = 3, l = 0, r = 5

Output: 7

Explanation: 3rd smallest element in the given array is 7.

Input: n = 5, arr[] = {7, 10, 4, 20, 15}, k = 4, l=0 r=4

Output: 15

Explanation: 4th smallest element in the given array is 15.

Your task is to complete the function kthSmallest() which takes the array arr[], integers l and r

denoting the starting and ending index of the array and an integer k as input and returns the kth

smallest element.

2. Count pairs with given sum: Given an array of N integers, and an integer K, find the number

of pairs of elements in the array whose sum is equal to K. Your task is to complete the function

getPairsCount() which takes arr[], n and k as input parameters and returns the number of pairs

that have sum K.

Input: N = 4, K = 6, arr[] = {1, 5, 7, 1}

Output: 2

Explanation: arr[0] + arr[1] = 1 + 5 = 6 and arr[1] + arr[3] = 5 + 1 = 6.

Input: N = 4, K = 2, arr[] = {1, 1, 1, 1}

Output: 6

266 | P a g e

Explanation: Each 1 will produce sum 2 with any 1.

267 | P a g e

2. Searching

2.1 Linear / Sequential Search

Linear search is defined as the searching algorithm where the list or data set is traversed from one end to

find the desired value. Given an array arr[] of n elements, write a recursive function to search a given

element x in arr[].

Linear search procedure:

1. Start from the leftmost element of arr[] and one by one compare x with each element of arr[]

2. If x matches with an element, return the index.

3. If x doesn’t match with any of the elements, return -1.

Input: arr[] = {10, 20, 80, 30, 60, 50, 110, 100, 130, 170}

 x = 110;

Output: 6

Element x is present at index 6

Input: arr[] = {10, 20, 80, 30, 60, 50, 110, 100, 130, 170}

 x = 175;

Output: -1

Element x is not present in arr[].

public class RecursiveLinearSearch
{
 public static int recursiveLinearSearch(int[] arr, int key, int index)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 # write code here
 }
}

2.2 Binary Search

Binary Search is defined as a searching algorithm used in a sorted array by repeatedly dividing the search

interval in half. The idea of binary search is to use the information that the array is sorted and reduce the

time complexity to O(log N).

https://www.geeksforgeeks.org/searching-algorithms/

268 | P a g e

Conditions for Binary Search algorithm:

1. The data structure must be sorted.

2. Access to any element of the data structure takes constant time.

Binary Search Procedure:

1. Divide the search space into two halves by finding the middle index “mid”.
2. Compare the middle element of the search space with the key.

3. If the key is found at middle element, the process is terminated.

4. If the key is not found at middle element, choose which half will be used as the next search space.

 a. If the key is smaller than the middle element, then the left side is used for next search.

 b. If the key is larger than the middle element, then the right side is used for next search.

5. This process is continued until the key is found or the total search space is exhausted.

Input: arr = [2, 5, 8, 12, 16, 23, 38, 56, 72, 91]

Output: target = 23

 Element 23 is present at index 5

public class RecursiveBinarySearch
{
 public static int recursiveBinarySearch(int[] arr, int key, int left, int right)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 # write code here
 }
}

2.3 Uniform Binary Search

Uniform Binary Search is an optimization of Binary Search algorithm when many searches are made on

same array or many arrays of same size. In normal binary search, we do arithmetic operations to find the

mid points. Here we precompute mid points and fills them in lookup table. The array look-up generally

works faster than arithmetic done (addition and shift) to find the mid-point.

269 | P a g e

Input: array = {1, 3, 5, 6, 7, 8, 9}, v=3

Output: Position of 3 in array = 2

Input: array = {1, 3, 5, 6, 7, 8, 9}, v=7

Output: Position of 7 in array = 5

The algorithm is very similar to Binary Search algorithm, the only difference is a lookup table is created for

an array and the lookup table is used to modify the index of the pointer in the array which makes the search

faster. Instead of maintaining lower and upper bound the algorithm maintains an index and the index is

modified using the lookup table.

public class RecursiveUniformBinarySearch
{
 public static int recursiveUniformBinarySearch(int[] arr, int key, int[]
lookupTable, int left, int right)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

2.4 Interpolation Search

Interpolation search works better than Binary Search for a Sorted and Uniformly Distributed array. Binary

search goes to the middle element to check irrespective of search-key. On the other hand, Interpolation

search may go to different locations according to search-key. If the value of the search-key is close to the

last element, Interpolation Search is likely to start search toward the end side. Interpolation search is more

efficient than binary search when the elements in the list are uniformly distributed, while binary search is

more efficient when the elements in the list are not uniformly distributed.

Interpolation search can take longer to implement than binary search, as it requires the use of additional

calculations to estimate the position of the target element.

Input: arr = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Output: target = 5

public class InterpolationSearch
{
 public static int interpolationSearch(int[] arr, int key)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 # write code here
 }
}

2.5 Fibonacci Search

270 | P a g e

Given a sorted array arr[] of size n and an element x to be searched in it. Return index of x if it is present in

array else return -1.

Input: arr[] = {2, 3, 4, 10, 40}, x = 10

Output: 3

Element x is present at index 3.

Input: arr[] = {2, 3, 4, 10, 40}, x = 11

Output: -1

Element x is not present.

Fibonacci Search is a comparison-based technique that uses Fibonacci numbers to search an element in a

sorted array.

Fibonacci Numbers are recursively defined as F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1. First few Fibonacci

Numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Fibonacci Search Procedure:

Let the searched element be x. The idea is to first find the smallest Fibonacci number that is greater than or

equal to the length of the given array. Let the found Fibonacci number be fib (m’th Fibonacci number). We

use (m-2)’th Fibonacci number as the index (If it is a valid index). Let (m-2)’th Fibonacci Number be i, we

compare arr[i] with x, if x is same, we return i. Else if x is greater, we recur for subarray after i, else we recur

for subarray before i.

Let arr[0..n-1] be the input array and the element to be searched be x.

1. Find the smallest Fibonacci number greater than or equal to n. Let this number be fibM [m’th

Fibonacci number]. Let the two Fibonacci numbers preceding it be fibMm1 [(m-1)’th Fibonacci

Number] and fibMm2 [(m-2)’th Fibonacci Number].

2. While the array has elements to be inspected:

i. Compare x with the last element of the range covered by fibMm2

ii. If x matches, return index

iii. Else If x is less than the element, move the three Fibonacci variables two Fibonacci down,

indicating elimination of approximately rear two-third of the remaining array.

iv. Else x is greater than the element, move the three Fibonacci variables one Fibonacci down. Reset

offset to index. Together these indicate the elimination of approximately front one-third of the

remaining array.

3. Since there might be a single element remaining for comparison, check if fibMm1 is 1. If Yes,

compare x with that remaining element. If match, return index.

public class FibonacciSearch
{
 public static int fibonacciSearch(int[] arr, int key)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 # write code here
 }
}

271 | P a g e

3. Sorting

3.1 Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if

they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case

time complexity is quite high.

Bubble Sort Procedure:

1. Traverse from left and compare adjacent elements and the higher one is placed at right side.

2. In this way, the largest element is moved to the rightmost end at first.

3. This process is then continued to find the second largest and place it and so on until the data is sorted.

Input: arr = [6, 3, 0, 5]

Output:

First Pass:

Second Pass:

Third Pass:

import java.util.Scanner;

class BubbleSortExample
{
 public static void main(String[] args)
 {

 # write code here

 }

272 | P a g e

 public static void bubbleSort(int[] arr)
 {

 # write code here

 }
}

3.2 Selection Sort

Selection sort is a simple and efficient sorting algorithm that works by repeatedly selecting the smallest (or

largest) element from the unsorted portion of the list and moving it to the sorted portion of the list. The

algorithm repeatedly selects the smallest (or largest) element from the unsorted portion of the list and

swaps it with the first element of the unsorted part. This process is repeated for the remaining unsorted

portion until the entire list is sorted.

Input: arr = [64, 25, 12, 22, 11]

Output: arr = [11, 12, 22, 25, 64]

First Pass: For the first position in the sorted array, the whole array is traversed from index 0 to 4

sequentially. The first position where 64 is stored presently, after traversing whole array it is clear that 11 is

the lowest value. Thus, replace 64 with 11. After one iteration 11, which happens to be the least value in the

array, tends to appear in the first position of the sorted list.

Second Pass: For the second position, where 25 is present, again traverse the rest of the array in a

sequential manner. After traversing, we found that 12 is the second lowest value in the array and it should

appear at the second place in the array, thus swap these values.

Third Pass: Now, for third place, where 25 is present again traverse the rest of the array and find the third

least value present in the array. While traversing, 22 came out to be the third least value and it should

appear at the third place in the array, thus swap 22 with element present at third position.

Fourth Pass: Similarly, for fourth position traverse the rest of the array and find the fourth least element in

the array. As 25 is the 4th lowest value hence, it will place at the fourth position.

Fifth Pass: At last the largest value present in the array automatically get placed at the last position in the

array. The resulted array is the sorted array.

273 | P a g e

import java.util.Scanner;

class SelectionSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void selectionSort(int[] arr)
 {
 # write code here
 }
}

3.3 Insertion Sort

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your

hands. The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are

picked and placed at the correct position in the sorted part.

Insertion Sort Procedure:

1. To sort an array of size N in ascending order iterate over the array and compare the current element

 (key) to its predecessor, if the key element is smaller than its predecessor, compare it to the elements

 before.

2. Move the greater elements one position up to make space for the swapped element.

Input: arr = [4, 3, 2, 10, 12, 1, 5, 6]

Output: arr = [1, 2, 3, 4, 5, 6, 10, 12]

import java.util.Scanner;

class InsertionSortExample
{
 public static void main(String[] args)
 {

write code here
 }

274 | P a g e

 public static void insertionSort(int[] arr)
 {
 # write code here
 }
}

275 | P a g e

4. Divide and Conquer

4.1 Quick Sort

QuickSort is a sorting algorithm based on the Divide and Conquer algorithm that picks an element as a

pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in

the sorted array. The key process in quickSort is a partition(). The target of partitions is to place the pivot

(any element can be chosen to be a pivot) at its correct position in the sorted array and put all smaller

elements to the left of the pivot, and all greater elements to the right of the pivot. Partition is done

recursively on each side of the pivot after the pivot is placed in its correct position and this finally sorts the

array.

The quick sort method can be summarized in three steps:

1. Pick: Select a pivot element.

2. Divide: Split the problem set, move smaller parts to the left of the pivot and larger items to the right.

3. Repeat and combine: Repeat the steps and combine the arrays that have previously been sorted.

Algorithm for Quick Sort Function:

//start –> Starting index, end --> Ending index

Quicksort(array, start, end)

{

 if (start < end)

 {

 pIndex = Partition(A, start, end)

 Quicksort(A,start,pIndex-1)

 Quicksort(A,pIndex+1, end)

 }

}

Algorithm for Partition Function:

partition (array, start, end)

{

 // Setting rightmost Index as pivot

 pivot = arr[end];

 i = (start - 1) // Index of smaller element and indicates the

 // right position of pivot found so far

for (j = start; j <= end- 1; j++)

 {

 // If current element is smaller than the pivot

276 | P a g e

 if (arr[j] < pivot)

 {

 i++; // increment index of smaller element

 swap arr[i] and arr[j]

 }

 }

 swap arr[i + 1] and arr[end])

 return (i + 1)

}

Input: arr = [10, 80, 30, 90, 40, 50, 70]

Output: arr = [10, 30, 40, 50, 70, 80, 90]

import java.util.Scanner;

class QuickSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void quickSort(int[] arr, int low, int high)
 {
 # write code here
 }

 public static int partition(int[] arr, int low, int high)
 {
 # write code here
 }
}

4.2 Merge Sort

Merge sort is defined as a sorting algorithm that works by dividing an array into smaller subarrays, sorting

each subarray, and then merging the sorted subarrays back together to form the final sorted array. In

simple terms, we can say that the process of merge sort is to divide the array into two halves, sort each half,

and then merge the sorted halves back together. This process is repeated until the entire array is sorted.

Input: arr = [12, 11, 13, 5, 6, 7]

Output: arr = [5, 6, 7, 11, 12, 13]

277 | P a g e

import java.util.Scanner;

class MergeSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void mergeSort(int[] arr, int low, int high)
 {
 # write code here
 }

 public static void merge(int[] arr, int low, int mid, int high)
 {
 # write code here
 }
}

4.3 Heap Sort

Heap sort is a comparison-based sorting technique based on Binary Heap data structure. It is similar to the

selection sort where we first find the minimum element and place the minimum element at the beginning.

Repeat the same process for the remaining elements.

Heap Sort Procedure:

First convert the array into heap data structure using heapify, then one by one delete the root node of the

Max-heap and replace it with the last node in the heap and then heapify the root of the heap. Repeat this

process until size of heap is greater than 1.

• Build a heap from the given input array.

• Repeat the following steps until the heap contains only one element:

• Swap the root element of the heap (which is the largest element) with the last element of the heap.

• Remove the last element of the heap (which is now in the correct position).

• Heapify the remaining elements of the heap.

• The sorted array is obtained by reversing the order of the elements in the input array.

Input: arr = [12, 11, 13, 5, 6, 7]

Output: Sorted array is 5 6 7 11 12 13

import java.util.Scanner;

class HeapSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void heapSort(int[] arr)
 {
 # write code here
 }

 public static void heapify(int[] arr, int n, int i)

278 | P a g e

 {
 # write code here
 }
}

4.4 Radix Sort

Radix Sort is a linear sorting algorithm that sorts elements by processing them digit by digit. It is an efficient

sorting algorithm for integers or strings with fixed-size keys. Rather than comparing elements directly, Radix

Sort distributes the elements into buckets based on each digit’s value. By repeatedly sorting the elements

by their significant digits, from the least significant to the most significant, Radix Sort achieves the final

sorted order.

Radix Sort Procedure:

The key idea behind Radix Sort is to exploit the concept of place value.

1. It assumes that sorting numbers digit by digit will eventually result in a fully sorted list.

2. Radix Sort can be performed using different variations, such as Least Significant Digit (LSD) Radix Sort

 or Most Significant Digit (MSD) Radix Sort.

To perform radix sort on the array [170, 45, 75, 90, 802, 24, 2, 66], we follow these steps:

Step 1: Find the largest element in the array, which is 802. It has three digits, so we will iterate three times,

once for each significant place.

Step 2: Sort the elements based on the unit place digits (X=0). We use a stable sorting technique, such as

counting sort, to sort the digits at each significant place.

Sorting based on the unit place:

Perform counting sort on the array based on the unit place digits.

The sorted array based on the unit place is [170, 90, 802, 2, 24, 45, 75, 66]

Step 3: Sort the elements based on the tens place digits.

Sorting based on the tens place:

Perform counting sort on the array based on the tens place digits.

The sorted array based on the tens place is [802, 2, 24, 45, 66, 170, 75, 90]

279 | P a g e

Step 4: Sort the elements based on the hundreds place digits.

Sorting based on the hundreds place:

Perform counting sort on the array based on the hundreds place digits.

The sorted array based on the hundreds place is [2, 24, 45, 66, 75, 90, 170, 802]

Step 5: The array is now sorted in ascending order.

The final sorted array using radix sort is [2, 24, 45, 66, 75, 90, 170, 802]

import java.util.Arrays;

class RadixSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void radixSort(int[] arr)
 {
 # write code here
 }

 public static int getMax(int[] arr)
 {
 # write code here
 }

 public static void countSort(int[] arr, int exp)
 {
 # write code here
 }
}

280 | P a g e

4.5 Shell Sort

Shell sort is mainly a variation of Insertion Sort. In insertion sort, we move elements only one position

ahead. When an element has to be moved far ahead, many movements are involved. The idea of ShellSort is

to allow the exchange of far items. In Shell sort, we make the array h-sorted for a large value of h. We keep

reducing the value of h until it becomes 1. An array is said to be h-sorted if all sublists of every h’th element

are sorted.

Shell Sort Procedure:

1. Initialize the value of gap size h

2. Divide the list into smaller sub-part. Each must have equal intervals to h

3. Sort these sub-lists using insertion sort

4. Repeat this step 1 until the list is sorted.

5. Print a sorted list.

Procedure Shell_Sort(Array, N)

 While Gap < Length(Array) /3 :

 Gap = (Interval * 3) + 1

 End While Loop

 While Gap > 0 :

 For (Outer = Gap; Outer < Length(Array); Outer++):

 Insertion_Value = Array[Outer]

 Inner = Outer;

 While Inner > Gap-1 And Array[Inner – Gap] >= Insertion_Value:

 Array[Inner] = Array[Inner – Gap]

 Inner = Inner – Gap

 End While Loop

 Array[Inner] = Insertion_Value

 End For Loop

 Gap = (Gap -1) /3;

 End While Loop

End Shell_Sort

import java.util.Scanner;

class ShellSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void shellSort(int[] arr)
 {
 # write code here
 }
}

281 | P a g e

5. Stack

5.1 Implementation of Stack

A stack is a linear data structure that stores items in a Last-In/First-Out (LIFO) or First-In/Last-Out (FILO)

manner. In stack, a new element is added at one end and an element is removed from that end only. The

insert and delete operations are often called push and pop.

The functions associated with stack are:

• empty() – Returns whether the stack is empty

• size() – Returns the size of the stack

• top() / peek() – Returns a reference to the topmost element of the stack

• push(a) – Inserts the element ‘a’ at the top of the stack

• pop() – Deletes the topmost element of the stack

class Stack
{
 private int maxSize;
 private int top;
 private int[] stackArray;

 public Stack(int size)
 {
 # write code here
 }

 public void push(int value)
 {
 # write code here
 }

 public int pop()
 {
 # write code here
 }

 public int peek()
 {
 # write code here
 }

 public boolean isEmpty()
 {

 # write code here
 }

 public boolean isFull()
 {
 # write code here

282 | P a g e

 }
}

class StackExample
{
 public static void main(String[] args)
 {
 Stack stack = new Stack(5);
 stack.push(10);
 stack.push(20);
 stack.push(30);
 stack.pop();
 stack.peek();
 stack.push(40);
 stack.push(50);
 stack.push(60);
 }
}

5.2 Balanced Parenthesis Checking

Given an expression string, write a java program to find whether a given string has balanced parentheses or

not.

Input: "{(a+b)*(c-d)}"

Output: true

Input: "{(a+b)*[c-d)}"

Output: false

One approach to check balanced parentheses is to use stack. Each time, when an open parentheses is

encountered push it in the stack, and when closed parenthesis is encountered, match it with the top of stack

and pop it. If stack is empty at the end, return true otherwise, false

import java.util.Stack;

class BalancedParenthesisChecker
{
 public static boolean isBalanced(String expression)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 String expression1 = "{(a+b)*(c-d)}";
 String expression2 = "{(a+b)*[c-d)}";

 # write code here
 }
}

5.3 Evaluation of Postfix Expression

Given a postfix expression, the task is to evaluate the postfix expression. Postfix expression: The expression

of the form “a b operator” (ab+) i.e., when a pair of operands is followed by an operator.

Input: str = “2 3 1 * + 9 -“

Output: -4

Explanation: If the expression is converted into an infix expression, it will be 2 + (3 * 1) – 9 = 5 – 9 = -4.

Input: str = “100 200 + 2 / 5 * 7 +”

Output: 757

283 | P a g e

Procedure for evaluation postfix expression using stack:

• Create a stack to store operands (or values).

• Scan the given expression from left to right and do the following for every scanned element.

o If the element is a number, push it into the stack.

o If the element is an operator, pop operands for the operator from the stack. Evaluate the operator

and push the result back to the stack.

• When the expression is ended, the number in the stack is the final answer.

import java.util.Stack;

class PostfixEvaluator
{
 public static int evaluatePostfix(String expression)
 {
 # write code here
 }

 public static int performOperation(char operator, int operand1, int operand2)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 # write code here
 }
}

5.4 Infix to Postfix Expression Conversion

For a given Infix expression, convert it into Postfix form.

Infix expression: The expression of the form “a operator b” (a + b) i.e., when an operator is in-between

every pair of operands.

Postfix expression: The expression of the form “a b operator” (ab+) i.e., When every pair of operands is

followed by an operator.

Infix to postfix expression conversion procedure:

1. Scan the infix expression from left to right.

2. If the scanned character is an operand, put it in the postfix expression.

3. Otherwise, do the following

• If the precedence and associativity of the scanned operator are greater than the

precedence and associativity of the operator in the stack [or the stack is empty or the stack contains

a ‘(‘], then push it in the stack. [‘^‘ operator is right associative and other operators like ‘+‘,’–‘,’*‘ and

‘/‘ are left-associative].

• Check especially for a condition when the operator at the top of the stack and the

scanned operator both are ‘^‘. In this condition, the precedence of the scanned operator is

higher due to its right associativity. So it will be pushed into the operator stack.

• In all the other cases when the top of the operator stack is the same as the scanned

operator, then pop the operator from the stack because of left associativity due to which the

scanned operator has less precedence.

• Else, Pop all the operators from the stack which are greater than or equal to in precedence

than that of the scanned operator.

• After doing that Push the scanned operator to the stack. (If you encounter

parenthesis while popping then stop there and push the scanned operator in the stack.)

284 | P a g e

4. If the scanned character is a ‘(‘, push it to the stack.

5. If the scanned character is a ‘)’, pop the stack and output it until a ‘(‘ is encountered, and discard

both the parenthesis.

6. Repeat steps 2-5 until the infix expression is scanned.

7. Once the scanning is over, Pop the stack and add the operators in the postfix expression until it is

not empty.

8. Finally, print the postfix expression.

Input: A + B * C + D

Output: A B C * + D +

Input: ((A + B) – C * (D / E)) + F

Output: A B + C D E / * - F +
import java.util.Stack;

class Conversion

{

 # Write Code Here

}

5.5 Reverse a Stack

The stack is a linear data structure which works on the LIFO concept. LIFO stands for last in first out. In the

stack, the insertion and deletion are possible at one end the end is called the top of the stack. Define two

recursive functions BottomInsertion() and Reverse() to reverse a stack using Python. Define some basic

function of the stack like push(), pop(), show(), empty(), for basic operation like respectively append an item

in stack, remove an item in stack, display the stack, check the given stack is empty or not.

BottomInsertion(): this method append element at the bottom of the stack and BottomInsertion accept

two values as an argument first is stack and the second is elements, this is a recursive method.

Reverse(): the method is reverse elements of the stack, this method accept stack as an argument Reverse()

is also a Recursive() function. Reverse() is invoked BottomInsertion() method for completing the reverse

operation on the stack.

Input: Elements = [1, 2, 3, 4, 5]

Output: Original Stack

5

4

3

2

1

Stack after Reversing

1

2

3

4

5

import java.util.Stack;
class StackClass {

Write Code Here
 }

285 | P a g e

6. Queue

6.1 Linear Queue

Linear queue is a linear data structure that stores items in First in First out (FIFO) manner. With a queue the

least recently added item is removed first. A good example of queue is any queue of consumers for a

resource where the consumer that came first is served first.

import java.util.Scanner;

public class LinearQueue

{
 # Write Code Here

}
 public static boolean isEmpty() {
 return front == rear;
 }
 public static boolean isFull() {
 return rear == MAX;
 }
 public static void enqueue(int item)

{
Write Code Here
}

 public static void dequeue()

{
Write Code Here
}

public static void display()
{

 # Write Code Here
 }
 public static void main(String[] args)

{
 # Write Code Here

}
}

6.2 Stack using Queues

Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all

the functions of a normal stack (push, top, pop, and empty).

• void push(int x) Pushes element x to the top of the stack.

• int pop() Removes the element on the top of the stack and returns it.

• int top() Returns the element on the top of the stack.

• boolean empty() Returns true if the stack is empty, false otherwise.

286 | P a g e

Input:

["MyStack", "push", "push", "top", "pop", "empty"]

[[], [1], [2], [], [], []]

Output:

[null, null, null, 2, 2, false]

import java.util.LinkedList;
import java.util.Queue;

class MyStack

 {
 # Write Code Here

 }
 public void push(int x)

{
 # Write Code Here

}
 }

 public int pop()

{
 return queue.remove();
 }

 public int top() {
 return queue.peek();
 }

 public boolean empty() {
 return queue.isEmpty();
 }
 public static void main(String[] args)

{
 # Write Code Here

}
}

6.3 Queue using Stacks

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all

the functions of a normal queue (push, peek, pop, and empty).

• void push(int x) Pushes element x to the back of the queue.

• int pop() Removes the element from the front of the queue and returns it.

• int peek() Returns the element at the front of the queue.

• boolean empty() Returns true if the queue is empty, false otherwise.

Input:

["MyQueue", "push", "push", "peek", "pop", "empty"]

[[], [1], [2], [], [], []]

Output:

[null, null, null, 1, 1, false]

import java.util.Stack;

class MyQueue {

 private Stack<Integer> stack1;

 private Stack<Integer> stack2;

287 | P a g e

 public MyQueue() {

 stack1 = new Stack<>();

 stack2 = new Stack<>();

 }

 public void push(int x) {

 stack1.push(x);

 }

 public int pop()

{

 # Write Code Here

 }

 public int peek()

{

Write Code Here

}

 public boolean empty() {

 return stack1.isEmpty() && stack2.isEmpty();

 }

 public static void main(String[] args)

{

 # Write Code Here

}

}

6.4 Circular Queue

A Circular Queue is an extended version of a normal queue where the last element of the queue is

connected to the first element of the queue forming a circle. The operations are performed based on FIFO

(First In First Out) principle. It is also called ‘Ring Buffer’.

Operations on Circular Queue:

• Front: Get the front item from the queue.

• Rear: Get the last item from the queue.

• enQueue(value) This function is used to insert an element into the circular queue. In a circular

queue, the new element is always inserted at the rear position.

• Check whether the queue is full – [i.e., the rear end is in just before the front end in a

circular manner].

• If it is full then display Queue is full.

• If the queue is not full then, insert an element at the end of the queue.

• deQueue() This function is used to delete an element from the circular queue. In a circular queue,

the element is always deleted from the front position.

• Check whether the queue is Empty.

• If it is empty then display Queue is empty.

• If the queue is not empty, then get the last element and remove it from the

queue.

288 | P a g e

Implement Circular Queue using Array:

5. Initialize an array queue of size n, where n is the maximum number of elements that the queue can

hold.

6. Initialize two variables front and rear to -1.

7. Enqueue: To enqueue an element x into the queue, do the following:

• Increment rear by 1.

• If rear is equal to n, set rear to 0.

• If front is -1, set front to 0.

• Set queue[rear] to x.

8. Dequeue: To dequeue an element from the queue, do the following:

• Check if the queue is empty by checking if front is -1.

• If it is, return an error message indicating that the queue is empty.

• Set x to queue [front].

• If front is equal to rear, set front and rear to -1.

• Otherwise, increment front by 1 and if front is equal to n, set front to 0.

• Return x.

class CircularQueue {

 private int size;

 private int front, rear;

 private int[] queue;

 public CircularQueue(int size) {

 this.size = size;

 this.queue = new int[size];

 this.front = this.rear = -1;

 }

 public void enqueue(int data)

{

Write Code Here

}

 public int dequeue()

{

 # Write Code Here

289 | P a g e

}

 public void display()

{

Write Code Here

 }

 public static void main(String[] args)

{

Write Code Here

 }

}

6.5 Deque (Doubly Ended Queue)

In a Deque (Doubly Ended Queue), one can perform insert (append) and delete (pop) operations from both

the ends of the container. There are two types of Deque:

1. Input Restricted Deque: Input is limited at one end while deletion is permitted at both ends.

2. Output Restricted Deque: Output is limited at one end but insertion is permitted at both ends.

Operations on Deque:

1. append(): This function is used to insert the value in its argument to the right end of the deque.

2. appendleft(): This function is used to insert the value in its argument to the left end of the deque.

3. pop(): This function is used to delete an argument from the right end of the deque.

4. popleft(): This function is used to delete an argument from the left end of the deque.

5. index(ele, beg, end): This function returns the first index of the value mentioned in arguments, starting

searching from beg till end index.

6. insert(i, a): This function inserts the value mentioned in arguments(a) at index(i) specified in arguments.

7. remove(): This function removes the first occurrence of the value mentioned in arguments.

8. count(): This function counts the number of occurrences of value mentioned in arguments.

9. len(dequeue): Return the current size of the dequeue.

10. Deque[0]: We can access the front element of the deque using indexing with de[0].

11. Deque[-1]: We can access the back element of the deque using indexing with de[-1].

12. extend(iterable): This function is used to add multiple values at the right end of the deque. The argument

passed is iterable.

13. extendleft(iterable): This function is used to add multiple values at the left end of the deque. The argument

passed is iterable. Order is reversed as a result of left appends.

14. reverse(): This function is used to reverse the order of deque elements.

15. rotate(): This function rotates the deque by the number specified in arguments. If the number specified is

negative, rotation occurs to the left. Else rotation is to right.

import java.util.ArrayDeque;

import java.util.Deque;

public class DequeOperations

{

 # Write Code Here

}

290 | P a g e

7. Linked List

7.1 Singly Linked List

A singly linked list is a linear data structure in which the elements are not stored in contiguous memory

locations and each element is connected only to its next element using a pointer.

Creating a linked list involves the following operations:

1. Creating a Node class:

2. Insertion at beginning:

3. Insertion at end

4. Insertion at middle

5. Update the node

6. Deletion at beginning

7. Deletion at end

8. Deletion at middle

9. Remove last node

10. Linked list traversal

11. Get length

class Node {
 String data;
 Node next;

 Node(String data) {
 this.data = data;
 this.next = null;
 }
}

class LinkedList

{
Write Code Here

 }

 public void insertAtEnd(String data)

{
 # Write Code Here
 }

 public void updateNode(String val, int index)

{
Write Code Here
}

 public void remove_first_node() {
 # Write Code Here
 }

 public void remove_last_node()

{

291 | P a g e

 # Write Code Here
 }

 public void remove_at_index(int index)

 {
Write Code Here

 }

 public void remove_node(String data)

{
 # Write Code Here
 }

 public int sizeOfLL()

{
 # Write Code Here

}

 public void printLL()

{
 # Write Code Here

}

 public static void main(String[] args)

{
 # Write Code Here
 }
}

7.2 Linked List Cycle

Given head, the head of a linked list, determine if the linked list has a cycle in it. There is a cycle in a linked

list if there is some node in the list that can be reached again by continuously following the next pointer.

Internally, pos is used to denote the index of the node that tail's next pointer is connected to.

Note that pos is not passed as a parameter.

Return true if there is a cycle in the linked list. Otherwise, return false.

Input: head = [3, 2, 0, -4], pos = 1

Output: true

Explanation: There is a cycle in the linked list, where the tail connects to the 1st node (0-indexed).

Input: head = [1, 2], pos = 0

Output: true

Explanation: There is a cycle in the linked list, where the tail connects to the 0th node.

292 | P a g e

Input: head = [1], pos = -1

Output: false

Explanation: There is no cycle in the linked list.

class ListNode
{

 # Write Code Here
}

public class Solution

{
 # Write Code Here

}
}

7.3 Remove Linked List Elements

Given the head of a linked list and an integer val, remove all the nodes of the linked list that has Node.val

== val, and return the new head.

Input: head = [1, 2, 6, 3, 4, 5, 6], val = 6

Output: [1, 2, 3, 4, 5]

Input: head = [], val = 1

Output: []

Input: head = [7, 7, 7, 7], val = 7

Output: []

class ListNode {
 # Write Code Here
 }
}
public class Solution {
 public boolean hasCycle(ListNode head)

{
 # Write Code Here
 }

 public static void main(String[] args)

{
 # Write Code Here
 }
}

7.4 Reverse Linked List

Given the head of a singly linked list, reverse the list, and return the reversed list.

Input: head = [1, 2, 3, 4, 5]

Output: [5, 4, 3, 2, 1]

293 | P a g e

Input: head = [1, 2]

Output: [2, 1]

class ListNode {
 int val;
 ListNode next;

 ListNode(int val) {
 this.val = val;
 this.next = null;
 }
}

public class Solution {
 public ListNode reverseList(ListNode head)

{
 # Write Code Here
 }

 public static void main(String[] args)

{
 # Write Code Here

}

7.5 Palindrome Linked List

Given the head of a singly linked list, return true if it is a palindrome or false otherwise.

Input: head = [1, 2, 2, 1]

Output: true

Input: head = [1, 2]

Output: false

class ListNode

294 | P a g e

{

Write Code Here

}

public class Solution {

 public boolean isPalindrome(ListNode head)

{

 # Write Code Here

}

 public static void main(String[] args)

{

Write Code Here

 }

}

7.6 Middle of the Linked List

Given the head of a singly linked list, return the middle node of the linked list. If there are two middle

nodes, return the second middle node.

Input: head = [1, 2, 3, 4, 5]

Output: [3, 4, 5]

Explanation: The middle node of the list is node 3.

Input: head = [1, 2, 3, 4, 5, 6]

Output: [4, 5, 6]

Explanation: Since the list has two middle nodes with values 3 and 4, we return the second one.

class ListNode

{

 # Write Code Here

 }

}

public class Solution

 {

 # Write Code Here

 }

 public static void main(String[] args) {

 # Write Code Here

 }

}

7.7 Convert Binary Number in a Linked List to Integer

Given head which is a reference node to a singly-linked list. The value of each node in the linked list is either

0 or 1. The linked list holds the binary representation of a number.

Return the decimal value of the number in the linked list. The most significant bit is at the head of the linked

list.

295 | P a g e

Input: head = [1, 0, 1]

Output: 5

Explanation: (101) in base 2 = (5) in base 10

Input: head = [0]

Output: 0

class ListNode {

 int val;

 ListNode next;

 ListNode(int val) {

 this.val = val;

 this.next = null;

 }

}

public class Solution

 {

 # Write Code Here

 }

 public static void main(String[] args)

{

Write Code Here

 }

}

296 | P a g e

8. Circular Single Linked List and Doubly Linked List

8.1 Circular Linked List

The circular linked list is a linked list where all nodes are connected to form a circle. In a circular linked list,

the first node and the last node are connected to each other which forms a circle. There is no NULL at the

end.

Operations on the circular linked list:

1. Insertion at the beginning

2. Insertion at the end

3. Insertion in between the nodes

4. Deletion at the beginning

5. Deletion at the end

6. Deletion in between the nodes

7. Traversal

import java.util.ArrayList;
public class Main{
 static class Node{
 int data;
 Node next;
 Node(int data){
 this.data = data;
 this.next = null;
 }
 }
 static class CircularLinkedList

{
 # Write Code Here
 }
 Node addAfter(int data, int item)

{
 # Write Code Here
 }
void deleteNode(Node last, int key)

{
 # Write Code Here

}
 System.

8.2 Doubly Linked List

The A doubly linked list is a type of linked list in which each node consists of 3 components:

1. *prev - address of the previous node

2. data - data item

3. *next - address of next node.

297 | P a g e

 Double Linked List Node

Operations on the Double Linked List:

1. Insertion at the beginning

2. Insertion at the end

3. Insertion in between the nodes

4. Deletion at the beginning

5. Deletion at the end

6. Deletion in between the nodes

7. Traversal

import java.util.Scanner;

class Node {
 int data;
 Node next;
 Node prev;

 Node(int data) {
 this.data = data;
 this.next = null;
 this.prev = null;
 }
}

class DLinkedList {
 Node head;
 int ctr;

 DLinkedList() {
 this.head = null;
 this.ctr = 0;
 }

 void insertBeg(int data)

{
Write Code Here

 }
 void insertEnd(int data)

{
Write Code Here

 }

 void deleteBeg()

{
Write Code Here
}

 void deleteEnd()
{

 # Write Code Here

298 | P a g e

 }

 void insertPos(int pos, int data)

{
Write Code Here

 }

 void deletePos(int pos)

{
 # Write Code Here
 }

 void traverseF()

{
 # Write Code Here
 }

 void traverseR()

{
 # Write Code Here

}

public class Main {
 public static void main(String[] args) {
 # Write Code Here
 }
}

8.3 Sorted Merge of Two Sorted Doubly Circular Linked Lists

Given two sorted Doubly circular Linked List containing n1 and n2 nodes respectively. The problem is to

merge the two lists such that resultant list is also in sorted order.

Input: List 1 and List 2

Output: Merged List

299 | P a g e

Procedure for Merging Doubly Linked List:

1. If head1 == NULL, return head2.

2. If head2 == NULL, return head1.

3. Let last1 and last2 be the last nodes of the two lists respectively. They can be obtained with the

help of the previous links of the first nodes.

4. Get pointer to the node which will be the last node of the final list. If last1.data < last2.data,

then last_node = last2, Else last_node = last1.

5. Update last1.next = last2.next = NULL.

6. Now merge the two lists as two sorted doubly linked list are being merged. Refer merge procedure

of this post. Let the first node of the final list be finalHead.

7. Update finalHead.prev = last_node and last_node.next = finalHead.

8. Return finalHead.

class Node {
 int data;
 Node next, prev;

 Node(int data) {
 this.data = data;
 this.next = null;
 this.prev = null;
 }
}

public class SortedMergeDoublyCircularLinkedList
 {
 # Write Code Here
 }

 static Node mergeUtil(Node head1, Node head2)
 {
 # Write Code Here
 }

 static void printList(Node head)
 {
 # Write Code Here
 }

 public static void main(String[] args)
 {
 # Write Code Here
 }
}

8.4 Delete all occurrences of a given key in a Doubly Linked List

Given a doubly linked list and a key x. The problem is to delete all occurrences of the given key x from the

doubly linked list.

Input: 2 <-> 2 <-> 10 <-> 8 <-> 4 <-> 2 <-> 5 <-> 2

https://www.geeksforgeeks.org/merge-sort-for-doubly-linked-list/

300 | P a g e

 x = 2

Output: 10 <-> 8 <-> 4 <-> 5

Algorithm:

delAllOccurOfGivenKey (head_ref, x)

 if head_ref == NULL

 return

 Initialize current = head_ref

 Declare next

 while current != NULL

 if current->data == x

 next = current->next

 deleteNode(head_ref, current)

 current = next

 else

 current = current->next

class Node {
 int data;
 Node next, prev;

 Node(int data) {
 this.data = data;
 this.next = null;
 this.prev = null;
 }
}

public class DeleteOccurrenceInDoublyLinkedList

{
 # Write Code Here
 }

 static Node deleteAllOccurOfX(Node head, int x)

{
Write Code Here

 }

 static void printList(Node head)

{
 # Write Code Here

}

 public static void main(String[] args)

{
Write Code Here

 }

}

8.5 Delete a Doubly Linked List Node at a Given Position

Given a doubly linked list and a position n. The task is to delete the node at the given position n from the

beginning.

Input: Initial doubly linked list

301 | P a g e

Output: Doubly Linked List after deletion of node at position n = 2

Procedure:

1. Get the pointer to the node at position n by traversing the doubly linked list up to the nth node from

the beginning.

2. Delete the node using the pointer obtained in Step 1.

class Node {
 int data;
 Node next, prev;

 Node(int data) {
 this.data = data;
 this.next = null;
 this.prev = null;
 }
}

public class DeleteNodeAtGivenPosition
 {
 # Write Code Here
 }

 static Node deleteNode(Node head, Node del)
 {
 # Write Code Here
 }

 static Node deleteNodeAtGivenPos(Node head, int n)
 {
 # Write Code Here
 }
 static void printList(Node head)
 {
 # Write Code Here
 }
}

302 | P a g e

9. Trees

9.1 Tree Creation and Basic Tree Terminologies

A tree data structure is a hierarchical structure that is used to represent and organize data in a way that is

easy to navigate and search. It is a collection of nodes that are connected by edges and has a hierarchical

relationship between the nodes.

Basic Terminologies in Tree:

1. Parent Node: The node which is a predecessor of a node is called the parent node of that node. {B} is the

parent node of {D, E}.

2. Child Node: The node which is the immediate successor of a node is called the child node of that node.

Examples: {D, E} are the child nodes of {B}.

3. Root Node: The topmost node of a tree or the node which does not have any parent node is called the

root node. {A} is the root node of the tree. A non-empty tree must contain exactly one root node and

exactly one path from the root to all other nodes of the tree.

4. Leaf Node or External Node: The nodes which do not have any child nodes are called leaf nodes. {K, L,

M, N, O, P} are the leaf nodes of the tree.

5. Ancestor of a Node: Any predecessor nodes on the path of the root to that node are called Ancestors of

that node. {A, B} are the ancestor nodes of the node {E}

6. Descendant: Any successor node on the path from the leaf node to that node. {E, I} are the descendants

of the node {B}.

7. Sibling: Children of the same parent node are called siblings. {D, E} are called siblings.

8. Level of a node: The count of edges on the path from the root node to that node. The root node has

level 0.

9. Internal node: A node with at least one child is called Internal Node.

10. Neighbour of a Node: Parent or child nodes of that node are called neighbors of that node.

11. Subtree: Any node of the tree along with its descendant.

import java.util.ArrayList;
import java.util.List;

public class TreeBasicTerminologies

{

 # Write Code Here
 }
static void printChildren(int root, List<List<Integer>> adj)

{
 # Write Code Here
 }
 static void printLeafNodes(int root, List<List<Integer>> adj)

{

303 | P a g e

 # Write Code Here
 }
 static void printDegrees(int root, List<List<Integer>> adj)

{
 # Write Code Here
 }
 public static void main(String[] args)

{
 # Write Code Here
 }
}

9.2 Binary Tree Traversal Techniques

A binary tree data structure can be traversed in following ways:

1. Inorder Traversal

2. Preorder Traversal

3. Postorder Traversal

4. Level Order Traversal

Algorithm Inorder (tree)

1. Traverse the left subtree, i.e., call Inorder(left->subtree)

2. Visit the root.

3. Traverse the right subtree, i.e., call Inorder(right->subtree)

Algorithm Preorder (tree)

1. Visit the root.

2. Traverse the left subtree, i.e., call Preorder(left->subtree)

3. Traverse the right subtree, i.e., call Preorder(right->subtree)

Algorithm Postorder (tree)

1. Traverse the left subtree, i.e., call Postorder(left->subtree)

2. Traverse the right subtree, i.e., call Postorder(right->subtree)

3. Visit the root.

import java.util.Scanner;
class Node

{
 # Write Code Here

}
class BT {
 Node root;
 BT() {
 this.root = null;

304 | P a g e

 }
 void insert(int data)

{
Write Code Here
}

 Node insertRec(Node root, int data)
{

 # Write Code Here
 }
 void postorder(Node root)

{
 # Write Code Here
 }
 void preorder(Node root)

{
 # Write Code Here
 }
 }
 void inorder(Node root)

{
Write Code Here

 }
}

public class BinaryTreeTraversal {
 public static void main(String[] args)

 {
 # Write Code Here
 }
 }
 }
}

9.3 Insertion in a Binary Tree in Level Order

Given a binary tree and a key, insert the key into the binary tree at the first position available in level order.

Input: Consider the tree given below

Output:

The idea is to do an iterative level order traversal of the given tree using queue. If we find a node whose left

child is empty, we make a new key as the left child of the node. Else if we find a node whose right child is

305 | P a g e

empty, we make the new key as the right child. We keep traversing the tree until we find a node whose

either left or right child is empty.

class Node
{
Write Code Here
}

public class BinaryTreeInsertion
{
Write Code Here
 }
 static Node insert(Node root, int key)
{
Write Code Here
 }

 public static void main(String[] args)
{
 # Write Code Here
 }
}

9.4 Finding the Maximum Height or Depth of a Binary Tree

Given a binary tree, the task is to find the height of the tree. The height of the tree is the number of edges

in the tree from the root to the deepest node.

Note: The height of an empty tree is 0.

Input: Consider the tree below

Recursively calculate the height of the left and the right subtrees of a node and assign height to the node

as max of the heights of two children plus 1.

maxDepth(‘1’) = max(maxDepth(‘2’), maxDepth(‘3’)) + 1 = 2 + 1

because recursively

maxDepth(‘2’) = max (maxDepth(‘4’), maxDepth(‘5’)) + 1 = 1 + 1 and (as height of both ‘4’ and ‘5’ are 1)

maxDepth(‘3’) = 1

Procedure:

• Recursively do a Depth-first search.

• If the tree is empty then return 0

• Otherwise, do the following

• Get the max depth of the left subtree recursively i.e. call maxDepth(tree->left-subtree)

• Get the max depth of the right subtree recursively i.e. call maxDepth(tree->right-subtree)

• Get the max of max depths of left and right subtrees and add 1 to it for the current node.

• Return max_depth.

306 | P a g e

class Node
{
 int data;
 Node left, right;

 Node(int data) {
 this.data = data;
 this.left = null;
 this.right = null;
 }
}

public class MaximumDepthOfTree

{
 # Write Code Here
 }

 public static void main(String[] args)

{
 # Write Code Here

 }

9.5 Deletion in a Binary Tree

Given a binary tree, delete a node from it by making sure that the tree shrinks from the bottom (i.e. the

deleted node is replaced by the bottom-most and rightmost node).

Input: Delete 10 in below tree

 10

 / \

 20 30

Output:

 30

 /

 20

Input: Delete 20 in below tree

 10

 / \

 20 30

 \

 40

Output:

 10

 / \

40 30

Algorithm:

1. Starting at the root, find the deepest and rightmost node in the binary tree and the node which we

want to delete.

2. Replace the deepest rightmost node’s data with the node to be deleted.

307 | P a g e

3. Then delete the deepest rightmost node.

class Node {
 int data;
 Node left, right;

 Node(int data) {
 this.data = data;
 this.left = null;
 this.right = null;
 }
}

public class BinaryTreeDeletion
{
 # Write Code Here
 }
 static void deleteDeepest(Node root, Node dNode)
{
 # Write Code Here
}
 static Node deletion(Node root, int key)
{
 # Write Code Here
}

 public static void main(String[] args)
{
 # Write Code Here
}
}

308 | P a g e

10. Binary Search Tree (BST)

10.1 Searching in Binary Search Tree

Given a BST, the task is to delete a node in this BST. For searching a value in BST, consider it as a sorted

array. Perform search operation in BST using Binary Search Algorithm.

Algorithm to search for a key in a given Binary Search Tree:

Let’s say we want to search for the number X, We start at the root. Then:

• We compare the value to be searched with the value of the root.

• If it’s equal we are done with the search if it’s smaller we know that we need to go to the left

subtree because in a binary search tree all the elements in the left subtree are smaller and all the

elements in the right subtree are larger.

• Repeat the above step till no more traversal is possible

• If at any iteration, key is found, return True. Else False.

309 | P a g e

// Node class to represent each node of the BST
class Node {
 int key;
 Node left, right;

 public Node(int item) {
 key = item;
 left = right = null;
 }
}
class BST
{
Write Code Here
}
 Node search(int key) {
 return searchRec(root, key);
}
 Node searchRec(Node root, int key)

{
Write Code Here
}

 public static void main(String[] args)
{
 # Write Code Here
 }
}

10.2 Find the node with Minimum Value in a BST

Write a function to find the node with minimum value in a Binary Search Tree.

Input: Consider the tree given below

Output: 8

Input: Consider the tree given below

310 | P a g e

Output: 10

import java.util.ArrayList;
import java.util.List;

class Node {
 int data;
 Node left, right;

 public Node(int item) {
 data = item;
 left = right = null;
 }
}

class BinarySearchTree

{
 # Write Code Here
 }

 public static void main(String[] args)

{
Write Code Here

 }
}

10.3 Check if a Binary Tree is BST or not

A binary search tree (BST) is a node-based binary tree data structure that has the following properties.

1. The left subtree of a node contains only nodes with keys less than the node’s key.

2. The right subtree of a node contains only nodes with keys greater than the node’s key.

3. Both the left and right subtrees must also be binary search trees.

4. Each node (item in the tree) has a distinct key.

Input: Consider the tree given below

311 | P a g e

Output: Check if max value in left subtree is smaller than the node and min value in right subtree greater

than the node, then print it “Is BST” otherwise “Not a BST”

Procedure:

1. If the current node is null then return true

2. If the value of the left child of the node is greater than or equal to the current node then return false

3. If the value of the right child of the node is less than or equal to the current node then return false

4. If the left subtree or the right subtree is not a BST then return false

5. Else return true

class Node {
 int data;
 Node left, right;

 public Node(int item) {
 data = item;
 left = right = null;
 }
}

class BinaryTree

{
Write Code Here
}

 boolean isBST(Node node) {
 return isBSTUtil(node, Integer.MIN_VALUE, Integer.MAX_VALUE);
 }

 boolean isBSTUtil(Node node, int min, int max)

{
Write Code Here
}

 public static void main(String[] args)

{
Write Code Here
}

}

10.4 Second Largest Element in BST

Given a Binary search tree (BST), find the second largest element.

Input: Root of below BST

 10

 /

 5

Output: 5

Input: Root of below BST

 10

 / \

312 | P a g e

 5 20

 \

 30

Output: 20

Procedure: The second largest element is second last element in inorder traversal and second element in

reverse inorder traversal. We traverse given Binary Search Tree in reverse inorder and keep track of counts

of nodes visited. Once the count becomes 2, we print the node.

class Node {
 int key;
 Node left, right;

 public Node(int item) {
 key = item;
 left = right = null;
 }
}

class BinarySearchTree

{
Write Code Here
}

 secondLargestUtil(node.right);
 count++;

 // If count is equal to 2 then this is the second largest
 if (count == 2) {
 System.out.println("The second largest element is " + node.key);
 return;
 }

 secondLargestUtil(node.left);
 }

 // Function to find the second largest element
 void secondLargest(Node node) {
 count = 0;
 secondLargestUtil(node);
 }

 // Driver code
 public static void main(String[] args)

{
Write Code Here
}

}

Try:

1. Kth largest element in BST when modification to BST is not allowed: Given a Binary Search Tree (BST)

and a positive integer k, find the k’th largest element in the Binary Search Tree. For a given BST, if k = 3,

then output should be 14, and if k = 5, then output should be 10.

313 | P a g e

10.5 Insertion in Binary Search Tree (BST)

Given a Binary search tree (BST), the task is to insert a new node in this BST.

Input: Consider a BST and insert the element 40 into it.

Procedure for inserting a value in a BST:

A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start

searching for a key from the root until we hit a leaf node. Once a leaf node is found, the new node is added

as a child of the leaf node. The below steps are followed while we try to insert a node into a binary search

tree:

• Check the value to be inserted (say X) with the value of the current node (say val) we are in:

• If X is less than val move to the left subtree.

• Otherwise, move to the right subtree.

• Once the leaf node is reached, insert X to its right or left based on the relation between X and the

leaf node’s value.

// A utility class that represents an individual node in a BST
class Node {
 int val;
 Node left, right;

 public Node(int item) {
 val = item;
 left = right = null;
 }
}

314 | P a g e

class BinarySearchTree

{

Write Code Here

 }

 void inorder()

{
 inorderRec(root);
 }

 void inorderRec(Node root)

{
 # Write Code Here

 }
 }

 // Driver code
 public static void main(String[] args)

{
 # Write Code Here

 }
}

Try:

1. Check if two BSTs contain same set of elements: Given two Binary Search Trees consisting of unique

positive elements, we have to check whether the two BSTs contain the same set of elements or not.

Input: Consider two BSTs which contains same set of elements {5, 10, 12, 15, 20, 25}, but the structure of the

two given BSTs can be different.

315 | P a g e

11. AVL Tree

11.1 Insertion in an AVL Tree

AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right

subtrees cannot be more than one for all nodes. To make sure that the given tree remains AVL after every

insertion, we must augment the standard BST insert operation to perform some re-balancing.

Following are two basic operations that can be performed to balance a BST without violating the BST

property (keys(left) < key(root) < keys(right)).

• Left Rotation

• Right Rotation

T1, T2 and T3 are subtrees of the tree, rooted with y (on the left side) or x (on the right side)

Keys in both of the above trees follow the following order

keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)

So BST property is not violated anywhere.

Procedure for inserting a node into an AVL tree

Let the newly inserted node be w

• Perform standard BST insert for w.

• Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced

node, y be the child of z that comes on the path from w to z and x be the grandchild of z that comes on

the path from w to z.

• Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be

4 possible cases that need to be handled as x, y and z can be arranged in 4 ways.

• Following are the possible 4 arrangements:

• y is the left child of z and x is the left child of y (Left Left Case)

• y is the left child of z and x is the right child of y (Left Right Case)

• y is the right child of z and x is the right child of y (Right Right Case)

• y is the right child of z and x is the left child of y (Right Left Case)

class TreeNode {
 int val, height;
 TreeNode left, right;

 TreeNode(int d) {
 val = d;
 height = 1;
 }
}
class AVL_Tree {

 # write the code
 }

 TreeNode leftRotate(TreeNode x)

316 | P a g e

{
write the code
}

 public static void main(String[] args) {
 # write the code

}

11.2 Deletion in an AVL Tree

Given an AVL tree, make sure that the given tree remains AVL after every deletion, we must augment the

standard BST delete operation to perform some re-balancing. Following are two basic operations that can

be performed to re-balance a BST without violating the BST property (keys(left) < key(root) < keys(right)).

1. Left Rotation

2. Right Rotation

T1, T2 and T3 are subtrees of the tree rooted with y (on left side)

or x (on right side)

Keys in both of the above trees follow the following order

 keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)

So BST property is not violated anywhere.

Procedure to delete a node from AVL tree:

Let w be the node to be deleted

1. Perform standard BST delete for w.

2. Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced node, y

be the larger height child of z, and x be the larger height child of y. Note that the definitions of x and y

are different from insertion here.

3. Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be

4 possible cases that needs to be handled as x, y and z can be arranged in 4 ways. Following are the

possible 4 arrangements:

i. y is left child of z and x is left child of y (Left Left Case)

ii. y is left child of z and x is right child of y (Left Right Case)

iii. y is right child of z and x is right child of y (Right Right Case)

iv. y is right child of z and x is left child of y (Right Left Case)

class TreeNode
{

 int val, height;
 TreeNode left, right;

 TreeNode(int d) {

https://www.geeksforgeeks.org/avl-tree-set-1-insertion/

317 | P a g e

 val = d;
 height = 1;
 }
}

class AVL_Tree {

 TreeNode leftRotate(TreeNode z)

{
Write code here
}

 TreeNode rightRotate(TreeNode z)

{
Write code here

 }

 TreeNode insert(TreeNode node, int key)

{
Write code here

 }

11.3 Count Greater Nodes in AVL Tree

Given an AVL tree, calculate number of elements which are greater than given value in AVL tree.

Input: x = 5

 Root of below AVL tree

 9

 / \

 1 10

 / \ \

 0 5 11

 / / \

 -1 2 6

Output: 4

Explanation: There are 4 values which are greater than 5 in AVL tree which are 6, 9, 10 and 11.

class TreeNode {
 int key, height, desc;
 TreeNode left, right;

 TreeNode(int d) {
 key = d;
 height = 1;
 desc = 0;
 }
}

class AVL_Tree

{
Write code here

 }

 TreeNode insert(TreeNode node, int key)

{
Write code here

 }
 TreeNode minValueNode(TreeNode node)

https://www.geeksforgeeks.org/avl-tree-set-1-insertion/

318 | P a g e

{
Write code here
}

 TreeNode deleteNode(TreeNode root, int key)

{
 # Write code here
}

void preOrder(TreeNode node)
{
Write code here
}

public class Main

{
Write code here

 }
}

 11.4 Minimum Number of Nodes in an AVL Tree with given Height

Given the height of an AVL tree ‘h’, the task is to find the minimum number of nodes the tree can have.

Input: H = 0

Output: N = 1

Only '1' node is possible if the height

of the tree is '0' which is the root node.

Input: H = 3

Output: N = 7

Recursive approach:

In an AVL tree, we have to maintain the height balance property, i.e. difference in the height of the left and

the right subtrees cannot be other than -1, 0 or 1 for each node.

We will try to create a recurrence relation to find minimum number of nodes for a given height, n(h).

• For height = 0, we can only have a single node in an AVL tree, i.e. n(0) = 1

• For height = 1, we can have a minimum of two nodes in an AVL tree, i.e. n(1) = 2

• Now for any height ‘h’, root will have two subtrees (left and right). Out of which one has to be of

height h-1 and other of h-2. [root node excluded]

• So, n(h) = 1 + n(h-1) + n(h-2) is the required recurrence relation for h>=2 [1 is added for the root

node]

public class AVLTreeMinimumNodes {

 public static int AVLnodes(int height)

{
Write code here

 }

 public static void main(String[] args) {
 int H = 3;
 System.out.println(AVLnodes(H)); // Output: 4
 }
}

319 | P a g e

12. Graph Traversal

12.1 Breadth First Search

The Breadth First Search (BFS) algorithm is used to search a graph data structure for a node that meets a

set of criteria. It starts at the root of the graph and visits all nodes at the current depth level before moving

on to the nodes at the next depth level.

For a given graph G, print BFS traversal from a given source vertex.

import java.util.*;

public class Graph {
 private Map<Integer, List<Integer>> graph;

 public Graph()

{
 graph = new HashMap<>();
 }

 public void addEdge(int u, int v) {
 if (!graph.containsKey(u)) {
 graph.put(u, new ArrayList<>());
 }
 graph.get(u).add(v);
 }

 public void BFS(int s)
{
Write code here
}

 public static void main(String[] args)

{
Write code here

 }
}

Output: Following is Breadth First Traversal (starting from vertex 2)

2 0 3 1

12.2 Depth First Search

Depth First Traversal (or DFS) for a graph is similar to Depth First Traversal of a tree. The only catch here

is, that, unlike trees, graphs may contain cycles (a node may be visited twice). To avoid processing a node

more than once, use a boolean visited array. A graph can have more than one DFS traversal.

For a given graph G, print DFS traversal from a given source vertex.

Input: n = 4, e = 6

0 -> 1, 0 -> 2, 1 -> 2, 2 -> 0, 2 -> 3, 3 -> 3

Output: DFS from vertex 1: 1 2 0 3

Explanation:

DFS Diagram:

https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

320 | P a g e

Input: n = 4, e = 6

2 -> 0, 0 -> 2, 1 -> 2, 0 -> 1, 3 -> 3, 1 -> 3

Output: DFS from vertex 2: 2 0 1 3

Explanation:

DFS Diagram:

import java.util.*;
class Graph {
 private Map<Integer, List<Integer>> graph;

 public Graph() {
 // Initialize the graph as a HashMap of ArrayLists
 graph = new HashMap<>();
 }
 public void addEdge(int u, int v)

{
Write code here

 }

 public void DFS(int v) {

 DFSUtil(v, visited);
 }
 public static void main(String[] args)

{
Write code here

 }

}

12.3 Best First Search (Informed Search)

The idea of Best First Search is to use an evaluation function to decide which adjacent is most promising

and then explore. Best First Search falls under the category of Heuristic Search or Informed Search.

321 | P a g e

Implementation of Best First Search:

We use a priority queue or heap to store the costs of nodes that have the lowest evaluation function value.

So the implementation is a variation of BFS, we just need to change Queue to PriorityQueue.

Algorithm:

Best-First-Search(Graph g, Node start)

 1) Create an empty PriorityQueue

 PriorityQueue pq;

 2) Insert "start" in pq.

 pq.insert(start)

 3) Until PriorityQueue is empty

 u = PriorityQueue.DeleteMin

 If u is the goal

 Exit

 Else

 Foreach neighbor v of u

 If v "Unvisited"

 Mark v "Visited"

 pq.insert(v)

 Mark u "Examined"

End procedure

Input: Consider the graph given below.

• We start from source “S” and search for goal “I” using given costs and Best First search.

• pq initially contains S

• We remove S from pq and process unvisited neighbors of S to pq.

• pq now contains {A, C, B} (C is put before B because C has lesser cost)

• We remove A from pq and process unvisited neighbors of A to pq.

• pq now contains {C, B, E, D}

• We remove C from pq and process unvisited neighbors of C to pq.

• pq now contains {B, H, E, D}

• We remove B from pq and process unvisited neighbors of B to pq.

• pq now contains {H, E, D, F, G}

• We remove H from pq.

• Since our goal “I” is a neighbor of H, we return.

import java.util.*;

public class BestFirstSearch {

322 | P a g e

 static int v = 14;
 static List<List<Pair<Integer, Integer>>> graph = new ArrayList<>();
 static void addedge(int x, int y, int cost) {
 graph.get(x).add(new Pair<>(y, cost));
 graph.get(y).add(new Pair<>(x, cost));
 }

 static void best_first_search(int actual_Src, int target, int n)

{
Write code here

 }

 public static void main(String[] args)

{
Write code here

 }
}

12.4 Breadth First Traversal of a Graph

Given a directed graph. The task is to do Breadth First Traversal of this graph starting from 0.

One can move from node u to node v only if there's an edge from u to v. Find the BFS traversal of the graph

starting from the 0th vertex, from left to right according to the input graph. Also, you should only take

nodes directly or indirectly connected from Node 0 in consideration.

Input: Consider the graph given below where V = 5, E = 4, edges = {(0,1), (0,2), (0,3), (2,4)}

Output: 0 1 2 3 4

Explanation:

0 is connected to 1, 2, and 3.

2 is connected to 4.

So starting from 0, it will go to 1 then 2 then 3. After this 2 to 4, thus BFS will be 0 1 2 3 4.

Input: Consider the graph given below where V = 3, E = 2, edges = {(0, 1), (0, 2)}

Output: 0 1 2

Explanation:

323 | P a g e

0 is connected to 1, 2. So starting from 0, it will go to 1 then 2, thus BFS will be 0 1 2.

Your task is to complete the function bfsOfGraph() which takes the integer V denoting the number of

vertices and adjacency list as input parameters and returns a list containing the BFS traversal of the graph

starting from the 0th vertex from left to right.

import java.util.*;

class Graph {
 private int V;
 private LinkedList<Integer>[] adj;

 Graph(int v) {
 V = v;
 adj = new LinkedList[v];
 for (int i = 0; i < v; ++i)
 adj[i] = new LinkedList();
 }

 void addEdge(int v, int w) {
 adj[v].add(w);
 }

 void BFS(int s)

{
Write Code Here

 }
 }

 public static void main(String args[]) {
 # Write Code Here
 }
}

12.5 Depth First Search (DFS) for Disconnected Graph

Given a Disconnected Graph, the task is to implement DFS or Depth First Search Algorithm for this

Disconnected Graph.

Input: Consider the graph given below.

Output: 0 1 2 3

Procedure for DFS on Disconnected Graph:

Iterate over all the vertices of the graph and for any unvisited vertex, run a DFS from that vertex.

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

324 | P a g e

// Class representing a directed graph using adjacency list representation
class Graph

{
 # Write Code Here
}

 public Graph()

{
 graph = new HashMap<>();
 }

 public void addEdge(int u, int v)

{
Write Code Here
}

 private void DFSUtil(int v, boolean[] visited)
{
Write Code Here
}

 }

 public void DFS() {
 boolean[] visited = new boolean[graph.size()];

Write Code Here
}

 public static void main(String[] args)

{
Write Code Here

 }
}

Try:

1. Detect a negative cycle in a Graph (Bellman Ford): A Bellman-Ford algorithm is also guaranteed to

find the shortest path in a graph, similar to Dijkstra’s algorithm. Although Bellman-Ford is slower than

Dijkstra’s algorithm, it is capable of handling graphs with negative edge weights, which makes it more

versatile. The shortest path cannot be found if there exists a negative cycle in the graph. If we continue to

go around the negative cycle an infinite number of times, then the cost of the path will continue to

decrease (even though the length of the path is increasing).

Consider a graph G and detect a negative cycle in the graph using Bellman Ford algorithm.

325 | P a g e

13. Minimum Spanning Tree (MST)

13.1 Kruskal’s Algorithm

In Kruskal’s algorithm, sort all edges of the given graph in increasing order. Then it keeps on adding new

edges and nodes in the MST if the newly added edge does not form a cycle. It picks the minimum weighted

edge at first and the maximum weighted edge at last.

MST using Kruskal’s algorithm:

4. Sort all the edges in non-decreasing order of their weight.

5. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If the cycle is

not formed, include this edge. Else, discard it.

6. Repeat step#2 until there are (V-1) edges in the spanning tree.

Kruskal’s algorithm to find the minimum cost spanning tree uses the greedy approach. The Greedy Choice is

to pick the smallest weight edge that does not cause a cycle in the MST constructed so far.

Input: For the given graph G find the minimum cost spanning tree.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 – 1) =

8 edges.

After sorting:

Weight Source Destination

1 7 6

2 8 2

2 6 5

4 0 1

4 2 5

6 8 6

7 2 3

7 7 8

8 0 7

8 1 2

9 3 4

10 5 4

11 1 7

14 3 5

Now pick all edges one by one from the sorted list of edges.

326 | P a g e

Output:

// Kruskal's algorithm to find minimum Spanning Tree of a given connected,
import java.util.*;

public class Graph {

 class Edge implements Comparable<Edge> {
 int src, dest, weight;

 // Comparator function used for sorting edges
 public int compareTo(Edge compareEdge) {
 return this.weight - compareEdge.weight;
 }
 }

 private int V; // Number of vertices
 private List<Edge> edges; // List of edges

 public Graph(int vertices) {
 this.V = vertices;
 this.edges = new ArrayList<>();
 }

 public void addEdge(int u, int v, int w)

{
Write Code Here
}

 private void union(int[] parent, int[] rank, int x, int y)
{
Write Code Here
}

 public void KruskalMST()

{
Write Code Here

 }
 public static void main(String[] args) {
 Graph g = new Graph(4);
 g.addEdge(0, 1, 10);
 g.addEdge(0, 2, 6);
 g.addEdge(0, 3, 5);
 g.addEdge(1, 3, 15);
 g.addEdge(2, 3, 4);

 // Function call
 g.KruskalMST();
 }

327 | P a g e

}
Output: Following are the edges in the constructed MST

2 -- 3 == 4

0 -- 3 == 5

0 -- 1 == 10

Minimum Cost Spanning Tree: 19

13.2 Prim’s Algorithm

The Prim’s algorithm starts with an empty spanning tree. The idea is to maintain two sets of vertices. The

first set contains the vertices already included in the MST, and the other set contains the vertices not yet

included. At every step, it considers all the edges that connect the two sets and picks the minimum weight

edge from these edges. After picking the edge, it moves the other endpoint of the edge to the set

containing MST.

Prim’s Algorithm:

The working of Prim’s algorithm can be described by using the following steps:

7. Determine an arbitrary vertex as the starting vertex of the MST.

8. Follow steps 3 to 5 till there are vertices that are not included in the MST (known as fringe vertex).

9. Find edges connecting any tree vertex with the fringe vertices.

10. Find the minimum among these edges.

11. Add the chosen edge to the MST if it does not form any cycle.

12. Return the MST and exit

Input: For the given graph G find the minimum cost spanning tree.

Output: The final structure of the MST is as follows and the weight of the edges of the MST is (4 + 8 + 1 +

2 + 4 + 2 + 7 + 9) = 37.

import java.util.Arrays;

public class Graph {

 private int V; // Number of vertices
 private int[][] graph; // Adjacency matrix representation of graph

 public Graph(int vertices) {
 this.V = vertices;
 this.graph = new int[V][V];

328 | P a g e

 }
 public void printMST(int[] parent) {
 System.out.println("Edge \tWeight");
 for (int i = 1; i < V; i++) {
 System.out.println(parent[i] + " - " + i + "\t" + graph[i][parent[i]]);
 }
 }
 private int minKey(int[] key, boolean[] mstSet)

{
 # Write Code Here

 }
 public void primMST()

{
 # Write Code Here

 }
 public static void main(String[] args)

{
 # Write Code Here

 }
}

Output:

Edge Weight

0 - 1 2

1 - 2 3

0 - 3 6

1 - 4 5

13.3 Total Number of Spanning Trees in a Graph

If a graph is a complete graph with n vertices, then total number of spanning trees is n(n-2) where n is the

number of nodes in the graph. In complete graph, the task is equal to counting different labeled trees with

n nodes for which have Cayley’s formula.

Laplacian matrix:

A Laplacian matrix L, where L[i, i] is the degree of node i and L[i, j] = −1 if there is an edge between nodes i

and j, and otherwise L[i, j] = 0.

Kirchhoff’s theorem provides a way to calculate the number of spanning trees for a given graph as a

determinant of a special matrix. Consider the following graph,

All possible spanning trees are as follows:

329 | P a g e

In order to calculate the number of spanning trees, construct a Laplacian matrix L, where L[i, i] is the degree

of node i and L[i, j] = −1 if there is an edge between nodes i and j, and otherwise L[i, j] = 0.

for the above graph, The Laplacian matrix will look like this

The number of spanning trees equals the determinant of a matrix.

The Determinant of a matrix that can be obtained when we remove any row and any column from L.

For example, if we remove the first row and column, the result will be,

The determinant is always the same, regardless of which row and column we remove from L.

import java.util.Arrays;

public class NumberOfSpanningTrees {

 static final int MAX = 100;
 static final int MOD = 1000000007;
 void multiply(long[][] A, long[][] B, long[][] C, int size) {
 for (int i = 0; i < size; i++) {
 for (int j = 0; j < size; j++) {
 C[i][j] = 0;
 for (int k = 0; k < size; k++) {
 C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD;
 }
 }
 }
 }
 void power(long[][] A, int N, long[][] result, int size)

{
Write Code Here
}

 long numOfSpanningTree(int[][] graph, int V)

{
Write Code Here

 }

 public static void main(String[] args) {
 int V = 4; // Number of vertices in graph
 int E = 5; // Number of edges in graph
 int[][] graph = { { 0, 1, 1, 1 }, { 1, 0, 1, 1 }, { 1, 1, 0, 1 }, { 1, 1, 1, 0
} };

 NumberOfSpanningTrees obj = new NumberOfSpanningTrees();

330 | P a g e

 System.out.println(obj.numOfSpanningTree(graph, V));
 }
}

13.4 Minimum Product Spanning Tree

A minimum product spanning tree for a weighted, connected, and undirected graph is a spanning tree with

a weight product less than or equal to the weight product of every other spanning tree. The weight product

of a spanning tree is the product of weights corresponding to each edge of the spanning tree. All weights

of the given graph will be positive for simplicity.

Input:

Output: Minimum Product that we can obtain is 180 for above graph by choosing edges 0-1, 1-2, 0-3 and

1-4

This problem can be solved using standard minimum spanning tree algorithms like Kruskal and prim’s

algorithm, but we need to modify our graph to use these algorithms. Minimum spanning tree algorithms

tries to minimize the total sum of weights, here we need to minimize the total product of weights. We can

use the property of logarithms to overcome this problem.

log(w1* w2 * w3 * …. * wN) = log(w1) + log(w2) + log(w3) ….. + log(wN)

We can replace each weight of the graph by its log value, then we apply any minimum spanning tree

algorithm which will try to minimize the sum of log(wi) which in turn minimizes the weight product.

import java.util.Arrays;

public class MinimumProductMST {
 // Number of vertices in the graph
 static final int V = 5;

 // A utility function to find the vertex with minimum key value, from the set of
 // vertices not yet included in MST
 int minKey(int key[], boolean mstSet[]) {
 int min = Integer.MAX_VALUE, min_index = -1;

 for (int v = 0; v < V; v++) {
 if (mstSet[v] == false && key[v] < min) {
 min = key[v];
 min_index = v;
 }
 }

 return min_index;
 }

 void printMST(int parent[], int n, int graph[][])

{
Write Code Here
}

 void primMST(int inputGraph[][], int logGraph[][])
{
Write Code Here

331 | P a g e

}
 void minimumProductMST(int graph[][])

{
Write Code Here
}

 public static void main(String[] args)
 {
 # Write Code Here
 }
}

13.5 Reverse Delete Algorithm for Minimum Spanning Tree

In Reverse Delete algorithm, we sort all edges in decreasing order of their weights. After sorting, we one by

one pick edges in decreasing order. We include current picked edge if excluding current edge causes

disconnection in current graph. The main idea is delete edge if its deletion does not lead to disconnection

of graph.

Algorithm:

1. Sort all edges of graph in non-increasing order of edge weights.

2. Initialize MST as original graph and remove extra edges using step 3.

3. Pick highest weight edge from remaining edges and check if deleting the edge disconnects the

graph or not.

 If disconnects, then we don’t delete the edge.

Else we delete the edge and continue.

Input: Consider the graph below

If we delete highest weight edge of weight 14, graph doesn’t become disconnected, so we remove it.

Next we delete 11 as deleting it doesn’t disconnect the graph.

https://www.geeksforgeeks.org/check-removing-given-edge-disconnects-given-graph/
https://www.geeksforgeeks.org/check-removing-given-edge-disconnects-given-graph/

332 | P a g e

Next we delete 10 as deleting it doesn’t disconnect the graph.

Next is 9. We cannot delete 9 as deleting it causes disconnection.

We continue this way and following edges remain in final MST.

Edges in MST

(3, 4)

(0, 7)

(2, 3)

(2, 5)

(0, 1)

(5, 6)

(2, 8)

(6, 7)

import java.util.ArrayList;
import java.util.Collections;

// Edge class to represent edges in the graph
class Edge {
 int src, dest, weight;

 Edge(int src, int dest, int weight) {
 this.src = src;

333 | P a g e

 this.dest = dest;
 this.weight = weight;
 }
}
class Graph

{
Write Code Here

 }

 // Function to add an edge to the graph
 void addEdge(int u, int v, int w) {
 # Write Code Here
 }
 void dfs(int v, boolean[] visited)

{
 # Write Code Here
 }

 // Function to check if the graph is connected
 boolean connected()
 {
 # Write Code Here
 }
void reverseDeleteMST()
 {
 # Write Code Here
 }
}

public class ReverseDeleteMST {
 public static void main(String[] args)
 {
 # Write Code Here
 }
}

Try:

1. Detect Cycle in a Directed Graph: Given the root of a Directed graph, The task is to check whether the

graph contains a cycle or not.

Input: N = 4, E = 6

Output: Yes

Explanation: The diagram clearly shows a cycle 0 -> 2 -> 0

334 | P a g e

14. Final Notes

The only way to learn programming is program, program and program on challenging problems. The

problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging problems

available – used in training for various programming contests (such as International Collegiate

Programming Contest (ICPC), International Olympiad in Informatics (IOI)). Check out these sites:

• The ACM - ICPC International collegiate programming contest (https://icpc.global/)

• The Topcoder Open (TCO) annual programming and design contest (https://www.topcoder.com/)

• Universidad de Valladolid’s online judge (https://uva.onlinejudge.org/).

• Peking University’s online judge (http://poj.org/).

• USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

• Google’s coding competitions (https://codingcompetitions.withgoogle.com/codejam,

https://codingcompetitions.withgoogle.com/hashcode)

• The ICFP programming contest (https://www.icfpconference.org/)

• BME International 24-hours programming contest (https://www.challenge24.org/)

• The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

• Internet Problem Solving Contest (https://ipsc.ksp.sk/)

• Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

• Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

• OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

Students must solve problems and attain scores in the following coding contests:

 Name of the contest Minimum number of problems to solve Required score

• CodeChef 20 200

• Leetcode 20 200

• GeeksforGeeks 20 200

• SPOJ 5 50

• InterviewBit 10 1000

• Hackerrank 25 250

• Codeforces 10 100

• BuildIT 50 500

Total score need to obtain 2500

Student must have any one of the following certification:

2. HackerRank - Problem Solving Skills Certification (Basic and Intermediate)

2. GeeksforGeeks – Data Structures and Algorithms Certification

3. CodeChef - Learn Data Structures and Algorithms Certification

4. Interviewbit – DSA pro / Python pro

5. Edx – Data Structures and Algorithms

5. NPTEL – Programming, Data Structures and Algorithms

6. NPTEL – Introduction to Data Structures and Algorithms

7. NPTEL – Data Structures and Algorithms

8. NPTEL – Programming and Data Structure

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/
https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/

335 | P a g e

V. TEXT BOOKS:

1. Rance D. Necaise, “Data Structures and Algorithms using Python”, Wiley Student Edition.

2. Benjamin Baka, David Julian, “Python Data Structures and Algorithms”, Packt Publishers, 2017.

VI. REFERENCE BOOKS:

1. S. Lipschutz, “Data Structures”, Tata McGraw Hill Education, 1st Edition, 2008.

2. D. Samanta, “Classic Data Structures”, PHI Learning, 2nd Edition, 2004.

VII. ELECTRONICS RESOURCES:

1. https://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm

2. https://www.codechef.com/certification/data-structures-and-algorithms/prepare

3. https://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html

4. https://online-learning.harvard.edu/course/data-structures-and-algorithms

VIII. MATERIALS ONLINE

3. Syllabus

4. Lab manual

COURSE CONTENT

OPERATING SYSTEMS LABORATORY

III Semester: CSE / IT / CSE (AI&ML) / CSE (DS) / CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks

ACSD10 Core
L T P C CIA SEE Total

0 0 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisites: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

The course covers some of the design aspects of operating system concepts. Topics covered include process

scheduling, memory management, deadlocks, disk scheduling strategies, and file allocation methods. The main

objective of the course is to teach the students how to select and design algorithms that are appropriate for

problems that they might encounter in real life.

II. COURSE OBJECTIVES

 The students will try to learn:

I. The functionalities of main components in operating systems and analyze the algorithms used in

process management.

II. Algorithms used in memory management and I/O management

III. Different methods for preventing or avoiding deadlocks and File systems.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Acquire knowledge of the operating system structure and process

CO2 Analyze the performance of process scheduling algorithms

CO3 Evaluate the process memory requirement and its fragmentation.

CO4 Analyze the safe state and deadlock mechanism

CO5 Analyze the performance of the disk scheduling algorithms

CO6 Ability to simulate file structures and allocation methods

336

IV. COURSE CONTENT:

OPERATING SYSTEMS LABORATORY COURSE CONTENT

S No. Topic Name Page No.

15. Getting Started Exercises

k. The Busy Printer

l. The Software Developer’s Tasks

m. Managing a Restaurant’s Orders

n. Emergency Room Prioritization

5

16. Multi-Level Queue Scheduling

f. Managing System and User Processes

g. Managing Job Scheduling in a Computing Center

h. Managing Print Jobs in a Shared Printing Environment

i. Task Scheduling in a Multi-User System

j. Job Scheduling in a Computing Cluster

9

17. File Allocation Strategies

d. Managing Student Records in a School Database

e. Managing Medical Records in a Hospital Information System

f. Managing Digital Media Files in a Multimedia Application

g. DigitalArchive

h. EnterpriseX

17

18. Memory Management

a. Memory Variable Technique (MVT)

b. Best Fit Memory Allocation

c. Worst Fit Memory ALlocation

d. Multiprogramming with a Fixed Number of Tasks (MFT)

e. Simulating Paging Memory management

25

19. Contiguous Memory Allocation

f. Futuristic Space Station

g. CentralAI

h. MetroCentral

i. AI Lab

j. MedTech Hospital

32

20. Paging Memory Management

f. CloudTech

g. EduTech University

h. GameTech Studios

i. MedCare Hospital

j. ShopMart

42

21. Resource Allocation

h. UrbanOS – Resource Allocation Graph

i. UrbanOS – Wait for Graph

j. The Library Conference

k. The Dining Philosophers

l. Banker’s Algorithm

51

22. Disk Scheduling

f. The Disk Access Dilemma

g. The SSTF Disk Scheduling Challenge

61

337

h. FutureTech Corporation

i. The C-Scan Disk Scheduling Odyssey

j. The C-SCAN Disk Scheduling Quest at TechFusion Labs

23. Concurrency Control

f. The Tale of the Library Management System

g. The Tale of the Restaurant Reservation System

h. The Tale of the Online Shopping Cart System

i. The Tale of the Collaborative Document Editing System

j. The Tale of the Bank Account Management System

70

24. Page Replacement Algorithms

f. The Story of a Busy Café and Its Orders

g. The Tale of the Library and Its Book Shelves

h. The Story of the Busy Café and Its Special Recipe Book

i. The Tale of the Art Gallery and Its Exhibition

j. The Tale of the Library and Its Popular Books

78

25. Process Synchronization

e. The Tale of the Bakery and Its Busy Kitchen

f. The Tale of the Busy Coffee Shop and Its Coffee Machines

g. The Tale of the Conference Room and Its Reservations

h. The Tale of the Restaurant Kitchen and Its Limited Resources

i. The Tale of the Garden and Its Watering Schedule

87

26. Deadlock and Prevention

f. The Tale of the Printing Press and Its Inks

g. The Tale of the Library and Its Book Reservations

h. The Tale of the Automated Warehouse and Its Robots

i. The Tale of the Coffee Shop and Its Baristas

j. The Tale of the Theater Production and Its Props

93

27. Additional Problems - Queuing Theory

e. Customer Service - M/M/1 Queue Analysis

f. Telecommunication Company - M/M/c Queue Analysis

g. The Tale of the Busy Call Center and Its Call Routing System

h. The Tale of the Hospital Emergency Room (ER)

i. The Tale of the Online Gaming Server

99

338

EXERCISES FOR OPERATING SYSTEMS LABORATORY

Note: Students are encouraged to bring their own laptops for

laboratory practice sessions.

1. Getting Started Exercises

1.1 The Busy Printer

Imagine a IARE computer lab with a single printer that serves multiple students. The lab operates on a

first-come, first-served basis for print jobs.

One morning, the lab opens, and the printer is ready to accept jobs. The following print jobs arrive in

sequence:

Job A: Submitted by A, consisting of 10 pages.

Job B: Submitted by B, consisting of 5 pages.

Job C: Submitted by C, consisting of 3 pages.

Job D: Submitted by D, consisting of 7 pages.

Each job arrives at the lab at different times, and they start printing immediately upon arrival. The

printer processes each job in the order it arrives, and each job completes printing without interruption.

Your task is to simulate the FCFS scheduling algorithm for these print jobs and calculate the total time

taken to complete all printing tasks, assuming that the printer prints at a rate of 1 page per second.

Input: The arrival time of each job (in seconds). The number of pages to be printed for each job.

Job A: Arrival time = 0 seconds, Pages = 10

Job B: Arrival time = 1 second, Pages = 5

Job C: Arrival time = 3 seconds, Pages = 3

Job D: Arrival time = 5 seconds, Pages = 7

Output: The total time (in seconds) taken to complete all printing tasks.

27 seconds

Assumptions:

The printer starts immediately on each job's arrival.

No additional delay between jobs.

Explanation:

Job A arrives first at time 0 and takes 10 seconds to print (10 pages).

Job B arrives at time 1 and starts printing immediately after Job A completes. It takes 5 seconds to

print (5 pages).

Job C arrives at time 3 and starts immediately after Job B completes. It takes 3 seconds to print (3

pages).

Job D arrives at time 5 and starts immediately after Job C completes. It takes 7 seconds to print (7

pages).

Thus, the total time taken to complete all print jobs is 27 seconds.

def calculate_total_time(arrival_times, pages):

339

 current_time = 0
 total_time = 0

 for i in range(len(arrival_times)):
 # Write code here

Driver Code
arrival_times = [0, 1, 3, 5]
pages = [10, 5, 3, 7]

total_time = calculate_total_time(arrival_times, pages)

print(f"The total time taken to complete all printing tasks is: {total_time}
seconds")

1.2 The Software Developer's Tasks

Sophia, a software developer, has several programming tasks to complete in her project. Each task

requires a different amount of time to finish. She decides to use the SJF scheduling algorithm to

manage her tasks efficiently.

Here are the tasks she needs to complete:

• Task A: Writing a simple utility function, which takes 3 hours.

• Task B: Debugging a critical issue in the main application, which takes 5 hours.

• Task C: Refactoring a complex module, which takes 7 hours.

• Task D: Testing and documenting a new feature, which takes 4 hours.

Sophia decides to implement the SJF algorithm for scheduling these tasks based on their execution

times.

Your task is to simulate the SJF scheduling algorithm for Sophia's tasks and calculate the total time

required to complete all tasks, assuming that each task starts immediately after the previous one is

completed.

Input: Execution times of each task.

Task A: 3 hours

Task B: 5 hours

Task C: 7 hours

Task D: 4 hours

Output: The total time (in hours) required to complete all tasks.

19 hours

Assumptions: The tasks are executed in the order of their shortest to longest execution times using

SJF.

Each task starts immediately after the previous one is completed.

Explanation:

Using SJF, the tasks will be scheduled in the following order:

Task A (3 hours)

Task D (4 hours)

Task B (5 hours)

340

Task C (7 hours)

Thus, the total time required to complete all tasks is 19 hours.

def calculate_total_time(execution_times):
 # Write code here
 return total_time

Driver Code
execution_times = [3, 5, 7, 4]
total_time = calculate_total_time(execution_times)

print(f"The total time required to complete all tasks is: {total_time} hours")

1.3 Managing a Restaurant's Orders

Imagine you are managing a busy restaurant where orders from different tables need to be processed.

Each order requires a different amount of time to be prepared and served. To efficiently manage the

kitchen staff and ensure timely service, you decide to implement the Round Robin scheduling

algorithm for processing orders.

Here are the details of the current orders:

Order from Table 1: Burger and Fries, which takes 5 minutes to prepare.

Order from Table 2: Salad, which takes 3 minutes to prepare.

Order from Table 3: Pizza, which takes 8 minutes to prepare.

Order from Table 4: Pasta, which takes 6 minutes to prepare.

You decide to implement Round Robin with a time quantum of 4 minutes. This means each order will

receive processing time in chunks of 4 minutes until it is completed or until it reaches its final

processing time.

Your task is to simulate the Round Robin scheduling algorithm for processing these orders and

calculate the total time required to complete all orders, considering the time quantum.

Input: Processing times of each order. Time quantum for Round Robin scheduling.

Order from Table 1: Burger and Fries (5 minutes)

Order from Table 2: Salad (3 minutes)

Order from Table 3: Pizza (8 minutes)

Order from Table 4: Pasta (6 minutes)

Time Quantum: 4 minutes

Output: The total time (in minutes) required to complete all orders.

22 minutes

Assumptions:

Each order starts processing immediately.

If an order cannot be completed within one quantum, it will continue in subsequent rounds.

Process orders in the order they were received.

Explanation:

Round 1:

341

Table 1 (Burger and Fries) - Processed for 4 minutes.

Table 2 (Salad) - Processed for 3 minutes (completed).

Table 3 (Pizza) - Processed for 4 minutes.

Table 4 (Pasta) - Processed for 4 minutes.

Round 2:

Table 1 (Burger and Fries) - Processed for remaining 1 minute.

Table 3 (Pizza) - Processed for remaining 4 minutes.

Table 4 (Pasta) - Processed for remaining 2 minutes (completed).

Thus, the total time required to complete all orders using Round Robin scheduling with a time

quantum of 4 minutes is 22 minutes.

from collections import deque

def calculate_total_time(orders, time_quantum):
 # Write code here
 return total_time

Driver Code
orders = [5, 3, 8, 6]
time_quantum = 4
total_time = calculate_total_time(orders, time_quantum)
print(f"The total time required to complete all orders is: {total_time} minutes")

1.4 Emergency Room Prioritization

You are managing an emergency room in a hospital where patients arrive with different medical

conditions. Each patient requires a different level of urgency for treatment. To ensure critical cases are

handled promptly, you decide to implement the Priority Scheduling algorithm for patient treatment.

Here are the details of the patients currently in the emergency room:

Patient A: Has suffered a heart attack and requires immediate attention, priority level 1.

Patient B: Has a broken arm and needs urgent treatment, priority level 2.

Patient C: Has a high fever and needs attention soon, priority level 3.

Patient D: Has a minor cut and can wait, priority level 4.

You decide to implement Priority Scheduling where patients with higher priority levels are treated first.

If two patients have the same priority level, they are treated in the order they arrived.

Your task is to simulate the Priority Scheduling algorithm for treating these patients and calculate the

total time required to treat all patients, considering their priority levels.

Input: Priority levels of each patient. Treatment times for each patient.

Patient A: Priority 1, Treatment time 10 minutes

Patient B: Priority 2, Treatment time 8 minutes

Patient C: Priority 3, Treatment time 15 minutes

Patient D: Priority 4, Treatment time 5 minutes

342

Output: The total time (in minutes) required to treat all patients.

38 minutes

Assumptions: Each patient starts treatment immediately upon arrival.

Patients are treated based on their priority levels (lower number = higher priority).

If two patients have the same priority level, they are treated in the order they arrived.

Explanation:

Patients are treated in the following order based on their priority:

Patient A (Priority 1, 10 minutes)

Patient B (Priority 2, 8 minutes)

Patient C (Priority 3, 15 minutes)

Patient D (Priority 4, 5 minutes)

Thus, the total time required to treat all patients using Priority Scheduling is 38 minutes.

from queue import PriorityQueue

def calculate_total_time(patients):
 # Write code here
 return total_time

Drive Code
patients = [(1, 10), # Patient A: Priority 1, Treatment time 10 minutes
 (2, 8), # Patient B: Priority 2, Treatment time 8 minutes
 (3, 15), # Patient C: Priority 3, Treatment time 15 minutes
 (4, 5) # Patient D: Priority 4, Treatment time 5 minutes
]

total_time = calculate_total_time(patients)
print(f"The total time required to treat all patients is: {total_time} minutes")

2. Multi-Level Queue Scheduling

2.1 Managing System and User Processes

You are managing a computer system that runs various types of processes, categorized into system

processes and user processes. System processes are critical for the functioning of the operating

system and are given higher priority compared to user processes. To efficiently manage these

processes, you decide to implement a Multi-Level Queue Scheduling algorithm with FCFS scheduling

for each queue.

Here's the breakdown of the processes currently in the system:

System Process Queue:

Process A: Handles file system operations, takes 5 units of time to complete.

Process B: Manages memory allocation, takes 3 units of time to complete.

Process C: Performs system updates, takes 7 units of time to complete.

User Process Queue:

Process D: Runs a word processor, takes 4 units of time to complete.

Process E: Executes a media player, takes 2 units of time to complete.

Process F: Performs data analysis, takes 6 units of time to complete.

343

Implement the Multi-Level Queue Scheduling algorithm where system processes are scheduled with

higher priority compared to user processes. Within each queue (system and user), processes are

scheduled using FCFS.

Your task is to simulate the scheduling of these processes and calculate the total time required to

complete all processes, considering the priorities and FCFS scheduling within each queue.

Input: Processing times for each process in the system and user queues.

System Processes:

Process A: 5 units

Process B: 3 units

Process C: 7 units

User Processes:

Process D: 4 units

Process E: 2 units

Process F: 6 units

Output: The total time (in units) required to complete all processes.

27 units

Assumptions: Each process starts execution immediately upon arrival. System processes have higher

priority over user processes. FCFS scheduling is applied within each queue (system and user).

Explanation:

System Process Queue:

Process A (5 units)

Process B (3 units)

Process C (7 units)

User Process Queue:

Process D (4 units)

Process E (2 units)

Process F (6 units)

The total time required to complete all processes using Multi-Level Queue Scheduling with FCFS

within each queue is 27 units.

from queue import Queue

def calculate_total_time(system_processes, user_processes):
 # Write code here
 return total_time

Driver Code
system_processes = {'Process A': 5,'Process B': 3,'Process C': 7,}

user_processes = {'Process D': 4, 'Process E': 2, 'Process F': 6,}

total_time = calculate_total_time (system_processes, user_processes)
print(f"The total time required to complete all processes is: {total_time} units")

344

2.2 Managing Job Scheduling in a Computing Center

You are managing a computing center that processes jobs submitted by various departments of an

organization. Jobs are categorized into two priority levels: high priority (system jobs) and low priority

(user jobs). Each job has a specific processing time required for completion.

Here are the details of the jobs currently in the system:

High Priority (System) Jobs:

Job A: Performs critical database backups, takes 8 units of time to complete.

Job B: Handles real-time monitoring tasks, takes 5 units of time to complete.

Job C: Executes system updates, takes 10 units of time to complete.

Low Priority (User) Jobs:

Job D: Runs periodic report generation, takes 6 units of time to complete.

Job E: Processes email delivery, takes 3 units of time to complete.

Job F: Executes batch data processing, takes 7 units of time to complete.

Implement the Multi-Level Queue Scheduling algorithm where high priority (system) jobs are

scheduled with higher priority compared to low priority (user) jobs. Within each queue (high and low

priority), jobs are scheduled using FCFS.

Your task is to simulate the scheduling of these jobs and calculate the total time required to complete

all jobs, considering the priorities and FCFS scheduling within each queue.

Input: Processing times for each job in the high and low priority queues.

High Priority Jobs:

Job A: 8 units

Job B: 5 units

Job C: 10 units

Low Priority Jobs:

Job D: 6 units

Job E: 3 units

Job F: 7 units

Output: The total time (in units) required to complete all jobs.

39 units

Assumptions: Each job starts execution immediately upon arrival. High priority (system) jobs have

higher priority over low priority (user) jobs. FCFS scheduling is applied within each queue (high and

low priority).

Explanation:

High Priority (System) Jobs:

Job A (8 units)

Job B (5 units)

Job C (10 units)

Low Priority (User) Jobs:

Job D (6 units)

Job E (3 units)

Job F (7 units)

345

The total time required to complete all jobs using Multi-Level Queue Scheduling with FCFS within

each queue is 39 units.

from queue import Queue

def calculate_total_time(high_priority_jobs, low_priority_jobs):
 # Write code here
 return total_time

Write code here
high_priority_jobs = {'Job A': 8, 'Job B': 5, 'Job C': 10,}

low_priority_jobs = {'Job D': 6, 'Job E': 3, 'Job F': 7,}

total_time = calculate_total_time(high_priority_jobs, low_priority_jobs)

print(f"The total time required to complete all jobs is: {total_time} units")

2.3 Managing Print Jobs in a Shared Printing Environment

You are managing a shared printing environment where print jobs from different departments are

queued up for processing. Print jobs are categorized into two priority levels: high priority (system jobs)

and low priority (user jobs). Each job has a specific processing time required for printing.

Here are the details of the print jobs currently in the system:

High Priority (System) Print Jobs:

Job A: Urgent report for management, takes 15 units of time to print.

Job B: Critical financial statement, takes 10 units of time to print.

Job C: Emergency document for legal department, takes 20 units of time to print.

Low Priority (User) Print Jobs:

Job D: Regular office memo, takes 5 units of time to print.

Job E: Marketing flyer, takes 8 units of time to print.

Job F: Personal document for an employee, takes 3 units of time to print.

Implement the Multi-Level Queue Scheduling algorithm where high priority (system) print jobs are

scheduled with higher priority compared to low priority (user) print jobs. Within each queue (high and

low priority), print jobs are scheduled using FCFS.

Your task is to simulate the scheduling of these print jobs and calculate the total time required to

complete all print jobs, considering the priorities and FCFS scheduling within each queue.

Input: Printing times for each job in the high and low priority queues.

High Priority Print Jobs:

Job A: 15 units

Job B: 10 units

Job C: 20 units

Low Priority Print Jobs:

Job D: 5 units

Job E: 8 units

Job F: 3 units

346

Output: The total time (in units) required to complete all print jobs.

61 units

Assumptions: Each print job starts printing immediately upon arrival. High priority (system) print jobs

have higher priority over low priority (user) print jobs. FCFS scheduling is applied within each queue

(high and low priority).

Explanation:

High Priority (System) Print Jobs:

Job A (15 units)

Job B (10 units)

Job C (20 units)

Low Priority (User) Print Jobs:

Job D (5 units)

Job E (8 units)

Job F (3 units)

The total time required to complete all print jobs using Multi-Level Queue Scheduling with FCFS

within each queue is 61 units.

from queue import Queue

def calculate_total_time(high_priority_jobs, low_priority_jobs):
 # Write code here
 return total_time

Driver Code
high_priority_jobs = {'Job A': 15, 'Job B': 10, 'Job C': 20,}

low_priority_jobs = {'Job D': 5, 'Job E': 8, 'Job F': 3,}

total_time = calculate_total_time(high_priority_jobs, low_priority_jobs)

print(f"The total time required to complete all print jobs is: {total_time}
units")

2.4 Task Scheduling in a Multi-User System

You are managing a multi-user system where tasks from different users need to be scheduled for

processing. Tasks are categorized into two priority levels: high priority (system tasks) and low priority

(user tasks). Each task has a specific processing time required for completion.

Here are the details of the tasks currently in the system:

High Priority (System) Tasks:

Task A: Performs critical system maintenance, takes 12 units of time to complete.

Task B: Executes essential security updates, takes 8 units of time to complete.

Task C: Handles real-time data processing, takes 15 units of time to complete.

Low Priority (User) Tasks:

Task D: Runs a background data synchronization process, takes 6 units of time to complete.

347

Task E: Processes user-generated reports, takes 4 units of time to complete.

Task F: Executes regular data backups, takes 10 units of time to complete.

Implement the Multi-Level Queue Scheduling algorithm where high priority (system) tasks are

scheduled with higher priority compared to low priority (user) tasks. Within each queue (high and low

priority), tasks are scheduled using FCFS.

Your task is to simulate the scheduling of these tasks and calculate the total time required to complete

all tasks, considering the priorities and FCFS scheduling within each queue.

Input: Processing times for each task in the high and low priority queues.

High Priority Tasks:

Task A: 12 units

Task B: 8 units

Task C: 15 units

Low Priority Tasks:

Task D: 6 units

Task E: 4 units

Task F: 10 units

Output: The total time (in units) required to complete all tasks.

55 units

Assumptions: Each task starts processing immediately upon arrival. High priority (system) tasks have

higher priority over low priority (user) tasks. FCFS scheduling is applied within each queue (high and

low priority).

Explanation:

High Priority (System) Tasks:

Task A (12 units)

Task B (8 units)

Task C (15 units)

Low Priority (User) Tasks:

Task D (6 units)

Task E (4 units)

Task F (10 units)

The total time required to complete all tasks using Multi-Level Queue Scheduling with FCFS within

each queue is 55 units.

from queue import Queue

def calculate_total_time(high_priority_tasks, low_priority_tasks):
 # Write code here
 return total_time

Driver Code
high_priority_tasks = {'Task A': 12, 'Task B': 8, 'Task C': 15,}

low_priority_tasks = {'Task D': 6, 'Task E': 4, 'Task F': 10, }

348

total_time = calculate_total_time(high_priority_tasks, low_priority_tasks)

print(f"The total time required to complete all tasks is: {total_time} units")

2.5 Job Scheduling in a Computing Cluster

You are managing a computing cluster that processes jobs submitted by various departments of a

research institution. Jobs are categorized into three priority levels: high priority (critical jobs), medium

priority (standard jobs), and low priority (background jobs). Each job has a specific processing time

required for completion.

Here are the details of the jobs currently in the system:

High Priority (Critical) Jobs:

Job A: Performs complex simulations for a time-sensitive research project, takes 20 units of time to

complete.

Job B: Analyzes large datasets for an urgent analysis, takes 15 units of time to complete.

Job C: Executes critical experiments with strict deadlines, takes 25 units of time to complete.

Medium Priority (Standard) Jobs:

Job D: Runs routine data processing tasks, takes 10 units of time to complete.

Job E: Processes experimental results for ongoing studies, takes 12 units of time to complete.

Job F: Executes regular system maintenance tasks, takes 8 units of time to complete.

Low Priority (Background) Jobs:

Job G: Performs non-critical data backups, takes 5 units of time to complete.

Job H: Runs periodic log file analysis, takes 4 units of time to complete.

Job I: Executes routine software updates, takes 6 units of time to complete.

Implement the Multi-Level Queue Scheduling algorithm where jobs are scheduled based on their

priority levels: high priority jobs are scheduled first, followed by medium priority jobs, and then low

priority jobs. Within each priority level, jobs are scheduled using FCFS.

Your task is to simulate the scheduling of these jobs and calculate the total time required to complete

all jobs, considering the priorities and FCFS scheduling within each priority level.

Input: Processing times for each job in the high, medium, and low priority queues.

High Priority Jobs:

Job A: 20 units

Job B: 15 units

Job C: 25 units

Medium Priority Jobs:

Job D: 10 units

Job E: 12 units

Job F: 8 units

Low Priority Jobs:

Job G: 5 units

Job H: 4 units

Job I: 6 units

349

Output: The total time (in units) required to complete all jobs.

105 units

Assumptions: Each job starts execution immediately upon arrival. Jobs within higher priority levels

have higher priority over jobs in lower priority levels. FCFS scheduling is applied within each priority

level.

Explanation:

High Priority Jobs:

Job A (20 units)

Job B (15 units)

Job C (25 units)

Medium Priority Jobs:

Job D (10 units)

Job E (12 units)

Job F (8 units)

Low Priority Jobs:

Job G (5 units)

Job H (4 units)

Job I (6 units)

The total time required to complete all jobs using Multi-Level Queue Scheduling with FCFS within

each priority level is 105 units.

from queue import Queue

def calculate_total_time(high_priority_jobs, medium_priority_jobs,
low_priority_jobs):
 # Write code here
 return total_time

Driver Code
high_priority_jobs = {'Job A': 20, 'Job B': 15, 'Job C': 25,}

medium_priority_jobs = {'Job D': 10, 'Job E': 12, 'Job F': 8,}

low_priority_jobs = {'Job G': 5, 'Job H': 4, 'Job I': 6,}

total_time = calculate_total_time(high_priority_jobs, medium_priority_jobs,
low_priority_jobs)

print(f"The total time required to complete all jobs is: {total_time} units")

3. File Allocation Strategies

3.1 Managing Student Records in a School Database

You are tasked with designing a file management system for a school's student database. The

database contains records of students' personal information, academic performance, and attendance

history. Each student record is stored as a file with specific attributes.

350

Implement the Sequential File Allocation strategy to manage the storage and access of student

records in the school database.

Here's the scenario of the school database system:

The school has records for three students:

Student A: John Doe, ID 101, Grade 10, Address: 123 Main Street

Student B: Jane Smith, ID 102, Grade 11, Address: 456 Elm Street

Student C: Michael Brown, ID 103, Grade 9, Address: 789 Oak Avenue

Implement and simulate the Sequential File Allocation strategy for storing and accessing these

student records in the school database. Consider the following aspects:

File Structure: Each student record contains fields for Name, ID, Grade, and Address.

Storage: Files are stored sequentially one after another in contiguous blocks of disk space.

Access: A file allocation table (FAT) keeps track of the starting block address and the length of each

student record file.

Your task is to design a data structure or representation for the student records. Implement the

Sequential File Allocation strategy to store and retrieve student records. Calculate the total disk space

used and evaluate the efficiency of the strategy based on storage utilization and access times.

Assumptions: Disk space is divided into fixed-size blocks. Each student record is stored in whole

blocks (no partial blocks).

The Sequential File Allocation strategy should handle new record insertions, deletions, and updates

efficiently, considering disk fragmentation and access patterns. To simulate the Sequential File

Allocation strategy for managing student records in a school database, we'll create a Python program.

In this program, we'll represent each student record as a file with fields for Name, ID, Grade, and

Address. We'll use a list to simulate disk blocks and a file allocation table (FAT) to keep track of file

locations.

class StudentRecord:
 def __init__(self, name, student_id, grade, address):
 self.name = name
 self.student_id = student_id
 self.grade = grade
 self.address = address

 def __str__(self):
 return f"Name: {self.name}, ID: {self.student_id}, Grade: {self.grade},
Address: {self.address}"

class SequentialFileAllocation:
 def __init__(self, block_size):
 self.disk_blocks = []
 self.fat = {}
 self.block_size = block_size
 self.next_free_block = 0

 def add_record(self, student_record):
 # Write code here
 return True

 def get_record(self, student_id):

351

 # Write code here
 return None

 def calculate_record_size(self, student_record):

 # Write code here
 return 1

 def print_disk_status(self):
 # Write code here

Driver Code
block_size = 1
file_system = SequentialFileAllocation(block_size)
student_records = [
 StudentRecord ("John Doe", 101, 10, "123 Main Street"),
 StudentRecord ("Jane Smith", 102, 11, "456 Elm Street"),
 StudentRecord ("Michael Brown", 103, 9, "789 Oak Avenue")
]
for record in student_records:
 file_system.add_record (record)

file_system.print_disk_status()

student_id = 102
retrieved_record = file_system.get_record (student_id)
if retrieved_record:
 print(f"\n Retrieved Record for ID {student_id}:")
 print(retrieved_record)
else:
 print(f"\n Record with ID {student_id} not found.")

3.2 Managing Medical Records in a Hospital Information System

You have been tasked with designing a file management system for a hospital's electronic medical

records (EMR). The EMR system contains detailed records of patients' medical histories, treatments,

and diagnostic results. Each patient record is stored as a file with specific attributes.

Implement the Indexed File Allocation strategy to efficiently manage the storage and access of patient

records in the hospital's EMR system.

Here's the scenario of the hospital information system:

The hospital manages records for several patients:

Patient A: John Smith, Age 45, Medical ID 1001, Address: 123 Hospital Road

Patient B: Jane Doe, Age 32, Medical ID 1002, Address: 456 Clinic Avenue

Patient C: Michael Johnson, Age 58, Medical ID 1003, Address: 789 Medical Plaza

Implement and simulate the Indexed File Allocation strategy for storing and accessing these patient

records in the hospital's EMR system. Consider the following aspects:

File Structure: Each patient record contains fields for Name, Age, Medical ID, and Address.

Storage: Each patient record has its own index block that contains pointers to the actual blocks of

disk space where its data is stored.

Index Table: Maintain an index table that maps each patient record to its respective index block,

facilitating efficient access.

352

Access: Support operations such as insertion, deletion, and retrieval of patient records based on their

Medical ID.

Your task is to design a data structure or representation for patient records and index blocks.

Implement the Indexed File Allocation strategy to store and retrieve patient records. Calculate the

total disk space used and evaluate the efficiency of the strategy based on storage utilization and

access times.

Assumptions: Disk space is divided into fixed-size blocks. Each patient record is stored in whole

blocks (no partial blocks). The Indexed File Allocation strategy should handle new record insertions,

deletions, and updates efficiently, considering disk fragmentation and access patterns.

To implement the Indexed File Allocation strategy for managing patient records in a hospital's

electronic medical records (EMR) system, we'll create a Python program. This program will simulate

the storage and retrieval of patient records using an index table and index blocks to efficiently

manage disk space and access.

class PatientRecord:
 def __init__(self, name, age, medical_id, address):
 self.name = name
 self.age = age
 self.medical_id = medical_id
 self.address = address

 def __str__(self):
 return f"Name: {self.name}, Age: {self.age}, Medical ID:
{self.medical_id}, Address: {self.address}"

class IndexedFileAllocation:
 def __init__(self, block_size):
 self.disk_blocks = []
 self.index_table = {}
 self.index_block_size = block_size
 self.next_free_block = 0

 def add_record(self, patient_record):
 # Write code here
 return True

 def get_record(self, medical_id):
 # Write code here
 return None

 def calculate_record_size(self, patient_record):
 # Write code here
 return 1

 def print_disk_status(self):
 # Write code here

Driver Code
index_block_size = 1
file_system = IndexedFileAllocation(index_block_size)

patient_records = [
 PatientRecord("John Smith", 45, 1001, "123 Hospital Road"),

353

 PatientRecord("Jane Doe", 32, 1002, "456 Clinic Avenue"),
 PatientRecord("Michael Johnson", 58, 1003, "789 Medical Plaza")
]
for record in patient_records:
 file_system.add_record(record)

file_system.print_disk_status()

medical_id = 1002
retrieved_record = file_system.get_record(medical_id)
if retrieved_record:
 print(f"\nRetrieved Record for Medical ID {medical_id}:")
 print(retrieved_record)
else:
 print(f"\nRecord with Medical ID {medical_id} not found.")

3.3 Managing Digital Media Files in a Multimedia Application

You are developing a multimedia application that allows users to manage and store various types of

digital media files, including images, videos, and audio clips. Each file is treated as a separate entity

with its own attributes and content.

Implement the Linked File Allocation strategy to efficiently manage the storage and access of digital

media files in your multimedia application.

Here's the scenario of the multimedia application:

The application needs to manage the following digital media files:

File A: Landscape.jpg (Image file), size 5 MB

File B: Concert.mp4 (Video file), size 50 MB

File C: Song.mp3 (Audio file), size 8 MB

Implement and simulate the Linked File Allocation strategy for storing and accessing these digital

media files in the multimedia application. Consider the following aspects:

File Structure: Each digital media file has specific attributes (e.g., file name, type, size) and content.

Storage: Files are stored in non-contiguous blocks of disk space, and each block contains a pointer to

the next block of the file.

File Allocation Table (FAT): Maintain a FAT to keep track of the starting block address of each file.

Access: Support operations such as insertion, deletion, and retrieval of files based on their attributes.

Your task is to design a data structure or representation for digital media files and disk blocks.

Implement the Linked File Allocation strategy to store and retrieve digital media files. Calculate the

total disk space used and evaluate the efficiency of the strategy based on storage utilization and

access times.

Assumptions: Disk space is divided into blocks of fixed size. Each digital media file is stored in

multiple blocks using pointers to link consecutive blocks. The Linked File Allocation strategy should

handle new file insertions, deletions, and updates efficiently, considering disk fragmentation and

access patterns.

from threading import Semaphore

354

class DiskBlock:
 def __init__(self, block_id):
 self.block_id = block_id
 self.next_block = None

class MediaFile:
 def __init__(self, file_name, file_type, size):
 self.file_name = file_name
 self.file_type = file_type
 self.size = size
 self.start_block = None # Points to the first block in the chain

 def __str__(self):
 return f"{self.file_name} ({self.file_type}), Size: {self.size} MB"

class FileAllocationTable:
 def __init__(self):
 self.fat = {}

 def allocate_blocks(self, media_file, disk_blocks):
 # Write code here

 def delete_file(self, media_file, disk_blocks):

 # Write code here

def simulate_linked_file_allocation():
 # Write code here

Driver Code
simulate_linked_file_allocation()

3.4 DigitalArchive

You are a software engineer working for a digital library company called "DigitalArchive".

DigitalArchive specializes in storing and managing vast collections of digital media files for various

clients, including museums, libraries, and private collectors. Your task is to design a file allocation

strategy that efficiently manages these files on DigitalArchive's storage system.

DigitalArchive has recently signed a contract with a renowned museum that wants to digitize and

archive its extensive collection of historical photographs. The museum's collection includes thousands

of photographs ranging from early 20th-century portraits to landscapes and architectural images.

Requirements:

File Types: Each photograph is stored as a digital image file (e.g., JPG format).

File Sizes: The sizes of photographs vary, with average file sizes ranging from 5 MB to 20 MB.

Storage System: DigitalArchive uses a storage system that organizes files into blocks of fixed size

(e.g., 10 MB per block).

File Allocation Strategy: Sequential File Allocation

355

Sequential Allocation: In this strategy, files are stored sequentially on the storage system. When a

new file arrives, it is allocated blocks of disk space one after another. Each file is assigned contiguous

blocks of the required size.

Tasks to Implement: Design a program or algorithm that simulates the sequential file allocation

strategy for storing the museum's photograph collection. Implement functions to allocate blocks for

new photographs, manage the allocation of disk space, and retrieve information about allocated files.

Ensure the program handles scenarios such as adding new photographs, calculating total disk space

used, and displaying the allocation status.

Assume the storage system has 100 blocks of 10 MB each. Implement a function to allocate blocks

sequentially for new photographs based on their sizes. Display the allocation status after each

operation (e.g., adding a new photograph, deleting a photograph).

Additional Considerations: Evaluate the efficiency of the sequential allocation strategy in terms of

disk space utilization and access times for retrieving files. Consider how fragmentation might affect

storage efficiency over time as more files are added and deleted.

class DigitalArchive:
 def __init__(self, total_blocks):
 self.total_blocks = total_blocks
 self.disk_blocks = [False] * total_blocks

 def allocate_blocks(self, file_name, file_size):
 # Write code here

 def delete_file(self, file_name):
 # Write code here

 def calculate_blocks_needed(self, file_size):
 # Write code here

 def display_allocation_status(self):
 # Write code here

Driver Code
digital_archive = DigitalArchive (100)

digital_archive.allocate_blocks ("Portrait1.jpg", 15)
digital_archive.allocate_blocks ("Landscape1.jpg", 10)
digital_archive.allocate_blocks ("Architecture1.jpg", 7)

digital_archive.display_allocation_status()

digital_archive.delete_file("Landscape1.jpg")

print("\nAfter deleting Landscape1.jpg:")
digital_archive.display_allocation_status()

3.5 EnterpriseX

You are a systems engineer working for a large multinational corporation that specializes in

developing operating systems for enterprise-level servers. Your team is tasked with designing a file

356

allocation strategy that optimizes data access and storage efficiency for the company's new flagship

operating system, OS EnterpriseX.

OS EnterpriseX is designed to handle large-scale data processing and storage for corporate clients.

One of the critical requirements is to efficiently manage and access large files, such as databases and

multimedia content, stored on disk drives. The system needs to ensure quick access to specific data

blocks while maintaining efficient storage utilization.

Requirements:

File Types: Files managed by OS EnterpriseX include database files (structured data) and multimedia

files (e.g., videos, images).

Storage System: The operating system uses a disk storage system divided into blocks of fixed size

(e.g., 8 KB per block).

Index Sequential File Allocation Strategy: This strategy involves maintaining an index (typically a B-

tree or a hash table) that allows direct access to data blocks associated with each file. The index helps

in quickly locating the starting block of a file and its subsequent blocks, providing efficient data

retrieval.

File Allocation Strategy: Index Sequential File Allocation

Index Management: Maintain an index structure that maps each file to its corresponding disk blocks.

The index allows for direct access to specific blocks using file identifiers or keys.

Sequential Access: Files are stored sequentially in terms of logical organization, but physical storage is

optimized using the index structure.

Tasks to Implement:

Design a program or algorithm that simulates the index sequential file allocation strategy for

managing and accessing files in OS EnterpriseX. Implement functions to allocate blocks for new files,

manage the index structure, retrieve data blocks based on file identifiers, and display the current

allocation status.

Evaluate the efficiency of the index sequential strategy in terms of access times and storage utilization

compared to other strategies (e.g., purely sequential or direct allocation). Assume the storage system

has 1000 blocks of 8 KB each. Implement functions to allocate blocks using the index sequential

strategy based on file sizes and manage the index structure for quick access.

Consider scenarios where files are updated, deleted, or new files are added, and evaluate how the

index structure adapts to these operations. Evaluate the impact of fragmentation and disk space

utilization with the index sequential strategy.

class OperatingSystem:
 def __init__(self, total_blocks):
 self.total_blocks = total_blocks
 self.disk_blocks = [False] * total_blocks # False indicates block is free
 self.index = {} # Index to map file identifiers to disk blocks

 def allocate_blocks(self, file_name, file_size):
 # Write code here

 def delete_file(self, file_name):
 # Write code here

 def find_free_blocks(self, required_blocks):
 # Write code here

357

 def calculate_blocks_needed(self, file_size):
 # Write code here

 def total_free_blocks(self):
 # Write code here

 def display_allocation_status(self):
 # Write code here

Driver Code
os = OperatingSystem(1000)

os.allocate_blocks ("database.db", 300)
os.allocate_blocks ("video.mp4", 600)
os.allocate_blocks ("image.jpg", 150)

os.display_allocation_status()
os.delete_file("video.mp4")

print("\n After deleting video.mp4:")
os.display_allocation_status()

4. Memory Management

4.1 Memory Variable Technique (MVT)

You are a system administrator responsible for managing a computer system that employs the

Memory Variable Technique (MVT) for memory management. Your system receives requests from

multiple users to run different processes, each requiring a specific amount of memory.

Your system has a total of 1000 KB of memory available, divided into fixed-size partitions to

accommodate different process sizes. The Memory Variable Technique dynamically allocates partitions

to processes based on their size, aiming to minimize internal fragmentation and optimize memory

usage.

Memory Partitions: The system has three memory partitions with sizes as follows:

Partition 1: 300 KB

Partition 2: 500 KB

Partition 3: 200 KB

Process Requests: Users submit requests to run processes of varying sizes (in KB).

Memory Allocation: Implement algorithms to allocate memory to processes based on the MVT

strategy:

Allocate memory to a process in the smallest partition that can accommodate its size.

Track and display the allocation status after each operation (allocation or deallocation).

Tasks to Implement:

Design a program or algorithm that simulates the Memory Variable Technique (MVT) for memory

allocation.

Implement functions to allocate memory to processes, manage the allocation status, deallocate

memory when processes finish, and display the current memory allocation status. Evaluate the

efficiency of the MVT strategy in terms of memory utilization and fragmentation management.

358

Implement functions to handle memory allocation requests from users based on process sizes and

available partitions. Display the memory allocation status after each operation (allocation or

deallocation).

Additional Considerations:

Consider scenarios where memory requests exceed available partition sizes and implement

appropriate handling (e.g., fragmentation management, rejection of oversized requests).

class MemoryVariableTechnique:
 def __init__(self, partitions):
 self.partitions = partitions
 self.memory_map = {1: [False] * partitions[1],
 2: [False] * partitions[2],
 3: [False] * partitions[3]}
 self.processes = {}

 def allocate_memory(self, process_id, size):
 # Write code here

 def deallocate_memory(self, process_id):
 # Write code here

 def display_memory_status(self):
 # Write code here

Driver Code
mvt = MemoryVariableTechnique({1: 300, 2: 500, 3: 200})

mvt.allocate_memory(1, 150)
mvt.allocate_memory(2, 400)
mvt.allocate_memory(3, 100)

mvt.display_memory_status()

mvt.deallocate_memory(2)

print("\nAfter deallocating Process 2:")
mvt.display_memory_status()

4.2 Best Fit Memory Allocation

You are a software developer working on an operating system project that requires implementing

memory management techniques. One of the critical components is the Best Fit memory allocation

algorithm, which aims to allocate memory blocks to processes in a way that minimizes wastage and

fragmentation.

Your operating system is designed to manage a system with a total of 800 KB of memory available.

Processes of varying sizes are submitted to the system for execution, each requiring a specific amount

of memory. Your task is to implement and simulate the Best Fit memory allocation algorithm to

efficiently allocate memory blocks to these processes.

Memory Blocks: The system has a total of 8 memory blocks available, each with a fixed size.

Block 1: 100 KB

Block 2: 200 KB

359

Block 3: 50 KB

Block 4: 150 KB

Block 5: 300 KB

Block 6: 80 KB

Block 7: 120 KB

Block 8: 200 KB

Process Requests: Users submit requests to run processes of varying sizes (in KB).

Best Fit Algorithm: Implement the Best Fit algorithm to allocate the smallest possible block that can

accommodate each process size. If no suitable block is found, reject the process request.

Memory Utilization: Track and display the allocation status after each operation (allocation or

rejection).

Tasks to Implement:

Design a program or algorithm that simulates the Best Fit memory allocation strategy. Implement

functions to allocate memory blocks to processes, manage the allocation status, reject processes when

appropriate, and display the current memory allocation status. Evaluate the efficiency of the Best Fit

algorithm in terms of memory utilization and fragmentation management.

Implement functions to handle memory allocation requests from users based on process sizes and

available memory blocks. Display the memory allocation status after each operation (allocation or

rejection).

Additional Considerations:

Consider scenarios where multiple requests are submitted simultaneously and evaluate how the Best

Fit algorithm manages memory blocks efficiently. Evaluate the impact of fragmentation and memory

utilization with the Best Fit algorithm compared to other allocation strategies.

class BestFitMemoryManager:
 def __init__(self, memory_blocks):
 self.memory_blocks = memory_blocks
 self.available_blocks = {i: block for i, block in
enumerate(memory_blocks)}
 self.processes = {}

 def allocate_memory(self, process_id, size):
 # Write code here

 def deallocate_memory(self, process_id):
 # Write code here

 def display_memory_status(self):
 # Write code here

Driver Code
memory_manager = BestFitMemoryManager([100, 200, 50, 150, 300, 80, 120, 200])

memory_manager.allocate_memory(1, 70)
memory_manager.allocate_memory(2, 180)
memory_manager.allocate_memory(3, 250)

memory_manager.display_memory_status()

memory_manager.deallocate_memory(2)

360

print("\nAfter deallocating Process 2:")
memory_manager.display_memory_status()

4.3 Worst Fit Memory Allocation

You are a system analyst tasked with designing memory management techniques for a new operating

system. One of the techniques to implement is the Worst Fit memory allocation algorithm, which

prioritizes allocating the largest available memory block to processes.

Your operating system is designed to manage a system with a total of 1200 KB of memory available,

divided into fixed-size memory blocks. Processes of varying sizes are submitted to the system for

execution, each requiring a specific amount of memory. Your task is to implement and simulate the

Worst Fit memory allocation algorithm to efficiently allocate memory blocks to these processes.

Memory Blocks: The system has a total of 10 memory blocks available, each with a fixed size.

Block 1: 150 KB

Block 2: 300 KB

Block 3: 100 KB

Block 4: 200 KB

Block 5: 250 KB

Block 6: 50 KB

Block 7: 350 KB

Block 8: 180 KB

Block 9: 120 KB

Block 10: 200 KB

Process Requests: Users submit requests to run processes of varying sizes (in KB).

Worst Fit Algorithm: Implement the Worst Fit algorithm to allocate the largest possible block that

can accommodate each process size. If no suitable block is found, reject the process request.

Memory Utilization: Track and display the allocation status after each operation (allocation or

rejection).

Tasks to Implement: Design a program or algorithm that simulates the Worst Fit memory allocation

strategy. Implement functions to allocate memory blocks to processes, manage the allocation status,

reject processes when appropriate, and display the current memory allocation status. Evaluate the

efficiency of the Worst Fit algorithm in terms of memory utilization and fragmentation management.

Implement functions to handle memory allocation requests from users based on process sizes and

available memory blocks. Display the memory allocation status after each operation (allocation or

rejection).

Additional Considerations:

Consider scenarios where multiple requests are submitted simultaneously and evaluate how the Worst

Fit algorithm manages memory blocks efficiently. Evaluate the impact of fragmentation and memory

utilization with the Worst Fit algorithm compared to other allocation strategies.

class WorstFitMemoryManager:
 def __init__(self, memory_blocks):
 self.memory_blocks = memory_blocks
 self.available_blocks = {i: block for i, block in
enumerate(memory_blocks)}
 self.processes = {}

 def allocate_memory(self, process_id, size):

361

 # Write code here

 def deallocate_memory(self, process_id):
 # Write code here

 def display_memory_status(self):
 # Write code here

Driver Code
memory_manager = WorstFitMemoryManager([150, 300, 100, 200, 250, 50, 350, 180,
120, 200])

memory_manager.allocate_memory(1, 180)
memory_manager.allocate_memory(2, 400)
memory_manager.allocate_memory(3, 120)

memory_manager.display_memory_status()

memory_manager.deallocate_memory(2)

print("\nAfter deallocating Process 2:")
memory_manager.display_memory_status()

4.4 Multiprogramming with a Fixed Number of Tasks (MFT)

You are a systems engineer working on a legacy mainframe system that employs the MFT memory

management technique. The system is designed to handle multiple processes simultaneously by

dividing memory into fixed-size partitions, each capable of holding a single process.

Your mainframe system has a total of 6400 KB of memory available, divided into fixed-size partitions.

Processes of varying sizes are submitted to the system for execution, each requiring a specific amount

of memory. Your task is to implement and simulate the MFT memory management technique to

efficiently allocate memory partitions to these processes.

Memory Partitions: The system memory is divided into fixed-size partitions to accommodate

processes.

Partition Size: 800 KB each.

Total Partitions: 8 partitions in total.

Process Requests: Users submit requests to run processes of varying sizes (in KB).

MFT Algorithm: Implement the MFT algorithm to allocate the smallest available partition that can

accommodate each process size. If no suitable partition is found, reject the process request.

Memory Utilization: Track and display the allocation status after each operation (allocation or

rejection).

Tasks to Implement:

Design a program or algorithm that simulates the MFT memory management technique. Implement

functions to allocate memory partitions to processes, manage the allocation status, reject processes

when appropriate, and display the current memory allocation status. Evaluate the efficiency of the MFT

technique in terms of memory utilization and management of partitions.

Implement functions to handle memory allocation requests from users based on process sizes and

available partitions. Display the memory allocation status after each operation (allocation or rejection).

Additional Considerations:

362

Consider scenarios where multiple requests are submitted simultaneously and evaluate how the MFT

algorithm manages partitions efficiently. Evaluate the impact of fragmentation and memory utilization

with the MFT technique compared to other allocation strategies.

class MFTMemoryManager:
 def __init__(self, num_partitions, partition_size):
 self.num_partitions = num_partitions
 self.partition_size = partition_size
 self.available_partitions = [True] * num_partitions
 self.processes = {}

 def allocate_memory(self, process_id, size):
 # Write code here

 def deallocate_memory(self, process_id):
 # Write code here

 def display_memory_status(self):
 # Write code here

Driver Code
memory_manager = MFTMemoryManager(num_partitions=8, partition_size=800)

memory_manager.allocate_memory(1, 600)
memory_manager.allocate_memory(2, 900)
memory_manager.allocate_memory(3, 400)

memory_manager.display_memory_status()

memory_manager.deallocate_memory(2)

print("\nAfter deallocating Process 2:")
memory_manager.display_memory_status()

4.5 Simulating Paging Memory Management

You are a software engineer tasked with implementing memory management for a new operating

system that utilizes the Paging technique. Paging divides the physical memory into fixed-size blocks

(pages) and manages processes by allocating these pages dynamically.

Your operating system has a total of 4000 KB of physical memory available, divided into fixed-size

pages. Processes of varying sizes are submitted to the system for execution, each requiring a specific

amount of memory. Your task is to implement and simulate the Paging memory management

technique to efficiently allocate memory pages to these processes.

Memory Pages: The system memory is divided into fixed-size pages to accommodate processes.

Page Size: 200 KB each.

Total Pages: 20 pages in total.

Process Requests: Users submit requests to run processes of varying sizes (in KB).

363

Paging Algorithm: Implement the Paging algorithm to allocate the required number of pages to

each process dynamically. If no sufficient contiguous pages are available, reject the process request.

Memory Utilization: Track and display the allocation status after each operation (allocation or

rejection).

Design a program or algorithm that simulates the Paging memory management technique. Implement

functions to allocate memory pages to processes, manage the allocation status, reject processes when

appropriate, and display the current memory allocation status. Evaluate the efficiency of the Paging

technique in terms of memory utilization and management of pages.

Implement functions to handle memory allocation requests from users based on process sizes and

available pages. Display the memory allocation status after each operation (allocation or rejection).

Additional Considerations:

Consider scenarios where multiple requests are submitted simultaneously and evaluate how the

Paging algorithm manages pages efficiently. Evaluate the impact of fragmentation and memory

utilization with the Paging technique compared to other allocation strategies.

class PagingMemoryManager:
 def __init__(self, num_pages, page_size):
 self.num_pages = num_pages
 self.page_size = page_size
 self.available_pages = [True] * num_pages
 self.processes = {}

 def allocate_memory(self, process_id, size):
 # Write code here

 def deallocate_memory(self, process_id):
 # Write code here

 def display_memory_status(self):
 # Write code here

Driver Code
memory_manager = PagingMemoryManager(num_pages=20, page_size=200)

memory_manager.allocate_memory(1, 400)
memory_manager.allocate_memory(2, 600)
memory_manager.allocate_memory(3, 300)

memory_manager.display_memory_status()

memory_manager.deallocate_memory(2)

print("\nAfter deallocating Process 2:")
memory_manager.display_memory_status()

5. Contiguous Memory Allocation

5.1 Futuristic Space Station

In a futuristic space station, the central computer manages memory allocation using the worst-fit

technique. The memory is divided into fixed-size blocks, and whenever a program requests memory

364

allocation, the system searches for the largest available block that can accommodate the program's

size. One day, the space station receives requests from three different programs:

Program A requires 150 units of memory.

Program B requires 300 units of memory.

Program C requires 200 units of memory.

The memory blocks available in the system are as follows:

Block 1: 400 units

Block 2: 250 units

Block 3: 350 units

Block 4: 200 units

Block 5: 150 units

Assume the worst-fit algorithm starts its search from the beginning of the memory and scans

sequentially to find the largest block that fits each program's requirement.

Task: Determine how the worst-fit algorithm assigns memory blocks to each program, and calculate

the remaining memory after all programs are allocated.

Explanation:

Program A (150 units): The worst-fit algorithm will select Block 1 (400 units) since it's the largest

block available that can accommodate Program A. After allocating 150 units to Program A, Block 1 will

have 250 units remaining.

Program B (300 units): Now, the system will search for the largest block that fits Program B's

requirement.

The largest block available is Block 3 (350 units). After allocating 300 units to Program B, Block 3 will

have 50 units remaining.

Program C (200 units): Finally, Program C needs a block of 200 units. The largest block available now

is Block 2 (250 units). After allocating 200 units to Program C, Block 2 will have 50 units remaining.

Remaining Memory:

Block 1: 250 units (after Program A)

Block 2: 50 units (after Program C)

Block 3: 50 units (after Program B)

Block 4: 200 units

Block 5: 150 units

Thus, after allocating memory to all three programs using the worst-fit algorithm, the space station's

computer system has 250 units + 50 units + 50 units = 350 units of memory remaining.

def worst_fit_allocation(memory_blocks, program_requests):
 # Write code here

Driver Code
memory_blocks = [400, 250, 350, 200, 150]

program_requests = {'Program A': 150, 'Program B': 300,'Program C': 200 }

allocations, remaining_memory = worst_fit_allocation(memory_blocks,
program_requests)

365

for program, allocated_memory in allocations.items():
 print(f"{program} allocated {allocated_memory} units of memory.")

print("\n Remaining Memory in Memory Blocks:")
for i in range(len(memory_blocks)):
 print(f"Block {i+1}: {memory_blocks[i]} units")

5.2 CentralAI

In a futuristic city where advanced artificial intelligence (AI) systems govern public services, a central AI

hub named CentralAI operates using a sophisticated memory management system. CentralAI oversees

various subsystems, each requiring different amounts of memory to function efficiently. To optimize

its memory usage, CentralAI employs the best-fit contiguous memory allocation technique. CentralAI

manages a total of 8000 units of memory. Throughout the day, it receives memory requests from

different subsystems in the following sequence:

SubsysA requests 1500 units of memory.

SubsysB requests 1000 units of memory.

SubsysC requests 700 units of memory.

SubsysD requests 2200 units of memory.

SubsysE requests 500 units of memory.

SubsysF requests 1200 units of memory.

Assume that the memory is initially empty, and all requests arrive sequentially without any memory

being released in between.

Illustrate the Best-Fit Allocation Process: Show step-by-step how CentralAI allocates memory to

each subsystem using the best-fit technique. Detail which blocks of memory are allocated to each

subsystem and explain the decision-making process for each allocation.

Memory Utilization: Calculate and report the total amount of memory utilized after all requests have

been processed using the best-fit technique.

Fragmentation Analysis: Discuss any potential fragmentation issues that might arise with the best-fit

technique in this scenario. Are there any disadvantages or concerns CentralAI should be aware of?

Explanation: Illustration of Best-Fit Allocation Process:

CentralAI starts with 8000 units of memory available.

SubsysA (1500 units) would be allocated the smallest block (if any is available), leaving 6500 units.

SubsysB (1000 units) would then take the smallest available block that fits (5500 units left).

SubsysC (700 units) would take the smallest available block (4800 units left).

SubsysD (2200 units) would take the smallest available block (2600 units left).

SubsysE (500 units) would take the smallest available block (2100 units left).

SubsysF (1200 units) would take the smallest available block (900 units left).

Detailed steps should show how the best-fit method minimizes wasted memory by allocating the

smallest block that fits each subsystem's request.

Memory Utilization:

After all requests are processed, calculate the sum of memory allocated to each subsystem to find the

total memory utilized.

366

Fragmentation Analysis:

Discuss potential fragmentation issues with best-fit, where smaller gaps of memory are left scattered

after allocation, potentially making it difficult to allocate larger blocks that may arrive later. Mention

strategies such as compaction or dynamic memory management to address fragmentation over time.

class MemoryBlock:
 def __init__(self, start, size):
 self.start = start
 self.size = size
 self.allocated = False
 self.process_name = None

 def is_free(self):
 # Write code here

 def allocate(self, process_name):
 # Write code here

 def deallocate(self):
 # Write code here
 def __str__(self):
 status = "Free" if not self.allocated else f"Allocated to
{self.process_name}"
 return f"[Start: {self.start}, Size: {self.size}, Status: {status}]"

class MemoryManager:
 def __init__(self, total_memory):
 self.total_memory = total_memory
 self.memory_blocks = [MemoryBlock(0, total_memory)]

 def allocate_memory(self, process_name, size):
 # Write code here

 def print_memory_status(self):
 # Write code here

Driver Code
memory_manager = MemoryManager(8000)

requests = [("SubsysA", 1500), ("SubsysB", 1000), ("SubsysC", 700),("SubsysD",
2200),
 ("SubsysE", 500), ("SubsysF", 1200)]

for request in requests:
 process_name, size = request
 allocated = memory_manager.allocate_memory(process_name, size)
 if allocated:
 memory_manager.print_memory_status()

memory_manager.print_total_memory_used()

5.3 MetroCentral

367

In a bustling metropolis where a central command center, MetroCentral, manages all public

transportation systems using advanced computer systems, efficient memory management is critical.

MetroCentral employs the first-fit contiguous memory allocation technique to handle memory

requests from various subsystems that control different aspects of the transportation network.

MetroCentral operates with a total of 5000 units of memory. Throughout the day, it receives memory

requests from different subsystems in the following sequence:

TrafficControl requests 1200 units of memory.

RoutePlanning requests 800 units of memory.

VehicleMonitoring requests 1500 units of memory.

PassengerInformation requests 600 units of memory.

MaintenanceLogistics requests 700 units of memory.

Assume that the memory is initially empty, and all requests arrive sequentially without any memory

being released in between.

Illustrate the First-Fit Allocation Process: Show step-by-step how MetroCentral allocates memory to

each subsystem using the first-fit technique. Detail which blocks of memory are allocated to each

subsystem and explain the decision-making process for each allocation.

Memory Utilization: Calculate and report the total amount of memory utilized after all requests have

been processed using the first-fit technique.

Fragmentation Analysis: Discuss any potential fragmentation issues that might arise with the first-fit

technique in this scenario. Are there any disadvantages or concerns MetroCentral should be aware of?

Explanation:

Illustration of First-Fit Allocation Process:

MetroCentral starts with 5000 units of memory available.

TrafficControl (1200 units) would be allocated the first available block that fits (entire memory block

of 5000 units used).

RoutePlanning (800 units) would be allocated the next available block that fits (4000 units left).

VehicleMonitoring (1500 units) would be allocated the next available block that fits (2500 units left).

PassengerInformation (600 units) would be allocated the next available block that fits (1900 units

left).

MaintenanceLogistics (700 units) would be allocated the next available block that fits (1200 units

left).

Detailed steps should show how the first-fit method allocates memory based on the first available

block that meets or exceeds the requested size.

Memory Utilization:

After all requests are processed, calculate the sum of memory allocated to each subsystem to find the

total memory utilized.

Fragmentation Analysis:

Discuss potential fragmentation issues with first-fit, where smaller gaps of memory might be left

unused between allocated blocks, potentially leading to inefficient memory usage over time.

Mention strategies such as compaction or dynamic memory management to address fragmentation

and optimize memory utilization.

368

class MemoryBlock:
 def __init__(self, start, size):
 self.start = start
 self.size = size
 self.allocated = False
 self.process_name = None

 def is_free(self):
 # Write code here

 def allocate(self, process_name):
 # Write code here

 def deallocate(self):
 # Write code here

 def __str__(self):
 # Write code here
class MemoryManager:
 def __init__(self, total_memory):
 self.total_memory = total_memory
 self.memory_blocks = [MemoryBlock(0, total_memory)]

 def allocate_memory(self, process_name, size):
 # Write code here

 def print_memory_status(self):
 # Write code here

 def print_total_memory_used(self):
 # Write code here

Driver Code
memory_manager = MemoryManager(5000)

requests = [
 ("TrafficControl", 1200),
 ("RoutePlanning", 800),
 ("VehicleMonitoring", 1500),
 ("PassengerInformation", 600),
 ("MaintenanceLogistics", 700)
]

for request in requests:
 process_name, size = request
 allocated = memory_manager.allocate_memory(process_name, size)
 if allocated:
 memory_manager.print_memory_status()

memory_manager.print_total_memory_used()

5.4 AI Lab

369

In a research institute focused on artificial intelligence (AI) advancements, the AI Lab manages its

computational resources using a first-fit contiguous memory allocation technique. The AI Lab is

responsible for running various experiments and simulations, each requiring different amounts of

memory. The AI Lab operates with a total of 6000 units of memory. Throughout the day, it receives

memory requests from different research projects in the following sequence:

Project A requests 1500 units of memory.

Project B requests 1000 units of memory.

Project C requests 700 units of memory.

Project D requests 2200 units of memory.

Project E requests 500 units of memory.

Project F requests 1200 units of memory.

Assume that the memory is initially empty, and all requests arrive sequentially without any memory

being released in between.

Illustrate the First-Fit Allocation Process: Show step-by-step how the AI Lab allocates memory to

each research project using the first-fit technique. Detail which blocks of memory are allocated to

each project and explain the decision-making process for each allocation.

Memory Utilization: Calculate and report the total amount of memory utilized after all requests have

been processed using the first-fit technique.

Fragmentation Analysis: Discuss any potential fragmentation issues that might arise with the first-fit

technique in this scenario. Are there any disadvantages or concerns the AI Lab should be aware of?

Explanation: The AI Lab starts with 6000 units of memory available.

Project A (1500 units) would be allocated the first available block that fits (entire memory block of

6000 units used).

Project B (1000 units) would be allocated the next available block that fits (4500 units left).

Project C (700 units) would be allocated the next available block that fits (3800 units left).

Project D (2200 units) would be allocated the next available block that fits (1600 units left).

Project E (500 units) would be allocated the next available block that fits (1100 units left).

Project F (1200 units) would be allocated the next available block that fits (0 units left).

Detailed steps should show how the first-fit method allocates memory based on the first available

block that meets or exceeds the requested size.

Memory Utilization:

After all requests are processed, calculate the sum of memory allocated to each project to find the

total memory utilized.

Fragmentation Analysis:

Discuss potential fragmentation issues with first-fit, where smaller gaps of memory might be left

unused between allocated blocks, potentially leading to inefficient memory usage over time. Mention

strategies such as compaction or dynamic memory management to address fragmentation and

optimize memory utilization.

class MemoryBlock:
 def __init__(self, start, size):
 self.start = start
 self.size = size

370

 self.allocated = False
 self.process_name = None

 def is_free(self):
 # Write code here

 def allocate(self, process_name):
 # Write code here

 def deallocate(self):
 # Write code here
 def __str__(self):
 # Write code here

class MemoryManager:
 def __init__(self, total_memory):
 # Write code here

 def allocate_memory(self, process_name, size):
 # Write code here

 def print_memory_status(self):
 # Write code here

 def print_total_memory_used(self):
 # Write code here

Driver Code
memory_manager = MemoryManager(6000)

requests = [
 ("Project A", 1500),
 ("Project B", 1000),
 ("Project C", 700),
 ("Project D", 2200),
 ("Project E", 500),
 ("Project F", 1200)
]

for request in requests:
 process_name, size = request
 allocated = memory_manager.allocate_memory(process_name, size)
 if allocated:
 memory_manager.print_memory_status()

memory_manager.print_total_memory_used()

5.5 MedTech Hospital

In a bustling city where a central hospital, MedTech Hospital, manages its patient records and medical

data using sophisticated computer systems, efficient memory management is crucial. MedTech

Hospital employs the best-fit contiguous memory allocation technique to optimize its use of memory

resources. MedTech Hospital operates with a total of 8000 units of memory. Throughout a busy day, it

receives memory requests from different departments and systems in the following sequence:

Emergency Department requests 2000 units of memory.

371

Cardiology Department requests 1500 units of memory.

Laboratory Information System requests 1200 units of memory.

Radiology Department requests 1800 units of memory.

Patient Management System requests 1000 units of memory.

Pharmacy System requests 600 units of memory.

Surgical Services requests 2200 units of memory.

Assume that the memory is initially empty, and all requests arrive sequentially without any memory

being released in between.

Illustrate the Best-Fit Allocation Process: Show step-by-step how MedTech Hospital allocates

memory to each department or system using the best-fit technique. Detail which blocks of memory

are allocated to each request and explain the decision-making process for each allocation.

Memory Utilization: Calculate and report the total amount of memory utilized after all requests have

been processed using the best-fit technique.

Fragmentation Analysis: Discuss any potential fragmentation issues that might arise with the best-fit

technique in this scenario. Are there any disadvantages or concerns MedTech Hospital should be

aware of?

Explanation: MedTech Hospital starts with 8000 units of memory available.

Emergency Department (2000 units) would be allocated the smallest available block that fits (entire

memory block of 8000 units used).

Cardiology Department (1500 units) would be allocated the smallest available block that fits (6500

units left).

Laboratory Information System (1200 units) would be allocated the smallest available block that fits

(5300 units left).

Radiology Department (1800 units) would be allocated the smallest available block that fits (3500 units

left).

Patient Management System (1000 units) would be allocated the smallest available block that fits

(2500 units left).

Pharmacy System (600 units) would be allocated the smallest available block that fits (1900 units left).

Surgical Services (2200 units) would be allocated the smallest available block that fits (0 units left).

Detailed steps should show how the best-fit method allocates memory based on the smallest available

block that meets or exceeds the requested size.

Memory Utilization:

After all requests are processed, calculate the sum of memory allocated to each department or system

to find the total memory utilized.

Fragmentation Analysis:

Discuss potential fragmentation issues with best-fit, where smaller gaps of memory might be left

unused between allocated blocks, potentially leading to inefficient memory usage over time. Mention

strategies such as compaction or dynamic memory management to address fragmentation and

optimize memory utilization.

class MemoryBlock:
 def __init__(self, start, size):
 self.start = start
 self.size = size
 self.allocated = False

372

 self.process_name = None

 def is_free(self):
 # Write code here

 def allocate(self, process_name):
 # Write code here

 def deallocate(self):
 # Write code here

 def __str__(self):
 # Write code here

class MemoryManager:
 def __init__(self, total_memory):
 self.total_memory = total_memory
 self.memory_blocks = [MemoryBlock(0, total_memory)]

 def allocate_memory(self, process_name, size):
 # Write code here

 def print_memory_status(self):
 # Write code here

 def print_total_memory_used(self):
 # Write code here

Driver Code
memory_manager = MemoryManager(8000)

requests = [
 ("Emergency Department", 2000),
 ("Cardiology Department", 1500),
 ("Laboratory Information System", 1200),
 ("Radiology Department", 1800),
 ("Patient Management System", 1000),
 ("Pharmacy System", 600),
 ("Surgical Services", 2200)
]

for request in requests:
 process_name, size = request
 allocated = memory_manager.allocate_memory(process_name, size)
 if allocated:
 memory_manager.print_memory_status()

memory_manager.print_total_memory_used()

373

6. Paging Memory Management

6.1 CloudTech

In a fast-growing tech startup, CloudTech Inc., which specializes in cloud computing services, efficient

memory management is critical to ensure optimal performance and resource utilization. CloudTech

Inc. employs the paging technique to manage memory across its cloud servers. CloudTech Inc.

operates multiple cloud servers, each equipped with a paging system. The main memory of each

server is divided into fixed-size pages, and processes running on these servers request memory in

terms of these pages. Each page can hold a fixed amount of data.

Each cloud server has a total of 100 pages of main memory. Each page can hold up to 4 units of data.

Processes running on the servers request memory in terms of the number of pages they need.

Throughout a busy day, several processes make memory requests in the following sequence:

Process A requests 25 pages.

Process B requests 15 pages.

Process C requests 30 pages.

Process D requests 12 pages.

Process E requests 20 pages.

Assume that the memory is initially empty, and all requests arrive sequentially without any memory

being released in between.

Illustrate the Paging Memory Management Process: Show step-by-step how CloudTech Inc.

allocates memory to each process using the paging technique. Detail which pages are allocated to

each process and explain the decision-making process for each allocation.

Memory Utilization: Calculate and report the total amount of memory utilized after all requests have

been processed using the paging technique.

Fragmentation Analysis: Discuss any potential fragmentation issues that might arise with the paging

technique in this scenario. Are there any disadvantages or concerns CloudTech Inc. should be aware

of?

Explanation: Each cloud server starts with 100 pages of main memory.

Process A (25 pages) would be allocated consecutive pages starting from the beginning (pages 0 to

24).

Process B (15 pages) would be allocated the next available consecutive pages (pages 25 to 39).

Process C (30 pages) would be allocated consecutive pages (pages 40 to 69).

Process D (12 pages) would be allocated consecutive pages (pages 70 to 81).

Process E (20 pages) would be allocated consecutive pages (pages 82 to 101).

Detailed steps should show how the paging technique allocates memory based on consecutive pages

for each process request.

Memory Utilization:

After all requests are processed, calculate the total number of pages allocated to processes to find the

total memory utilized.

class Page:

374

 def __init__(self, page_id, process_name=None):
 # Write code here

 def allocate(self, process_name):
 # Write code here

 def deallocate(self):
 # Write code here

 def __str__(self):
 # Write code here

class MemoryManager:
 def __init__(self, num_pages, page_size):
 self.num_pages = num_pages
 self.page_size = page_size
 self.pages = [Page(page_id) for page_id in range(num_pages)]

 def allocate_memory(self, process_name, num_pages_requested):
 # Write code here

 def print_memory_status(self):
 # Write code here

 def print_total_memory_used(self):
 # Write code here

Driver Code
memory_manager = MemoryManager(num_pages=100, page_size=4)

requests = [
 ("Process A", 25),
 ("Process B", 15),
 ("Process C", 30),
 ("Process D", 12),
 ("Process E", 20)
]

for request in requests:
 process_name, num_pages_requested = request
 allocated = memory_manager.allocate_memory(process_name, num_pages_requested)
 if allocated:
 print(f"Allocated {num_pages_requested} pages for {process_name}")
 memory_manager.print_memory_status()
 else:
 print(f"Not enough memory available for {process_name} (requested
{num_pages_requested} pages)")

memory_manager.print_total_memory_used()

6.2 EduTech University

In a large educational institute, EduTech University, which handles vast amounts of student and

administrative data, efficient memory management is crucial for maintaining smooth operations of its

IT infrastructure. EduTech University utilizes the paging technique to manage memory across its

various departments and systems. EduTech University operates a centralized server system with a total

of 200 pages of main memory. Each page can accommodate up to 8 units of data. Throughout a

375

typical academic day, different departments and systems within the university make memory requests

in the following sequence:

Student Records System requests 40 pages.

Faculty Management System requests 25 pages.

Library Information System requests 30 pages.

Online Learning Platform requests 35 pages.

Research Database requests 50 pages.

Assume that the memory is initially empty, and all requests arrive sequentially without any memory

being released in between.

Illustrate the Paging Memory Management Process: Show step-by-step how EduTech University

allocates memory to each department or system using the paging technique. Detail which pages are

allocated to each request and explain the decision-making process for each allocation.

Memory Utilization: Calculate and report the total amount of memory utilized after all requests have

been processed using the paging technique.

Fragmentation Analysis: Discuss any potential fragmentation issues that might arise with the paging

technique in this scenario. Are there any disadvantages or concerns EduTech University should be

aware of?

Explanation: EduTech University starts with 200 pages of main memory.

Student Records System (40 pages) would be allocated consecutive pages starting from the beginning

(pages 0 to 39).

Faculty Management System (25 pages) would be allocated the next available consecutive pages

(pages 40 to 64).

Library Information System (30 pages) would be allocated consecutive pages (pages 65 to 94).

Online Learning Platform (35 pages) would be allocated consecutive pages (pages 95 to 129).

Research Database (50 pages) would be allocated consecutive pages (pages 130 to 179).

Detailed steps should show how the paging technique allocates memory based on consecutive pages

for each department or system request.

Memory Utilization:

After all requests are processed, calculate the total number of pages allocated to each department or

system to find the total memory utilized.

class Page:
 def __init__(self, page_id, process_name=None):
 # Write code here

 def allocate(self, process_name):
 # Write code here

 def deallocate(self):
 # Write code here

 def __str__(self):
 # Write code here

class MemoryManager:
 def __init__(self, num_pages, page_size):
 # Write code here

376

 def allocate_memory(self, process_name, num_pages_requested):
 # Write code here

 def print_memory_status(self):
 # Write code here

 def print_total_memory_used(self):
 # Write code here

Driver Code
memory_manager = MemoryManager(num_pages=200, page_size=8)

requests = [
 ("Student Records System", 40),
 ("Faculty Management System", 25),
 ("Library Information System", 30),
 ("Online Learning Platform", 35),
 ("Research Database", 50)
]

for request in requests:
 process_name, num_pages_requested = request
 allocated = memory_manager.allocate_memory(process_name, num_pages_requested)
 if allocated:
 print(f"Allocated {num_pages_requested} pages for {process_name}")
 memory_manager.print_memory_status()
 else:
 print(f"Not enough memory available for {process_name} (requested
{num_pages_requested} pages)")
memory_manager.print_total_memory_used()

6.3 GameTech Studios

In a bustling gaming company, GameTech Studios, which hosts multiplayer online games, efficient

memory management is crucial to ensure seamless gameplay experiences for millions of players

worldwide. GameTech Studios employs the paging technique to manage memory across its gaming

servers. GameTech Studios operates multiple gaming servers, each equipped with a paging system.

The main memory of each server is divided into fixed-size pages, and game sessions running on these

servers request memory in terms of these pages. Each page can store a fixed amount of game data.

Each gaming server has a total of 256 pages of main memory.

Each page can hold up to 16 units of game data.

Throughout a peak gaming period, several game sessions make memory requests in the following

sequence:

Game Session 1 requests 32 pages.

Game Session 2 requests 20 pages.

Game Session 3 requests 40 pages.

Game Session 4 requests 18 pages.

Game Session 5 requests 25 pages.

Assume that the memory is initially empty, and all requests arrive sequentially without any memory

being released in between.

377

Illustrate the Paging Memory Management Process: Show step-by-step how GameTech Studios

allocates memory to each game session using the paging technique. Detail which pages are allocated

to each request and explain the decision-making process for each allocation.

Memory Utilization: Calculate and report the total amount of memory utilized after all requests have

been processed using the paging technique.

Fragmentation Analysis: Discuss any potential fragmentation issues that might arise with the paging

technique in this scenario. Are there any disadvantages or concerns GameTech Studios should be

aware of?

Explanation:

Each gaming server starts with 256 pages of main memory.

Game Session 1 (32 pages) would be allocated consecutive pages starting from the beginning (pages

0 to 31).

Game Session 2 (20 pages) would be allocated the next available consecutive pages (pages 32 to 51).

Game Session 3 (40 pages) would be allocated consecutive pages (pages 52 to 91).

Game Session 4 (18 pages) would be allocated consecutive pages (pages 92 to 109).

Game Session 5 (25 pages) would be allocated consecutive pages (pages 110 to 134).

Detailed steps should show how the paging technique allocates memory based on consecutive pages

for each game session request.

Memory Utilization:

After all requests are processed, calculate the total number of pages allocated to each game session

to find the total memory utilized.

class Page:
 def __init__(self, page_id, process_name=None):
 # Write code here

 def allocate(self, process_name):
 # Write code here

 def deallocate(self):
 # Write code here

 def __str__(self):
 # Write code here

class MemoryManager:
 def __init__(self, num_pages, page_size):
 # Write code here

 def allocate_memory(self, process_name, num_pages_requested):
 # Write code here

 def print_memory_status(self):
 # Write code here

 def print_total_memory_used(self):
 # Write code here

Driver Code

378

memory_manager = MemoryManager(num_pages=256, page_size=16)

requests = [
 ("Game Session 1", 32),
 ("Game Session 2", 20),
 ("Game Session 3", 40),
 ("Game Session 4", 18),
 ("Game Session 5", 25)
]

for request in requests:
 process_name, num_pages_requested = request
 allocated = memory_manager.allocate_memory(process_name, num_pages_requested)
 if allocated:
 print(f"Allocated {num_pages_requested} pages for {process_name}")
 memory_manager.print_memory_status()
 else:
 print(f"Not enough memory available for {process_name} (requested
{num_pages_requested} pages)")

memory_manager.print_total_memory_used()

6.4 MedCare Hospital

In a large hospital, MedCare Hospital, which manages extensive patient records and medical data,

efficient memory management is critical to ensure timely access to patient information and smooth

operation of medical services. MedCare Hospital utilizes the paging technique to manage memory

across its various departments and systems. MedCare Hospital operates a centralized IT system with a

total of 300 pages of main memory. Each page can store a fixed amount of patient data. Throughout a

busy day, different departments and systems within the hospital make memory requests in the

following sequence:

Emergency Department requests 50 pages.

Radiology Department requests 35 pages.

Laboratory Department requests 45 pages.

Patient Records System requests 60 pages.

Surgery Department requests 40 pages.

Assume that the memory is initially empty, and all requests arrive sequentially without any memory

being released in between.

Illustrate the Paging Memory Management Process: Show step-by-step how MedCare Hospital

allocates memory to each department or system using the paging technique. Detail which pages are

allocated to each request and explain the decision-making process for each allocation.

Memory Utilization: Calculate and report the total amount of memory utilized after all requests have

been processed using the paging technique.

Fragmentation Analysis: Discuss any potential fragmentation issues that might arise with the paging

technique in this scenario. Are there any disadvantages or concerns MedCare Hospital should be

aware of?

Explanation:

MedCare Hospital starts with 300 pages of main memory.

379

Emergency Department (50 pages) would be allocated consecutive pages starting from the beginning

(pages 0 to 49).

Radiology Department (35 pages) would be allocated the next available consecutive pages (pages 50

to 84).

Laboratory Department (45 pages) would be allocated consecutive pages (pages 85 to 129).

Patient Records System (60 pages) would be allocated consecutive pages (pages 130 to 189).

Surgery Department (40 pages) would be allocated consecutive pages (pages 190 to 229).

Detailed steps should show how the paging technique allocates memory based on consecutive pages

for each department or system request.

Memory Utilization:

After all requests are processed, calculate the total number of pages allocated to each department or

system to find the total memory utilized.

class Page:
 def __init__(self, page_id, process_name=None):
 # Write code here

 def allocate(self, process_name):
 # Write code here

 def deallocate(self):
 # Write code here

 def __str__(self):
 # Write code here

class MemoryManager:
 def __init__(self, num_pages, page_size):
 # Write code here

 def allocate_memory(self, process_name, num_pages_requested):
 # Write code here

 def print_memory_status(self):
 # Write code here

 def print_total_memory_used(self):
 # Write code here

Driver Code
memory_manager = MemoryManager(num_pages=300, page_size=1)

requests = [
 ("Emergency Department", 50),
 ("Radiology Department", 35),
 ("Laboratory Department", 45),
 ("Patient Records System", 60),
 ("Surgery Department", 40)
]

for request in requests:
 process_name, num_pages_requested = request

380

 allocated = memory_manager.allocate_memory(process_name, num_pages_requested)
 if allocated:
 print(f"Allocated {num_pages_requested} pages for {process_name}")
 memory_manager.print_memory_status()
 else:
 print(f"Not enough memory available for {process_name} (requested
{num_pages_requested} pages)")

memory_manager.print_total_memory_used()

6.5 ShopMart

In a bustling online shopping platform, ShopMart, which manages a vast inventory of products and

customer transactions, efficient memory management is crucial to ensure smooth operations and

timely access to product data. ShopMart employs the paging technique to manage memory across its

servers. ShopMart operates multiple servers to handle customer orders and manage product

information. Each server has a total of 512 pages of main memory, and each page can store a fixed

amount of product data. Throughout a busy day of operations, different parts of ShopMart's system

make memory requests in the following sequence:

Product Catalog Management requests 80 pages.

Order Processing System requests 120 pages.

Customer Database requests 150 pages.

Payment Processing Gateway requests 100 pages.

Inventory Tracking System requests 60 pages.

Assume that the memory is initially empty, and all requests arrive sequentially without any memory

being released in between.

Illustrate the Paging Memory Management Process: Show step-by-step how ShopMart allocates

memory to each system component using the paging technique. Detail which pages are allocated to

each request and explain the decision-making process for each allocation.

Memory Utilization: Calculate and report the total amount of memory utilized after all requests have

been processed using the paging technique.

Fragmentation Analysis: Discuss any potential fragmentation issues that might arise with the paging

technique in this scenario. Are there any disadvantages or concerns ShopMart should be aware of?

Explanation:

ShopMart starts with 512 pages of main memory per server.

Product Catalog Management (80 pages) would be allocated consecutive pages starting from the

beginning (pages 0 to 79).

Order Processing System (120 pages) would be allocated the next available consecutive pages (pages

80 to 199).

Customer Database (150 pages) would be allocated consecutive pages (pages 200 to 349).

Payment Processing Gateway (100 pages) would be allocated consecutive pages (pages 350 to 449).

Inventory Tracking System (60 pages) would be allocated consecutive pages (pages 450 to 509).

Detailed steps should show how the paging technique allocates memory based on consecutive pages

for each system component request.

Memory Utilization:

381

After all requests are processed, calculate the total number of pages allocated to each system

component to find the total memory utilized.

class Page:
 def __init__(self, page_id, process_name=None):
 # Write code here

 def allocate(self, process_name):
 # Write code here

 def deallocate(self):
 # Write code here

 def __str__(self):
 # Write code here

class MemoryManager:
 def __init__(self, num_pages, page_size):
 # Write code here

 def allocate_memory(self, process_name, num_pages_requested):
 # Write code here
 def print_memory_status(self):
 # Write code here

 def print_total_memory_used(self):
 # Write code here

Driver Code
memory_manager = MemoryManager(num_pages=512, page_size=1)

requests = [
 ("Product Catalog Management", 80),
 ("Order Processing System", 120),
 ("Customer Database", 150),
 ("Payment Processing Gateway", 100),
 ("Inventory Tracking System", 60)
]

for request in requests:
 process_name, num_pages_requested = request
 allocated = memory_manager.allocate_memory(process_name, num_pages_requested)
 if allocated:
 print(f"Allocated {num_pages_requested} pages for {process_name}")
 memory_manager.print_memory_status()
 else:
 print(f"Not enough memory available for {process_name} (requested
{num_pages_requested} pages)")

memory_manager.print_total_memory_used()

7. Resource Allocation

7.1 UrbanOS - Resource Allocation Graph (RAG)

382

In a bustling city, UrbanOS, which operates a complex multitasking operating system, efficient

resource management is crucial to ensure smooth operation of various processes and applications.

UrbanOS employs a Resource Allocation Graph (RAG) to manage resource allocation and avoid

deadlock situations. UrbanOS manages resources such as CPU time, memory, and peripherals across

multiple processes running concurrently. Each process may request and release different resources

dynamically throughout its execution.

Process Management: UrbanOS supports several processes including:

Process A: Handles user interface interactions and graphics rendering.

Process B: Manages database transactions and file operations.

Process C: Performs complex calculations and simulations.

Process D: Controls network communications and data transfers.

Resource Requests:

Each process in UrbanOS can request multiple resources such as CPU time, memory blocks, and access

to peripherals like printers or network devices. Processes dynamically request resources based on their

current tasks and release them when no longer needed.

Resource Allocation Graph (RAG):

UrbanOS maintains a Resource Allocation Graph (RAG) to track which processes are currently

allocated which resources and which processes are waiting for which resources. The RAG helps

UrbanOS detect potential deadlock scenarios where processes are waiting indefinitely for resources

held by others.

Illustrate the Resource Allocation Graph (RAG): Draw a diagram or outline showing how UrbanOS

constructs and maintains the Resource Allocation Graph (RAG) for the processes described (Process A

to Process D). Detail the allocation and request edges between processes and resources.

Deadlock Prevention: Explain how UrbanOS uses the Resource Allocation Graph (RAG) to prevent

deadlock situations among processes. Provide examples of deadlock scenarios and how the RAG helps

identify and resolve them.

Explanation:

Process A: Requests CPU time and memory blocks for graphics rendering.

Process B: Requests CPU time and file system access for database transactions.

Process C: Requests CPU time and memory blocks for simulations.

Process D: Requests network access and CPU time for network communications.

Draw edges showing which processes are currently allocated which resources and which processes are

waiting for which resources (e.g., arrows from processes to resources indicating requests).

Deadlock Prevention:

Example Scenario: Process A holds CPU time and is waiting for memory blocks held by Process C.

Process C holds memory blocks and is waiting for CPU time held by Process B. Process B, in turn, is

waiting for file system access held by Process D, which is waiting for network access.

RAG Utilization: UrbanOS uses cycle detection in the RAG to identify deadlock situations. If a cycle

exists (e.g., Process A -> Process C -> Process B -> Process D -> Process A), UrbanOS can

preemptively break one or more edges to resolve the deadlock and allow processes to proceed.

Dynamic Resource Management:

Challenges: Balancing resource utilization across multiple processes, ensuring fair access, and avoiding

resource starvation.

383

Strategies: UrbanOS employs algorithms like Banker's algorithm or deadlock detection algorithms

based on the RAG to dynamically allocate and manage resources. It ensures that processes only

request resources they can feasibly utilize without causing deadlock or starvation.

class Process:
 def __init__(self, pid, max_resources):
 # Write code here

 def request_resource(self, resource, amount):
 # Write code here

 def release_resource(self, resource, amount):
 # Write code here

 def __str__(self):
 # Write code here

class ResourceManager:
 def __init__(self, resources):
 # Write code here

 def add_process(self, process):
 # Write code here

 def request_resource(self, process_id, resource, amount):
 # Write code here

 def release_resource(self, process_id, resource, amount):
 # Write code here

 def print_processes_status(self):
 # Write code here

Driver Code
resources = {"CPU": 1, "Memory": 1024}

process1 = Process(1, {"CPU": 1, "Memory": 512})
process2 = Process(2, {"CPU": 1, "Memory": 768})

resource_manager = ResourceManager(resources)
resource_manager.add_process(process1)
resource_manager.add_process(process2)

print("Initial State:")
resource_manager.print_processes_status()

if resource_manager.request_resource(1, "CPU", 1):
 print("Process 1 allocated CPU")
else:
 print("Process 1 failed to allocate CPU")

if resource_manager.request_resource(1, "Memory", 512):
 print("Process 1 allocated Memory")
else:
 print("Process 1 failed to allocate Memory")

384

resource_manager.print_processes_status()

if resource_manager.request_resource(2, "Memory", 768):
 print("Process 2 allocated Memory")
else:
 print("Process 2 failed to allocate Memory")

resource_manager.print_processes_status()

if resource_manager.release_resource(1, "Memory", 512):
 print("Process 1 released Memory")
else:
 print("Process 1 failed to release Memory")

resource_manager.print_processes_status()

7.2 UrbanOS - Wait-for-Graph (WFG)

UrbanOS, a sophisticated operating system powering a smart city, relies on efficient process

management and dependency tracking to ensure seamless operations across its diverse infrastructure.

One of the key mechanisms UrbanOS utilizes is the Wait-for-Graph (WFG), which helps manage

dependencies and prevent potential deadlock situations among concurrent processes.

Process and Task Management:

UrbanOS oversees a myriad of critical processes that operate simultaneously to support city functions:

Process A: Manages real-time traffic signal adjustments at intersections.

Process B: Handles data aggregation and analytics for environmental sensors.

Process C: Coordinates emergency response dispatch and resource allocation.

Process D: Facilitates centralized billing and utility management.

Concurrency and Dependency Dynamics:

Each process in UrbanOS may depend on resources such as CPU time, memory, network access, and

access to shared databases or sensors. Processes dynamically interact, requesting resources and

potentially waiting for others to release resources before proceeding.

Wait-for-Graph (WFG) Implementation:

UrbanOS constructs a Wait-for-Graph (WFG) to visually represent dependencies among processes:

Nodes in the graph represent processes. Directed edges between nodes depict dependencies where

one process is waiting for another to release a resource. The WFG aids UrbanOS in detecting cyclic

dependencies and managing resource contention effectively.

Visualization of Wait-for-Graph (WFG): Illustrate how UrbanOS constructs and updates the Wait-

for-Graph (WFG) for the processes described (Process A to Process D). Provide a detailed diagram or

outline showing process nodes, dependency edges, and current dependencies.

Deadlock Prevention Strategies: Explain how UrbanOS uses the Wait-for-Graph (WFG) to prevent

deadlock situations among processes. Provide examples of potential deadlock scenarios and

demonstrate how the WFG helps identify and resolve these scenarios preemptively.

Real-Time Dependency Management: Discuss the challenges UrbanOS faces in managing

dependencies and resource contention among concurrent processes. How does the WFG assist in

optimizing process scheduling, ensuring timely execution, and maintaining system stability?

385

Explanation:

Visualization of Wait-for-Graph (WFG):

Process A: Requests CPU time and access to traffic data.

Process B: Requests memory and network access for sensor data processing.

Process C: Requests CPU time and emergency service resources.

Process D: Requests database access and CPU time for utility management.

Draw directed edges in the WFG showing dependencies where one process is waiting for another to

release resources, reflecting current dependencies and potential conflicts.

Deadlock Prevention Strategies:

Example Scenario: Process A is waiting for access to traffic data held by Process B. Process B is waiting

for CPU time held by Process C, which is waiting for emergency service resources held by Process D,

forming a cyclic dependency.

WFG Utilization: UrbanOS employs cycle detection algorithms in the WFG to identify and break

potential deadlock cycles. By preemptively releasing and reallocating resources or adjusting

scheduling priorities, UrbanOS resolves deadlock scenarios proactively.

Real-Time Dependency Management:

Challenges: Balancing resource demands across processes, minimizing waiting times, and ensuring fair

access to critical resources.

Strategies: UrbanOS uses the WFG to monitor and optimize process dependencies in real-time. It

implements dynamic scheduling algorithms based on WFG insights to prioritize critical tasks, mitigate

resource contention, and enhance overall system responsiveness and reliability.

class Process:
 def __init__(self, pid):
 # Write code here

 def add_dependency(self, process):
 # Write code here

 def remove_dependency(self, process):
 # Write code here

 def __str__(self):
 # Write code here

class WaitForGraph:
 def __init__(self):
 self.processes = {}

 def add_process(self, process):
 # Write code here

 def add_dependency(self, process_pid, dependency_pid):
 # Write code here

 def remove_dependency(self, process_pid, dependency_pid):
 # Write code here

 def detect_deadlocks(self):

386

 # Write code here

 def detect_cycle(process):
 # Write code here
 return False

 def print_wfg(self):
 # Write code here

Driver Code
process1 = Process(1)
process2 = Process(2)
process3 = Process(3)
process4 = Process(4)

wfg = WaitForGraph()

wfg.add_process(process1)
wfg.add_process(process2)
wfg.add_process(process3)
wfg.add_process(process4)

wfg.add_dependency(1, 2)
wfg.add_dependency(2, 3)
wfg.add_dependency(3, 4)
wfg.add_dependency(4, 1)

wfg.print_wfg()

if wfg.detect_deadlocks():
 print("Deadlock detected in the system.")
 wfg.remove_dependency(4, 1)
 print("Deadlock resolved.")
else:
 print("No deadlock detected.")

wfg.print_wfg()

7.3 The Library Conference

Imagine a conference being held at a university library, where several research teams are working on

their projects. The library has a set of resources:

3 computers (R1, R2, R3)

2 projectors (P1, P2)

Each team needs access to both a computer and a projector to complete their work. The teams are as

follows:

Team A: Needs 1 computer and 1 projector.

Team B: Needs 1 computer and 1 projector.

Team C: Needs 1 computer and 1 projector.

At any given time, each team is holding a resource while waiting for another resource to complete

their work. The following events occur:

Team A is using computer R1 and waiting for projector P1.

387

Team B is using projector P2 and waiting for computer R2.

Team C is using computer R3 and waiting for projector P2.

Determine if there is a deadlock in the system. If so, describe the circular wait condition and suggest a

way to prevent or resolve the deadlock.

Deadlock Detection: To detect deadlock, we need to analyze the resource allocation and the wait

conditions.

Team A: Holding R1, waiting for P1.

Team B: Holding P2, waiting for R2.

Team C: Holding R3, waiting for P2.

If we construct a resource allocation graph:

Team A → P1 (waiting for P1)

Team B → R2 (waiting for R2)

Team C → P2 (waiting for P2)

We notice that:

Team A is waiting for P1, which is held by Team B.

Team B is waiting for R2, which is held by Team C.

Team C is waiting for P2, which is held by Team B.

This forms a circular wait condition: Team A → Team B → Team C → Team B

Thus, a deadlock is present.

Resolution Strategy:

Prevention: Implement policies to avoid circular wait. For example, enforce a rule where each team

must request all required resources at once.

Avoidance: Use a dynamic approach to resource allocation, such as the Banker's Algorithm, to ensure

resources are allocated only if it does not lead to a potential deadlock.

Detection and Recovery: If deadlock detection is used, identify the deadlocked teams and preempt

resources by forcibly reallocating them to break the circular wait.

import threading
import time

resources = {'computers': ['R1', 'R2', 'R3'], 'projectors': ['P1', 'P2']}

team_requests = {
 'TeamA': {'computer': 'R1', 'projector': 'P1'},
 'TeamB': {'computer': 'R2', 'projector': 'P2'},
 'TeamC': {'computer': 'R3', 'projector': 'P2'}}

allocated_resources = {
 'TeamA': {'computer': None, 'projector': None},
 'TeamB': {'computer': None, 'projector': None},
 'TeamC': {'computer': None, 'projector': None}}

resource_locks = {
 'computers': {res: threading.Lock() for res in resources['computers']},
 'projectors': {res: threading.Lock() for res in resources['projectors']} }

388

def request_resource(team, resource_type, resource):
 # Write code here

def release_resource(team, resource_type, resource):
 # Write code here

def team_work(team):
 # Write code here

threads = []
for team in team_requests.keys():
 thread = threading.Thread(target=team_work, args=(team,))
 threads.append(thread)
 thread.start()

for thread in threads:
 thread.join()

print("Simulation complete.")

7.4 The Dining Philosophers

In a dining hall, there are 5 philosophers sitting around a round table. Each philosopher needs two

utensils to eat: one in the left hand and one in the right hand. The table has 5 utensils, each placed

between two philosophers.

The philosophers are:

Philosopher 1: Needs utensils U1 and U2.

Philosopher 2: Needs utensils U2 and U3.

Philosopher 3: Needs utensils U3 and U4.

Philosopher 4: Needs utensils U4 and U5.

Philosopher 5: Needs utensils U5 and U1.

Each philosopher picks up the utensil on their left and then tries to pick up the utensil on their right. If

they cannot pick up both utensils, they put down the one they have and wait.

Analyze the system for potential deadlock. What strategies can be used to prevent or resolve the

deadlock?

Explanation:

Deadlock Detection: To check for deadlock, we observe that:

Philosopher 1 picks up U1 and waits for U2.

Philosopher 2 picks up U2 and waits for U3.

Philosopher 3 picks up U3 and waits for U4.

Philosopher 4 picks up U4 and waits for U5.

Philosopher 5 picks up U5 and waits for U1.

In this scenario, we have a circular wait:

Philosopher 1 → Philosopher 2 → Philosopher 3 → Philosopher 4 → Philosopher 5 → Philosopher 1

Thus, a deadlock is present.

389

Resolution Strategy:

Prevention: One common approach is to impose an order on the utensils and ensure that

philosophers always pick up the lower-numbered utensil first. For example, Philosopher 1 picks up U1

and then U2, Philosopher 2 picks up U2 and then U3, and so on. This approach breaks the circular wait

condition.

Avoidance: Use an algorithm like the Banker's Algorithm to ensure that no philosopher will enter a

state where they wait indefinitely for resources.

Detection and Recovery: Implement an algorithm to periodically check for deadlocks. If detected, a

recovery strategy such as terminating and restarting one or more philosophers can be employed.

import threading

class Philosopher(threading.Thread):
 def __init__(self, philosopher_id, left_utensil, right_utensil):
 # Write code here

 def run(self):
 # Write code here

 def think(self):
 # Write code here

 def eat(self):
 # Write code here

Driver Code
num_philosophers = 5
utensils = [threading.Lock() for _ in range(num_philosophers)]
philosophers = []

for i in range(num_philosophers):
 left_utensil = utensils[i]
 right_utensil = utensils[(i + 1) % num_philosophers]
 philosopher = Philosopher(i + 1, left_utensil, right_utensil)
 philosophers.append(philosopher)

for philosopher in philosophers:
 philosopher.start()

7.5 Banker’s Algorithm

The Banker's algorithm is a deadlock avoidance algorithm used in operating systems to manage

resource allocation and prevent deadlocks. It ensures that resource requests are granted in a way that

avoids the possibility of deadlocks. Let's consider a system with five processes (P1, P2, P3, P4, P5) and

three resource types (R1, R2, R3). The available resources and maximum resource requirements for

each process are as follows:

Available: R1(3), R2(2), R3(2) P1: R1(1), R2(2), R3(2) P2: R1(2), R2(0), R3(1) P3: R1(1), R2(1), R3(1) P4:

R1(2), R2(1), R3(0) P5: R1(0), R2(0), R3(2)

To determine if the system is in a safe state using the Banker's algorithm, we need to simulate

resource allocation and check if a safe sequence can be formed. Here are the steps involved:

390

Initialize data structures:

Available: Set it to the available resources.

Allocation: Set it to the current allocation of resources to processes.

Maximum: Set it to the maximum resource requirements of each process.

Need: Calculate it as Maximum - Allocation for each process.

Define a work array and a finish array. Initially, set all elements of the finish array to false.

Find a process Pi such that:

• Finish[i] is false.

• Need[i] <= Available.

If such a process is found, allocate its resources:

• Available = Available + Allocation[i]

• Set Finish[i] to true

• Add Pi to the safe sequence.

Repeat steps 3 and 4 until all processes are either finished or no process can be allocated resources.

If all processes are successfully allocated resources and a safe sequence is formed, then the system is

in a safe state. Otherwise, if there is no safe sequence, the system is in an unsafe state, indicating a

potential deadlock. In the given example, you can follow the steps of the Banker's algorithm to

determine if the system is in a safe state. By simulating resource allocation and checking for a safe

sequence, you can assess whether the system can avoid deadlocks.

def is_safe_state(processes, available, allocation, need):
 # Write code here

Driver Code
processes = ['P1', 'P2', 'P3', 'P4', 'P5']

available = [3, 2, 2]

allocation = [
 [1, 2, 2],
 [2, 0, 1],
 [1, 1, 1],
 [2, 1, 0],
 [0, 0, 2]
]

maximum = [
 [1, 2, 2],
 [2, 0, 1],
 [1, 1, 1],
 [2, 1, 0],
 [0, 0, 2]
]

need = [[maximum[i][j] - allocation[i][j] for j in range(len(available))] for i in
range(len(processes))]

is_safe, safe_sequence = is_safe_state(processes, available, allocation, need)

391

if is_safe:
 print("The system is in a safe state.")
 print("Safe sequence:", safe_sequence)
else:
 print("The system is in an unsafe state. Deadlock may occur.")

8. Disk Scheduling

8.1 The Disk Access Dilemma

In a busy computer lab at Techville University, a large disk drive serves the needs of multiple students.

The disk drive handles requests from several applications running on different computers. Each

request involves accessing a specific track on the disk. The disk drive operates under the First-Come,

First-Served (FCFS) scheduling algorithm, meaning that requests are handled in the order they are

received, regardless of their location on the disk.

Imagine the disk drive has 1000 tracks, numbered 0 through 999. The disk's current head position is at

track 150. Over the course of a few minutes, the following disk access requests are made by different

applications:

Request 1: Track 200

Request 2: Track 50

Request 3: Track 800

Request 4: Track 300

Request 5: Track 100

The requests are received in the order listed above.

Problem:

1. Calculate the total head movement required to satisfy all the requests using the FCFS

algorithm.

2. Determine the order of tracks that the disk head will visit, starting from the initial position.

Solution:

1. Calculate the Total Head Movement:

o Initial Head Position: Track 150

o Order of Requests:

▪ Request 1: Track 200

▪ Request 2: Track 50

▪ Request 3: Track 800

▪ Request 4: Track 300

▪ Request 5: Track 100

o Movement Calculation:

▪ Move from Track 150 to Track 200: ∣200−150∣=50

▪ Move from Track 200 to Track 50: ∣50−200∣=150

392

▪ Move from Track 50 to Track 800: ∣800−50∣=750

▪ Move from Track 800 to Track 300: ∣300−800∣=500

▪ Move from Track 300 to Track 100: ∣100−300∣=200

o Total Head Movement:

50 + 150 + 750 + 500 + 200 = 1650

2. Order of Tracks Visited:

o Start at Track 150

o Move to Track 200 (Request 1)

o Move to Track 50 (Request 2)

o Move to Track 800 (Request 3)

o Move to Track 300 (Request 4)

o Move to Track 100 (Request 5)

Order of Tracks Visited: 150→200→50→800→300→100

def fcfs_disk_scheduling(initial_head, requests):
 # Write code here

Driver Code
initial_head_position = 150
disk_requests = [200, 50, 800, 300, 100]

total_head_movement, tracks_visited = fcfs_disk_scheduling(initial_head_position,
disk_requests)

print("Total Head Movement:", total_head_movement)
print("Order of Tracks Visited:", tracks_visited)

8.2 The SSTF Disk Scheduling Challenge

The goal of SSTF is to reduce the total seek time by always selecting the request closest to the current

head position. This approach minimizes the movement of the disk head between requests.

Process:

1. Initial State: Start with the initial head position (750 in this case).

2. Select the Closest Request: At each step, identify the request that is closest to the

current head position.

3. Move to the Closest Request: Move the disk head to this closest request and mark it as

processed.

4. Update Position and Repeat: Update the current head position to the new track and

repeat the process until all requests are serviced.

Step-by-Step Simulation:

393

Initial Position: Track 750

Requests: [1200, 500, 900, 1500, 300]

Execution: Current Head: 750

Distances to Requests:

To Track 1200: |1200 - 750| = 450

To Track 500: |500 - 750| = 250

To Track 900: |900 - 750| = 150

To Track 1500: |1500 - 750| = 750

To Track 300: |300 - 750| = 450

Closest Request: Track 900 (150 units away)

Move to Track 900

Update Position: 900

Total Movement So Far: 150

Remaining Requests: [1200, 500, 1500, 300]

Current Head: 900

Distances to Requests:

To Track 1200: |1200 - 900| = 300

To Track 500: |500 - 900| = 400

To Track 1500: |1500 - 900| = 600

To Track 300: |300 - 900| = 600

Closest Request: Track 1200 (300 units away)

Move to Track 1200

Update Position: 1200

Total Movement So Far: 150 + 300 = 450

Remaining Requests: [500, 1500, 300]

Current Head: 1200

Distances to Requests:

To Track 500: |500 - 1200| = 700

To Track 1500: |1500 - 1200| = 300

To Track 300: |300 - 1200| = 900

Closest Request: Track 1500 (300 units away)

Move to Track 1500

Update Position: 1500

Total Movement So Far: 450 + 300 = 750

Remaining Requests: [500, 300]

Current Head: 1500

Distances to Requests:

To Track 500: |500 - 1500| = 1000

To Track 300: |300 - 1500| = 1200

Closest Request: Track 500 (1000 units away)

Move to Track 500

Update Position: 500

Total Movement So Far: 750 + 1000 = 1750

Remaining Request: [300]

394

Current Head: 500

Distance to Request: Track 300: |300 - 500| = 200

Move to Track 300

Total Movement So Far: 1750 + 200 = 1950

Summary of Results:

Order of Tracks Visited: [750, 900, 1200, 1500, 500, 300]

Total Head Movement: 1950 units

def sstf_disk_scheduling(initial_head, requests):
 # Write code here

Driver Code
initial_head_position = 750
disk_requests = [1200, 500, 900, 1500, 300]

total_head_movement, tracks_visited = sstf_disk_scheduling(initial_head_position,
disk_requests)

print("Total Head Movement:", total_head_movement)
print("Order of Tracks Visited:", tracks_visited)

8.3 FutureTech Corporation

In the Data Center of FutureTech Corporation, a large disk drive is used to store and retrieve data for

various applications. To manage disk access requests efficiently, the disk drive uses the SCAN disk

scheduling algorithm. This algorithm is often referred to as the "elevator algorithm" because it works

similarly to an elevator in a building: it moves in one direction, servicing requests until it reaches the

end, and then reverses direction to service requests on the way back.

The disk has 5000 tracks, numbered from 0 to 4999. The disk head starts at track 2500 and is currently

moving in the direction of higher-numbered tracks. Over the course of the day, the following disk

access requests are made:

Request 1: Track 2800

Request 2: Track 1500

Request 3: Track 3500

Request 4: Track 4000

Request 5: Track 1000

Problem: Simulate the SCAN algorithm to determine the order in which the disk head will process the

requests. Calculate the total head movement required to service all the requests using the SCAN

algorithm, given that the disk head is initially moving towards higher-numbered tracks.

Direction of Movement: The disk head starts at track 2500 and is moving towards the higher-

numbered tracks. Once it reaches the end of the disk (track 4999), it will reverse direction and service

requests on its way back towards track 0.

Requests: Process the requests in the order the head encounters them as it moves in the initial

direction and then in the reverse direction.

Head Movement Calculation: Keep track of the total distance moved by the disk head from its initial

position to the final position after all requests have been serviced.

395

Explanation: To solve this problem, follow these steps:

Identify Requests in the Path:

Initial Direction (Higher Tracks):

Start at Track 2500.

Moving towards higher tracks, service the requests that fall within this direction until reaching the end

of the disk.

Requests in the Initial Direction:

Track 2800

Track 3500

Track 4000

Reverse Direction (Lower Tracks):

After reaching the end of the disk (Track 4999), reverse direction to service the remaining requests.

Requests in the Reverse Direction:

Track 1500

Track 1000

Simulate the Movement:

Move from Track 2500 to Track 2800: ∣2800−2500∣ = 300

Move from Track 2800 to Track 3500: ∣3500−2800∣=700

Move from Track 3500 to Track 4000: ∣4000−3500∣=500

Move from Track 4000 to the End of the Disk (Track 4999): ∣4999−4000∣=999

Reverse Direction and Move from Track 4999 to Track 1500: ∣1500−4999∣=3499

Move from Track 1500 to Track 1000: ∣1000−1500∣=500

Total Head Movement Calculation: 300+700+500+999+3499+500=5498 units

Order of Tracks Visited:

Start at Track 2500

Move to Track 2800

Move to Track 3500

Move to Track 4000

Move to Track 4999 (end of the disk)

Reverse direction

Move to Track 1500

Move to Track 1000

Summary:

Order of Tracks Visited: [2500, 2800, 3500, 4000, 4999, 1500, 1000]

Total Head Movement: 5498 units

The SCAN algorithm ensures that each request is serviced in an orderly fashion, minimizing the

potential delays and ensuring that requests are handled in a systematic manner, similar to how an

elevator services floors.

def scan_disk_scheduling(initial_head, requests, direction='up', max_track=4999):
 # Write code here

Driver Code
initial_head_position = 2500
disk_requests = [2800, 1500, 3500, 4000, 1000]

total_head_movement, tracks_visited = scan_disk_scheduling(initial_head_position,
disk_requests, direction='up')

print("Total Head Movement:", total_head_movement)
print("Order of Tracks Visited:", tracks_visited)

396

8.4 The C-SCAN Disk Scheduling Odyssey

In the Advanced Data Center at StellarTech Enterprises, a state-of-the-art disk drive is used to handle

high-priority data access requests from various applications. The disk drive uses the Circular SCAN (C-

SCAN) disk scheduling algorithm to manage these requests. C-SCAN is designed to provide a more

uniform wait time by only servicing requests in one direction and then quickly returning to the

beginning of the disk to continue servicing. The disk in the StellarTech data center has 10,000 tracks,

numbered from 0 to 9999. The disk head starts at track 4000 and is currently moving in the direction

of higher-numbered tracks.

Over the day, the following disk access requests are made:

Request 1: Track 4200

Request 2: Track 1000

Request 3: Track 6000

Request 4: Track 7500

Request 5: Track 2000

Simulate the C-SCAN algorithm to determine the order in which the disk head will process the

requests.

Calculate the total head movement required to service all the requests using the C-SCAN algorithm.

Direction of Movement: The disk head starts at track 4000 and is moving towards the higher-

numbered tracks. Once it reaches the end of the disk (track 9999), it will quickly move back to track 0

and continue servicing requests from there.

Requests: Process the requests in the direction the head is currently moving (towards higher tracks)

and then wrap around to handle requests starting from the beginning of the disk.

Head Movement Calculation: Keep track of the total distance moved by the disk head from its initial

position to the final position after all requests have been serviced.

Explanation: To solve this problem, follow these steps:

Identify Requests in the Path:

Initial Direction (Higher Tracks):

Start at Track 4000.

Moving towards higher tracks, service the requests that fall within this direction until reaching the end

of the disk.

Requests in the Initial Direction:

Track 4200

Track 6000

Track 7500

Wrap Around:

After reaching the end of the disk (Track 9999), wrap around to the start of the disk (Track 0) to

continue servicing the remaining requests.

Requests after Wrapping Around:

Track 1000

Track 2000

397

Simulate the Movement:

Move from Track 4000 to Track 4200: ∣4200−4000∣=200

Move from Track 4200 to Track 6000: ∣6000−4200∣=1800

Move from Track 6000 to Track 7500: ∣7500−6000∣=1500

Move from Track 7500 to the End of the Disk (Track 9999): ∣9999−7500∣=2499

Wrap Around to Track 0: ∣9999−0∣=9999

Move from Track 0 to Track 1000: ∣1000−0∣=1000

Move from Track 1000 to Track 2000: ∣2000−1000∣=1000

Total Head Movement Calculation: 200+1800+1500+2499+9999+1000+1000=19,998 units

Order of Tracks Visited:

Start at Track 4000

Move to Track 4200

Move to Track 6000

Move to Track 7500

Move to Track 9999 (end of the disk)

Wrap around to Track 0

Move to Track 1000

Move to Track 2000

Order of Tracks Visited: [4000, 4200, 6000, 7500, 9999, 0, 1000, 2000]

Total Head Movement: 19,998 units

The C-SCAN algorithm provides a systematic way of servicing disk requests in one direction and then

quickly wrapping around to the beginning to ensure fair treatment of all requests, even those that are

far from the current head position.

def cscan_disk_scheduling(initial_head, requests, max_track=9999):
 # Write code here

Driver Code
initial_head_position = 4000
disk_requests = [4200, 1000, 6000, 7500, 2000]

total_head_movement, tracks_visited = cscan_disk_scheduling(initial_head_position,
disk_requests)

print("Total Head Movement:", total_head_movement)
print("Order of Tracks Visited:", tracks_visited)

8.5 The C-SCAN Disk Scheduling Quest at TechFusion Labs

At TechFusion Labs, a cutting-edge research facility, disk drives are crucial for storing and managing

vast amounts of scientific data. To efficiently handle disk access requests, the facility uses the Circular

SCAN (C-SCAN) disk scheduling algorithm. This algorithm is chosen for its ability to provide fair access

to disk resources by continuously moving in one direction and wrapping around to handle all pending

requests. The disk drive at TechFusion Labs has 8,000 tracks, numbered from 0 to 7999. The disk head

starts at track 3500 and is currently moving towards higher-numbered tracks.

398

Throughout the day, the following disk access requests are made:

Request A: Track 3800

Request B: Track 600

Request C: Track 7000

Request D: Track 1500

Request E: Track 2500

Simulate the C-SCAN algorithm to determine the order in which the disk head will process the

requests. Calculate the total head movement required to service all the requests using the C-SCAN

algorithm, given that the disk head starts at track 3500 and moves in the direction of higher-

numbered tracks.

Direction of Movement: The disk head starts at track 3500 and is moving towards higher-numbered

tracks. Once it reaches the end of the disk (track 7999), it will quickly return to track 0 and continue

servicing requests from there.

Requests: Process the requests in the direction the head is currently moving (towards higher tracks)

and then wrap around to handle the remaining requests starting from the beginning of the disk.

Head Movement Calculation: Keep track of the total distance moved by the disk head from its initial

position to the final position after all requests have been serviced.

Explanation:

Identify Requests in the Path:

Initial Direction (Higher Tracks):

Start at Track 3500.

Moving towards higher tracks, service the requests that fall within this direction until reaching the end

of the disk.

Requests in the Initial Direction:

Track 3800

Track 6000

Track 7000

Wrap Around:

After reaching the end of the disk (Track 7999), wrap around to the start of the disk (Track 0) to

continue servicing the remaining requests.

Requests after Wrapping Around:

Track 600

Track 1500

Track 2500

Simulate the Movement:

Move from Track 3500 to Track 3800: ∣3800−3500∣=300

Move from Track 3800 to Track 6000: ∣6000−3800∣=2200

Move from Track 6000 to Track 7000: ∣7000−6000∣=1000

Move from Track 7000 to the End of the Disk (Track 7999): ∣7999−7000∣=999

Wrap Around to Track 0: ∣7999−0∣=7999

Move from Track 0 to Track 600: ∣600−0∣=600

Move from Track 600 to Track 1500: ∣1500−600∣=900

Move from Track 1500 to Track 2500: ∣2500−1500∣=1000

Total Head Movement Calculation: 300+2200+1000+999+7999+600+900+1000=14,998 units

Order of Tracks Visited:

Start at Track 3500

Move to Track 3800

Move to Track 6000

Move to Track 7000

Move to Track 7999 (end of the disk)

Wrap around to Track 0

Move to Track 600

399

Move to Track 1500

Move to Track 2500

Order of Tracks Visited: [3500, 3800, 6000, 7000, 7999, 0, 600, 1500, 2500]

Total Head Movement: 14,998 units

The C-SCAN algorithm ensures that the disk head continuously moves in one direction, wraps around

to the beginning of the disk, and processes all pending requests in a fair and systematic manner. This

helps in providing uniform wait times and efficient request handling.

def cscan_disk_scheduling(initial_head, requests, max_track=7999):
 # Write code here

initial_head_position = 3500
disk_requests = [3800, 600, 7000, 1500, 2500]

total_head_movement, tracks_visited = cscan_disk_scheduling(initial_head_position,
disk_requests)

print("Total Head Movement:", total_head_movement)
print("Order of Tracks Visited:", tracks_visited)

9. Concurrency Control

9.1 The Tale of the Library Management System

Imagine a large university library called UniLib, which has an automated system to manage its book

inventory and handle user requests. The system must ensure that book information is consistently

updated and accessible to all users, even when multiple requests are being processed simultaneously.

• Book Checkouts: When a user checks out a book, the system must update the book's

availability status.

• Book Returns: When a user returns a book, the system must update the book's status to

available.

• The library has the following setup:

• Book Inventory: A central inventory database that tracks the availability of each book.

• User Requests: Users can check out or return books at any time, and multiple requests can be

processed concurrently.

The library system faces these challenges:

Concurrency Control: Multiple users may attempt to check out or return the same book

simultaneously, leading to potential conflicts and inconsistent book availability information.

Data Integrity: Ensuring that the book’s status is accurately updated and that no two users can

perform conflicting operations on the same book.

Challenges:

• Concurrency Control Mechanisms: How should the system handle concurrent requests to

prevent inconsistencies and ensure that book statuses are correctly updated?

• Locking Strategies: What strategies should be used to lock resources (e.g., books) during

updates to avoid conflicts and ensure data integrity?

• Deadlock Prevention: How can the system avoid deadlocks where users are waiting

indefinitely for resources to be released?

Explanation:

400

To address these challenges, the library system can implement concurrency control techniques and

locking strategies:

Concurrency Control Mechanisms:

Use Locking: Employ exclusive locks on books to ensure that only one operation (check out or return)

can modify a book's status at a time.

Locking Strategies:

Pessimistic Locking: Lock the book's record when a user starts a checkout or return operation and

release the lock only after the operation is completed.

Optimistic Locking: Use version numbers or timestamps to check if the book's status has changed

before updating it, rolling back if a conflict is detected.

Deadlock Prevention:

Implement a deadlock prevention strategy such as timeout-based locking where a request is aborted

if it cannot acquire a lock within a specified time.

import threading
import time
import random

class BookInventory:
 def __init__(self):
 # Write code here

 def return_book(self, book):
 # Write code here

def user_request(inventory, book, action):
 # Write code here

Driver Code
inventory = BookInventory()

threads = []
books = ['Book1', 'Book2', 'Book3']
actions = ['checkout', 'return']

for i in range(10):
 book = random.choice(books)
 action = random.choice(actions)
 t = threading.Thread(target=user_request, args=(inventory, book, action))
 threads.append(t)
 t.start()

for t in threads:
 t.join()

print("All operations completed.")

9.2 The Tale of the Restaurant Reservation System

Imagine a popular restaurant named Gourmet Haven that uses an automated reservation system to

manage table bookings. The restaurant has a limited number of tables, and the reservation system

must handle concurrent booking requests efficiently while ensuring that no table is double-booked.

401

Gourmet Haven operates with:

• Tables: The restaurant has 10 tables, each with a unique ID.

• Reservation System: A central system that processes reservation requests from multiple

customers.

Reservation System faces the following challenges:

• Concurrency: Multiple customers might attempt to book the same table at the same time.

• Data Integrity: The system must ensure that each table is reserved for only one customer at a

time and that all reservation details are correctly updated.

Challenges:

• Concurrency Control: How should the system handle simultaneous booking requests to

prevent double-booking of tables?

• Locking Mechanisms: What strategies should be employed to lock table records during

reservation processing to ensure data consistency?

• Transaction Management: How can the system manage transactions to ensure that all

operations related to a reservation (e.g., updating table status, notifying customers) are

completed successfully?

Explanation:

To address these challenges, the reservation system can implement the following strategies:

Concurrency Control Mechanisms:

• Use Optimistic Locking: Implement versioning or timestamps to detect if a table's status has

changed before finalizing a reservation.

• Use Pessimistic Locking: Lock the table’s record while processing the reservation to prevent

other requests from modifying it simultaneously.

Locking Strategies:

• Exclusive Locks: Lock the table record for the duration of the reservation process to prevent

double-booking.

Transaction Management:

• Atomic Transactions: Ensure that the reservation process is atomic—either all operations are

completed successfully, or none are, rolling back if any part of the transaction fails.

import threading
import time
import random

class ReservationSystem:
 def __init__(self, num_tables):
 # Write code here

 def reserve_table(self, table_id):
 # Write code here

 def release_table(self, table_id):
 # Write code here

def customer_request(reservation_system, table_id):
 # Write code here

Driver Code
reservation_system = ReservationSystem(num_tables=10)

threads = []

402

table_ids = [f'Table{i+1}' for i in range(10)]

for _ in range(20): # Simulate 20 customer requests
 table_id = random.choice(table_ids)
 t = threading.Thread(target=customer_request, args=(reservation_system,
table_id))
 threads.append(t)
 t.start()

for t in threads:
 t.join()

print("All reservations completed.")

9.3 The Tale of the Online Shopping Cart System

Imagine a popular online shopping platform called ShopEase. The platform has a feature that allows

customers to add items to their shopping cart and proceed to checkout. Due to high traffic, the

system needs to handle multiple customers accessing and modifying their shopping carts

concurrently.

The Problem: ShopEase must ensure:

• Concurrency: Multiple customers may attempt to add or remove the same item from their

cart simultaneously.

• Data Integrity: The system must maintain accurate item counts and prevent inconsistencies

in the shopping cart data.

ShopEase operates with:

• Shopping Carts: Each customer has a unique shopping cart that can be modified.

• Inventory System: The inventory tracks the availability of items and is updated when items

are added or removed from carts.

Challenges:

• Concurrency Control: How should the system handle simultaneous updates to the same

shopping cart or inventory item to prevent data inconsistencies?

• Locking Mechanisms: What locking strategies should be employed to ensure that operations

on shopping carts and inventory items are synchronized and do not conflict?

• Transaction Management: How can the system manage transactions to ensure that all

operations related to adding or removing items from the cart are completed successfully or

rolled back if any part fails?

Explanation:

To address these challenges, the shopping cart system can implement the following strategies:

Concurrency Control Mechanisms:

• Pessimistic Locking: Lock the shopping cart and inventory items while modifications are

being made to prevent other operations from conflicting.

• Optimistic Locking: Use versioning or timestamps to detect changes in the cart or inventory

before committing updates.

Locking Strategies:

• Exclusive Locks: Apply exclusive locks on shopping carts and inventory items to ensure that

only one modification operation can occur at a time.

Transaction Management:

• Atomic Transactions: Ensure that the process of updating the cart and inventory is atomic,

meaning all operations must succeed together, or none should apply if there is an error.

403

import threading
import time
import random

class InventorySystem:
 def __init__(self):
 # Write code here

 def add_item(self, item, quantity):
 # Write code here

 def remove_item(self, item, quantity):
 # Write code here

class ShoppingCart:
 def __init__(self):
 # Write code here

 def add_to_cart(self, user_id, item, quantity):
 # Write code here

 def remove_from_cart(self, user_id, item, quantity):
 # Write code here

def customer_action(user_id, cart, inventory):
 # Write code here

Driver Code
inventory = InventorySystem()
cart = ShoppingCart()

threads = []
user_ids = [f'User{i+1}' for i in range(10)]

for user_id in user_ids:
 for _ in range(5):
 t = threading.Thread(target=customer_action, args=(user_id, cart,
inventory))
 threads.append(t)
 t.start()

for t in threads:
 t.join()

print("All customer actions completed.")

9.4 The Tale of the Collaborative Document Editing System

Imagine a collaborative document editing platform called EditTogether. This platform allows multiple

users to edit the same document simultaneously. To maintain consistency and prevent conflicts, the

system must manage concurrent access to the document's content effectively.

The Problem: EditTogether needs to handle:

Concurrent Edits: Multiple users might edit the same part of the document at the same time.

404

Data Integrity: Ensure that all changes are accurately recorded and that no edits are lost or

overwritten improperly.

EditTogether operates with:

• Documents: Users can open and edit shared documents.

• Editors: Each user acts as an editor who can make changes to the document.

Challenges:

• Concurrency Control: How should the system handle simultaneous edits to the same section

of the document to prevent data corruption and loss?

• Locking Mechanisms: What strategies should be employed to lock sections of the document

during editing to ensure that changes are applied correctly and consistently?

• Conflict Resolution: How can the system detect and resolve conflicts when multiple users

attempt to edit the same content concurrently?

Explanation:

To address these challenges, the document editing system can implement the following strategies:

Concurrency Control Mechanisms:

• Optimistic Locking: Use version numbers or timestamps to detect if the document or a

section has changed since a user started editing. Apply changes only if the document is in the

same state as when editing started.

• Pessimistic Locking: Lock sections of the document while a user is editing to prevent other

users from making changes to the same section.

Locking Strategies:

• Fine-Grained Locking: Lock specific sections or paragraphs of the document rather than the

entire document to allow multiple users to edit different parts concurrently.

• Exclusive Locks: Use exclusive locks on sections being edited to ensure that only one user

can make changes at a time.

Conflict Resolution:

• Change Tracking: Track changes made by users and detect conflicts when merging changes.

• Merge Strategies: Implement merge algorithms to integrate concurrent changes, providing

users with options to resolve conflicts manually if necessary.

import threading
import time
import random

class Document:
 def __init__(self):
 # Write code here

 def edit_line(self, line_number, new_text):
 # Write code here

 def show_document(self):
 # Write code here

def user_edit(document, user_id):
 # Write code here

405

Driver Code
document = Document()

threads = []
user_ids = [f'User{i+1}' for i in range(10)]

for user_id in user_ids:
 t = threading.Thread(target=user_edit, args=(document, user_id))
 threads.append(t)
 t.start()

for t in threads:
 t.join()

document.show_document()

print("All user edits completed.")

9.5 The Tale of the Bank Account Management System

Imagine a large bank called SecureBank that handles thousands of transactions every day. The bank

uses an automated system to manage customer accounts. The system must ensure that transactions

are processed accurately and that account balances are correctly updated even when multiple

transactions occur simultaneously.

SecureBank needs to handle:

• Concurrent Transactions: Multiple transactions may be processed on the same account at

the same time.

• Data Integrity: Ensure that account balances are updated correctly and that no transactions

are lost or incorrectly applied.

SecureBank operates with:

• Accounts: Each customer has a unique account with a balance.

• Transactions: Transactions include deposits and withdrawals that modify account balances.

Challenges:

• Concurrency Control: How should the system manage simultaneous transactions on the

same account to prevent inconsistencies and ensure correct balance updates?

• Locking Mechanisms: What locking strategies should be used to synchronize access to

account balances and prevent race conditions?

• Transaction Management: How can the system ensure that each transaction is processed

atomically and that any failure in the transaction does not leave the account in an inconsistent

state?

Explanation:

To address these challenges, the bank system can implement the following strategies:

Concurrency Control Mechanisms:

• Pessimistic Locking: Lock the account record while a transaction is being processed to

prevent other transactions from modifying the same account concurrently.

406

• Optimistic Locking: Use versioning or timestamps to check if the account balance has

changed before applying a transaction, rolling back if a conflict is detected.

Locking Strategies:

• Exclusive Locks: Use exclusive locks on account records during transactions to ensure that

only one transaction can modify an account’s balance at a time.

Transaction Management:

• Atomic Transactions: Ensure that each transaction is atomic, meaning that it either fully

completes or is fully rolled back if any part fails.

import threading
import time
import random

class BankAccount:
 def __init__(self, balance):
 # Write code here

 def deposit(self, amount):
 # Write code here

 def withdraw(self, amount):
 # Write code here

def perform_transaction(account, transaction_type, amount):
 # Write code here

Driver Code
account = BankAccount(balance=1000)

threads = []
transaction_types = ['deposit', 'withdraw']

for _ in range(20):
 transaction_type = random.choice(transaction_types)
 amount = random.randint(50, 200)
 t = threading.Thread(target=perform_transaction, args=(account,
transaction_type, amount))
 threads.append(t)
 t.start()

for t in threads:
 t.join()
print("All transactions completed.")

10. Page Replacement Algorithms

10.1 The Story of a Busy Café and Its Orders

Imagine a cozy café called Café FIFO. This café is known for its efficient handling of orders, thanks to

its unique ordering system. The café staff use a FIFO queue to manage their incoming orders, ensuring

that the first order received is also the first one to be processed.

Let’s delve into a day at Café FIFO to understand how this system works.

Characters:

407

• A, the café manager.

• B, the barista.

• C, a customer who places orders.

It’s a bustling morning at Café FIFO. The café has a small counter with a display that can only show a

maximum of 4 orders at a time. When more orders come in and the counter is full, the oldest order

(the one that’s been there the longest) gets processed and removed to make space for the new ones.

This is how the café manages its orders efficiently.

Here's a sequence of orders placed:

Order 1 - Coffee

Order 2 - Tea

Order 3 - Muffin

Order 4 - Croissant

Order 5 - Smoothie

The café processes these orders using the FIFO method, which means:

Order 1 (Coffee) was placed first and is displayed on the counter.

Order 2 (Tea) is next on the counter.

Order 3 (Muffin) is added after Tea.

Order 4 (Croissant) comes in, filling up the counter’s capacity of 4.

Now, when Order 5 (Smoothie) arrives, the counter is full. According to FIFO, the oldest order on the

counter (Order 1 - Coffee) will be processed and removed to make space for the new order.

To summarize the process:

Order 1 (Coffee) is processed and removed.

Order 5 (Smoothie) is added to the counter.

The counter now has: Order 2 (Tea), Order 3 (Muffin), Order 4 (Croissant), and Order 5 (Smoothie).

At the end of the day, the café’s order log shows the following sequence of order arrivals and

processing. If you were to check the remaining orders on the counter, which ones would be there and

why?

Explanation:

To determine the remaining orders, let's follow the FIFO order replacement process step-by-step:

• Order 1 (Coffee) is processed and removed when Order 5 (Smoothie) arrives.

• The remaining orders after Order 1 is processed are:

o Order 2 (Tea)

o Order 3 (Muffin)

o Order 4 (Croissant)

o Order 5 (Smoothie)

Thus, at the end of the day, the remaining orders on the counter, in FIFO order, are:

• Order 2 (Tea)

• Order 3 (Muffin)

408

• Order 4 (Croissant)

• Order 5 (Smoothie)

In this program, we'll maintain a queue to represent the counter in the café, which can hold a

maximum of 4 orders at a time. When a new order arrives and the counter is full, the oldest order (the

one that arrived first) will be processed and removed to make space for the new order.

from collections import deque

class CafeFIFO:
 def __init__(self, capacity):

 # Write code here

 def add_order(self, order):

 # Write code here

 def display_orders(self):

 # Write code here

Driver Code
cafe = CafeFIFO(capacity=4)

orders = ["Coffee", "Tea", "Muffin", "Croissant", "Smoothie"]

for order in orders:
 cafe.add_order(order)

cafe.display_orders()

10.2 The Tale of the Library and Its Book Shelves

Imagine a small, quaint library called The Library of Timeless Tales. The library has a special section

where books are displayed on a shelf with a fixed capacity. The shelf can only hold a maximum of 5

books at a time. When a new book comes in and the shelf is already full, the oldest book on the shelf

is removed to make space for the new one.

The librarian, Emma, uses the FIFO policy to manage the books on the shelf. Emma’s job is to ensure

that the shelf is organized according to the order in which books arrive.

One day, Emma receives a sequence of book requests that need to be displayed on the shelf:

Book A - "The Great Adventure"

Book B - "Mystery of the Lost City"

Book C - "Journey Through Time"

Book D - "Secrets of the Ocean"

Book E - "The Final Frontier"

Book F - "Legends of the Hidden Realm"

Emma needs to display these books on the shelf. Since the shelf can only hold up to 5 books at a time,

when a new book arrives and the shelf is full, the oldest book (the one that was on the shelf the

longest) must be removed to make room for the new book.

At the end of the day, after all the books have been processed, what books will remain on the shelf?

Explanation:

409

To solve this problem, we will use a FIFO queue to simulate the shelf management. Here's a step-by-

step breakdown:

Book A ("The Great Adventure") is placed on the shelf.

Book B ("Mystery of the Lost City") is added next.

Book C ("Journey Through Time") is added.

Book D ("Secrets of the Ocean") is added.

Book E ("The Final Frontier") is added. At this point, the shelf is full.

When Book F ("Legends of the Hidden Realm") arrives:

Book A (the oldest) will be removed from the shelf.

Book F is then added to the shelf.

After processing all the books, the remaining books on the shelf are:

Book B ("Mystery of the Lost City")

Book C ("Journey Through Time")

Book D ("Secrets of the Ocean")

Book E ("The Final Frontier")

Book F ("Legends of the Hidden Realm")

from collections import deque

class LibraryShelf:
 def __init__(self, capacity):
 # Write code here

 def add_book(self, book):
 # Write code here

 def display_books(self):
 # Write code here

Driver Code
library_shelf = LibraryShelf(capacity=5)

books = [
 "The Great Adventure",
 "Mystery of the Lost City",
 "Journey Through Time",
 "Secrets of the Ocean",
 "The Final Frontier",
 "Legends of the Hidden Realm"
]

for book in books:
 library_shelf.add_book(book)

library_shelf.display_books()

410

10.3 The Story of the Busy Café and Its Special Recipe Book

Imagine a popular café called Café Nostalgia. The café is famous for its unique and varied menu,

which changes daily. The chef, Linda, keeps a special recipe book on a counter with a limited space of

4 slots. This book contains recipes that Linda consults frequently, but the counter can only hold up to

4 recipes at a time. When Linda needs to refer to a new recipe and the counter is full, she must

remove the recipe that hasn't been used for the longest time to make space for the new one. One day,

Linda receives a sequence of recipe requests. She uses the LRU (Least Recently Used) policy to

manage her recipe book on the counter.

Linda receives the following sequence of recipe requests for the day:

Recipe 1 - "Pumpkin Spice Latte"

Recipe 2 - "Apple Pie"

Recipe 3 - "Blueberry Muffin"

Recipe 4 - "Cinnamon Roll"

Recipe 2 - "Apple Pie"

Recipe 5 - "Maple Pancakes"

Recipe 1 - "Pumpkin Spice Latte"

Linda’s job is to ensure that the recipe book reflects the most recently used recipes according to the

LRU policy.

At the end of the day, after processing all the recipe requests, which recipes will remain on the

counter, and in what order?

Explanation:

To solve this problem, we need to simulate the LRU page replacement algorithm. The LRU policy

keeps track of the usage order of recipes, removing the least recently used recipe when the counter is

full.

Here’s a step-by-step breakdown of how the recipes will be managed:

Recipe 1 ("Pumpkin Spice Latte") is added to the counter.

Recipe 2 ("Apple Pie") is added.

Recipe 3 ("Blueberry Muffin") is added.

Recipe 4 ("Cinnamon Roll") is added. At this point, the counter is full.

When Recipe 2 ("Apple Pie") is requested again:

Since Recipe 2 is already on the counter and it’s the most recently used, it remains on the counter.

The state of the counter remains: Recipe 1, Recipe 2, Recipe 3, Recipe 4.

When Recipe 5 ("Maple Pancakes") is requested:

The counter is full, so the least recently used recipe, Recipe 1 ("Pumpkin Spice Latte"), is removed.

Recipe 5 is added to the counter.

The state of the counter becomes: Recipe 2, Recipe 3, Recipe 4, Recipe 5.

When Recipe 1 ("Pumpkin Spice Latte") is requested again:

Recipe 1 is no longer on the counter, so it is re-added, and the least recently used recipe, Recipe 3

("Blueberry Muffin"), is removed.

The final state of the counter becomes: Recipe 2, Recipe 4, Recipe 5, Recipe 1.

411

from collections import OrderedDict

class CafeRecipeBook:
 def __init__(self, capacity):
 # Write code here

 def add_recipe(self, recipe):
 # Write code here

 def display_recipes(self):
 # Write code here

Driver Code
cafe_recipe_book = CafeRecipeBook(capacity=4)

recipes = [
 "Pumpkin Spice Latte",
 "Apple Pie",
 "Blueberry Muffin",
 "Cinnamon Roll",
 "Apple Pie",
 "Maple Pancakes",
 "Pumpkin Spice Latte"
]

for recipe in recipes:
 cafe_recipe_book.add_recipe(recipe)

cafe_recipe_book.display_recipes()

10.4 The Tale of the Art Gallery and Its Exhibition

Imagine a chic art gallery named Gallery of Modern Arts. The gallery features a special digital display

board that can showcase up to 6 artworks at a time. The display board is updated frequently to reflect

the most popular and recent artworks. Sophia, the gallery curator, manages the display using the LRU

(Least Recently Used) policy. When a new artwork needs to be showcased and the board is already

full, Sophia must remove the artwork that has been displayed the longest and add the new one.

Sophia receives the following sequence of artwork requests throughout the day:

Artwork 1 - "Sunset Over the Lake"

Artwork 2 - "Abstract Dreams"

Artwork 3 - "Cityscape at Dusk"

Artwork 4 - "Portrait of the Artist"

Artwork 5 - "Golden Fields"

Artwork 6 - "Mystic Mountains"

Artwork 2 - "Abstract Dreams"

Artwork 7 - "Twilight Reflections"

Artwork 1 - "Sunset Over the Lake"

Artwork 8 - "Harmony in Blue"

412

Sophia needs to manage the display board such that it shows the most recently used artworks

according to the LRU policy. At the end of the day, after processing all the artwork requests, which

artworks will remain on the display board, and in what order?

Explanation:

To solve this problem using the LRU page replacement algorithm, we'll simulate how the display

board is updated. The LRU policy ensures that the least recently used artwork is removed when the

board is full.

Here’s a step-by-step breakdown:

Artwork 1 ("Sunset Over the Lake") is added to the display board.

Artwork 2 ("Abstract Dreams") is added.

Artwork 3 ("Cityscape at Dusk") is added.

Artwork 4 ("Portrait of the Artist") is added.

Artwork 5 ("Golden Fields") is added.

Artwork 6 ("Mystic Mountains") is added. At this point, the display board is full.

When Artwork 2 ("Abstract Dreams") is requested again:

Artwork 2 is already on the board and is moved to the most recently used position.

When Artwork 7 ("Twilight Reflections") is requested:

The board is full, so the least recently used artwork, Artwork 3 ("Cityscape at Dusk"), is removed.

Artwork 7 is added to the board.

When Artwork 1 ("Sunset Over the Lake") is requested:

Artwork 1 is already on the board and is moved to the most recently used position.

When Artwork 8 ("Harmony in Blue") is requested:

The board is full, so the least recently used artwork, Artwork 4 ("Portrait of the Artist"), is removed.

Artwork 8 is added to the board.

The final state of the display board, after processing all artwork requests, will be:

Artwork 2 ("Abstract Dreams")

Artwork 7 ("Twilight Reflections")

Artwork 1 ("Sunset Over the Lake")

Artwork 5 ("Golden Fields")

Artwork 6 ("Mystic Mountains")

Artwork 8 ("Harmony in Blue")

from collections import OrderedDict

class ArtGalleryDisplay:
 def __init__(self, capacity):
 # Write code here

413

 def add_artwork(self, artwork):
 # Write code here

 def display_artworks(self):
 # Write code here

Driver Code
art_gallery_display = ArtGalleryDisplay(capacity=6)

artworks = [
 "Sunset Over the Lake",
 "Abstract Dreams",
 "Cityscape at Dusk",
 "Portrait of the Artist",
 "Golden Fields",
 "Mystic Mountains",
 "Abstract Dreams",
 "Twilight Reflections",
 "Sunset Over the Lake",
 "Harmony in Blue"
]

for artwork in artworks:
 art_gallery_display.add_artwork(artwork)

art_gallery_display.display_artworks()

10.5 The Tale of the Library and Its Popular Books

Imagine a charming library called The Book Haven. The library has a special digital display that

showcases the top 5 most popular books at any given time. The display is updated based on how

frequently each book is checked out. Liam, the library manager, uses the LFU (Least Frequently Used)

policy to manage the display. If a new book needs to be featured on the display and the display is

already full, Liam must remove the book that is checked out the least number of times to make room

for the new one.

Throughout the day, the library receives the following sequence of book checkouts:

Book A - "The Great Gatsby" (Checked out 3 times)

Book B - "1984" (Checked out 5 times)

Book C - "To Kill a Mockingbird" (Checked out 2 times)

Book D - "Pride and Prejudice" (Checked out 4 times)

Book E - "The Catcher in the Rye" (Checked out 1 time)

Book F - "Moby Dick" (Checked out 6 times)

Book G - "The Odyssey" (Checked out 3 times)

Book H - "War and Peace" (Checked out 2 times)

Liam needs to manage the display so that it shows the most frequently checked out books according

to the LFU policy. At the end of the day, after processing all the book checkouts, which books will

remain on the display, and in what order?

Explanation:

414

To solve this problem using the LFU page replacement algorithm, we need to keep track of how

frequently each book is checked out. When the display is full, the least frequently checked out book

(or the one with the lowest frequency) should be removed to make space for the new book.

Here’s a step-by-step breakdown of how the books will be managed:

Book A ("The Great Gatsby") is added to the display.

Book B ("1984") is added.

Book C ("To Kill a Mockingbird") is added.

Book D ("Pride and Prejudice") is added.

Book E ("The Catcher in the Rye") is added. At this point, the display is full.

When Book F ("Moby Dick") is checked out:

Book E ("The Catcher in the Rye") is the least frequently checked out book (checked out only 1 time). It

is removed to make room for Book F.

Book F is added to the display.

When Book G ("The Odyssey") is checked out:

Book C ("To Kill a Mockingbird") and Book H ("War and Peace") both have a frequency of 2. However,

Book C was removed earlier, so it has a higher chance of being added back.

Book G is added to the display, and Book H is added as well, replacing the least frequently checked

out book among those with the same frequency.

The final state of the display, considering the frequencies of checkouts, will be:

Book B ("1984") - 5 times

Book F ("Moby Dick") - 6 times

Book D ("Pride and Prejudice") - 4 times

Book G ("The Odyssey") - 3 times

Book H ("War and Peace") - 2 times

from collections import defaultdict, Counter
import heapq

class LibraryDisplay:
 def __init__(self, capacity):
 # Write code here

 def add_book(self, book, times_checked_out):
 # Write code here

 def display_books(self):
 # Write code here

Driver Code
library_display = LibraryDisplay(capacity=5)

415

book_checkouts = [
 ("The Great Gatsby", 3),
 ("1984", 5),
 ("To Kill a Mockingbird", 2),
 ("Pride and Prejudice", 4),
 ("The Catcher in the Rye", 1),
 ("Moby Dick", 6),
 ("The Odyssey", 3),
 ("War and Peace", 2)
]

for book, times_checked_out in book_checkouts:
 library_display.add_book(book, times_checked_out)

library_display.display_books()

11. Process Synchronization

11.1 The Tale of the Bakery and Its Busy Kitchen

Imagine a bustling bakery named Sweet Delights. The bakery is renowned for its delicious pastries and

cakes, which are made in a busy kitchen. The kitchen has a single oven that can only bake one item at

a time. The bakery operates with multiple bakers working simultaneously, and they need to use the

oven to bake their items. Lily, the head baker, needs to ensure that the oven is used efficiently and

fairly. She uses a process synchronization mechanism to manage access to the oven so that no two

bakers use it at the

In the bakery, there are three bakers: A, B, and C. They need to bake the following items:

A wants to bake a Chocolate Cake.

B wants to bake a Fruit Tart.

C wants to bake a Cheese Croissant.

Each baker will request access to the oven, bake their item, and then release the oven for the next

baker.

Challenges:

Mutual Exclusion: Only one baker should be able to use the oven at any given time.

Progress: If no baker is using the oven, and there are bakers who want to use it, then the next baker

should get access to it.

Fairness: Every baker should get a chance to use the oven in the order they requested.

Explanation:

To solve this problem, Lily can use a semaphore-based synchronization mechanism to ensure that

these conditions are met. Here’s how she can implement this:

Initialize a semaphore to control access to the oven. The semaphore will be initialized to 1 to ensure

mutual exclusion. Implement the process synchronization so that when a baker wants to use the oven,

they wait (i.e., block) if the oven is already in use, and proceed only when they are granted access. Use

a queue or list to keep track of the order in which bakers request access to the oven to ensure

fairness.

import threading

416

import time
from queue import Queue

oven_semaphore = threading.Semaphore(1)

request_queue = Queue()

def baker(name, bake_time):
 # Write code here

Driver Code
baker_threads = [
 threading.Thread(target=baker, args=("A", 2)),
 threading.Thread(target=baker, args=("B", 3)),
 threading.Thread(target=baker, args=("C", 1))
]

for thread in baker_threads:
 thread.start()

for thread in baker_threads:
 thread.join()

print("All bakers have finished using the oven.")

11.2 The Tale of the Busy Coffee Shop and Its Coffee Machines

Imagine a popular coffee shop called Brewed Bliss. The coffee shop has two coffee machines, Machine

1 and Machine 2, but only one machine can be used at a time to prepare a customer's order. The shop

is busy with several baristas working simultaneously, and they need to use the machines to prepare

coffee drinks for customers. John, the coffee shop manager, needs to ensure that the coffee machines

are used efficiently and fairly. He uses a process synchronization mechanism to manage access to the

coffee machines so that no two baristas use the same machine at the same time, and each barista gets

a chance to use the machines in an orderly manner. In the coffee shop, there are three baristas: Emma,

Liam, and Olivia. Each barista has the following orders to prepare:

• Emma wants to use Machine 1 to prepare a Latte.

• Liam wants to use Machine 2 to prepare a Cappuccino.

• Olivia wants to use Machine 1 to prepare an Espresso.

Each barista will request access to the coffee machines, use them to prepare their drink, and then

release the machines for the next barista.

Challenges:

Mutual Exclusion: Only one barista should be able to use a particular coffee machine at any given

time.

Progress: If a coffee machine is free and there are baristas waiting to use it, then the next barista

should be able to use the machine.

Fairness: Each barista should get a fair chance to use the coffee machines in the order they requested.

Explanation:

To solve this problem, John can use semaphores and a queue-based synchronization mechanism to

ensure that these conditions are met. Here's a step-by-step approach:

417

Initialize semaphores to control access to each coffee machine. Each semaphore will be initialized to 1

to ensure mutual exclusion for each machine.

Implement a queue to manage the order in which baristas request access to the coffee machines to

ensure fairness. Ensure that when a barista finishes using a machine, the next barista in the queue gets

a chance to use it, maintaining fairness.

import threading
import time
from collections import deque

machine_1_semaphore = threading.Semaphore(1)
machine_2_semaphore = threading.Semaphore(1)

request_queue = deque()

queue_lock = threading.Lock()

def barista(name, machine, preparation_time):
 # Write code here

Driver Code
barista_threads = [
 threading.Thread(target=barista, args=("Emma", "Machine 1", 2)),
 threading.Thread(target=barista, args=("Liam", "Machine 2", 3)),
 threading.Thread(target=barista, args=("Olivia", "Machine 1", 1))
]

for thread in barista_threads:
 thread.start()

for thread in barista_threads:
 thread.join()

print("All baristas have finished using the coffee machines.")

11.3 The Tale of the Conference Room and Its Reservations

Imagine a company called Tech Innovations, which has a highly sought-after conference room for

meetings and presentations. The conference room can be reserved by employees for various

meetings, but it can only be used by one employee at a time. Sarah, the office manager, needs to

manage the reservations for the conference room to ensure that no two employees are double-

booked and that the reservations are handled in a fair manner. She uses a synchronization mechanism

to handle access to the conference room so that no two employees can reserve the room at the same

time.

In the company, there are three employees: A, B, and C. Each employee wants to reserve the

conference room for a meeting at different times:

A wants to reserve the conference room from 10:00 AM to 11:00 AM.

B wants to reserve the conference room from 11:00 AM to 12:00 PM.

C wants to reserve the conference room from 12:00 PM to 1:00 PM.

Each employee will request access to the conference room, use it during their reserved time, and then

release it for the next employee.

Challenges:

418

Mutual Exclusion: Only one employee should be able to use the conference room at any given time.

Progress: If the conference room is free and there are employees waiting to use it, then the next

employee should be granted access to it.

Fairness: Each employee should get the conference room for the time they reserved, in the order of

their reservation.

Explanation:

To solve this problem, Sarah can use semaphores and a queue-based synchronization mechanism to

ensure that these conditions are met. Here’s how it can be implemented:

• Initialize a semaphore to control access to the conference room. The semaphore will be

initialized to 1 to ensure mutual exclusion.

• Implement a queue to manage the order in which employees request the conference room to

ensure fairness.

• Ensure that when an employee finishes using the conference room, the next employee in the

queue gets access to it.

import threading
import time
from collections import deque

conference_room_semaphore = threading.Semaphore(1)

request_queue = deque()

queue_lock = threading.Lock()

def employee(name, start_time, end_time):
 # Write code here

Driver Code
employee_threads = [
 threading.Thread(target=employee, args=("A", "10:00", "11:00")),
 threading.Thread(target=employee, args=("B", "11:00", "12:00")),
 threading.Thread(target=employee, args=("C", "12:00", "13:00"))
]

for thread in employee_threads:
 thread.start()

for thread in employee_threads:
 thread.join()

print("All employees have finished using the conference room.")

11.4 The Tale of the Restaurant Kitchen and Its Limited Resources

Imagine a busy restaurant called Gourmet Haven. The kitchen in this restaurant is equipped with a

limited number of critical resources for cooking: one stove and one refrigerator. Only one cook can

use the stove at a time to prepare dishes, and only one cook can access the refrigerator at a time to

retrieve ingredients. Tom, the head chef, needs to ensure that the cooks can use these resources

efficiently and fairly. He uses a process synchronization mechanism to manage access to the stove and

419

refrigerator so that no two cooks use the same resource at the same time, and each cook gets a fair

chance to use the resources.

In the kitchen, there are three cooks: J, M, and R. They each need to use the stove and refrigerator for

their cooking tasks:

J needs to use the stove to prepare a pasta and the refrigerator to get some cheese.

M needs to use the stove to prepare a stir-fry and the refrigerator to get some vegetables.

R needs to use the stove to prepare a soup and the refrigerator to get some herbs.

Each cook will request access to the stove and refrigerator, use them for their tasks, and then release

the resources for the next cook.

Challenges:

Mutual Exclusion: Only one cook should be able to use the stove or the refrigerator at any given

time.

Progress: If a resource is free and there are cooks waiting to use it, then the next cook should be

granted access.

Fairness: Each cook should get access to both the stove and refrigerator in the order they requested,

without causing deadlock.

Explanation:

To solve this problem, Tom can use semaphores and a queue-based synchronization mechanism to

ensure that these conditions are met. Here's a step-by-step approach:

• Initialize semaphores to control access to the stove and refrigerator. Each semaphore will be

initialized to 1 to ensure mutual exclusion.

• Implement a queue to manage the order in which cooks request access to the resources to

ensure fairness.

• Ensure that when a cook finishes using a resource, the next cook in the queue gets access to

it, maintaining fairness and preventing deadlock.

import threading
import time
from collections import deque

stove_semaphore = threading.Semaphore(1)
refrigerator_semaphore = threading.Semaphore(1)

request_queue = deque()

queue_lock = threading.Lock()

def cook(name, stove_time, refrigerator_time):
 # Write code here

Driver Code
cook_threads = [
 threading.Thread(target=cook, args=("J", 2, 1)),
 threading.Thread(target=cook, args=("M", 3, 2)),
 threading.Thread(target=cook, args=("R", 1, 1))
]

420

for thread in cook_threads:
 thread.start()

for thread in cook_threads:
 thread.join()

print("All cooks have finished using the stove and refrigerator.")

11.5 The Tale of the Garden and Its Watering Schedule

Imagine a community garden named Green Oasis. The garden has a single water pump that can be

used to water the plants. Due to the importance of keeping the plants well-watered, the garden has

established strict guidelines to ensure that only one gardener uses the water pump at a time. Linda,

the head gardener, needs to manage the use of the water pump so that no two gardeners use it

simultaneously and that each gardener gets their turn to water their plants. She uses a process

synchronization mechanism to handle access to the water pump fairly and efficiently.

In the garden, there are three gardeners: S, J, and O. They each need to use the water pump for

different periods to water their assigned garden plots:

S needs to use the water pump to water her plot for 30 minutes.

J needs to use the water pump to water his plot for 45 minutes.

O needs to use the water pump to water his plot for 20 minutes.

Each gardener will request access to the water pump, use it for their designated time, and then release

it for the next gardener.

Challenges:

Mutual Exclusion: Only one gardener should be able to use the water pump at any given time.

Progress: If the water pump is free and there are gardeners waiting to use it, then the next gardener

should be granted access.

Fairness: Each gardener should get access to the water pump in the order they requested, without

causing deadlock.

Explanation:

To solve this problem, Linda can use semaphores and a queue-based synchronization mechanism to

ensure that these conditions are met. Here’s a step-by-step approach:

• Initialize a semaphore to control access to the water pump. The semaphore will be initialized

to 1 to ensure mutual exclusion.

• Implement a queue to manage the order in which gardeners request access to the water

pump to ensure fairness.

• Ensure that when a gardener finishes using the water pump, the next gardener in the queue

gets access to it.

import threading

421

import time
from collections import deque

water_pump_semaphore = threading.Semaphore(1)

request_queue = deque()

queue_lock = threading.Lock()

def gardener(name, water_time):
 # Write code here

Driver Code
gardener_threads = [
 threading.Thread(target=gardener, args=("Sophia", 30)),
 threading.Thread(target=gardener, args=("James", 45)),
 threading.Thread(target=gardener, args=("Oliver", 20))
]

for thread in gardener_threads:
 thread.start()
for thread in gardener_threads:
 thread.join()

print("All gardeners have finished using the water pump.")

12. Deadlock and Prevention

12.1 The Tale of the Printing Press and Its Inks

Imagine a large printing company called Print Master, which produces high-quality magazines and

brochures. The company operates two printing presses: Press 1 and Press 2. Each press needs to use

multiple types of inks to print various designs. However, each press can only use one ink type at a

time. E and L, two senior printers at Print Master, often need to use the presses and inks for different

projects. They face a problem with their printing operations due to resource contention, leading to

potential deadlocks.

• E and L both need to use the presses and inks simultaneously for their respective projects:

• E needs Press 1 and Ink A to print a brochure and Press 2 and Ink B to print a flyer.

• L needs Press 2 and Ink B to print a poster and Press 1 and Ink A to print a catalog.

Due to the constraints, there is a chance of a deadlock scenario where neither Emma nor Lucas can

proceed. For instance, if Emma holds Press 1 and Ink A while waiting for Press 2 and Ink B, and Lucas

holds Press 2 and Ink B while waiting for Press 1 and Ink A, both will be stuck waiting indefinitely.

Challenges:

Deadlock Prevention: Ensure that the system is designed to avoid situations where both Emma and

Lucas end up waiting for each other’s resources indefinitely.

Resource Allocation: Manage the allocation of presses and inks such that deadlock situations are

identified and handled efficiently.

Explanation:

To handle this problem, Print Master can use strategies to prevent deadlocks, such as resource

allocation strategies and introducing rules to avoid circular wait conditions.

422

Strategy to Avoid Deadlock:

• Introduce a Resource Allocation Protocol: Create a protocol that ensures resources are

allocated in a way that prevents deadlock. For instance, ensuring that both Emma and Lucas

must request all resources they need at once.

• Implement Resource Request and Release Management: Use a system to track resource

requests and releases to ensure that if a resource request cannot be fulfilled, the system can

rollback or preempt resources.

import threading
import time

press_1_lock = threading.Lock()
press_2_lock = threading.Lock()
ink_a_lock = threading.Lock()
ink_b_lock = threading.Lock()

def use_resources(printer_name, need_press_1, need_press_2, need_ink_a,
need_ink_b):
 # Write code here

Driver Code
e_thread = threading.Thread(target=use_resources, args=("E", True, True, True,
True))
l_thread = threading.Thread(target=use_resources, args=("L", True, True, True,
True))

e_thread.start()
l_thread.start()

e_thread.join()
l_thread.join()

print("All jobs have been completed.")

12.2 The Tale of the Library and Its Book Reservations

Imagine a popular public library called Book Haven. The library has a special Rare Books Room with

two highly sought-after books: Book A and Book B. Due to the rarity of these books, only one person

can reserve each book at a time. Additionally, each person must use a special reading desk in the Rare

Books Room. S and E, two avid readers, both want to read these rare books, but their requests might

lead to a deadlock situation if not managed properly.

S and E both need access to the following resources:

• S needs Book A and the reading desk for 2 hours.

• E needs Book B and the reading desk for 1.5 hours.

Due to the constraints, there is a risk of a deadlock scenario. For example:

S might hold Book A and the reading desk while waiting for Book B.

E might hold Book B and the reading desk while waiting for Book A.

If both are waiting for each other's resources, neither can proceed, leading to a deadlock.

423

Challenges:

• Deadlock Prevention: Ensure that the reservation system avoids scenarios where both Sophia

and Ethan end up waiting for each other's resources indefinitely.

• Resource Allocation: Manage the allocation of books and desks so that the library can

handle requests efficiently without falling into deadlock.

Explanation:

To handle this problem, Book Haven can implement a strategy to prevent deadlocks by ensuring that

resources are requested and allocated in a way that avoids circular wait conditions.

Strategy to Avoid Deadlock:

• Request All Resources at Once: Ensure that a reservation request is only granted if all

required resources (books and desk) are available.

• Resource Allocation Protocol: Use a system where a person can only request the desk if

both books are available, or request both books if the desk is available.

import threading
import time

book_a_lock = threading.Lock()
book_b_lock = threading.Lock()
desk_lock = threading.Lock()

def reserve_resources(reader_name, need_book_a, need_book_b, need_desk,
reading_time):
 # Write code here

Driver Code
s_thread = threading.Thread(target=reserve_resources, args=("S", True, False,
True, 2))
e_thread = threading.Thread(target=reserve_resources, args=("E", False, True,
True, 1.5))

sophia_thread.start()
ethan_thread.start()

sophia_thread.join()
ethan_thread.join()

print("All reservations have been completed.")

12.3 The Tale of the Automated Warehouse and Its Robots

In a high-tech automated warehouse called SmartStore, there are multiple robots responsible for

moving items from shelves to shipping areas. The warehouse has two critical resources: Robot A and

Robot B. Each robot can operate independently, but there are times when both robots need to access

specific storage bins to complete their tasks. A and B, two warehouse managers, are in charge of

scheduling tasks for the robots. They need to ensure that the robots are used efficiently to avoid

conflicts that could lead to deadlocks.

A and B have tasks that require the following resources:

• A needs Robot A to pick up items from Bin 1 and Robot B to pick up items from Bin 2.

424

• B needs Robot B to pick up items from Bin 2 and Robot A to pick up items from Bin 1.

If A starts her task with Robot A and Robot B, and B starts his task with Robot B and Robot A, a

deadlock situation may occur where each manager waits indefinitely for the other robot to be freed.

Challenges:

• Deadlock Prevention: Ensure that the system is designed to avoid situations where both

Alice and Bob end up waiting for each other’s robots indefinitely.

• Resource Allocation: Manage the allocation of robots to ensure that their tasks are

completed efficiently without deadlock.

Explanation:

To handle this problem, SmartStore can use a strategy to avoid deadlocks by ensuring that requests

for resources do not lead to circular waiting conditions.

Strategy to Avoid Deadlock:

• Resource Request Ordering: Establish a protocol that all tasks must follow in which

resources are requested in a consistent order to prevent circular wait conditions.

• Avoid Hold and Wait: Ensure that if a task requests additional resources, it must release its

currently held resources if the required resources are not available.

import threading
import time

robot_a_lock = threading.Lock()
robot_b_lock = threading.Lock()
bin_1_lock = threading.Lock()
bin_2_lock = threading.Lock()

def task(name, need_robot_a, need_robot_b, need_bin_1, need_bin_2, work_time):
 # Write code here

Driver Code
a_thread = threading.Thread(target=task, args=("A", True, True, True, True, 3))
b_thread = threading.Thread(target=task, args=("B", True, True, True, True, 2))

alice_thread.start()
bob_thread.start()

a_thread.join()
b_thread.join()

print("All tasks have been completed.")

12.4 The Tale of the Coffee Shop and Its Baristas

Imagine a popular coffee shop named Java Junction. The shop has two crucial resources that its

baristas need to prepare drinks: Espresso Machine and Blender. These resources are shared, and only

one barista can use each resource at a time. A and B, the baristas, have overlapping shifts and

sometimes need to use both the Espresso Machine and the Blender simultaneously to prepare

complex coffee orders.

425

A and B each have orders that require the following resources:

• A needs the Espresso Machine to make a Latte and the Blender to make a Smoothie.

• B needs the Blender to make a Frappuccino and the Espresso Machine to make an Espresso.

Due to their overlapping schedules, if Anna starts using the Espresso Machine and Ben starts using the

Blender, a deadlock situation might occur:

• A might hold the Espresso Machine and be waiting for the Blender.

• B might hold the Blender and be waiting for the Espresso Machine.

Both baristas end up waiting indefinitely for the resources held by the other, causing a deadlock.

Challenges:

• Deadlock Prevention: Ensure that the resource allocation system avoids scenarios where

both Anna and Ben are waiting for each other’s resources indefinitely.

• Resource Allocation: Manage the allocation of the Espresso Machine and Blender to avoid

deadlock and ensure efficient operation.

Explanation:

To handle this problem, Java Junction can implement a strategy to avoid deadlocks by ensuring that

resources are requested and used in a way that avoids circular dependencies.

Strategy to Avoid Deadlock:

• Resource Ordering: Establish a rule that resources must be requested in a specific order,

ensuring that circular wait conditions are avoided.

• Resource Allocation Protocol: Create a protocol where a barista must request all needed

resources at once and will only proceed if all are available.

import threading
import time

espresso_machine_lock = threading.Lock()
blender_lock = threading.Lock()

def make_drink(barista_name, need_espresso_machine, need_blender, work_time):
 # Write code here

Driver Code
a_thread = threading.Thread(target=make_drink, args=("A", True, True, 3))
b_thread = threading.Thread(target=make_drink, args=("B", True, True, 2))

anna_thread.start()
ben_thread.start()

anna_thread.join()
ben_thread.join()

print("All drinks have been prepared.")

12.5 The Tale of the Theater Production and Its Props

426

Imagine a local theater company named Stagecraft Productions. They are preparing for a major play

and have two critical props that need to be managed: Prop X and Prop Y. Each prop is essential for

different scenes and can only be used by one actor at a time. E and L, two actors, are preparing for

their roles. They each need to use both props to rehearse their scenes. Emma and Liam’s rehearsal

schedules overlap, which might lead to a potential deadlock situation.

E and L have the following prop requirements:

• E needs Prop X to rehearse her Scene 1 and Prop Y to rehearse her Scene 2.

• L needs Prop Y to rehearse his Scene 3 and Prop X to rehearse his Scene 4.

If E starts rehearsing with Prop X and L starts rehearsing with Prop Y, they may end up in a deadlock:

• E might hold Prop X while waiting for Prop Y.

• L might hold Prop Y while waiting for Prop X.

This leads to a situation where both actors are waiting indefinitely for the props held by the other.

Challenges:

• Deadlock Prevention: Ensure that the rehearsal system avoids scenarios where both Emma

and Liam are waiting for each other’s props indefinitely.

• Resource Allocation: Manage the allocation of props to ensure efficient rehearsal schedules

without deadlock.

Explanation:

To handle this problem, Stagecraft Productions can implement strategies to avoid deadlocks by

ensuring that the props are requested and used in a way that avoids circular dependencies.

Strategy to Avoid Deadlock:

• Resource Request Protocol: Ensure that props are requested in a specific order, and that

each actor must request all required props at once.

• Avoid Hold and Wait: Implement a policy where if an actor cannot get all the props they

need, they must release any currently held props and retry.

import threading
import time

prop_x_lock = threading.Lock()
prop_y_lock = threading.Lock()

def rehearse(actor_name, need_prop_x, need_prop_y, rehearsal_time):
 # Write code here

Driver Code
e_thread = threading.Thread(target=rehearse, args=("E", True, True, 3))
l_thread = threading.Thread(target=rehearse, args=("L", True, True, 2))

e_thread.start()
l_thread.start()

e_thread.join()
l_thread.join()

print("All rehearsals have been completed.")

427

13. Queuing Theory

13.1 Customer Service - M/M/1 Queue Analysis

You are a manager at a customer service center for a popular online retailer. Customers call in to

inquire about their orders, request assistance with returns, or seek product information. Your task is to

analyze the customer service operations using the M/M/1 queuing model to understand and optimize

service efficiency.

At your customer service center:

• Customers arrive randomly and independently at an average rate of 10 customers per hour.

• Each customer's service request, on average, takes 6 minutes to resolve.

• There is one customer service representative available to handle customer inquiries.

Objective:

Model Selection: Apply the M/M/1 queuing model to analyze the customer service operations.

Performance Metrics: Calculate and analyze key metrics such as:

Average number of customers waiting in queue.

Average time a customer spends in the system (waiting + service time).

Utilization of the customer service representative.

Optimization Recommendations: Based on the analysis, propose improvements to enhance

customer service efficiency.

Tasks to Implement:

Model Formulation: Use the M/M/1 queuing model formulas to calculate steady-state metrics.

Data Collection: Gather real-time or historical data on customer arrival rates and service times.

Analysis and Recommendations: Interpret queuing model outputs to identify bottlenecks and

suggest operational improvements.

Implement functions or formulas to simulate customer arrivals and service times based on provided

parameters. Use the M/M/1 queuing model to predict metrics such as average number of customers

in queue and average customer waiting time. Evaluate scenarios (e.g., adjusting staffing levels) to

optimize service efficiency based on queuing theory insights.

def mm1_queue(arrival_rate, service_time):
 # Write code here

Driver Code
arrival_rate = 10 / 60
service_time = 6

avg_customers, avg_time_in_system, utilization = mm1_queue(arrival_rate,
service_time)

print(f"M/M/1 Queue - Average Customers: {avg_customers:.2f}, Average Time in
System: {avg_time_in_system:.2f} minutes, Utilization: {utilization:.2f}")

13.2 Telecommunication Company - M/M/c Queue Analysis

428

You are a manager at a busy telecommunications company that provides technical support to

customers over the phone. Customers call in for assistance with network issues, billing inquiries, and

service upgrades. Your task is to analyze the efficiency of your customer support operations using the

M/M/c queuing model.

At your customer support center:

• Customers arrive randomly and independently at an average rate of 15 customers per hour.

• Each customer's service request, on average, takes 8 minutes to resolve.

• Your center has 3 customer service representatives available to handle customer inquiries

simultaneously.

Objective:

Model Selection: Apply the M/M/c queuing model to analyze the customer support operations.

Performance Metrics: Calculate and analyze key metrics such as:

Average number of customers waiting in queue.

Average time a customer spends in the system (waiting + service time).

Utilization of the customer service representatives.

Optimization Recommendations: Based on the analysis, propose improvements to enhance

customer service efficiency.

Tasks to Implement:

Model Formulation: Use the M/M/c queuing model formulas to calculate steady-state metrics.

Data Collection: Gather real-time or historical data on customer arrival rates and service times.

Analysis and Recommendations: Interpret queuing model outputs to identify bottlenecks and

suggest operational improvements.

Implement functions or formulas to simulate customer arrivals and service times based on provided

parameters. Use the M/M/c queuing model to predict metrics such as average number of customers

in queue and average customer waiting time. Evaluate scenarios (e.g., adjusting staffing levels) to

optimize service efficiency based on queuing theory insights.

def mmc_queue(arrival_rate, service_time, num_servers):
 # Write code here

Driver Code
import math

arrival_rate = 15 / 60 # customers per minute
service_time = 8 # minutes
num_servers = 3

avg_customers, avg_time_in_system, utilization = mmc_queue(arrival_rate,
service_time, num_servers)

print(f"M/M/{num_servers} Queue - Average Customers: {avg_customers:.2f}, Average
Time in System: {avg_time_in_system:.2f} minutes, Utilization: {utilization:.2f}")

13.3 The Tale of the Busy Call Center and Its Call Routing System

429

Imagine a bustling call center named QuickConnect, which handles customer support for a large

telecommunications company. The call center uses a sophisticated call routing system to manage

incoming customer calls. The system's goal is to ensure that each call is handled efficiently by routing

it to the appropriate customer service representative (CSR).

The call center has two main departments:

• Technical Support (for troubleshooting and technical issues)

• Customer Service (for account-related queries and general assistance)

Each department has its own set of CSRs, and each CSR can handle a certain number of calls at a time.

The call center uses two types of queues:

• Incoming Call Queue: Where calls wait until they are assigned to a CSR.

• Department Queue: Each department has its own queue where calls wait until they are

routed to an available CSR.

Technical Support has 3 CSRs, each able to handle up to 2 calls simultaneously.

Customer Service has 2 CSRs, each able to handle up to 3 calls simultaneously.

Calls arrive at the call center according to a Poisson process with an average arrival rate of 6 calls per

minute. The service times for calls follow an exponential distribution:

• Technical Support: Average service time is 5 minutes.

• Customer Service: Average service time is 3 minutes.

Challenges:

• Queue Management: How should the call routing system manage the queues to ensure

efficient handling of incoming calls and prevent long wait times?

• System Performance: How does the number of available CSRs and their call-handling

capacity impact the average wait time for callers in each department?

• Balancing Load: What strategies can be used to balance the load between the two

departments to prevent overload in one while the other has a low call volume?

Explanation:

To solve these challenges, we need to analyze the queuing system using concepts from queuing

theory and operating systems. We can use the following methods:

Queue Management and Analysis:

Arrival Rate (λ): 6 calls per minute.

Service Rate (μ):

Technical Support: 3 CSRs × 2 calls per CSR per minute = 6 calls per minute.

Customer Service: 2 CSRs × 3 calls per CSR per minute = 6 calls per minute.

Using the M/M/c queuing model to calculate the average wait times and system utilization for each

department.

Load Balancing:

Implement a dynamic call routing system that directs calls based on current wait times and the

availability of CSRs.

Adjust the number of CSRs dynamically based on the call volume to optimize performance.

import numpy as np
import queue
import random

430

import threading
import time

arrival_rate = 6
technical_service_rate = 1 / 5
customer_service_rate = 1 / 3

technical_csrs = 3
customer_service_csrs = 2

incoming_queue = queue.Queue()
tech_support_queue = queue.Queue()
customer_service_queue = queue.Queue()

def call_arrival():
 # Write code here

def tech_support_service():
 # Write code here

def customer_service():
 # Write code here

def call_routing():
 # Write code here

Driver Code
threads = []
for _ in range(technical_csrs):
 t = threading.Thread(target=tech_support_service)
 threads.append(t)
 t.start()

for _ in range(customer_service_csrs):
 t = threading.Thread(target=customer_service)
 threads.append(t)
 t.start()

t = threading.Thread(target=call_arrival)
threads.append(t)
t.start()

t = threading.Thread(target=call_routing)
threads.append(t)
t.start()

for t in threads:
 t.join()

13.4 The Tale of the Hospital Emergency Room (ER)

Imagine a busy hospital’s Emergency Room (ER) named HealthFirst ER. The ER is designed to handle

urgent medical cases and has several key components and constraints that affect how patients are

treated.

The ER has two types of medical staff:

431

• Doctors: Who provide primary medical treatment?

• Nurses: Who assist with initial assessments and patient care?

The ER has the following setup:

• Doctors: There are 4 doctors, each of whom can attend to one patient at a time. The average

time a doctor spends with a patient is 20 minutes.

• Nurses: There are 6 nurses, each of whom can handle one patient at a time. The average time

a nurse spends with a patient is 10 minutes.

Patients arrive at the ER following a Poisson process with an average arrival rate of 8 patients per hour.

Upon arrival, patients first see a nurse for initial assessment and then see a doctor for treatment.

The ER operates under these constraints:

• Nurse Queue: Patients wait here if no nurses are available.

• Doctor Queue: After the initial assessment, patients wait here if no doctors are available.

Challenges:

Queue Management: How should the ER manage the queues to ensure efficient handling of patients

and minimize their wait times?

System Performance: How do the number of available doctors and nurses, and their patient-

handling capacity, impact the average wait time for patients in the ER?

Load Balancing: How can the ER manage the flow of patients to ensure that neither the nurse nor the

doctor queue becomes a bottleneck?

Explanation:

To address these challenges, we need to use concepts from queuing theory and operating systems:

Queue Management and Analysis:

Arrival Rate (λ): 8 patients per hour.

Service Rates (μ):

Nurses: 6 nurses × 1 patient per 10 minutes = 6 patients every 10 minutes or 36 patients per hour.

Doctors: 4 doctors × 1 patient per 20 minutes = 4 patients every 20 minutes or 12 patients per hour.

System Performance Analysis:

Use the M/M/c queuing model for both the nurse and doctor queues to calculate average wait times,

system utilization, and other performance metrics.

Load Balancing:

Implement strategies to dynamically manage patient flow, such as adjusting the number of nurses or

doctors based on patient arrival rates or queue lengths.

import numpy as np
import queue
import threading
import time

arrival_rate = 8 # patients per hour
nurse_service_rate = 1 / 10 # patients per minute
doctor_service_rate = 1 / 20 # patients per minute

nurse_count = 6
doctor_count = 4

nurse_queue = queue.Queue()

432

doctor_queue = queue.Queue()

def patient_arrival():
 # Write code here

def nurse_service():
 # Write code here

def doctor_service():
 # Write code here

Driver Code
threads = []
for _ in range(nurse_count):
 t = threading.Thread(target=nurse_service)
 threads.append(t)
 t.start()

for _ in range(doctor_count):
 t = threading.Thread(target=doctor_service)
 threads.append(t)
 t.start()

t = threading.Thread(target=patient_arrival)
threads.append(t)
t.start()

for t in threads:
 t.join()

13.5 The Tale of the Online Gaming Server

Imagine a popular online multiplayer game named GameWorld. The game’s server handles various

player requests and needs to manage the load efficiently to ensure a smooth gaming experience. The

server has two main tasks:

• Matchmaking: Pairing players together for matches.

• Game State Management: Keeping track of the state of ongoing games and ensuring that all

players are synchronized.

GameWorld has the following setup:

Matchmaking System: The system pairs players based on their skill levels and game preferences. It

has 3 matchmaking servers, each capable of handling up to 50 player requests per minute. The

average time to match players is 1 minute.

Game State Management System: Once players are matched, their game states are managed by 2

game state servers. Each server can handle up to 30 game state updates per minute. The average time

to update a game state is 2 minutes.

Players connect to the server and request matchmaking based on a Poisson process with an average

arrival rate of 120 requests per minute. Once matched, these players generate game state updates

also following a Poisson process with an average rate of 100 updates per minute.

Challenges:

433

• Queue Management: How should the server manage the matchmaking and game state

update queues to ensure minimal wait times and efficient processing?

• System Performance: How do the number of matchmaking and game state servers and their

capacities affect the average wait times and system utilization?

• Load Balancing: What strategies can be used to balance the load between matchmaking and

game state management to avoid bottlenecks?

Explanation:

To address these challenges, use queuing theory and operating systems principles:

Queue Management and Analysis:

Arrival Rates (λ):

Matchmaking Requests: 120 requests per minute.

Game State Updates: 100 updates per minute.

Service Rates (μ):

Matchmaking Servers: 3 servers × 50 requests per server per minute = 150 requests per minute.

Game State Servers: 2 servers × 30 updates per server per minute = 60 updates per minute.

System Performance Analysis:

Use the M/M/c queuing model to calculate the average wait times, system utilization, and other

performance metrics for both matchmaking and game state management.

Load Balancing:

Implement strategies such as dynamic load distribution and scaling resources based on current

demand to balance the load effectively.

import numpy as np
import queue
import threading
import time

matchmaking_arrival_rate = 120
game_state_arrival_rate = 100
matchmaking_service_rate = 1 / 1
game_state_service_rate = 1 / 2

matchmaking_servers = 3
game_state_servers = 2

matchmaking_queue = queue.Queue()
game_state_queue = queue.Queue()

def player_request():
 # Write code here

def matchmaking_service():
 # Write code here

def game_state_service():
 # Write code here

434

Driver Code
threads = []
for _ in range(matchmaking_servers):
 t = threading.Thread(target=matchmaking_service)
 threads.append(t)
 t.start()

for _ in range(game_state_servers):
 t = threading.Thread(target=game_state_service)
 threads.append(t)
 t.start()

t = threading.Thread(target=player_request)
threads.append(t)
t.start()

for t in threads:
 t.join()

435

COURSE CONTENT

PROGRAMMING WITH OBJECTS LABORATORY

III Semester: CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours / Week Credits Maximum Marks

AITD02

Core
L T P C CIA SEE Total

- - 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Essentials of Problem Solving

I. COURSE OVERVIEW:

Windows, a dominant OS, provides a user-friendly platform and robust development environ- ment via the

.NET Framework. Developers leverage C#, a versatile language on .NET, for diverse applications across

desktops, servers, web, mobile, and IoT. C# accelerates development across the software lifecycle, from

enterprise solutions to responsive web apps. This lab course equips students with core C# skills and practical

experience in real-world scenarios, preparing them for success in software development.

II. COURSE OBJECTIVES:

The students will try to learn

I. The basic concepts of object oriented programming.

II. The application of object oriented features for developing flexible and extensible applications.

III. The Graphical User Interface (GUI) with database connectivity to develop web applications.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO 1 Core Programming Skills: Develop core programming skills in C# for basic

applica- tion development.

CO 2 Function Design and Implementation: Design and implement functions to enhance code

modularity and reusability.

CO 3 Advanced Text and Service Integration: Utilize advanced techniques for pattern

matching and integrating external services.

CO 4 Object-Oriented Design: Apply principles of object-oriented design to create struc- tured

and scalable applications.

CO 5 Error Handling and File Management: Implement robust error handling and manage file

operations effectively.

CO 6 Concurrency Management: Create and manage concurrent processes to improve ap-

plication performance.

436

IV. COURSE CONTENT:

Introduction to the Course C# & .NET

Note: Students are encouraged to bring their own
laptops for laboratory practice sessions.

Course Overview

Windows, a dominant OS, provides a user-friendly platform and robust development environ-
ment via the .NET Framework. Developers leverage C#, a versatile language on .NET, for
diverse applications across desktops, servers, web, mobile, and IoT. C# accelerates
development across the software lifecycle, from enterprise solutions to responsive web apps.
This lab course equips students with core C# skills and practical experience in real-world
scenarios, preparing them for success in software development.

Software Requirements

Windows 10 Pro or Enterprise is recommended for optimal performance.
While Windows 10 Home is sufficient for introductory C# courses, advanced courses re- quire
Windows 10 Pro or higher.

Visual Studio Community Edition 2017 or later is required and available for free download from
Microsoft’s official website: https://www.visualstudio.com/

Hardware Requirements

• Intel/AMD multi-core processor (i3 or better)

• Minimum 8GB RAM, 16GB preferred

• At least 50GB of free hard drive space for Visual Studio and project files

Prerequisites

Completion of “Visual Studio” or equivalent experience is recommended. No prior programming
knowledge or experience is necessary.

Next Steps

 Upon completion of this course, consider taking C# Programming certification

https://www.visualstudio.com/

437

IV. COURSE CONTENT

Getting Started Exercises

Note: Students are encouraged to bring their own
laptops for laboratory practice sessions.

1.1 Installing Visual Studio and Setting up the

.NET Environ- ment

The objective of this lab is to guide students through the installation of Visual Studio and the
setup of the .NET environment necessary for C# programming.

Requirements

- A computer with internet access.

- Windows operating system (recommended) or macOS.

- Administrative privileges to install software.

Steps to Install Visual Studio

1. Download Visual Studio:

- Visit the official Visual Studio website:
https://visualstudio.microsoft. com/

- Click on the “Download” button for the Community edition (free version).

2. Run the Installer:

- Once the download is complete, run the installer.

- Follow the on-screen instructions to continue with the installation.

3. Select Workloads:

- In the installer, you will see a list of workloads. Select “.NET desktop
development”.

- Optionally, you can select other workloads if needed for future use,
such as “ASP.NET and web development”.

4. Install:

- Click on the “Install” button to begin the installation process.

- Wait for the installation to complete. This may take some time
depending on your internet speed and system performance.

5. Launch Visual Studio:

- Once the installation is complete, launch Visual Studio from the
Start menu or desk- top shortcut.

- Sign in with your Microsoft account if prompted.

- Choose the default environment settings when prompted.

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

438

Setting up the .NET Environment

1. Create a New Project:

- Click on “Create a new project” from the Visual Studio start page.

- Select the template “Console App (.NET Core)”.

- Click “Next”.

2. Configure Your Project:

- Enter a name for your project (e.g., “HelloWorld”).

- Choose a location to save your project.

- Click “Create”.

3. Verify the Setup:

- Once the project is created, you will see the “Program.cs” file open in the code
editor.

- Replace the existing code with the following:

using System;

namespace HelloWorld

{

class Program

{

static void Main(string[] args)

{

Console.WriteLine("Hello, World!");

}

}

}

- Press Ctrl + F5 to run the application.

- Verify that the output window displays “Hello, World!”.

By completing this lab, students will have successfully installed Visual Studio, set up the
.NET environment, and created their first C# console application. This
foundational setup is crucial for all future labs and projects in this course.

1.2 Distance based on Speed and Time

Calculate the distance traveled by an object based on the speed (v) and time (t) entered by the
user. The formula to calculate distance (d) is given by:

d = v × t

439

Input

Your program should prompt the user to enter the following:

- The speed of the object in meters per second (m/s).

- The time duration in seconds (s) for which the object traveled

at that speed. The program should then compute and display the

distance traveled by the object.

Requirements

- Use appropriate data types for variables.

- Ensure the program handles decimal values for speed and time.

- Include error handling for non-positive values of speed or time (optional).

Sample Output

Example 1:

Enter the speed of the object

(m/s): 10.5 Enter the time

duration (s): 8.2

Distance traveled: 86.1 meters

Example 2:

Enter the speed of the object

(m/s): 0 Enter the time

duration (s): 5.5

Invalid input: Speed must be greater than zero.

1.3 Cube Root

Calculate the cube root of a given number.

Input

The program should:

- Prompt the user to enter a number.

- Calculate the cube root of the number.

- Display the result.

440

Requirements

- Implement a function CalculateCubeRoot(double number) that
returns the cube root of the given number.

- Ensure the program handles valid numerical inputs.

Sample Output

Example 1:

Enter the

number: 27

Cube root of

27 is 3

Example 2:

Enter the

number: 64

Cube root of

64 is 4

Example 3:

Enter the

number: -8

Cube root of

-8 is -2

1.4 Random Number Genrator

 Generate and display a sequence of random numbers.

Input

- Use the System.Random class for generating random numbers.

- Prompt the user to enter the number of random numbers to generate.

- Specify a range for the random numbers (e.g., between 1 and 100).

- Display each generated random number in the sequence.

Your program should ensure that each random number generated is unique
within the spec- ified range.

Requirements

- Use appropriate data types and structures to store and display the random numbers.

- Handle user input validation to ensure the number of random numbers is positive.

- Implement error handling for any unexpected inputs or conditions (optional).

441

Sample Output

Example:

Enter the number of random numbers to

generate: 5 Enter the minimum value of

the range: 1

Enter the maximum value of the range: 100

Generated random numbers:

45 12 89 27 56

1.5 Nullable Data Types

Demonstrates the use of Nullable data types. Nullable data types allow variables to have an
additional value, null, which represents undefined or unknown values.

Input

- Declare and initialize nullable variables of different data types (int?, float?,

bool?).

- Assign both null values and non-null values to these nullable variables.

- Display the values of these nullable variables using formatted output.

- Illustrate how nullable types handle initialization and assignment.

Ensure your program includes comments or documentation to explain the purpose of each
variable and the behavior of nullable data types.

Requirements

- Use appropriate syntax for declaring and initializing nullable data types in C#.

- Demonstrate the advantages of using nullable data types, such as handling database null
values or optional parameters.

- Include formatted output to clearly display the values of nullable variables.

Sample Output

Nullable

Integers : ,

786 Nullable

Floats : 3.14,

Nullable

boolean :

1.6 Permutations (nPr)

442

Calculate the number of permutations (nPr) of a given set of n items taken r at a time. The

formula to calculate permutations is given by:

where n! denotes the factorial of n.

Input

- Prompt the user to enter two
integers n and r.

- Calculate the number of
permutations using the provided
formula.

- Display the result.

Requirements

- Implement a function
Factorial(int x) that
returns the factorial of x.

- Implement a
function
CalculatePerm

utations(int

n, int r) that
returns the number
of permutations.

- Ensure the
program handles
edge cases such as
r > n by
displaying an
appropriate mes-
sage.

nPr =
n!

(n − r)!

443

Sample Output

Example 1:

Enter the value of n: 5

Enter the value of r: 3

Number of permutations (5P3) = 60

Example 2:

Enter the value of n: 6

Enter the value of r: 6

Number of permutations (6P6) = 720

Example 3:

Enter the value of n: 4

Enter the value of r: 5

Error: r cannot be greater than n.

1.7 Binary Sum

Write a C# program to add two binary numbers.

Input

- Prompt the user to enter two binary numbers as strings.

- Validate the input to ensure that it contains only binary digits (0 and 1).

- Perform the binary addition.

- Display the sum as a binary number.

Requirements

- Implement a function IsBinary(string binary) that returns true if the string con-
tains only binary digits, otherwise returns false.

- Implement a function AddBinary(string a, string b) that performs the binary
addition and returns the result as a string.

- Ensure the program handles cases where the input is not valid binary numbers by display-
ing an appropriate message.

444

Sample Output

Example 1:

Enter the first binary number: 101

Enter the second binary number: 110 Sum

of 101 and 110 is 1011

Example 2:

Enter the first binary number: 1001

Enter the second binary number: 11 Sum

of 1001 and 11 is 1100

Example 3:

Enter the first binary number: 1010

Enter the second binary number: 102

Error: One or both inputs are not valid binary numbers.

1.8 Explore Bitwise Operators

 Demonstrate the use of bitwise operators.

Input

The program should:

- Prompt the user to enter two integers.

- Perform and display the result of the following bitwise operations on the entered integers:

– AND (&)

– OR (|)

– XOR (ˆ)

– NOT (˜)

– Left Shift (<<)

– Right Shift (>>)

Requirements

- Implement functions for each of the bitwise operations.

- Ensure the program handles valid integer inputs.

445

Sample Output

Example:

Enter the first integer: 12

Enter the second integer: 5

Bitwise AND (12 & 5) = 4

Bitwise OR (12 | 5) = 13

Bitwise XOR (12 ˆ 5) = 9

Bitwise NOT (˜12) = -13 Left

Shift (12 << 2) = 48

Right Shift (12 >> 2) = 3

1.9 No Math

The program should

- Calculate the square root of a given number without using the built-in Math.Sqrt()
method.

- Find the absolute value of a given number without using the built-in Math.Abs() method.

Requirements

- Implement a function CalculateSquareRoot(double number) that returns the square
root of the given number using an iterative approach (e.g., Newton’s method).

- Implement a function FindAbsoluteValue(double number) that returns the abso-
lute value of the given number.

- Ensure the program handles valid numerical inputs.

Sample Output

Example 1:

Enter a number to find its square root: 16

Square root of 16 is approximately: 4

Enter a number to find its absolute value: -8.5

Absolute value of -8.5 is: 8.5

Example 2:

Enter a number to find its square root: 20

Square root of 20 is approximately: 4.4721

Enter a number to find its absolute value: 3.7

Absolute value of 3.7 is: 3.7

446

1.10 Edge cases

 Explore edge cases using the Math.Pow() method. The program should:

- Calculate and display the results for the following scenarios:

1. Calculate Math.Pow(double.PositiveInfinity, 2).

2. Calculate Math.Pow(double.NegativeInfinity, 2).

3. Calculate Math.Pow(double.MinValue, 0).

4. Calculate Math.Pow(double.NaN, 2).

- Print the results of each calculation.

Requirements

- Implement a C# program that performs the above calculations using the Math.Pow()
method.

- Ensure the program handles special cases such as infinity and NaN appropriately.

Sample Output

Example Output:

Number1 : Infinity

Number2 : Infinity

Number3 : 1 Number4

: NaN

Try

1. Calculate Math.Pow(0, 0).

2. Calculate Math.Pow(10, -1).

3. Calculate Math.Pow(1, double.MaxValue).

447

Arrays

Note: Students are encouraged to bring their own laptops for
laboratory practice sessions.

2.1 Arrow Pattern

Create a function Arrow(num) that generates a pattern as a 2D array for a given number num.

- For Arrow(3), the function should return [">", ">>", ">>>", ">>", ">"].

- For Arrow(4), the function should return [">", ">>", ">>>", ">>>>", ">>>>",
">>>", ">>", ">"].

Criteria

- The function argument num will always be a number greater than 0.

- Odd numbers will produce a pattern with a single “peak”.

- Even numbers will produce a pattern with two “peaks”.

Hints

- Identify that the pattern consists of increasing and then decreasing sequences of arrows.

- Create a loop to generate the increasing part of the pattern from 1 up to num.

- Create a second loop to generate the decreasing part of the pattern from num-1 down to
1.

- Use a list to collect the pattern strings and then convert it to an array before returning.

- Consider how the pattern behaves for the smallest values of num (like 1).

2.2 Working 9 to 5

Write a function that calculates overtime and pay associated with overtime.

Working Hours

- Working hours: 9 AM to 5 PM (regular hours).

- After 5 PM is considered overtime.

448

Input

Your function receives an array with 4 values:

- Start of working day, in decimal format (24-hour day notation).

- End of working day (same format).

- Hourly rate.

- Overtime multiplier.

Output

Your function should return the total earnings for that day, rounded to the nearest hundredth,
formatted as:

$ earned that day

Testcases

- OverTime([9, 17, 30, 1.5]) ⇒ "$240.00"

- OverTime([16, 18, 30, 1.8]) ⇒ "$84.00"

- OverTime([13.25, 15, 30, 1.5]) ⇒ "$52.50"

Explanation of the Second Example

- From 16:00 to 17:00 is regular hours: 1 × 30 = 30

- From 17:00 to 18:00 is overtime: 1 × 30 × 1.8 = 54

- Total earnings: 30 + 54 = 84 ⇒ $84.00

Hints

- Identify the regular working hours (9 AM to 5 PM) and determine if the work falls within
these hours or extends into overtime.

- Calculate the total number of regular hours and overtime hours based on the start and
end times.

- Compute the earnings for regular hours and overtime hours separately.

- Use the hourly rate for regular hours and apply the overtime multiplier for overtime hours
to calculate the total earnings.

- Round the final earnings to the nearest hundredth and format the result as a monetary
value.

449

2.3 New Driving License

You have to get a new driver’s license. You show up at the office at the same time as four other
people. The office says they will see everyone in alphabetical order and it takes 20 minutes for
them to process each new license.

All of the agents are available now, and they can each see one customer at a
time. How long will it take for you to walk out with your new license?

Your input will be a string of your name me, an integer of the number of
available agents, and a string of the other four names separated by spaces
others.

Return the number of minutes it will take to get your license.

Examples

License("Eric", 2, "Adam Caroline Rebecca

Frank") ⇒ 40
As you are in the second group of people.

License("Zebediah", 1, "Bob Jim Becky Pat")

⇒ 100
As you are the last person.

License("Aaron", 3, "Jane Max Olivia Sam") ⇒ 20
As you are the first.

Hints

- Combine your name with the list of other names and sort them
alphabetically to determine the order of processing.

- Determine your position in the sorted list to find out when you will be processed.

- Calculate the number of people before you in the sorted list to determine
how many people will be processed before you.

- Given the number of available agents, distribute the workload so that
each agent handles one person at a time.

- Compute the time it will take for you to be processed based on the number
of people ahead of you and the processing time per person.

2.4 Who Won the League?

The 2019/20 season of the English Premier League (EPL) saw Liverpool FC win the title for
the first time despite their bitter rivals, Manchester United, having won 13 titles!

450

Create a function that receives an alphabetically sorted array of the results achieved by each
team in that season and the name of one of the teams. The function should return a string
giving the final position of the team, the number of points achieved, and the goal difference (see
examples for precise format).

The results table is given in the following format:

Team Played Won Drawn Lost G/Diff

Arsenal 38 14 14 10 8
Aston Villa 38 9 8 21 -26
Bournemouth 38 9 7 22 -26
Brighton 38 9 14 15 -15
Burnley 38 15 9 14 -7
Chelsea 38 20 6 12 15
Crystal Palace 38 11 10 17 -19
Everton 38 13 10 15 -12
Leicester City 38 18 8 12 26
Liverpool 38 32 3 3 52
Manchester City 38 26 3 9 67
Manchester Utd 38 18 12 8 30
Newcastle 38 11 11 16 -20
Norwich 38 5 6 27 -49
Sheffield Utd 38 14 12 12 0
Southampton 38 15 7 16 -9
Tottenham 38 16 11 11 14
Watford 38 8 10 20 -28
West Ham 38 10 9 19 -13
Wolves 38 15 14 9 11

Examples

string[] table = [

"Arsenal, 38, 14, 14, 10, 8",

"Aston Villa, 38, 9, 8, 21, -26",

...

"West Ham, 38, 10, 9, 19, -13",

"Wolves, 38, 15, 14, 9, 11"

]

EPLResult(table, "Liverpool") -->

"Liverpool came 1st with 99 points and a goal difference of 52!"

EPLResult(table, "Manchester Utd")-->

"Manchester Utd came 3rd with 66 points and a goal difference of 30!"

EPLResult(table, "Norwich") -->

"Norwich came 20th with 21 points and a goal difference of -49!"

Hints

- Each result in the source table is a comma separated string.

- Score 3 points for a win and 1 point for a draw.

451

- If teams are tied on points, their position is determined by better goal difference.

- The input table should be considered immutable - do not make any changes to it!

2.5 The Day Rob Was Born in Dutch

I was born on the 21st of September in the year of 1970. That was a Monday. Where I was
born that weekday is called maandag.

Write a method that, when passed a date as year/month/day, returns the date’s weekday
name in the Dutch culture. The culture identifier to use is "nl-NL", not "nl-BE".

You can assume the specified date is valid. Looking at the tests and doing a switch statement
or similar is considered cheating. System.Globalization.CultureInfo should be

used.

The method may be used to get the name of the Dutch weekday of other memorable days
too, like in the examples below:

Examples

WeekdayRobWasBornInDutch(1970, 9, 21) --> "maandag"

WeekdayRobWasBornInDutch(1945, 9, 2) --> "zondag"

WeekdayRobWasBornInDutch(2001, 9, 11) --> "dinsdag"

Hints

- Use the System.Globalization.CultureInfo class to handle Dutch culture set-
tings.

- Create a DateTime object using the provided year, month, and day.

- Use the ToString method of the DateTime object with the Dutch culture to get
the weekday name in Dutch.

- Ensure that you specify the culture identifier "nl-NL" to get the correct Dutch
weekday names.

2.6 Smallest Missing Positive Integer

Given an array of integers, return the smallest positive integer not present in the array.
Here is a representative example. Consider the array:

{ -2, 6, 4, 5, 7, -1, 7, 1, 3, 6, 6, -2, 9, 10, 2, 2 }

After reordering, the array becomes:

{ -2, -2, -1, 1, 2, 2, 3, 4, 5, 6, 6, 6, 7, 7, 9, 10 }

... from which we see that the smallest missing positive integer is 8.

Examples

452

MinMissPos({ -2, 6, 4, 5, 7, -1, 1, 3, 6, -2, 9, 10, 2, 2 })

-> 8

// After sorting, the array becomes

// { -2, -2, -1, 1, 2, 2, 3, 4, 5, 6, 6, 7, 9, 10 }

// So the smallest missing positive integer is 8

MinMissPos({ 5, 9, -2, 0, 1, 3, 9, 3, 8, 9 })

-> 2

// After sorting, the array becomes

// { -2, 0, 1, 3, 3, 5, 8, 9, 9, 9 }

// So the smallest missing positive integer is 2

MinMissPos({ 0, 4, 4, -1, 9, 4, 5, 2, 10, 7, 6, 3, 10, 9 })

-> 1

// After sorting, the array becomes

// { -1, 0, 2, 3, 4, 4, 4, 5, 6, 7, 9, 9, 10, 10 }

// So the smallest missing positive integer is 1

Hints

 For the sake of clarity, recall that 0 is not considered to be a positive number.

2.7 Briefcase Lock

A briefcase has a 4-digit rolling-lock. Each digit is a number from 0-9 that can be rolled either
forwards or backwards.

Create a function that returns the smallest number of turns it takes to transform the lock from
the current combination to the target combination. One turn is equivalent to rolling a number
forwards or backwards by one.

To illustrate:

current-lock: 4089

target-lock: 5672

What is the minimum number of turns it takes to transform 4089 to 5672?

4 -> 5

4 -> 5 // Forward Turns: 1 <- Min

4 -> 3 -> 2 -> 1 -> 0 -> 9 -> 8 -> 7 -> 6 -> 5 // Backward Turns: 9

0 -> 6

0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 // Forward Turns: 6

4 <- Min

-> 7 // Forward Turns: 9

8 -> 7 // Backward Turns: 1 <- Min

9 -> 2

0 -> 9 -> 8 -> 7 -> 6 // Backward Turns:

8 -> 7

8 -> 9 -> 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6

453

9 -> 0 -> 1 -> 2 // Forward Turns: 3 <- Min

9 -> 8 -> 7 -> 6 -> 5 -> 4 -> 3 -> 2 // Backward Turns: 7

It takes 1 + 4 + 1 + 3 = 9 minimum turns to change the lock from 4089

to 5672.

Examples

MinTurns("4089", "5672") -> 9

MinTurns("1111", "1100") -> 2

MinTurns("2391", "4984") -> 10

Hints

- Both locks are in string format.

- A 9 rolls forward to 0, and a 0 rolls backwards to a 9.

2.8 Keeping Count

Given a number, create a function which returns a new number based on the following rules:

- For each digit, replace it by the number of times it appears in the number.

- The final instance of the number will be an

integer, not a string. The following is a working

example:

DigitCount(136116) -> 312332

Explanation:

- The number 1 appears thrice, so replace all 1s with 3s.

- The number 3 appears only once, so replace all 3s with 1s.

- The number 6 appears twice, so replace all 6s with 2s.

Examples

- DigitCount(221333) -> 221333

- DigitCount(136116) -> 312332

- DigitCount(2) -> 1

Hints

454

- Each test will have a positive whole number in its parameter.

2.9 Break Point

A number has a breakpoint if it can be split in a way where the digits on the left
side and the digits on the right side sum to the same number.
For instance, the number 35190 can be sliced between the digits 351 and 90, since 3
+ 5 + 1 = 9 and 9 + 0 = 9. On the other hand, the number 555 does not have a
breakpoint (you must split between digits).
Create a function that returns true if a number has a breakpoint, and false otherwise.

Examples

- BreakPoint(159780) → true

- BreakPoint(112) → true

- BreakPoint(1034) → true

- BreakPoint(10) → false

- BreakPoint(343) → false

Hints

- Read each digit as only one number.

- Check the Resources tab for a hint.

2.10 ATM Transactions

Implement an ATM (Automated Teller Machine) transaction program in C# that
simulates basic banking operations. The program should:

- Begin by prompting the user to enter a PIN to access the ATM services.

- Validate the entered PIN against a predefined PIN (e.g., 4040).

- If the PIN is correct, provide the following options to the user:

1. Check balance: Display the current balance in the account.

2. Withdraw money: Prompt the user to enter the amount to withdraw. Ensure with-
drawal amount is in multiples of 100 and does not exceed the available balance.

3. Deposit money: Prompt the user to enter the amount to deposit and update
the current balance accordingly.

4. Change PIN: Allow the user to change their PIN by verifying the
current PIN and entering a new PIN.

- Handle incorrect PIN entries and invalid user inputs appropriately.

Requirements

- Implement the ATM program in C# with proper validation and error handling.

- Ensure that withdrawal amounts are multiples of 100 and do not
exceed the available balance.

455

- Display appropriate messages for each transaction and user interaction.

Sample Output

Enter the pin:

> 4040

1. To check balance

2. To withdraw money

3. To deposit money

4. To

change

the pin

Enter

your

choice:

> 1

The current balance in your account is 10000

Enter the pin:

> 4040

1. To check balance

2. To withdraw money

3. To deposit money

4. To

change

the pin

Enter

your

choice:

> 2

Enter the amount to withdraw:

> 5000

Please collect the

cash: 5000 The

current balance is

now: 5000

Enter the pin:

> 4040

1. To check balance

2. To withdraw money

3. To deposit money

4. To

change

the pin

Enter

your

choice:

> 3

Enter the amount to be deposited:

> 2000

The current balance in the account is 7000

456

Enter the pin:

> 4040

1. To check balance

2. To withdraw money

3. To deposit money

4. To

change

the pin

Enter

your

choice:

> 4

Want to change

your pin Enter

your previous

pin:

> 4040

Enter your new pin:

> 1234

Your pin is changedEnter the pin:

> 1234

1. To check balance

2. To withdraw money

3. To deposit money

4. To

change

the pin

Enter

your

choice:

> 5

Please select correct option

Hints

- Test the program with incorrect PIN entries.

- Test withdrawing amounts that are not multiples of 100.

- Test depositing different amounts and verifying the updated balance.

457

Strings Manipulations

Note: Students are encouraged to bring their own
laptops for laboratory practice sessions.

3.1 Find the Bomb

Create a function that finds the word “bomb” in the given string (not case sensitive). If found,
return “Duck!!!”, otherwise, return “There is no bomb, relax.”.

Examples

Bomb("There is a bomb.")

-> "Duck!!!"

Bomb("Hey, did you think there is a bomb?")

-> "Duck!!!"

Bomb("This goes boom!!!")

-> "There is no bomb, relax."

Hints

- “bomb” may appear in different cases (i.e., uppercase, lowercase, mixed).

3.2 Finding Nemo

Finding Nemo

You’re given a string of words. You need to find the word “Nemo”, and return a string like this:
“I found Nemo at [the order of the word you

find Nemo]!”. If you can’t find Nemo, return “I

can’t find Nemo :(”.

Examples

FindNemo("I am finding Nemo !")

-> "I found Nemo at 4!"

FindNemo("Nemo is me")

-> "I found Nemo at 1!"

458

FindNemo("I Nemo am")

-> "I found Nemo at 2!"

Hints

- ! , ? . are always separated from the last word.

- Nemo will always look like Nemo, and not NeMo or other capital variations.

- Nemo’s, or anything that says Nemo with something behind it, doesn’t count as Finding
Nemo.

- If there are multiple Nemo’s in the sentence, only return the first one.

3.3 A Week Later

Create a function which takes in a date as a string, and returns the date a week after.

Examples

WeekAfter("12/03/2020")

-> "19/03/2020"

WeekAfter("21/12/1989")

-> "28/12/1989"

WeekAfter("01/01/2000")

-> "08/01/2000"

Hints

Note that dates will be given in day/month/year format. Single digit numbers should be zero
padded.

3.4 Track the Robot

A robot has been given a list of movement instructions. Each instruction is either left, right,
up or down, followed by a distance to move. The robot starts at [0, 0]. You want to calculate
where the robot will end up and return its final position as an array.

To illustrate, if the robot is given the following instructions:

new string[] { "right 10", "up 50", "left 30", "down 10" }

It will end up 20 left and 40 up from where it started, so we return int[] { -20, 40 }.

Examples

TrackRobot(new string[] { "right 10", "up 50", "left 30", "down 10" })

-> int[] { -20, 40 }

TrackRobot(new string[] { })

-> int[] { 0, 0 }

// If there are no instructions, the robot doesn’t move.

459

TrackRobot(new string[] { "right 100", "right 100", "up 500", "up 10000" })

-> int[] { 200, 10500 }

Hints

- The only instructions given will be left, right, up or down.

- The distance after the instruction is always a positive whole number.

3.5 True Alphabetical Order

Create a function which takes every letter in every word, and puts it in alphabetical order. Note
how the original word lengths must stay the same.

Examples

TrueAlphabetic("hello world")

-> "dehll loorw"

TrueAlphabetic("edabit is awesome")

-> "aabdee ei imosstw"

TrueAlphabetic("have a nice day")

-> "aaac d eehi nvy"

Hints

- All sentences will be in lowercase.

- No punctuation or numbers will be included in the Tests.

3.6 Longest Common Ending

Write a function that returns the longest common ending between two strings.

Examples

LongestCommonEnding("multiplication", "ration")

-> "ation"

LongestCommonEnding("potent", "tent")

-> "tent"

LongestCommonEnding("skyscraper", "carnivore")

-> ""

Hints

[label=-] Return an empty string if there exists no common ending.

460

3.7 Clear Brackets

Create a function Brackets() that takes a string and checks that the brackets in the math
expression are correct. The function should return true or false.

Examples

Brackets("(a*(b-c).)")

-> true

Brackets(")(a-b-45/7*(a-34))")

-> false

Brackets("sin(90...)+. cos1)")

-> false

Hints

- The string may not contain brackets, then return true.

- The string may contain spaces.

- The string may be empty.

3.8 Count the Number of Duplicate Characters

Create a function that takes a string and returns the number of alphanumeric characters that
occur more than once.

Examples

DuplicateCount("abcde")

-> 0

DuplicateCount("aabbcde")

-> 2

DuplicateCount("Indivisibilities")

-> 2

DuplicateCount("Aa")

-> 0

// Case sensitive

Hints

- Duplicate characters are case sensitive.

- The input string will contain only alphanumeric characters.

3.9 Uban Numbers

461

A number n is called uban if its name (in English) does not contain the letter “u”. In particular, it
cannot contain the terms “four”, “hundred”, and “thousand”, so the uban number following 99 is
1,000,000.

Write a function to determine if the given integer is uban.

Examples

IsUban(456)

-> false

IsUban(25)

-> true

IsUban(1098)

-> false

Hints

- Convert the integer to its English word representation. Use a library or a function to
achieve this.

- Check if the word representation contains the letter “u”.

- If the letter “u” is present in the word representation, the number is not uban.

- If the letter “u” is not present, the number is uban.

- Consider edge cases like very large numbers or zero.

Functions and Function Overloading

Note: Students are encouraged to bring their own laptops for
laboratory practice sessions.

4.1 Climbing Stairs

You are climbing a staircase. It takes n steps to reach the top. Each time you can either climb 1
or 2 steps. In how many distinct ways can you climb to the top?

Specifications:

1. Function Signature:

int climbStairs(int n);

2. Input:

- An integer n representing the total number of steps to reach the top.

3. Output:

- An integer representing the number of distinct ways to reach the top.

4. Constraints:

462

- 1 ≤ n ≤ 45

Examples:

Example 1:

Input: n = 2 Output:

2

Explanation: There are two ways to climb to the top.

1. 1 step + 1 step

2. 2 steps

Example 2:

Input: n = 3 Output:

3

Explanation: There are three ways to climb to the top.

1. 1 step + 1 step + 1 step

2. 1 step + 2 steps

3. 2 steps + 1 step

Implement the function climbStairs and also provide driver code to solve the problem.

Hints:

- Consider the base cases: n = 1 and n = 2.

- Think about the recursive relationship. If you are on the nth step, you could have arrived
from the (n − 1)th step or the (n − 2)th step.

Try

- Test the function with small values of n such as 1, 2, 3, 4, and larger values up to 45 to
verify correctness and performance.

4.2 Prime Number Utility

Create a program that offers three prime-related functionalities using three different functions,
invoked based on user input. Specifically:

1. Input: Prompt the user to select an option:

- Check if a number is prime.

- Find the nth prime number.

- Display a series of prime numbers up to a given number.

2. Function Design:

- Implement a function bool isPrime(int number) that:

– Returns true if the number is prime.

– Returns false otherwise.

- Implement a function int findNthPrime(int n) that:

– Uses the isPrime function to find and return the nth prime number.

463

- Implement a function void printPrimeSeries(int limit) that:

– Uses the isPrime function to print all prime numbers up to the given limit.

3. Output:

- Based on the user’s selection, the program will:

– Print “Prime” or “Not Prime” if the first option is selected.

– Print the nth prime number if the second option is selected.

– Print the series of prime numbers up to the given limit if the third option is
selected.

Write the C# code for the Prime Number Utility program using the described functions.

Hints:

- A prime number is a number greater than 1 that has no divisors other than 1 and itself.

- Use a loop to check for divisors up to the square root of the number for efficiency.

- To find the nth prime, iterate through numbers, checking for primality, and count primes
found until the nth prime is reached.

- To display a series of prime numbers, iterate through numbers up to the limit and print
each prime number.

4.3 Zodiac Sign Calculator

ZodiacSignCalculator determines the zodiac sign based on a given birthdate using func- tions. The
program should:

1. Input: Prompt the user to enter their birthdate (DD/MM/YYYY).

2. Functionality: Implement a function to determine the zodiac sign based on the entered
birthdate.

3. Output: Display the calculated zodiac sign corresponding to the entered birthdate.

Hints:

- Use functions to encapsulate the logic for determining the zodiac sign.

- Validate the input format and range of dates to ensure accurate zodiac sign determination.

Try:

- Test the program with various birthdates to verify correct zodiac sign calculation.

- Ensure the program handles edge cases such as leap years and valid input ranges.

4.4 Days in a Month Calculator

DaysInMonthCalculator determines the number of days in a given month of a specific year using functions.
The program should:

464

1. Input: Prompt the user to enter a month (1 for January, 2 for February, etc.) and a year.

2. Functionality: Implement a function to calculate and return the number of days in the
specified month.

3. Output: Display the calculated number of days in the entered month and year.

Hints:

- Use functions to encapsulate the logic for handling leap years and month-specific day
counts.

- Validate the input to ensure valid month and year ranges.

Try:

- Test the program with different months and years, including leap years, to ensure accurate
day count calculation.

- Verify that the program correctly handles edge cases such as February in leap years.

4.5 Date Validator

DateValidator checks if a given date is valid using functions. The program should:

1. Input: Prompt the user to enter a date in the format (DD/MM/YYYY).

2. Functionality: Implement a function to validate if the entered date is valid, considering
leap years and month-specific day counts.

3. Output: Display a message indicating whether the entered date is valid or invalid.

Hints:

- Use functions to encapsulate the logic for validating date entries.

- Ensure proper validation of day ranges based on month and leap year calculations.

Try:

- Test the program with various dates to verify accurate validation of both valid and invalid
dates.

- Ensure the program handles edge cases such as February 29th in leap years.

4.6 Age Difference Calculator

Develop a program named AgeDifferenceCalculator that calculates the age difference between two

individuals using functions. The program should:

1. Input: Prompt the user to enter the birthdates of two people in the format (DD/M-
M/YYYY).

2. Functionality: Implement a function to calculate and return the difference in years,
months, and days between the two birthdates.

3. Output: Display the calculated age difference in a readable format (e.g., “X years Y

465

months Z days”).

Hints

:

- Use functions to encapsulate the logic for age calculation and handling date differences.

- Validate the input to ensure accurate date formatting and valid date ranges.

Try

- Test the program with different birthdate pairs to verify accurate age difference calculation.

- Ensure the program correctly handles edge cases such as identical birthdates and reversed
input order.

4.7 Elapsed Time Calculator

ElapsedTimeCalculator calculates the elapsed time between two timestamps within the
same day using functions. The program should:

1. Input: Prompt the user to enter two timestamps in hours, minutes, and seconds format.

2. Functionality: Implement a function to calculate and return the elapsed time in hours,
minutes, and seconds.

3. Output: Display the calculated elapsed time in a readable format (e.g., “X hours Y
minutes Z seconds”).

Hints:

- Use functions to encapsulate the logic for time difference calculation and handling time
rollover.

- Validate the input to ensure valid time entries (0 ¡= hours ¡ 24, 0 ¡= minutes ¡ 60, 0 ¡=
seconds ¡ 60).

Try:

- Test the program with different timestamp pairs to verify accurate calculation of elapsed
time.

- Ensure the program handles edge cases such as timestamps crossing over midnight or
identical timestamps.

4.8 Count of Specific Weekdays

CountSpecificWeekdays counts the number of specific weekdays (e.g., Mondays) between
two given dates using functions. The program should:

1. Input: Prompt the user to enter two dates in the format (DD/MM/YYYY) and specify the weekday to
count.

466

2. Functionality: Implement a function to iterate through each day between the two dates and count
occurrences of the specified weekday.

3. Output: Display the total count of the specified weekday within the date range.

Hints:

- Use functions to encapsulate the logic for date iteration and weekday comparison.

- Validate the input to ensure accurate date formatting and valid date ranges.

Try:

- Test the program with various date ranges and weekdays to verify accurate counting.

- Ensure the program handles edge cases such as spanning across different months or years.

4.9 Polymorphic Printing

Function overloading is a feature that allows multiple functions with the same name but different
parameter types or numbers, enabling the same function name to perform different tasks based
on how it is called.
Create a program that demonstrates function overloading in C#. Specifically, define multiple
versions of functions that handle different types of calculations or tasks but share the same
function name.

1. Function Design:

- Define a function print() that prints different types of data (e.g., integer, floating
point number, string) to the console.

- Overload the print() function to handle different data types and formats.

- Demonstrate the use of function overloading with at least two different versions of the
print() function, each accepting different parameters but sharing the same name.

2. Output: Output the results of calling the overloaded print() functions with different
data types to demonstrate their functionality.

Hints:

- Ensure that each overloaded function has a distinct parameter list to differentiate them
during function calls.

- Implement error handling or default behavior for unexpected or unsupported data types.

Try:

- Test the program with various data types (e.g., integer, float, string) to validate the functionality of
each overloaded print() function.

- Verify the handling of edge cases such as empty strings or invalid input values.

Motley Coding Tasks

Note: Students are encouraged to bring their own laptops for laboratory practice
sessions.

467

5.1 Is the Phone Number Formatted Correctly?

Create a function that accepts a string and returns true if it’s in the format of a proper phone number and
false if it’s not. Assume any number between 0-9 (in the appropriate spots) will produce a valid phone
number.

Input

- A string representing the phone number.

Requirements

- The phone number must be in the format: (123) 456-7890

- Each digit can be any number between 0-9.

- There should be a space after the closing parenthesis.

Output

- Return true if the phone number is correctly formatted.

- Return false if the phone number is not correctly formatted.

Examples

1. IsValidPhoneNumber("(123) 456-7890") → true

2. IsValidPhoneNumber("1111)555 2345") → false

3. IsValidPhoneNumber("098) 123 4567") → false

Hints

- Consider using regular expressions to match the phone number format.

- Ensure that the string has exactly 14 characters.

- Check for the specific positions of characters: parentheses, space, and hyphen.

5.2 Basic E-Mail Validation

Create a function that accepts a string, checks if it’s a valid email address, and returns either
true or false, depending on the evaluation.

Input

- A string representing the email address to be validated.

Requirements

- The string must contain an @ character.

- The string must contain a . character.

468

- The @ must have at least one character in front of it.

- The . and the @ must be in the appropriate places:

– The . must come after the @.

– There should be characters between the @ and ..

Output

- Return true if the email address is valid.

- Return false if the email address is not valid.

Examples

1. ValidateEmail("@gmail.com") → false

2. ValidateEmail("hello.gmail@com") → false

3. ValidateEmail("gmail") → false

4. ValidateEmail("hello@gmail") → false

5. ValidateEmail("hello@edabit.com") → true

Hints

- Check the Tests tab to see exactly what’s being evaluated.

- You can solve this challenge with RegEx, but it’s intended to be solved with logic. Solutions
using RegEx will be accepted but frowned upon.

5.3 Valid C# Comments

In C#, consider two types of comments:

- Single-line comments start with //

- Multi-line or block comments start with /* and end with */

The input will be a sequence of //, /*, and */. Every /* must have a */ that immediately
follows it. Additionally, there can be no single-line comments in between multi-line comments.

Create a function that returns true if the comments are properly formatted, and false
otherwise.

Input

- A string representing the sequence of comments.

Requirements

- Every /* must be followed by a */.

- There must be no single-line comments (//) within multi-line comments (/* and */).

Output

mailto:hello@edabit.com

469

- Return true if the comments are properly formatted.

- Return false if the comments are not properly formatted.

Examples

1. CommentsCorrect("//////") → true

– 3 single-line comments: "//", "//", "//"

2. CommentsCorrect("/**//**////**/") → true

– 3 multi-line comments + 1 single-line comment: "/*", "*/", "/*", "*/", "//",
"/*", "*/"

3. CommentsCorrect("///*/**/") → false

– The first /* is missing a */

4. CommentsCorrect("/////") → false

– The 5th / is single, not a double //

5.4 IPv4 Validation

Problem Description

Create a function that takes a string (an IPv4 address in standard dot-decimal format) and
returns true if the IP is valid, or false if it’s not.

Input

- A string representing the IPv4 address.

470

Requirements

- The IPv4 address must be in the standard dot-decimal format: X.X.X.X, where X is a
number.

- Each X must be a number between 0 and 255.

- Each X must not have leading zeros (e.g., 045 is invalid).

- The last digit may not be zero (e.g., 1.2.3.0 is invalid).

- IPv6 addresses are not valid.

- The address must contain exactly four octets.

Output

- Return true if the IPv4 address is valid.

- Return false if the IPv4 address is not valid.

Examples

1. IsValidIP("1.2.3.4") → true

2. IsValidIP("1.2.3") → false

3. IsValidIP("1.2.3.4.5") → false

4. IsValidIP("123.45.67.89") → true

5. IsValidIP("123.456.78.90") → false

6. IsValidIP("123.045.067.089") → false

Hints

- IPv6 addresses are not valid.

- Leading zeros are not valid (e.g., 123.045.067.089 should return false).

- Numbers must be between 1 and 255.

- The last digit must not be zero, but any other octet may have a zero.

5.5 Password Validation

Create a function that validates a password based on the following rules:

- Length must be between 6 and 24 characters.

- Must contain at least one uppercase letter (A-Z).

- Must contain at least one lowercase letter (a-z).

- Must contain at least one digit (0-9).

- Maximum of 2 repeated characters.

471

- Supported special characters include:
! @ # $ % &̂ * () + = - { } [] : ; " ’ ? < > , .

Create a function that returns true if the password is valid and false otherwise.

Input

- A string representing the password to be validated.

Requirements

- The password must be between 6 and 24 characters long.

- It must contain at least one uppercase letter.

- It must contain at least one lowercase letter.

- It must contain at least one digit.

- The password can have a maximum of 2 repeated characters.

- Special characters are supported but not required.

Output

- Return true if the password meets all the requirements.

- Return false if the password does not meet the requirements.

Examples

1. ValidatePassword("P1zz@") → false

– Too short.

2. ValidatePassword("iLoveYou") → false

– Missing a number.

3. ValidatePassword("Fhg93@") → true

– OK!

Hints

- Ensure the password meets all the length, character, and repetition requirements.

- Special characters are optional but valid.

5.6 Valid Hex Code

Create a function that determines whether a string is a valid hex code.

A hex code must begin with a pound key # and is exactly 6 characters in length. Each character
must be a digit from 0-9 or an alphabetic character from A-F. All alphabetic characters may be
uppercase or lowercase.

472

Examples

IsValidHexCode("#CD5C5C")

-> true

IsValidHexCode("#EAECEE")

-> true

IsValidHexCode("#eaecee")

-> true

IsValidHexCode("#CD5C58C")

-> false

// Length exceeds 6

IsValidHexCode("#CD5C5Z")

-> false

// Not all alphabetic characters in A-F

IsValidHexCode("#CD5C&C")

-> false

// Contains unacceptable character

IsValidHexCode("CD5C5C")

-> false

// Missing #

Hints

- Check if the string starts with a pound key (#).

- Verify that the length of the string is exactly 7 characters (including the pound key).

- Ensure that all characters following the pound key are either digits (0-9) or letters in the
range A-F (case insensitive).

- Use string methods or regular expressions to validate the characters.

- Consider converting the string to uppercase for a uniform comparison.

5.7 Retrieve Host Name

Create a function that retrieves the host name of the local machine. The function should return
the host name of the machine on which the code is running.

Input

- No input is required for this function.

Requirements

- The function should retrieve the host name of the local machine.

- The function should return the host name as a string.

473

Output

- Return a string containing the host name of the local machine.

Examples

1. GetLocalHostName() → "MyComputerName"

Hints

- The host name is typically the name assigned to the computer by the operating system.

- Use the Dns.GetHostName() method to retrieve the host name.

5.8 Retrieve Host Name and IP Address

Create a function that retrieves the host name and IP addresses of the local machine. The
function should display the host name and all associated IP addresses.

Input

- No input is required for this function.

Requirements

- The function should retrieve the host name of the local machine.

- The function should retrieve all associated IP addresses of the local machine.

- The function should display the host name and each IP address on a new line.

Output

- Display the host name and all associated IP addresses of the local machine.

Examples

Host Name of machine = MyComputerName

IP Address of Machine is

192.168.1.2

2001:0db8:85a3:0000:0000:8a2e:0370:7334

Hints

- The host name is typically the name assigned to the computer by the operating system.

- The IP addresses can be both IPv4 and IPv6.

- Use the Dns.GetHostName() method to retrieve the host name.

- Use the Dns.GetHostAddresses(string) method to retrieve the IP addresses.

- Import necessary packages: System, System.Net.

474

5.9 Retrieve IP Address of a Domain Name

Create a function that retrieves the IP addresses of a given domain name. The function should
display the IP addresses associated with the provided domain name.

Input

- A string domainName representing the domain name to be resolved.

Requirements

- The function should retrieve all IP addresses associated with the given domain name.

- The function should display each IP address on a new line.

- Handle any potential exceptions gracefully and provide an appropriate error message.

Output

- Display the IP addresses associated with the provided domain name.

Examples

GetIPAddresses("www.bing.com");

Output:

IPAddress of www.bing.com is

13.107.21.200

204.79.197.200

Hints

- The domain name should be a valid domain name string.

- The IP addresses can be both IPv4 and IPv6.

- Use the Dns.GetHostAddresses(string) method to retrieve the IP addresses.

- Import necessary packages: System, System.Net.

- Handle exceptions using a try-catch block to ensure graceful error handling.

5.10 Retrieve IPv4 and IPv6 Addresses - Check Address Family

Create a function that retrieves and displays both IPv4 and IPv6 addresses of the local machine
separately by checking the Address Family. The function should first output the host name of the
machine, followed by separate lists of IPv4 and IPv6 addresses.

Input

- No input is required for this function.

http://www.bing.com/
http://www.bing.com/

475

Requirements

- The function should retrieve the host name of the local machine using Dns.GetHostName().

- The function should retrieve all associated IP addresses of the local machine using Dns.GetHostAddress

- The function should filter and display IPv4 addresses separately.

- The function should filter and display IPv6 addresses separately.

- Display the host name followed by the lists of IPv4 and IPv6 addresses.

Output

- Display the host name of the local machine.

- Display the IPv4 addresses of the local machine, each on a new line.

- Display the IPv6 addresses of the local machine, each on a new line.

Examples

Host Name of machine = MyComputerName

IPv4 of Machine is

192.168.1.2

IPv6 of Machine is

2001:0db8:85a3:0000:0000:8a2e:0370:7334

Hints

- Ensure that you filter IP addresses by AddressFamily to distinguish between IPv4 and
IPv6 addresses.

- The function should handle both types of addresses and display them clearly.

- Import the necessary packages: System, System.Net.

- Use the Dns.GetHostName() method to get the host name.

- Use the Dns.GetHostAddresses(string) method to get all IP addresses associated
with the host name.

- Use LINQ to filter IP addresses based on AddressFamily to separate IPv4 and IPv6
addresses.

5.11 Retrieve Host Name Based on IP Address

Create a function that takes an IP address as input and returns the host name associated with that
IP address. The function should use the Dns.GetHostEntry() method to obtain the host

information and then extract and display the host name.

Input

- A string representing an IP address (e.g., "204.79.197.200").

476

Circle

- radius : double

+ Circle(double)
+ getRadius() : double
+ setRadius(double) : void
+ getArea() : double
+ getPerimeter() : double

Requirements

- The function should use the Dns.GetHostEntry(string) method to retrieve
the

IPHostEntry for the given IP address.

- Extract the host name from the IPHostEntry object.

- Display the host name associated with the given IP address.

Output

- Display the host name of the IP address.

Examples

Input: "204.79.197.200"

Output: "example.microsoft.com"

Hints

- Ensure that the IP address provided is valid and reachable.

- The host name may not always be resolvable depending on network
configurations and the validity of the IP address.

- Import the necessary packages: System, System.Net.

- Use the Dns.GetHostEntry(string) method to retrieve the
IPHostEntry for the given IP address.

- Access the HostName property of the IPHostEntry object to get the host name.

Classes & Objects

Note: Students are encouraged to bring their own
laptops for laboratory practice sessions.

6.1 Make a Circle with OOP

Your task is to create a Circle constructor that creates a circle with a
radius provided by an argument. The circles constructed must have two getters
GetArea() (π ⋅ r2) and GetPerimeter() (2 ⋅ π ⋅ r) which give both
respective areas and perimeter (circumference).

Examples

477

Smoothie

- Ingredients : string[]

+ Smoothie(string[])
+ GetCost() : string
+ GetPrice() : string
+ GetName() : string

Circle circy = new Circle(11);

circy.getArea();

// Should return 380.132711084365.

Circle circy = new Circle(4.44);

circy.getPerimeter();

// Should return 27.897342763877365

Hints

- Don’t worry about floating point precision - the solution should be accurate enough.

- This is more of a tutorial than a challenge, so the topic covered may be
considered ad- vanced.

6.2 Fruit Smoothie

Create a class Smoothie and
do the following:

- Create a property called
Ingredients.

- Create a GetCost method which calculates the total cost of the
ingredients used to make the smoothie.

- Create a GetPrice method which returns the cost of the smoothie
plus 50% markup. Round to two decimal places.

- Create a GetName method which gets the ingredients and puts them in
alphabetical order into a nice descriptive sentence:

– If there are multiple ingredients, add the word “Fusion” to the end.

– If there is only one ingredient, add “Smoothie”.

– Change “-berries” to “-berry” for individual berry names.

Ingredient Prices:

Ingredient Price
Strawberries 1.50
Banana 0.50

478

Mango 2.50
Blueberries 1.00
Raspberries 1.00
Apple 1.75
Pineapple 3.50

Examples:

s1 = Smoothie(new string[] {

"Banana" }) s1.Ingredients -> {

"Banana" } s1.GetCost() ->

"£0.50"

s1.GetPrice() -> "£1.25"

s1.GetName() -> "Banana

Smoothie"

s2 = Smoothie(new string[] { "Raspberries", "Strawberries",

"Blueberries" }) s2.ingredients -> { "Raspberries",

"Strawberries", "Blueberries" } s2.GetCost() -> "£3.50"

s2.GetPrice() -> "£8.75"

s2.GetName() -> "Blueberry Raspberry Strawberry Fusion"

Hints:

 Feel free to check out the Resources tab for a refresher on classes.

479

Expense

- ExpenseId: int
- Description: string
- Date: DateTime
- Amount: double
- CategoryId: int
- UserId: int

+ Expense(description: string, date: DateTime,
amount: double, categoryId: int, userId: int)
+ GetFormattedAmount(): string
+ GetExpenseDetails(): string

6.3 Expense Tracker

Design and implement an Expense class to manage individual expenses within an Expense
Tracker application. The class should provide functionalities to log, retrieve, and display expense
details effectively.

Output:

- Constructor: No direct output. Initializes the Expense object with the provided data.

- GetFormattedAmount(): Returns a formatted string representing the monetary amount
of the expense.

- GetExpenseDetails(): Returns a formatted string with detailed information about
the expense.

Hints:

- Encapsulation: Ensure attributes are properly encapsulated (private or protected access
modifiers) to maintain data integrity.

- Date Formatting: Use appropriate formatting methods to display the date in a readable
format.

- String Formatting: Utilize C#’s string interpolation or formatting methods (ToString(),
format specifiers) for consistent and clear output.

6.4 Student Grades

The Student Grades class is designed to manage student details including roll number, name, and
marks in multiple subjects. It calculates total marks and grades for each student and provides
functionalities to input student details, process marks, calculate grades, and display student
information.

480

Inputs

- Roll number and name for each student.

- Marks in multiple subjects (e.g., Math, Science, English) for each student.

Process Requirements

- Initialize student details and marks using the constructor.

- Input marks for each subject using the inputMarks() method.

- Calculate total marks using the calculateTotalMarks() method.

- Calculate the grade based on total marks using the calculateGrade() method.

- Display student details including roll number, name, marks in each subject, total marks,
and grade using the displayDetails() method.

Output

- Display student details including roll number, name, marks in each subject, total marks,
and grade.

Hints

Grades can be assigned based on the total marks as follows:

- A: 90 - 100

- B: 80 - 89

- C: 70 - 79

- D: 60 - 69

- F: below 60

Student
- rollNumber : int
- name : string
- marks[NUM SUBJECTS] : int
- totalMarks : int
- grade : char

+ Student(roll: int, name: string)
+ inputMarks()
+ calculateTotalMarks()
+ calculateGrade()
+ displayDetails()
+ getRollNumber() : int
+ getName() : string
+ getTotalMarks() : int
+ getGrade() : char
+ ToString() : string

481

Student
- name : string
- rollNumber : int
marks : double

+ age : int
+ Student()
+ setDetails(string, int, double, int) : void
+ getName() : string
+ getRollNumber() : int
+ getMarks() : double
+ getAge() : int

6.5 Control Your Code: Access Specifiers

Data hiding is a key feature of Object-Oriented Programming that restricts direct access to the internal details of
a class. This prevents functions from directly manipulating the internal state of a class type. Access to class
members is controlled using public, private, and protected labels within the class definition. These labels, known
as access specifiers, dictate the level of access permitted for the class members.
Demonstrate the concepts of data hiding and access specifiers in a class Student. The Student class should have
private, protected, and public data members. Implement member functions to set and get these details, ensuring
that the internal representation of the class type is not directly accessible outside the class.

The Student class encapsulates the properties of a student while ensuring that the internal data
(name, roll number, marks) is hidden from direct access outside the class. This is achieved using
access specifiers: private, protected, and public.

Inputs

Details (name, rollNumber, marks, age) for a student.

Process Requirements

1. Define the Student class with:

 Private data members: name, rollNumber.

 Protected data member: marks.

 Public data member: age.

2. Implement public member functions setDetails, getName, getRollNumber, getMarks,
and getAge to set and retrieve the values of the data members.

3. Ensure that the private data members cannot be accessed directly outside the class.

Output

- Print the details (name, rollNumber, marks, age) of the student using the public
member functions.

Hints

- Use private access specifier to hide sensitive data members.

- Use protected access specifier for data members that should be accessible in derived classes.

- Use public access specifier for data members that can be accessed directly.

- Example usage of the Student class with different access specifiers:

482

Student
- rollNumber : int
- name : string
- marks[NUM SUBJECTS] : int
- totalMarks : int

+ Student()
+ Student(int, const string&)
+ Student(const Student &)

+ S˜tudent()
+ ToString() : string

6.6 Craft Constructors

Constructors are special member functions responsible for initializing objects of a class. They are invoked
automatically when an object is created. Constructors can initialize data members, allocate resources, and set
default values based on parameters provided during object creation. They are defined with the same name as
the class and can be overloaded to accept different parameter sets.

Destructors are also special member functions, that are invoked automatically when an ob- ject goes out of
scope or is explicitly deleted. They perform cleanup tasks such as releasing resources (like memory or handles)
acquired by the object during its lifetime. Destructors are named with a tilde () followed by the class name and
cannot have parameters or return types. They are essential for managing dynamic memory and ensuring proper
resource deallocation.

Implement constructors for default initialization, parameterized initialization, copy opera- tion, and a destructor
to manage resources for the following class

Input:

- rollNumber: Integer value representing the student’s roll number.

- name: String representing the student’s name.

- marks[NUM SUBJECTS]: Array of integers representing marks in various subjects.

Process Requirements:

- Implement a default constructor to initialize the ‘Student‘ object with default values.

- Create a parameterized constructor to set initial values for ‘rollNumber‘ and ‘name‘.

- Define a copy constructor to copy data from another ‘Student‘ object.

- Implement a destructor to clean up resources when the object is destroyed.

Output:

- Display methods to show student details including ‘rollNumber‘, ‘name‘, ‘marks‘, and
‘totalMarks‘.

Hints:

// Create Student objects using different constructors

// Display student details

// Clean up resources

483

Customer
- customerId : int
- customerName : string
- customerEmail : string

+ Customer()
+ Customer(int, const string&, const string&)
+ setCustomerId(int) : void
+ getCustomerId() : int
+ setCustomerName(const string&) : void
+ getCustomerName() : string
+ setCustomerEmail(const string&) : void
+ getCustomerEmail() : string
+ ToString() : string

// Destructor automatically called when objects go out of scope

Try:

- Use initialization lists and proper memory management techniques.

- Ensure proper handling of dynamic memory if applicable.

6.7 Clearing Up Ambiguity: The Role of this Pointer

A special pointer, ’this’ that refers to the current object instance within non-static member functions. It allows
these functions to access and manipulate the object’s data members and call other member functions of the
same object.
Design a Customer class to manage customer information in a retail application. The class should include:

Input

- Customer Information: Inputs for customer details including customerId, customerName,
and customerEmail.

Process

 Implement a Customer class with:

– Private member variables: customerId (int),
customerName (string), customerEmail (string).

– Constructors: Default constructor and parameterized constructor using the this
pointer for initialization.

– Methods:

* Setters and getters for each member variable, demonstrating self-reference us- ing the this

pointer within methods.

* Resolve disambiguation between instance variables and parameters/local vari- ables with the
same name using the this pointer.

* Enable method chaining by returning the this pointer from appropriate meth- ods.

* Illustrate passing object as argument by implementing a method that accepts another
Customer object.

* Show how to return the current object (this) from methods to maintain method
chaining or return the object state.

Output

484

Bank
- totalAccounts : int

- interestRate : double

+ Bank()

+ ˜Bank()

+ Bank(int, double)

+ static CalculateCompoundInterest(double, int) : double

+ static InterestRate : double

+ static TotalAccounts : int

- Display customer details including customerId, customerName, and customerEmail
using the implemented methods.

Hints

- Use the this pointer to reference the current object within its own methods and con- structors.

- Demonstrate how the this pointer resolves naming conflicts and ensures clarity in variable usage.

- Showcase the versatility of the this pointer in enabling efficient method chaining and object-
oriented practices.

Try

- Create instances of the Customer class and demonstrate setting customer details using method
chaining.

- Call methods sequentially on the same object to observe method chaining in action.

- Pass a Customer object as an argument to another method to illustrate object passing.

- Return the current object from a method and use it in a method chain to verify function- ality.

6.8 Consistent Behavior Across Objects

Demonstrate the usage of various static members, including static fields, properties, methods, and a static

constructor. Explore their behaviors and interactions within the context of a simple application.

Requirements

1. Static Fields:

- Implement a static field to maintain a count of instances created for the class.

- Display the current count of instances whenever a new instance is created.

2. Static Properties:

- Define a static property to store and retrieve a global configuration value.

- Ensure the property is accessible and modifiable from different parts of the applica-
tion.

3. Static Methods:

- Create a static method to perform a common utility task (e.g., calculating compound
interest).

- Demonstrate calling this method without creating an instance of the class.

485

4. Static Constructor:

- Implement a static constructor to initialize any static data or perform setup tasks.

- Print a message confirming the static constructor’s execution when the application
starts.

5. Application Interaction:

- Create instances of the class to verify the behavior of static fields.

- Access and modify the static property to demonstrate its global accessibility.

- Invoke the static method to perform a utility task.

- Observe the sequence of static constructor execution.

Example Output

Upon running the application, the output should demonstrate:

- Creation of instances and display of instance count.

- Setting and retrieving global configuration values using the static property.

- Execution of the static method to perform a task.

- Confirmation message from the static constructor indicating initialization.

Hints

- Use the static keyword appropriately for fields, properties, methods, and constructors.

- Consider thread safety considerations when modifying shared static data.

- Utilize console output or logging to track execution flow and demonstrate expected behav-
ior.

Try

Implement the Main method to instantiate the Bank class, access static members, and verify
the outputs as per the requirements.

Inheritance

Note: Students are encouraged to bring their own laptops for
laboratory practice sessions.

7.1 Single Inheritance

You are tasked with designing a program to model a simple banking system using single
inheritance. The program will involve creating a base class Account and a derived class
SavingsAccount.

486

SavingsAccount
- interestRate : double
+ SavingsAccount(int, const string&, double, double)
+ addInterest() : void

Account

- accountNumber : int
- accountHolderName : string
- balance : double

+ Account()
+ Account(int, const string&, double)
+ deposit(double) : void
+ withdraw(double) : void
+ display() : void

Input

- Initialize Account and SavingsAccount objects with appropriate data.

- Perform deposit and withdrawal operations on SavingsAccount.

- Calculate and add interest to SavingsAccount.

Process Requirements

1. Account Class:

- Define the Account class with data members accountNumber, accountHolderName,
and balance.

487

- Implement constructors for initializing the account.

- Methods include deposit, withdraw, and display to perform
operations and display account details.

2. SavingsAccount Class (Derived from Account):

- Derive SavingsAccount from Account.

- Add an additional data member interestRate.

- Implement a constructor to initialize SavingsAccount with all
parameters includ- ing interestRate.

- Implement addInterest method to calculate and add interest to
the balance based on the interestRate.

Output

- Display account details after each operation (deposit, withdrawal, adding interest).

Hints

- Use inheritance (public) to inherit Account properties into SavingsAccount.

- Implement methods to ensure proper encapsulation and validation of account
operations.

- Test the program with multiple scenarios to validate the inheritance and functionality.

7.2 Multiple Inheritance

Develop a bank application using multiple inheritance to manage various types of accounts.
Implement two base classes, Account and Interest, and derive a SavingsAccount class
from both. This structure will allow efficient management of basic account functionalities and
interest calculations.

Input

- Account details: Account number, account holder name, initial balance.

- Interest rate for calculating interest.

Process Requirements

- Define the Account class with data members and member functions for basic account
operations.

- Define the Interest class with data members and member functions for interest-
related calculations.

- Implement the SavingsAccount class inheriting from both Account and
Interest, integrating functionalities from both base classes.

488

SavingsAccount
- accountNumber : int
- accountHolderName : string
- balance : double
- interestRate : double

+ SavingsAccount(int, const string&, double, double)
+ display() : void

Interest
- interestRate : double
+ Interest()
+ Interest(double)
+ calculateInterest(double) : double

Account

- accountNumber : int
- accountHolderName : string
- balance : double

+ Account()
+ Account(int, const string&, double)
+ deposit(double) : void
+ withdraw(double) : void
+ display() : void

- Implement constructors, including default and parameterized, and appropriate member
functions in each class.

Output

Display account details and perform operations such as deposits, withdrawals, and interest
calculations for savings accounts.

Hints

// Define base class Account

// Define base class Interest

// Define derived class SavingsAccount

// Usage example

SavingsAccount sa(1001, "Rama Krishna", 5000.0, 5.0);

sa.deposit(1000.0);

sa.display();

double interest = sa.calculateInterest(sa.balance); cout

<< "Interest Earned: $" << interest << endl;

Try

Enhance the application by adding support for different types of accounts (e.g., checking ac-
counts, fixed deposit accounts) with specific functionalities and interest calculations.

7.3 Multi Level Inheritance

Develop an online shopping application that utilizes multi-level inheritance to manage different types of products
efficiently. Implement two base classes, Product and Review, and derive an ElectronicsProduct class from
both. This structure allows for comprehensive management of product information and customer reviews within

489

a single class hierarchy.

Input

- Product details: product ID, product name, price.

- Review details: review ID, rating, comment.

- Additional details for electronics products: model number, brand name.

Process Requirements

- Define the Product class with data members and member functions for managing basic
product information.

- Define the Review class with data members and member functions for handling customer
reviews.

- Implement the ElectronicsProduct class inheriting from both Product and Review,
integrating functionalities from both base classes.

- Implement constructors, including default and parameterized, and appropriate member
functions in each class.

Output

Display product details, customer reviews, and specific information for electronics products.

Hints

ElectronicsProduct

- productId : int
- productName : string
- price : double
- modelNumber : string
- brandName : string

+ ElectronicsProduct(int, const string&, double, const string&, const string&)
+ displayProductDetails() : void

Review

- reviewId : int
- rating : int
- comment : string

+ Review()
+ Review(int, int, const string&)
+ displayReview() : void

Product
- productId : int
- productName : string
- price : double

+ Product()
+ Product(int, const string&, double)
+ displayProductDetails() : void

490

// Define base class Product

// Define base class Review

// Define derived class ElectronicsProduct

// Usage example

ElectronicsProduct ep(1001, "Laptop", 1500.0, "Model X", "Brand Y");

ep.displayProductDetails();

ep.displayReview();

Try

Enhance the application by adding support for different types of products (e.g., clothing, books)
with specific functionalities and review management.

7.4 Hierarchical Inheritance

Develop a bank application using hierarchical inheritance to manage various types of accounts
and related operations. Implement a base class, Account, and derive two classes, SavingsAccount
and CheckingAccount, from it. This structure will allow efficient management of basic ac- count
functionalities and specific operations for different account types.

Input

- Account details: Account number, account holder name, initial balance.

- Interest rate for savings accounts.

- Overdraft limit for checking accounts.

Process Requirements

- Define the Account class with data members and member functions for basic account
operations.

- Implement the SavingsAccount class inheriting from Account, with additional data
members and member functions for interest-related operations.

- Implement the CheckingAccount class inheriting from Account, with additional data
members and member functions for check-writing operations.

- Implement constructors, including default and parameterized, and appropriate member
functions in each class.

491

Output

Display account details and perform operations such as deposits, withdrawals, interest calcula-
tions for savings accounts, and check writing for checking accounts.

Hints

// Define base class Account

// Define derived class SavingsAccount

// Define derived class CheckingAccount

// Usage example

SavingsAccount sa(1001, "Rama Krishna", 5000.0, 5.0);

sa.deposit(1000.0);

sa.display();

sa.addInterest();

sa.display();

CheckingAccount ca(2001, "Sita Devi", 3000.0, 1000.0);

ca.deposit(500.0);

ca.display();

ca.writeCheck(2000.0);

ca.display();

Try

Enhance the application by adding support for different types of accounts (e.g., fixed deposit
accounts, recurring deposit accounts) with specific functionalities and interest calculations.

7.5 Hybrid Inheritance

Develop a bank application using hybrid inheritance to manage various types of accounts and related
operations. Implement two base classes, Account and Interest, and derive two

CheckingAccount

- overdraftLimit : double

+ CheckingAccount
(int, const string&, double, double)
+ writeCheck(double) : void

SavingsAccount

- interestRate : double

+ SavingsAccount
(int, const string&, double, double)
+ addInterest() : void

Account

- accountNumber : int
- accountHolderName : string
- balance : double

+ Account()
+ Account(int, const string&, double)
+ deposit(double) : void
+ withdraw(double) : void
+ display() : void

492

FixedDepositAccount

- accountNumber : int
- accountHolderName : string
- balance : double
- interestRate : double
- maturityPeriod : int

+ FixedDepositAccount(int, const string&, double, double, int)
+ display() : void
+ calculateMaturityAmount() : double

Interest
- interestRate : double
+ Interest()
+ Interest(double)
+ calculateInterest(double) : double

SavingsAccount

- accountNumber : int
- accountHolderName : string
- balance : double
- interestRate : double

+ SavingsAccount
(int, const string&, double, double)
+ display() : void

Account

- accountNumber : int
- accountHolderName : string
- balance : double

+ Account()
+ Account(int, const string&, double)
+ deposit(double) : void
+ withdraw(double) : void
+ display() : void

classes, SavingsAccount and FixedDepositAccount, from these. This structure will allow
efficient management of basic account functionalities and interest calculations.

Input

- Account details: Account number, account holder name, initial balance.

- Interest rate for calculating interest.

- Maturity period for fixed deposit accounts.

Process Requirements

- Define the Account class with data members and member functions for basic account
operations.

493

- Define the Interest class with data members and member functions for interest-related
calculations.

- Implement the SavingsAccount class inheriting from both Account and Interest,
integrating functionalities from both base classes.

- Implement the FixedDepositAccount class inheriting from both Account and Interest,
integrating functionalities from both base classes.

- Implement constructors, including default and parameterized, and appropriate member
functions in each class.

Output

Display account details and perform operations such as deposits, withdrawals, and interest
calculations for savings accounts and fixed deposit accounts.

Hints

// Define base class Account

// Define base class Interest

// Define derived class SavingsAccount

// Define derived class FixedDepositAccount

// Usage example

SavingsAccount sa(1001, "Rama Krishna", 5000.0, 5.0);

sa.deposit(1000.0);

sa.display();

double interest = sa.calculateInterest(sa.balance); cout

<< "Interest Earned: $" << interest << endl;

FixedDepositAccount fda(2001, "Sita Devi", 10000.0, 6.5, 5);

fda.display();

double maturityAmount = fda.calculateMaturityAmount(); cout

<< "Maturity Amount: $" << maturityAmount << endl;

Try

Enhance the application by adding support for different types of accounts (e.g., checking ac-
counts, recurring deposit accounts) with specific functionalities and interest calculations.

7.6 Access Modifiers & Inheritance

Design and implement a bank application in C# to explore how different access modifiers (public,
protected, private, etc.) affect inheritance. This exercise will enhance your understanding of object-
oriented principles related to inheritance and access control in C#.

Input

- Bank account details such as account number, account holder’s name, initial balance, and
account type.

- Interest rate for savings accounts.

- Fees for current accounts.

494

CurrentAccount
No additional attributes
+ CurrentAccount(int, const string&,
double, const string&)
+ ChargeFee(double) : void

SavingsAccount
- InterestRate : double
+ SavingsAccount(int, const string&, double,
const string&, double)
+ CalculateInterest(double) : void

BankAccount

+ AccountNumber : int
AccountHolderName : string

- Balance : double
- AccountType : string

+ BankAccount(int, const string&, double, const string&)
+ Deposit(double) : void
Withdraw(double) : void

Process

- Demonstrate the usage of different access modifiers (public, protected, private) in the base
and derived classes.

- Show how protected members in the base class (Balance) are accessible to derived classes
(SavingsAccount and CurrentAccount) but not accessible outside of them.

- Implement functionality to deposit, withdraw, calculate interest, and charge fees based on
the account type.

Output

- Display the account details including account number, account holder’s name, account
type, and balance after performing deposit, withdrawal, interest calculation, and fee de-
duction operations.

Hints

- Use access modifiers appropriately to control the accessibility of members in base and
derived classes.

- Use constructors in derived classes to initialize base class data members.

- Use protected members in the base class to facilitate behavior in derived classes while
keeping them encapsulated from external access.

Try

- Extend the application by adding more account types (e.g., FixedDepositAccount)

with specific functionalities and explore how access modifiers affect these new derived
classes.

495

CurrentAccount
+ CurrentAccount(int, string, double, string)
+ ChargeFee(double) : void

SavingsAccount
- InterestRate : double
+ SavingsAccount(int, string, double, string, double)
+ CalculateInterest() : void

BankAccount
+ AccountNumber : int
AccountHolderName : string
- Balance : double
+ BankAccount(int, string, double)
+ Deposit(double) : void
Withdraw(double) : void
+ DisplayAccountDetails() : void #
GetBalance() : double
SetBalance(double) : void

- Implement additional features such as account transfer and balance inquiry, ensuring
proper access control using appropriate access modifiers.

7.7 Casting and Type Checking

Design and implement a bank application in C# to explore the use of the is, as, and typeof operators for
checking and casting types in an inheritance hierarchy. This exercise will enhance your understanding of type
checking and casting in object-oriented programming with C#.

Input

- Bank account details such as account number, account holder’s name, initial balance,
account type, and specific attributes for derived account types (e.g., interest rate for savings
accounts).

- Operations to perform on different account types, such as deposit, withdraw, calculate
interest, and charge fees.

Process

1. Create a base class BankAccount with common attributes and methods:

- AccountNumber (public): a unique identifier for the account.

- AccountHolderName (protected): the name of the account holder.

- Balance (private): the current balance of the account.

496

- Constructor to initialize AccountNumber, AccountHolderName, and Balance.

- Methods:

- Deposit(double amount) (public): allows depositing money into the ac-
count.

- Withdraw(double amount) (protected): allows withdrawing money from the
account.

- DisplayAccountDetails() (public): displays account details.

2. Create derived classes SavingsAccount and CurrentAccount:

- SavingsAccount should include an InterestRate attribute and a method to
CalculateInterest().

- CurrentAccount should include a method to ChargeFee(double fee).

3. Implement a method to perform operations based on the type of the account using the
is, as, and typeof operators:

- Use the is operator to check if an object is of a particular type before performing
operations.

- Use the as operator to safely cast types and perform type-specific operations.

- Use the typeof operator to display the type of the account.

Output

- Display the account details, including the account type, and results of operations performed
on the account.

Hints

- Use the is operator to ensure that an object is of a specific type before performing type-
specific operations.

- Use the as operator for safe casting, and check for null to avoid runtime exceptions.

- Use the typeof operator to get the type of an object at runtime.

Try

- Extend the application to include more account types (e.g., FixedDepositAccount)
and implement additional type-specific operations.

- Implement a method to list all accounts and perform operations based on their types using
type checking and casting.

7.8 Sealed Classes and Methods

Design and implement a bank application in C# to explore the use of sealed classes and methods to prevent
further inheritance and method overriding. This exercise will help you understand how to restrict inheritance
and control method overriding in object-oriented programming.

497

Input

- Bank account details such as account number, account holder’s name, initial balance,
account type, and specific attributes for derived account types (e.g., interest rate for savings
accounts).

- Operations to perform on different account types, such as deposit, withdraw, calculate
interest, and charge fees.

Process

1. Create a base class BankAccount with common attributes and methods:

- AccountNumber (public): a unique identifier for the account.

- AccountHolderName (protected): the name of the account holder.

- Balance (private): the current balance of the account.

VIPAccount (sealed)
+ VIPAccount(int, string, double)
+ DisplayVIPDetails() : void

CurrentAccount
+ CurrentAccount(int, string, double)
+ ChargeFee(double) : void

SavingsAccount
- InterestRate : double
+ SavingsAccount(int, string, double, double)
+ CalculateInterest() : void

BankAccount
+ AccountNumber : int
AccountHolderName : string
- Balance : double
+ BankAccount(int, string, double)
+ Deposit(double) : void
Withdraw(double) : void
+ DisplayAccountDetails() : void

498

- Constructor to initialize AccountNumber, AccountHolderName, and Balance.

- Methods:

– Deposit(double amount) (public): allows depositing money into the ac-
count.

– Withdraw(double amount) (protected): allows withdrawing money from the
account.

– DisplayAccountDetails() (public): displays account details.

2. Create a derived class SavingsAccount:

- SavingsAccount should include an InterestRate attribute and a method to
CalculateInterest().

3. Create a derived class CurrentAccount:

- CurrentAccount should include a method to ChargeFee(double fee).

4. Implement a sealed class VIPAccount that inherits from BankAccount:

- VIPAccount should include additional privileges or features for VIP customers.

- Ensure no other classes can inherit from VIPAccount.

5. Implement a sealed method in BankAccount:

- Mark the Withdraw method as sealed to prevent overriding in derived classes.

Output

- Display the account details, including the account type, and results of operations performed
on the account.

Hints

- Use the sealed keyword to prevent a class from being inherited.

- Use the sealed keyword in a method to prevent it from being overridden in derived
classes.

Try

- Extend the application to include more account types (e.g., FixedDepositAccount) and
implement additional type-specific operations without allowing inheritance from VIPAccount.

- Implement methods in the VIPAccount class that take advantage of its sealed nature.

499

Polymorphism, Abstract Classes and Interfaces

Note: Students are encouraged to bring their own laptops for
laboratory practice sessions.

8.1 Complex Number Arithmetic

Demonstrate operator overloading by implementing addition for complex numbers. The program
should define a ComplexNumber class, overload the + operator to perform addition of complex
numbers, and display the result.

Program Requirements

1. Define a ComplexNumber class with properties for the real and imaginary parts.

2. Implement a constructor to initialize the real and imaginary parts of a complex
number.

3. Overload the + operator to allow addition of two ComplexNumber objects.

4. Override the ToString method to provide a string representation of a
complex number in the format “real + imaginaryi”.

5. In the Main method, create instances of ComplexNumber and
demonstrate the addition of two complex numbers using the overloaded
+ operator.

6. Print the result of the addition to the console.

Expected Output

The program should output the following:

Sum: 1.5 + 2.5i + 2.5 + 3.5i = 4 + 6i

8.2 Polynomial Arithmetic

Develop a C# program that demonstrates operator overloading by implementing multiplication
for polynomials. The program should define a Polynomial class, overload the * operator to

perform multiplication of polynomials, and display the result.

Requirements

1. Define a Polynomial class with a list to store the coefficients.

2. Implement a constructor to initialize the coefficients.

3. Overload the * operator to allow multiplication of two Polynomial objects.

4. Override the ToString method to provide a string representation of a
polynomial in the standard mathematical format.

5. In the Main method, create instances of Polynomial and demonstrate
the multiplication of two polynomials using the overloaded * operator.

500

HourlyEmployee
- hourlyRate : double
 - hoursWorked : double
+ HourlyEmployee
(const string&, int, double, double)
+ double calculatePay() const override
+ void display() const override

SalariedEmployee
- annualSalary : double
+ SalariedEmployee
(const string&, int, double)
+ double calculatePay() const override
+ void display() const override

Employee

- name : string
- id : int

+ Employee(const string&, int)
+ virtual double calculatePay() const = 0;
+ virtual void display() const

6. Print the original polynomials and their product to the console.

Expected Output

The program should output the following:

Polynomial 1:

3xˆ2 + 2x + 1

Polynomial 2:

5xˆ2 + 4x + 3

Product: 15xˆ4 + 22xˆ3 + 19xˆ2 + 10x + 3

8.3 Workforce Segments

The Workforce segment manages various types of employees and their specific payroll calcula-
tions. Implement a base class, Employee, and derive two classes, SalariedEmployee and
HourlyEmployee, from it. This structure will allow efficient management of general employee
information and specific payroll calculations for different types of employees.

501

Input

 Employee details: Name, ID, and specific salary-related information.

 Annual salary for salaried employees.

 Hourly rate and hours worked for hourly employees.

Process Requirements

 Define the Employee class with data members and member functions for general employee
information.

 Implement the SalariedEmployee class inheriting from Employee, with additional data
members and member functions for salaried employees.

 Implement the HourlyEmployee class inheriting from Employee, with additional data
members and member functions for hourly employees.

 Implement constructors, including default and parameterized, and appropriate member
functions in each class.

 Use polymorphism to calculate and display the pay for different types of employees.

Output

Display employee details and calculate their pay based on their type (salaried or hourly).

Hints

// Define base class Employee

// Define derived class SalariedEmployee

// Define derived class HourlyEmployee

// Usage example

SalariedEmployee se("Radha", 1001, 50000.0);

se.display();

cout << "Pay: " << se.calculatePay() << endl;

HourlyEmployee he("Smitha", 2002, 20.0, 40);

he.display();

cout << "Pay: " << he.calculatePay() << endl;

Try

Enhance the application by adding support for different types of employees (e.g., commission-
based employees, contract employees) with specific payroll calculations.

8.4 Geometric Shapes: Abstract Class and Methods

Model different geometric shapes using object-oriented principles. Implement an abstract class
Shape with the following specifications:

502

 Shape Class:

- Define an abstract method input() to input dimensions specific to each shape.

- Define an abstract method displayArea() to calculate and display the area of the
shape.

- The class should include a protected field shapeName to store the name of the shape.

 Derived Classes:

Implement the following derived classes inheriting from Shape:

- Rectangle: Represents a rectangle with attributes for length and width.

- Square: Represents a square with a side length attribute.

- Circle: Represents a circle with a radius attribute.

- Triangle: Represents a triangle with attributes for base length and height.

Each derived class should override the input() method to accept user input for its specific
dimensions and the displayArea() method to calculate and print its area.

 Main Program:

In the Main method, demonstrate the usage of these shape classes:

- Create instances of each shape class.

- Prompt the user to input dimensions for each shape.

- Display the calculated area for each shape using the overridden displayArea()
method.

Expected Output

The program should output the calculated area for each shape based on user-provided dimen-
sions.

Triangle
- base : double
- height : double

+ void input() override
+ void displayArea() const override

Square
- side : double
+ void input() override
+ void displayArea() const override

Rectangle
- length : double
- width : double

+ void input() override
+ void displayArea() const override

Circle
- radius : double

+ void input() override
+ void displayArea() const override

Shape
- shapeName : string
+ virtual void input()
+ virtual void displayArea()

503

 Vehicle
+ CalculateRentalCost(days: int): double
+ GetDescription(): string

Hints

- Use inheritance and method overriding to implement shape-specific behaviors.

- Ensure each derived class provides its own implementation of input() and displayArea().

- Demonstrate polymorphism by treating all shapes uniformly through the base class refer-
ence.

8.5 Rental Vehicle Cost Calculator

You are developing a vehicle rental system where different types of vehicles can be rented for a
specified number of days. Your task is to create a class hierarchy in C# to represent the vehicles
and calculate the rental costs based on the type of vehicle and the number of rental days.

 Car
 - dailyRate : double
+ Car(const string&)
+ CalculateRentalCost(days: int):double
+ GetDescription(): string

 Motorcycle
 - dailyRate : double
+ Motorcycle(const string&)
+ CalculateRentalCost(days: int):double
+ GetDescription(): string

504

Implementation Requirements

1. Define the abstract class Vehicle with the required abstract methods.

2. Define the Car class that extends Vehicle and implements the required methods.

3. Define the Motorcycle class that extends Vehicle and implements the required meth-
ods.

4. Ensure that the Car and Motorcycle classes correctly calculate the rental cost based on
the number of days and their respective daily rates.

5. The GetDescription() method should return a string describing the vehicle, including
its type and daily rate.

Example Usage

Vehicle car = new Car("Sedan", 50.0);

// Output: "Sedan with a daily rate of $50.00"

Console.WriteLine(car.GetDescription());

// Output: 250.0

Console.WriteLine(car.CalculateRentalCost(5));

Vehicle motorcycle = new Motorcycle("Sport Bike", 30.0);

// Output: "Sport Bike with a daily rate of $30.00"

Console.WriteLine(motorcycle.GetDescription());

// Output: 90.0

Console.WriteLine(motorcycle.CalculateRentalCost(3));

Hints

- Define an abstract class Vehicle with abstract methods CalculateRentalCost and
GetDescription.

- Implement the Car and Motorcycle classes to inherit from Vehicle.

- Use the constructor in Car and Motorcycle to initialize the dailyRate.

- Ensure the CalculateRentalCost method in each derived class multiplies the dailyRate
by the number of days.

- The GetDescription method should return a formatted string describing the vehicle.

Note: Ensure that the implementation follows the principles of object-oriented program- ming,
including encapsulation, inheritance, and polymorphism.

8.6 IBankAccount

Develop a bank application that supports the creation and management of the following account
types:

 Saving Account

 Current Account

505

 IBankAccount
+ DepositAmount(amount: double): void
+ WithdrawAmount(amount: double): bool
+ CheckBalance(): double

 SavingAccount
- balance : double
- perDayWithdrawLimit : double

 - todayWithdrawal : double
+ SavingAccount(initialBalance: double)
+ DepositAmount(amount: double): void
+ WithdrawAmount(amount: double): bool
+ CheckBalance(): double

 CurrentAccount
 - balance : double
+ CurrentAccount(initialBalance: double)
+ DepositAmount(amount: double): void
+ WithdrawAmount(amount: double): bool
+ CheckBalance(): double

Requirements:

The application should provide the following services for each account:

- DepositAmount(amount: double): void - Deposits the specified amount into the
account.

- WithdrawAmount(amount: double): bool - Withdraws the specified amount from
the account if sufficient funds are available.

- CheckBalance(): double - Returns the current balance of the account.

Hints

- Define the IBankAccount interface with DepositAmount, WithdrawAmount, and
CheckBalance methods.

- Implement the SavingAccount class to handle balance, per-day withdrawal limit, and
today’s withdrawal.

- Implement the CurrentAccount class to handle balance without any withdrawal limit.

- Use the interface methods to perform deposit, withdrawal, and balance checking opera-
tions.

- Display the balance after each operation.

- Ensure that withdrawal operations check for sufficient funds before proceeding.

506

Uses

 IPaymentGateway
+ ProcessPayment(amount: decimal): bool

 ShoppingCart
 - paymentGateway : IPaymentGateway
+ ShoppingCart(paymentGateway: IPaymentGateway)
+ Checkout(amount: decimal): void

8.7 Payment Gateway

Develop a payment processing system using the IPaymentGateway interface. This interface should
include a method ProcessPayment to handle payments. Implement this interface with two
classes: PayPalPaymentGateway and StripePaymentGateway, each simulating pay- ment
processing for their respective platforms.

Implements Implements

 PayPalPaymentGateway
 + ProcessPayment(amount: decimal): bool
// Call PayPal’s API to process the payment

 StripePaymentGateway
 + ProcessPayment(amount: decimal): bool
// Call Stripe’s API to process the payment

507

Create a ShoppingCart class that uses an IPaymentGateway to process payments. The
system should be able to handle payments through different providers by swapping implemen-
tations.

Implement the IPaymentGateway interface and the associated payment provider classes.
Ensure the ShoppingCart class can interact with any payment provider without modification.
Test the implementation with both PayPal and Stripe providers.

Hints:

- The ShoppingCart class should not be concerned with the specifics of
payment process- ing.

- Adding new payment providers should require minimal changes to the existing code.

Exception Handling

Note: Students are encouraged to bring their own
laptops for laboratory practice sessions.

9.1 DivideByZeroException

Performs division of two numbers provided by the user. The program should handle exceptions
gracefully, particularly when the user inputs non-numeric values.

Input:

Two inputs from the user representing the numbers to be divided:

- The first number (numerator).

- The second number (denominator).

Operations:

1. Input Handling:

- Prompt the user to enter the first number (numerator).

- Prompt the user to enter the second number (denominator).

2. Exception Handling:

- Use a try-catch block to handle exceptions.

- Catch FormatException to handle non-numeric inputs.

- Catch DivideByZeroException to handle division by zero.

- Optionally, catch other general exceptions to handle unexpected errors.

3. Division Operation:

508

- Perform the division operation if both inputs are valid numbers and
the denominator is not zero.

4. Output:

- If inputs are valid, display the result of the division.

- If a FormatException occurs, display an error message
indicating the input was not a valid number.

- If a DivideByZeroException occurs, display an error message indicating
that division by zero is not allowed.

- Optionally, handle other exceptions and display a generic error message.

Hints:

- Use Convert.ToDouble or double.TryParse to convert the user
input to a double type.

- Encapsulate the division logic within a try-catch block to handle potential exceptions.

- Consider edge cases like zero as a denominator and non-numeric inputs.

Sample Output:

- Case 1: Valid Input

Enter the first number: 10

Enter the second number: 2

Result: 10 / 2 = 5

- Case 2: Non-Numeric Input

Enter the first number: abc

Enter the second number: 2

Error: Input is not a valid number.

- Case 3: Division by Zero

Enter the first number: 10

Enter the second number: 0

Error: Division by zero is not allowed.

9.2 Handling Negative Number Exception

Define a method to check if a given integer is negative. If the integer is negative, the method
should throw an exception. The calling code should handle this exception and provide appro-
priate feedback to the user.

Input:

- An integer value provided by the user.

Operations:

1. Method Definition:

- Define a method CheckIfNegative that takes an integer as a parameter.

- If the integer is negative, throw an exception with an appropriate message.

509

2. Exception Handling:

- In the calling code, prompt the user to enter an integer.

- Call the CheckIfNegative method with the user’s input.

- Use a try-catch block to handle the exception thrown by the method.

- If an exception is caught, display an error message to the user.

Output:

- If the input integer is non-negative, display a message indicating that the number is
valid.

- If the input integer is negative, catch the exception and display the error message.

Hints:

- Use the throw statement to raise an exception within the CheckIfNegative
method.

- Use a try-catch block in the calling code to handle the exception
and display an ap- propriate message to the user.

- Test the program with both positive and negative integers to ensure
proper exception handling.

Sample Output:

- Case 1: Non-Negative Input

Enter an integer: 5

The number 5 is valid.

- Case 2: Negative Input

Enter an integer: -3

Error: The number -3 is negative.

9.3 Validating Integer Input Range

Prompt the user to input a numeric integer. The program should throw an exception if the
number is less than 0 or greater than 1000. The calling code should handle the exception and
display appropriate error messages.
Input:

- A numeric integer provided by the user.

Operations:

1. Input Handling:

- Prompt the user to enter an integer.

- Read the user input.

2. Validation:

- Define a method ValidateNumber that takes an integer as a parameter.

510

- If the integer is less than 0 or greater than 1000, throw an
exception with an appro- priate message.

3. Exception Handling:

- Use a try-catch block to handle the exception thrown by the
ValidateNumber

method.

- If an exception is caught, display an error message to the user.

Output:

- If the input integer is between 0 and 1000 (inclusive), display a
message indicating that the number is valid.

- If the input integer is less than 0 or greater than 1000, catch the
exception and display the error message.

Hints:

- Use the throw statement to raise an exception within the ValidateNumber method.

- Use a try-catch block in the calling code to handle the exception
and display an ap- propriate message to the user.

- Test the program with edge cases, such as -1, 0, 1000, and 1001, to ensure
proper exception handling.

Sample Output:

- Case 1: Valid Input

Enter an integer: 500

The number 500 is valid.

- Case 2: Less than 0

Enter an integer: -5

Error: The number -5 is out of the allowed range (0-1000).

- Case 3: Greater than 1000

Enter an integer: 1500

Error: The number 1500 is out of the allowed range (0-1000).

9.4 Array Type Mismatch Exception

You are required to write a program that demonstrates the occurrence of an ArrayTypeMis-
matchException. This exception is thrown when an array cannot store a given element because
the actual type of the element is incompatible with the declared type of the array.

Input:

- Declare an array of integers.

- Attempt to assign a string value to an element in the integer array.

511

Process:

- Use a try-catch block to handle the exception.

- Catch the ArrayTypeMismatchException and display an error
message indicating the attempted operation.

Output:

- Upon encountering the exception, output a descriptive error message
explaining the nature of the exception.

Hints:

- Initialize an array of integers.

- Try assigning a string value or another incompatible data type to an
element in the integer array.

- Encapsulate the assignment operation within a try block and handle the
exception in the catch block.

9.5 Format Exception

Develop a program that illustrates the occurrence of a FormatException. This exception
is thrown when an invalid format is detected in the input provided by the user or within the
program.

Input:

- Prompt the user to enter a number as a string.

- Attempt to convert this string input to an integer using int.Parse()
or Convert.ToInt32().

Process:

- Use a try-catch block to handle the FormatException.

- Catch the exception and display an appropriate error message explaining the format
error.

Output:

- Upon encountering the exception, output a clear error message
indicating that the input string was not in a correct format.

Hints:

- Encourage users to provide valid numeric inputs.

- Use error handling techniques to gracefully manage incorrect format inputs.

9.6 Index Out of Range Exception

512

Design a program that demonstrates the occurrence of an IndexOutOfRangeException. This
exception is thrown when an attempt is made to access an element of an array or a collection
with an index that is outside the bounds of the array or collection.

Input:

- Declare an array with a specific size.

- Attempt to access an element using an index that is out of the
array’s bounds (e.g., accessing at an index greater than or equal to the
array length).

Process:

- Use a try-catch block to handle the IndexOutOfRangeException.

- Catch the exception and display an informative error message explaining
the index out of range error.

Output:

- Upon encountering the exception, output a descriptive error message
indicating the at- tempted operation that caused the index out of range.

Hints:

- Initialize an array with a specific size and populate it with elements.

- Attempt to access an element using an index that exceeds the array’s size.

- Utilize error handling techniques to gracefully manage index-related errors.

9.7 Invalid Cast Exception

Develop a program that demonstrates the occurrence of an
InvalidCastException. This exception is thrown when an explicit conversion is
attempted between incompatible data types, such as from a base type to a
derived type or from one type to another that cannot be converted.

Input:

- Declare an object of a base type.

- Attempt to cast this object to a derived type that it is not compatible with.

Process:

- Use a try-catch block to handle the InvalidCastException.

- Catch the exception and display an informative error message explaining
the invalid cast operation.

Output:

513

- Upon encountering the exception, output a descriptive error message
indicating the at- tempted invalid cast.

Hints:

- Define classes or objects where an invalid cast scenario can be simulated.

- Attempt to cast an object to a type that it is not assignable to.

- Use error handling techniques to gracefully manage type casting errors.

9.8 Null Reference Exception

Design a program that demonstrates the occurrence of a NullReferenceException. This
exception is thrown when an attempt is made to access or call a member (method or property)
on an object reference that is currently null.

Input:

- Declare an object reference variable without initializing it (set it to null).

- Attempt to call a method or access a property on this null object reference.

Process:

- Use a try-catch block to handle the NullReferenceException.

- Catch the exception and display an informative error message explaining the null
reference access.

Output:

- Upon encountering the exception, output a descriptive error message indicating the
at- tempted null reference access.

Hints:

- Initialize an object reference variable to null.

- Attempt to call a method or access a property on this null reference without assigning
an instance to it.

- Use error handling techniques to gracefully manage null reference errors.

9.9 Overflow Exception

Develop a program that demonstrates the occurrence of an OverflowException. This excep-
tion is thrown when an arithmetic operation exceeds the range of the data type used to store
the result, resulting in an overflow.

Input:

- Declare variables of appropriate data types (e.g., int, double) and assign values
that may cause overflow during arithmetic operations.

514

- Perform arithmetic operations that are likely to exceed the maximum or minimum
value limits of the data type.

Process:

- Use a try-catch block to handle the OverflowException.

- Catch the exception and display an informative error message explaining the
arithmetic overflow.

Output:

- Upon encountering the exception, output a descriptive error message indicating the
arith- metic operation that caused the overflow.

Hints:

- Initialize variables with values that are near the maximum or minimum limits of their
data type.

- Perform operations like addition, multiplication, or division that could exceed the
data type’s range.

- Use error handling techniques to gracefully manage arithmetic overflow errors.

9.10 Catching Multiple Exceptions

Develop a program that demonstrates how to catch multiple specific exceptions and use a general
catch block for any other exceptions that are not explicitly handled.

Input:

- Prompt the user to enter two numbers for a division operation.

- Optionally, allow the user to choose an invalid operation to intentionally trigger
specific exceptions.

Operations:

1. Input Handling:

- Prompt the user to enter the first number (numerator).

- Prompt the user to enter the second number (denominator).

2. Exception Handling:

- Use a try-catch block to handle exceptions.

- Catch DivideByZeroException to handle division by zero.

- Catch FormatException to handle non-numeric inputs.

- Catch OverflowException to handle arithmetic overflow.

- Use a general catch block to handle any other unexpected exceptions.

3. Division Operation:

- Perform the division operation if both inputs are valid numbers and the
denominator is not zero.

515

Output:

- If inputs are valid, display the result of the division.

- If a DivideByZeroException occurs, display an error message indicating that
division by zero is not allowed.

- If a FormatException occurs, display an error message indicating the
input was not a valid number.

- If an OverflowException occurs, display an error message indicating an arithmetic
overflow.

- If any other exception occurs, display a generic error message.

Hints:

- Use Convert.ToInt32 or int.TryParse to convert the user input to an integer type.

- Encapsulate the division logic within a try-catch block to handle potential exceptions.

- Consider edge cases like zero as a denominator, non-numeric inputs, and very large numbers
that may cause overflow.

File Handling

Note: Students are encouraged to bring their own laptops for
laboratory practice sessions.

516

10.1 File Creation and Text Writing

You are required to develop a program that creates a new file named mytest.txt and writes some
text content into this file. The program should ensure that the file is created successfully and the
specified text is written into it.

Input:

No direct input from the user is required for this problem.

Operations:

1. Create a new file named mytest.txt in the specified directory.

2. Write the text "Hello, this is a test file." into the file.

3. Ensure the file is saved properly with the written content.

4. Display a message indicating the successful creation of the file and the writing of the
content.

Output:

The output should indicate the successful creation of the file and the addition of the text, as
follows:

File mytest.txt created successfully with the following content: Hello

and Welcome to the C# Lab

In this lab we are working with Files. It’s really interesting to work

with C#

Hints:

- Use the System.IO namespace to handle file operations.

- Use the File.WriteAllText method to create the file and write the
specified content to it.

- Handle any potential exceptions using a try-catch block to ensure
the program does not crash in case of an error.

10.2 Reading the content of the File

Demonstrate file reading operations. The program should read the content from the file and
then display the content on the console. This will involve using file handling methods provided
by the System.IO namespace to ensure proper reading of the file.

Input:

517

No direct input from the user is required for this problem.

Operations:

1. Search for the file named mytest.txt in the specified directory.

2. Read the content from the created file.

3. Display the content of the file on the console.

Output:

The output should display the content of the file, as follows:

Here is the content of the file mytest.txt:

Hello and Welcome to the C# Lab

In this lab we are working with

Files. It’s really interesting

to work with C#

Hints:

- Use the System.IO namespace to handle file operations.

- Use the File.WriteAllText method to create the file and write the
specified content to it.

- Use the File.ReadAllText method to read the content from the file.

- Handle any potential exceptions using a try-catch block to ensure
the program does not crash in case of an error.

10.3 Writing an Array of Strings to a File

Create a text file and write an array of strings into it. The program should prompt the user to
input the number of lines and the content for each line. It will then save this content to a file
and display the file’s content.

Input:

- The number of lines to write to the file.

- The content for each line.

Operations/Instructions:

1. Prompt the user to input the number of lines to write in the file.

2. Prompt the user to input the content for each line.

3. Create a new text file named myfile.txt.

4. Write the user-provided lines into the file.

5. Read the content from the file.

6. Display the content of the file on the console.

518

Output:

The output should display the content of the file, as follows:

The content of the file is:

Explore new horizons every day.

Embrace challenges and seize

opportunities. Learn, grow, and

inspire others.

Dream big, work hard, achieve greatness.

Hints:

- Use the System.IO namespace to handle file operations.

- Use the File.WriteAllLines method to write the array of strings to the file.

- Use the File.ReadAllLines method to read the content from the file.

- Handle any potential exceptions using a try-catch block to ensure
the program does not crash in case of an error.

10.4 Exclude lines that contain specific string

Create a text file and writes specified lines into it, excluding any line containing a specified
string. The program should prompt the user to input the string to ignore, the number of lines
to write, and the content for each line. It will then save this content to a file, excluding lines
that contain the specified string, and display the remaining content.

Input:

- The string to ignore (lines containing this string will be excluded).

- The number of lines to write to the file.

- The content for each line.

Operations/Instructions:

1. Prompt the user to input the string to ignore in the lines.

2. Prompt the user to input the number of lines to write in the file.

3. Prompt the user to input the content for each line.

4. Create a new text file named myfile.txt.

5. Write the user-provided lines into the file, excluding any line that
contains the specified string.

6. Read the content from the file.

7. Display the remaining content of the file on the console.

519

Output:

The output should display the remaining content of the file, as follows:

Input the string to ignore the line:

journey Input number of lines to write

in the file: 4

Input line 1: Happiness is a journey, not a

destination. Input line 2: Kindness costs

nothing but means everything.

Input line 3: Success is the sum of small efforts repeated day in and

day out. Input line 4: Courage is not the absence of fear; it’s the

triumph over it.

The lines have been ignored which contain the string

’journey’. The content of the file is:

Kindness costs nothing but means everything.

Success is the sum of small efforts repeated day in and

day out. Courage is not the absence of fear; it’s the

triumph over it.

Hints:

- Use the System.IO namespace to handle file operations.

- Use LINQ or simple loop with conditionals to filter out lines containing the specified
string.

- Use the File.WriteAllLines method to write the lines to the file.

- Use the File.ReadAllLines method to read the content from the file.

- Handle any potential exceptions using a try-catch block to ensure
the program does not crash in case of an error.

-

10.5 Add some more

Demonstrate appending additional text to an existing file. Initially, the program will create a new
text file and write some lines of text into it. Next, it will append more lines of text to the same file.
The program should display the content of the file before and after appending.

Input:

 Initial content to write to the file.

 Additional content to append to the file.

Operations:

1. Create a new text file named myfile.txt.

2. Write the initial content provided by the user into the file.

3. Append the additional content provided by the user to the same file.

520

4. Read and display the content of the file before and after appending.

Output:

The output should display the content of the file before and after appending, as follows:

Initial content of the file:

This is the initial content of

the file. Content of the file

after appending:

This is the initial content of the file. Now appending some more

text to the file.

Hints:

- Use the System.IO namespace to handle file operations.

- Use File.WriteAllText to write the initial content to the file.

- Use File.AppendAllText to append additional content to the file.

- Use File.ReadAllText to read the content from the file.

- Handle any potential exceptions using a try-catch block to ensure
the program does not crash in case of an error.

10.6 Snapshot

Create a snapshot by copying the entire content of one text file to another. The program should
prompt the user to specify the source file and the destination file. It will then read the content
from the source file and write it into the destination file, preserving the original content. Finally,
the program should display the content of the copied file.

Input:

- Source file path (from which content will be copied).

- Destination file path (where content will be copied).

Operations:

1. Prompt the user to input the path of the source file.

2. Prompt the user to input the path of the destination file.

3. Read the entire content from the source file.

4. Write the read content into the destination file.

5. Read the content from the destination file.

6. Display the content of the copied file on the console.

521

Output:

The program should output the content of the copied file on the console after
copying the content from the source file to the destination file.

Input the source file path: C:\myfolder\sourcefile.txt

Input the destination file path: C:\myfolder\destinationfile.txt

Successfully copied contents from ’sourcefile.txt’ to

’destinationfile.txt’.

Content of ’destinationfile.txt’:

This is the content of the source file that has been copied.

Hints:

- Use the System.IO namespace to handle file operations.

- Use File.ReadAllText to read the content from the source file.

- Use File.WriteAllText to write the content to the destination file.

- Use File.ReadAllText again to read the content from the destination file for
display.

- Handle any potential exceptions using a try-catch block to ensure
the program does not crash in case of an error.

10.7 Count, Top & Tail

Count the number of lines in a text file and displays both the first (top) and last (tail) lines
of the file. The program should prompt the user to input the file path. It will then read the
content from the file, count the lines, and output the first and last lines along with the total
number of lines in the file.

Input:

- File path of the text file.

Operations/Instructions:

1. Prompt the user to input the path of the text file.

2. Read the entire content of the file.

3. Count the number of lines in the file.

4. Display the first line of the file.

5. Display the last line of the file.

6. Display the total number of lines in the file.

Output:

522

Input the file path: C:\myfolder\sample.txt

Content of the file is:

1. Positivity means focusing on the good in every situation.

2. It involves staying optimistic and hopeful.

3. Positivity helps in overcoming challenges with resilience.

4. It promotes a sense of inner peace and calmness.

5. Cultivating positivity leads to a happier and more fulfilling
life.

First line of the file:

1. Positivity means focusing on the good in every situation.

Last line of the file:

5. Cultivating positivity leads to a happier and more fulfilling
life.

Total number of lines in the file: 5

Hints:

- Use the System.IO namespace to handle file operations.

- Use File.ReadAllLines to read all lines from the file into an array.

- Access the first element (lines[0]) and last element
(lines[lines.Length - 1]) of the array to get the first and last
lines.

- Use lines.Length to get the total number of lines.

- Handle any potential exceptions using a try-catch block to ensure
the program does not crash in case of an error.

10.8 Selective File Reading

Read a specific line or set of lines from a text file based on user input. The program should
prompt the user to input the file path and the line number(s) they wish to retrieve. It will then
open the file, read the specified line(s), and display them to the user.

Input:

- File path of the text file.

- Line number(s) to read from the file (e.g., single line, multiple lines).

Operations:

1. Prompt the user to input the path of the text file.

2. Prompt the user to input the line number(s) they want to read.

523

3. Read the specified line(s) from the file.

4. Display the content of the selected line(s) to the user.

Output:

The program should output the content of the selected line(s) from the file
based on the user’s input.

Input the file path: C:\myfolder\sample.txt

Input the line number(s) to read (e.g., 1,

3, 5): 2 Content of line 2 in ’sample.txt’:

2. It involves staying optimistic and hopeful.

Hints:

- Use the System.IO namespace to handle file operations.

- Use StreamReader to read the file and ReadLine() method to
navigate to specific lines.

- Handle exceptions such as file not found or invalid line numbers using try-catch
blocks.

10.9 n-Tail Extract

Read and display the last n lines from a text file. The program should prompt
the user to input the file path and the number of lines they wish to retrieve
from the end of the file. It will then read the file, extract the specified number
of lines from the end, and display them.

Input:

 File path of the text file.

 Number of lines n to read from the end of the file.

Operations:

1. Prompt the user to input the path of the text file.

2. Prompt the user to input the number of lines n they want to read from the end of the
file.

3. Read the entire content of the file.

4. Extract the last n lines from the file content.

5. Display the extracted lines to the user.

Output:

524

The program should output the last n lines from the specified text file.

Input the file path: C:\myfolder\sample.txt

Input the number of lines to read from the end of the file: 3

Content of the last 3 lines in ’sample.txt’:

3. Positivity helps in overcoming challenges with resilience.

4. It promotes a sense of inner peace and calmness.

5. Cultivating positivity leads to a happier and more fulfilling
life.

Hints:

 Use the System.IO namespace to handle file operations.

 Use File.ReadAllLines to read all lines from the file into an array.

 Use array slicing to access the last n elements of the array.

 Handle any potential exceptions using a try-catch block to ensure the
program does not crash in case of an error.

10.10 Strip Words

Remove specific words from a text file based on a list of stop words provided in
another file. The program should prompt the user to input the file paths of both
the text file and the stop words file. It will then read both files, remove all
instances of the stop words from the text content, and save the cleaned content
to a new file.

Input:

- File path of the input text file.

- File path of the stop words file.

- File path to save the cleaned text file.

Operations:

1. Prompt the user to input the path of the input text file.

2. Prompt the user to input the path of the stop words file.

3. Prompt the user to input the path to save the cleaned text file.

4. Read the content of the input text file.

5. Read the list of stop words from the stop words file.

6. Remove all instances of the stop words from the text content.

7. Write the cleaned text to the specified output file.

8. Display a message indicating that the process is complete and the

525

cleaned text has been saved.

Output:

The program should output the cleaned text to the specified output file,
excluding all words listed in the stop words file.

Input the file path of the input text file:

C:\myfolder\input.txt Input the file path of the stop words

file: C:\myfolder\stopwords.txt

Input the file path to save the cleaned text file:

C:\myfolder\output.txt

Stop words removed

successfully. Cleaned

content saved to

’output.txt’.

Hints:

- Use the System.IO namespace to handle file operations.

- Use File.ReadAllText to read the file content and
File.ReadAllLines to read the stop words.

- Use string manipulation methods to remove the stop words from the text.

- Handle exceptions using a try-catch block to manage potential
errors, such as file not found or access issues.

Note:

Verify the filesFoundations of LINQ and Generic Types

Note: Students are encouraged to bring their own
laptops for laboratory practice sessions.

11.1 Filtering with LINQ

Showcase the use of LINQ to filter even numbers from a given list of integers.

Input:

You are provided with a list of integers.

Operations:

1. Implement a LINQ query to filter out only the even numbers from the list.

526

2. Display or output the filtered list of even numbers.

Output:

For example, given the input list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], the
program should output:

Even numbers: 2, 4, 6, 8, 10

Hints:

- Use LINQ’s Where method along with a lambda expression to filter numbers.

- Ensure to handle edge cases such as an empty list or no even numbers present in the
list.

11.2 Sorting Objects with LINQ

Implement a LINQ query to sort a list of objects by a property in ascending order.

Input:

You are provided with a list of objects.

Operations:

1. Implement a LINQ query to sort the list of objects by a specified
property in ascending order.

2. Display or output the sorted list of objects.

Output:

For example, given a list of objects with a property Age, the program should output:

Sorted list by Age: [Object1, Object2, Object3, ...]

Hints:

- Use LINQ’s OrderBy method to sort objects by the specified property.

- Handle cases where the list may be empty or the property values are null.

11.3 Grouping and Counting with LINQ

Group a list of students by their age and count the number of students in
each group using LINQ’s GroupBy and Count methods.

Input:

You are provided with a list of student objects, each containing an Age property.

Operations:

1. Implement a LINQ query to group students by their Age property.

527

2. Calculate and display the count of students in each age group.

Output:

For example, given a list of students:

[

{ Name: "Surya", Age: 21 },

{ Name: "Keerthi", Age: 22 },

{ Name: "Venkatesh", Age: 21 },

{ Name: "Anusha", Age: 22 },

{ Name: "Padma", Age: 23 }

]

The program should output:

Age 21: 2 students

Age 22: 2 students

Age 23: 1 student

Hints:

- Use LINQ’s GroupBy method to group objects by a property.

- Use LINQ’s Count method within the grouped result to determine the
number of items in each group.

- Handle cases where the list may be empty or where age values may be null.

11.4 Aggregation with LINQ

Calculate the sum and average of a list of numeric values using LINQ’s aggregate functions.

Input:

You are provided with a list of numeric values.

Operations:

1. Implement a LINQ query to calculate the sum of the numeric values.

2. Implement a LINQ query to calculate the average of the numeric values.

Output:

For example, given a list of numeric values:

[10, 20, 30, 40, 50]

The program should output:

Sum: 150

Average: 30

Hints:

- Use LINQ’s Sum method to compute the sum of elements in the list.

528

- Use LINQ’s Average method to compute the average of elements in the list.

- Ensure to handle cases where the list may be empty or where values are null.

11.5 Distinct Values with LINQ

Remove duplicate strings from an array using LINQ’s Distinct method.

Input:

You are provided with an array of strings.

Operations:

1. Implement a LINQ query to remove duplicate strings from the array.

Output:

For example, given an array of strings:

["apple", "orange", "banana", "apple", "grapes", "banana"]

The program should output:

Distinct strings: ["apple", "orange", "banana", "grapes"]

Hints:

- Use LINQ’s Distinct method to filter out duplicate elements from the array.

- Maintain the order of elements in the resulting sequence.

- Handle cases where the array may be empty or contain null values.

11.6 Pagination with LINQ

Implement paging functionality to retrieve a specific number of records from a
collection using LINQ’s Skip and Take methods.

Input:

You are provided with a collection of records (e.g., a list or array).

Operations:

1. Implement a LINQ query to skip a specified number of records (offset)
and take a specified number of records (page size).

Output:

For example, given a collection of records:

["Record1", "Record2", "Record3", "Record4", "Record5", "Record6"]

If you want to display records for page 2 with page size 2, the program should output:

529

["Record3", "Record4"]

Hints:

- Use LINQ’s Skip method to skip a specified number of elements.

- Use LINQ’s Take method to retrieve a specified number of elements after skipping.

- Ensure to handle cases where the collection may be empty or the
specified page and page size exceed the collection length.

11.7 Conditional Filtering with LINQ

Filter out strings containing a specific substring from a list of strings using LINQ.

Input:

You are provided with a list of strings.

Operations:

1. Implement a LINQ query to filter strings that contain a specified substring.

Output:

For example, given a list of strings:

["apple", "orange", "banana", "pineapple", "grapes", "kiwi"]

If the substring to filter is “apple”, the program should output:

Filtered strings: ["apple", "pineapple"]

Hints:

- Use LINQ’s Where method with a lambda expression to filter strings
based on the sub- string condition.

- Ensure to handle cases where the list may be empty or where the
substring might not match any strings in the list.

11.8 Projecting Data with LINQ

Select only the names of students from a list of student objects using LINQ’s Select clause.

Input:

You are provided with a list of student objects, each containing a Name property.

Operations:

1. Implement a LINQ query to extract and project only the names of students from the
list.

Output:

530

For example, given a list of student objects:

[

{ Name: "Surya", Age: 21 },

{ Name: "Keerthi", Age: 22 },

{ Name: "Venkatesh", Age: 21 },

{ Name: "Anusha", Age: 22 },

{ Name: "Padma", Age: 23 }

]

The program should output:

Student names: ["Surya", "Keerthi", "Venkatesh", "Anusha", "Padma"]

Hints:

- Use LINQ’s Select method to project the Name property from each student object.

- Ensure to handle cases where the list may be empty or where student
names might be null or empty strings.

11.9 Join Operations with LINQ

Perform an inner join between two lists of objects based on a common property using LINQ.

Input:

You are provided with two lists of objects, each containing a common property
for joining (e.g., Student objects with a common property like Age).

Operations:

1. Implement a LINQ query to perform an inner join between the two
lists based on the common property.

Output:

For example, given two lists of objects:

List A:

[

{ Name: "Surya", Age: 21 },

{ Name: "Keerthi", Age: 22 },

{ Name: "Venkatesh", Age: 21 },

{ Name: "Anusha", Age: 22 },

{ Name: "Padma", Age: 23 }

]

List B:

[

{ Name: "Ravi", Age: 21 },

{ Name: "Kiran", Age: 22 },

{ Name: "Vijaya", Age: 23 },

{ Name: "Ramya", Age: 24 }

]

If joining based on the Age property, the program should output:

531

Inner join result:

[

{ NameA: "Surya", NameB: "Ravi", Age: 21 },

{ NameA: "Keerthi", NameB: "Kiran", Age: 22 },

{ NameA: "Padma", NameB: "Vijaya", Age: 23 }

]

Hints:

- Use LINQ’s Join method along with a lambda expression to perform the inner join.

- Ensure to handle cases where there are no common elements between
the lists or where the lists may be empty.

11.10 Handling Null Values with LINQ

Safely handle null values when selecting data using LINQ’s null-conditional operators (?. and
??).

Input:

You are provided with a collection of objects, some of which may contain null
values for certain properties.

Operations:

1. Implement a LINQ query to select data from the collection, ensuring
safe navigation through potentially null properties using ?..

2. Use the null-coalescing operator ?? to provide default values or handle null cases

gracefully.

Output:

For example, given a collection of objects:

[

{ Name: "Ravi", Age: 30 },

{ Name: "Priya", Age: null },

{ Name: "Arun", Age: 25 },

{ Name: null, Age: 28 }

]

The program should output:

Selected data with handling null values:

[

{ Name: "Ravi", Age: 30 },

{ Name: "Priya", Age: 0 }, % Assume default value 0 for Age

{ Name: "Arun", Age: 25 },

{ Name: "", Age: 28 } % Assume empty string "" for Name

]

532

Hints:

- Use LINQ’s null-conditional operator ?. to safely navigate through
potentially null prop- erties.

- Use the null-coalescing operator ?? to provide default values or handle null cases.

- Handle scenarios where entire objects might be null in the collection.

Advanced Methods and Collections

Note: Students are encouraged to bring their own
laptops for laboratory practice sessions.

12.1 Advanced Sorting with LINQ

Sort a list of objects by multiple criteria using LINQ’s OrderBy and ThenBy methods.

Input:

You are provided with a list of objects, each containing multiple properties
for sorting (e.g., Student objects with properties like Name, Age, and Grade).

Operations:

1. Implement a LINQ query to sort the list of objects primarily by one property
using

OrderBy and secondarily by another property using ThenBy.

Output:

For example, given a list of student objects:

[

{ Name: "Surya", Age: 21, Grade: "A" },

{ Name: "Keerthi", Age: 22, Grade: "B" },

{ Name: "Venkatesh", Age: 21, Grade: "C" },

{ Name: "Anusha", Age: 22, Grade: "A" },

{ Name: "Padma", Age: 23, Grade: "B" }

]

The program should output:

Sorted list:

[

{ Name: "Anusha", Age: 22, Grade: "A" },

{ Name: "Keerthi", Age: 22, Grade: "B" },

{ Name: "Padma", Age: 23, Grade: "B" },

{ Name: "Surya", Age: 21, Grade: "A" },

{ Name: "Venkatesh", Age: 21, Grade: "C" }

]

Hints:

- Use LINQ’s OrderBy method to sort by the primary property and
ThenBy method to sort by the secondary property.

533

- Handle cases where the list may be empty or where sorting criteria may
include null values or unexpected data types.

12.2 Grouping and Aggregation with LINQ

Group a list of sales transactions by month and calculate the total sales amount for each
month using LINQ.

Input:

You are provided with a list of sales transactions, each containing a Date (representing
the transaction date) and Amount (representing the sales amount).

Operations:

1. Implement a LINQ query to group the sales transactions by month based on the
Date

property.

2. Calculate the total sales amount for each month using LINQ’s aggregation functions.

Output:

For example, given a list of sales transactions:

[

{ Date: "2024-01-05", Amount: 100.00 },

{ Date: "2024-02-15", Amount: 150.00 },

{ Date: "2024-01-20", Amount: 120.00 },

{ Date: "2024-03-10", Amount: 200.00 },

{ Date: "2024-02-28", Amount: 180.00 }

]

The program should output:

Sales totals by month:

January: 220.00

February: 330.00

March: 200.00

Hints:

- Use LINQ’s GroupBy method to group transactions by month.

- Use LINQ’s aggregation methods like Sum to calculate the total sales amount for
each group.

- Handle cases where there are no transactions for a particular month or where the list
may be empty.

12.3 Joining Complex Data with LINQ

Perform an outer join between two lists of objects with a fallback value for missing matches

534

using LINQ’s Join and DefaultIfEmpty methods.

Input:

You are provided with two lists of objects, each containing properties that can be matched for
joining (e.g., Employee objects with a common property like DepartmentId).

Operations:

1. Implement a LINQ query to perform an outer join between the two lists based on
the common property.

2. Use DefaultIfEmpty to provide a fallback value when no matches are found in the
second list.

Output:

For example, given two lists of objects:

List A:

[

{ EmployeeId: 1, Name: "Ravi", DepartmentId: 101 },

{ EmployeeId: 2, Name: "Priya", DepartmentId: 102 },

{ EmployeeId: 3, Name: "Arun", DepartmentId: 103 }

]

List B:

[

{ DepartmentId: 101, DepartmentName: "IT" },

{ DepartmentId: 103, DepartmentName: "HR" }

]

If joining based on the DepartmentId property, the program should output:

Outer join result:

[

{ EmployeeId: 1, Name: "Ravi", DepartmentId: 101, DepartmentName:

"IT" },

{ EmployeeId: 2, Name: "Priya", DepartmentId: 102, DepartmentName:

null },

{ EmployeeId: 3, Name: "Arun", DepartmentId: 103, DepartmentName:

"HR" }

]

Hints:

- Use LINQ’s Join method to perform the outer join and
DefaultIfEmpty method to handle missing matches.

- Ensure to handle cases where there are no common elements between
the lists or where the lists may be empty.

12.4 Union and Concatenation with LINQ

535

Combine two lists into one unique list using LINQ’s Union and Concat methods.

Input:

You are provided with two lists of objects.

Operations:

1. Implement a LINQ query to combine the two lists into one unique list.

2. Use Union to ensure that duplicate elements are removed and Concat to
concatenate both lists while preserving duplicates.

Output:

For example, given two lists:

List A: [1, 2, 3, 4]

List B: [3, 4, 5, 6]

The program should output:

Unique combined list (Union):

[1, 2, 3, 4, 5, 6]

Concatenated list (Concat):

[1, 2, 3, 4, 3, 4, 5, 6]

Hints:

- Use LINQ’s Union method to merge the lists and remove duplicates.

- Use LINQ’s Concat method to concatenate both lists while preserving duplicates.

- Handle cases where the lists may be empty or contain null elements.

12.5 Element Manipulation with LINQ

Use LINQ to reverse the order of elements in a list and select specific elements based on index.

Input:

You are provided with a list of elements (e.g., integers, strings).

Operations:

1. Implement a LINQ query to reverse the order of elements in the list.

2. Select specific elements from the reversed list based on given indices (e.g., select
elements at indices 0, 2, 4).

Output:

For example, given a list of integers:

Input list: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Indices to select: [0, 2, 4]

The program should output:

536

Reversed list: [9, 8, 7, 6, 5, 4, 3, 2, 1]

Selected elements: [9, 7, 5]

Hints:

- Use LINQ’s Reverse method to reverse the order of elements in the list.

- Use LINQ’s Where method with a condition based on index to select specific
elements.

- Handle cases where the list may be empty or where the indices provided may exceed
the list length.

12.6 Subqueries with LINQ

Write a LINQ query that includes a subquery to retrieve data from related tables or nested
collections.

Input:

You are provided with two related collections or tables, where one collection/table contains
objects that reference objects in the other collection/table.

Operations:

1. Implement a LINQ query that includes a subquery to retrieve data from the related
tables or nested collections.

2. Use appropriate LINQ operators to perform operations such as filtering, projecting,
or aggregating data from the subquery.

Output:

For example, given two collections of objects:

List A:

[

{ EmployeeId: 1, Name: "Ravi", DepartmentId: 101 },

{ EmployeeId: 2, Name: "Priya", DepartmentId: 102 },

{ EmployeeId: 3, Name: "Arun", DepartmentId: 103 }

]

List B:

[

{ DepartmentId: 101, DepartmentName: "IT" },

{ DepartmentId: 102, DepartmentName: "Finance" },

{ DepartmentId: 103, DepartmentName: "HR" }

]

Implement a LINQ query to retrieve employees along with their department names:

LINQ query result:

[

{ EmployeeId: 1, Name: "Ravi", DepartmentId: 101, DepartmentName:

"IT" },

537

{ EmployeeId: 2, Name: "Priya", DepartmentId: 102, DepartmentName:

"Finance" },

{ EmployeeId: 3, Name: "Arun", DepartmentId: 103, DepartmentName:

"HR" }

]

Hints:

- Use LINQ’s Join or SelectMany methods to perform the subquery operation.

- Ensure to handle cases where there are no common elements between the collections
or where the collections may be empty.

12.7 Error Handling in LINQ Queries

Handle exceptions and errors gracefully in LINQ queries, particularly when dealing with
null values or unexpected data.

Input:

You are provided with data that may include null values or unexpected formats.

Operations:

1. Implement a LINQ query that gracefully handles potential exceptions or errors that may
arise during data processing.

2. Use error-handling techniques such as null checks, exception handling blocks, or
default value assignments to manage unexpected scenarios.

Output:

For example, given a list of integers with potential null values:

Input list: [1, null, 3, 4, null, 6, 7, 8, null]

The program should handle null values and unexpected data formats gracefully, ensuring the
query operates without throwing exceptions.

Hints:

- Use LINQ’s Where method with null checks or Select method with conditional
operators to filter or transform data while handling nulls.

- Consider using try-catch blocks around LINQ queries to catch and manage exceptions
that may occur during data processing.

12.8 Custom Filtering using LINQ and Lambda Expressions

Implement custom filtering of a generic collection of objects dynamically based on user-defined
criteria using LINQ and lambda expressions.

Input:

You are provided with a generic collection of objects.

538

Operations:

1. Implement a LINQ query that allows dynamic filtering of objects based on user-defined
criteria.

2. Use lambda expressions to construct flexible filtering conditions, such as filtering by specific
properties or applying complex logical operations.

Output:

For example, given a list of Product objects:

List of Products:

[

{ Id: 1, Name: "Laptop", Price: 1200 },

{ Id: 2, Name: "Smartphone", Price: 800 },

{ Id: 3, Name: "Tablet", Price: 500 }

]

Implement a LINQ query that allows filtering products based on user-defined
criteria, such as products with a price greater than 600:

Filtered list of Products (Price > 600):

[

{ Id: 1, Name: "Laptop", Price: 1200 },

{ Id: 2, Name: "Smartphone", Price: 800 }

]

Hints:

- Use LINQ’s Where method with lambda expressions to apply dynamic filtering
conditions.

- Allow users to input filtering criteria interactively or define them programmatically.

12.9 Dynamic Queries with LINQ

Build dynamic LINQ queries based on runtime conditions and user inputs using expression trees
and Queryable extensions.

Input:

You are provided with a dataset that needs to be queried dynamically based on user-defined
conditions.

Operations:

1. Implement a LINQ query that can dynamically adjust its filtering, sorting, or
projection based on runtime conditions.

2. Utilize expression trees and Queryable extensions to construct LINQ queries
programmat- ically.

Output:

539

For example, given a dataset of Employee objects:

List of Employees:

[

{ Id: 1, Name: "Ravi", Department: "HR", Salary: 50000 },

{ Id: 2, Name: "Priya", Department: "IT", Salary: 60000 },

{ Id: 3, Name: "Arun", Department: "Finance", Salary: 55000 }

]

Implement a LINQ query that can dynamically filter employees based on user inputs (e.g., filter
by department and salary range):

Filtered list of Employees (Department: IT, Salary > 55000): [

{ Id: 2, Name: "Priya", Department: "IT", Salary: 60000 }

]

Hints:

- Use expression trees to build LINQ queries dynamically based on conditions such as user
input.

- Explore LINQ’s Queryable extensions to handle sorting, paging, and complex filtering
scenarios dynamically.

12.10 Parallel LINQ (PLINQ)

Write LINQ queries that leverage PLINQ for parallel execution and improved performance.

Input:

You are provided with a dataset that can benefit from parallel processing.

Operations:

1. Implement LINQ queries using PLINQ to parallelize operations such as filtering,
sorting, or aggregation.

2. Utilize PLINQ’s parallel execution capabilities to enhance performance on large
datasets.

Output:

For example, given a dataset of Product objects:

List of Products:

[

{ Id: 1, Name: "Laptop", Price: 1200 },

{ Id: 2, Name: "Smartphone", Price: 800 },

{ Id: 3, Name: "Tablet", Price: 500 }

]

Implement a PLINQ query that parallelizes operations like filtering or aggregation:

Filtered list of Products (Price > 600

using PLINQ): [

{ Id: 1, Name: "Laptop", Price: 1200 },

540

{ Id: 2, Name: "Smartphone", Price: 800 }

]

Hints:

- Use PLINQ’s AsParallel method to enable parallel execution of LINQ queries.

- Consider the benefits and limitations of parallel processing, such as
thread safety and overhead.

541

Explore Threads

Note: Students are encouraged to bring their own
laptops for laboratory practice sessions.

13.1 Thread Life Cycle

Develop a C# program that demonstrates the lifecycle management of a worker
thread, including starting, suspending, resuming, and terminating the thread.

Requirements

1. Create a new thread and start its execution.

2. Pause the main thread for a specific duration to simulate a wait period.

3. Suspend the worker thread after a designated time interval.

4. Resume the suspended thread after another wait period.

5. Terminate the worker thread gracefully using appropriate thread abort mechanisms.

6. Display messages to indicate each phase of the thread’s lifecycle.

Expected Output

The program should output messages indicating the various stages of the
thread’s lifecycle, including starting, suspending, resuming, and terminating:

Main thread: Thread

started. Worker

thread: Starting

work... Worker

thread: Working...

Part 1 Worker thread:

Working... Part 2

Main thread: Suspending the worker

thread... Main thread: Resuming the

worker thread...

Worker thread: Working...

Part 3 Worker thread:

Working... Part 4

Main thread: Aborting the worker

thread... Worker thread:

Working... Part 5

Exception thrown: ’System.Threading.ThreadAbortException’ in

mscorlib.dll Worker thread: Aborted.

Exception thrown: ’System.Threading.ThreadAbortException’ in

CSharpLabProblems. Worker thread: Exiting.

Main thread: Thread lifecycle management completed.

13.2 Thread Naming and Priority

542

Name: Thread2
Priority: Normal

Main Program

Name: Thread3
Priority: Low

Name: Thread1
Priority: High

Create multiple threads, assigns names to each thread, and sets different
priorities. Display the thread names and priorities during execution.

Figure 13.1: Thread naming and priorities

Instructions:

1. Create a list of tasks to be executed by different threads.

2. Assign a unique name to each thread.

3. Set different priority levels (High, Normal, Low) for each thread.

4. Start all threads and display their names and priorities during execution.

5. Ensure all threads complete their tasks.

Output:

Thread Name: Thread1, Priority: High, Status:

Running Thread Name: Thread2, Priority: Normal,

Status: Running Thread Name: Thread3, Priority:

Low, Status: Running

13.3 Multiple Threads

Develop a program that demonstrates the lifecycle management of multiple threads, including
starting each thread, waiting for them to complete their work, and printing specific messages at
different stages of their execution.

Program Requirements

1. Create three separate threads, each performing a simulated task (e.g.,
printing messages, performing calculations).

2. Print messages when each thread starts its work and when each thread completes its
task.

3. Ensure the main thread waits for all threads to finish their tasks before proceeding

543

further.

4. Display a message indicating when all threads have completed their tasks.

Output

The program should output messages in the following sequence:

Thread 1:

Starting

work... Thread

2: Starting

work... Thread

3: Starting

work...

Main thread: Waiting for all threads to

complete... Thread 1: Work completed.

Thread 2: Work

completed.

Thread 3: Work

completed.

Main thread: All threads have completed.

544

Mutex : Counter

Increment Counter()

Thread 1

Increment Counter()

Thread 2

Increment Counter()

...

Thread 10

13.4 Thread Synchronization with Mutex

Develop an application where multiple threads increment a shared counter. Use a mutex to
synchronize access to the counter and ensure thread safety.

Wait() ReleaseMutex()

Figure 13.2: Thread synchronization with mutex, illustrating Wait(),
Increment Counter, and ReleaseMutex() actions

545

Instructions:

 Create a shared counter variable.

 Create multiple threads that increment the counter.

 Use a mutex to ensure only one thread can increment the counter at a time.

 Start all threads and wait for their completion.

 Display the final value of the counter.

Output:

Final Counter Value: 1000

13.5 Producer-Consumer Problem

Implement the producer-consumer problem using threads. Use condition variables to synchronize
producer and consumer actions.

Instructions:

- Create a shared buffer (queue).

- Implement a producer thread that generates items and adds them to the buffer.

- Implement a consumer thread that removes and processes items from the buffer.

- Use condition variables to notify the consumer when new items are
available and the producer when there is space in the buffer.

- Ensure proper synchronization to avoid race conditions.

Output:

Producer: Produced item 1

Buffer is full. Waiting for

consumer... Consumer: Consumed

item 1

Buffer is empty. Waiting for

producer... Producer: Produced

item 2

Buffer is full. Waiting for

consumer... Consumer: Consumed

item 2

Buffer is empty. Waiting for

producer... Producer: Produced

item 3

Buffer is full. Waiting for

consumer... Consumer: Consumed

item 3

...

546

13.6 Thread Pool Implementation

Design a thread pool manager that manages a fixed number of worker threads. Implement task
submission and ensure tasks are executed concurrently.

Instructions:

- Create a thread pool manager with a fixed number of threads.

- Implement a method to submit tasks to the thread pool.

- Ensure tasks are executed concurrently by available threads in the pool.

- Use synchronization techniques to manage task execution and completion.

- Display the status of tasks and thread pool utilization.

Output:

Task 1 started by Thread Thread 1.

Task 2 started by Thread Thread 2.

Task 2 completed by Thread Thread 2.

Task 1 completed by Thread Thread 1.

Task 3 started by Thread Thread 2.

Task 3 completed by Thread Thread 2.

547

Mini Projects

Note: Students are encouraged to bring their own
laptops for laboratory practice sessions.

14.1 Desktop Applications

1. Student Management System: Manage student records, courses, grades, and atten-
dance.

2. Inventory Management System: Track inventory levels, orders, and sales.

3. Library Management System: Manage books, patrons, and borrowing records.

4. Hospital Management System: Manage patient records, appointments, and medical
history.

5. Employee Management System: Manage employee information, payroll, and leave
applications.

6. Task Management System: Track tasks, assignees, and project deadlines.

7. Chat Application: Implement real-time messaging between users or groups.

14.2 Web Applications

1. Online Quiz Application: Create quizzes with multiple-choice questions.

2. E-commerce Website: Develop a fully functional online store with product listings
and shopping cart.

3. Blog or Content Management System: Manage blog posts, articles, and multimedia
content.

4. Customer Relationship Management (CRM) System: Manage customer
interac- tions, sales leads, and support tickets.

5. Personal Finance Manager: Track income, expenses, budgets, and savings goals.
On- line Learning Platform: Host courses, quizzes, and educational resources.

548

14.3 Mobile Applications

1. Fitness Tracker: Track workouts, set goals, and monitor progress.

2. Recipe Manager: Organize recipes, create shopping lists, and meal plans.

3. Expense Tracker App: Track expenses, categorize spending, and set budgets.

4. Language Learning App: Provide lessons, quizzes, and interactive
exercises for learning languages.

5. Tourist Guide App: Offer information on attractions, maps, and local
recommendations.

14.4 Game Development

1. 2D Platformer Game: Create a classic side-scrolling platform game with levels
and obstacles.

2. Puzzle Game: Design and implement various puzzles with logic challenges and levels.

3. RPG (Role-Playing Game): Develop a role-playing game with quests, characters,
and combat mechanics.

4. Simulation Game: Build a simulation game around a specific theme like city-
building or farming.

5. Card Game: Implement a card game with rules, multiplayer support, and AI
opponents.

14.5 IoT Applications

1. Smart Home Control System: Create an application to control IoT devices at
home (lights, temperature, security cameras).

2. Environmental Monitoring System: Develop a system to collect and display
data from sensors (temperature, humidity, air quality).

3. Health Monitoring Device Integration: Integrate wearable health devices (like
fitness trackers) to track and display health metrics.

4. Industrial IoT Dashboard: Build a dashboard to monitor and manage industrial
equip- ment and processes.

5. Smart Agriculture System: Develop an IoT solution for monitoring soil moisture,
temperature, and crop health.

549 | P a g e

14.6 Data Analysis and Reporting

1. Dashboard for Business Analytics: Create a dashboard to visualize
sales data, trends, and key performance indicators (KPIs).

2. Real-time Data Streaming Application: Build an application to process
and visualize real-time data streams (IoT sensor data, social media
feeds).

3. Predictive Analytics Tool: Develop a tool to analyze historical data and
make predic- tions using machine learning algorithms.

4. Financial Portfolio Tracker: Track investments, analyze portfolio
performance, and provide recommendations.

5. Healthcare Data Visualization: Visualize patient data, medical
trends, and health outcomes for healthcare professionals.

14.7 Guidelines for Mini Projects

This section provides guidelines for students to undertake various mini projects such as web
applications, mobile applications, gaming applications, IoT applications, and data mining ap-
plications. These guidelines include the necessary knowledge and tools required for each project
type, considering that students have covered up to multi-threading in their course.

14.7.1 Desktop Applications

 Knowledge Required:

- Basics of desktop application development

- Understanding of Windows Forms and WPF (Windows Presentation Foundation)

- Event-driven programming

- Multi-threading for responsive UI

- Data binding and MVVM (Model-View-ViewModel) architecture

 Tools and Technologies:

- Visual Studio

- .NET Framework or .NET Core

- Windows Forms or WPF

- Git for version control

 Guidelines:

- Start by designing the user interface using Windows Forms or WPF.

- Implement event handlers for user interactions (e.g., button clicks, form inputs).

- Use data binding to connect UI elements to data sources.

- Apply the MVVM pattern for better separation of concerns and maintainability.

- Implement multi-threading to ensure the UI remains responsive
during long-running tasks.

- Test the application thoroughly for functionality and performance.

- Ensure the application handles exceptions and provides appropriate error

550 | P a g e

messages to users.

14.7.2 Web Applications

 Knowledge Required:

- Basics of web development (HTML, CSS, JavaScript)

- C# and ASP.NET Core for backend development

- Understanding of MVC (Model-View-Controller) architecture

- Working with databases (SQL Server, Entity Framework)

- Asynchronous programming with async and await

 Tools and Technologies:

- Visual Studio or Visual Studio Code

- ASP.NET Core

- SQL Server or other relational databases

- Git for version control

 Guidelines:

- Start by designing the database schema.

- Create the backend using ASP.NET Core and Entity Framework.

- Develop the frontend using HTML, CSS, and JavaScript.

- Integrate frontend and backend using MVC architecture.

- Implement asynchronous operations for improved performance.

- Test the application thoroughly before deployment.

14.7.3 Mobile Applications

 Knowledge Required:

- Basics of mobile development (Xamarin for C#)

- Understanding of mobile UI/UX design

- Knowledge of RESTful services for backend integration

- Asynchronous programming for handling background tasks

 Tools and Technologies:

- Visual Studio with Xamarin

- RESTful APIs

- SQLite for local data storage

- Git for version control

 Guidelines:

- Design the mobile application’s UI/UX.

- Use Xamarin.Forms for cross-platform development.

- Integrate with RESTful APIs for backend data.

- Implement local data storage using SQLite.

- Use asynchronous programming to handle network calls.

551 | P a g e

- Test the application on multiple devices and screen sizes.

14.7.4 Gaming Applications

 Knowledge Required:

- Basics of game development (Unity with C#)

- Understanding of game physics and animations

- Multi-threading for handling game loops and rendering

 Tools and Technologies:

- Unity Engine

- Visual Studio or Visual Studio Code

- Git for version control

 Guidelines:

- Start by designing the game concept and mechanics.

- Use Unity to develop the game environment and characters.

- Implement game logic and physics using C# scripts.

- Utilize multi-threading to optimize game performance.

- Test the game thoroughly for bugs and performance issues.

14.7.5 IoT Applications

 Knowledge
Required:

- Basics of IoT (Internet of Things) concepts

- Working with sensors and microcontrollers (e.g., Arduino, Raspberry Pi)

- Networking basics for IoT device communication

- Asynchronous programming for sensor data handling

 Tools and Technologies:

- Arduino IDE or Raspberry Pi setup

- Visual Studio for C# development

- MQTT or HTTP for IoT communication

- Git for version control

 Guidelines:

- Start by designing the IoT system architecture.

- Connect and configure sensors and microcontrollers.

- Develop the C# application to process and display sensor data.

- Implement communication protocols (MQTT/HTTP) for data transmission.

- Use asynchronous programming for real-time data handling.

- Test the IoT system in different environments and conditions.

552 | P a g e

14.7.6 Data Mining Applications

 Knowledge Required:

- Basics of data mining and machine learning

- Understanding of data preprocessing and cleaning

- C# libraries for data mining (e.g., ML.NET)

- Multi-threading for handling large datasets

 Tools and Technologies:

- Visual Studio with ML.NET

- SQL Server or other data storage solutions

- Git for version control

 Guidelines:

- Start by collecting and preprocessing the dataset.

- Use ML.NET to develop data mining models.

- Implement the models in a C# application.

- Use multi-threading to process large datasets efficiently.

- Evaluate and validate the data mining results.

- Test the application with different datasets and scenarios.

V. TEXT BOOKS:

1. Troelsen, A., & Japikse.“Pro C# 10 with .NET 6: Foundational Principles and Practices in Programming

Eleventh Edition”, Apress, Eleventh edition,2022.

2. Jon Skeet ”C# in Depth” Fourth Edition, Manning, 2019.

VI. REFERENCE BOOK

1. Andrew Stellman,Jennifer Greene. ”Head First C#: A Learner’s Guide to Real-World Programming with C#

and .NET ”, O’Reilly Media, 5th Edition,2024.

2. Ian Griffiths. ”Programming C# 10: Build Cloud, Web, and Desktop Applications”, O’Reilly Media, First

Edition, 2022.

3. Mark J Price. ”C# 12 and .NET 8 – Modern Cross-Platform Development Fundamentals”, Packt Publishing,

8th edition,2023.

VII. ELECTRONICS RESOURCES

1. https://learn.microsoft.com/en-us/dotnet/csharp

2. https://www.codecademy.com/learn/learn-c-sharp

3. https://www.pluralsight.com/paths/c-10

4. https://www.c-sharpcorner.com/

5. https://www.dotnetperls.com/category c

VIII. MATERIALS ONLINE

1. Course template

2. Lab manual

553 | P a g e

EXPERIENTIAL ENGINEERING EDUCATION (EXEED) –

PROTOTYPE / DESIGN BUILDING

III Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSD12 Skill
L T P C CIA SEE Total

0 0 2 1 40 60 100

 Contact Classes: NIL Tutorial Classes: NIL Practical Classes:45 Total Classes: 45

Prerequisite: Essentials of Innovation.

I. COURSE OVERVIEW:

 This course provides an overall exposure to the various methods and tools of prototyping. This course

discusses Low- Fidelity, paper, wireframing and tool-based prototyping techniques along with design

principles and patterns.

II. COURSES OBJECTIVES:

 The students will try to learn

I. The basic principles and design aspect of prototyping.

II. The various techniques, design guidelines and patterns.

III. The applications of prototyping using various tools and platforms.

III. COURE CONTENT III. COURSE CONTENT:

Module 1: An Introduction to Prototyping

Objective: Understand the basics of prototyping and its importance in the design process.

Exercise:

1. Introduction Lecture (10 minutes): Overview of prototyping and its types.

2. Brainstorming Session (20 minutes): Brainstorm simple app ideas.

3. Sketching Session (20 minutes): Create initial design sketches on paper.

4. Paper Prototyping (40 minutes): Build a low-fidelity paper prototype of the app’s user

interface.

5. Presentation and Feedback (20 minutes): Present prototypes and receive feedback.

Materials and Tools: Paper, pencils, rulers, scissors, glue.

Module 2: Low-Fidelity Prototyping and Paper Prototyping

Objective: Learn concepts and techniques of low-fidelity and paper prototyping.

Exercise:

1. Lecture (10 minutes): Concepts of low-fidelity prototyping.

2. Hands-On Session (40 minutes): Build paper prototypes of the app’s screens and user

flow.

3. Peer Review (30 minutes): Exchange prototypes with peers for feedback.

4. Iteration (30 minutes): Refine prototypes based on feedback.

554 | P a g e

Materials and Tools: Paper, pencils, rulers, scissors, glue.

Module 3: Wireframing and Tool-Based Prototyping

Objective: Create wireframes and digital prototypes using software tools.

Exercise:

1. Lecture (10 minutes): Introduction to wireframing and digital prototyping tools.

2. Wireframing (30 minutes): Design wireframes of the app’s user interface using tools

like Figma or Sketch.

3. Tool-Based Prototyping (50 minutes): Create a digital prototype of the app.

4. Presentation and Feedback (20 minutes): Share digital prototypes and gather feedback.

Materials and Tools: Wireframing tools, computers.

Module 4: Physical Low-Fidelity Prototyping and 3D Printing

Objective: Build simple physical prototypes using basic materials and introduce 3D printing.

Exercise:

1. Lecture (10 minutes): Importance of physical prototyping.

2. Prototype Building (30 minutes): Create a physical representation of the app’s main

interface using materials like cardboard and foam.

3. Introduction to 3D Printing (20 minutes): Overview of 3D printing technology and

its applications in prototyping.

4. Testing (20 minutes): Test the physical prototypes for basic functionality.

5. Feedback Session (30 minutes): Present and discuss prototypes.

Materials and Tools: Cardboard, foam, clay, scissors, glue, 3D printer.

Module 5: Tool-Based Prototyping and Circuit Design

Objective: Develop advanced digital prototypes using specialized tools and introduce basic

circuit design concepts.

Exercise:

1. Lecture (10 minutes): Advanced prototyping tools and techniques, introduction to

circuit design.

2. Hands-On Session (40 minutes): Use tools like Figma, Adobe XD, or Android Studio

to create an interactive prototype of the app.

3. Circuit Design (20 minutes): Design simple circuits that could be integrated into the

app's hardware prototype.

4. User Testing (20 minutes): Conduct user tests and document feedback.

5. Feedback and Iteration (20 minutes): Refine prototypes based on user feedback.

Materials and Tools: Advanced prototyping software, computers, circuit design tools (e.g.,

breadboards, resistors, LEDs).

555 | P a g e

Module 6: Design Principles and Patterns - Graphic Design

Objective: Apply graphic design principles to create visually appealing app interfaces.

Exercise:

1. Lecture (10 minutes): Graphic design principles (contrast, alignment, repetition,

proximity).

2. Design Session (50 minutes): Create a graphic design layout for the app’s interface.

3. Peer Review (30 minutes): Exchange designs for feedback.

4. Refinement (20 minutes): Refine designs based on peer feedback.

Materials and Tools: Graphic design software, computers.

Module 7: Interaction Design and Arduino Integration

Objective: Apply interaction design principles to create intuitive app interfaces and introduce

Arduino for hardware interactions.

Exercise:

1. Lecture (10 minutes): Basics of interaction design and Arduino integration.

2. Design Session (40 minutes): Develop interactive wireframes or prototypes for the

app’s user interactions.

3. Arduino Integration (20 minutes): Connect simple Arduino circuits to the app

prototype to simulate interactions (e.g., button presses, LED responses).

4. User Testing (20 minutes): Conduct usability tests with peers.

5. Iteration (20 minutes): Improve designs based on test results.

Materials and Tools: Interaction design tools, computers, Arduino kits.

Module 8: Commercial Design Guidelines and Standards

Objective: Design according to industry standards and guidelines.

Exercise:

1. Lecture (10 minutes): Overview of commercial design guidelines

2. Design Session (50 minutes): Develop a prototype of the app following specific design

guidelines.

3. Review (30 minutes): Evaluate prototypes against the guidelines.

4. Presentation and Discussion (20 minutes): Present prototypes and discuss adherence to

guidelines.

Materials and Tools: Design guidelines documents, design software, computers.

Module 9: Universal Design: Sensory and Cognitive Impairments

Objective: Create app designs accessible to users with sensory and cognitive impairments.

Exercise:

556 | P a g e

1. Lecture (10 minutes): Principles of universal design.

2. Design Session (50 minutes): Develop an accessible design for the app.

3. User Testing (20 minutes): Test designs with peers simulating impairments.

4. Feedback Session (30 minutes): Present and discuss accessibility features.

Materials and Tools: Design software, computers, accessibility guidelines.

Module 10: Universal Design: Tools, Limitations, and Standards

Objective: Understand tools and limitations in universal design, and adhere to standards.

Exercise:

1. Lecture (10 minutes): Tools and limitations in universal design.

2. Hands-On Session (50 minutes): Use tools to create universally designed app

prototypes.

3. Testing (20 minutes): Evaluate prototypes for accessibility and adherence to standards.

4. Iteration (30 minutes): Refine designs based on testing outcomes.

Materials and Tools: Universal design tools, computers.

Module 11: Mobile UI Design, CNC, and Arduino

Objective: Design user interfaces for mobile and wearable devices, create related hardware

prototypes using CNC tools, and integrate Arduino for interactions.

Exercise:

1. Lecture (10 minutes): Principles of mobile UI and wearable design, introduction to

CNC lathe and mill, and Arduino for wearable interactions.

2. Design Session (30 minutes): Develop a UI prototype for a mobile app or wearable

device.

3. CNC Prototyping (20 minutes): Create physical components of the wearable device

using CNC lathe and mill.

4. Arduino Integration (20 minutes): Program Arduino for basic interactions (e.g.,

motion detection, feedback via LEDs).

5. User Testing (20 minutes): Conduct usability tests on the prototype.

6. Feedback Session (30 minutes): Present and discuss usability findings.

Materials and Tools: Mobile UI design tools, computers, mobile devices, CNC lathe, CNC

mill, Arduino kits.

Module 12: Automotive User Interface, Laser Engraving, and Arduino

Integration

Objective: Design user interfaces for automotive applications, integrate laser engraving for UI

elements, and use Arduino for sensor-based interactions.

Exercise:

557 | P a g e

1. Lecture (10 minutes): Fundamentals of automotive UI design, overview of laser

engraving, and Arduino for sensor integration.

2. Design Session (30 minutes): Create a prototype for an automotive interface (e.g.,

dashboard layout).

3. Laser Engraving (20 minutes): Use laser engraving to create high-precision UI

elements for the automotive interface.

4. Arduino Integration (20 minutes): Implement Arduino to simulate sensor-based

interactions (e.g., temperature control, obstacle detection).

5. Testing (20 minutes): Test the prototype for usability and functionality.

6. Feedback Session (30 minutes): Present and discuss design improvements.

Materials and Tools: Automotive UI design tools, computers, laser engraving machine,

Arduino kits.

IV. REFERENCE BOOKS:

1. Chee Kai Chua, Kah Fai Leong, "3D Printing and Additive Manufacturing: Principles and

Applications".

2. Simon Knight, "Arduino for Beginners: Step-by-Step Guide to Arduino (Arduino Hardware &

Software)".

3. Peter Smid, "CNC Programming Handbook".

4. Steven Wolfe, "Laser Cutting and Engraving".

5. Charles Platt, "Make: Electronics: Learning Through Discovery".

558 | P a g e

COURSE CONTENT

DESIGN AND ANALYSIS OF ALGORITHMS

IV Semester: CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSD13 Core
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Programming for Problem Solving, Data Structures

I. COURSE OVERVIEW:

Design and analysis of algorithms is the process of finding the computational complexity of algorithms. It helps

to design and analyze the logic on how the algorithm will work before developing the actual code for a program.

It focuses on introduction to algorithm, asymptotic complexity; sorting and searching using divide and conquer,

greedy method, dynamic programming, backtracking, branch and bound. NP-hard and NP-complete problems.

The applications of algorithm design are used for information storage, retrieval, transportation through networks,

and presentation to users.

II. COURSES OBJECTIVES:

The students will try to learn
I. Mathematical approach for Analysis of Algorithms.
II. Methods and techniques for analyzing the correctness and resource requirements of algorithms.
III. Different paradigms of algorithm design including recursive algorithms, divide-and-conquer algorithms,

dynamic programming, greedy algorithms, Backtracking, Branch and Bound and graph algorithms.
IV. Strategies for solving problems not solvable in polynomial time.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Find the (worst case, randomized, amortized) running time and space complexity of given
algorithms using techniques such as recurrences and properties of probability.

CO2 Apply divide and conquer algorithms for solving sorting, searching and matrix multiplication.

CO3 Make Use of appropriate tree traversal techniques for finding shortest path.

CO4 Compare Identify suitable problem solving techniques for a given problem and
finding optimized solutions using Greedy and Dynamic Programming techniques

CO5 Apply greedy algorithm Utilize backtracking and branch and bound techniques to deal with
traceable and in-traceable problems.

CO6 Apply Describe the classes P, NP, NP-Hard, and NP- complete for solving deterministic and
non-deterministic problems.

IV. COURSE CONTENT:

MODULE – I: INTRODUCTION (10)

Algorithm: Pseudo code for expressing algorithms; Performance analysis: Space complexity, time

complexity; Asymptotic notations: Big O notation, omega notation, theta notation and little o notation,

amortized complexity; Divide and Conquer: General method, binary search, quick sort, merge sort,

Stassen’s matrix multiplication.

MODULE – II: SEARCHING AND TRAVERSAL TECHNIQUES (09)

Disjoint set operations, union and find algorithms; Efficient non recursive binary tree traversal algorithms,

spanning trees; Graph traversals: Breadth first search, depth first search, connected components,

biconnected components.

559 | P a g e

MODULE – III: GREEDY METHOD AND DYNAMIC PROGRAMMING (10)

Greedy method: The general method, job sequencing with deadlines, knapsack problem, minimum cost

spanning trees, single source shortest paths.

Dynamic programming: The general method, matrix chain multiplication optimal binary search trees, 0/1
knapsack

problem, single source shortest paths, all pairs shortest paths problem, the travelling salesperson problem.

MODULE – IV: BACKTRACKING AND BRANCH AND BOUND (09)

Backtracking: The general method, the 8 queens problem, sum of subsets problem, graph coloring,

Hamiltonian cycles; Branch and bound: The general method, 0/1 knapsack problem, least cost branch and

bound solution, first in first out branch and bound solution, travelling salesperson problem.

MODULE – V: NP-HARD AND NP-COMPLETE PROBLEMS (09)

Basic concepts: Non-deterministic algorithms, the classes NP - Hard and NP, NP Hard problems,

clique decision problem, chromatic number decision problem, Cook's theorem.

V. TEXT BOOKS:

1. Ellis Horowitz, Satraj Sahni, Sanguthevar Rajasekharan, “Fundamentals of Computer Algorithms”,

Universities Press, 2nd edition, 2015.

2. Alfred V. Aho, John E. Hopcroft, Jeffrey D, “The Design And Analysis Of Computer Algorithms”,

Pearson India, 1st edition, 2013..

VI. REFERENCE BOOKS:

1. Levitin A, “Introduction to the Design and Analysis of Algorithms”, Pearson Education, 3rd edition, 2012.

2. Goodrich, M. T. R Tamassia, “Algorithm Design Foundations Analysis and Internet Examples”, John Wileyn

and Sons, 1st edition, 2001.

3. Base Sara Allen Vangelder, “Computer Algorithms Introduction to Design and Analysis”, Pearson, 3rd

edition, 1999.

VII. ELECTRONICS RESOURCES:

1. http://www.personal.kent.edu/~rmuhamma/Algorithms/algorithm.html

2. http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms
3. http://www.facweb.iitkgp.ernet.in/~sourav/daa.html

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech-talk topics

4. Open-ended experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I

8. Model question paper – II

9. Lecture notes

10. PowerPoint presentation

11. E-Learning Readiness Videos (ELRV)

560 | P a g e

COURSE CONTENT

DATABASE MANAGEMENT SYSTEMS

IV Semester: CSE / IT / CSE (AI&ML) / CSE (DS) / CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks

AITD03 Core
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

Prerequisite: Programming for Problem Solving, Data Structures

I. COURSE OVERVIEW:

The purpose of this course is to provide a clear understanding of fundamentals with emphasis on their

applications to create and manage large data sets. It highlights on technical overview of database software to

retrieve data from n database. The course includes database design principles, normalization, concurrent

transaction processing,, security, recovery and file Organization techniques.

II. COURSES OBJECTIVES:

The students will try to learn

I. The role of database management system in an organization and learn the data base concepts.
II. The design of databases using data modeling and Logical database design techniques.
III. The database queries using relational algebra and calculus and SQL.
IV. The concept of a database transaction and related concurrent, recovery facilities and evaluate a set of

queries in query processing.

III. COURSE OUTCOMES:

At the end of the course students should be able to:
CO1 Describe data models, schemas, instances, view levels and database architecture for voluminous data

storage.

CO2 Define the concept of Relational Algebra and Relational Calculus from set theory to represent queries.

CO3 Make Use of SQL queries for data aggregation, calculations, views, sub-queries, embedded queries

manipulation.
CO4 Illustrate the definition of Functional Dependencies, Inference rules and minimal sets of FD’s to

maintain data integrity.
CO5 State the concepts of transaction, states and ACID properties in data manipulation.
CO6 Apply indexing, hashing techniques to access the records from the file effectively.

IV. COURSE CONTENT:

MODULE–I:CONCEPTUALMODELINGINTRODUCTION (10)

Introduction to Databases: Purpose of Database systems, view of data, data models, Database languages,

Database users, various components of overall DBS architecture, various concepts of ER model, basics of

Relational Model.

MODULE–II:RELATIONALAPPROACH (09)

Relational algebra and calculus: Relational algebra, selection and projection, set operations, renaming, joins,

division, examples of algebra queries, relational calculus: Tuple relational calculus, Domain relational

calculus, expressive power of algebra and calculus.

MODULE–III:SQLQUERY-BASICS,RDBMS- NORMALIZATION (10)

SQL – Data Definition commands, Queries with various options, Mata manipulation commands, Views,

Joins, views, integrity and security, triggers and cursors;

561 | P a g e

Relational database design: Pitfalls of RDBD, Lossless join decomposition, functional dependencies,

Armstrong axioms, normalization for relationaldatabases1st, 2nd and 3rd normal forms, Basic definitions

of MVDs and JDs, 4th and 5th normal forms.

MODULE–IV:TRANSACTIONMANAGEMENT (09)

Transaction processing: Transaction concept, transaction State, implementation of atomicity and durability,
concurrent executions, serializability, recoverability.

ConcurrencyControl: Lock-basedprotocols, timestamp-basedprotocols, validation-based protocols, multiple

granularity, multiversion schemes, deadlock handling.

Recovery: Failure classification, storage structure, recovery and atomicity, Log-Based recovery, shadow

paging, recovery with concurrent transactions buffer management.

MODULE–V:DATASTORAGEANDQUERYPROCESSING (10)

Data storage: Overview of physical storage media, magnetic disks, storage access, file organization,

organization of records in files.

Indexing and Hashing: Basic concepts: Ordered indices, B+ tree index files, B-tree index files, static

hashing, Dynamic Hashing, Comparison of Ordered Indexing and Hashing.

Query Processing: Overview, measures of query cost.

V. TEXT BOOKS:

1. Abraham Silberschatz, HenryF.Korth,S.Sudarshan,"DatabaseSystemConcepts",McGraw-Hill, 6th Edition,

2017.

VI. REFERENCE BOOKS:

1. Ramez Elmasri, Shamkant, B. Navathe, “Database Systems”, Pearson Education, 6th Edition, 2013.

2. Peter Rob, Carles Coronel, “Database System Concepts”, Cengage Learning, 7th Edition, 2008.

VII. ELECTRONICS RESOURCES:

1. https://www.youtube.com/results?search_query=DBMS+onluine+classes
2. http://www.w3schools.in/dbms/

3. http://beginnersbook.com/2015/04/dbms-tutorial/

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech-talk topics

4. Open-ended experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I

8. Model question paper – II

9. Lecture notes

10. PowerPoint presentation

11. E-Learning Readiness Videos (ELRV)

562 | P a g e

COURSE CONTENT

WEB SYSTEMS ENGINEERING

IV Semester: CSE / IT / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week Credits Maximum Marks

ACSD14 Core
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

Prerequisite: Object Oriented Programming

I. COURSE OVERVIEW:

This course introduces students to create concurrently a web app and a native app (for Android and iOS) with

React Native and React Native Web. It covers HTML for structuring and presenting content on the World

Wide Web. CSS being used to format structured content. To create a dynamic and interactive experience for

the user it covers JAVASCRIPT. To build the applications using React concepts such as JSX, REDUX and

PHP.

II. COURSESOBJECTIVES:

The students will try to learn

I. The fundamentals of HTML and CSS to design static and dynamic web pages.

II. The concepts of client side programming with Bootstrap , JavaScript, Ajax , JSX.

III. The MVC architecture, about React and built single and multiple page applications using REACT with

 REDUX.

IV. The characteristics, systematic methods, model for developing web applications using PHP.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Summarize HTML elements and attributes for structuring and presenting content of webpage based on

the user requirement.

CO2 Make use of CSS properties for formatting webpages.

CO3 Develop responsive webpage using Bootstrap for viewing web pages in various devices.

CO4 Utilize the concepts of JS with event actions for displaying information on webpages.

CO5 Identify UI binding library elements for deploying a reusable complex UI React Redux.

CO6 Develop web applications with the help of React Redux framework and serverside scripting using

PHP.

IV.COURSE SYLLABUS:

MODULE 1: INTRODUCTION TO WEB APPLICATION, HTML AND CSS (10)
Introduction to web application: Internet, Intranet, WWW, Static and Dynamic Web Page; Web Clients; Web

Servers; Basics of HTML5 and web design, creating tables, lists, HTML forms. Styles and classes to your web

pages, web page layouts with CSS, introduction to responsive web design with CSS3 and HTML5.

MODULE 2: BUILD INTERFCAES USING BOOTSTARP (09)
Introduction to web design from an evolutionary perspective, user interface design through bootstrap, containers,

tables, jumbotrons, list, cards, carousal, navigation, modals, flex and forms, responsive web page design, basic UI

grid structure.

MODULE 3: INTERACTIVE USER INFERFACE AND WEB APPLICATION

DEVELOPMENT (10)
JavaScript variable naming rules, data types, expressions and operators, pattern matching with regular

expressions, managing web page styles using JavaScript and CSS, script forms, introduction to AJAX.

Introduction to web design from an evolutionary perspective, create a native and web app, JSX, class and

563 | P a g e

function components, props, state, lifecycle methods, and hooks.

MODULE 4: UI BINDING LIBRARY FOR REACT AND REDUX (09)
Introduction to client-side routing using React Router, global state management and transitions using REDUX,

server -side rendering and testing using Jest. Web Development Using REACT is delivered both in a blended

learning and self-paced mode.

REDUX store using the official create store function, REDUX toolkit has a configure store API, loading state for

that particular API, adding an API service as a middleware, example uses create REACT App.

MODULE 5: INTRODUCTION TO PHP AND SERVER-SIDE SCRIPTING (10)
Introduction to PHP: Declaring variables, data types, arrays, strings, operations, expressions, control structures,

functions, Reading data from web form controls like Text Boxes, radio buttons, lists etc., Handling File Uploads,

Connecting to database (My SQL as reference), executing simple queries, handling results, Handling sessions and

cookies.

File Handling in PHP: File operations like opening, closing, reading, writing, appending, deleting etc. on text and

binary files, listing directories.

V. TEXT BOOKS:

1. Alok Ranjan Abhilasha Sinha, Ranjit Battewad, “JavaScript for Modern Web Development: Building a Web

Application Using HTML, CSS, and JavaScript”, 1st edition, 2020

2. Alex Banks and Eve Porcello, “Learning React: Functional Web Development with React and Redux”, 2017.

3. The Complete Reference PHP – Steven Holzner, Tata McGraw-Hill, 2017.

VI. REFERENCE BOOKS:

1. Adam Boduch and Roy Derks, “React and React Native: A complete hands-on guide to modern web and

mobile development with React.js”, 3rd edition, 2020.

2. W Hans Bergsten, “Java Server Pages”, O’Reilly, 3rd edition, 2003

3. D.Flanagan, “Java Script”, O’Reilly, 6th edition, 2011.

4. Jon Duckett, “Beginning Web Programming”, WROX, 2nd edition, 2008.

VII. ELECTRONICS RESOURCES:

1. http://computer.howstuffworks.com/computer-networking-channel.htm
2. https://www.geeksforgeeks.org/layers-osi-model/

3. https://www.wikilectures.eu/w/Computer_Network
4. https://technet.microsoft.com/en-us/network/default.aspx

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech-talk topics

4. Open-ended experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I

8. Model question paper – II

9. Lecture notes

10. PowerPoint presentation

11. E-Learning Readiness Videos (ELRV)

564 | P a g e

COURSE CONTENT

COMPUTER NETWORKS

II Semester: CSE / CSE (AI & ML) / CSE (CS) / IT

Course Code Category Hours / Week Credits Maximum Marks

AITD04 Core
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: There is no prerequisite to take this course

I. COURSE OVERVIEW:

The main emphasis of this course is on the organization and management of local area networks (LANs)

wide area networks (WANs). The course includes learning about computer network organization and

implementation, obtaining a theoretical understanding of data communication and computer networks.

Topics include layered network architectures, addressing, naming, forwarding, routing, communication

reliability, the client-server model, and web and email protocols. The applications of this course are to

design, implement and maintain basic computer networks.

II. COURSES OBJECTIVES:

The students will try to learn

I. The fundamental concepts of computer networking, different types of topologies, and protocols
II. Error correction and detection examples and applications in data link layer and uses of other media

access control.
III. The data transmission through protocols across the network in wired and wireless using routing

algorithms.

III. COURSE OUTCOMES:

At the end of the course students should be able to:
CO1 Outline the basic concepts of data communications including the key aspects of

networking and their interrelationship, packet, circuit and cell switching as internal and

external operations, physical structures, types, models, and internetworking

CO2 Make use of different types of bit errors and the concept of bit redundancy for error detection

and error correction.

CO3 Identify the suitable design parameters and algorithms for assuring quality of service and

internetworking in various internet protocols.
CO4 Interpret transport protocols (TCP, UDP) for measuring the network performance
CO5 Illustrate the various protocols (FTP, SMTP, TELNET, EMAIL, and WWW) and

standards (DNS) in data communications among networks.
CO6 Compare various networking models (OSI, TCP/IP) in terms of design parameters

and communication modes.

IV. COURSE CONTENT:

MODULE –I: INTRODUCTION (09)

Introduction: Networks, network types, internet history, standards and administration; Network models:

Protocol layering, TCP/IP protocol suite, the OSI model Transmission media: Introduction, guided media,

unguided media; Switching: Introduction, circuit switched networks, packet switching.

MODULE –II: DATA LINK LAYER (10)

565 | P a g e

Introduction: Link layer addressing; Error detection and correction: Cyclic codes, checksum, forward error

correction; Data link control: DLC services, data link layer protocols, media access control: Random

access, virtual LAN.

MODULE –III: NETWORK LAYER (10)

Network layer design issues, routing algorithms, congestion control algorithms, quality of service, and

internetworking.

The network layer on the internet: IPv4 addresses, IPv6, internet control protocols, OSPF (Open Shortest

Path First), IP (Internet Protocol).

MODULE –IV: TRANSPORT LAYER (10)

The transport service, elements of transport protocols, congestion control; The internet transport protocols:

UDP (User Datagram Protocol), TCP (Transport Control Protocol), performance problems in computer

networks, network
performance measurement.

MODULE-V: THE LINK LAYER LAYER and LANs (09)

Introduction to the link layer, services provided by the Link layer, DOCSIS-The Link layer protocol for

cable internet access, Link virtualization, Multiprotocol label switching (MPLS),Data Centre networking.

V. TEXT BOOKS:

1. Behrouz A. Forouzan, “Data Communications and Networking with TCPIP Protocol Suite”,

Tata McGraw-Hill, 6th edition, 2022.

2. Andrew S. Tanenbaum, David.j.Wetherall, “Computer Networks”, Prentice-Hall, 5th edition, 2010.

VI. REFERENCE BOOKS:

1. Douglas E. Comer, “Internetworking with TCP/IP “, Prentice-Hall, 5th edition, 2011.

2. Peterson, Davie, Elsevier, “Computer Networks”, 5th edition, 2011.

3. Kurose, James F,” Computer Networking”: a top-down approach,” : 7th edition. |Hoboken,

New Jersey: Pearson, 2017.

VII. ELECTRONICS RESOURCES:

1. http://computer.howstuffworks.com/computer-networking-channel.htm

2. https://www.geeksforgeeks.org/layers-osi-model/
3. https://www.wikilectures.eu/w/Computer_Network

4. https://technet.microsoft.com/en-us/network/default.aspx

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech-talk topics

4. Open-ended experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I
8. Model question paper – II

9. Lecture notes

10. PowerPoint presentation

11. E-Learning Readiness Videos (ELRV)

566 | P a g e

COURSE CONTENT

APPLIED ARTIFICIAL INTELLIGENCE

IV Semester: CSE (AI &ML) | CSE(DS)

Course Code Category Hours / Week Credits Maximum Marks

ACAD03 Core
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: NIL Practical Classes: NIL Total Classes: 48

Prerequisite: Python Programming

I. COURSE OVERVIEW:

Applied Artificial Intelligence refers to the practical use and implementation of AI technologies to solve

complex problems and enhance various applications across different domains. This course provides

knowledge on the key aspects of applying artificial intelligence in identifying real-world problems through

the applications of AI. It involves the integration of AI techniques and algorithms into existing systems or

the development of new solutions to address specific challenges like creating recommendation systems,

virtual assistants like chatbots etc.

II. COURSES OBJECTIVES:

The students will try to learn:

I. The representation, search procedures, and various logical reasoning systems.

II. A framework for modeling human reasoning and dealing with uncertainty through fuzzy logic.

III. Applications of game playing, designing communicating agents, and robotic technology.

III. COURSE OUTCOMES:

At the end of the course students should be able to:
CO1 Explain appropriate knowledge representation techniques to generate inferences for any search

problem.

CO2 Outline knowledge that allows systematic and rigorous reasoning to enhance clarity and precision of

knowledge representation.

CO3 Examine the situations that is inherently fuzzy or ambiguous while designing logical systems to deal

such data.
CO4 Choose reverse engineering human capabilities and apply them to develop intelligent systems.

CO5 Build new architectures, designs for communicating agents and robotic applications.

CO6 Select design technologies of AI for enhanced learning, reasoning, and perception to simulate or
approximate human intelligence.

IV. COURSE CONTENT:

MODULE – 1: BEYOND CLASSICAL SEARCH (09)

Local search in continuous spaces - searching with non-deterministic actions - online search agents and unknown

environments – logical agent: knowledge based agents – Wumpus World – knowledge engineering in first order

logic – ontological engineering.

MODULE – 2: KNOWLEDGE REPRESENTATION (10)

Knowledge Representation: Introduction, Approaches to Knowledge Representation, Knowledge Representation

using Semantic Network, Knowledge Representation using Frames.

Advanced Knowledge Representation Techniques: Case Grammars, Semantic Web.

MODULE – 3: PROBLEM REDUCTION AND GAME PLAYING (10)

Introduction – Problem reduction - Game Playing, Bounded Look-ahead Strategy and use of Evaluation

Functions, Alpha-Beta Pruning

567 | P a g e

Fuzzy Logic Systems – Introduction, Crisp Sets, Fuzzy Sets, Fuzzy Logic Control, Fuzzy Hedges, Neuro Fuzzy

Systems.

MODULE – 4: EXPERT SYSTEMS AND APPLICATIONS (10)

Expert System and Applications: Introduction, Phases in Building Expert Systems, Expert System Architecture,

Expert Systems vs Traditional Systems, Truth Maintenance Systems, Application of Expert Systems, List of

Shells

and Tools.

MODULE – 5: ROBOTICS (09)

Agents that communicate - Types of communicating agents - Introduction to Robotics – Robot Hardware –

Robotic Perception – Planning to Move – Planning Uncertain Movements – Moving – Software Architectures –

configuration spaces - navigation and motion planning – Application Domains.

V. TEXTBOOKS:

1 Stuart Russel, Peter Norvig, “AI – A Modern Approach”, Second Edition, Pearson Education, 2007.

2 Kevin Night, Elaine Rich, Nair B., “Artificial Intelligence (SIE)”, McGraw Hill, 2008.

3 Saroj Kaushik. Artificial Intelligence. Cengage Learning. 2011

VI. REFERENCE BOOKS:

1. Dan W. Patterson, “Introduction to AI and ES”, Pearson Education, 2007.

2. Peter Jackson, “Introduction to Expert Systems”, Third Edition, Pearson Education, 2007.

3. Stuart Russel, Peter Norvig, “AI – A Modern Approach”, Second Edition, Pearson Education, 2007.

4. G. Luger, W. A. Stubblefield, “Artificial Intelligence”, Third Edition, Addison-Wesley Longman,

1998. 5. N. J. Nilson, “Principles of Artificial Intelligence”, Narosa Publishing House, 1980.

VII. ELECTRONICS RESOURCES:

1. https://bpbonline.com/products/applied-machine-learning-solutions-with-python

2. NPTEL: Artificial Intelligence, https://nptel.ac.in/courses/106105077/

3. http://www.udacity.com/ 4. http://www.library.thinkquest.org/2705/

4. http://www.ai.eecs.umich.edu/

5. CS50's Introduction to Artificial Intelligence with Python | Harvard University

6. Artificial Intelligence Search Methods for Problem Solving - Course (nptel.ac.in)

7. http://www.ai.eecs.umich.edu

VIII. MATERIALS ONLINE

1. Course Template

2. Tutorial Question Bank

3. Definition and Terminology

4. Tech-Talk topics

5. Assignments

6. Model question paper - I

7. Model question paper - II

8. Lecture notes

9. Early learning readiness videos (ELRV)

10. PowerPoint Presentations

http://www.ai.eecs.umich.edu/
https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python
https://onlinecourses.nptel.ac.in/noc21_cs79/preview
http://www.ai.eecs.umich.edu/

568 | P a g e

COURSE CONTENT

WEB SYSTEM ENGINEERING LABORATORY

IV Semester: CSE (CSE) / IT / CSE (DS) / CSE (AI&ML)

V Semester: CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks

ACSD17 Core
L T P C CIA SEE Total

0 0 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisites: Programming with Objects

I. COURSE OVERVIEW:

This course will give you the basic terminology and fundamental concepts to build modern web applications.

This course introduces students to develop web applications. This course presents the basics of HTML5 and

CSS3 for Web application development using HTML links and HTML forms. Introduction to the use of React

router and its use in developing single-page applications, redux to develop React Redux powered applications,

client-server communication and the use of REST API on the server side and react primitives render to native

platform UI. This course will make the students to expose the front-end framework Bootstrap and to basic

security mechanisms for server-side web application development.

II. COURSES OBJECTIVES:

 The students will try to learn

I. The characteristics, systematic methods, model for developing web applications.

II. The concepts of client side programming with Bootstrap, JavaScript, Ajax, Design user

 interfaces that follow best practices for usability and user experience

III. Web application Development Database with React and React Native.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Create a web page with different layouts including links by applying different styles and colors to

produce specified outputs

CO2 Develop a responsive web application using bootstrap with background images, menus, with admin

panel and tables.

CO3 Develop interactive forms with different styles using javascript, CSS and bind data using AJAX

CO4 Develop single page applications using react router and make use of react data libraries for data

visualization in dynamic pages

CO5 Adapt to design and develop web applications like drunken snake game and chat application with API

responses using the industry’s current models and architectures

CO6 Test for the database to extend the features and deployment of applications for solving problems that

require interaction with a web server

569 | P a g e

IV.COURSE CONTENT:

Getting Started Exercises

1 CEW (Corporate Employee Welfare) Net Work

Objective:

All corporate employees can share following value points using CEW web base application

1. Innovative thoughts

2. All Company Events (photos share)

3. Technical droughts

4. Work experience

5. Personal relating things (Property Sales and Home Rent)

6. All company growth (share market)

7. All company Employee referral (job vacancy)

8. Matrimonial

9. Birth days

10. Travel / Picnic / Get together Plans

Functional Requirements

1. Employee verification

2. All Company Events

• Technical droughts

• Work experience

• Property sales and Home rent

• All company growth(share market)

• All company Employee referral(job vacancy)

• admin

• User management

Reports

1. Admin report

2. Bank report

3. Viewable and downloadable reports with password protection

See also for authentic understanding, click the link

 https://cewacor.nic.in/MasterStatic/Employee_Welfare_Cell

 https://www.nexteraenergy.com/employee-central.html

https://ongcindia.com/web/eng/career/why-work-with-ongc/employee-welfare

https://www.pelagohealth.com/resources/hr-glossary/employee-welfare/#

 Each student has to refer any one of the web sites stated above.

2. E – Healthcare Advisor

Objective: The main objective of this project is to implement a computer-based Healthcare

Information System. This system will help the users to identify certain diseases by answering

certain questions asked by the system. Based on the diagnose received the user will be

getting some suggestion of medicines that are available at the local chemist without

prescription with an advice to visit the doctor. The system once ready should be able to train

itself with the feedback given to it (Artificial Intelligence). The database will be developed with

open source software.

https://cewacor.nic.in/MasterStatic/Employee_Welfare_Cell

570 | P a g e

• To conduct a diagnose in order to identify the disease

• To design a healthcare management system

• To maintain patient history and system keep self learning(artificial intelligence) to

update the database.

Functional Requirements

1. It focused on the acquisition and management of disease database

2. It mainly emphasized creation and implementation of patient and disease

management information system.

3. It will ease and speed up the planning decision making process , secure confidential

and reliable reports

4. It helps for addressing problems of security secrecy and confidentially of patients.

5. Used to check the delays errors inconsistencies in medical records and access to

historical records

6. To maintain patient profile

Reports

1. Search the name, place, disease, periodic base reports

2. Search the nearest government approved Clinic/Hospital and suggest it to the

patient.

See also for authentic understanding, click the link

https://codethislab.com/website-health-advisor/
https://www.ehealthsystem.com/
https://e-clinic.co.uk/

 Each student has to refer any one of the web sites stated above.

3 HCSS (Highly confidential Security System)

Objective: Due to busy life style we can’t remember all confidential data like All maid Id,

Password, All bank account no, Insurance policy No, PAN NO, Driving License No, Password

Port No, All education certificate Numbers, Some highly value scan copy, some confidential

photo and music ,videos. It is a software locker which can hold user sign in information, much

like the functionality of SSO, however one can also couple a biometric hardware to strengthen

the security system. The system will help user in logging in to the client system for which it is

holding/storing the password, either by the software interface or directly by hardware

interface. So we can develop highly security web application (new security algorithm and

hardware system) .so we can store all confidential data in single credentials

Functional Requirements

1. Security System (Software and hardware)

2. To provide mail id and password locker

3. Bank account information locker

4. Videos locker v. Images locker

5. Music locker

6. Admin

7. User management

Reports

1. Admin report

2. Bank report

571 | P a g e

3. Viewable and downlable reports with password protection

 See also for authentic understanding, click the link

https://azure.microsoft.com/en-in/solutions/confidential-compute

Each student has to refer any one of the web sites stated above.

4 Food Safety Portal

Objective: Provide an application which allows residents and visitors of a city to find out

more about food-related aspects about the city. Aspects include information about restaurant

and market certifications and what to look for (education), local diet and/or delicacies, or even

a restaurant guide.

Functional Requirements

1. Web accessible information base

2. Provide templates for information entry – e.g. education, dining guide, food handling

guide, etc.

3. Allow for easy update of information by city employees

4. Allow for easy retrieval of feedback collected to facilitate acting on feedback received

5. Extensible to allow each city to update with their own specific information

6. Allow report of food-related illness (non-life-threatening)

7. Allow report of food safety concern

8. Allow submission of suggestions for improvement

9. Enable a map view of the city which marks locations of restaurants and markets

Reports

1. Report of restaurants visited and reviewed

2. Report of food-related illnesses

3. Usage report of website (hit rates, popular pages)

4. Report of user suggestions

See also for authentic understanding, click the link

https://services.india.gov.in/service/detail/national-food-security-portal-1
https://www.india.gov.in/content/national-food-security-portal
https://www.ifpri.org/publication/india-food-security-portal

 https://damoh.nic.in/en/rationmitra/

Each student has to refer any one of the web sites stated above.

5. HR Operations Manager

Objective: In business environments filled with diverse forms of content, continually changing and
complex business processes, and an array of different lineof-business interfaces, companies are
looking for ways to gain operational efficiencies, reduce risk, and improve quality through exception
management and end-to-end process visibility.
The solution will be used to demonstrate how value can be delivered across any business process by
linking business processes to relevant business content, and to the people that need to make
business decisions.

Functional Requirements

1. Workflow capabilities of the proposed system

2. Components for Business Process

3. HR new hiring process with;
i. Applicant submits his/her Resume to an identified e-mail id with an opportunity id.

572 | P a g e

ii. On receiving the email, extract the mail contents & store it.

iii. Based on the opportunity id send it to respective HR. (Finance, IM, etc.)

iv. HR will verify the resume; if shortlisted, forward it to respective Managers. On rejection,
an email will be sent to the Applicant with reason.

v. Manager will schedule the interview & assign a team member to perform interview.

vi. Interviewer conducts the interview & updates the interview results.

vii. Manager will update based on the results.

viii. HR will send out the offer letter if selected.

ix. Applicant will respond with Acceptance/Rejection subject line. On Rejection process will be
ended. On Acceptance new employee ID/mail-id will be generated & process will be
ended.

Reports

1. Reports customizing the stored data in a platform independent format and
displaying it using style sheets.

2. Admin must be able to data in reports in excel sheets.

3. Admin must be able to make pictorial depiction of data in excel sheets for
better understanding.

4. Reports should be elaborate for all the users.

See also for authentic understanding, click the link

https://azure.microsoft.com/en-in/solutions/confidential-compute

Each student has to refer any one of the web sites stated above.

6. Investor self service Application

Objective: To build an investor self service portal for an Asset Management Company (AMC)

that would allow its investors to have real time access to customer portfolio and various other

functionalities.

Functional Requirements

The investor self services portal (ISSP) will provide the following functionality to the AMC’s

investor.

1. Login – Login in to the AMC’s investor portal with folio number and pin.

2. Account Summary – Portfolio details with cost value and current valuation.

3. Account Statement – Ability to generate account statement in predefined format.

4. Fresh Purchase - Ability to sign up as a new investor by entering relevant data and having

the application form prefilled, ready to be signed and dispatched to the AMC. Ability to

track status of Application using Application Inquiry Screens. Ability to make first

purchase online (through PG integration) or through cheque/demand draft.

5. Additional Purchase – Ability to invest into new schemes or make additional investments

in an existing scheme. This module will be integrated with the payment gateway.

Customer account will be debited and PG provider’s pool account will be credited

instantly. Purchase transaction will be booked only after successful payment confirmation

from the PG provider.

6. Redemption – Ability to redeem existing investments. Redemption can be done for all

units, selected no of units or by specifying amount.

7. Switches – Ability to switch from one scheme to another. It will be possible to switch to

new schemes as well.

573 | P a g e

8. Change of Dividend option – Ability to change Dividend option from Re-Invest to Payout

and vice versa. Not applicable for Growth schemes/plans.

9. View Transactions – Listing of last few transactions initiated by the investor.

10. View Bank Details – Details of existing bank mandates specified by investor while booking

purchases.

11. My Profile – Listing of the investors profile including his address, email id, registered PAN

No, KYC status for himself and joint holders etc.

12. Change pin – Investor can change his pin after having logged in to the portal.

13. Security features should include Account lockout – Account can be locked out after a

configurable number of failed login attempts. There must be a capability to unlock the

folio from the application console.

14. Security features should include SSL based access – The transport channel will be SSL

enabled right from the client browser. Access to the PG provider’s site will also be SSL

enabled.

15. Security features should include Change Pin on first access – Pin will have to be changed

by investor on first login.

16. Security features should include Regular ‘Change Pin’ Mechanism - Subsequently,

investor can be forced to change his pin at a configured time interval (say 3 months)

17. Account debit to be authorized by investor by entering his internet banking credentials

along with any additional security imposed by the bank.

18. ISSP will perform a number of basic validations on the transactions. Examples of local

validations would be:

i. Minimum investment amount

ii. KYC status and PAN status

iii. Inability to invest in a closed ended scheme where the scheme has already been

closed.

19. Administration Module will include the functionalities:

i. Changes in the Masters will be made by the Operations Team

ii. Locking and Unlocking of Investor Accounts

iii. Viewing all transactions across all investors

Reports

1. Reports customizing the stored data in a platform independent format and

displaying it using style sheets.

2. Admin must be able to data in reports in excel sheets.

3. Admin must be able to make pictorial depiction of data in excel sheets for better

understanding.

4. Reports should be elaborate for all the users.

See also for authentic understanding, click the link

https://www.tricorglobal.com/services/investor/self-service-portal/

https://www.infosys.com/industries/utilities/case-studies/web-self-service.html

https://www.salesforce.com/products/customer-self-service/

Each student has to refer any one of the web sites stated above

7. E-MANDI (electronic -vegetable market)

Objective: The main objective of this project is build a website which will help civilian, retailer

whole seller and even the farmer to get the best from his inputs. with the help of this a farmer

will be able to know the best value for his vegetable and will not be fooled by the marketers.

574 | P a g e

it will help in keeping the transparency between the whole seller and retailer and also the

selection for civilian for his requirement become easy .so this will help in eradicating black

marketing and inflation.

Functional Requirements

1. People can register to have a complete view of the market including the pricing of

vegetables, pricing difference between whole seller and retailer, actual pricing stated by

government, best possible retailer in the market for civilian in his area, revenue generated

last month and a period of time.

2. Non registered can have an overview of these facilities excluding some.

3. Feedback or complaint facilities directly connected to government bodies to keep a view

on the market but mentioning the unique id of the complainer.

4. Admin should be able to see all record from any users.

5. The records shown for selling should be available in a format of Quantity name, Quantity

available, price

6. The database should be robust enough to handle all the online transactions which will be

happening.

7. Website will be available in regional languages.

8. People will have facility of viewing the price difference between different regions and the

inflation rate also.

9. Person have facility of booking vegetables for commercial use on a large scale online

through bigger marketers.

10. Help section for those who are unable to understand the website or any of its part.

Reports

1. Daily report of enrollment to Admin.

2. Monthly report of enrollment as per states to Ad-min i

3. Work hours uses of Computer professionals on a monthly basis to Admin

See also for authentic understanding, click the link
 https://www.jiomart.com/c/groceries/fruits-vegetables/fresh-
 vegetables/229?prod_mart_groceries_products_popularity%5Bpage%5D=2
 https://www.bigbasket.com/cl/fruits-vegetables/

https://farmersfz.com/

Each student has to refer any one of the web sites stated above.

8. Issue Tracking scenario

Objective: To provide Issue tracking for projects

Functional Requirements

1. Individual accounts for Developers.

2. Ticket creation and updation.

3. Search for tickets.

4. Set Priorities for Tickets (higher-1,2,3)

5. View ticket details.

6. Assigning or UN-assigning a ticket to Developer by higher authorities or by

themselves.

https://www.jiomart.com/c/groceries/fruits-vegetables/fresh-
https://www.jiomart.com/c/groceries/fruits-vegetables/fresh-

575 | P a g e

7. Uploading patch files or any other required files after solving the issue and update the

ticket status.

8. Maintain activities for

I. Ticket- Comments and History.

II. Developer – Comments and work log.

9. Export a ticket in different formats like doc and pdf.

Reports

1. Daily Tickets Reports

2. Daily Solved tickets Reports

3. Monthly Tickets Reports

See also for authentic understanding, click the link
 https://www.projectmanagement.com/wikis/233063/issue-tracking#_=_
 https://www.zoho.com/bugtracker/issue-tracking-system.html
 Each student has to refer any one of the web sites stated above

9. Online grievance redressal system

Objective: The people need not go to the higher authorities always when they face

problems. They can use the service of this software browser and can give their complaint and

the complaint is taken up by the employee of specified department and he solves the

problem.

1. To create a user-friendly online interface for citizens to communicate with administrative

body and, reduce the distance and time barrier between citizens and administration.

2. To create a online platform where people can share ideas, invoke discussions, issue

complaints, create suggestion/petitions for improvement of city administration.

3. To encourage the citizens to actively participate in city administration to bring

transparency and flexibility in system.

Motivations to build this system:

1. Limited hour service availability in the current system.

2. Lack of involvement of people in exhibiting their responsibilities towards society.

Functional Requirements

1. Online Registration for public

2. User-friendly Interface

3. Easy intake of user need

4. Manager, employee related user id, passwords are send to their respective mails

5. Verification of manager, employee, public details

6. Online interaction of administrator, employee and managers

7. End to end interaction of employees with public

8. Administrator controls all department queries

A. Users (Citizens):

I. Users should be able to create new account, log-in to their existing accounts which will

give them

II. The authority to use the services provided by the system.

576 | P a g e

III. Authenticated users should be able to issue complaints, check complaint status, submit

feedback, browse through other complaints and their feedback.

IV. Authenticated users should be able to create suggestions/petitions; other users can

support or make suggestions for petitions; forward petitions to corresponding

authority for possible implementation.

V. Users can to create groups where users can share their experiences; discuss common

problems, and the possible solution;

B. Municipal authorities:

I. Municipal authorities can log-in to their accounts as created by administrator.

II. Authorities can access all the complaints, suggestions from users.

III. Invoke proper activity in response to valid complaints, or redirect inappropriate

complaints to the administrator.

IV. Give response to complaints with activity reports.

C. Administrators:

I. Create, and monitor accounts of authorities.

II. Filter the content reported as inappropriate and handle threats.

III. Handle complaints about improper response by municipal authorities.

 D. NGO's:

I. NGO can form user groups similar to other users.

II. NGO's can publicize their social causes on the site.

Reports

1. Weekly report

2. Monthly report

3. Status report

4. Yearly report

5. Escalation reports based on responsibility matrix

6. Queries and responses answered report

7. Complaint report including complaint details, response details, feedback

8. Section-wise user-feedback summary

See also for authentic understanding, click the link
https://pgportal.gov.in/
https http://grs.nios.ac.in/
https://www.consumercomplaints.info/?tm=tt&ap=gads&aaid=adaVTn2qEIBda&gclid=Cj0KCQjw-
pyqBhDmARIsAKd9XIOOudygMWMedVUYZQpHlS1BUBOaBTvrdlTyXMaOqBqsIc2q47YKGHIaAs3zEAL
w_wc

Each student has to refer any one of the web sites stated above.

https://pgportal.gov.in/
http://grs.nios.ac.in/
https://www.consumercomplaints.info/?tm=tt&ap=gads&aaid=adaVTn2qEIBda&gclid=Cj0KCQjw-pyqBhDmARIsAKd9XIOOudygMWMedVUYZQpHlS1BUBOaBTvrdlTyXMaOqBqsIc2q47YKGHIaAs3zEALw_wc
https://www.consumercomplaints.info/?tm=tt&ap=gads&aaid=adaVTn2qEIBda&gclid=Cj0KCQjw-pyqBhDmARIsAKd9XIOOudygMWMedVUYZQpHlS1BUBOaBTvrdlTyXMaOqBqsIc2q47YKGHIaAs3zEALw_wc
https://www.consumercomplaints.info/?tm=tt&ap=gads&aaid=adaVTn2qEIBda&gclid=Cj0KCQjw-pyqBhDmARIsAKd9XIOOudygMWMedVUYZQpHlS1BUBOaBTvrdlTyXMaOqBqsIc2q47YKGHIaAs3zEALw_wc

577 | P a g e

10. E-Hospital System

Objective: A solution that allows all the E-Hospital System

Functional Requirements

1. Patients should be able to check doctor availability and book the appointment.

2. Doctor should be able to accept or reject appointment.

3. Doctor prescription storage and viewable to all departments.

4. Lab admins to update lab test results

5. Pharmacists to provide stock details and delivery of medicines.

6. Billing user to bill based on all the transactions done at each department and keep a track

of the same.

7. Automatic notification between doctor, patient, pharmacists, lab admins and billing

divisions based on use case.

Reports

1. Doctor availability reports

2. Day wise Patients reports

3. Pharmacists delivery report

See also for authentic understanding, click the link
 https://www.adroitinfosystems.com/products/ehospital-systems/
 https://nextgen.ehospital.nic.in/ehosModuleList

Each student has to refer any one of the web sites stated above

11. Smart Transportation Based Car Pooling System

Objective: To maintain a web based intranet application that enables the corporate

employees within an organization to avail the facility of car pooling effectively.

Functional Requirements

1. A system for an Admin who can enter the employee details like name, contact number,

vehicle details etc.

2. Corporate employees can register the details to the website

3. The facility to see the available services in the route

4. Employees receive SMS alerts regarding the route and timings.

5. The facility to check whether the vehicle and driver is authorized or not

6. Admin can view the report of the car pooling process to improve the system

7. Employees can report suggestions/complaints in the website

8. Admin can monitor every activity which is performed by system

9. Employees can view the details of registered vehicles and the owners which will develop

trust and understanding among the employees

Reports

System will generate

1. Monthly Reports

578 | P a g e

2. Weekly Reports

See also for authentic understanding, click the link
 https://quickride.in/
 https://www.pcb.ub.edu/en/carpooling/

Each student has to refer any one of the web sites stated above

12. Law & Order Automation

Objective: To deliver next generation police and law enforcement reporting tools, and setting

up intelligence platforms that agencies use to take incoming incident reports, lessen

employee resources and allow these enforcement agencies to reallocate resources to much

needed community areas

Functional Requirements

1. Administrator should be able to create/edit a virtual police station (PS) which represents a

real police station as a first time setup.

2. Appointing of police officers to a particular police station which is present in a specific

zone or to a specific district as a first time setup, he should be transferable at later time.

3. PS should have areas of control which can be modified at later time.

4. Police station has several departments like Law and Order, Women Protection, Cybercrime,

Traffic and control, CBI, etc. Separate module for each dept would be needed.

5. When a complaint is made it undergoes various processes like FIR, Charge Sheet, Property

Seizure, court disposal etc all these activities are performed by a PS.

6. Traffic and Control has important part where the Traffic inspector would be filing a charge

sheet from a mobile or PDA.

7. Maintaining the criminal information state wise/area wise/age wise is mandatory

8. Sharing of case details with PS in other states is needed. Note : Other state may use

different database and different platform (use of IBM MQ is necessary)

9. Communication between officers is mandatory through forum, chat, polls.

10. The magistrate should be able to access the case details and provide/deny the arrest

warrant.

11. Citizens should be able to apply for various licenses like Arms, loud speaker, Hotel/lodge,

browsing centre, mass meetings etc., and the officer should be able to approve/reject

which will be notified to the applicant via SMS and Mail

12. Secured registration of citizens is needed where they need to provide proof of citizenship,

which will be cross checked by the police officer of that area.

Reports

1. Complaints filed in a day and action taken to it. It should also report unattended

complaints.

2. Crime rate due to various types of crimes in a month/year and also in district/state wise.

3. Report regarding most wanted criminals and bounty information if available.

4. Police officers often export the FIR copy to PDF format.

See also for authentic understanding, click the link
 https://www.mha.gov.in/en/commoncontent/law-and-order
 https://nclt.gov.in/

https://lawcommissionofindia.nic.in/

https://www.pcb.ub.edu/en/carpooling/
https://nclt.gov.in/

579 | P a g e

https://doj.gov.in/

Each student has to refer any one of the web sites stated above

13. Online Book Sales with Mobile SMS

Objective: The main objective of this project is to implement a computer based Online Book

Sales System with the help of Mobile SMS. This system will help the users to know

automatically when certain book requested by them has arrived once they have registered

with the website. It will also help the users to know the latest books of their interests being

introduced into the market like fiction, science, technology, romance etc. The database will be

developed with open source software.

• To develop a book management system

• To design a Book Sales Management system

• To design a customer Mobile-Book sales management system interface which interacts

with database system

• To mobile client be optimized and also an interface for connecting thru PC

Functional Requirements

1. It focused on the acquisition, distribution and management of books.

2. It mainly emphasized creation and implementation of a book sales management

information system.

3. It automated the system with the help of SMS that informs the user about the availability,

price and method of purchasing the book.

4. It will ease and speed up the planning decision making process process, secure

confidential and reliable reports

5. It help for addressing problems of security secrecy and confidentially of customer records.

6. Used to check the delays errors inconsistencies in records and access to historical records.

7. It has eased the control and distribution of books in various parts of the country basing

on regional demands

Reports

To be thought of according to requirement

See also for authentic understanding, click the link

 https://www.amazon.in/Books/b?ie=UTF8&node=976389031
 https://www.smsindiahub.in/bulk-sms-for-book-stores/

Each student has to refer any one of the web sites stated above

14. E-Resource Technology

Objective: “E-Resource Technology” is education based website/software, helping students to get all

resources & study materials of every courses available. It uses “E-Book” facility. It is reliable & time

efficient approach compared to all links of the website provided by any search engine while searching

for course materials.

Functional Requirements

1. To provide official & legal links of the website from which user (student) can download resources

& study materials of relevant course

2. Only accessible after registering to that specific website

3. Getting associated with professors of esteemed institutes & colleges

4. To provide interaction between professor & students (users)

https://www.smsindiahub.in/bulk-sms-for-book-stores/

580 | P a g e

5. Getting associated with well known publication house so as to students can access soft copy of

books published for future use

6. Not all links provided by GOOGLE are relevant. This would provide a better service.

7. Not all links provided by GOOGLE are virus free or recommended to download. This would be a

better approach.

8. To implement this time efficient strategic

Reports

1. Students/Users Report

2. Professors of Esteemed Institutes & Colleges report

3. Toppers of College / Universities report

4. Mentors report

See also for authentic understanding, click the link
https://library.iitd.ac.in/ERD
https://www.education.gov.in/e-contents
https://www.washington.edu/doit/making-electronic-resources-accessible-libraries

Each student has to refer any one of the web sites stated above

15. Employee Expense management System

Objective: To build an automated employee expense management

Functional Requirements

1. Voucher Entry – Screen for entering expense vouchers for any reimbursable expenses borne by the

employee. A voucher should have one header and multiple lines providing detailed information of

expenses incurred along with amounts.

2. Multi-level workflow – Based on the Employees department and designation, the vouchers should

flow to his supervisors for their approvals. The number of approvals required will vary according to

total amount of the voucher and approval limits set for supervisors.

3. Case Management – Every voucher should start a new process instance (case). Managers should be

able to view vouchers waiting for their approval in their Inbox by logging in to the application.

Employee should be able to track progress of his vouchers.

4. Draft Vouchers – System should provide the ability to save incomplete vouchers and submit them

for approval later after completion.

5. Rejection flow – At any point in the workflow, managers should have the option of rejecting any

voucher stating appropriate reasons. Rejected vouchers should come back to the Employee, who is

then allowed to change details on the vouchers or provide additional information required for the

approval.

6. Accounts View – Accounts department users should be able to view approved vouchers of all

employees and mark vouchers as paid. This step completes the lifecycle of the voucher and the

associated process instance.

Reports

1. MIS Reports – MIS reports stating status of the vouchers

2. Exception Reports – Reports listing vouchers awaiting approval above a defined turn-around time

(threshold)

3. Master data management – Creation of masters for Employee Hierarchy, setting approval limits etc

4. Employee Hierarchy View - View of Employee Hierarchy

5. Rejected vouchers report – Report listing vouchers rejected by Managers

6. Reports customizing the stored data in a platform independent format and displaying it using

style sheets.

7. Admin must be able to data in reports in excel sheets

8. Admin must be able to make pictorial depiction of data in excel sheets for better understanding

9. Reports should be elaborate for all the users.

https://www.education.gov.in/e-contents

581 | P a g e

See also for authentic understanding, click the link

 https://use.expensify.com/expense-management

 Each student has to refer any one of the web sites stated above

16. Insurance System with Tracking Manager

Objective: This project provides five types of Insurance services, which includes Life Insurance, medical

Insurance, Motor Insurance. Home Insurance, Travel Insurance. This project provides loan facility for

Motor Purchasing. The details can be viewed and updated by the officials of the company.

Functional Requirements

A. User Panel

I. A User can view the details of various policies and schemes offered by the Insurance Company.

II. New Users can register with the site so that he can get information online.

III. An existing policyholder can view his policy details and calculate the premium.

IV. The web site provides information about the new strategies and subsidiary schemes of the

company.

V. Provides loan facility for policyholders and online payments.

VI. Provides Loan EMI calculator

VII. Provides Interest calculator

B. Administrator Panel

I. Administrator gives the approval for the new users

II. Administrator edit modify and delete, upload certain information

III. Provide the facility to send the statements and loan EMI details in pdf format to users mail ids.

Reports

1. Interest Calculation

2. Month wise registered users Insurance

3. Region wise registered users Insurance

4. Month and Region wise list of users for loan

5. Monthly Premier

6. Monthly Loan EMI

See also for authentic understanding, click the link
https://uiic.co.in/

https://nationalinsurance.nic.co.in/

 Each student has to refer any one of the web sites stated above

17. AIR TRANSIT TRIP PLANNER

Objective: Build the air transit trip planner which This passenger on transit will spend their time at

the airport while waiting for the next flight without any planning to visit tourism places nearby due to

short period of time and much information needed to plan a short trip. This is such a waste because

they actually can boost countries’ economy in the tourism sector if they spend their time to visit some

tourism places nearby the airport. Because of that, Air Transit Trip Planner aims to help these

passengers on transit by planning a short trip to the nearby tourism places within the transition hour

they have.

Air Transit Trip Planner also using Google Map API as a map to guide user and Google Places API as a

data center to grab all the tourism places and its details. The output of this calculation is a suggestion

of short trip planner for the user (passenger on transit). The trip planner will list down the tourism

582 | P a g e

places user can visit within their flight transition hour, the distance to go there and also time taken to

go there. Indirectly, this Air Transit Trip Planner application also helps to boost economy in the tourism

sector of a country

Functional Requirements

1. A ‘Main Page’ which the user will see when they launch the application. In the background when

this interface prompts, the system actually will automatically detect user current location by using

GPS or Google Places. If no internet access or GPS is turn off, the system will prompt a pop up

asking the user to turn on GPS or connect to internet. But if everything is fine, user just need to

key in their transit hour and departure time then click enter.

6. A ‘Tourism places’ page will calculate how many tourisms places the user can visit within the

transit hour they have by using the algorithm.

7. A ‘place details” page will direct to new user interface with scrollable list view.

8. A ‘pop up’ page when user click each mark on map. When the user clicks the mark, the pop up will

show the address of each location.

9. A ‘GPS Navigation’ page is using satellite and it is implementing context awareness concept where

it will direct user to their destination. This interface also has voice navigation which will help the

user to hear the navigation while driving rather than looking at the map continuously.

Reports

1. Passenger Report
2. Flight timing Report
3. Near by tourism places Month Report

See also for authentic understanding, click the link

https://travelplanner.co.in;

https://www.expedia.com;

https://www.orbitz.com;

https://www.kayak.com and so on.

Each student has to refer any one of the web sites stated above.

18. Restaurant Reservation and Table Management Solutions

Objective: Restaurant Reservation and Table Management system is a Web application designed to

help you (and your coworkers) to select the restaurant you are going to eat in. You can manage users,

restaurants, menus, prices, give notations to each lunch, etc.

Functional Requirements

1. Reservation Management

a. Easily enter or modify reservations while viewing guest histories.

b. Capture phone numbers, email and mailing addresses.

c. Allow management blocking and VIP pre-assignments.

d. Reduce no-shows with enhanced customer tracking.

e. Take reservations from your website or Open Table 24 hours.

2. Table Management

a. Maximize seat utilization with walk-in and waitlist functionality.

b. Instantly track covers for more efficient kitchen and server management. Increase

 table turns by tracking party status. Store multiple reservation sheets for holidays and

583 | P a g e

 special events.

c. Hold and combine tables for large parties.

d. Record and view shift notes for each day

3. Guest Management

a. Identify regulars and VIPs

b. Track customer preferences to meet and anticipate special requests

c. View customer reservation histories at-a-glance

d. Track special occasions such as guest birthdays and anniversaries Marketing

 Management

e. Conduct powerful email marketing campaigns to increase repeat business.

f. Print mailing labels to reach select target audiences.

g. Track and reward concierge business.

4. Increase control

a. Manage reservations from the back-office or any other location. Simultaneously

 control multiple restaurants from key centralized locations.

b. Share guest data across sister restaurants.

Reports

1. Day wise customer Report
2. No. of tables filled Report
3. VIP’s Report

See also for authentic understanding, click the link

 https://www.elluminatiinc.com/restaurant-reservation-system/;

 https://restaurant.opentable.com/;

 https://www.tornosubitodubai.com/;

 https://indiarestaurant.co.in/ and so on.

 Each student has to refer any one of the web sites stated above

19. Stay safe women security application
2.

Objective: Build stay safe women security project is used to provide highly reliable security system for

the safety of women. The proposed system is based upon advanced sensors and GPS. The basic aim of

the system is to develop a low cost solution for GPS based women tracking system (Women Safety

System). The main objective of the system is to track the current location of the person which has an

android enabled mobile by extracting the longitude and latitude of that target person.

Functional Requirements

1. A ‘Scream Alarm’ page used perfect for the females as well as other users that need some kind of

safety alarm in case they found out that someone is following or stalking them. It also consists of two

other types of scream alarm. It’s an initial distraction which will buy some time and allow the user to

escape from the trouble.

c. Male voice scream

d. Police siren.

The user could select one of his/her choice from the “Settings” of the application, as keeping in mind

the two other scream alarms are also added in this application as now a days safety and security is

everybody’s concern.

2. A ‘Fake Call Timer’ page which the fake call timer allows the user to make fake calls in the time of

need. It helps user to escape from an undesirable situation citing an important call from anyone who

584 | P a g e

needs him/her urgently and rest depends upon user creativity. This feature also helps the user to

escape from boring social events

In order to make a fake call the user have to select the “Fake Call” icon and after that user could

write any name from which he/she wants a fake call. User could also set up the timer as per the

requirement. The user could also set the default timer from the “Settings” icon of the application.

In a critical situation, the user just have to long term press the fake call button and automatically get

a fake call as per the desired selected timer in the settings.

3. A ‘Where Are You’ which is used to find track friend. While first request is send by the sender. The

sender will have to select the “Where Are You” icon and then a new dialog box of “Pick a Friend”

will open up. The sender could select any friend and the request will be sent to the receiver. The

receiver will accept that request from their end and a message will be sent to the receiver with the

present location of the user.

4. A ‘Track Me’ which will track the user to view the exact dynamic location of the victim. First user have

to send the Track Me request at the receivers end. The receiver will accept the request and then

his/her name will appear on the friends you are tracking on the bottom of the application. The user

could select that friend from there and then it will get automatically re-directed to the Google maps

from where the user could view the exact location of the victim and also where’s he/she heading to.

5. A ‘Friends List’ page which shows all the contact numbers of family and friends which are added by

the user through contacts. This could be done by selecting the contact icon on the bottom right

corner of the friends list.

6. A ‘Settings’ page which consists of the following features -:

e. A ‘Emergency Services’ page allows the Stay Safe Application to send emergency notifications

and SMS with the exact location to the emergency contacts.

f. A ‘Low Battery Alert’ page alert feature allows the Stay Safe Application to send low battery alert

and SMS to the emergency contacts.

g. A ‘Set Scream Sound’ page which the user could select any scream sound as per the requirement.

h. A ‘Fake Call Timer (On Long press)’ page which the user could set the fake call default timer as

per the requirement.

7. A ‘Emergency Distress Signal (SOS)’ which the distress signal will be generated by the user in case of

an emergency. In order to generate the distress signal the user have to shake up his/her phone, then

a distress signal will appear at the user end with a default timer of 5 sec. In the end distress signal will

be sent to the emergency contacts added by the user at the time of registration. The application send

SMS and user details as well as the exact location of the user through a push notification at the

receiver end, before sending a distress signal the user first have to turn on the emergency services

from the settings of the application.

Reports

1. Day wise women registered Report

2. emergency notifications Report

See also for authentic understanding, click the link

 https://womensafetywing.telangana.gov.in;

 https://nirbhayaapp.com; https://safetipin.com;

 https://wsww.smart24x7.com and so on.

Each student has to refer any one of the web sites stated above

https://safetipin.com/

585 | P a g e

20. Secure Stock Exchange System using Web Services
1.

Objective: This project implements a stock exchange is simply a system that is designed for the sale

and purchase of securities of corporations and municipalities. A stock exchange sells and buys stocks,

shares, and other such securities. In addition, the stock exchange sometimes buys and sells certificates

representing commodities of trade

Functional Requirements

1. Stock Markets & Investments

a. Stock Exchange Listing

b. Stock Options & Analysis

c. Stock Market Crash

d. Selling Stock Certificates

e. Stock Market Forecasts

2. Stock Options

 Types of Stocks

a. Stock Option Valuation

b. Restricted Stock Options

3.Related Information

a. Day Trading Stocks

b. Stock Quotes & Stock Ticker

c. Stock Charts

d. Share Portfolio Management

Reports

1. Day wise sellers Report
2. Day wise buys Report
3. Shares report

See also for authentic understanding, click the link
https://stocksandsecurities.adityabirlacapital.com/;

https://www.nseindia.com/;

https://www.jpx.co.jp/english/;

https://www.mstock.com/ and so on.

Each student has to refer any one of the web sites stated above.

21.Final Notes

 Web development refers to the creating, building, and maintaining of websites. It includes aspects such

as web design, web publishing, web programming. It is the creation of an application that works over the

internet i.e. websites.

• The ACM - ICPC International collegiate programming contest (https://icpc.global/)

• The Topcoder Open (TCO) annual programming and design contest

(https://www.topcoder.com/)

• Universidad de Valladolid’s online judge (https://uva.onlinejudge.org/).

• Peking University’s online judge (http://poj.org/).

• USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

• Google’s coding competitions (https://codingcompetitions.withgoogle.com/codejam,

https://codingcompetitions.withgoogle.com/hashcode)

• The ICFP programming contest (https://www.icfpconference.org/)

• BME International 24-hours programming contest (https://www.challenge24.org/)

• The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

https://www.nseindia.com/
https://www.jpx.co.jp/english/
https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/
https://www0.us.ioccc.org/main.html

586 | P a g e

• Internet Problem Solving Contest (https://ipsc.ksp.sk/)

• Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

• Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

• Open Challenge (https://www.openchallenge.org/)

Student must have any one of the following certifications:

• Udemy- Web Development Masterclass

• coursera – Web Design for Everybody: Basic of Web Development and Coding

• NPTEL – Introduction to Modern Application Development.

V. TEXT BOOKS:

1. Thomas A. Powell, “The Complete Reference”, “HTML and CSS”, 5th edition, 2017

2. Elisabeth Robson , Eric Freeman,”Head First HTML and CSS: A Learner's Guide to Creating Standards-

Based Web Pages”, 2nd edition, 2012

3. Adam Boduchand Roy Derks, “React and React Native: A Complete Hands-on Guide to Modern Web and

Mobile Development with React.js”, 3rd edition, 2020.

VI. REFERENCE BOOKS:

1. W Hans Bergsten, “Java Server Pages”, O‘Reilly, 3rd edition, 2003.

2. D. Flanagan, “Java Script”, O‘Reilly, 6th edition, 2011.

3. Jon Duckett, “Beginning Web Programming”, WROX, 2nd edition, 2008.

VII. ELECTRONICS RESOURCES:

 1. https://www.codecademy.com/learn/paths/web-development/

 2. https://nptel.ac.in/courses/106/105/106105084/

 3. https://medium.com/@aureliomerenda/create-a-native-web-app-with-react-native-web419acac86b82

 4. https://www.coursera.org/learn/react-native
 5. https://desirecourse.net/react-native-and-redux-course-using-hooks

VIII. MATERIALS ONLINE

1. Course template

2. Lab Manual

https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/
https://www.amazon.com/Elisabeth-Robson/e/B007AJ3ZQU/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Eric+Freeman&text=Eric+Freeman&sort=relevancerank&search-alias=books
https://nptel.ac.in/courses/106/105/106105084/
https://medium.com/@aureliomerenda/create-a-native-web-app-with-react-native-web419acac86b82
https://www.coursera.org/learn/react-native

587 | P a g e

COURSE CONTENT

DATABASE MANAGEMENT SYSTEMS LABORATORY

II Semester: CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours / Week Credits Maximum Marks

AITD05 Core
L T P C CIA SEE Total

0 0 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisites: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

The purpose of this course is to provide a clear understanding of fundamentals with emphasis on their

applications to create and manage large data sets. It highlights on technical overview of database software to

retrieve data from n database. The course includes database design principles, normalization, concurrent

transaction processing, security, recovery and file organization techniques.

I. COURSES OBJECTIVES:

The students will try to learn

I. The SQL commands for data definition, manipulation, control and perform transactions in database systems.

II. The procedural language for implementation of functions, procedures, cursors and triggers using PL/SQL

programs.

III. The logical design of a real time database system with the help of Entity Relationship diagrams.

II. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Demonstrate database creation and manipulation concepts with the help of SQL

queries.

CO2 Make use of inbuilt functions of SQL queries to perform data aggregations, subqueries,

embedded queries and views.

CO3 Apply key constraints on database for maintaining integrity and quality of data.

CO4 Demonstrate normalization techniques by using referential key constraints.

CO5 Implement PL/SQL programs on procedures, cursors and triggers for enhancing the

features of database system to handle exceptions.

CO6 Design database model with the help of Entity Relationship diagrams for a real time

system or scenario.

588 | P a g e

IV. ACOURSES CONTENT:

EXERCISES FOR DATABASE MANAGEMENT SYSTEMS

LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory

practice sessions.

1. Getting Started Exercises

Installation and Accessing Data base

Introduction:

A Database Management System (DBMS) is a software system that is designed to manage and

organize data in a structured manner. It allows users to create, modify, and query a database, as well

as manage the security and access controls for that database.

We can use different Database Languages and PL/SQL Programming for performing Database

management in

Convenient manner.

.Software:

Oracle

Installation of Oracle Database:

Step 1: Go to Main Database Folder where you’ll find Setup. Right click the setup.exe file and choose

Run as Administrator.

Step 2: Click Yes to continue. This will start Oracle Universal Installer.

Step 3: Select any of the three different Installation Options according to your needs.

• Option 1 – If you want to Install Oracle Server Software and want to Create Database also.

• Option 2 – If you want to Install Oracle Server only.

• Option 3 – If you want to Upgrade your Existing Database.

Step 4: Choose between Server Class and Desktop Class as per your requirement and click on Next.

Step 5: Configure the basic settings and create a Password for your database. Once the configuration

is done click on Next to continue.

Step 6: Oracle Universal Installer (OUI) will check for the Prerequisites such as Hardware compatibility.

Step 7: Click on Finish to start the Installation process. This installation might take some time

depending on your Hardware.

Step 8: Click OK to finish the installation.

Step 9: Copy the localhost link provided to open your Enterprise Manager.

Step 10: Click the Close Button and you are done with the Installation Process.

Go to Start Menu and

• Search Oracle Folder

• Click on Database Control – Oracle (Your Global Database Name)

• This will take you to the Login Screen of your Oracle Enterprise Manager.

589 | P a g e

1.1 Creating and Deleting a Database - CREATE DATABASE and DROP

DATABASE

You can create a new database using SQL command "CREATE DATABASE databaseName"; and

delete a database using "DROP DATABASE databaseName". You could optionally apply condition

"IF EXISTS" or "IF NOT EXISTS" to these commands. For example,

mysql> CREATE DATABASE southwind;

Query OK, 1 row affected (0.03 sec)

mysql> DROP DATABASE southwind;

Query OK, 0 rows affected (0.11 sec)

mysql> CREATE DATABASE IF NOT EXISTS southwind;

Query OK, 1 row affected (0.01 sec)

mysql> DROP DATABASE IF EXISTS southwind;

Query OK, 0 rows affected (0.00 sec)

IMPORTANT: Use SQL DROP (and DELETE) commands with extreme care, as the deleted entities

are irrecoverable. THERE IS NO UNDO!!!

SHOW CREATE DATABASE

The CREATE DATABASE commands uses some defaults. You can issue a "SHOW CREATE

DATABASE databaseName" to display the full command and check these default values. We

use \G (instead of ';') to display the results vertically. (Try comparing the outputs produced

by ';' and \G.)

mysql> CREATE DATABASE IF NOT EXISTS southwind;

mysql> SHOW CREATE DATABASE southwind \G

*************************** 1. row ***************************

 Database: southwind

Create Database: CREATE DATABASE `southwind` /*!40100 DEFAULT CHARACTER SET latin1 */

Try:

Create own database for storing all tables

2. Exercises on database definition language queries.

2.1 Create a table called Employee with the following structure.

a. Add a column commission with domain to the Employee table.

b. Insert any five records into the table.

c. Update the column details of job

590 | P a g e

d. Rename the column of Employ table using alter command.

e. Delete the employee whose emp no is 19

create table employee (empno number, ename varchar2(10),job varchar2(10),mgr number,sal

number);

Table created.

SQL> desc employee;

Name Null Type

EMPNO NUMBER

ENAME VARCHAR2(10)

JOB VARCHAR2(10)

MGR NUMBER

SAL NUMBER

2.2 Add a column commission with domain to the Employee table.

SQL> alter table employee add(commission number); Table altered.

SQL> desc employee;

Name Null Type

EMPNO NUMBER

ENAME VARCHAR2(10)

JOB VARCHAR2(10)

MGR NUMBER

SAL NUMBER

COMMISSION NUMBE

2.3 Insert any five records into the table.

SQL> insert into employee values(&empno,’&ename’,’&job’,&mgr,&sal,’&commission’);

Enter value for empno: 101

Enter value for ename: abhi Enter value for job: manager

Enter value for mgr: 1234 Enter value for sal: 10000 Enter value for commission: 70

Page 11

old 1: insert into employee values(&empno,’&ename’,’&job’,&mgr,&sal,’&commission’)

new 1: insert into employee values(101,’abhi’,’manager’,1234,10000,’70’)

1 row created.

2.4 Update the column details of job

SQL> update employee set job=’trainee’ where empno=103; 1 row updated.

SQL> select * from employee;

EMPNO ENAME JOB MGR SAL COMMISSION

101 abhi manager 1234 10000 70

102 rohith analyst 2345 9000 65

103 david trainee 3456 9000 65

104 rahul Clerk 4567 7000 55

105 pramod salesman 5678 5000 5

591 | P a g e

2.5 Rename the column of Employ table using alter command.

SQL> alter table employee rename column mgr to manager_no;

Table altered.

SQL> desc employee;

Name Null Type

EMPNO NUMBER

ENAME VARCHAR2(10)

JOB VARCHAR2(10)

MANAGER_NO NUMBER

SAL NUMBER

COMMISSION NUMBER

Try:

1. List the maximum salary paid to salesman

2. Display name of emp whose name start with “I‟

3. List details of emp who have joined before ‟30-sept-81‟

4. Display the emp details in the descending order of their basic salary

5. List of no of emp & avg salary for emp in the dept no „20‟

Hint:

Create a database called company consist of the following tables by using data definition

languages.

1.Emp (eno, ename, job, hire date, salary, commission, deptno,)

2.dept (deptno, deptname, location)

eno is primary key in emp

deptno is primary key in dept

3. Exercises on database Manipulation language Queries.

3.1 Create a table called department with the following structure.

SQL> create table department (deptno number, deptname varchar2(10), location

varchar2(10));

Table created.

SQL> desc department;

DEPTNO NUMBER

DEPTNAME VARCHAR2(10)

LOCATION VARCHAR2(10)

592 | P a g e

3.2 Add column designation to the department table.

SQL> alter table department add(designation varchar2(10));

Table altered.

SQL> desc department;

DEPTNO NUMBER

DEPTNAME VARCHAR2(10)

LOCATION VARCHAR2(10)

DESIGNATION VARCHAR2(10)

3.3 Insert values into the table.

SQL> insert into department values(&deptno,’&deptname’,’&location’,&designation’);

Enter value for deptno: 9

Enter value for deptname: accounting Enter value for location: hyderabad Enter value for designation:

manager

old 1: insert into department values(&deptno,’&deptname’,’&location’,’&designation’)

new 1: insert into department values(9,’accounting’,’hyderabad’,’manager’)

1 row created.

SQL> /

Enter value for deptno: 10

Enter value for deptname: research Enter value for location: chennai Enter value for

designation:

professor

old 1: insert into department values(&deptno,’&deptname’,’&location’,’&designation’)

new 1: insert into department values(10,’research’,’chennai’,’professor’)

1 row created

3.4 List the records of emp table grouped by deptno.

SQL> select deptno,deptname from department group by deptno,deptname;

Page 13

DEPTNO DEPTNAME

9 accounting

12 operations

10 research

11 sales

3.5 Update the record designation where deptno is 17.

SQL> update department set designation=’accountant’ where deptno=17;

2 rows updated.

593 | P a g e

Try:

1. List full details of all Rooms.

2. How many Rooms are there.

3. List the price and type of all rooms at the Amrutha Hotel.

4. List the number of guests in each Room

5. Update the price of all rooms by 5%.

Hint:

The following tables form part of a database held in a relational DBMS by using data

manipulation languages:

Hotel (HotelNo, Name, City) HotelNo is the primary key

Room (RoomNo, HotelNo, Type, Price)

Booking (HotelNo, GuestNo, DateFrom, DateTo, RoomNo)

Guest (GuestNo, GuestName, GuestAddress) GuestNo is primary key

Room contains room details for each hotel and (HotelNo, RoomNo) forms the

primary key.

Booking contains details of the bookings and the primary key comprises

(HotelNo, GuestNo and DateFrom)

4. Exercises on both DDL and DML Queries.

4.1 Create a table called Customer with the following structure.

Students can execute fallowing queries based on previous queries executed

Try:

1. Retrieve city, phone, url of author whose name is „CHETAN BHAGAT‟.

2. Retrieve book title, reviewable id and rating of all books.

3. Retrieve book title, price, author name and url for publishers „MEHTA‟.

4. In a PUBLISHER relation change the phone number of „MEHTA‟ to 123456

5. Calculate and display the average, maximum, minimum price of each publisher.

6. Delete details of all books having a page count less than 100.

7. Retrieve details of all authors residing in city Pune and whose name begins with character

„C‟.

8. Retrieve details of authors residing in same city as „Korth‟.

9. Create a procedure to update the value of page count of a book of given ISBN.

10. Create a function that returns the price of book with a given ISBN.

Hint:

Create the following tables using data definition languages, data manipulation languages.

1)PUBLISHER (PID , PNAME ,ADDRESS ,STATE ,PHONE ,EMAILID);

2)BOOK (ISBN ,BOOK_TITLE , CATEGORY , PRICE , COPYRIGHT_DATE , YEAR ,PAGE_COUNT

,PID);

3) AUTHOR (AID,ANAME,STATE,CITY ,ZIP,PHONE,URL)

4) AUTHOR_BOOK (AID, ISBN);

5) REVIEW (RID, ISBN, RATING);

594 | P a g e

5. Exercises on tables with different types of constraints.

5.1 Not Null constraints.

CREATE TABLE STUDENT(

ROLL_NO INT NOT NULL,

STU_NAME VARCHAR (35) NOT NULL,

STU_AGE INT NOT NULL,

STU_ADDRESS VARCHAR (235),

PRIMARY KEY (ROLL_NO)

);

Query OK, 0 rows affected (0.01 sec)

mysql> insert into student values(6201 ,'raj',18,'meerpet');

Query OK, 1 row affected (0.02 sec)

mysql> insert into student values(NULL,'raj',18,'meerpet');

ERROR 1048 (23000): Column 'ROLL_NO' cannot be null

5.2 Unique constraints.

CREATE TABLE STUDENT1(

ROLL_NO INT NOT NULL,

STU_NAME VARCHAR (35) NOT NULL UNIQUE,

STU_AGE INT NOT NULL,

STU_ADDRESS VARCHAR (35) UNIQUE,

PRIMARY KEY (ROLL_NO)

);

Query OK, 0 rows affected (0.02 sec)

mysql> insert into student1 values(6201,'raj',18,'meerpet');

Query OK, 1 row affected (0.01 sec)

mysql> insert into student1 values(6201,'raj',18,'meerpet');

ERROR 1062 (23000): Duplicate entry '6201' for key 'PRIMARY'

mysql> insert into student1 values(6202,'raj',18,'meerpet');

ERROR 1062 (23000): Duplicate entry 'raj' for key 'STU_NAME'

mysql> insert into student1 values(6202,'ram',18,'meerpet');

ERROR 1062 (23000): Duplicate entry 'meerpet' for key 'STU_ADDRESS'

595 | P a g e

5.3 Default constraints.

CREATE TABLE STUDENT2(

ROLL_NO INT NOT NULL,

STU_NAME VARCHAR (35) NOT NULL,

STU_AGE INT NOT NULL,

EXAM_FEE INT DEFAULT 10000,

STU_ADDRESS VARCHAR (35) ,

PRIMARY KEY (ROLL_NO)

);

insert into

student2(ROLL_NO,STU_NAME,STU_AGE,STU_ADDRESS)values(6202,'sam',21,'lbnagar')

;

Query OK, 1 row affected (0.00 sec)

mysql> select * from student2;

+---------+----------+---------+----------+-------------+

| ROLL_NO | STU_NAME | STU_AGE | EXAM_FEE | STU_ADDRESS |

+---------+----------+---------+----------+-------------+

| 6201 | raj | 18 | 12000 | meerpet |

| 6202 | sam | 21 | 10000 | lbnagar |

+---------+----------+---------+----------+-------------+

2 rows in set (0.00 sec)

5.4 Check constraints.

CREATE TABLE STUDENT3(

ROLL_NO INT NOT NULL CHECK(ROLL_NO >1000) ,

STU_NAME VARCHAR (35) NOT NULL,

STU_AGE INT NOT NULL,

EXAM_FEE INT DEFAULT 10000,

STU_ADDRESS VARCHAR (35) ,

PRIMARY KEY (ROLL_NO)

);

 insert into student3 values(112,'ramana',23,12000,'hyderabad');

Query OK, 1 row affected (0.01 sec)

mysql> select * from student3;

+---------+----------+---------+----------+-------------+

| ROLL_NO | STU_NAME | STU_AGE | EXAM_FEE | STU_ADDRESS |

+---------+----------+---------+----------+-------------+

| 112 | ramana | 23 | 12000 | hyderabad |

| 800 | raj | 13 | 12000 | lbnagar |

| 900 | raj | 13 | 12000 | lbnagar |

+---------+----------+---------+----------+-------------+

596 | P a g e

3 rows in set (0.00 sec)

5.5 Auto Increment Constraints.

CREATE TABLE Persons1 (

 Personid int NOT NULL AUTO_INCREMENT,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 PRIMARY KEY (Personid)

);

INSERT INTO persons1 values(11,'reddy','ramana',23);

Query OK, 1 row affected (0.00 sec)

INSERT INTO persons1(LastName,FirstName,Age) values('reddy','ramana',23);

Query OK, 1 row affected (0.02 sec)

mysql> select * from persons1;

+----------+----------+-----------+------+

| Personid | LastName | FirstName | Age |

+----------+----------+-----------+------+

| 11 | reddy | ramana | 23 |

| 12 | reddy | ramana | 23 |

+----------+----------+-----------+------+

2 rows in set (0.00 sec)

Try:

Create tables with both Primary key and foreign key constraints

Hint:

Practice all constraints for obtaining syntax on both primary and foreign key

constraints that applied on ID.

6. Exercises on Join Operations and Aggregate Functions in

Database.

6.1 Create table names called ‘students’ and ‘officers’ and insert values as

show in below.

597 | P a g e

6.2 Inner join

1. SELECT officers.officer_name, officers.officer_address, students.course_name

2. FROM officers

3. INNER JOIN students

4. ON officers.officer_id = students.student_id;

6.3 Left Outer Join

1. SELECT officers.officer_name, officers.officer_address, students.course_name

2. FROM officers

3. LEFT JOIN students

4. ON officers.officer_id = students.student_id;

6.4 Right Outer Join

1. SELECT officers.officer_name, officers.officer_address, students.course_name,

students.student_name

2. FROM officers

3. RIGHT JOIN students

4. ON officers.officer_id = students.student_id;

598 | P a g e

6.5 Cross Join

SSelect officers.officer_name,officers.officer_address,students.course_name from officers

CROSS join students;

Try:

Perform Self join, Equi join, Natural joins on tables to get the values from multiple tables.

Hint:

Understand and use same syntax applied for all joins can use as same it is for Self-join, Equi

join, Natural joins.

6.6 AGGREGATE FUNCTIONS:

1. Count() Function:

SELECT COUNT(name) FROM employee;

2. Sum() Function

SELECT SUM(working_hours) AS "Total working hours" FROM employee;

3. AVG() Function:

 SELECT AVG(working_hours) AS "Average working hours" FROM employee;

4. MIN() Function:

SELECT MIN(working_hours) AS Minimum_working_hours FROM employee;

599 | P a g e

5. MAX() Function:

SELECT MAX(working_hours) AS Maximum_working_hours FROM employee;

Try:

Execute other aggregate functions to find first and Last employees

Hint:

Use First and Last functions as aggregate functions to execute

7. Exercises on TCL (transaction control language) Queries to

perform rollbacking and save point mechanisms.

7.1 Create table names called ‘class’ and insert values into table.

mysql> create table class (id int(5),Name char(10));

Query OK, 0 rows affected (0.01 sec)

mysql> insert into class values(1,'one'),(2,'two');

Query OK, 2 rows affected (0.00 sec)

Records: 2 Duplicates: 0 Warnings: 0

Now to perform TCL we need start the transaction:

For that START TRANSACTION is a command to do start our transaction.

SAVEPOINT works only before commit operation.

After commit operation SAVEPOINT will not work.

So save point saves the current work and displays the information.

7.2 Before commit performs

600 | P a g e

NOW

 If we perform COMMIT operation then we are not rollback the data which happens on save point

states;

We can roll back the data which doesn’t performed with commit operation.

7.3 After commit performs

601 | P a g e

So after COMMIT No information will rollback.

All the above commit,

rollback, save point operations can be done after START TRANSACTION only.

Try:

Insert two more values and perform commit operation then roll back again

Hint:

Perform before commit operation to rollback data from various operations performed

8. Exercises on user accounts to grant privileges using Data

Control language process.

8.1 Create user.

create user ‘username’@’localhost’ IDENTIFIED BY ‘password’;

Ex:

create user 'iare' identified by 'iare';

Query OK, 0 rows affected (0.05 sec)

SEEL LIST OF USERS IN DATABASE:

select user from mysql.user;

TO SEE CURRENT USER:

select current_user();

TO SEE DESCRIPTION OF USER:

desc mysql.user;

TO SEE LIST OF USERS, HOST:

select user,host from mysql.user;

8.2 To Grant All Privileges, Specific Privileges to The User:

SYNTAX:

GRANT ALL PRIVILEGES ON * . * TO 'new_user'@'localhost';

GRANT ALL PRIVILEGES ON * . * TO ‘2nduser’@’localhost’;

Query OK, 0 rows affected (0.00 sec)

TO GRANT SPECIFIC PRIVILEGES TO THE USER:

GRANT CREATE, SELECT ON * . * TO '2nduser'@'localhost';

602 | P a g e

Query OK, 0 rows affected (0.00 sec)

SHOW PRIVILEGES TO THE USER:

SHOW GRANTS FOR '2nduser'@'localhost';

8.3 Revoke permissions from user:

8.4 Login as User:

Before login as a user, the user has to privileged with root user as mentioned above grants option.

That means a new user having permission to login as user.

Now

To login to a different user account, we need to open the command prompt by executing the run

command.

After clicking the OK button, we can see the command prompt

Now move to the path where my sql has been specified

C drive->program files(x86)->mysql->mysql server5.5->bin

As shown in below

603 | P a g e

Next type the fallowing syntax to login as user:

Mysql -u username -p

8.5 DROP USERS FROM DATABASE:

DROP USER ‘user_name’@‘localhost’;

Try:

create any other user and grant specific privileges on create and select permissions

Hint:

create user and perform DCL operations to give privileges and revoke privileges

9. Working with basic PL/SQL programing Examples

To start with pl/sql programming

Open oracle run sql cmd line avialable in oracle

After opening window

Just type CONNECT and hit enter

Now

 it is asking you to enter user-name and password;

Enter both and now it is connected as shown in below

604 | P a g e

SQL> CONNECT

Enter user-name: SYSTEM

Enter password: admin

Connected.

Before starting pl/sql programming we need to set server;

To start server type fallowing command after connected as shown in above.

SET SERVEROUTPUT ON

After that we can start to write program as per the below syntax

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling>

END;

9.1 Hello world example with programming

9.2 Declaration and Initialization of Variables

605 | P a g e

9.3 Datatypes and its values

Try:

write program to display both local and global variable values

Hint:

use the concept local and global declaration and its variables

10. Working with PL/SQL Programming Functions.

Syntax to create a function:

CREATE [OR REPLACE] FUNCTION function_name [parameters]

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

10.1 Addition of two numbers

Creating function:

create or replace function adder(n1 in number, n2 in number)

return number

is

n3 number(8);

begin

n3 :=n1+n2;

return n3;

end;

/

call the function.:

606 | P a g e

DECLARE

 n3 number(2);

BEGIN

 n3 := adder(11,22);

 dbms_output.put_line('Addition is: ' || n3);

END;

/

10.2 compute and return the maximum of two values.

DECLARE

 a number;

 b number;

 c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

 z number;

BEGIN

 IF x > y THEN

 z:= x;

 ELSE

 Z:= y;

 END IF;

 RETURN z;

END;

BEGIN

 a:= 23;

 b:= 45;

 c := findMax(a, b);

 dbms_output.put_line(' Maximum of (23,45): ' || c);

END;

/

607 | P a g e

10.3 creating and calling function to access values from table.

To do this first create a table as shown in below

CREATE TABLE customers1

 (customer_id number(10) NOT NULL,

 customer_name varchar2(50) NOT NULL,

 city varchar2(50)

);

Next insert values into table as shown in below

insert into customers1 values(12,'raj','hyderabad');

insert into customers1 values(13,'ram','secunderabad');

Now create a function to count the no of customers in table:

Creating function:

CREATE OR REPLACE FUNCTION Fcustomers

RETURN number IS

 total number(2) := 0;

BEGIN

 SELECT count(*) into total

 FROM customers1;

 RETURN total;

END;

/

Calling function:

DECLARE

 c number(2);

BEGIN

 c := Fcustomers();

 dbms_output.put_line('Total no. of Customers: ' || c);

END;

/.

Try:
Create a function that updates the value of any column in the table.

Hint:
To update we use dml commands and call function to access values from table.

608 | P a g e

11. Working with PL/SQL Programming procedures.

Syntax:

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

 < procedure_body >

END procedure_name;

11.1 Create procedure to display hello world.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

 dbms_output.put_line('Hello World!');

END;

/

TO EXECUTE:

EXECUTE greetings;

11.2 IN & OUT Mode Example to display square of number

DECLARE

 a number;

PROCEDURE squareNum(x IN OUT number) IS

BEGIN

 x := x * x;

END;

BEGIN

 a:= 23;

 squareNum(a);

 dbms_output.put_line(' Square of (23): ' || a);

END;

/

609 | P a g e

11.3 calculate the net salary and year salary if da is 30% of basic, hra is

10% of basic and pf is 7% if basic salary is less than 8000, pf is 10% if basic

sal between 8000 to 160000.

declare

ename varchar2(15); basic number;

da number; hra number; pf number;

netsalary number; yearsalary number;

begin

ename:=’&ename’; basic:=&basic; da:=basic * (30/100); hra:=basic * (10/100);

if (basic < 8000) then

pf:=basic * (8/100);

elsif (basic >= 8000 and basic <= 16000) then

pf:=basic * (10/100);

end if;

netsalary:=basic + da + hra - pf; yearsalary := netsalary*12;

dbms_output.put_line(’Employee name : ’ || ename);

dbms_output.put_line(’Providend Fund : ’ || pf); dbms_output.put_line(’Net salary : ’ || netsalary);

dbms_output.put_line(’Year salary : ’|| yearsalary); end;

/

Try:

Write procedure to find maximum and minimum of two numbers

Hint:

create and call procedure, use conditions to find max or minimum numbers

12. Working with PL/SQL Programming Triggers.

Triggers are stored programs, which are automatically executed or fired when some event occurs.

Trigger is stored into database and invoked repeatedly, when specific condition match.

12.1 Syntax for creating trigger:

CREATE [OR REPLACE] TRIGGER trigger_name

610 | P a g e

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

To do this first create a table called emp:

create table emp (id number, name varchar2(50),salary number);

Insert any values:

611 | P a g e

Check values inserted or not:

12.1 Creating the trigger for updating salary:

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON emp

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

 sal_diff number;

BEGIN

 sal_diff := :NEW.salary - :OLD.salary;

 dbms_output.put_line('Old salary: ' || :OLD.salary);

 dbms_output.put_line('New salary: ' || :NEW.salary);

 dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

12.2 Calling the trigger for updating salary:

DECLARE

 total_rows number(2);

BEGIN

 UPDATE emp

 SET salary = salary + 5000;

 IF sql%notfound THEN

 dbms_output.put_line('no customers updated');

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ' customers updated ');

 END IF;

END;

/

612 | P a g e

12.2 Check the salary is updated or not:

Try:

Create the trigger to delete an employee name ‘raj’

Hint:

Use DML and DDL commands, triggers to delete the employee’s name ‘raj’

13. Working with PL/SQL Programming Cursors.

A cursor is a pointer to this context area. It contains all information needed for processing the

statement. In PL/SQL, the context area is controlled by Cursor. A cursor contains information

on a select statement and the rows of data accessed by it.

A cursor is used to referred to a program to fetch and process the rows returned by the SQL

statement, one at a time. There are two types of cursors:

1. Implicit Cursors

2. Explicit Cursors

13.1 syntax for explicit cursor declaration

Declare the cursor:

Syntax for explicit cursor declaration

CURSOR name IS

 SELECT statement;

Open the cursor:

OPEN cursor_name;

Fetch the cursor:

FETCH cursor_name INTO variable_list;

Close the cursor:

Close cursor_name;

13.2 Implicit Cursor for customers salary update

DECLARE

 total_rows number(2);

BEGIN

 UPDATE emp

 SET salary = salary + 5000;

 IF sql%notfound THEN

 dbms_output.put_line('no customers updated');

613 | P a g e

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ' customers updated ');

 END IF;

END;

/

13.3 Explicit cursor for displaying updated salary

DECLARE

 c_id emp.id%type;

 c_name emp.name%type;

 c_salary emp.salary%type;

 CURSOR c_customers is

 SELECT id, name, salary FROM emp;

BEGIN

 OPEN c_customers;

 LOOP

 FETCH c_customers into c_id, c_name, c_salary;

 EXIT WHEN c_customers%notfound;

 dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_salary);

 END LOOP;

 CLOSE c_customers;

END;

/

Try:

Create cursor to delete the employee whose salary is more than 24000

Hint:

Use DDL and DML commands with cursors to delete the employee.

614 | P a g e

V.TEXT BOOKS:

1. Abraham Silberschatz, Henry F.Korth, S.Sudarshan, “Database System Concepts", McGraw-Hill, 6th
edition, 2017.

VI.REFERENCE BOOKS:

1. Ramez Elmasri, Shamkant, B. Navathe, “Database Systems”, Pearson Education, 6th edition, 2013.

2. Peter Rob, Carles Coronel, “Database System Concepts”, Cengage Learning, 7th edition, 2008.

VII.ELECTRONICS RESOURCES

1. http://www.scoopworld.in

VIII. MATERIALS ONLINE

1. Course template

2. Lab Manual

615 | P a g e

COURSE CONTENT

APPLIED ARTIFICIAL INTELLIGENCE ALGORITHMS LABORATORY

IV Semester: CSE (AI & ML)

Course Code Category Hours / Week Credits Maximum Marks

ACAD04 Core
L T P C CIA SEE Total

0 0 2 1 40 60 100

Contact Classes: NIL Tutorial Classes: NIL Practical Classes: 45 Total Classes: 45

Prerequisite: Python Programming

I. COURSE OVERVIEW:

Applied Artificial Intelligence (Applied AI) refers to the practical implementation and utilization artificial

intelligence (AI) technologies to solve real-world problems and address specific challenges in various domains.

The objective of this laboratory course for applied artificial intelligence (AI) typically aims to provide students

with hands-on experience in applying AI techniques. Applications provide a foundation for the implementation

of applied artificial intelligence across various industries, addressing specific challenges and delivering practical

solutions the scope and applications of applied AI will vary based on the specific needs and challenges within

different industries and sectors.

II. COURSES OBJECTIVES:

The students will try to learn:

I The suitability of different search algorithms, unification strategies, and knowledge representation

Techniques for given problems.

II The practical applications of forward chaining in expert systems, decision support, and fundamental

probability concepts essential for Bayesian inference.

III The minimax algorithm as a basic approach for decision-making in two-player zero-sum games,

Strategic considerations and algorithmic implementations clearly.

IV The essential aspects of setting up AI environments, implementing local communication protocols

and ensuring secure message verification in the context of AI agents

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Develop programming skills by implementing algorithms related to local search, basic search, and
unification through arithmetic design and coding.

CO2 Utilize coding techniques to model and solve problems in AI, emphasizing practical

implementation of theoretical concepts.
CO3 Make use of the Bayesian network inference techniques to solve real-world problems in diverse

domains, including healthcare, finance, and decision support.

CO4 Demonstrate a comprehensive understanding of fuzzy logic and its application in control

systems.

CO5 Identify intelligent agents to address specific challenges in practical domains, demonstrating the

versatility of AI techniques.

CO6 Solve techniques for encoding and decoding messages exchanged between AI agents,

addressing considerations such as data serialization, compression, and encryption.

616 | P a g e

IV. COURSE CONTENT:

EXERCISES FOR APPLIED ARTIFICIAL INTELLIGENCE

LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory

practice sessions.

1. Getting Started Exercises

1.1 Installing Python and other supportive libraries

8. Install Python 3 on your machine by typing the following command on the terminal:

$ python3 --version

9. Install various useful packages by following the relevant links:

NumPy: http://docs.scipy.org/doc/numpy-1.10.1/user/install.html

SciPy: http://www.scipy.org/install.html

scikit-learn: http://scikit-learn.org/stable/install.html

matplotlib: http://matplotlib.org/1.4.2/users/installing.html

Note: If you are on Windows, you should have installed a SciPy-stack compatible version of

Python 3

10. Install a couple of packages before starting logic programming in python like logpy and sympy

using pip. These packages are useful to work with matching mathematical expressions.

$ pip3 install logpy

$ pip3 install sympy

If you get an error during the installation process for logpy, you can install from source at

https://github.com/logpy/logpy.

Try: Practice appropriate python commands to build a model and use the above libraries (relevant

packages) to interact with the data. The commands may include importing of packages containing all

the datasets, loading of datasets, printing data, printing labels, loading images, extracting a specific

image etc.

1.2 Knowledge Representation using FOL - Translate

The goal of this exercise is to translate each of the following sentences into First Order Logic (FOL).

Later convert the FOL into a prolog program and asking questions.

Input: Domain Knowledge like:

(a) Not all cars have carburetors.

(b) Some people are either religious or pious.

(c) No dogs are intelligent.

(d) All babies are illogical.

(e) Every number is either negative or has a square root.

(f) Some numbers are not real.

(g) Every connected and circuit-free graph is a tree.

http://www.scipy.org/install.html
http://scikit-learn.org/stable/install.html
http://matplotlib.org/1.4.2/users/installing.html
https://github.com/logpy/logpy

617 | P a g e

Output: Equivalent FOL statement.

Hints

Translate the other statements referring the above

Try: Translate each of the following sentences into First Order Logic (FOL):

(a) Not every graph is connected.

(b) All that glitters is not gold.

(c) Not all that glitters is gold.

(d) There is a barber who shaves all men in the town who do not shave themselves.

(e) There is no business-like show business.

1.3 Knowledge Representation using FOL - Translate

The goal of this exercise is to rewrite each proposition symbolically, given that the universe of
discourse is a set of real numbers.

Input: Domain Knowledge like:

(a) For each integer x, there exist an integer y such that x + y = 0.

(b) There exist an integer x such that x + y = y for every integer y.

(c) For all integers x and y, x.y = y.x

(d) There are integers x and y such that x+y=5.

Output: Equivalent FOL statement

Hints

Translate the other statements referring the above

Try: Using FOL, express the following:

(a) Every student in this class has taken exactly two mathematics courses at this school.

(b) Someone has visited every country in the world except Libya.

(c) No one has climbed every mountain in the Himalayas.

1.4 Check the Availability

Every computer science student takes discrete mathematics. Neetha is taking discrete mathematics.

Therefore, Neetha is a computer science student. The given conclusion is false. The following Venn

diagram is a counter example for the given conclusion.

If it does not rain or it is not foggy then the sailing race will be held, and lifesaving demonstrations will

go on. If the sailing race is held, then the trophy will be awarded. The trophy was not awarded.

Therefore, it rained. The goal of this exercise is to translate each of the following sentences into First

Order Logic (FOL)

Input: Venn Diagram as a counter example for the given conclusion.

618 | P a g e

Output: Prove that the above statements are TRUE.

Hints

Consider the below statements and infer the statement by the following
arguments

Try: Prove or Disprove: All doctors are college graduates. Some doctors are not golfers. Hence, some

golfers are not college graduates.

1.5 Rewrite the sentences.

The goal of this exercise is to translate each of the following sentences into First Order Logic (FOL).

Later convert the FOL into a prolog program and asking questions.

Input:

(a) Some boys are sharp and intelligent.

UOD(x): all persons.
Sharp(x): x is sharp.
Boy(x): x is a boy.
Intelligent(x): x is intelligent.

(b) Not all boys are intelligent.

(c) Some students of DM course have cleared JEE main and the rest cleared SAT.

UOD(x): all persons.
ClearJEE(x): x clears JEE main.
ClearSAT(x): x clears SAT.

(d) Something that is white is not always milk, whereas the milk is always white.

UOD(x): things.
White(x): x is white.
M ilk(x): x is milk.

(e) Breakfast is served in mess on all days between 7am and 9am except Sunday. And, on Sundays

it is served till 9.15 am. UOD(x): days. Day(x): x is a day of the week. Breakfast-time-non-

sunday(x): Breakfast is served in mess on x between 7am and 9am. Breakfast-time-sunday(x):

Breakfast is served in mess on x till 9.15am.

619 | P a g e

Output: Equivalent FOL statement.

Hints

Translate the other statements referring the above

Try: Translate each of the following sentences into First Order Logic (FOL):

(a) The speed of light is not same in all mediums. The speed of light in fiber is 2×108 m/s.

Therefore, there exists at least two mediums having different speed of light. UOD(x): mediums.

Medium(x): Light travels in medium x. Speed(x): Speed of light in medium x. P: Speed of light in

fiber is 2 × 108 m/s.

(b) Some students have joined IIITDM. There exists a student who has not joined any IIITDM. Not

all students have cleared JEE advanced. Therefore, some students have joined deemed

universities. UOD(x) : people. UOD(y) : Educational institutes. Stud(x): x is a student. IIIT DM(y) :

y is a IIITDM. JoinIIIT DM(x, y) : x joins IIITDM y. ClearJEE(x) : x cleared JEE advanced.

JoinDeemed(x) : x joins a deemed university.

1.6 Propositions

Identify propositions from the following. If not a proposition, justify, why it is not.

(a) I shall sleep or study.

(b) x 2 + 5x + 6 = 0 such that x ∈ integers.

Input: Propositions

Output: Justify the statements either to be a proposition or not

Hints

The rule of logic allows to distinguish between valid and invalid arguments.
Example:
If x+1=5, then x=4=4. Therefore, if x≠4, then x+1≠5.
If I watch Monday night football, then I will miss the following Tuesday
8 a.m. class. Therefore, if I do not miss my Tuesday 8 a.m. class, then I did not
watch football the previous Monday night.
Use the same format:
If p then q. Therefore, if q is false then p is false.
If we can establish the validity of this type of argument, then we have proved at
once that both arguments are legitimate. In fact, we have also proved that any
argument using the same format is also credible.
Use the above example and give the justifications

Try: Express the following in first order logic (identify the right universe of discourse, predicates before

attempting each question. Think twice and do not oversimplify the problem)

(a) The fundamental law of nature is change.

(b) We cannot help everyone, but everyone can help someone.

(c) Power does not corrupt people, people corrupt power.

(d) It is nice of somebody to do something.

(e) No one who has no complete knowledge of himself will ever have a true understanding of another.

(f) Thought or thinking is what set human beings apart from other living things.

620 | P a g e

1.7 A Simple Theorem Prover – Resolution Principle

Implement a simple theorem prover as a pattern-directed system by limiting only proving theorem in

the simple propositional logic just to illustrate the principle of resolution mechanism. Define the

theorem proving as an extendable to handle the first-order predicate calculus.

Input: A formula as a theorem which is always true regardless of the interpretation of the symbols that

occur in the formula.

Example:

p v ~p

read as ‘p or not p’, is always true regardless of the meaning of p. We will be using the following

symbols as logic operations:

~ - negation, read as ‘not’

& - conjunction, read as ‘and’

v – disjunction, read as ‘or’

= > - implication, read as ‘implies’

Output: Prove that the following propositional formula is a theorem:

(a=>b)&(b=>c)=>(a=>c)

Hints

Write the production rules for resolution theorem proving

Contradicting the clauses
[clause(X), clause(~X)] --->
[write(‘Contradiction found’), stop].

Remove a true clause

Simply the clause

Resolution step, a special case

[clause(P), clause(C), delete(~P, C, C1), not done(P, C, P)] --->
[assert(clause(C1)), assert(done(~P, C, P))].

Repeat the above step for other special cases and write the last rule as a
resolution process stuck

delete(P, E, E1) means: delete a disjunction subexpression P from E giving E1

in(P,E) means: P is a disjunction subexpression in E

621 | P a g e

Write the Translating a propositional formula into(asserted) clauses

Write the Transformation rules for propositional formulas

Try: Implement an interpreter for pattern-directed programs that does not maintain its database as

Prolog's own internal database (with assert and retract), but as a procedure argument according to the

foregoing remark. Such a new interpreter would allow for automatic backtracking. Try to design a

representation of the database that would facilitate efficient pattern matching.

2. Exercises on Logic Programming

2.1 Water Jug Problem

Given two jugs, a 4-gallon one and a 3-gallon one. Neither has any measuring markers on it. There is a

pump that can be used to fill the jugs with water. How can we get exactly 2 gallons of water into a 4-

gallon jug?

Input: 4 3 2

Output: {(0,0),(0,3),(3,0),(3,3),(4,2),(0,2)}

a. Describe the state space as a set of ordered pairs of integers.

b. Generate production rules and perform basic operations to achieve the goal.

c. Initialize the start state and apply the rules iteratively until the goal state is reached.

d. Generate a search tree (Depth-First Search / Breadth-First Search)

Hints

/* Define a function to initialize the dictionary elements with a default value.*/

/* Initialize dictionary with default values as false.*/

/* Define a recursive function and print the intermediate steps to reach the final
solution and return the Boolean values.*/

/* Check whether the goal is achieved and return true if achieved. */

/* Check if you have already visited the combination or not. If not, then proceed
further. */

/* Check whether all the six possibilities and see if a solution is found in any
one of them. */

/* Return false if the combination is already visited to avoid repetition
otherwise recursion will enter an infinite loop*/

/* Call the function and pass the initial amount of water present in both the
jugs. */

Try: Given two jugs, a 7-gallon one and a 11-gallon one. Neither has any measuring markers on it.

There is a pump that can be used to fill the jugs with water. How can we get exactly 7 gallons of water

into a 7- gallon jug?

622 | P a g e

2.2 Monkey Banana Problem

Imagine a room containing a monkey, chair and some bananas that have been hung from the center of

ceiling. If the monkey is clever enough, he can reach the bananas by placing the box directly below the

bananas and climbing on the chair .The problem is to prove whether the monkey can reach the

bananas. The monkey wants it but cannot jump high enough from the floor. At the window of the

room there is a box that the monkey can use.

Input: The monkey can perform the following actions:-

 1) Walk on the floor.

 2) Climb the box.

 3) Push the box around (if it is beside the box).

 4) Grasp the banana if it is standing on the box directly under the banana.

Output:

 a. Write down the initial state description and action schemes.

b. Prepare all the required predicates that will make the monkey to perform some action and

move from one state to the other until the goal state is reached.

c. Set the initial position of the monkey (initial state) and raise questions to whether the

knowledge represented can make the monkey get the banana.

 d. Trace the flow of actions from initial state to goal state.

Hints

/* Define a class and initialize all the states */

/* Check if the goal state is achieved.*/

/* Return a list of possible actions given the current state */

/* Apply an action and return the resulting state. */

/* Solve the problem using breadth-first search by simultaneously checking the
goal state, generating the successors */

/* Return result if exist otherwise return None */

Try: Extensively make use of state space search to represent and solve Tic -Tac-Toe.

Represent the problem as a state space and define the rules. In the state space, represent

the starting state, set of legal moves, and the goal state.

2.3 Eight Puzzle Problem

The 8-puzzle consists of a 3×3 board with eight numbered tiles and a blank space. A tile adjacent to

the blank space can slide into the space. The task is to reach a specified goal state, such as the one

shown on the right of the figure. The objective is to place the numbers on tiles to match the final

configuration using the empty space. You can slide four adjacent (left, right, above, and below) tiles

into the empty space.

Input:

Initial State

 2 3

1 4 6

 7 5 8

623 | P a g e

Goal State

1 2 3

4 5 6

7 8

Output: Goal state as a long output on the terminal just like:

Hints

/* Create a class that contains the methods to solve the 8-puzzle by importing the
following packages. */
from simpleai.search import astar, SearchProblem

/* Define a class that contains the methods to solve the 8-puzzle: */

/* Override the actions method to align it with our problem: */

/* Check the location of the empty space and create the new action: */

/* Check if the goal has been reached.*/

/* Define the heuristics method and compute the distance.*/

/* Define a function to convert a list of string */

/* Define a function to convert a string to a list. */

/* Define a function to get the location of a given element in the grid. */

/* Define the initial state and the final goal we want to achieve: */

/* Track the goal positions for each piece by creating a variable: */

/* Create the A* solver object using the initial state we defined earlier and
extract the result: */

/* Print the solution */

624 | P a g e

Try: Extensively make use of state space search to represent and solve the 15 Puzzle

problem. Represent the problem as a state space and define the rules.

2.4 Blocks Rearrangement Problem

The problem is to find a plan for rearranging a stack of blocks as shown below. We are allowed to

move one block at a time. A block can be grasped only when its top is clear. A block can be put on the

table or on some other blocks. To find a required plan, we must find a sequence of moves that

accomplish the given transformation. Think the problem as a problem of exploring among possible

alternatives.

Input:

Output:

a. Generate the rules involving accomplishing various tasks involving the blocks world.

b. Formulate the more careful definitions for program and the actions.

c. Present the graphical representation of the problem (state space representations) including

initial state and the goal state.

Hints

/* Define a class to initialize all the starting states of all the blocks. */

/* Do the same for the goal state also.*/

/* Check whether the current state matches the goal state. */

/* Generate all possible moves from the current state. */

/* Allow any block can be moved to the table or on top of another block. */

/* If a block is not blocked by another, it can be moved. Move onto another
block.*/

/* Apply a move to the current state and return the new state.

/* Solve the problem using BFS by checking if the goal state is reached by getting
all the possible moves . */

/* Return the solution if found otherwise return None. */

Try: The problem is to find a plan for rearranging a stack of blocks as shown below. We are allowed to

move one block at a time. A block can be grasped only when its top is clear. A block can be put on the

table or on some other blocks. To find a required plan, we must find a sequence of moves that

625 | P a g e

accomplish the given transformation. Think of the problem as a problem of exploring among possible

alternatives.

The goal here is to move Block B from the middle of the pile on the left and onto the top of the pile on

the right. Hence this sequence of moves would be an acceptable solution:

[("C", "Table"), ("B", "E"), ("C", "A")]

3. Exercises on Heuristic Search Techniques

3.1 Constructing a String using Greedy Search

Recreate the input string based on the alphabets using a greedy search. Ask the algorithm to search

the solution space and construct a path to the solution.

Input:

1. A function to parse the input arguments.

2. A class (SearchProblem) that contains the methods needed to solve the problem.

3. Check the current state and take the right action.

4. Concatenate state and action to get the result.

5. Check if the goal has been achieved.

6. The heuristic that will be used.

7. Initialize the CustomerProblem object.

8. Set the starting point and the goal we want to achieve.

9. Run the solver and

10. Print the path to the solution.

Output: Calculate how far we are from the goal and use that as the heuristic to guide it towards the

goal.

1. Run the code with an empty initial state.

2. Run the code with a non-empty starting point.

626 | P a g e

Hints

/*Create a new Python file and import the following packages: */
import argparse
import simpleai.search as ss

/* Define a function to parse the input arguments */

class CustomProblem(ss.SearchProblem):
 def set_target(self, target_string):
 self.target_string = target_string

Check the current state and take the right action
def actions(self, cur_state):
 if len(cur_state) < len(self.target_string):
 alphabets = 'abcdefghijklmnopqrstuvwxyz'
 return list(alphabets + ' ' + alphabets.upper())
 else:
 return []

Concatenate state and action to get the result
def result(self, cur_state, action):
 return cur_state + action

Check if goal has been achieved
def is_goal(self, cur_state):
 return cur_state == self.target_string

/* Initialize the CustomProblem object */

/* Set the starting point as well as the goal we want to achieve */

Run the solver:
Solve the problem
output = ss.greedy(problem)

/* Print the path to the solution */

Try: 1. Solve the same problem with constraints. Specify three constraints as follows: John, Anna, and

Tom should have different values. Tom’s value should be bigger than Anna's value If John's value is

odd, then Patricia's value should be even and vice versa.

2. Implement the above code to your family and start asking the questions in a similar way.

627 | P a g e

3.2 Solving a Region Coloring Problem

Consider the following screenshot:

We have a few regions in the preceding figure that are labeled with names. Our goal is to color with

four colors so that no adjacent regions have the same color. Make use of Constraint Satisfaction

framework to solve the region-coloring problem.

Input:

1. Constraints that specify different values

2. Main function and a list of names.

3. List of possible colors

Output:

Hints

/* Create a new Python file and import the following packages:*/
from simpleai.search import CspProblem, backtrack

/* Define the constraint that specifies that the values should be different: */
/* # Define the function that imposes the constraint */
/* # that neighbors should be different */
def constraint_func(names, values):
 return values[0] != values[1]

/* Define the main function and specify the list of names: */

if __name__=='__main__':
Specify the variables names = ('Mark', 'Julia', 'Steve', 'Amanda', 'Brian',
'Joanne', 'Derek', 'Allan', 'Michelle', 'Kelly')

628 | P a g e

/*Define the list of possible colors */

/* convert the map information into something that the algorithm can understand */

/* Use the variables and constraints to initialize the object */

/* Solve the problem and print the solution */

Try: Implement the above code to your region and start asking the questions in a similar

way.

3.3 Building an 8 Puzzle Solver

8-puzzle is a variant of the 15-puzzle. You can check it out at https://en.wikipedia.org/wiki/15_puzzle.

You will be presented with a randomized grid, and your goal is to get it back to the original ordered

configuration. You can play the game to get familiar with it at http://mypuzzle.org/sliding. The goal is

to use A* algorithm to solve this problem and find the paths to the solution in a graph.

Input:

1. A class that contains the methods.

2. Action method to get the list of the possible numbers.

3. Check the location of the empty space and create a new action.

Output:

1. Return the resulting state after moving a piece to the empty space.

2. Computes the distance between the current state and goal state using Manhattan distance.

Hints

/* Create a new Python file and import the following packages */
from simpleai.search import astar, SearchProblem

/* Define a class that contains the methods to solve the 8-puzzle: */
Class containing methods to solve the puzzle class PuzzleSolver(SearchProblem):

/* Override the actions method to align it with our problem: */

http://mypuzzle.org/sliding

629 | P a g e

Action method to get the list of the possible
numbers that can be moved in to the empty space
def actions(self, cur_state):
 rows = string_to_list(cur_state)
 row_empty, col_empty = get_location(rows, 'e')

/* Check the location of the empty space and create the new action */

/* Override the result method. Convert the string to a list and extract the
location of the empty space. */

/* # Return the resulting state after moving a piece to the empty space */

/* Check if the goal has been reached */

/* Define the heuristic method. */

/* Compute the distance */

/* Define a function to convert a list to string */

/* Define a function to convert a string to a list */

/* Define a function to get the location of a given element in the grid */

/* Define the initial state and the final goal we want to achieve */

/* Track the goal positions for each piece by creating a variable */

/* Create the A* solver object using the initial state we defined earlier and
extract the result */

/* Print the solution */

Try: Use the A* Algorithm to solve a maze. Consider the below figure to build a maze solve.

3.4 Parsing a Family Tree

Use the most familiar Logic programming and solve an interesting problem of Parsing a Family Tree by

considering the following diagram. John and Megan have three sons – William, David, and Adam. The

wives of William, David, and Adam are Emma, Olivia, and Lily respectively. William and Emma have two

children – Chris and Stephanie. David and Olivia have five children – Wayne, Tiffany, Julie, Neil, and

Peter. Adam and Lily have one child – Sophia. Based on these facts, create a program that can tell us

the name of Wayne's grandfather or Sophia's uncles are.

630 | P a g e

Input: A .json file specified with the relationship among all the people involved.

Output: Ask the following questions to understand if our solver can come up with the right answer.

1. Who John's children are?

2. Who is William's mother?

3. Who are Adam's parents?

4. Who are Wayne's grandparents?

Hints

/*Create a new Python file and import the following packages: */
import json
from logpy import Relation, facts, run, conde, var, eq

/* Define a function to check if x is the parent of y. We will use the logic that
if x is the parent of y, then x is either the father or the mother. We have
already defined “father” and “mother” in our fact base: */

/* Define a function to check if x is the grandparent of y. We will use the logic
that if x is the grandparent of y, then the offspring of x will be the parent of
y: */

Check for sibling relationship between 'a' and 'b'
def sibling(x, y):
 temp = var()
 return conde((parent(temp, x), parent(temp, y)))

/* Define the main function and initialize the relations father and mother */
/* Load the data from the relationships.json file */
/* Read the data and add them to our fact base */
Define the variable x:
x = var()

/* We are now ready to ask some questions and see if our solver can come up with
the right answers. Let's ask who John's children are:

John's children
name = 'John'
output = run(0, x, father(name, x))
print("\nList of " + name + "'s children:")
for item in output:
 print(item)

/* Start asking the questions like: Who is William's mother?, Who are Adam's
parents?, Who are Wayne's grandparents?, Who are Megan's grandchildren?, Who are
David's siblings?, Who are Tiffany's uncles? */

631 | P a g e

/* List out all the spouses in the family */

Try:

1. Who are Megan's grandchildren?

2. Who are David's siblings?

3. Who are Tiffany's uncles?

4. List out all the spouses in the family.

3.5 Analyzing Geography

Use logic programming to build a solver to analyze geography. In this problem, specify information

about the location of various states in the US and then query our program to answer various questions

based on those facts and rules. The following is a map of the US:

Input:

1. Define the input files to load the data from.

2. Read the files containing the coastal states.

3. Add the adjacency information to the fact base.

4. Initialize the variables x and y.

Output:

1. Print out all the states that are adjacent to Oregon.

2. List all the coastal states that are adjacent to Mississippi.

3. List all the coastal states that are adjacent to Mississippi.

632 | P a g e

Hints

/*Create a new Python file and import the following: */

from logpy import run, fact, eq, Relation, var

/*Initialize the relations: */

adjacent = Relation() coastal = Relation()

/*Define the input files to load the data from: */

file_coastal = 'coastal_states.txt'
file_adjacent = 'adjacent_states.txt'

/*Load the data: # Read the file containing the coastal states */
with open(file_coastal, 'r') as f:
 line = f.read()
 coastal_states = line.split(',')

/*Add the information to the fact base:
Add the info to the fact base
for state in coastal_states:
 fact(coastal, state)

/* Read the adjacency data */

/* Add the adjacency information to the fact base */

/* Initialize the variables x and y */

/* Check if Nevada is adjacent to Louisiana */

/* Print out all the states that are adjacent to Oregon, List all the coastal
states that are adjacent to Mississippi, List seven states that border a coastal
state, List states that are adjacent to both Arkansas and Kentucky */

Try: Add more questions like “list states that are adjacent to both Arkansas and Kentucky” to the

program to see if it can answer them.

633 | P a g e

3.6 Building a Puzzle Solver

The interesting application of logic programming is in solving puzzles. The goal of this exercise is to

specify the conditions of a puzzle, and the program has to come up with a solution. Also specify

various bits and pieces of information about four people and ask for the missing piece of information.

Input: In the logic program, we specify the puzzle as follows:

• Steve has a blue car.

• The person who owns the cat lives in Canada Matthew lives in USA.

• The person with the black car lives in Australia.

• Jack has a cat.

• Alfred lives in Australia.

• The person who has a dog life in France.

• Who has a rabbit?

Output: The goal is to find the person who has a rabbit. Here are the full details about the four people:

Hints

/*Create a new Python file and import the following packages: */
from logpy import *
from logpy.core
import lall

/* Declare the variable people: */
Declare the variable
people = var()

/* Define all the rules using lall, The first rule is that there are four people,
The person named Steve has a blue car */

/* The person who has a cat lives in Canada, The person named Matthew lives in
USA, The person who has a black car lives in Australia, The person named Jack has
a cat, The person named Alfred lives in Australia, The person who has a dog lives
in France, The person who has a dog lives in France.*/

/* Run the solver with the preceding constraints */

/* Extract the output from the solution */

634 | P a g e

/* Print the full matrix obtained from the solver */

Try: Demonstrate how to solve a puzzle with incomplete information. You can play around with it and

see how you can build puzzle solvers for various scenarios.

4. Exercises on Heuristic Search Techniques

4.1 Best First Search Algorithms

The Best First Search algorithm is a set of rules that work together to perform a search. It considers the

various characteristics of a prioritized queue and heuristic search. The goal of this algorithm is to reach

the state of final or goal in the shortest possible time.

Input: Best First Search Algorithm

1. Create 2 empty lists: OPEN and CLOSED

2. Start from the initial node (say N) and put it in the ‘ordered’ OPEN list.

3. Repeat the next steps until the GOAL node is reached.

• If the OPEN list is empty, then EXIT the loop returning ‘False’.

• Select the first/top node (say N) in the OPEN list and move it to the CLOSED list. Also,

capture the information of the parent node.

• If N is a GOAL node, then move the node to the Closed list and exit the loop returning

‘True’. The solution can be found by backtracking the path.

• If N is not the GOAL node, expand node N to generate the ‘immediate’ next nodes linked to

node N and add all those to the OPEN list.

• Reorder the nodes in the OPEN list in ascending order according to an evaluation function

f(n)

Output:

a. Perform the search process by using additional information to determine the next step towards

finding the solution.

b. Perform the search process using an evaluation function to decide which among the various

available nodes is the most promising before traversing to that node.

c. Apply priority queues and heuristic search functions to track the traversal.

Hints

/* Import heapq. */

/* Initialize the graph and heuristic function, dictionary representing the graph
and heuristic values. */

/* Perform the best-first search by defining the priority queue to store nodes
with their heuristic values. */

/* Get the node with the lowest heuristic value. */

/* If the goal is reached, return the path and total cost. */

/* Mark the current node as visited, explore all the neighbors. */

635 | P a g e

/* Return the solution if exists otherwise return None. */

Try: Make use of Heuristic Search principle and apply the best first search to solve the 8 -

puzzle problem.

4.2 A* Algorithm

A* Algorithm – A square grid is composed of many obstacles that are scattered randomly. The goal is

to find the final cell of the grid in the shortest possible time. Implement A* algorithm to search for the

shortest path among the given initial and the final state.

Input: Define the graph as nodes with neighboring nodes and cost. Define the heuristic values of each

node.

Output:

a. Initially represent the problem statement as a graph traversal problem.

b. Perform the search process to obtain the shorter path first, thus making it optimal.

c. Find the least cost outcome for the problem by finding all the possible outcomes.

d. Make use of weighted graph by using numbers to represent the cost of taking each path and find

the best route with the least cost in terms of distance and time.

Hints

/* Implements the A* algorithm to find the shortest path in a weighted graph.*/

/* Represent the dictionary for a graph and heuristic values. */

/* Define the starting and goal node keeping in mind to return the tuple
containing the optimal path and the total cost. */

/* Pop the node with the lowest f_cost, if the goal is reached, return the path
and cost. */

/* Mark the current node as visited */

/* Explore the neighbors to accumulate the path cost by getting the heuristic
values, total path cost. */

/* If the path is found then return, otherwise return None */

Try: Implement the A* algorithm and calculate the shortest distance between the initial and

the goal states by considering the following weighted graph:

636 | P a g e

4.3 AO* Algorithm

Implement the algorithm to generate AND-OR graph or tree to represent the solution by dividing the

problem into sub problems and solve them separately to obtain the result by combining all the sub

solutions.

Input: The AO* algorithm works on the formula given below : f(n) = g(n) + h(n) where,

• g(n): The actual cost of traversal from initial state to the current state.

• h(n): The estimated cost of traversal from the current state to the goal state.

• f(n): The actual cost of traversal from the initial state to the goal state.

Output:

a. Follow problem decomposition approach and solve each sub problem separately and later

combine all the solutions.

b. Traverse the graph starting at the initial node and following the current best path and accumulate

the set of nodes that are on the path and have not yet been expanded.

c. Pick one of these best unexpanded nodes and expand it. Add its successors to the graph and

compute cost of the remaining distance for each of them.

d. Change the cost estimate of the newly expanded node to reflect the new information produced

by its successors. Propagate this change backward through the graph. Decide which of the current

best path

Optimal Solution Path: A -> B -> D Total Cost: 5

Hints

/* Define a class to represent a node in the AND-OR graph. */

/* Define a class to implement AO* algorithm to find the optimal solution path. */

/* Mention the initial state, goal state, the optimal solution path and its total
cost. */

/* Pick the best node to expand (lowest f_cost) and expand the node. */

/* Propagate changes backward to reflect updated costs, Add successors to the open
list if not already processed. */

/* Generate the optimal path */

/* Expand the given node by calculating f_cost for its successors. */

/* Propagate cost changes backward through the graph.*/

/* Generate the optimal solution path by following the best successors. */

/* Define heuristic values for the nodes, Create nodes for the graph, Define the
AND-OR graph as node connections, Instantiate the AO* algorithm, Perform the AO*
search. */

/* Generate the result as optimal solution path and total cost.*/

637 | P a g e

Try: Implement the algorithm to generate AND-OR graph or tree to represent the solution by dividing

the problem into sub problems and solve them separately to obtain the result by combining all the sub

solutions.

5. Exercises on Probabilistic Reasoning for Sequential Data

5.1. Handling Time-Series Data with Pandas

Time-series data analysis is used extensively in financial analysis, sensor data analysis, speech

recognition, economics, weather forecasting, manufacturing, and many more. Explore a variety of

scenarios where we encounter time-series data and see how a solution can be built. Create a python

file and learn how to handle time-series data in Pandas.

Input: Time-series dataset

Output: Time-Series data with different dimensions like:

Hints

/* Create a python file and import the following packages */

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

/* Define a function to read the data from the input file. */

/* Define a lambda function to convert strings to Pandas date format: */

/* Use this lambda function to get the start date from the first line in the input
file: */

638 | P a g e

/* Create a list of indices with dates using the start and end dates with a
monthly frequency: */

/* Create pandas data series using the timestamps: */

/* Define the main function and specify the input file:, Specify the columns that
contain the data:*/

/* Iterate through the columns and read the data in each column and Plot the time-
series data. */

Try: Revise the above code to analyze and visualize the time-series data for three and more

dimensions.

5.2. Slicing Time-Series Data

The process of slicing refers to dividing the data into various sub-intervals and extracting

relevant information. This is very useful when you are working with time-series datasets.

Instead of using indices, we will use timestamp to slice our data. Develop a python code to

analyze the time-series data and visualize the same at different intervals.

Input: Time-series dataset

Output: Visualize the Time-Series data with different levels of granularity.

Hints

/* Create a python file and import the following packages */

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

/* Define a function to read the data from the input file. */

/* Define a lambda function to convert strings to Pandas date format: */

/* Use this lambda function to get the start date from the first line in the input
file: */

/* Create a list of indices with dates using the start and end dates with a
monthly frequency: */

639 | P a g e

/* Create pandas data series using the timestamps: */

/* Define the main function and specify the input file:, Specify the columns that
contain the data:*/

/* Iterate through the columns and read the data in each column and Plot the time-
series data. */

Try: Revise the above code to analyze and visualize the time-series data for different level

of granularities.

5.3. Operating on Time-Series Data

Pandas allow us to operate on time-series data efficiently and perform various operations like

filtering and addition. You can simply set some conditions and Pandas will filter the dataset and

return the right subset. Develop a python code that can allow to build various similar applications

without having to reinvent the wheel.

Input: Time-series dataset

Output: Visualize the Time-Series data with different data frames.

Hints

/* Create a python file and import the following packages */

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from timeseries import read_data

/* Define the input filename and load the third and fourth columns into separate
variables. */

/* Create a Pandas dataframe object by naming the two dimensions and plot the data
by specifying the start and end years */

/* Filter the data using conditions and then display it. */

/* Display the summarized results also */

640 | P a g e

Try: Add two series in Pandas and different dimensions between the given start and end

dates.

5.4. Extracting Statistics from Time-Series Data

To extract meaningful insights from time-series data, extract statistics from it. These stats

can be things like mean, variance, correlation, maximum value, and so on. These stats must

be computed on a rolling basis using a window. Use a predetermined window size and keep

computing these stats. Develop a python code to extract these statistics from time-series

data and visualize them. Produce interesting patterns while visualizing the statistics over

time.

Input: Time-series dataset

Output: Visualize the Time-Series data showing the rolling mean, rolling correlation and also include

the terminal output.

Hints

/* Create a python file and import the following packages */

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from timeseries import read_data

/* Define the input filename and load the third and fourth columns into separate
variables. */

/* Create a Pandas dataframe object by naming the two dimensions and extract
maximum and minimum values along each dimension */

/* Extract the overall mean and the row-wise mean for the first 12 rows and plot
the rolling mean using a window size of 24. */

641 | P a g e

/* Plot the rolling mean using a window size of 24 */

/* Print the correlation coefficients and plot the rolling correlation using a
window size of 60. */

Try: Add two series in Pandas and visualize the correlation coefficients not mentioned in

the preceding figures.

5.5. Generating Data using Hidden Markov Models

A Hidden Markov Model (HMM) is a powerful analysis technique for analyzing sequential

data. It assumes that the system being modeled is a Markov process with hidden states.

This means that the underlying system can be one among a set of possible states. It goes

through a sequence of state transitions, thereby producing a sequence of outputs. We can

only observe the outputs but not the states. Hence these states are hidden from us.

Develop the python code to model the data so that we can infer the state transitions of

unknown data.

Input: Traveling Salesman data representing the information with a transition matrix.

Output: Generate and Visualize samples using the trained HMM model like:

Hints

/* Create a python file and import the following packages */

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

642 | P a g e

from timeseries import read_data

/* Define the input filename and extract the third column for training. */

/* Create a Gaussian HMM with 5 components and diagonal covariance and Train the
HMM. */

/* Print the mean and variance values for each component of the HMM. */

Try: 1. Identifying Alphabet Sequence with Conditional Random Fields

 2. Analyze the stock market data using hidden Markov model.

6. Exercises on Building Games with AI

6.1. Minimax Algorithm

As searching game trees exhaustively is not feasible for interesting games, other methods that rely on

searching only part of the game tree have been developed. Among these, a standard technique used in

computer game playing (chess) is based on the minimax principle. The goal of this exercise is to

implement the minimax principle and identify the changes that a player has to with a game.

Input: Game Tree and a Search Tree like:

Output: Make use of static and backup values and estimate the best position from a list of candidate

positions.

Hints

/* Calculate the heuristic estimator using the estimation function and estimate
the changes that a player must win. */

/* Implement the procedure as: Minimax procedure: minimax(Pos, BestSucc, Val)
Pos is a position, Val is its minimax value; best move Vo from Pos leads to
position BestSuc */

Try: Create a knowledge base including the clauses that help in implementing the

straightforward method of minimax principle.

643 | P a g e

6.2. Alpha Beta Pruning

Create a knowledge base representing the straightforward procedure to implement alpha-beta

algorithm. Develop a prolog program that systematically visits all the positions in the search tree, up to

its terminal positions in a depth-first fashion, and statically evaluates all the terminal positions of this

tree.

Input: Search Tree, starting point, legal moves, maximum successors of each move, and apply

backtracking wherever applicable.

Output: Compute the exact value of a root position P by setting the bounds as follows:

Hints

alphabeta(/* Pass the 4 arguments like position, alpha beta values, good position
and the current value */) :-
 moves(Pos, PostList), !,
 boundedbest(Postlist, Alpha, Beta, GoodPos, Val);
 staticval(Pos, Val).

boundedbest([Pos | Poslist], Alpha, Beta, GoodPos, GoodVal) :-
 alphabeta(Pos, Alpha, Beta, _, Val),
 goodenough(Poslist, Alpha, Beta, Pos, Val, GoodPos, GoodVal).

goodenough(/* Mention an empty list */, -, -, Pos, Val, Pos, Val) '- !. % No
other candidate

goodenough(-, Alpha, Beta, Pos, Val, Pos, Val) :-
 min-to-rnove(Pos), Val) Beta, !; % Maximizer attained upper bound
 marto-mov{ Pos), Val (Alpha, !. % Minimizer attained lower bound

goodenough(Poslist, Alpha, Beta, Pos, Val, GoodPos, GoodVal) :-
 newbounds(/* Pass the 6 arguments like alpha beta values, good position,
current value, new alpha and beta values */), % Refine bounds boundedbes(Poslist,
NewAlpha, NewBeta, Posl, Vall),
 betterof(Pos, Val, Posl, Vall, GoodPos, GoodVal).

newbounds(Alpha, Beta, Pos, Val, Val, Beta) :-
 min-to-rnove(Pos), Vd > Alpha, !. % Maximizer increased lower bound

newbounds(Alpha, Beta, Pos, Val, Alpha, Vat) :-
 marto-rnove(Pos), Val < Beta, !. % Minimizer decreased upper bound

newbounds(Alpha, Beta, -, -, Alpha, Beta)

betterof(Pos, Val, Posl, Val1, Pos, Val) :-
 min-to-rnove(Pos), Vd > Vall, !;
 marto:nove(Pos), Val < Vall, !.

644 | P a g e

betterof(-, -, Pos1, Val1, Posl, Vall).

Try: Consider a two-person game (for example, some non-trivial version of tic-tac-toe). Write game-

definition relations (legal moves and terminal game positions) and propose a static evaluation function

to be used for playing the game with the alpha-beta procedure. Use the principle of alpha beta to

reduce the search in the tree mentioned above.

6.3. Iterative Deepening Techniques

The goal is to prove that search is ubiquitous in artificial intelligence. The performance of most AI

systems is dominated by the complexity of a search algorithm in their inner loops. Prove with an

example that this algorithm gives optimal solution for exponential tree searches.

Input: Starting node and goal node.

Output:

a. Complete the search process if the branching factor is finite and there is a solution at some finite

depth and obtain optimal in finding the shortest solution first.

b. Avoid exploring each non-solution branch of the tree, omit cycle detection and retain

completeness.

c. Use additional logical features of Prolog to terminate the search process whenever if there are no

solutions identified even after backtracking.

d. Document the steps if the search process does not obtain optimal solution even after

backtracking.

Hints

/* Define a class to initialize the graph, start node, and goal node. */

/* Perform the DLS to a specified depth with current node, current depth limit,
set of visited nodes and return the tuple with a path cost and the path. */

/* Perform the iterative deepening DFS with maximum depth limit to explore.*/

/* Generate the optimal path if found otherwise generate None. */

/* Apply backtracking if the solution is not found. */

645 | P a g e

Try: The 15-puzzle problem is a classic example of a sliding puzzle game. It consists of a 4×4 grid

of numbered tiles with one tile missing. The aim is to rearrange the tiles to form a specific goal

configuration. The state space of the puzzle can be represented as a tree where each node

represents a configuration of the puzzle, and each edge represents a legal move. IDA* can be used

to find the shortest sequence of moves to reach the goal state from the initial state.

7. Exercises on Building Games with AI

7.1 Building a Bot to Play Last Coin Standing

This is a game where we have a pile of coins, and each player takes turns to take a number of coins

from the pile. There is a lower and an upper bound on the number of coins that can be taken from the

pile. The goal of the game is to avoid taking the last coin in the pile. This recipe is a variant of the Game

of Bones recipe given in the easyAI library. Develop the python code to build a game where the

computer can play against the user.

Input: Libraries like TwoPlayerGame, id_solve, Human_Player, AI_Player, and TT

Output: Force the computer to take the last coin, so that you win the game.

Hints

% Create a new Python file and import the following packages:

from easyAI import TwoPlayersGame, id_solve, Human_Player, AI_Player from
easyAI.AI import TT

% Create a class to handle all the operations of the game.

/* Define who is going to start the game */

/* Define the maximum number of coins that can be taken out in any move. */

646 | P a g e

/* Define all the possible moves, define a method to remove the coins and keep
track of the number of coins remaining in the pile. */

/* Check if somebody won the game by checking the number of coins remaining. */

/* Stop the game after somebody wins it and compute the score based on the win
method. */

/* Define a method to show the current status of the pile. */

/* Define the main function and start by defining the transposition table. */

/* Define the method ttenttry to get the number of coins */

Try: Implement the same code so that you can win the game instead of a computer.

7.2 Building two Bots to Play Tic-Tac-Toe

Tic-Tac-Toe (Noughts and Crosses) is probably one of the most famous games. Let's see how to build a

game where the computer can play against the user. This is a minor variant of the Tic-Tac-Toe recipe

given in the easyAI library.

Input: Libraries like TwoPlayerGame, id_solve, Human_Player, and AI_Player.

Output: Force the computer to take the last coin, so that you win the game.

Hints

% Create a new Python file and import the following packages:

from easyAI import TwoPlayersGame, id_solve, Human_Player, AI_Player from
easyAI.AI import TT

% Create a class to handle all the methods to play the game.

/* Define a method to compute all the possible moves by defining a 3 x 3 board. */

/* Define the method to update the board after making a move. */

/* Define a method to see if somebody has lost the game and check if the game is
over using the loss_condition method. */

647 | P a g e

/* Define a method to show the current progress and compute the score using the
loss_condition method. */

/* Define the main function and start by defining the algorithm and start the
game. */

Try: Implement the same code so that you can win the game instead of a computer.

7.3 Building two Bots to Play Connect Four against each other

Connect Four™ is a popular two-player game sold under the Milton Bradley trademark. It is also known

by other names such as Four in a Row or Four Up. In this game, the players take turns dropping discs

into a vertical grid consisting of six rows and seven columns. The goal is to get four discs in a line. This

is a variant of the Connect Four recipe given in the easyAI library. Develop the python code to build it

instead of playing against the computer, we will create two bots that will play against each other.

Input: Libraries like TwoPlayerGame, id_solve, Human_Player, and AI_Player.

Output: Algorithm for each bot and see which one wins.

 Hints

% Create a new Python file and import the following packages:
from easyAI import TwoPlayersGame, id_solve, Human_Player, AI_Player, Negamax, and
SSS
from easyAI.AI import TT
% Create a class that contains all the methods needed to play the game.

/* Define the board with six rows and seven columns. */

/* Define who's going to start the game while defining the board positions. */

/* Define a method to get all the possible moves. */

/* Define a method to control how to make a move and to show the current status.
*/

/* Define a method to compute what a loss looks like and check whether the game is
over or not. */

/* Compute the score to decide the winning bot */

Try: Implement the same code so that SSS algorithm can win the game instead of a Negamax

algorithm.

648 | P a g e

8. Exercises on Fuzzy Logic

8.1 Fuzzy Inference Systems

Fuzzy logic involves understanding the principles of fuzzy logic and implementing them using several

python libraries that deal with a form of logic and appropriate reasoning by allowing the

representation of uncertainty and imprecision. The product has a price and a benefit, so we can create

some rules. For example, if the cost of the product is low and the benefit is high, then cost benefit is

high. Another rule if the cost of the product is high and the benefit is also high, then the cost benefit is

median and not the rule.

If the cost of the product is low and the benefit is also low, then the cost benefit is also made in the

next row. If the cost is high and the benefit is low, then the cost benefit is low. And the last one, if cost

is high and benefit is low, then the cost benefit is low.

There are three results a high-cost benefits, medium cost benefits and low-cost benefits. While the

variables responsible for the forecasts are costs and benefits and they have two values low and high.

When there are only two values we can consider, it is a binary problem. The low category could be

represented by number zero, while the high category could be represented by number one. The idea of

fuzzy logic is to represent the reasoning process in a way more like the way humans think, for example.

For some people, the cost may be low, but for others it may be a little lower, as if there was a level

before this category here. For other people, the costs might be a little higher, not that low. Develop

python code to understand how fuzzy logic can be used to various problem domains effectively.

Input: Represent the reasoning process in a way more likely the way humans think.

Output: Evaluate the efficiency of the fuzzy logic system with sample inputs.

 Hints

% Create a new Python file and import the following packages:

import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl

/* Define the fuzzy sets for the input variables (cost and benefit) */

/* Define the fuzzy sets for the output variables (cost and benefit) */

/* Define the fuzzy sets based on the provided conditions. */

/* Implement the fuzzy inference system using the chosen python libraries like
scikit-fuzzy. */

/* Test the fuzzy logic system with sample inputs. */

Try: Implement the code to understand the linguistic variables and membership functions for

effectively modeling and solving problems using fuzzy logic.

649 | P a g e

8.2 Fuzzy Inference Systems

Fuzzy inference involves applying fuzzy logic rules to input data to generate meaningful output. Several

steps for fuzzy inference include converting crisp (exact) input data into fuzzy sets using membership

functions and determining the degree of membership of each input value in the appropriate fuzzy sets.

Develop the python code to apply the fuzzy rules to implement aggregation, and defuzzification.

Input: Linguistic variables like ‘cost’ and ‘benefit’ from the previous example.

Output: Crisp output: 8.775.

 Hints

% Create a new Python file and import the following packages:

import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl

/* Define universe of discourse (range) for cost and benefit */

/* Define linguistic variables: cost, benefit, and cost benefit. */

/* Define membership functions for cost and membership functions for benefits. */

/* Define membership functions for cost_benefit (output). */

/* Define fuzzy rules and create fuzzy control system. */

/* Provide input values, apply fuzzy rules, and obtain crisp output. */

Try: Develop the code to implement defuzzification to convert a fuzzy set into a crisp value.

8.3 Calculating the probability of Fan Speed

implemented by taking a basic example of calculating the probability of Fan-speed being low, medium

or high based on current temperature and humidity as provided by user. Fuzzy logic allows you to

model complex relationships, make decisions in ambiguous environments, and create intelligent

systems that mimic human-like reasoning. Develop the python code while understanding the

foundational logic behind fuzzy sets, where uncertainty is embraced, and imprecision becomes a

strength.

Input: Understanding the key components like membership functions, inference system,

defuzzification, and rule-based systems.

Output: Temperature, Humidity, and Speed.

 Hints

% Create a new Python file and import the following packages:

import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl

650 | P a g e

/* Define a method with temperature and humidity parameters and conduct
inferencing. */

/* Define a method to understand the fan speed as low, medium, and high. Apply
defuzzification. */

Try: Implement the code to understand the linguistic variables and membership functions for

effectively modeling and solving problems using fuzzy logic.

9. Exercises on Expert Systems

9.1 Identify Animals

The goal is to create an expert system that can identify animals. We can use the rules of inference that

we have learned about animals to perform this task. These rules serve as a starting point for developing

an expert system, and they show the importance of having input from the users. The goal of an expert

system is to provide useful information based on its users' inputs.

Input:

• If it has a tawny color and has dark spots, then the animal is a cheetah.

• If it has a tawny color and has black stripes, then the animal is a tiger.

• If it has a long neck and has long legs, then the animal is a giraffe.

• If it has black stripes, then the animal is a zebra.

• If it does not fly and has long neck, then the animal is an ostrich.

• If it does not fly, swims, black and white in color, then the animal is penguin.

• If it appears in story ancient mariner and flys well, then the animal is albatross.

Output:

a. Create an expert system that can identify the animal class using the inference rules.

b. Utilize the user inputs and predict the animal class based on the behaviors already learned by the

expert system.

Hint:

/* Define a class to initialize an expert system with predefined inference rules.
*/

/* Define a class to predict the animal class based on user inputs. */

/* Define the features to ask the user and collect the user inputs. */

/* Create and use the expert systems. */

651 | P a g e

/* Display the results by predicting the animal class, other generate the results
as “unable to determine.” */

Try: Consider the if-then rules of figures and translate them into our rule notation. Propose extensions

to the notation to handle certainty measures when needed.

9.2 Locating Failures in a Simple Electric Network

Create a knowledge base which can help locating failures in a simple electric network that consists of

some electric devices and fuses. Such a network is shown in figure.

Input:

652 | P a g e

Hint:

% A small knowledge base for locating faults in an electric network

% If a device is on and not working and its fuse is intact then the device is
broken

broken_rule:

 if

 on(Device) and

 device(Device) and

 not working(Device) and

 connected(Device, Fuse) and

 proved(intact(Fuse))

 then

 proved(broken(Device))

% If a unit is working then its fuse is OK

fuse_ok_rule:

 if

 connected(Device,Fuse) and

 working(Device)

 then

 proved(intact(Fuse)).

% If two different devices are connected to a fuse and are both on and not working

% then the fuse has failed.

% NOTE: This assumes that at most one device is broken!

fused_rule:

 if

 connected(Device1, Fuse) and

 on(Device1) and

 not working(Device1) and

 samefuse(Device2, Device1) and

 on(Device2) and

 not working(Device2)

 then

653 | P a g e

 proved(failed(Fuse)).

same_fuse_rule:

 if

 connected(Device1, Fuse) and

 connected(device2, Fuse) and

 different(Device1, Device2)

 then

 samefuse(Device1, Device2).

fact: different(X, Y) :- not(X=Y).

fact: device(heater).

fact(device(light1).

fact(device(light2).

fact(device(light3).

fact(device(light4).

fact: connected(light1, fuse1).

fact: connected(light2, fuse1).

fact: connected(heater, fuse1).

fact: connected(light3, fuse2).

fact: connected(light4, fuse2).

askable(on(D), on(‘Device’)).

askable(working(D), working(‘Device’)).

Try: Think of some decision problem and try to formulate the corresponding knowledge in the form of

if-then rules. You may consider choice of holiday, weather prediction, simple medical diagnosis, and

treatment, etc.

10. Exercises on Expert Systems

10.1 Mental Health Disorder

Create an expert system in prolog to improve the understanding of declarative programming paradigm

based on the logic rules. Develop the program with an idea of identifying the health disorder based on

the database provide with mental health conditions.

Input: Set of logical rules with mental health conditions.

Output: Model the disorder of the patient health.

Hints

diagnose :-
 write('This is an expert system for dignosis of mental disorders.'), nl,
 write('There are several questions you need to answer for dignosis of mental
disorders.'), nl, nl,
 disorder(X),
 write('Condition was diagnosed as '),
 write(X),
 write('.').
diagnose :-
 write('The diagnose was not found.').

654 | P a g e

%The question predicate will have to determine from the user
%whether or not a given attribute-value pair is true
question(Attribute, Value):-
 retract(yes, Attribute, Value), !.
question(Attribute, Value):-
 retract(_, Attribute, Value), !, fail.
question(Attribute, Value):-
 write('Is the '),
 write(Attribute),
 write(' - '),
 write(Value),
 write('?'),
 read(Y),
 asserta(retract(Y, Attribute, Value)),
 Y == yes.

%question with additional argument which contains
%a list of possible values for the attribute.
questionWithPossibilities(Attribute, Value, Possibilities) :-
 write('What is the patient`s '), write(Attribute), write('?'), nl,
 write(Possibilities), nl,
 read(X),
 check_val(X, Attribute, Value, Possibilities),
 asserta(retract(yes, Attribute, X)),
 X == Value.

check_val(X, _, _, Possibilities) :- member(X, Possibilities),
 !.
check_val(X, Attribute, Value, Possibilities) :-
 write(X), write(' is not a legal value, try again.'), nl,
 questionWithPossibilities(Attribute, Value, Possibilities).

%retract equips this system with a memory that remembers the facts that are
already
%known because they were already entered by the user at some point during the
interaction.
:- dynamic(retract/3).

%. The program needs to be modified to specify which attributes are askable
food_amount(X) :- question(food_amount,X).
symptom(X) :- question(symptom,X).
mentality(X) :- question(mentality,X).
cause(X) :- question(cause, X).
indication(X) :- question(indication,X).
social_skill(X) :- question(social_skill,X).
condition(X) :- question(condition, X).
consequence(X) :- question(consquence,X).
specialty(X) :- question(specialty,X).
face_features(X) :- question(face_features,X).
ears_features(X) :- question(ears_features,X).
brain_function(X) :- question(brain_function,X).
perceptions(X) :- question(perceptions, X).
behavior(X) :- questionWithPossibilities(behavior, X, [repetitive_and_restricted,
narcissistic, aggresive]).

disorder(anorexia_nervosa) :- type(eating_disorder),
 consequence(low_weight),

655 | P a g e

 food_amount(food_restriction).

disorder(bulimia_nervosa) :- type(eating_disorder),
 consequence(purging),
 food_amount(binge_eating).

disorder(asperger_syndrome) :- type(neurodevelopmental_disorder),
 specialty(psychiatry),
 social_skill(low),
 behavior(repetitive_and_restricted).

disorder(dyslexia) :- type(neurodevelopmental_disorder),
 social_skill(normal),
 perceptions(low),
 symptom(trouble_reading).

disorder(autism) :- type(neurodevelopmental_disorder),
 social_skill(low),
 symptom(impaired_communication).

disorder(tourettes_syndrome) :- type(neurodevelopmental_disorder),
 social_skill(normal),
 specialty(neurology),
 symptom(motor_tics).

disorder(bipolar_disorder) :- type(psychotic_disorder),
 indication(elevated_moods).

disorder(schizophrenia) :- type(psychotic_disorder),
 indication(hallucinations).

disorder(down_syndrome) :- type(genetic_disorder),
 symptom(delayed_physical_growth),
 face_features(long_and_narrow),
 ears_features(large),
 brain_function(intellectual_disability).

disorder(fragile_X_syndrome) :- type(genetic_disorder),
 face_features(small_chin_and_slanted_eyes),
 brain_function(intellectual_disability).

type(eating_disorder) :- symptom(abnormal_eating_habits),
 mentality(strong_desire_to_be_thin).

type(neurodevelopmental_disorder) :- condition(affected_nervous_system),
 brain_function(abnormal),
 cause(genetic_and_enviromental).

type(psychotic_disorder) :- symptom(false_beliefs),
 mentality(manic_depressive),
 cause(genetic_and_enviromental).

type(genetic_disorder) :- cause(abnormalities_in_genome).

656 | P a g e

Try: Create an Expert System suggesting the medical support for the diagnosis of kidney diseases.

Include the features like:

1. Forward chaining reasoning

2. History and questions management

3. Backtrack and facts revocation.

4. Management of uncertainty through the CF approach proposed for the first time in the MyCIN

expert system.

5. Explanation and translation form of the technical glossary

10.2 War Crimes Explorer

Create an expert system in prolog to improve the understanding of declarative programming paradigm

based on the logic rules. Develop the program with an idea of:

• In-browser learning about genocide, war crimes, crimes against humanity, and aggression.

• Interactively enter facts and discover the laws that might have been broken.

• Possibly submit the information to the ICC (International Criminal Court) as a witness

statement.

 Input: Set of logical rules with laws and crimes within the jurisdiction of the International

Criminal Court.

Output: Model the legal statutes.

Hints

/*
 * Crimes within the jurisdiction of the International Criminal Court.
 *
 *
https://world.public.law/rome_statute/article_5_crimes_within_the_jurisdiction_of_
the_court
 */
crime(genocide).
crime(war_crime).
crime(crime_against_humanity).
crime(crime_of_aggression).

/*
 * A first, simple attempt at Protected Persons under
 * the Geneva Conventions of 1949.
 */
protected_by_geneva_convention(P) :- civilian(P).
protected_by_geneva_convention(P) :- prisoner_of_war(P).
protected_by_geneva_convention(P) :- medical_personnel(P).
protected_by_geneva_convention(P) :- religious_personnel(P).

/*
 * D = Defendant
 * V = Victim
 */

/*

657 | P a g e

 * Genocide
 * https://world.public.law/rome_statute/article_6_genocide
 */
criminal_liability(genocide, Statute, D, V) :-
 elements(Statute, D, V).

/*
 * War crimes
 * https://world.public.law/rome_statute/article_8_war_crimes
 */
criminal_liability(war_crime, Statute, D, V) :-
 protected_by_geneva_convention(V),
 international_conflict(D, V),
 elements(Statute, D, V).

elements(article_8_2_a_i, D, V) :-
 act(D, killed, V).

elements(article_8_2_a_ii, D, V) :-
 act(D, tortured, V).
``` 

 

Try: Create an Expert System suggesting the medical support for the diagnosis of kidney diseases. 

Include the features like: 

1. Forward chaining reasoning 

2. History and questions management 

3. Backtrack and facts revocation. 

4. Management of uncertainty through the CF approach proposed for the first time in the MyCIN 

expert system. 

5. Explanation and translation form of the technical glossary 

 

10.3 DP Film Expert System 

Create an expert system in prolog to improve the understanding of declarative programming paradigm 

based on the logic rules. Develop the program in such a way that it allows you to get film 

recommendations based on your answer and logic rules with a little film database.  
 

Input: Set of logical rules with some film database.  

 

Output: Recommend a file based on the persons name, mood, sex, time they have, and type 

of films interested.  

 

Hints 

# Sample database  
/** DRAMA */ 
film('Zielona mila','Frank Darabont',1999,'drama', 'others',  188,'USA','Tom 
Hanks',8.7,719). 
film('Pif Paf! Jestes trup', 'Guy Ferland', 2002, 'drama', 'others',  87, 
'Kanada', 'Ben Foster', 7.7, 16). 
film('Dogville', 'Lars von Trier', 2003, 'drama', 'others', 178, 'Dania', 'Nicole 
Kidman', 7.7, 45). 



 

658 | P a g e   
 

film('Z dystansu', 'Ton Kayne', 2011, 'drama', 'others', 100, 'USA', 'Adrien 
Brody', 7.9, 30). 
film('Lista Schindlera', 'Steven Spielberg', 1993, 'drama', 'others', 195, 'USA', 
'Adrien Brody', 8.4, 259). 
film('Requiem dla snu', 'Darren Aronofsky', 2000, 'drama', 'others', 102, 'USA', 
'Jared Leto', 7.9, 520). 
film('Biutiful', 'Alejandro Gonzalez Inarritu', 2010, 'drama', 'others', 148, 
'Hiszpania', 'Javier Bardem', 7.6, 12). 
film('Czarny labedz', 'Darren Aronofsky', 2010, 'drama', 'others', 108, 'USA', 
'Natalie Portman', 7.7, 248). 
film('Gladiator', 'Ridley Scott', 2000, 'drama', 'others', 155, 'USA', 'Russell 
Crowe', 8.1, 552). 
film('Dzien swira', 'Marek Koterski', 2002, 'drama', 'others', 123, 'Polska', 
'Marek Kondrat', 7.8, 438). 
film('Pianista', 'Roman Polanski', 2002, 'drama', 'others', 150, 'Polska', 'Adrien 
Brody', 8.3, 410). 
 
/** COMEDY */ 
film('Seksmisja', 'Juliusz Machulski', 1984, 'comedy', 'others', 118, 'Polska', 
'Jerzy Stuhr', 7.9, 420). 
film('Forrest Gump', 'Robert Zemeckis', 1994, 'comedy', 'others', 144, 'USA', 'Tom 
Hanks', 8.6, 697). 
film('Kac Vegas', 'Todd Phillips', 2009, 'comedy', 'others', 100, 'USA', 'Bradley 
Cooper', 7.3, 537). 
film('Notykalni', 'Olivier Nakache', 2011, 'comedy', 'others', 112, 'Francja', 
'Francois Cluzet', 8.7, 393). 
film('Truman Show', 'Peter Weir', 1998, 'comedy', 'others', 103, 'USA', 'Jim 
Carrey', 7.4, 383). 
film('Kiler', 'Juliusz Machulski', 1997, 'comedy', 'others', 104, 'Polska', 
'Cezary Pazura', 7.7, 315). 
film('Kevin sam w domu', 'Chris Columbus', 1990, 'comedy', 'others', 103, 'USA', 
'Macaulay Culkin', 7.1, 297). 
film('Mis', 'Stanislaw Bareja', 1980, 'comedy', 'others', 111, 'Polska', 
'Stanislaw Tym', 7.8, 261). 
film('Diabel ubiera sie u Prady', 'David Frankel', 2006, 'comedy', 'others', 109, 
'USA', 'Meryl Streep', 6.9, 227). 
film('Jak rozpetalem druga wojne swiatowa', 'Tadeusz Chmielewski', 1969, 'comedy', 
'others', 236, 'Polska', 'Marian Kociniak', 7.9, 195). 
 
# Write the predicates related to actors and create some helper functions 
 
# Write the code to design an expert system asking some questions related to the 
mode, time available, gendre etc. 



 

659 | P a g e   
 

 

Try: Create an Expert System suggesting the medical support for the diagnosis of kidney diseases. 

Include the features like: 

1. Forward chaining reasoning 

2. History and questions management 

3. Backtrack and facts revocation. 

4. Management of uncertainty through the CF approach proposed for the first time in the MyCIN 

expert system. 

5. Explanation and translation form of the technical glossary 

 
 

11.  Exercises on Genetic Algorithms 

11.1 Generating a Bit Pattern using Predefined Parameters  

Generate a bit string that contains a predefined number of ones. Perform the selection process during 

each iteration by applying the genetic algorithm. Choose the strongest individuals and terminate the 

weakest one where the survival of the fittest concept comes into play. Carry out the selection process 

by using a fitness function and compute the strength of each individual. 

 

Input:  

1. Deap Python Library 

2. Consider the problem as solving the variant of the One Max problem. 

 

Output: 

1. Generate a bit string that contains a predefined number of ones. 

a. Generate a bit pattern of length 75. 

2. Evaluate all the individuals in the population using the fitness function. 

3. Evaluate all the individuals with invalid fitness values. 

4. Print the stats for the current generation to see how its progressing. 

 

 



 

660 | P a g e   
 

 
 

Hints 

/* Install the Python package like DEAP */ 
$ pip3 install deap 
 
/* Create a new Python file and import the following: */ 
import random from deap  
import base, creator, tools 
 
# Evaluation function  
def eval_func(individual):  
 target_sum = 45  
 return len(individual) - abs(sum(individual) - target_sum), 
 
# Create the toolbox with the right parameters 
# Initialize the toolbox 
# Generate attributes 
# Initialize structures 
# Define the population to be a list of individuals 
# Register the evaluation operator 
# Register the crossover operator 
# Register a mutation operator 
# Operator for selecting individuals for breeding 
 
/* Write the appropriate code here by printing the stats for the current 
generation individuals and print the final output */ 

 

Try: Understand the working of genetic algorithms and use how to use it to solve similar 

kinds of problems. 

 

11.2 Visualizing the Evolution  

Understand the process of visualizing the evolution process by using a CMA-ES to solve non-linear 

problems in the continuous domain. The goal of this exercise is to work by delving into the code 

provided in their source code by using DEAP library. 

 

Input: Code mentioned in the DEAP library to implement the evolutionary algorithm for solving non-

linear problems in the continuous domain. 

 

Output: Plot the progress as: 



 

661 | P a g e   
 

  
 

  
 

Hints 

/*Create a new Python file and import the following: */ 
import numpy as np  
import matplotlib.pyplot as plt from deap  
import algorithms, base, benchmarks, \ cma, creator, tools 
 
/* Define a function to create the toolbox. We will define a FitnessMin function 
using negative weights: */ 
 
/* Create the toolbox and register the evaluation function */ 
 
/* Register the generate and update methods, Define the main function, define a 
strategy before we start the process */ 
 
/* Create the toolbox based on the strategy */ 
 
/* Register the stats using the Statistics method */ 
 
/* Define objects to compile all the data, define objects to compile all the data, 
and Evaluate individuals using the fitness function */ 
 
/* Update the strategy based on the population and save the data for plotting*/ 
 
/* Define the x axis and plot the stats and plot the progress */ 

 

Try: Extend the same program to see the progress printed on the Terminal. Observe the 

values keep decreasing as the process progress and indicate that it’s converging.  

 

 

 

 



 

662 | P a g e   
 

11.3 Solving the Symbol Regression Problem  

Use genetic programming to solve the symbol regression problem and understand that genetic 

programming is not the same as genetic algorithms. The goal of this exercise is to understand how the 

programs are modified, at each iteration. 

 

Input: Create a division operator, define the evaluation function, and compute the mean squared error 

(MSE). 

 

Output: Run the evolutionary algorithm using the above parameters:  

 
population, log = algorithms.eaSimple(population, toolbox,  

probab_crossover, probab_mutate, num_generations,  

stats=mstats, halloffame=hall_of_fame, verbose=True) 

 

Hints 

/* Create a new Python file and import the following: */ 
import operator import math  
import random  
import numpy as np  
from deap import algorithms, base, creator, tools, gp 
 
/* Create a division operator that can handle divide-by-zero error gracefully: */ 
 
/* Create a division operator that can handle divide-by-zero error gracefully: */ 
 
/* Compute the mean squared error (MSE) between the function defined earlier and 
the original expression: */ 
 
/* Define a function to create the toolbox and register the stats using the 
objects defined previously. */ 
 
/* Define the crossover probability, mutation probability, and the number of 
generations */ 
 
/* Define the crossover probability, mutation probability, and the number of 
generations */ 

 

 

Try: Building two bots to play Hexapawn against each other. 



 

663 | P a g e   
 

 
 

12.  Exercises on Genetic Algorithms 

12.1 Building a bot to play Last Coin Standing 

This is a game where we have a pile of coins, and each player takes turns to take a number of coins 

from the pile. There is a lower and an upper bound on the number of coins that can be taken from the 

pile. The goal of the game is to avoid taking the last coin in the pile.  

 

Input: A class handling all the operations of the game, define who starts the game, overall number of 

coins in the pile, maximum number of coins per move, and possible moves.  

 

Output: 

  

Hints 

/* Create a new Python file and import the following: */ 
from easyAI import TwoPlayersGame, id_solve, Human_Player, AI_Player from 
easyAI.AI import TT 
 
/* Create a class to handle all the operations of the game */ 
 
/* Define who is going to start the game */ 
 
/* Define the number of coins in the pile, define the maximum number of coins that 
can be taken out in any move */ 
 
/* Define all the possible moves, define a method to remove the coins and keep 
track of the number of coins remaining in the pile */ 
 
/* Check if anyone won the game by checking the number of coins remaining and stop 
the game after someone wins its. */ 
 
/* Compute the score and define a method to show the current status of the pile */ 
 

 
Try: Solve the same game using iterative deepening algorithm by determining who can win a game 
using all the paths.  
 
 
 
 



 

664 | P a g e   
 

12.2 Building a bot to play Tic-Tac-Toe. 

Tic-Tac-Toe (Noughts and Crosses) is probably one of the most famous games.  Here the goal is to 

build a game where the computer can play against the user. 

 

Input: A 3×3 board numbered from one to nine row-wise, all possible moves, and updates the board 

moves until some player has lost the game. 

 

Output:  

  

 

Hints 

# Create a new Python file and import the following packages:  
from easyAI import TwoPlayersGame, AI_Player, Negamax  
from easyAI.Player import Human_Player 
 
# Define a class that contains all the methods to play the game. Start by defining 
the players and who starts the game 
 
# Define a method to compute all the possible moves 
 
# Define a method to update the board after making a move 
 
# Define a method to see if somebody has lost the game 
 
# Define a method to show the current progress and compute the score using the 
loss_condition method 

12.3 Building Two Bots to Play Connect Four against each other.   

Connect Four™ is a popular two-player game sold under the Milton Bradley trademark. It is also known 

by other names such as Four in a Row or Four Up. In this game, the players take turns dropping discs 

into a vertical grid consisting of six rows and seven columns. The goal is to get four discs in a line. This 

is a variant of the Connect Four recipe given in the easyAI library. In this recipe, instead of playing 

against the computer, create two bots that will play against each other. We will use a different 

algorithm for each to see which one wins. 

 

Input: A board with six rows and seven columns, define the who is going to start the games, define the 

positions, and define all the possible legal moves. 

 

Output: Compute the score and print the results. Get the following output on your Terminal at the 

beginning and towards the end. 

 



 

665 | P a g e   
 

  
 

Hints 

# Create a new Python file and import the following packages:  
import numpy as np from easyAI  
import TwoPlayersGame, Human_Player, AI_Player, \ Negamax, SSS 
 
# Define a class that contains all the methods needed to play the game 
 
# Define the board with six rows and seven columns 
 
# Define who's going to start the game. In this case, let's have player one starts 
the game and define the position as: 
 
# Define the positions  
self.pos_dir = np.array([[[i, 0], [0, 1]]  
 for i in range(6)] + [[[0, i], [1, 0]]  
 for i in range(7)] + [[[i, 0], [1, 1]]  
 for i in range(1, 3)] + [[[0, i], [1, 1]]  
 for i in range(4)] + [[[i, 6], [1, -1]]  
 for i in range(1, 3)] + [[[0, i], [1, -1]] for i in range(3, 7)]) 
 
# Define a method to get all the possible moves, define a method to control how to 
make a move, and define a method to show the current status. 

 

Try: Building two bots to play Hex pawn against each other. 

13.  Exercises on Robotics 

13.1  Two-Persons, Perfect Information Games 

Consider games with just two outcomes: win and Loss. Games where a draw is a possible outcome can 

be reduced to two outcomes: win, not win. The two players will be called 'us' and 'them'. 'Us' can win in 

a non-terminal 'us-to-move' position if there is a legal move that leads to a won position. On the other 

hand, a non-terminal ‘them-to-move' position is won for 'us' if all the legal moves from this position 

lead to won positions. These rules correspond to AND/OR tree representation of problems. The goal of 

this exercise is to find whether an us-to-move position is won. 

 

Input: Rules corresponding to AND/OR trees that can be adopted for searching game trees. 

 

Output: Find whether an us-to-move position  



 

666 | P a g e   
 

 

 

Hints 

# Create a new Python file and import the following packages:  
import numpy as np from easyAI  
import TwoPlayersGame, Human_Player, AI_Player, \ Negamax, SSS 
 
# Define a class that contains all the methods needed to play the game 
 
# Define the board with six rows and seven columns 
 
# Define who's going to start the game. In this case, let's have player one starts 
the game and define the position as: 
 
# Define the positions  
self.pos_dir = np.array([[[i, 0], [0, 1]]  
 for i in range(6)] + [[[0, i], [1, 0]]  
 for i in range(7)] + [[[i, 0], [1, 1]]  
 for i in range(1, 3)] + [[[0, i], [1, 1]]  
 for i in range(4)] + [[[i, 6], [1, -1]]  
 for i in range(1, 3)] + [[[0, i], [1, -1]] for i in range(3, 7)]) 
 
# Define a method to get all the possible moves, define a method to control how to 
make a move, and Define a method to show the current status. 

 

Try: Write a program to play some simple game (like nim) using the straightforward AND/OR search 

approach. 

 

13.2 The minimax principle 

The goal of this exercise is the straightforward implementation of the minimax principle. 
 

Input: 

 
 

Output: Compute the minimax backed-up value for a given position. 

 

Hints 

# minimax_simplenim.py 
 
def minimax(state, max_turn): 
    if state == 0: 
        return 1 if max_turn else -1 
 
    # ... 
 
def minimax(state, max_turn): 
    if state == 0: 



 

667 | P a g e   
 

        return 1 if max_turn else -1 
 
    possible_new_states = [ 
        state - take for take in (1, 2, 3) if take <= state 
    ] 
    if max_turn: 
        scores = [ 
            minimax(new_state, max_turn=False) 
            for new_state in possible_new_states 
        ] 
        return max(scores) 
 
    # ... 

 

Try: You should play a few games of Nim to get a feel for how the new rules change the strategy. Try it 

with a different number of piles, say three, four, or five. You don’t need a lot of counters in each pile. 

Between three and nine is a good starting point. 

 

13.3 Advice Language 0 

A broad strategy for winning with the king and rook against the sole opponent's king is to force the 

king to the edge, or into a corner if necessary, and deliver mate in a few moves. The goal is to develop 

a program that a play a game from a given starting position using knowledge representation in Advice 

Language 0. 

 

Input: Goal predicates and Move constraint predicates. 
 

 
 

Output: Predicate library for king and rock Vs king. 

 

Hints 

# minimax_simplenim.py 
 
def minimax(state, max_turn): 
    if state == 0: 
        return 1 if max_turn else -1 
 
    # ... 
 
def minimax(state, max_turn): 
    if state == 0: 
        return 1 if max_turn else -1 



 

668 | P a g e   
 

 
    possible_new_states = [ 
        state - take for take in (1, 2, 3) if take <= state 
    ] 
    if max_turn: 
        scores = [ 
            minimax(new_state, max_turn=False) 
            for new_state in possible_new_states 
        ] 
        return max(scores) 
 
    # ... 
 

Try: Consider some other simple chess endgames, such as king and pawn vs. king, and write an ALO 

program (together with the corresponding predicate definitions) to play this endgame. 

 

14.  Exercises on Neural Networks 

14.1 Building a Perceptron Based Classifier 

A Perceptron is the building block of an artificial neural network. It is a single neuron that takes inputs, 

performs computation on them, and then produces an output. It uses a simple linear function to make 

the decision. Let's say we are dealing with an N-dimension input data point. A Perceptron computes 

the weighted summation of those N numbers, and it then adds a constant to produce the output. The 

constant is called the bias of the neuron. It is remarkable to note that these simple Perceptron’s are 

used to design very complex deep neural networks. Develop the python code to build a perceptron-

based classifier using NeuroLab. 
 

Input: Text file data_perceptron.txt 

 

Output: Plot showing the training progress using the error metric.  

 

Hints 

# Create a new python file and import the following packages: # 
 
import numpy as np  
import matplotlib.pyplot as plt  
import neurolab as nl 
 
# Load the input data and separate each data into datapoints and labels. 
 
# Plot the input data. 
 
# Extract the minimum and maximum values for each dimension. 
 
# Define a perceptron with 2 input neurons. 
 
# Train the perceptron using the training data and plot the training progress 
using the error metric. 



 

669 | P a g e   
 

 

Try: Implement the same code using different datasets. 

 

14.2 Constructing a Single Layer Neural Network  

To enable higher accuracy, we need to give more freedom to the neural network. This means that a 

neural network needs more than one layer to extract the underlying patterns in the training data. 

Develop the python code to create a single layer neural network to extract the training data patterns. 

Input: Generate the training data  

Output: Error rates for each epoch and test results.  

  

 

Hint 

# Create a new python file and import the following packages: # 
 
import numpy as np  
import matplotlib.pyplot as plt  
import neurolab as nl 
 
# Load the input data and separate each data into datapoints and labels. 
 
# Plot the input data. 
 
# Extract the minimum and maximum values for each dimension. 
 
# Define the number of neurons in the output layer. 
 
# Define a single layer neural network using above parameters. 
 
# Train the neural network using the training data that was generated. 
 



 

670 | P a g e   
 

# Run the neural network on the training datapoints and plot the training 
progress. 
 
# Plot the training progress. 
 
# Define some sample test datapoints and run the network on those points. 

 

Try: Continue training the network and reduce the errors. Verify that the predicted outputs are 

corrected by locating the data points on a 2D graph. 

  

14.3 Constructing a Multi-Layer Neural Network  

To enable higher accuracy, we need to give more freedom to the neural network. This means that a 

neural network needs more than one layer to extract the underlying patterns in the training data. 

Develop the python code to create a multilayer neural network to extract the training data patterns. 

Input: Generate the training data  

Output: Error rates for each epoch. 

 

 

Hint 

# Create a new python file and import the following packages: # 
 
import numpy as np  
import matplotlib.pyplot as plt  
import neurolab as nl 



 

671 | P a g e   
 

 
# Generate some sample data points based on the equation y = 3x^2 + 5 and then 
normalize the points 
 
# Reshape the above variables to create a training dataset: 
 
# Plot the input data. 
 
# Define a multilayer neural network with two hidden layers. 
 
# Set the training algorithm to gradient descent. 
 
# Train the neural network using the training data that was generated. 
 
# Run the neural network on the training datapoints and plot the training 
progress. 
 
# Plot the predicted output. 

 

Try: Continue training the network and reduce the errors. Try to see that the predicted output will 

match the input curve even more accurately. 
 

15.  Exercises on Natural Language Processing 
 

15.1 Converting words to their base forms using stemming 
Working with text has a lot of variations included in it. We have to deal with different forms of the 

same word and enable the computer to understand that these different words have the same base 

form. For example, the word sing can appear in many forms such as sang, singer, singing, singer, and 

so on. We just saw a set of words with similar meanings. Humans can easily identify these base forms 

and derive context. Develop the python code to analyze the text and identify the base forms and derive 

the context.  

 

Input: Bag of some input words like writing, calves, branded etc.  
 

Output: Extract useful statistics to analyze the input text.  

 
Hint 

# Create a new python file and import the following packages. 
 
from nltk.stem.porter import PorterStemmer  
from nltk.stem.lancaster import LancasterStemmer  
from nltk.stem.snowball import SnowballStemmer 
  
# Define some input words 
 
# Create objects for Porter, Lancaster, and Snowball stemmers. 



 

672 | P a g e   
 

 
# Create a list of names for table display and format the output text accordingly. 
 
# Iterate through the words and stem them using the three stemmers 
 

Try: Implement the code to understand the three stemming algorithms to achieve the same goal. 

Converting words to their base forms using lemmatization. 

 

15.2 Dividing text data into chunks 

Text data usually needs to be divided into pieces for further analysis. This process is known as 

chunking. This is used frequently in text analysis. The conditions that are used to divide the text into 

chunks can vary based on the problem at hand. This is not the same as tokenization where we also 

divide text into pieces. During chunking, we do not adhere to any constraints and the output chunks 

need to be meaningful. Develop the python code to divide the text into chunks to extract meaningful 

information.  

Input: A large text document named brown. 

Output: Divide the input text into chunks and display the output.  

 

Hint 

# Create a new python file and import the following packages. 
 
import numpy as np  
from nltk.corpus import brown  
 
# Define a function to divide the input text into chunks. 
 
# Iterate through the words and divide them into chunks using the input parameter. 
 
# Define the main function and read the input data using the Brown corpus. 
 
# Define the number of words in each chunk: 
 
# Divide the input text into chunks and display the output: 
 



 

673 | P a g e   
 

 

Try: Implement the code to understand the three stemming algorithms to achieve the same goal. 

Converting words to their base forms using lemmatization. 

 

15.3 Extracting the frequency of terms using a Bag of Words Model  

One of the main goals of text analysis is to convert text into numeric form so that we can use machine 

learning on it. Let's consider text documents that contain many millions of words. In order to analyze 

these documents, develop the python code to extract the text and convert it into a form of numeric 

representation. 

Input: Consider the following sentences.  
 

Sentence 1: The children are playing in the hall   

Sentence 2: The hall has a lot of space  

Sentence 3: Lots of children like playing in an open space  
 

If you consider all the three sentences, we have the following nine unique words: the, 

children, are, playing, in, hall, has, a, lot, of, space, like, an, open.  
 

Output: Extract useful statistics to analyze the input text.  

 
Hint 

# Create a new python file and import the following packages. 
 

import numpy as np  
from sklearn.feature_extraction.text import CountVectorizer  
from nltk.corpus import brown  
from text_chunker import chunker 
  
# Build a bag of words model in NLTK. 
 

# Define the number of words in each chunk 
 

# Divide the input text into chunks: 
 

# Convert the chunks into dictionary items: 
 

# Extract the document term matrix where we get the count of each word. 
 

# Extract the vocabulary and display it and generate the names for display. 
 
# Print the document term matrix. 
 



 

674 | P a g e   
 

 

Try: 1. Build a category predictor. 

        2. Construct a gender identifier. 
       3. Building a sentiment analyzer 

 

16. Final Notes 
The only way to learn programming is program, program, and program on challenging problems. The 

problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging 

problems available – used in training for various programming contests. Check out these sites: 
 

1. Introduction to Artificial Intelligence with Python, Associated with Harvard University. CS50's 
Introduction to Artificial Intelligence with Python | Harvard University  

2. NPTEL: An Introduction to Artificial Intelligence, https://nptel.ac.in/courses/106105077/  

3. NPTEL: Artificial Intelligence Search Methods for Problem Solving, Artificial Intelligence Search 
Methods for Problem Solving - Course (nptel.ac.in). 

4. IFACET (iitk.ac.in)  

5. Introduction to Artificial Intelligence (AI) | Coursera in association with IBM.  

6. http://www.ai.eecs.umich.edu 

Student must have any one of the following certifications: 

• Competitive Coding with AlphaCode Team - Competitive programming with AlphaCode 

(deepmind.com) 

IIIT Hyderabad Certification - Competitive programming with AlphaCode (deepmind.com) 

        

V.TEXT BOOKS: 

1. Stuart Russel,Peter Norving,”AI-A Modern Approach”, Pearson Education, 2nd edition, 2007. 

2. Chen G, “Introduction to Fuzzy sets, Fuzzy logic, and Fuzzy Control Systems”, CRC Press LLC, 

2001. 

 
VI. REFERENCE BOOKS: 

1. Dan W.patterson, “Introduction to AI and ES”, Pearson Education, 2007. 

2. Peter Jackson, “Introduction to Expert Systems”, Pearson Education, 3rd edition, 2007. 

3. Stuart Russel,Peter Norvig, “AI-A Modern Approach”,  Pearson Education, 2nd edition2007. 

4. K Sudareswaran, “A Learner‟s guide to Fuzzy logic systems”, 2nd edition, 2020. 

5. G.Luger,W.A. Stubblefield,” Artificial Intelligence”, Third Edition ,Addition-Wesley Longman,1998. 

6. Sandipan dey”Hands-On Image Processing with Python”, January 1st 2018. 

 

VII. ELECTRONICS RESOURCES: 

1. https://onlinecourses.nptel.ac.in/noc19_cs52/preview 

2. https://ece.iisc.ac.in/~parimal/2019/ml.html  

3. https://www.geeksforgeeks.org/fuzzy-logic-introduction/ 

4. https://www2.eecs.berkeley.edu/ 

5. https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/ 

6. https://cs.nyu.edu/~mohri/mlu11/ 

 
VIII. MATERIALS ONLINE 

1. Course Template 

2. Lab Manual 

 

 

 

 

 

https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python
https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python
https://nptel.ac.in/courses/106105077/
https://onlinecourses.nptel.ac.in/noc21_cs79/preview
https://onlinecourses.nptel.ac.in/noc21_cs79/preview
https://ifacet.iitk.ac.in/professional-certificate-course-in-ai-and-machine-learning/?utm_source=google&utm_medium=cpc&utm_term=ai%20certification&utm_content=20161035334-154966829171-661014543750&utm_device=c&utm_campaign=Search-DataCluster-PG-DSAI-AIML-CAIML-IITK-Main-IITKDomain-IN-AllDevice-Core-adgroup-CAIML-IITK-Core-Keywords&gclid=EAIaIQobChMIpqzx9MXHgQMVoxF7Bx1w6QEuEAAYAyAAEgLHuvD_BwE
https://www.coursera.org/learn/introduction-to-ai
https://www.deepmind.com/blog/competitive-programming-with-alphacode
https://www.deepmind.com/blog/competitive-programming-with-alphacode
https://www.deepmind.com/blog/competitive-programming-with-alphacode
http://www.geeksforgeeks.org/fuzzy-logic-introduction/
https://cs.nyu.edu/~mohri/mlu11/


 

675 | P a g e   
 

 

 

 

 

 

 

 

COURSE CONTENT 

 

DevOps Engineering  

IV Semester: AERO | ME | CE | EEE | CSE | IT | CSE (AI&ML) | CSE (DS) | CSE (CS) 

Course Code Category Hours / Week Credits Maximum Marks 

ACSD18 Skill 
L T P C CIA SEE Total 

2 0 0 0 40 60 100 

Contact Classes: 32 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 32 

Prerequisite: OBJECT ORIENTED PROGRAMMING 

I. COURSE OVERVIEW: 

DevOps, a combination of "development" and "operations," is a software development methodology that 

emphasizes collaboration and communication between software developers and IT operations professionals. The 

goal of DevOps is to streamline the software delivery process, from code development to deployment and 

maintenance, by breaking down silos between development and operations teams. 

 

II. COURSES OBJECTIVES:  

The students will try to learn 

I. The DevOps Concepts for business cases, cloud provisioning and management services  . 

II. The model canvas for DevOps use cases. 

III. The virtual machines and containers for designing of applications  

IV. The code with various aspects in continuous deployment / development. 

 

III. COURSE OUTCOMES: 

       At the end of the course students should be able to: 

    CO 1      Understands the DevOps concepts in continuous delivery / development of applications. 

    CO 2     Create the DevOps applications using various tools and technologies. 

    CO 3     Examine the virtual machines and containers for managing the files 

    CO 4     Apply cloud services for deployment the applications in a real-time 

    CO 5     Perform web security and testing the code with appropriate tools 

 

IV. COURSE SYLLABUS: 
 

 

MODULE 1: DevOps Concepts  
Understanding DevOps movement, DevOps with changing time, The water fall model, Agile Model, 

Collaboration, Why DevOps, Benefits of DevOps, DevOps life cycle- all about continuous, Build Automation, 

Continuous Integration, Continuous Management, Continuous Delivery / Continuous Development, The agile 

wheel of wheels. 

 

MODULE 2: DevOps Tools and Technologies  
Code Repositories : Git, Differences between SVN and Git, Build tools – Maven, Continuous integration tools – 

Jenkins, Container Technology – Docker, Monitoring Tools, Continuous integration with Jenkins 2,  Creating 

built-in delivery pipelines, Creating Scripts, Creating a pipeline for compiling and executing test units, Using the 

Build Pipeline plugin, Integrating the deployment operation 

 

 

 



 

676 | P a g e   
 

MODULE 3: Docker Containers  
Overview of Docker containers, Understanding the difference between virtual machines and containers, 

Installation and configuration of Docker, Creating your first Docker container, Managing containers, Creating a 

Docker image from Docker file, An overview of Docker's elements, Creating a Dockerfile, Writing a Dockerfile, 

Building and running a container on a local machine, Testing a container locally, Pushing an image to Docker 

Hub 

 

MODULE 4: Cloud Provisioning and Configuration Management with Chef, Managing 

Containers Effectively with Kubernetes  
Amazon EC2, Creating and configuring a virtual machine in Amazon Web Services, Prerequisite – deploying our 

application on a remote server, Deploying the application on AWS, Deploying the application in a Docker 

container.  

Kubernetes architecture overview, Installing Kubernetes on a local machine, Installing the Kubernetes dashboard, 

Kubernetes application deployment, Using Azure Kubernetes Service (AKS), Creating an AKS service, 

Configuring kubectl for AKS, The build and push of the image in the Docker Hub 

 

MODULE 5: Testing the Code  
Manual testing,  Unit testing, JUnit in general and JUnit in particular, A JUnit example, Automated integration 

testing, Docker in automated testing, Performance testing, Automated acceptance testing, Automated GUI 

testing, Integrating Selenium tests in Jenkins, JavaScript testing, Testing backend integration points, Test-driven 

development, A complete test automation scenario, Manually testing our web application. 

 

V. TEXT BOOKS: 
 

1. Mitesh Soni, “DevOps for Web Development”, Packt Publishing, 2016. 

2. Mikael Krief, “Learning DevOps - The complete guide to accelerate collaboration with Jenkins, Kubernetes, 

Terraform and Azure DevOps”, Packt Publishing, 2019. 

 

VI. REFERENCE BOOKS: 
 

1. Joakim Verona, “Practical DevOps”, Packt Publishing, 2016. 

2. Michael Huttermann, “DevOps for Developers”, A press publishers, 2012. 

3. Sanjeev Sharma, “The DevOps Adoption Playbook”, Published by John Wiley & Sons, Inc.2017. 

4. Sanjeev Sharma & Bernie Coyne, “DevOps for Dummies”, Published by John Wiley & Sons, Inc. 

 

VII. REFERENCE BOOKS: 

1. https://www.geeksforgeeks.org/devops-tutorial/ 

2. https://www.javatpoint.com/devops 

3. https://azure.microsoft.com/en-in/solutions/devops/tutorial 

4. https://www.guru99.com/devops-tutorial.html 
 



 

677 | P a g e   
 

 

 
 

 

 

UNDERTAKING BY STUDENT / PARENT 
 

“To make the students attend the classes regularly from the first day of starting of classes and be aware of the 

College regulations, the following undertaking form is introduced which should be signed by both student and 

parent. The same should be submitted to the Dean of Academic”. 

 

I, Mr. / Ms. -------------------------------------------------------------------------- joining I Semester / III Semester for 

the academic year 20     - 20     / 20     - 20      in Institute of Aeronautical Engineering, Hyderabad, do hereby 

undertake and abide by the following terms, and I will bring the ACKNOWLEDGEMENT duly signed by me 

and my parent and submit it to the Dean of Academic.  

 

1. I will attend all the classes as per the timetable from the starting day of the semester specified in the institute 

Academic Calendar. In case, I do not turn up even after two weeks of starting of classes, I shall be ineligible 

to continue for the current academic year.  

2. I will be regular and punctual to all the classes (theory/laboratory/project) and secure attendance of not less 

than 75% in every course as stipulated by Institute. I am fully aware that an attendance of less than 65% in 

more than 60% of theory courses in a semester will make me lose one year.  

3. I will compulsorily follow the dress code prescribed by the college.  

4. I will conduct myself in a highly disciplined and decent manner both inside the classroom and on campus, 

failing which suitable action may be taken against me as per the rules and regulations of the institute.  

5. I will concentrate on my studies without wasting time in the Campus/Hostel/Residence and attend all the 

tests to secure more than the minimum prescribed Class/Sessional Marks in each course. I will submit the 

assignments given in time to improve my performance.  

6. I will not use Mobile Phone in the institute premises and also, I will not involve in any form of ragging 

inside or outside the campus. I am fully aware that using mobile phone to the institute premises is not 

permissible and involving in Ragging is an offence and punishable as per JNTUH/UGC rules and the law.  

7. I declare that I shall not indulge in ragging, eve-teasing, smoking, consuming alcohol drug abuse or any 

other anti-social activity in the college premises, hostel, on educational tours, industrial visits or elsewhere. 

8. I will pay tuition fees, examination fees and any other dues within the stipulated time as required by the 

Institution / authorities, failing which I will not be permitted to attend the classes.  

9. I will not cause or involve in any sort of violence or disturbance both within and outside the college campus.  

10. If I absent myself continuously for 3 days, my parents will have to meet the HOD concerned / Principal.  

11. I hereby acknowledge that I have received a copy of BT23 Academic Rules and Regulations, course 

catalogue and syllabus copy and hence, I shall abide by all the rules specified in it. 

 ----------------------------------------------------------------------------------------------------------------------------- -----------  

ACKNOWLEDGEMENT 

 

I have carefully gone through the terms of the undertaking mentioned above and I understand that following these 

are for my/his/her own benefit and improvement. I also understand that if I/he/she fail to comply with these 

terms, shall be liable for suitable action as per Institute/JNTUH/AICTE/UGC rules and the law. I undertake that 

I/he/she will strictly follow the above terms.  

 

 

 

Signature of Student with Date Signature of Parent with Date  

Name & Address with Phone Number 

 

 

 

 

 


