
INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

(Approved by AICTE | NAAC Accreditation with ‘A++’ Grade | Accredited by NBA | Affiliated to JNTUH)

Dundigal, Hyderabad - 500 043, Telangana

OUTCOME BASED EDUCATION

WITH

CHOICE BASED CREDIT SYSTEM

BACHELOR OF TECHNOLOGY

ELECTRICAL AND ELECTRONICS ENGINEERING

ACADEMIC REGULATIONS, COURSE CATALOGUE and SYLLABUS

BT25

B.Tech Regular Four Year Degree Program

 (for the batches admitted from the academic year 2025 - 2026)

&

B.Tech (Lateral Entry Scheme)

 (for the batches admitted from the academic year 2026 - 2027)

These rules and regulations may be altered / changed from time to time by the academic council

FAILURE TO READ AND UNDERSTAND THE RULES IS NOT AN EXCUSE

ii | P a g e

VISION

To bring forth students, professionally competent and socially progressive, capable of

working across cultures meeting the global standards ethically.

MISSION

To provide students with an extensive and exceptional education that prepares them to excel

in their profession, guided by dynamic intellectual community and be able to face the

technically complex world with creative leadership qualities.

Further, be instrumental in emanating new knowledge through innovative research that

emboldens entrepreneurship and economic development for the benefit of wide spread

community.

QUALITY POLICY

Our policy is to nurture and build diligent and dedicated community of engineers providing a

professional and unprejudiced environment, thus justifying the purpose of teaching and

satisfying the stake holders.

A team of well qualified and experienced professionals ensure quality education with its

practical application in all areas of the Institute.

iii | P a g e

PROGRAM OUTCOMES (PO's)

Engineering Graduates will be able to:

PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing,

engineering fundamentals and an engineering specialization as specified in WK1 to WK4

respectively to develop to the solution of complex engineering problem.

PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex

engineering problems reaching substantiated conclusions with consideration for sustainable

development. (WK1 to WK4)

PO3: Development of Solutions: Design creative solutions for complex engineering problems and

design/develop systems/components/processes to meet identified needs with consideration for

the public health and safety, whole-life cost, net zero carbon, culture, society and

environment

as required. (WK5).

PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex

engineering problems using research-based knowledge including design of experiments,

modelling, analysis & interpretation of data to provide valid conclusions. (WK8).

PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and

modern engineering & IT tools, including prediction and modelling recognizing their

limitations to solve complex engineering problems. (WK2 and WK6).

PO6: The Engineer and The World: Analyze and evaluate societal and environmental aspects

while solving complex engineering problems for its impact on sustainability with reference to

economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).

PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity

and inclusion; adhere to national & international laws. (WK9)

PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a

member or leader in diverse/multi-disciplinary teams

PO9: Communication: Communicate effectively and inclusively within the engineering

community and society at large, such as being able to comprehend and write effective reports

and design documentation, make effective presentations considering cultural, language, and

learning differences

PO10: Project Management and Finance: Apply knowledge and understanding of engineering

management principles and economic decision-making and apply these to one’s own work, as

a member and leader in a team, and to manage projects and in multidisciplinary

environments.

PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for

i) independent and life-long learning ii) adaptability to new and emerging technologies and

iii) critical thinking in the broadest context of technological change. (WK8).

iv | P a g e

CONTENTS

Section Particulars Page

1 Choice Based Credit System 1

2 Medium of Instruction 1

3 Programs Offered 1

4 Semester Structure 2

5 Registration / Dropping / Withdrawal 2

6 Credit System 3

7 Curricular Components 4

8 Evaluation Methodology 5

9 Attendance Requirements and Detention Policy 10

10 Conduct of Semester End Examinations and Evaluation 10

11 Letter Grades and Grade Points 10

12 Computation of SGPA and CGPA 11

13 Illustration of Computation of SGPA and CGPA 12

14 Revaluation 12

15 Promotion Policies 12

16 Credit Exemption 13

17 Award of Degree 13

18 Conversion of CGPA into Equivalent Percentage of Marks 14

19 B.Tech with Honours or Minor in Engineering 14

20 Temporary Break of Study from the Program 17

21 Termination from the Program 18

22 With-holding of Results 18

23 Graduation Day 18

24 Discipline 18

25 Grievance Redressal Committee 18

26 Multiple Entry Multiple Exit Scheme (MEMES) 18

27 Additional Requirements for Diploma Award 19

28 Re-Entry into the B.Tech Program 19

29 Break in Study and Maximum Duration 19

30 Transitory Regulations to the Students Re-Admitted in BT25 Regulations 19

31 Student Transfers 20

32 Academic regulations for B.Tech (Lateral entry students) from the academic year: 2026-27 20

33 Revision of Regulations and Curriculum 21

“Take up one idea.

Make that one idea your life-think of it, dream of it, live on that idea.

Let the brain muscles, nerves, every part of your body be full of that idea and just leave every other idea

alone. This is the way to success”

 Swami Vivekananda

v | P a g e

PRELIMINARY DEFINITIONS AND NOMENCLATURES

AICTE: Means All India Council for Technical Education, New Delhi.

Autonomous Institute: Means an institute designated as Autonomous by University Grants

Commission (UGC), New Delhi in concurrence with affiliating University (Jawaharlal Nehru

Technological University, Hyderabad) and State Government.

Academic Autonomy: Means freedom to an institute in all aspects of conducting its academic

programs, granted by UGC for Promoting Excellence.

Academic Council: The Academic Council is the highest academic body of the institute and is

responsible for the maintenance of standards of instruction, education and examination within the

institute. Academic Council is an authority as per UGC regulations and it has the right to take

decisions on all academic matters including academic research.

Academic Year: It is the period necessary to complete an actual course of study within a year. It

comprises two main semesters i.e., (one odd + one even) and one supplementary semester.

Branch: Means specialization in a program like B.Tech degree program in Aeronautical Engineering,

B.Tech degree program in Computer Science and Engineering etc.

Board of Studies (BOS): BOS is an authority as defined in UGC regulations, constituted by Head of

the Organization for each of the departments separately. They are responsible for curriculum design

and updation in respect of all the programs offered by a department.

Backlog Course: A course is considered to be a backlog course, if the student has obtained a failure

grade (F) in that course.

Basic Sciences: The courses offered in the areas of Mathematics, Physics, Chemistry etc., are

considered to be foundational in nature.

Betterment: Betterment is a way that contributes towards improvement of the students’ grade in any

course(s). It can be done by either (a) re-appearing or (b) re-registering for the course.

Commission: Means University Grants Commission (UGC), New Delhi.

Choice Based Credit System: The credit based semester system is one which provides flexibility in

designing curriculum and assigning credits based on the course content and hours of teaching along

with provision of choice for the student in the course selection.

Certificate Course: It is a course that makes a student to have hands-on expertise and skills required

for holistic development in a specific area/field.

Compulsory course: Course required to be undertaken for the award of the degree as per the

program.

Continuous Internal Examination: It is an examination conducted towards sessional assessment.

Core: The courses that are essential constituents of each engineering discipline are categorized as

professional core courses for that discipline.

Course: A course is offered by a department for learning in a particular semester.

Course Outcomes: The essential skills that need to be acquired by every student through a course.

Credit: A credit is a unit that gives weight to the value, level or time requirements of an academic

course. The number of 'Contact Hours' in a week of a particular course determines its credit value.

One credit is equivalent to one lecture/tutorial hour per week.

Credit point: It is the product of grade point and number of credits for a course.

vi | P a g e

Cumulative Grade Point Average (CGPA): It is a measure of cumulative performance of a student

over all the completed semesters. The CGPA is the ratio of total credit points secured by a student in

various courses in all semesters and the sum of the total credits of all courses in all the semesters. It is

expressed up to two decimal places.

Curriculum: Curriculum incorporates the planned interaction of students with instructional content,

materials, resources, and processes for evaluating the attainment of Program Educational Objectives.

Department: An academic entity that conducts relevant curricular and co-curricular activities,

involving both teaching and non-teaching staff, and other resources in the process of study for a

degree.

Detention in a Course: Student who does not obtain minimum prescribed attendance in a course

shall be detained in that particular course.

Dropping from Semester: Student who doesn’t want to register for any semester can apply in writing

in prescribed format before the commencement of that semester.

Elective Course: A course that can be chosen from a set of courses. An elective can be Professional

Elective and / or Open Elective.

Evaluation: Evaluation is the process of judging the academic performance of the student in her/his

courses. It is done through a combination of continuous internal assessment and semester end

examinations.

Experiential Engineering Education (ExEEd): Engineering entrepreneurship requires strong

technical skills in engineering design and computation with key business skills from marketing to

business model generation. Our students require sufficient skills to innovate in existing companies or

create their own.

Grade: It is an index of the performance of the students in a said course. Grades are indicated by

alphabets.

Grade Point: It is a numerical weight allotted to each letter grade on a 10 - point scale.

Honours: An Honours degree typically refers to a higher level of academic achievement at an

undergraduate level.

Institute: Means Institute of Aeronautical Engineering, Hyderabad unless indicated otherwise by the

context.

Massive Open Online Courses (MOOC): MOOC courses inculcate the habit of self-learning.

MOOC courses would be additional choices in all the elective group courses.

Minor: Minor are coherent sequences of courses which may be taken in addition to the courses

required for the B.Tech degree.

Pre-requisite: A specific course, the knowledge of which is required to complete before student

register another course at the next grade level.

Professional Elective: It indicates a course that is discipline centric. An appropriate choice of

minimum number of such electives as specified in the program will lead to a degree with

specialization.

Program: Means, UG degree program: Bachelor of Technology (B.Tech); PG degree program:

Master of Technology (M.Tech) / Master of Business Administration (MBA).

Program Educational Objectives: The broad career, professional and personal goals that every

student will achieve through a strategic and sequential action plan.

Project work: It is a design or research-based work to be taken up by a student during his/her final

year to achieve a particular aim. It is a credit based course and is to be planned carefully by the

student.

vii | P a g e

Re-Appearing: A student can reappear only in the semester end examination for theory component of

a course to the regulations contained herein.

Registration: Process of enrolling into a set of courses in a semester of a program.

Regulations: The regulations, common to all B.Tech programs offered by Institute, are designated as

“BT23” and are binding on all the stakeholders.

Semester: It is a period of study consisting of 16 weeks of academic work equivalent to normally

minimum of 90 working days. Odd semester commences usually in July and even semester in

December of every year.

Semester End Examinations: It is an examination conducted for all courses offered in a semester at

the end of the semester.

S/he: Means “she” and “he” both.

Student Outcomes: The essential skill sets that need to be acquired by every student during her/his

program of study. These skill sets are in the areas of employability, entrepreneurial, social and

behavioral.

University: Means Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, is

an affiliating University.

Withdraw from a Course: Withdrawing from a course means that a student can drop from a course

within the first two weeks of odd or even semester (deadlines are different for summer sessions).

However, s/he can choose a substitute course in place of it, by exercising the option within 5 working

days from the date of withdrawal.

viii | P a g e

PREFACE

Dear Students,

The focus at IARE is to deliver value-based education with academically well qualified faculty and

infrastructure. It is a matter of pride that IARE continues to be the preferred destination for students to

pursue an engineering degree.

In the year 2015, IARE was granted academic autonomy status by University Grants Commission,

New Delhi under Jawaharlal Nehru Technology University Hyderabad. From then onwards, our prime

focus is on developing and delivering a curriculum which caters to the needs of various stakeholders.

The curriculum has unique features enabling students to develop critical thinking, solve problems,

analyze socially relevant issues, etc. The academic cycle designed on the basis of Outcome Based

Education (OBE) strongly emphasizes continuous improvement and this has made our curriculum

responsive to current requirements.

The curriculum at IARE has been developed by experts from academia and industry and it has unique

features to enhance problem solving skills apart from academic enrichment. The curriculum of B.Tech

program has been thoroughly revised as per AICTE / UGC / JNTUH guidelines and have incorporated

unique features such as competency training / coding, industry driven elective, internship and many

more. The curriculum is designed in a way so as to impart engineering education in a holistic

approach towards Excellence.

I hope you will have a fruitful stay at IARE.

Dr. L V Narasimha Prasad

Principal

9 | P a g e

 INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

ACADEMIC REGULATIONS – BT25

B.Tech. Regular Four-Year Degree Program
 (for the batches admitted from the academic year 2025 - 2026)

&

B.Tech. (Lateral Entry Scheme)
 (for the batches admitted from the academic year 2026 - 2027)

For pursuing Four-year undergraduate Bachelor of Technology (B.Tech) degree program of study

in engineering offered by Institute of Aeronautical Engineering under Autonomous status.

A student after securing admission shall complete the B.Tech. program in a minimum period of four

academic years and a maximum period of eight academic years starting from the date of commencement

of first semester, failing which student shall forfeit seat in B.Tech. course. Each student has to secure a

minimum of 160 credits out of 164 credits for successful completion of the undergraduate program and

award of the B.Tech. degree. Additional 20/18 credits can be acquired for the degree of B.Tech with

Honours or Minor in Engineering. Separate certificate will be issued in addition to major degree

program mentioning that the student has cleared Honours / Minor specialization in respective courses.

1. CHOICE BASED CREDIT SYSTEM

The credit-based semester system provides flexibility in designing program curriculum and assigning

credits based on the course content and hours of teaching. The Choice Based Credit System (CBCS)

provides a ‘cafeteria’ type approach in which the students can take courses of their choice, learn at their

own pace, undergo additional courses and acquire more than the required credits, and adopt an

interdisciplinary approach to learning.

A course defines learning objectives and learning outcomes and comprises lectures / tutorials / laboratory

work / field based research work / capstone project / seminars / internship / assignments / MOOCs /

alternative assessment tools / presentations / self-study etc., or a combination of some of these. Under the

CBCS, the requirement for awarding a degree is prescribed in terms of number of credits to be completed

by the students.

2. MEDIUM OF INSTRUCTION

The medium of instruction shall be English for all courses, examinations, seminar presentations and

project work. The program curriculum will comprise courses of study as given in course structure, in

accordance with the prescribed syllabi.

3. PROGRAMS OFFERED

Presently, the institute is offering Bachelor of Technology (B.Tech) degree programs in Nine disciplines.

The various programs and their two-letter unique codes are given in Table 1.

Table 1: B.Tech programs offered

S.No Name of the Program Title Code

1 Aeronautical Engineering AE 07

2 Computer Science and Engineering CS 05

3 Computer Science and Engineering (AI&ML) CA 34

4 Computer Science and Engineering (Data Science) CD 35

5 Information Technology IT 06

6 Electronics and Communication Engineering EC 04

7 Electrical and Electronics Engineering EE 02

10 | P a g e

8 Mechanical Engineering ME 03

9 Civil Engineering CE 01

4. SEMESTER STRUCTURE

The undergraduate program is of four academic years and there shall be two semesters in each academic

year. There shall be a minimum of 15 weeks of instruction weeks, excluding the mid-term and semester-

end exams. Around 15 instruction hours, 30 instruction hours and 45 hours of learning need to be

followed per one credit of theory course, practical course and project/field-based learning respectively.

All second Saturday’s are observed as holiday.

Readmitted students and those admitted on transfer from JNTUH-affiliated institutes, universities, or

other institutions are required to pursue the prescribed courses and earn credits on par with regular

students, as prescribed by the respective Board of Studies.

5 REGISTRATION / DROPPING / WITHDRAWAL

The academic calendar includes important academic activities to assist the students and the faculty.

These includes commencement of class work, continuous internal examinations, preparation holidays and

semester end examinations. This enables the students to be well prepared and take full advantage of the

flexibility provided by the credit system.

5.1. Each student has to compulsorily register for course work at the beginning of each semester as per

the schedule mentioned in the academic calendar. It is compulsory for the student to register for

courses in time. The registration will be organized departmentally under the supervision of the

Head of the department.

5.2. In ABSENTIA, registration will not be permitted under any circumstances.

5.3. At the time of registration, students should have cleared all the dues of Institute and Hostel for the

previous semesters, paid the prescribed fees for the current semester and not been debarred from

the institute for a specified period on disciplinary or any other ground.

5.4. In the first two semesters, the prescribed course load per semester is fixed and is mandated to

register all the courses. Withdrawal / Dropping of courses in the first and second semester is not

allowed.

5.5. In all semesters, the average load is 20 credits / semester, with its minimum and maximum limits

being set at 16 and 24 credits. This flexibility enables students (from IV semester onwards) to

cope with the course work considering the academic strength and capability of student.

5.6. Dropping of Courses:

Within one week after the last date of first continuous internal examination, the student may in

consultation with his / her faculty mentor / adviser, drop one or more courses without prejudice to

the minimum number of credits as specified in clause 5.5. The dropped courses are not recorded in

the memorandum of grades. Student must complete the dropped course(s) by registering in the

forthcoming semester in order to earn the required credits.

5.7. Withdrawal from Courses:

A student is permitted to withdraw from a course before commencement first continuous internal

examination. Such withdrawals will be permitted without prejudice to the minimum number of

credits as specified in clause 5.5. A student cannot withdraw a course more than once and

withdrawal of reregistered courses is not permitted.

6. CREDIT SYSTEM

The B.Tech program shall consist of a number of courses and each course shall be assigned with credits.

The curriculum shall comprise Foundation Courses (FC), Professional Core (PC), Professional Electives

(PE), Open Electives (OE), Laboratory Courses, Skill Development Courses, Other Courses and

Mandatory Courses (MC) / Value Added Courses (VAC).

Depending on the complexity and volume of the course, the number of contact periods per week will be

assigned. Each theory and laboratory course carries credits based on the number of hours/weeks.

11 | P a g e

• Contact classes (Theory): 1 credit per lecture hour per week, 1 credit per tutorial hour per week.

• Laboratory hours (Practical): 1 credit for 2 practical hours per week.

• Project work: 1 credit for 4 hours in a semester for Project/Mini-Project session per week.

• Skill Development Courses: 1 credit for 2 hours

• Mandatory courses / Value added courses : 1 credit is awarded.

Category wise distribution of Credits is shown in Table 2.

Table 2: Category Wise Distribution of Credits

S.No Category
Number of

courses

Credits per

course(s)
Total Credits

1 BS - Basic Science

(1 - 4 credits, 4 - 3 Credits)

5 4/3 16 18

BS - Basic Science Laboratories 2 1 2

2 ES - Engineering Science 3 3 9 20

ES - Engineering Science Laboratories 2 1 2

MEC Courses 2 3/1 4

CSC Courses 3 3/1 5

3 HS - Humanities and Social Sciences 1 3 3 6

HS - Humanities and Social Sciences

Laboratories

3 1 3

4 Professional Core - Theory 16 3 - 48

Professional Core - Laboratories 15 1 - 15

5 Professional Electives 6 3 18

6 Open Electives 3 2 6

7 Project Work 1 14 14

8 Skill Development Courses 4 1 4

9 Industry Oriented Mini Project/ Summer

Internship

1 2 2

10 Field-Based Project / Internship 1 2 2

11 Mandatory Courses / Value Added Course 3 1 3

12 Innovation and Entrepreneurship 1 2 2

13 Business Economics and Financial Analysis 1 3 3

14 Fundamentals of Management 1 3 - 3

Total -- - 164

Major benefits of adopting the credit system are listed below:

• Quantification and uniformity in the listing of courses for all programs at institute, like program core,

electives and project work.

• Ease of allocation of courses under different heads by using their credits to meet national

/international practices in technical education.

• Convenience to specify the minimum / maximum limits of course load and its average per semester

in the form of credits to be earned by a student.

• Flexibility in program duration for students by enabling them to pace their course load within

minimum/maximum limits based on their preparation and capabilities.

• Wider choice of courses available from any department of the same institute or even from other

similar institute, either for credit or for audit.

• Improved facility for students to optimize their learning by availing of transfer of credits earned by

them from one College to another.

7. CURRICULAR COMPONENTS

Courses in a curriculum may be of three kinds: Foundation courses, Core courses, Elective courses,

Project core, Other core courses, Skill development courses and Value added courses.

12 | P a g e

Foundation course:

Foundation courses include the basic science and engineering science course based upon the content

leads to enhancement of skill and knowledge as well as value based and are aimed at man making

education.

Professional core (PC):

There may be a professional core course in every semester. These courses are to be compulsorily studied

by a student as a core requirement to complete the requirement of a program in the said discipline of

study.

Professional electives (PE) / Open electives (OE):

Electives provide breadth of experience in respective branch and application areas. The program

elective(s) is a course which can be chosen from a pool of courses. An elective may be professional

elective, is a discipline centric focusing on those courses which add generic proficiency to the students or

may be Open elective course, chosen from unrelated disciplines.

There are six professional elective tracks (PE-1 to PE-VI). Students can choose not more than two

courses from each track. Overall, students can opt for six professional electives which suit their capstone

project in consultation with the faculty advisor/mentor. Nevertheless, one course from each of the three

open electives has to be selected. A student may also opt for more elective courses in his/her area of

interest.

Students have the flexibility to choose from the list of professional electives offered by the Institute or

opt to register for the equivalent MOOCS courses as listed from time to time by the institute.

It may be:

• Supportive to the discipline of study

• Providing an expanded scope

• Enabling an exposure to some other discipline / domain

• Nurturing student’s proficiency / skill.

Provision for Early Registration of MOOCs:

• For a professional elective in a semester, students are allowed to register for an equivalent MOOCs

course listed from time to time.

• For example, a Professional Elective of VI semester shall be allowed to register under MOOCs

platform in V semester.

• The credits earned in one semester in advance can be submitted in the subsequent semester for the

assessment.

• The student who has registered in advance in an equivalent MOOCs course and fails to secure any

pass grade in the MOOCs course, can register for the regular course offered in the following semester

of their course catalogue.

Note: MOOCS courses are allowed only for professional electives.

Skill development courses are structured training courses which help students to acquire practical

abilities, competencies, and soft skills which are essential for academic, professional, and personal

growth.

Value Added Course (VAC):

Value-added courses that focus on professional values, traditional knowledge, and the sensitization of

societal issues are short, skill-oriented programs designed to help students grow ethically, culturally, and

socially beyond technical skills. The evaluation of value added courses shall be similar to theory courses.

However, the scheduling of these CIA and SEE may not be combined with regular SEE examinations.

Semester wise course break-up

Following are the TWO models of course catalogue out of which any student shall choose or

will be allotted with one model based on their academic performance.

i. Full Semester Internship (FSI) Model and

ii. Non Full Semester Internship (NFSI) Model

13 | P a g e

A student with no current arrears upto IV semester shall be eligible to opt for FSI. Students can opt full

semester internship (FSI) in VIII semester. In Non-FSI Model, all the selected students shall carry out the

course work and capstone project as specified in the course cataloge.

8. EVALUATION METHODOLOGY

Total marks for each course shall be based on Continuous Internal Assessment (CIA) and Semester End

Examination (SEE). There shall have a uniform pattern of 40:60 for CIA and SEE of both theory and

practical courses. The institute shall conduct multiple CIA for theory courses. All the performances of a

student shall be considered for CIA marks distribution is shown in Table 3.

Table 3: Outline for Continuous Internal Assessments (CIA-1 and CIA-2) and SEE:

Activities CIA-1 CIA-2 SEE Total Marks

Continuous Internal Examination (CIE) 20 marks 20 marks

20 marks

Objective / Quiz 10 marks 10 marks 10 marks

Assignment 5 marks 5 marks 5 marks

Viva-Voce/PPT/Poster Presentation/ Case Study 5 marks 5 marks 5 marks

Semester End Examination (SEE) 60 marks 60 marks

Total -- -- 100 marks

8.1 Continuous Internal Assessments (CIA-1 and CIA-2)

Assessment is an ongoing process that begins with establishing clear and measurable expected outcomes

of student learning, provides students with sufficient opportunities to achieve those outcomes, and

concludes with gathering and interpreting evidence to determine how well students’ learning matches

expectations.

The first component CIA-1 of assessment is for 20 marks. This assessment and score process should be

completed after completing of first 50% of syllabus (21/2) of the course/s and within 45 working days of

semester program.

The second component CIA-2 of assessment is for 20 marks, this assessment and score process should be

completed after completing of remaining 50% of syllabus (21/2) of the course/s and within 45 working

days of semester program.

In case of a student who has failed to attend the CIA1 or CIA2 on a scheduled date, shall be deemed that

the student has dropped the examination. However, in case a student could not take the test on scheduled

date due to genuine reasons, may appeal to the HOD / Principal. The HOD / Principal in consultation

with the class in-charge shall decide about the genuineness of the case and decide to conduct Make-Up

examination to such candidate on the date fixed by the Examinations Control Office but before

commencement of the concerned semester end examinations.

The performance of a student in every course including value added courses, skill development courses,

laboratory courses, capstone project work will be evaluated for 100 marks each, with 40 marks allotted

for CIA and 60 marks for SEE, irrespective of the credits allocated.

8.2 Semester End Examination (SEE)

The semester end examinations, for theory courses, will be conducted for 60 marks consisting of two parts

viz. i) Part- A for 10 marks and ii) Part - B for 50 marks.

Part-A is compulsory, consists of five short answer questions; each question carries two marks.

14 | P a g e

Part-B consists of five questions carrying 10 marks each. There shall be two questions asked in the

question paper from each module with either-or choice and the student should answer either of the two

questions. The student shall answer one question from each of five modules.

The duration of SEE is 3 hours.

8.3 Passing Criteria:

To maintain high standards in all aspects of examinations at the institute, the institute shall follow the

standards of passing at CIA and SEE for each course.

a) A student shall be deemed to have satisfied the academic requirements and earned the credits

allotted to each course, if the student secures not less than 35% (21 marks out of 60 marks) in the

semester end examinations, and a minimum of 40% (40 marks out of 100 marks) in the sum total of

the Continuous Internal Assessment and Semester End Examination taken together; in terms of

letter grades, this implies securing ‘C’ grade or above in that course.

b) A student shall be deemed to have satisfied the academic requirements and earned the credits

allotted to Engineering Design Project / Engineering Development Project / Summer Internship, if

the student secures not less than 40% marks (i.e. 40 out of 100 allotted marks) in each of them. The

student is deemed to have failed, if he/she (i) does not submit a report on Engineering Design

Project / Engineering Development Project / Summer Internship or (ii) not make a presentation of

the same before the evaluation committee as per schedule, or (iii) secures less than 40% marks in

Field-Based Research Project / Industry Oriented Mini Project / Internship evaluations.

c) A student eligible to appear in the SEE for any course, is absent from it or failed (thereby failing to

secure ‘C’ grade or above) may re-appear for that course in the supplementary examination as and

when it is conducted. In such cases, internal marks (CIA) assessed earlier for that course will be

carried over, and added to the marks obtained in the SEE supplementary examination. If the student

secures sufficient marks for passing, ‘C’ grade or above shall be awarded as specified in clause

11.3.

8.4 Supplementary examinations

Supplementary examinations for the odd semester shall be conducted with the regular examinations of

even semester and vice versa. In case of failure in any course, a student may be permitted to register for

the same course when offered.

Advanced supplementary examinations in VIII semester courses may be conducted for those who failed

in any course offered in VIII semester. It may enable the students to receive their B.Tech provisional

certificate at an early date.

There shall be no supplementary examination in the successive semester. The students who could not

secure any pass grade in advance supplementary examinations have to wait for regular series examination

of next batch to write their backlog examination.

8.5 Laboratory Course

Evaluation methodology of laboratory course (CIA)

Each laboratory courses there shall be a CIA during the semester for 40 marks and 60 marks for SEE.

The 40 marks for internal evaluation marks are awarded as follows:

1. A write-up on day-to-day experiment in the laboratory (in terms of aim, components / procedure,

expected outcome) which shall be evaluated for 20 marks.

2. Internal practical examination conducted by the laboratory teacher concerned shall be evaluated for

10 marks.

3. The remaining 10 marks will be awarded for the project report submission and evaluation.

15 | P a g e

Evaluation methodology of laboratory course (SEE)

The SEE shall be conducted by an external examiner along with the laboratory handling faculty. The

external examiner shall be appointed from other institutions and will be selected from the panel by the

Principal.

The SEE held for 3 hours. Total 60 marks are divided and allocated as shown below:

1. 10 marks for write-up

2. 10 for experiment / program

3. 10 for evaluation of results

4. 10 marks for viva-voce on concerned laboratory course.

5. 20 marks will be awarded for the solving Complex Tasks Descriptions (CTDs) / take-home project

identified by department advisory committee which will be announced at the beginning of the

semester.

8.6 Evaluation of Engineering Design Project and Engineering Development Project

Engineering Design and Development Projects is the high point of degree studies in engineering. The

transition of students to industry is still not optimal, and there is a disparity between the needs of industry

and the actual ability of academia to meet these needs. Each project is carried out under the supervision

of academic faculty and where appropriate an industry partner.

The Engineering Design Project and Engineering Development Project shall be evaluated for 100

marks each. out of which 40 marks for CIA and 60 marks for SEE. The evaluation committee shall

consist of a Head of the Department, Supervisor of the Project and a Senior Faculty Member of the

department. Student shall have to earn 40% marks, i.e 40 marks out of 100 marks. The student is deemed

to have failed, if he (i) does not submit a report on the project, or (ii) does not make a presentation of the

same before the internal committee as per schedule, or (iii) secures less than 40% marks in this course.

8.7 Evaluation of Summer Internship

A Summer Internship shall be undertaken in collaboration with an industry relevant to the student's area

of specialization. Students must register for the internship immediately after the completion of their V

semester examinations and pursue it during the summer vacation. The internship, preferably at a reputed

organization, must be documented in the form of a report and presented before a committee during the

VII semester, prior to the semester-end examinations.

The internship shall be evaluated for 100 external marks, out of which 40 marks for CIA and 60 marks

for SEE. The evaluation committee shall consist of an external examiner, the Head of the Department,

supervisor, and a senior faculty member from the department.

8.8 Additional Mandatory Courses for lateral entry B.Tech students

In addition to the non-credit mandatory courses for regular B.Tech students, the lateral entry students

shall take up the following three non-credit mandatory bridge courses (one in III semester, one in IV

semester and one in V semester) as listed in Table 4. The student shall pass the following non-credit

mandatory courses for the award of the degree and must clear these bridge courses before advancing to

the VII semester of the program.

Table-4: Additional Mandatory Courses for lateral entry students

S.No Additional mandatory courses for lateral entry students

1 Dip - Object Oriented Programming

2 Dip - Data Structures

3 Dip - Front-End Web Development

16 | P a g e

8.9 Innovation and Entrepreneurship

Innovation and entrepreneurship course offered in III semester and its requires strong technical skills in

engineering design and computation with key business skills from marketing to business model

generation. Students require sufficient skills to innovate in existing companies or create their own.

This course will be evaluated for a total of 100 marks consisting of 40 marks for CIA and 60 marks for

SEE. Out of 40 marks of internal assessment, students has to submit Innovative Idea in a team of three /

four members in the given format. The SEE for 60 marks shall be conducted internally, students has to

present the Innovative Idea and it will be evaluated by internal course handling faculty with at least one

faculty member as examiner from the industry, both nominated by the Principal.

8.10 Capstone Project

The capstone project shall be initiated at the beginning of the VIII semester and the duration is one

semester. The student must present in consultation with his/her supervisor, the title, objective and plan of

action of his/her to the departmental committee for approval within two weeks from the commencement

of VIII semester. Only after obtaining the approval of the departmental committee, the student can start

his/her capstone project.

Student has to submit report of capstone project at the end of VIII semester. It shall be evaluated for 100

marks. Out of which 40 marks and 60 marks are allocated for CIA and SEE respectively. Evaluation shall

be done by a committee comprising the supervisor, Head of the department, and an external examiner

nominated by the Principal.

The external examiner shall evaluate the capstone project for 60 marks and the internal committee shall

evaluate it for 40 marks. The departmental committee consisting of Head of the department, supervisor

and a senior faculty member shall evaluate for 20 marks and supervisor shall evaluate for 20 marks.

The topics for the capstone project shall be different from the topics of Engineering design project /

Engineering development project / Summer Internship. The student is deemed to have failed, if he (i)

does not submit a capstone project, or (ii) does not make a presentation of the same before the external

examiner as per schedule, or (iii) secures less than 40% marks in the sum total of the CIE and SEE taken

together.

The external examiner will be selected for conducting viva-voce examination from the list of experts

selected by the Principal of the institute.

This gives students a platform to experience a research driven career in engineering, while developing a

device / systems and publishing in reputed SCI / SCOPUS indexed journals and/or filing an Intellectual

Property (IPR-Patent/Copyright) to aid communities around the world. Students should work

individually as per the guidelines issued by head of the department concerned. The benefits to students of

this mode of learning include increased engagement, fostering of critical thinking and greater

independence.

A student who has failed, may re-appear once for the above evaluation, when it is scheduled again; if

student fails in such ‘one re-appearance’ evaluation also, he/she has to appear for the same in the next

subsequent year, as and when it is scheduled.

A minimum of 50% of maximum marks shall be obtained to earn the corresponding credits.

8.11 Skill Development Courses

There are four skill development courses included in the curriculum in III, IV, V and VI semesters. Each

skill development course carries one credit. The evaluation pattern will be the same as that for a

laboratory course including internal and external assessments.

The objective of skill courses is to develop the cognitive skills as well as the psycho-motor skills.

8.12 Full Semester Internship (FSI)

FSI is a full semester internship program carry 14 credits. The FSI shall be opted in VIII semester.

During the FSI, student has to spend one full semester in an identified industry / firm / R&D organization

or another academic institution/University where sufficient facilities exist to carry out the project work.

17 | P a g e

The selection procedure is:

• Choice of the students.

• CGPA (> 7.5) upto IV semester having no credit arrears.

• Competency Mapping / Allotment.

It is recommended that the FSI Project work leads to a research publication in a reputed Journal /

Conference or the filing of patent / design with the patent office, or, the start-up initiative with a

sustainable and viable business model accepted by the incubation center of the institute together with the

formal registration of the startup.

9. ATTENDANCE REQUIREMENTS AND DETENTION POLICY

9.1 A student shall be eligible to appear for the semester end examinations, if the student acquires a

minimum of 75% of attendance in aggregate of all the courses for that semester.

9.2 Shortage of attendance in aggregate upto 10% (65% and above, and below 75%) in each semester

may be condoned by the college academic committee on genuine and valid grounds, based on the

student’s representation with supporting evidence.

9.3 A stipulated fee shall be payable for condoning of shortage of attendance.

9.4 Shortage of attendance below 65% in aggregate shall in NO case be condoned.

9.5 Students whose shortage of attendance is not condoned in any semester are not eligible to take their

semester end examinations of that semester. They get detained and their registration for that

semester shall stand cancelled, including all academic credentials (internal marks etc.) of that

semester. They will not be promoted to the next semester. They may seek re-registration for that

semester in the next academic year.

9.6 A student fulfilling the attendance requirement in the present semester shall not be eligible for

readmission into the same semester / class.

9.7 A student detained in a semester due to shortage of attendance may be re-admitted in the same

semester in the next academic year for fulfillment of academic requirements. The academic

regulations under which a student has been re-admitted shall be applicable. Further, no grade

allotments or SGPA/ CGPA calculations will be done for the entire semester in which the student

has been detained.

9.8 A student detained due to lack of credits, shall be promoted to the next academic year only after

acquiring the required number of academic credits. The academic regulations under which the

student has been readmitted shall be applicable to him.

10. CONDUCT OF SEMESTER END EXAMINATIONS AND EVALUATION

10.1 Semester end examination shall be conducted by the Controller of Examinations (COE) by inviting

question papers from the external examiners.

10.2 The Controller of Examinations (COE) shall invite external examiners to evaluate all semester end

examination answer scripts on the scheduled dates. Similarly, practical laboratory examinations shall

be conducted in the presence of external examiners to ensure transparency and fair evaluation.

10.3 Examinations control office shall consolidate the marks awarded by examiner/s and award the

grades.

11. LETTER GRADES AND GRADE POINTS

11.1 ABSOLUTE Grading system is followed for awarding the grade to each course.

11.2 Performance of students in each course, Theory, Laboratory, Industry-Oriented Mini Project/

Internship/ Skill development course and Project Work are expressed in terms of marks as well as in

Letter Grades based on absolute grading system.

11.3 To measure the performance of a student, a 10-point grading system is followed. The mapping

between the percentage of marks secured and the corresponding letter grade is as shown in the below

Table 5.

18 | P a g e

Table-5: Grade Points Scale (Absolute Grading)

Range of % of Marks Secured in a Course Letter Grade Grade Point

Greater than or equal to 90 O (Outstanding) 10

80 and less than 90 A+ (Excellent) 9

70 and less than 80 A (Very Good) 8

60 and less than 70 B+ (Good) 7

50 and less than 60 B (Average) 6

40 and less than 50 C (Pass) 5

Below 40 F (Fail) 0

Absent AB (Absent) 0

11.3 A student is deemed to have passed and acquired to correspondent credits in particular course if s/he

obtains any one of the following grades: “O”, “A+”, “A”, “B+”, “B”, “C”.

11.4 A student who has obtained an ‘F’ grade in any course shall be deemed to have ‘failed’ and is

required to reappear for a supplementary exam as and when conducted. In such cases, internal marks

in those courses will remain the same as those obtained earlier.

11.5 A student who has not appeared for an examination in any course, ‘Ab’ grade will be allocated in

that course, and he/she is deemed to have ‘Failed’. Such student will be required to reappear for

supplementary/make-up exam as and when conducted. The internal marks in those courses will

remain the same as those obtained earlier.

11.6 The students earn a Grade Point (GP) in each course, on the basis of letter grade secured in that

course. Every student who passes a course will receive grade point GP  5 (‘C’ grade or above).

11.7 At the end of each semester, the institute issues grade sheet indicating the SGPA and CGPA of the

student. However, grade sheet will not be issued to the student if s/he has any outstanding dues.

11.8 If a student earns more than 160 credits, only the courses corresponding to the best 160 credits

shall be considered for the computation of CGPA of B.Tech. degree.

12. COMPUTATION OF SGPA AND CGPA

The UGC recommends to compute the Semester Grade Point Average (SGPA) and Cumulative Grade

Point Average (CGPA). The credit points earned by a student are used for calculating the Semester Grade

Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both of which are important

performance indices of the student.

The Semester Grade Point Average (SGPA) is calculated only when all the courses offered in a semester

are cleared by a student. It is calculated by dividing the sum of credit points secured from all courses

registered in a semester, by the total number of credits registered during that semester. SGPA is rounded

off to two decimal places. SGPA for each semester is thus computed as

where ‘i’ is the course indicator index (considering all courses in a semester), ‘N’ is the no. of courses

registered for the semester (as listed under the course structure of the branch), Ci is the no. of credits

allotted to the ith course, and G୧ represents the grade points corresponding to the letter grade awarded for

that ith course.

19 | P a g e

The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a

student in all semesters considered for registration. The CGPA is the ratio of the total credit points

secured by a student for the courses correspond to best 160 credits out of all registered courses in all

semesters, and the total number of credits correspond to those selected courses. CGPA is rounded off to

two decimal places. CGPA is thus computed at the end of each semester, from the I year II semester

onwards, as per the formula.

where ‘M’ is the total no. of courses corresponding to the best 160 credits from the courses registered in

all eight semesters, ‘j’ is the course indicator index (takes into account all courses from 1 to 8 semesters),

Cj is the no. of credits allotted to the jth course, and Gj represents the grade points (GP) corresponding to

the letter grade awarded for that jth course.

The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

13.0 ILLUSTRATION OF COMPUTATION OF SGPA AND CGPA

13.1 Illustration for SGPA

Course Name Course Credits Grade letter Grade point
Credit Point

(Credit x Grade)

Course 1 4 A 8 4 x 8 = 32

Course 2 3 O 10 3 x 10 = 30

Course 3 3 C 5 3 x 5 = 15

Course 4 3 B 6 3 x 6 = 18

Course 5 3 A 8 3 x 8 = 24

Course 6 2 A+ 9 2 x 9 = 18

Course 7 1 C 5 1 x 5 = 15

Course 8 1 O 10 1 x 10 = 10

 20 152

Thus, SGPA = 152 / 20= 7.6

13.2. The CGPA of the entire B.Tech. program shall be calculated considering the best 160 credits earned

by the student.

13.3 For merit ranking or comparison purposes or any other listing, only the ‘rounded off’ values of the

CGPAs will be used.

13.4 SGPA of a semester will be mentioned in the semester Memorandum of Grades if all courses of that

semester are passed in first attempt. Otherwise, the SGPA shall be mentioned only on the

Memorandum of Grades in which sitting he passed his last exam in that semester.

14. REVALUATION

If the examinee is not satisfied with the marks awarded, s/he may apply for revaluation of answer

booklets in prescribed format online within three (3) working days from the date of declaration of result

of the examination or issue of the statement of marks, whichever is earlier. The revaluation facility shall

be for theory papers only. The revaluation of answer booklets shall not be permitted in respect of the

marks awarded to the scripts of practical examination / project work (including theory part) and in viva

voce / oral / comprehensive examinations.

20 | P a g e

15. PROMOTION POLICIES

The following academic requirements have to be satisfied in addition to the attendance requirements

mentioned in item no. 9.

S.No Promotion Conditions to be Fulfilled

1 First year first semester to first year

second semester

Regular course of study of first year first semester and

fulfilment of attendance requirement.

2 First year second semester to Second

year first semester

(i) Regular course of study of first year second semester and

fulfilment of attendance requirement

(ii) Must have secured at least 25% of the total credits up to

first year second semester from all the relevant regular and

supplementary examinations, whether the student takes

those examinations or not.

3 Second year first semester to Second

year second semester

Regular course of study of second year first semester and

fulfilment of attendance requirement.

4 Second year second semester to Third

year first semester

(i) Regular course of study of second year second semester and

fulfilment of attendance requirement.

(ii) Must have secured at least 25% of the total credits up to

second year second semester from all the relevant regular

and supplementary examinations, whether the student takes

those

 examinations or not.

5 Third year first semester to Third year

second semester

Regular course of study of third year first semester and

fulfilment of attendance requirement.

6 Third year second semester to Fourth

year first semester

Regular course of study of third year second semester and

fulfilment of attendance requirement

7 Fourth year first semester to Fourth

year second semester

Regular course of study of fourth year first semester and

fulfilment of attendance requirement

16. CREDIT EXEMPTION

A student (i) shall register for all courses covering 164 credits as specified and listed in the course

catalogue and (ii) earn 160 or more credits to successfully complete the undergraduate Program.

• Best 160 credits shall be considered for CGPA computation. The student can avail exemption of

courses totalling upto 4 credits other than professional core courses, laboratory courses, seminars,

capstone project, engineering design project / engineering development project / summer internship,

for optional drop out from these 164 credits registered.

• The Semester Grade Point Average (SGPA) of each semester shall be mentioned at the bottom of the

grade card, when all the subjects in that semester have been passed by the student.

• Credits earned by the student in either a Minor or Honors program cannot be counted towards the

required 160 credits for the award of the B.Tech. degree.

17. AWARD OF DEGREE

17.1 A student who registers for all the specified courses as listed in the course catalogue and secures the

required number of 160 credits within 8 academic years from the date of commencement of the first

academic year, shall be declared to have ‘qualified’ for the award of B.Tech. degree in the branch of

Engineering selected at the time of admission.

17.2 A student who qualifies for the award of the degree as listed in item 17.1 shall be placed in the

following classes.

17.3 A student with final CGPA (at the end of the undergraduate program) ≥ 7.5, and fulfilling the

following conditions - shall be placed in ‘first class with distinction’. However,

a. Should have passed all the courses in ‘first appearance’ within the first 4 academic years (or

8 sequential semesters) from the date of commencement of first semester.

b. Should not have been detained or prevented from writing the semester end examinations in

any semester due to shortage of attendance or any other reason.

21 | P a g e

c. A student not fulfilling any of the above conditions with final CGPA ≥ 7.5 shall be placed in

‘first class’.

17.4 Students with final CGPA (at the end of the undergraduate program)  6.5 but < 7.5 shall be placed

in ‘first class’.

17.5 Students with final CGPA (at the end of the undergraduate program)  5.5 but < 6.5, shall be

placed in ‘second class’.

17.5 All other students who qualify for the award of the degree (as per item 17.1), with final CGPA (at

the end of the B.Tech program)  5.00 but < 5.5, shall be placed in ‘pass class’.

17.6 A student with final CGPA (at the end of the B.Tech program) <5.0 will not be eligible for the

award of the degree.

17.7 Students fulfilling the conditions listed under item 17.3 alone will be eligible for award of ‘Gold

Medal’.

17.8 If more than one student secures the same highest CGPA, then the following tie resolution criteria,

in the same order of preference shall be followed for selecting the Gold Medal winner, until the tie

is resolved: 1) more number of times secured highest SGPAs, ii) more number of O and A+ grades

in that order and iii) highest SGPA in the order of first semester to eight semester.

17.9 Grace Marks

 Grace marks shall be given to those students who complete the course work of four year B.Tech.

degree, not secured pass grade in not more than three courses and adding a specified grace marks

enables the student to pass the course(s) as well as gets eligibility to receive the provisional degree

certificate.

 Grace marks for students admitted under the R25 Academic Regulations should not exceed 0.15%

of the total maximum marks in all eight semesters (excluding the marks allocated for value added

courses and skill development courses). The grace marks shall only be added if a student fails in a

maximum of three courses and adding the above grace marks make the student eligible to receive

the provisional degree certificate.

All the candidates who register for the SEE will be issued a memorandum of grades sheet by the institute.

Apart from the semester wise memorandum of grades sheet, the institute will issue the provisional

certificate and consolidated grades memorandum certificate to the fulfilment of all the academic

requirements.

18. CONVERSION OF CGPA INTO EQUIVALENT PERCENTAGE OF MARKS

The following formula shall be used for the conversion of CGPA into equivalent marks, whenever it is

necessary.

Percentage (%) of Marks = (Final CGPA – 0.5) x 10

The Table 06 shows the Percentage Equivalence of Grade Points (for a 10 – Point Scale).

Table 06: Percentage Equivalence of Grade Points (for a 10 – Point Scale)

Grade Point Percentage of Marks / Class

5.5 50

6.0 55

6.5 60

7.0 65

7.5 70

8.0 75

22 | P a g e

19. B.TECH WITH HONOURS OR MINOR IN ENGINEERING

Students acquiring 160 credits or more are eligible to get B.Tech degree in Engineering. A student will

be eligible to get B.Tech degree with Honours or Minor in Engineering, if s/he completes an additional

20/18 credits (3/4 credits per course). These could be acquired through MOOCs from SWAYAM /

NPTEL only. The list for MOOCs will be a dynamic one, as new courses are added from time to time.

Few essential skill sets required for employability are also identified year wise. Students interested in

doing MOOC courses shall register the course title at their department office at the start of the semester

against the courses that are announced by the department. Any expense incurred for the MOOC course /

summer program should be met by the students.

Students having no credit arrears and a CGPA of 7.5 or above at the end of the fourth semester are

eligible to register for B.Tech (Honours / Minor). After registering for the B.Tech (Honours / Minor)

program, if a student fails in any course, s/he will not be eligible for B.Tech (Honours / Minor).

Honours Certificate for Vertical in his/her OWN Branch for Research orientation; Minor in any

other branch for Improving Employability.

Honours will be reflected in the degree certificate as “B.Tech (Honours) in XYZ Engineering”. Similarly,

Minor as “B.Tech in XYZ Engineering with Minor in ABC”.

19.1. B.Tech with Honours

The key objectives of offering B.Tech with Honors program are:

• To expand the domain knowledge of the students laterally and vertically.

• To increase the employability of undergraduate students with expanded knowledge in one of the core

engineering disciplines.

• To provide an opportunity to students to pursue their higher studies in wider range of specializations.

Academic Regulations for B. Tech. Honours degree

1. The weekly instruction hours, internal and external evaluation and award of grades are on par with

regular 4-Years B. Tech. program.

2. For B. Tech with Honors program, a student needs to earn additional 20 credits (over and above the

required 160 credits for B.Tech degree). All these 20 credits required to be attained for B.Tech

Honors degree credits are distributed from V semester to VII semester.

3. After registering for the Honors program, if a student is unable to pass all courses in first attempt

and earn the required 20 credits, he/she shall not be awarded Honours degree. However, if the

student earns all the required 160 credits or more of B.Tech., he/she will be awarded only B.Tech

degree in the concerned branch.

4. There is no transfer of credits from courses of Honors program to regular B.Tech. degree course &

vice versa.

5. These 20 credits are to be earned from the additional courses offered by the host department in the

institute or from closely related departments in the institute as well as from the MOOCS platform

(NPTEL only).

6. The choice to opt/take the Honors program is purely on the choice of the students.

7. The student shall be given a choice of withdrawing all the courses registered and/or the credits

earned for Honours program at any time; and in that case the student will be awarded only B.Tech.

degree in the concerned branch on earning the required credits of 160.

8. The students of every branch can choose Honours program in their respective branches if they are

eligible for the Honors program. A student who chooses an Honors program is not eligible to

choose a Minor program and vice-versa.

9. A student can graduate with Honors if he/she fulfils the requirements for his/her regular B.Tech.

program as well as fulfills the requirements for Honours program.

10. The institute shall maintain a record of students registered and pursuing their Honors programs

branch-wise.

23 | P a g e

Eligibility conditions of the students for the B.Tech Honors degree

a) A student can opt for B.Tech. degree with Honors, if she/he passed all courses in first attempt in all

the semesters till the results announced and maintaining 7.5 or more CGPA.

b) If a student fails in any registered course of either B.Tech or Honours in any semester of four years

program, he/she will not be eligible for obtaining Honors degree. He will be eligible for only

c) Prior approval of mentor and Head of the Department for the enrolment into Honors program, before

commencement of V Semester, is mandatory.

d) If more than 30% of the students in a branch fulfill the eligibility criteria (as stated above), the

number of students given eligibility should be limited to 30%. The criteria to be followed for choosing

30% candidates in a branch may be the CGPA secured by the students till III semester.

e) Successful completion of 20 credits earmarked for Honours program with at least 7.5 CGPA along

with successful completion of 160 credits earmarked for regular B. Tech. Program with at least 7.5

CGPA and passing all courses in first attempt gives the eligibility for the award of B.Tech (Honors)

degree.

f) For CGPA calculation of B.Tech. course, the 20 credits of Honours program will not be considered.

Following are the details of such Honors which include some of the most interesting areas in the

profession today:

S.No Department Honors scheme

1 Aeronautical Engineering Aerospace Engineering / Space Science etc.

2
Computer Science and Engineering

/ Information Technology

Big data and Analytics / Cyber Physical Systems, Information

Security / Cognitive Science / Artificial Intelligence/ Machine

Learning / Data Science / Internet of Things (IoT) / Cyber Security

etc.

3
Electronics and Communication

Engineering

Digital Communication / Signal Processing / Communication

Networks / VLSI Design / Embedded Systems etc.

4
Electrical and Electronics

Engineering

Renewable Energy systems / Energy and Sustainability / IoT

Applications in Green Energy Systems etc.

5 Mechanical Engineering
Industrial Automation and Robotics / Manufacturing Sciences and

Computation Techniques etc.

6 Civil Engineering Structural Engineering / Environmental Engineering etc.

19.2 B.Tech with Minor in Engineering

The key objectives of offering B.Tech with Minor program are:

• To expand the domain knowledge of the students in one of the other branches of engineering.

• To increase the employability of undergraduate students keeping in view of better opportunity in

interdisciplinary areas of engineering & technology.

• To provide an opportunity to students to pursue their higher studies in the inter-disciplinary areas in

addition to their own branch of study.

• To offer the knowledge in the areas which are identified as emerging technologies/thrust areas of

Engineering.

Academic Regulations for B.Tech Degree with Minor programs

1. The weekly instruction hours, internal & external evaluation and award of grades are on par with

regular 4-Years B. Tech. program.

2. For B. Tech. with Minor, a student needs to earn additional 18 credits (over and above the required

160 credits for B. Tech degree). The courses are offered from V semester to VII semester only, to

obtain minor degree students required to obtain 18 credits.

3. After registering for the Minor program, if a student is unable to earn all the required 18 credits in a

specified duration (twice the duration of the course), he/she shall not be awarded Minor degree.

However, if the student earns all the required 160 credits of B.Tech, he/she will be awarded only

24 | P a g e

B. Tech degree in the concerned branch.

4. There is no transfer of credits from Minor program courses to regular B. Tech. degree course &

vice versa.

5. These 18 credits are to be earned from the additional courses offered by the host department in the

institute as well as from the MOOCs platform.

6. For the course selected under MOOCs platform (NPTEL) following guidelines may be followed:

a) Prior to registration of MOOCs courses, formal approval of the courses, by the institute is

essential, before the issue of approval considers the parameters like the institute / agency

which is offering the course, syllabus, credits, duration of the program and mode of evaluation

etc.

b) Minimum credits for MOOCs course must be equal to or more than the credits specified in the

Minor course structure provided by the institute.

c) Only Pass-grade / marks or above shall be considered for inclusion of grades in minor grade

memo.

d) Any expenses incurred for the MOOCs courses are to be met by the students only.

7. The choice to opt / take a Minor program is purely on the choice of the students.

8. The student shall be given a choice of withdrawing all the courses registered and / or the credits

earned for Minor program at any time; and in that case the student will be awarded only B. Tech.

degree in the concerned branch on earning the required credits of 160.

9. The student can choose only one Minor program along with his / her basic engineering degree. A

student who chooses an Honors program is not eligible to choose a Minor program and vice-

versa.

10. The institute shall maintain a record of students registered and pursuing their Minor programs,

minor program-wise and parent branch-wise.

11. The institute / department shall prepare the time-tables for each Minor course offered at their

respective institutes without any overlap/clash with other courses of study in the respective

semesters.

Eligibility conditions for the student to register for Minor course

a) A student can opt for B.Tech. degree with Minor program if she/he has no active backlogs till III

semester at the time of entering into V semester.

b) Prior approval of mentor and Head of the Department for the enrolment into Minor program,

before commencement of V Semester, is mandatory.

c) If more than 50% of the students in a branch fulfill the eligibility criteria (as stated above), the

number of students given eligibility should be limited to 50%.

20.0 TEMPORARY BREAK OF STUDY FROM THE PROGRAM

20.1 A candidate is normally not permitted to take a break from the study. However, if a candidate

intends to temporarily discontinue the program in the middle for valid reasons (such as accident or

hospitalization due to prolonged ill health) and to rejoin the program in a later respective semester,

s/he shall seek the approval from the Principal in advance. Such application shall be submitted

before the last date for payment of examination fee of the semester and forwarded through the

Head of the Department stating the reasons for such withdrawal together with supporting

documents and endorsement of his / her parent / guardian.

20.2 The institute shall examine such an application and if it finds the case to be genuine, it may permit

the student to temporarily withdraw from the program. Such permission is accorded only to those

who do not have any outstanding dues / demand at the College / University level including tuition

fees, any other fees, library materials etc.

20.3 The candidate has to rejoin the program after the break from the commencement of the respective

semester as and when it is offered.

25 | P a g e

20.4 The total period for completion of the program reckoned from the commencement of the semester

to which the candidate was first admitted shall not exceed the maximum period specified in clause

17. The maximum period includes the break period.

20.5 If any candidate is detained for any reason, the period of detention shall not be considered as

‘Break of Study’.

21. TERMINATION FROM THE PROGRAM

The admission of a student to the program may be terminated and the student is asked to leave the

institute in the following circumstances:

a. The student fails to satisfy the requirements of the program within the maximum period stipulated

for that program.

b. A student shall not be permitted to study any semester more than three times during the entire

program of study.

c. The student fails to satisfy the norms of discipline specified by the institute from time to time.

22. WITH-HOLDING OF RESULTS

If the student has not paid the fees to the institute at any stage, or has dues pending due to any reason

whatsoever, or if any case of indiscipline is pending, the result of the student may be withheld, and the

student will not be allowed to go into the next higher semester. The award or issue of the degree may also

be withheld in such cases.

.

23. GRADUATION DAY

The institute shall have its own annual Graduation Day for the award of degrees to the students

completing the prescribed academic requirements in each case, in consultation with the University and by

following the provisions in the Statute. The college shall award prizes and medals to meritorious students

and award them annually at the Graduation Day. This will greatly encourage the students to strive for

excellence in their academic work.

24. DISCIPLINE

Every student is required to observe discipline and decorum both inside and outside the institute and are

expected not to indulge in any activity which will tend to bring down the honour of the institute. If a

student indulges in malpractice in any of the theory / practical examination, continuous assessment

examinations, he/she shall be liable for punitive action as prescribed by the institute from time to time.

25. GRIEVANCE REDRESSAL COMMITTEE

The institute shall form a Grievance Redressal Committee for each course in each department with the

Course Teacher and the HOD as the members. The committee shall solve all grievances related to the

course under consideration.

26. MULTIPLE ENTRY MULTIPLE EXIT SCHEME (MEME)

26.1 Exit option after Second Year:

Students enrolled in the 4-Year B.Tech. program are permitted to exit the program after successful

completion of the second year (B.Tech. IV Semester). The students who desire to exit after the IV

year shall formally inform the exit plan one semester in advance i.e. at the commencement of II

Semester itself. Such students need to fulfil the additional requirements as specified in Clause 27

described below.

Upon fulfilling the requirements like earning all the credits up to IV semester and successfully

completing the additional requirements, the students will be awarded a 2-year undergraduate (UG)

diploma in the concerned engineering branch.

27. ADDITIONAL REQUIREMENTS FOR DIPLOMA AWARD

 To qualify for the diploma under the exit option, students must also complete 2 additional credits

 through one of the following institute-prescribed pathways.

26 | P a g e

Work-based Vocational Course:

Participation in a practical, hands-on vocational training program relevant to the engineering

 field, typically conducted during the summer term.

 Internship / Apprenticeship:

Completion of a minimum 8-week internship or apprenticeship in their related field to gain practical

industry exposure.

In addition, students must clear any associated course(s) or submit the internship/apprenticeship

report as per the institute schedule and guidelines.

28. RE-ENTRY INTO THE B.TECH PROGRAM

Students who have exited the B.Tech. program with a 2 Year UG Diploma may apply for re-entry

into the Fifth Semester of the B.Tech. program. Re-entry is subject to the following conditions.

• The student must surrender the awarded UG Diploma Certificate.

• Students who wish to rejoin in V semester must join the same B.Tech. program and same college

from which the student exited. Before rejoining, students should check for continuation of the

same branch at the college. If the specific branch is closed in that particular college, then student

should consult the University for the possible alternative solutions.

• Re-registered students will be governed by the academic regulations in effect at the time of re-

entry, regardless of the original regulations under which they were admitted.

• If a student opts to continue their studies without a gap after being awarded the diploma, they

must register for the third-year courses before the commencement of classwork.

29. BREAK IN STUDY AND MAXIMUM DURATION

Students are allowed to take a break of up to four years after completion of IV Semester with prior

University permission through the Principal of the college.

Re-entry after such a break is subject to the condition that the student completes all academic

requirements within twice the duration of the program (i.e., within 8 years for a 4-year B.Tech.

program).

30. TRANSITORY REGULATIONS TO THE STUDENTS RE-ADMITTED IN BT25

REGULATIONS:

30.1 Transitory regulations are applicable to the students detained due to shortage of attendance as well

as detained due to the shortage of credits and seeks permission to re-join the B.Tech program, where

BT25 regulations are in force.

30.2 A student detained due to shortage of attendance and re-admitted in BT25 regulations: Such

students shall be permitted to join the same semester, but in BT25 Regulations.

30.3 A student detained due to shortage of credits and re-admitted in BT25 regulations: Such students

shall be promoted to the next semester in BT25 regulations, only after acquiring the required

number of credits as per the corresponding regulations of his/her previous semester.

30.4 A student who has failed in any course in a specific regulation has to pass those courses in the

same regulations.

30.5 If a student is readmitted to BT25 Regulations and has any course with 80% of syllabus common

with his/her previous regulations, that particular course in BT25 Regulations will be substituted by

an equivalent course of BT23 regulations by the institute. All these details are summarized in a set

of look-up Table; one set for each B. Tech. branch.

30.6 Look Up Table of equivalence courses

A lookup table will be provided for the benefit of students and Principals. This lookup table will

include all the courses to be registered by students who have been re-admitted under the BT25

academic regulations from the BT23 academic regulations. Separate lookup tables will be provided

for the following categories of students:

27 | P a g e

a. Students re-admitted into the II Semester of the R25 Regulations

b. Students re-admitted into the III Semester of the R25 Regulations

c. Students re-admitted into the IV Semester of the R25 Regulations,

d. Students re-admitted into the V Semester of the R25 Regulations

e. Students re-admitted into the VI Semester of the R25 Regulations

f. Students re-admitted into the VII Semester of the R25 Regulations

g. Students re-admitted into the VIII Semester of the R25 Regulations

For every B.Tech. branch there shall be separate set of seven lookup tables

Applicability of Look-up Table: The above look-up table shall be applicable for i) students who

seek readmission from BT23 regulations to BT25 regulation and are going to be re-admitted in the same

college and ii) detained students of one JNTUH affiliated non-autonomous college who seek admission

into another JNTUH affiliated non-autonomous college.

For these two categories of students, the Principals of the affiliated colleges need not consult the

University for the equivalence courses. However the Principals need to inform in the specified format,

the list of such students and equivalences derived from the transitory regulations.

30.7 These look-Up tables are not applicable for i) the students who seek transfer from other Universities

to JNTUH affiliated colleges, autonomous to non-autonomous and non-autonomous to autonomous

colleges under JNTUH. Such students should consult the University regarding equivalent courses,

as was in previous practice.

30.8 The BT25 Academic Regulations are applicable to a student from the year of re-admission.

However, the student is required to complete the study of B.Tech. degree within the stipulated

period of eight academic years from the year of first admission.

31. STUDENT TRANSFERS

31.1 There shall be no branch transfers after the completion of admission process.

32.2 There shall be no transfers from one college to another within the constituent colleges and units

of Jawaharlal Nehru Technological University Hyderabad.

33.3 The students seeking transfer to colleges affiliated to JNTUH from various other

universities / institutions have to pass the failed courses which are equivalent to the courses of

JNTUH in JNTUH system, and also pass the additional courses of JNTUH which the students

have not studied at the earlier institution.

34.4 The transferred students from other Universities/Institutions to JNTUH affiliated colleges, shall be

given a chance to write CBTs for getting CIE component in the equivalent course(s) as per the

clearance letter issued by the University.

32. ACADEMIC REGULATIONS FOR B.TECH. (LATERAL ENTRY SCHEME) FROM THE

ACADEMIC YEAR: 2026-27

Eligibility for the award of B.Tech. Degree (LES):

1. The LES students after securing admission shall pursue a course of study for not less than three

academic years and not more than six academic years.

2. The student shall register for 123/124 credits and secure 120 credits with CGPA ≥ 5 from III

semester to VIII semester, B.Tech. program (LES) for the award of B.Tech. degree.

3. The student can avail exemption of courses totaling up to 3/4 credits other than Professional core

courses, Laboratory Courses, Seminars, Project Work and Field Based Research Project Industry

Oriented Mini Project / Internship, for optional drop out.

4. The students, who fail to fulfil the requirement for the award of the degree in six academic years

from the year of admission, shall forfeit their seat in B.Tech.

5. The attendance requirements of B.Tech. (Regular) shall be applicable to B.Tech. (LES).

28 | P a g e

FAILURE TO READ AND UNDERSTAND

THE REGULATIONS IS NOT AN EXCUSE

6. Promotion Rules

The following academic requirements have to be satisfied in addition to the attendance

requirements mentioned in item no. 9.

S.No Promotion Conditions to be Fulfilled

1 Second year first semester to

Second year second semester

Regular course of study of second year first semester and

fulfilment of attendance requirement.

2 Second year second semester to

Third year first semester

(i) Regular course of study of second year second semester and

fulfilment of attendance requirement.

(ii) Must have secured at least 25% of the total credits up to

second year second semester from all the relevant regular

and supplementary examinations, whether the student takes

those examinations or not.

3 Third year first semester to

Third year second semester

Regular course of study of third year first semester and

fulfilment of attendance requirement.

4 Third year second semester to

Fourth year first semester

Regular course of study of third year second semester and

fulfilment of attendance requirement

5 Fourth year first semester to

Fourth year second semester

Regular course of study of fourth year first semester and

fulfilment of attendance requirement

 7. All the other regulations as applicable to B.Tech. 4-year degree course (Regular) will hold good

for B.Tech. (Lateral Entry Scheme).

 8. LES students are not permitted to exit the B.Tech. program after completion of second year

 (B.Tech. IV Semester).

33. REVISION OF REGULATIONS AND CURRICULUM

The Institute from time to time may revise, amend or change the regulations, scheme of examinations

and syllabi if found necessary and on approval by the Academic Council and the Governing Body shall

be binding on the students, faculty, staff, all authorities of the Institute and others concerned.

29 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

 Dundigal, Hyderabad - 500 043

COURSE CATALOGUE - REGULATIONS: BT25

ELECTRICAL AND ELECTRONICS ENGINEERING

I SEMESTER

Course

Code
Course Name

S
u

b
je

ct

A
re

a

Category

Periods Per

Week

C
re

d
it

s Scheme of

Examination

Max. Marks

L T P CIA SEE Total

 INDUCTION PROGRAM

THEORY

AHSE01 Matrices and Calculus BSC Foundation 3 1 0 4 40 60 100

AHSE02 Engineering Physics BSC Foundation 3 0 0 3 40 60 100

AHSE04 English for Skill Enhancement HSC Foundation 3 0 0 3 40 60 100

AEEE02 Electrical Circuits ESC Foundation 3 0 0 3 40 60 100

ACSE01 Object Oriented Programming CSC Foundation 3 0 0 3 40 60 100

 PRACTICAL

AHSE07
English Language and Communication

Skills Laboratory
HSC Foundation 0 0 2 1 40 60 100

ACSE03
Object Oriented Programming

Laboratory
CSC Foundation 0 0 2 1 40 60 100

AHSE05 Engineering Physics Laboratory BSC Foundation 0 0 2 1 40 60 100

AMEE02 Engineering workshop MEC Foundation 0 0 2 1 40 60 100

TOTAL 15 01 8 20 360 540 900

 II SEMESTER

Course

Code
Course Name

S
u

b
je

ct

A
re

a

Category

Periods Per

Week

C
re

d
it

s Scheme of

Examination

Max. Marks

L T P CIA SEE Total

THEORY

AHSE03 Engineering Chemistry BSC Foundation 3 0 0 3 40 60 100

AHSE08
Ordinary Differential Equations and

Vector Calculus
BSC Foundation 3 0 0 3 40 60 100

AEEE04 Network Analysis and Synthesis ESC Foundation 3 0 0 3 40 60 100

ACSE02 Essentials of Problem Solving CSC Foundation 3 0 0 3 40 60 100

ACSE05 Data Structures CSC Foundation 3 0 0 3 40 60 100

PRACTICAL

AHSE06 Engineering Chemistry Laboratory BSC Foundation 0 0 2 1 40 60 100

AEEE05
Network Analysis and Synthesis
Laboratory

ESC Foundation 0 0 2 1 40 60 100

ACSE07
Programming for Problem Solving

Laboratory
CSC Foundation 0 0 2 1 40 60 100

AMEE03 Computer Aided Engineering Graphics MEC Foundation 1 0 2 2 40 60 100

ACSE08 Data Structures Laboratory CSC Foundation 0 0 2 1 40 60 100

TOTAL 16 00 10 21 400 600 1000

30 | P a g e

COURSE CONTENT

MATRICES AND CALCULUS

I Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / IT

Course Code Category Hours/Week Credits Maximum Marks

AHSE01

Foundation
L T P C CIA SEE Total

3 1 - 4 40 60 100

Contact Classes: 48 Tutorial Classes: 16 Practical Classes: Nil Total Classes: 64

Prerequisite: Basic Principles of Algebra and Calculus

I. COURSE OVERVIEW:

This course Matrices and Calculus is a foundation course of mathematics for all engineering branches. The

concepts of Matrices, Eigen Values, Eigen Vectors, Functions of Single and Several Variables, Fourier Series

and Multiple Integrals. This course is applicable for simulations, colour imaging process, finding optimal

solutions in all fields of industries.

II. COURSE OBJECTIVES:

 The students will try to learn:

I The concept of the rank of a matrix, solve the system of linear equations, eigen values, eigen vectors.

II The geometrical approach to the mean value theorems and their application to the mathematical

problems.

III The Fourier series expansion in standard intervals as well as arbitrary intervals.

IV The evaluation of multiple integrals and their applications.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO 1 Determine the rank and solutions of linear equations with elementary operations.

CO 2 Utilize the Eigen values, Eigen vectors for developing spectral matrices.

CO 3 Make use of Cayley-Hamilton theorem for finding powers of the matrix.

CO 4 Apply the mean value theorems for finding analytical problems involving derivatives.

CO 5 Interpret the maxima and minima of given functions by finding the partial derivates.

CO 6 Determine the area of solid bounded regions by using the integral calculus.

31 | P a g e

IV. COURSE CONTENT:

MODULE - I: MATRICES (09)

Rank of a matrix by Echelon form and Normal form, Inverse of non-singular matrices by Gauss-

Jordan method, system of linear equations: Solving system of homogeneous and non-

homogeneous equations. Gauss Seidel iteration method.

MODULE - II: EIGEN VALUES AND EIGEN VECTORS (10)

Linear transformation and orthogonal transformation: Eigen values, Eigen vectors and their

properties, diagonalization of a matrix, Cayley-Hamilton theorem (without proof), finding

inverse and power of a matrix by Cayley-Hamilton theorem, Quadratic forms and nature of the

Quadratic forms, reduction of Quadratic form to canonical form by orthogonal transformation

MODULE - III: SINGLE VARIABLE CALCULUS (10)

Limit and continuous of functions and its properties. mean value theorems: Rolle’s theorem,

Lagrange’s mean value theorem with their geometrical interpretation and applications.

Cauchy’s mean value theorem, Taylor’s series (all the theorems without proof).

Curve Tracing: Curve tracing in cartesian coordinates.

MODULE - IV: MULTIVARIABLE CALCULUS (9)

Definitions of limit and continuity, partial differentiation: Euler’s theorem, total derivative, Jacobian,

functional dependence & independence. Applications: maxima and minima of functions of two variables

and three variables using method of Lagrange multipliers

MODULE - V: MULTIPLE INTEGRALS (10)

Evaluation of double integrals (cartesian and polar coordinates), change of order of integration (only

cartesian form), change of variables for double integrals (cartesian to polar). evaluation of triple integrals,

change of variables for triple integrals (cartesian to spherical and cylindrical polar coordinates).

Applications: areas by double integrals and volumes by triple integrals.

V.TEXT BOOKS:

I. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.

II. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

VI.REFERENCE BOOKS:

I. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/ed, Narosa Publications, 5th Edition,

2016.

II. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, Calculus, 13/e, Pearson Publishers, 2013.

III. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint,

2008.

IV. Dean G. Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press.

V. Peter O’Neil, Advanced Engineering Mathematics, Cengage Learning.

VI. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill Education.

VII. ELECTRONIC RESOURCES:

I. Engineering Mathematics - I, By Prof. Jitendra Kumar | IIT Kharagpur

https://onlinecourses.nptel.ac.in/noc23_ma88/preview

II. Advanced Calculus for Engineers, By Prof. Jitendra Kumar, Prof. Somesh Kumar | IIT Kharagpur

https://onlinecourses.nptel.ac.in/noc23_ma86/preview

III. http://www.efunda.com/math/math_home/math.cfm

IV. http://www.ocw.mit.edu/resourcs/#Mathematics

V. http://www.sosmath.com

VI. http://www.mathworld.wolfram.com

http://www.efunda.com/math/math_home/math.cfm
http://www.ocw.mit.edu/resourcs/#Mathematics
http://www.sosmath.com/
http://www.mathworld.wolfram.com/

32 | P a g e

VIII. MATERIAL ONLINE:

1. Course template

2. Tutorial question bank

3. Tech talk topics

4. Open end experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I

8. Model question paper - II

9. Lecture notes

10. E-learning readiness videos (ELRV)

11. Power point presentation

33 | P a g e

COURSE CONTENT

ENGINEERING PHYSICS

I Semester: AE ǀ ME ǀ CE ǀ ECE ǀ EEE ǀ CSE (AI & ML) ǀ CSE (DS)

II Semester: CSE ǀ IT

Course Code Category Hours / Week Credits Maximum Marks

AHSE02 Foundation
L T P C CIA SEE Total

3 - - 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Basic principles of physics

I. COURSE OVERVIEW:

The aim of this course is to enhance understanding of fundamental knowledge in physics needed for the future

technological advances. The framework prepares students to engage in scientific questioning and extend thinking to

investigations. The concepts cover current topics in the fields of solid state physics, modern physics,

superconductors and nanotechnology. This knowledge helps to develop the ability to apply the principles in many

technological sectors such as nanotechnology, optical fiber communication, quantum technology etc.

II. COURSES OBJECTIVES:

The students will try to learn

I. Fundamental concepts needed to explain a crystal structure in terms of atom positions, unit cells, and crystal

symmetry.

II. Basic formulations in wave mechanics for the evolution of energy levels and quantization of energies for a

particle in a potential box with the help of mathematical description.

III. The metrics of optoelectronic components, lasers, optical fiber communication and be able to incorporate

them into systems for optimal performance.

IV. The appropriate magnetic, superconducting and basics of quantum computing required for various

engineering applications.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Use the general rules of indexing of directions and planes in lattices to identify the crystal systems and the

Bravais lattices.

CO2 Use the concepts of dual nature of matter and Schrodinger wave equation to a particle enclosed in

simple systems.

CO3 Analyze the concepts of laser with normal light in terms of mechanism for applications in different fields

and scientific practices.

CO4 Strengthen the knowledge on functionality of components in optical fiber communication system by using

the basics of signal propagation, attenuation and dispersion.

CO5 Gain deeper understanding on properties of magnetic and superconducting materials suitable for

engineering applications.

CO6 Review the basic principle, types, entanglement and the logic gates of quantum computers.

34 | P a g e

 IV. COURSE CONTENT:

MODULE - I: CRYSTAL STRUCTURES

Introduction, space lattice, basis, unit cell, lattice parameter, Bravais lattices, crystal systems, structure and

packing fractions of simple cubic, body centered cubic, face centered cubic crystals, directions and planes in

crystals, Miller indices, separation between successive [h k l] planes.

MODULE –II: QUANTUM PHYSICS

Waves and particles, de Broglie hypothesis, matter waves, Davisson and Germer’s experiment, Schrödinger’s

time independent wave equation, physical significance of the wave function, infinite square well potential.

MODULE –III: LASERS AND FIBER OPTICS

Characteristics of lasers, spontaneous and stimulated emission of radiation, population inversion, lasing action,

Ruby laser, He-Ne laser, applications of lasers.

Principle and construction of an optical fiber, acceptance angle, numerical aperture, types of optical fibers (Single

mode, multimode, step index, graded index), optical fiber communication system with block diagram,

applications of optical fibers.

MODULE –IV: MAGNETIC AND SUPERCONDUCTING PROPERTIES

Permeability, field intensity, magnetic field induction, magnetization, magnetic susceptibility, origin of magnetic

moment, Bohr magneton, classification of dia, para and ferro magnetic materials on the basis of magnetic

moment, Hysteresis curve.

Superconductivity, general properties, Meissner effect, effect of magnetic field, type-I & type-II superconductors,

BCS theory, applications of superconductors.

MODULE –V: QUANTUM COMPUTING

Introduction, linear algebra for quantum computation, Dirac’s Bra and Ket notation and their properties, Hilbert

space, Bloch’s sphere, concept of quantum computer, classical bits, Qubits, multiple Qubit system, quantum

computing system for information processing, evolution of quantum systems, quantum measurements,

entanglement, quantum gates, challenges and advantages of quantum computing over classical computation.

V. TEXTBOOKS:

1. Arthur Beiser, Shobhit Mahajan and Rai Choudhary, Concepts of Modern Physics, Tata McGraw Hill, 7th

Edition, 2017.

2. Thomas G. Wong, Introduction to Classical and Quantum Computing, Rooted Grove

VI. REFERENCE BOOKS:

1. H J Callister, A Textbook of Materials Science and Engineering, Wiley Eastern Edition, 8th Edition, 2013.
2. Halliday, Resnick and Walker, Fundamentals of Physics, John Wiley &Sons,11th Edition, 2018.

3. Charles Kittel, Introduction to Solid State Physics, Wiley Eastern, 2019.

4. S.L. Gupta and V. Kumar, Elementary Solid State Physics, Pragathi Prakashan, 2019.
5. Michael A. Nielsen & Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge

University Press.

VII. ELECTRONICS RESOURCES:

1. NPTEL :: Physics - NOC:Quantum Mechanics I

2. NPTEL :: Physics - NOC:Introduction to Solid State Physics

3. NPTEL :: Physics - NOC:Solid State Physics

4. https://nptel.ac.in/courses/104104085

5. NPTEL :: Metallurgy and Material Science - NOC:Nanotechnology, Science and Applications

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech talk topics

4. Open end experiments

5. Definitions and terminology

6. Assignments

35 | P a g e

7. Model question paper – I

8. Model question paper - II

9. Lecture notes

10. E-learning readiness videos (ELRV)

11. Power point presentation

36 | P a g e

COURSE CONTENT

ENGLISH FOR SKILL ENHANCEMENT

I Semester: AE / ME / CE / ECE / EEE / CSE (AI &ML) / CSE (DS)

 II Semester: CSE / IT

Course Code Category Hours / Week Credits Maximum Marks

AHSE04

Foundation
L T P C CIA SEE Total

3 - - 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite:

I. COURSE OVERVIEW:

The principle aim of the course is that the students will have awareness about the importance of

English language in the contemporary times and also it emphasizes the students to learn this language as

a skill (listening skill, speaking skill, reading skill and writing skill). Moreover, the course benefits the

students how to solve their day-to-day problems in speaking English language. Besides, it assists the

students to reduce the mother tongue influence and acquire the knowledge of neutral accent. The course

provides theoretical and practical knowledge of English language and it enables students to participate

in debates about informative, persuasive, didactic, and commercial purposes.

II. COURSE OBJECTIVES:

The students will try to learn:

I Standard pronunciation, appropriate word stress, and necessary intonation patterns for effective

communication towards achieving academic and professional targets.

II Appropriate grammatical structures and also using the nuances of punctuation tools for practical

purposes.

III Critical aspect of speaking and reading for interpreting in-depth meaning between the sentences.

IV Conceptual awareness on writing in terms of unity, content, coherence, and linguistic accuracy.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1 Demonstrate the essential listening and communication skills required for academic and non-

academic purposes.

CO 2 Explain ideas and discuss issues effectively in spoken English with a high level of fluency

and accuracy across different social contexts.

CO 3 Enhance language proficiency to strengthen life skills and effectively navigate challenges in a

professional environment.

CO 4 Interpret grammatical and lexical forms of English and apply them in specific

communicative contexts.

CO 5 Develop the ability to comprehend, analyze, and interpret a variety of texts, enhancing

critical thinking, vocabulary, and the application of reading strategies for academic,

professional, and personal growth.

CO 6 Improve the ability to produce clear, coherent, and well-structured written content and

organization for academic, professional, and creative tenacities.

37 | P a g e

IV. COURSE CONTENT:

MODULE – I: PERSPECTIVES (13)

Lesson on ‘The Generation Gap’ by Benjamin M. Spock from the

prescribed textbook titled English for the Young in the Digital World

published by Orient Black Swan Pvt. Ltd.

Vocabulary: The Concept of Word Formation -The Use of Prefixes and Suffixes - Words

Often Misspelt - Synonyms and Antonyms

Grammar: Identifying Common Errors in Writing with Reference to Parts of Speech

particularly Articles and Prepositions – Degrees of Comparison

Reading: Reading and Its Importance- Sub Skills of Reading – Skimming and

Scanning.

Writing: Sentence Structures and Types -Use of Phrases and Clauses in Sentences- Importance of

Proper Punctuation- Techniques for Writing Precisely –Nature and Style of Formal Writing.

MODULE – II: DIGITAL TRANSFORMATION (13)

Lesson on ‘Emerging Technologies’ from the prescribed textbook titled English for the

Young in the Digital World published by Orient Black Swan Pvt. Ltd.

Vocabulary: Homophones, Homonyms and Homographs,

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun

Agreement and Subject-verb Agreement.

Reading: Reading Strategies-Guessing Meaning from Context – Identifying Main Ideas

– Exercises for Practice,

Writing: Paragraph Writing – Types, Structures and Features of a Paragraph - Creating

Coherence – Linkers and Connectives - Organizing Principles in a Paragraph – Defining-

Describing People, Objects, Places and Events – Classifying- Providing Examples or

Evidence - Essay Writing - Writing Introduction and Conclusion.

MODULE – III: ATTITUDE AND GRATITUDE (13)

Poems on ‘Leisure’ by William Henry Davies and ‘Be Thankful’ - Unknown

Author from the prescribed textbook titled English for the Young in the Digital World

published by Orient Black Swan Pvt. Ltd.

Vocabulary: Words Often Confused - Words from Foreign Languages and their Use in

English.

Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers

and Tenses.

Reading:Sub-Skills of Reading – Identifying Topic Sentence and Providing Supporting

Ideas - Exercises for Practice.

Writing: Format of a Formal Letter-Writing Formal Letters E.g.., Letter of Complaint, Letter of Requisition,

Job Application with CV/Resume –Difference between Writing a Letter and an Email - Email Etiquette.

MODULE – IV: ENTREPRENEURSHIP (12)

Lesson on ‘Why a Start-Up Needs to Find its Customers First’ by Pranav

Jain from the prescribed textbook titled English for the Young in the

Digital World published by Orient Black Swan Pvt. Ltd.

 Vocabulary: Standard Abbreviations in English – Inferring Meanings of Words through

Context – Phrasal Verbs – Idioms.

 Grammar: Redundancies and Clichés in Written Communication – Converting Passive

to Active Voice and Vice-Versa.

 Reading: Prompt Engineering Techniques– Comprehending and Generating

38 | P a g e

Appropriate Prompts - Exercises for Practice
 Writing: Writing Practices- Note Making-Précis Writing.

MODULE – V: INTEGRITY AND PROFESSIONALISM (13)

Lesson on ‘Professional Ethics’ from the prescribed textbook titled English for the

Young in the Digital World published by Orient Black Swan Pvt. Ltd.

Lesson on ‘Professional Ethics’ from the prescribed textbook titled English

for the Young in the Digital World published by Orient Black Swan Pvt.

Ltd.

Vocabulary: Technical Vocabulary and their Usage– One Word Substitutes – Collocations.

Grammar: Direct and Indirect Speech - Common Errors in English (Covering all the

other aspects of grammar which were not covered in the previous units)

Reading: Survey, Question, Read, Recite and Review (SQ3R Method) – Inferring the

Meaning and Evaluating a Text- Exercises for Practice
Writing: Report Writing - Technical Reports- Introduction – Characteristics of a Report –

Categories of Reports Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing

a Technical Report.

V. TEXT BOOKS:

1. Board of Editors. 2025. English for the Young in the Digital World. Orient Black Swan

Pvt. Ltd.

VI. REFERENCE BOOKS:

1 Swan, Michael. (2016). Practical English Usage. Oxford University Press. New Edition.

2 Karal, Rajeevan. 2023. English Grammar Just for You. Oxford University Press. New Delhi

3 2024. Empowering with Language: Communicative English for Undergraduates. Cengage Learning India

Pvt. Ltd. New Delhi

4 Sanjay Kumar & Pushp Lata. 2022. Communication Skills – A Workbook. Oxford University Press. New

Delhi

5 Wood,F.T. (2007). Remedial English Grammar. Macmillan.

6 Vishwamohan, Aysha. (2013). English for Technical Communication for Engineering Students. Mc

Graw-Hill Education India Pvt. Ltd

VII. ELECTRONICS RESOURCES:

1. https://akanksha.iare.ac.in/index?route=course/details&course_id=954

2. https://akanksha.iare.ac.in/index?route=course/details&course_id=10

3. https://akanksha.iare.ac.in/index?route=course/details&course_id=352

4. https://akanksha.iareac.in/index?route=publicprofile&id=5075

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech talk topics

4. Open end experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I

8. Model question paper - II

9. Lecture notes

10. E-learning readiness videos (ELRV)

11. Power point presentation

https://akanksha.iareac.in/index?route=publicprofile&id=5075

39 | P a g e

COURSE CONTENT

ELECTRICAL CIRCUITS

 I Semester: EEE / ECE

Course Code Category Hours / Week Credits Maximum Marks

AEEE02 Core
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Mathematics

I. COURSE OVERVIEW:

This course introduces fundamental concepts of circuit laws, theorems, and various electrical elements. It covers

steady-state analysis for both single-phase and three-phase circuits, along with concepts of resonance and power

calculations. Students also explore network theorems and magnetic coupled circuits to enhance problem-solving

skills. End the end of the course completion, learners will be able to analyze and design AC and DC electrical

circuits using scientific and engineering principles

II. COURSE OBJECTIVES:
The students will try to learn:

I The fundamental circuit laws and transformations in electrical networks.

II The AC and DC circuits using network theorems and systematic methods like mesh and nodal analysis.

III The use of single-phase and three-phase circuits for balanced and unbalanced loads.

IV The resonance, power concepts, and mutual inductance in circuits with energy-storing elements

III. COURSE OUTCOMES:
At the end of the course students should be able to:

CO1 Identify and classify different electrical elements and apply Kirchhoff’s laws, source, and

Star-Delta transformations in network analysis.

CO2 Analyze AC single-phase circuits using phasor techniques and compute power, impedance,

and resonance conditions.

CO3 Evaluate three-phase systems under balanced and unbalanced conditions and measure

power using appropriate methods.

CO4 Apply various network theorems to simplify and solve complex AC and DC circuits.

CO5 Interpret and solve magnetic coupled circuits using concepts like mutual inductance, dot

convention, and coefficient of coupling.

40 | P a g e

IV. COURSE CONTENT:

MODULE-I: NETWORK ELEMENTS & LAWS (09)

Network Elements: Active elements- Independent and dependent sources, Passive elements- R, L and C, Energy

stored in Inductance and Capacitance, Laws: Kirchhoff’s laws, Source transformation, Star-Delta

transformation, Node voltage method, and Mesh current method.

MODULE-II: SINGLE-PHASE CIRCUITS (09)

Single-Phase Circuits: RMS and average values of periodic sinusoidal and non-sinusoidal waveforms, Phasor

representation, j-Notation, Steady-state analysis of series, parallel circuits. Impedance, Admittance, Active and

Reactive Powers, Complex Power.

Resonance: Series and parallel circuits, Bandwidth and Q-factor.

MODULE-III: THREE-PHASE CIRCUITS (10)

Three-phase Circuits: Analysis of balanced and unbalanced three-phase circuits, Star and delta

connections,

Measurement of three-phase power for balanced and unbalanced loads.

MODULE-IV: NETWORK THEOREMS (10)

Network theorems: Superposition theorem, Thevenin’s theorem, Norton’s theorems, Maximum power transfer

theorem, Tellegen’s theorem, Compensation theorem, Millman’s theorem and Reciprocity theorem. (AC & DC).

MODULE-V: MAGNETIC COUPLED CIRCUITS (10)

Magnetic Coupled circuits: Concept of self and mutual inductance, Dot convention, Coefficient of coupling,

Analysis of circuits with mutual inductance.

V. TEXT BOOKS:

1. Van Valkenburg M.E, “Network Analysis”, Prentice Hall of India, 3rd Edition, 2000.

2. Ravish R Singh, “Network Analysis and Synthesis”, McGraw Hill, 2nd Edition, 2019.

VI. REFERENCE BOOKS:

1. B. Subramanyam, “Electric Circuit Analysis”, Dreamtech Press & Wiley, 2021.

2. James W.Nilsson, Susan A.Riedel, “Electric Circuits”, Pearson, 11th Edition, 2020.

3. A Sudhakar, Shyammohan S Palli, “Circuits and Networks: Analysis and Synthesis”, McGraw Hill, 5th

 Edition, 2017.
4. Jagan N.C, Lakshrninarayana C., “Network Analysis”, B.S. Publications, 3rd Edition, 2014.

5. William Hayt H, Kimmerly Jack E. and Steven Durbin M, “Engineering Circuit Analysis”, McGraw

Hill,

 6th Edition, 2002.
6. Chakravarthy A., “Circuit Theory”, Dhanpat Rai & Co., First Edition, 1999.

VII. ELECTRONIC RESOURCES:

1. https://nptel.ac.in/courses/108/104/108104139/

2. https://www.researchgate.net

3. https://www.electrical4u.com

4. https://www.iare.ac.in

VIII. MATERIALS ONLINE:

1. Course template

2. Tutorial question bank

3. Tech talk topics

4. Open end experiments

5. Definitions and terminology

6. Assignments

7. Model question paper - I

8. Model question paper - II

9. Lecture notes

10. E-learning readiness videos (ELRV)

11. Power point presentation

http://www.iare.ac.in/

41 | P a g e

COURSE CONTENT

OBJECT ORIENTED PROGRAMMING

I Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSE01 Foundation
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisites: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

This course introduces the principles of Object-Oriented Programming (OOP) and its role in solving complex

problems effectively. It provides a solid foundation in object-oriented concepts such as abstraction,

encapsulation, inheritance, polymorphism, and collaboration. The course also extends into file handling,

exception management, and concurrent execution, preparing students to design, develop, and manage robust

real-world applications.

II. COURSES OBJECTIVES:

The students will try to learn

I. The fundamental concepts and principles of object-oriented programming in high-level programming

languages.

II. The advanced concepts for developing well-structured and efficient programs that involve complex data

structures, numerical computations, or domain-specific operations.

III. The design and implementation features such as inheritance, polymorphism, and encapsulation for tackling

complex problems and creating well-organized, modular, and maintainable code.

IV. The usage of input/output interfaces to transmit and receive data to solve real-time computing problems.

III. COURSE OUTCOMES:

At the end of the course, students should be able to:

CO1 Identify appropriate programming approaches to manage complexity.

CO2 Design modular, reusable, and adaptable software systems.

CO3 Apply structured problem-solving techniques to build reliable and maintainable applications.

CO4 Demonstrate the ability to handle data, manage errors, and ensure smooth program execution.

CO5 Develop applications that are efficient, scalable, and suitable for real-world scenarios

CO6 Develop contemporary solutions to software design problems using object-oriented principles.

42 | P a g e

IV. COURSE CONTENT:

MODULE - I: Object-oriented concepts (10)

Complex systems: definition, characteristics, and five attributes (hierarchy, abstraction, emergence,

encapsulation, modularity).

Evolution of problem-solving: procedural vs. object-oriented thinking.

Objects as fundamental building blocks: state, behavior, and identity.

Benefits of OOP in managing complexity, Applications of OOP in real-world systems.

MODULE II: Abstraction, Encapsulation and Object Collaboration (09)

Abstraction: forms of abstraction (procedural, data, control), abstraction layers, mechanisms.

Encapsulation: information hiding, boundary definition, modularity.

Objects and message passing: collaboration through responsibilities.

Relationships: association, aggregation, composition, dependency.

MODULE III: Inheritance and Generalization (10)

Classification and taxonomy in object-oriented programming, Concepts of generalization and specialization.

Types of inheritance: single, multiple, and hierarchical (conceptual).

Challenges in multiple inheritance: ambiguity and the diamond problem (conceptual).

Importance of generalization for adaptability and method reuse.

MODULE IV: Polymorphism and Interfaces (09)

Polymorphism: static vs dynamic polymorphism, Abstract classes, abstract operations, late binding, and

dynamic dispatch.

Interfaces as behavioral contracts, difference between interfaces and abstract classes (conceptual), Multiple

realizations of interfaces (role-based modeling).

MODULE V: File structures, Exception handling, Concurrent execution (09)

Working with Files: Files, need for file handling, types, modes, operations and error handling.

Exception handling: Detecting problems during execution and responding gracefully, preventing failures from

crashing the system and ensuring smooth execution.

Concurrent execution: Allowing multiple tasks to run simultaneously within a system, co-ordinating tasks to

avoid conflicts when sharing resources.

V. TEXTBOOKS:

1. Matt Weisfeld, The Object-Oriented Thought Process, Addison Wesley Object Technology Series,

4th Edition, 2013.

2. Grady Booch, Object-Oriented Analysis and Design with Applications, Addison-Wesley Professional, 3rd

Edition, 2007.

3. Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and

Iterative Development, Addison-Wesley Professional, 3rd Edition, 2004.

VI. REFERENCE BOOKS:

1. Timothy Budd, Introduction to object-oriented programming, Addison Wesley Object Technology

Series, 3rd Edition, 2002.

2. Gaston C. Hillar, Learning Object-Oriented Programming, Packt Publishing, 2015.

3. Kingsley Sage, Concise Guide to Object-Oriented Programming, Springer International Publishing, 1st

Edition, 2019.

4. Rudolf Pecinovsky, OOP - Learn Object Oriented Thinking and Programming, Tomas Bruckner, 2013.

VII. ELECTRONICS RESOURCES:

1. https://docs.oracle.com/javase/tutorial/java/concepts/

2. https://www.w3schools.com/cpp/

3. https://www.edx.org/learn/object-oriented-programming/

4. https://www.geeksforgeeks.org/introduction-of-object-oriented-programming/

43 | P a g e

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech talk topics

4. Open-ended experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I

8. Model question paper – II

9. Lecture notes

10. PowerPoint presentation

11. E-Learning Readiness Videos (ELRV)

44 | P a g e

COURSE CONTENT

ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY

I Semester: AE / ME / CE / ECE / EEE / CSE (AI &ML) / CSE (DS)

 II Semester: CSE / IT

Course Code Category Hours / Week Credits Maximum Marks

AHSE07 Foundation
L T P C CIA SEE Total

- - 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Nil

I. COURSE OVERVIEW:

This laboratory course is designed to introduce students to create a wide exposure on language

learning techniques of the basic elements of listening skills, speaking skills, reading skills and writing

skills. In this laboratory, students are trained in communicative English language skills, phonetics,

word accent, word stress, rhythm, intonation, oral presentations and extempore speeches. Students are

also taught in terms of seminars, group-discussions, presenting techniques of writing, participating in

role plays, telephonic etiquettes, asking and giving directions, information transfer, debates,

description of persons, places and objects etc. The laboratory encourages students to work in a group,

engage in peer-reviews and inculcate team spirit through various exercises on grammar, vocabulary,

and pronunciation games etc. Students will make use of all these language skills in academic,

professional and real time situations.

II. COURSES OBJECTIVES

The students will try to learn:

I The computer-assisted multi-media instructions to make possible individualized

and independent language learning.
II The critical aspect of speaking and reading for interpreting in-depth meaning of the

sentences.
III The language techniques for social interactions such as public speaking, group

discussions and interviews.
IV English speech sounds, word accent, intonation and rhythm patterns for effective

pronunciation.

45 | P a g e

III. COURSE OUTCOMES:

 At the end of the course, students will be able to:

CO1 Discuss the prime necessities of listening skills for improving pronunciation in

academic and non-academic purposes.

CO2 Summarize the significance of speaking skills by using phonetics knowledge and

intonation patterns.

CO3 Express the usage of strong forms and weak forms in the connected speech.

CO4 Explain how writing skills fulfil the academic and non-academic requirements of

various written communicative functions.

CO5 Generalize the activities of Interactive Communication Skills to overcome the day-to-

day challenges.

CO6 Classify the roles of collaboration, risk-taking, multi-disciplinary awareness, and the

imagination in achieving creative responses to problems.

Dos

1. Turn up in a neat and formal dress code regularly and maintain punctuality.

2. Bring observation books and worksheets for every laboratory session without fail.

3. Keep lab record book up to date.

4. Students must adhere to the acceptable use of ICT resources policy.

5. CD ROM ‘s, USB and other multimedia equipment are for college use only.

6. Replace headsets onto the monitor and rearrange your chairs back into their position as you

leave laboratory.

7. Get your lab worksheets evaluated and upload online within the stipulated time for online

evaluation by the faculty concerned.

8. Conduct yourself at the best to be a good learner.

Don’ts

1. Do not use the on/off switch to reboot the system.

2. Do not breach copyright regulations.

3. The not install or download any software or modify or delete any system files on any

laboratory computer.

4. Do not read or modify other users’ files.

5. Do not damage, remove, or disconnect any labels, parts, cables or equipment.

6. The not make undue noise in the laboratories. Be considerate of the other lab users- this is

study area.

7. No food and the beverages are allowed into computer laboratories.

46 | P a g e

IV. COURSE CONTENT

Exercises for professional communication laboratory

 Exercises –1 CALL LAB: Speech Sounds with Active Listening.

ICS LAB: introducing self and introducing others and feedback.

a. Common mispronunciations.

b. Errors committed in self-introduction and introducing others.

Exercises –2 CALL LAB: Listening to Distinguish Speech Sounds (minimal pairs) – Testing

Exercises.

ICS LAB: Ice Breaking Activity.

a. Difficulty in familiarizing with the sounds of English language, errors in using different

kinds of sounds, vowels and consonants.

b. supports a positive social climate; decreases in off task behaviors; improved social skills;

improves student enjoyment; and raises participation levels.

Exercises –3 CALL LAB: Listening for General Information Followed by Multiple Questions.

ICS LAB: Role Play Activity.

a. Listening actively to understand the information to respond.

b. Take on different roles and act out situations like ordering food in a restaurant, asking for

directions, or even having a phone conversation.

Exercises –4 CALL LAB: Listening Comprehension Activity.

ICS LAB: Social Etiquettes.

a. Enhancing their language skills, academic performance, and social interactions.

b. Positive social interactions, enhancing communication skills, and contributing to overall

personal and academic success.

Exercises –5 CALL LAB: Neutralization of Mother Tongue Influence (MTI).

ICS LAB: Describing Objects, Situations, Places, People and Events.

a. Influence of Mother tongue in spoken communication.

b. Strengthen the art of writing and spoken language.

Exercises – 6 CALL LAB: Techniques for Effective Listening.

ICS LAB: Story Telling.

a. actively engaging with the speaker to understand their message fully.

b. enhancing their language skills, creativity, and overall learning experience.

Exercises –7 CALL LAB: Identifying the Literal and Implied Meaning.

ICS LAB: Non-Verbal Communication

a. Listening for evaluation – Write summary – Listening for evaluation – Listening

comprehension exercises.

b. Attention of non-verbal ques.

Exercises – 8 CALL LAB: Structure of syllables.

ICS LAB: JAM Sessions using public address system.

a. Practicing consonant clusters

b. Practicing different methods of dividing the syllables

c. Participating in just a minute session

Exercises –9 CALL LAB: Past tense and plural markers.

ICS LAB: Oral Presentations.

47 | P a g e

a. Addition of suffixes to verbs.

b. Confidence and fluency in delivering different oral presentations.

Exercises –10 CALL LAB: Minimal pairs.

ICS LAB: Debates.

a. Difficulties in understanding and remembering various homonyms, homophones and

homographs.

b. Problems in understanding the difference between debates and discussions, participating and

contributing.

Exercises –11 CALL LAB: Intonation.

ICS LAB: Group discussion.

a. Inability in focused listening, understanding the accent, vocabulary and discourse markers in

connected speech.

b. Lack of confidence in participating and contributing to Group discussions.

Exercises –12 CALL LAB: Demonstration on how to write leaflets, messages and notices.

ICS LAB: Techniques and methods to write summaries and reviews of videos.

a. Inadequacy and inappropriacy in writing leaflets, messages and notices.

b. Lack of proficiency in writing summaries and reviews of videos.

Exercises –13 CALL LAB: Pronunciation practice.

ICS LAB: Information transfer.

a. Influence of mother tongue in using English language.

b. Problems in interpreting data from diagram to text and text to diagram.

Exercises –14 CALL LAB; Open Ended Experiments-Phonetics Practice.

ICS LAB: Picture Extempore.

a. Persistent problems in identifying the phonetic symbols, remembering and using them.

b. Execution while describing picture.

Exercises –15 CALL LAB: Open Ended experiments-Text to Speech.

ICS LAB: Writing slogan related to the image.

a. Difficulties in writing text to Speech.

b. Lack of fluency in writing slogans related to the images.

V. TEXT BOOKS:

1. Professional Communication laboratory manual

VI. REFERENCE BOOK

1. Meenakshi Raman, Sangeetha Sharma, Technical Communication Principles and Practices, Oxford

 University Press, New Delhi, 3rd Edition, 2015.

2. Rhirdion, Daniel, Technical Communication, Cengage Learning, New Delhi, 1st Edition, 2009.

VII. ELECTRONICS RESOURCES

1. Cambridge online pronunciation dictionary https://dictionary.cambridge.org/

2. Fluentu website https://www.fluentu.com/

3. Repeat after us https://brycs.org/clearinghouse/3018/

4. Language lab https://brycs.org/clearinghouse/3018/

5. Oxford online videos

VIII. MATERIALS ONLINE

1. Course template

2. Lab manual

48 | P a g e

COURSE CONTENT

OBJECT ORIENTED PROGRAMMING LABORATORY

I Semester: AE / ME / CE / ECE / EEE / CSE / IT / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week Credits Maximum Marks

ACSE03 Foundation
L T P C CIA SEE Total

0 0 2 1 40 60 100

 Contact Classes: Nil Tutorial Classes: NIL Practical Classes: 30 Total Classes: 30

Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

This course provides a solid foundation in object-oriented programming concepts and hands-on experience in

using them. It introduces the concepts of abstraction and reusable code design via the object-oriented paradigm.

Through a series of examples and exercises students gain coding skills and develop an understanding of

professional programming practices. Mastering Java facilitate the learning of other technologies.

II. COURSES OBJECTIVES:

 The students will try to learn

I. The strong foundation with the Java Virtual Machine, its concepts and

features.

II. The systematic understanding of key aspects of the Java Class Library

III. The usage of a modern IDE with an object oriented programming

language to develop programs.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO 1 Develop non-trivial programs in a modern programming language.

CO 2 Apply the principles of selection and iteration.

CO 3 Appreciate uses of modular programming concepts for handling complex problems.

CO 4 Recognize and apply principle features of object-oriented design such as abstraction and

encapsulation.

CO 5 Design classes with a view of flexibility and reusability.

CO 6 Code, test and evaluate small use cases to conform to a specification.

49 | P a g e

IV. COURE CONTENT:

EXERCISES FOR OBJECT ORIENTED PROGRAMMING
LABORATORY

Note: Students are encouraged to bring their own laptops for

laboratory practice sessions.

1. Getting Started Exercises

1.1 HelloWorld

1. Install JDK on your machine.

2. Write a Hello-world program using JDK and a source-code editor, such as:

o For All Platforms: Sublime Text, Atom

o For Windows: TextPad, NotePad++

o For macOS: jEdit, gedit

o For Ubuntu: gedit

3. Do ALL the exercises.

1.2 Writing Good Programs

The only way to learn programming is program, program and program. Learning programming is like

learning cycling, swimming or any other sports. You can't learn by watching or reading books. Start to

program immediately. On the other hands, to improve your programming, you need to read many

books and study how the masters program.

It is easy to write programs that work. It is much harder to write programs that not only work but also

easy to maintain and understood by others – I call these good programs. In the real world, writing

program is not meaningful. You have to write good programs, so that others can understand and

maintain your programs.

Pay particular attention to:

1. Coding Style:

o Read "Java Code Convention"

(@ https://www.oracle.com/technetwork/java/codeconventions-150003.pdf or google

"Java Code Convention").

o Follow the Java Naming Conventions for variables, methods, and classes STRICTLY.

Use CamelCase for names. Variable and method names begin with lowercase, while class

names begin with uppercase. Use nouns for variables (e.g., radius) and class names

(e.g., Circle). Use verbs for methods (e.g., getArea(), isEmpty()).

o Use Meaningful Names: Do not use names like a, b, c, d, x, x1, x2, and x1688 -

they are meaningless. Avoid single-alphabet names like i, j, k. They are easy to type, but

usually meaningless. Use single-alphabet names only when their meaning is clear,

e.g., x, y, z for co-ordinates and i for array index. Use meaningful names

like row and col (instead

of x and y, i and j, x1 and x2), numStudents (not n), maxGrade, size (not n),

and upperbound (not n again). Differentiate between singular and plural nouns (e.g.,

use books for an array of books, and book for each item).

o Use consistent indentation and coding style. Many IDEs (such as Eclipse/NetBeans)

can re-format your source codes with a single click.

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf

50 | P a g e

2. Program Documentation: Comment! Comment! and more Comment to explain your code to

other people and to yourself three days later.

1.3 CheckPassFail (if-else)

Write a program called CheckPassFail which prints "PASS" if the int variable "mark" is more than or

equal to 50; or prints "FAIL" otherwise. The program shall always print “DONE” before exiting.

Hints

Use >= for greater than or equal to comparison.

 /* Trying if-else statement.
 */
public class CheckPassFail { // Save as "CheckPassFail.java"
 public static void main(String[] args) { // Program entry point
 int mark = 49; // Set the value of "mark" here!
 System.out.println("The mark is " + mark);

 // if-else statement
 if (......) {
 System.out.println(......);
 } else {
 System.out.println(......);
 }
 System.out.println(......);
 }
}

Try

mark = 0, 49, 50, 51, 100 and verify your results.

Take note of the source-code indentation!!! Whenever you open a block with '{', indent all the

statements inside the block by 3 (or 4 spaces). When the block ends, un-indent the closing '}' to

align with the opening statement.

1.4 CheckOddEven (if-else)

Write a program called CheckOddEven which prints "Odd Number" if the int variable “number” is odd,

or “Even Number” otherwise. The program shall always print “bye!” before exiting.

Hints

n is an even number if (n % 2) is 0; otherwise, it is an odd number. Use == for comparison, e.g., (n %

2) == 0.

/**
 * Trying if-else statement and modulus (%) operator.
 */
public class CheckOddEven { // Save as "CheckOddEven.java"
 public static void main(String[] args) { // Program entry point
 int number = 49; // Set the value of "number" here!
 System.out.println("The number is " + number);
 if (......) {
 System.out.println(......); // even number
 } else {
 System.out.println(......); // odd number
 }
 System.out.println(......);

51 | P a g e

 }
}

Try

number = 0, 1, 88, 99, -1, -2 and verify your results.

Again, take note of the source-code indentation! Make it a good habit to ident your code properly, for

ease of reading your program.

1.5 PrintNumberInWord (nested-if, switch-case)

Write a program called PrintNumberInWord which prints "ONE", "TWO",... , "NINE", "OTHER" if

the int variable "number" is 1, 2,... , 9, or other, respectively. Use (a) a "nested-if" statement; (b) a

"switch-case-default" statement.

Hints

/**
 * Trying nested-if and switch-case statements.
 */
public class PrintNumberInWord { // Save as "PrintNumberInWord.java"
 public static void main(String[] args) {
 int number = 5; // Set the value of "number" here!

 // Using nested-if
 if (number == 1) { // Use == for comparison
 System.out.println(......);
 } else if (......) {

 } else if (......) {

 } else {

 }

 // Using switch-case-default
 switch(number) {
 case 1:
 System.out.println(......); break; // Don't forget the "break"
after each case!
 case 2:
 System.out.println(......); break;

 default: System.out.println(......);
 }
 }
}

Try

number = 0, 1, 2, 3, ..., 9, 10 and verify your results.

1.6 PrintDayInWord (nested-if, switch-case)

Write a program called PrintDayInWord which prints “Sunday”, “Monday”, ... “Saturday” if

the int variable "dayNumber" is 0, 1, ..., 6, respectively. Otherwise, it shall print "Not a valid day". Use

(a) a "nested-if" statement; (b) a "switch-case-default" statement.

52 | P a g e

Try

dayNumber = 0, 1, 2, 3, 4, 5, 6, 7 and verify your results.

2. Exercises on Number Systems (for Science/Engineering

Students)

To be proficient in programming, you need to be able to operate on these number systems:

1. Decimal (used by human beings for input and output)

2. Binary (used by computer for storage and processing)

3. Hexadecimal (shorthand or compact form for binary)

2.1 Exercises (Number Systems Conversion)

1. Convert the following decimal numbers into binary and hexadecimal numbers:

a. 108

b. 4848

c. 9000

 Convert the following binary numbers into hexadecimal and decimal numbers:

a. 10000000

b. 101010101010

c. 1000011000

 Convert the following hexadecimal numbers into binary and decimal numbers:

a. 1234

b. 80F

c. ABCDE

 Convert the following decimal numbers into binary equivalent:

a. 123.456D

b. 19.25D

2.2 Exercise (Integer Representation)

1. What are the ranges of 8-bit, 16-bit, 32-bit and 64-bit integer, in "unsigned" and "signed"

representation?

2. Give the value of 88, 0, 1, 127, and 255 in 8-bit unsigned representation.

3. Give the value of +88, -88 , -1, 0, +1, -128, and +127 in 8-bit 2's complement signed

representation.

4. Give the value of +88, -88 , -1, 0, +1, -127, and +127 in 8-bit sign-magnitude representation.

5. Give the value of +88, -88 , -1, 0, +1, -127 and +127 in 8-bit 1's complement representation.

2.3 Exercises (Floating-point Numbers)

1. Compute the largest and smallest positive numbers that can be represented in the 32-bit

normalized form.

2. Compute the largest and smallest negative numbers can be represented in the 32-bit

normalized form.

3. Repeat (1) for the 32-bit denormalized form.

4. Repeat (2) for the 32-bit denormalized form.

53 | P a g e

Hints:

1. Largest positive number: S=0, E=1111 1110 (254), F=111 1111 1111 1111 1111 1111.

Smallest positive number: S=0, E=0000 00001 (1), F=000 0000 0000 0000 0000 0000.

2. Same as above, but S=1.

3. Largest positive number: S=0, E=0, F=111 1111 1111 1111 1111 1111.

Smallest positive number: S=0, E=0, F=000 0000 0000 0000 0000 0001.

4. Same as above, but S=1.

2.4 Exercises (Data Representation)

For the following 16-bit codes:

0000 0000 0010 1010;

1000 0000 0010 1010;

Give their values, if they are representing:

1. a 16-bit unsigned integer;

2. a 16-bit signed integer;

3. two 8-bit unsigned integers;

4. two 8-bit signed integers;

5. a 16-bit Unicode characters;

6. two 8-bit ISO-8859-1 characters.

3. Exercises on Decision and Loop

3.1 SumAverageRunningInt (Decision & Loop)

Write a program called SumAverageRunningInt to produce the sum of 1, 2, 3, ..., to 100.

Store 1 and 100 in variables lowerbound and upperbound, so that we can change their values easily.

Also compute and display the average.

The output shall look like:

The sum of 1 to 100 is 5050

The average is 50.5

Hints

/**
 * Compute the sum and average of running integers from a lowerbound to an
upperbound using loop.
 */
public class SumAverageRunningInt { // Save as "SumAverageRunningInt.java"
 public static void main (String[] args) {
 // Define variables
 int sum = 0; // The accumulated sum, init to 0
 double average; // average in double
 final int LOWERBOUND = 1;
 final int UPPERBOUND = 100;

 // Use a for-loop to sum from lowerbound to upperbound
 for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {
 // The loop index variable number = 1, 2, 3, ..., 99, 100
 sum += number; // same as "sum = sum + number"
 }
 // Compute average in double. Beware that int / int produces int!

54 | P a g e

 // Print sum and average

 }
}

Try

1. Modify the program to use a "while-do" loop instead of "for" loop.

int sum = 0;

 int number = LOWERBOUND; // declare and init loop index variable
 while (number <= UPPERBOUND) { // test
 sum += number;
 ++number; // update
 }

2. Modify the program using do-while loop

int sum = 0;

 int number = LOWERBOUND; // declare and init loop index variable
 do {
 sum += number;
 ++number; // update
 } while (number <= UPPERBOUND); // test

3. What is the difference between "for" and "while-do" loops? What is the difference between "while-

do" and "do-while" loops?

4. Modify the program to sum from 111 to 8899, and compute the average. Introduce

an int variable called count to count the numbers in the specified range (to be used in computing

the average).

5. Modify the program to find the "sum of the squares" of all the numbers from 1 to 100, i.e. 1*1 +

2*2 + 3*3 + ... + 100*100.

6. Modify the program to produce two sums: sum of odd numbers and sum of even numbers

from 1 to 100. Also computer their absolute difference.

3.2 Product1ToN (or Factorial) (Decision & Loop)

Write a program called Product1ToN to compute the product of integers from 1 to 10 (i.e., 1×2×3×...×10),

as an int. Take note that It is the same as factorial of N.

Hints

Declare an int variable called product, initialize to 1, to accumulate the product.

 // Define variables
 int product = 1; // The accumulated product, init to 1
 final int LOWERBOUND = 1;
 final int UPPERBOUND = 10;

Try

1. Compute the product from 1 to 11, 1 to 12, 1 to 13 and 1 to 14. Write down the product

obtained and decide if the results are correct.

HINTS: Factorial of 13 (=6227020800) is outside the range of int [-2147483648,

2147483647]. Take note that computer programs may not produce the correct result even

55 | P a g e

though the code seems correct!

2. Repeat the above, but use long to store the product. Compare the products obtained

with int for N=13 and N=14.

HINTS: With long, you can store factorial of up to 20.

3.3 HarmonicSum (Decision & Loop)

Write a program called HarmonicSum to compute the sum of a harmonic series, as shown below,

where n=50000. The program shall compute the sum from left-to-right as well as from the right-to-left.

Are the two sums the same? Obtain the absolute difference between these two sums and explain the

difference. Which sum is more accurate?

Hints

/**
 * Compute the sum of harmonics series from left-to-right and right-to-left.
 */
public class HarmonicSum { // Save as "HarmonicSum.java"
 public static void main (String[] args) {
 // Define variables
 final int MAX_DENOMINATOR = 50000; // Use a more meaningful name instead of
n
 double sumL2R = 0.0; // Sum from left-to-right
 double sumR2L = 0.0; // Sum from right-to-left
 double absDiff; // Absolute difference between the two sums

 // for-loop for summing from left-to-right
 for (int denominator = 1; denominator <= MAX_DENOMINATOR; ++denominator) {
 // denominator = 1, 2, 3, 4, 5, ..., MAX_DENOMINATOR

 // Beware that int/int gives int, e.g., 1/2 gives 0.
 }
 System.out.println("The sum from left-to-right is: " + sumL2R);

 // for-loop for summing from right-to-left

 // Find the absolute difference and display
 if (sumL2R > sumR2L)
 else
 }
}

3.4 ComputePI (Decision & Loop)

Write a program called ComputePI to compute the value of π, using the following series expansion.

Use the maximum denominator (MAX_DENOMINATOR) as the terminating condition.

Try MAX_DENOMINATOR of 1000, 10000, 100000, 1000000 and compare the PI obtained. Is this series

suitable for computing PI? Why?

Hints

Add to sum if the denominator % 4 is 1, and subtract from sum if it is 3.

56 | P a g e

 double sum = 0.0;

 int MAX_DENOMINATOR = 1000; // Try 10000, 100000, 1000000
 for (int denominator = 1; denominator <= MAX_DENOMINATOR; denominator += 2)
{
 // denominator = 1, 3, 5, 7, ..., MAX_DENOMINATOR
 if (denominator % 4 == 1) {
 sum +=;
 } else if (denominator % 4 == 3) {
 sum -=;
 } else { // remainder of 0 or 2
 System.out.println("Impossible!!!");
 }
 }

Try

1. Instead of using maximum denominator as the terminating condition, rewrite your program to use the

maximum number of terms (MAX_TERM) as the terminating condition.

int MAX_TERM = 10000; // number of terms used in computation
 int sum = 0.0;
 for (int term = 1; term <= MAX_TERM; term++) {
 // term = 1, 2, 3, 4, ..., MAX_TERM
 if (term % 2 == 1) { // odd term number: add
 sum += 1.0 / (term * 2 - 1);
 } else { // even term number: subtract

 }
 }

2. JDK maintains the value of π in a built-in double constant called Math.PI (=3.141592653589793).

Add a statement to compare the values obtained and the Math.PI, in percents of Math.PI,

i.e., (piComputed / Math.PI) * 100.

3.5 CozaLozaWoza (Decision & Loop)

Write a program called CozaLozaWoza which prints the numbers 1 to 110, 11 numbers per line. The

program shall print "Coza" in place of the numbers which are multiples of 3, "Loza" for multiples of 5,

"Woza" for multiples of 7, "CozaLoza" for multiples of 3 and 5, and so on. The output shall look like:

1 2 Coza 4 Loza Coza Woza 8 Coza Loza 11

Coza 13 Woza CozaLoza 16 17 Coza 19 Loza CozaWoza 22

23 Coza Loza 26 Coza Woza 29 CozaLoza 31 32 Coza

......

Hints

public class CozaLozaWoza { // Save as "CozaLozaWoza.java"
 public static void main(String[] args) {
 final int LOWERBOUND = 1, UPPERBOUND = 110;
 for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {
 // number = LOWERBOUND+1, LOWERBOUND+2, ..., UPPERBOUND
 // Print "Coza" if number is divisible by 3
 if (......) {
 System.out.print("Coza");
 }

57 | P a g e

 // Print "Loza" if number is divisible by 5
 if (......) {
 System.out.print(.....);
 }
 // Print "Woza" if number is divisible by 7

 // Print the number if it is not divisible by 3, 5 and 7 (i.e., it has
not been processed above)
 if (......) {

 }
 // After processing the number, print a newline if number is divisible by
11;
 // else print a space
 if (......) {
 System.out.println(); // print newline
 } else {
 System.out.print(......); // print a space
 }
 }
 }
}

Notes

1. You cannot use nested-if (if ... else if ... else if ... else) for this problem. It is because the tests

are not mutually exclusive. For example, 15 is divisible by both 3 and 5. Nested-if is only

applicable if the tests are mutually exclusive.

2. The tests above look messy. A better solution is to use a boolean flag to keep track of

whether the number has been processed, as follows:

 final int LOWERBOUND = 1, UPPERBOUND = 110;

 boolean printed;
 for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {
 printed = false; // init before processing each number
 // Print "Coza" if number is divisible by 3
 if (......) {
 System.out.print(......);
 printed = true; // processed!
 }
 // Print "Loza" if number is divisible by 5
 if (......) {
 System.out.print(.....);
 printed = true; // processed!
 }
 // Print "Woza" if number is divisible by 7

 // Print the number if it has not been processed
 if (!printed) {

 }
 // After processing the number, print a newline if it is divisible by 11;
 // else, print a space

 }

58 | P a g e

3.6 Fibonacci (Decision & Loop)

Write a program called Fibonacci to print the first 20 Fibonacci numbers F(n), where F(n)=F(n–

1)+F(n–2) and F(1)=F(2)=1. Also compute their average. The output shall look like:

The first 20 Fibonacci numbers are:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

The average is 885.5

Hints

/**
 * Print first 20 Fibonacci numbers and their average
 */
public class Fibonacci {
 public static void main (String[] args) {
 int n = 3; // The index n for F(n), starting from n=3, as n=1 and
n=2 are pre-defined
 int fn; // F(n) to be computed
 int fnMinus1 = 1; // F(n-1), init to F(2)
 int fnMinus2 = 1; // F(n-2), init to F(1)
 int nMax = 20; // maximum n, inclusive
 int sum = fnMinus1 + fnMinus2; // Need sum to compute average
 double average;

 System.out.println("The first " + nMax + " Fibonacci numbers are:");

 while (n <= nMax) { // n starts from 3
 // n = 3, 4, 5, ..., nMax
 // Compute F(n), print it and add to sum

 // Increment the index n and shift the numbers for the next iteration
 ++n;
 fnMinus2 = fnMinus1;
 fnMinus1 = fn;
 }

 // Compute and display the average (=sum/nMax).
 // Beware that int/int gives int.

 }
}

Try

1. Tribonacci numbers are a sequence of numbers T(n) similar to Fibonacci numbers, except that a

number is formed by adding the three previous numbers, i.e., T(n)=T(n-1)+T(n-2)+T(n-3), T(1)

=T(2)=1, and T(3)=2. Write a program called Tribonacci to produce the first twenty Tribonacci

numbers.

3.7 ExtractDigits (Decision & Loop)

Write a program called ExtractDigits to extract each digit from an int, in the reverse order. For

example, if the int is 15423, the output shall be "3 2 4 5 1", with a space separating the digits.

Hints

The coding pattern for extracting individual digits from an integer n is:

59 | P a g e

1. Use (n % 10) to extract the last (least-significant) digit.

2. Use n = n / 10 to drop the last (least-significant) digit.

3. Repeat if (n > 0), i.e., more digits to extract.

Take note that n is destroyed in the process. You may need to clone a copy.

 int n = ...;

 while (n > 0) {

 int digit = n % 10; // Extract the least-significant digit
 // Print this digit

 n = n / 10; // Drop the least-significant digit and repeat the loop
 }

4. Exercises on Input, Decision and Loop

4.1 Add2Integer (Input)

Write a program called Add2Integers that prompts user to enter two integers. The program shall

read the two integers as int; compute their sum; and print the result. For example,

Enter first integer: 8
Enter second integer: 9
The sum is: 17

Hints

import java.util.Scanner; // For keyboard input
/**
 * 1. Prompt user for 2 integers
 * 2. Read inputs as "int"
 * 3. Compute their sum in "int"
 * 4. Print the result
 */
public class Add2Integers { // Save as "Add2Integers.java"
 public static void main (String[] args) {
 // Declare variables
 int number1, number2, sum;

 // Put up prompting messages and read inputs as "int"
 Scanner in = new Scanner(System.in); // Scan the keyboard for input
 System.out.print("Enter first integer: "); // No newline for prompting
message
 number1 = in.nextInt(); // Read next input as "int"

 in.close(); // Close Scanner

 // Compute sum
 sum =

 // Display result
 System.out.println("The sum is: " + sum); // Print with newline
 }
}

60 | P a g e

4.2 SumProductMinMax3 (Arithmetic & Min/Max)

Write a program called SumProductMinMax3 that prompts user for three integers. The program shall

read the inputs as int; compute the sum, product, minimum and maximum of the three integers; and

print the results. For example,

Enter 1st integer: 8
Enter 2nd integer: 2
Enter 3rd integer: 9
The sum is: 19
The product is: 144
The min is: 2
The max is: 9

Hints

 // Declare variables
 int number1, number2, number3; // The 3 input integers
 int sum, product, min, max; // To compute these

 // Prompt and read inputs as "int"
 Scanner in = new Scanner(System.in); // Scan the keyboard

 in.close();

 // Compute sum and product
 sum =
 product =

 // Compute min
 // The "coding pattern" for computing min is:
 // 1. Set min to the first item
 // 2. Compare current min with the second item and update min if second item
is smaller
 // 3. Repeat for the next item
 min = number1; // Assume min is the 1st item
 if (number2 < min) { // Check if the 2nd item is smaller than current min
 min = number2; // Update min if so
 }
 if (number3 < min) { // Continue for the next item
 min = number3;
 }

 // Compute max - similar to min

 // Print results

Try

1. Write a program called SumProductMinMax5 that prompts user for five integers. The program shall

read the inputs as int; compute the sum, product, minimum and maximum of the five integers; and

print the results. Use five int variables: number1, number2, ..., number5 to store the inputs.

4.3 CircleComputation (double & printf())

Write a program called CircleComputation that prompts user for the radius of a circle in

floating point number. The program shall read the input as double; compute the diameter,

61 | P a g e

circumference, and area of the circle in double; and print the values rounded to 2 decimal places. Use

System-provided constant Math.PI for pi. The formulas are:

diameter = 2.0 * radius;

area = Math.PI * radius * radius;

circumference = 2.0 * Math.PI * radius;

Hints

 // Declare variables
 double radius, diameter, circumference, area; // inputs and results - all
in double

 // Prompt and read inputs as "double"
 System.out.print("Enter the radius: ");
 radius = in.nextDouble(); // read input as double

 // Compute in "double"

 // Print results using printf() with the following format specifiers:
 // %.2f for a double with 2 decimal digits
 // %n for a newline
 System.out.printf("Diameter is: %.2f%n", diameter);

Try

1. Write a program called SphereComputation that prompts user for the radius of a sphere in

floating point number. The program shall read the input as double; compute the volume and surface

area of the sphere in double; and print the values rounded to 2 decimal places. The formulas are:

surfaceArea = 4 * Math.PI * radius * radius;

volume = 4 /3 * Math.PI * radius * radius * radius; // But this does not work in
programming?! Why?

Take note that you cannot name the variable surface area with a space or surface-area with a dash.

Java's naming convention is surfaceArea. Other languages recommend surface_area with an

underscore.

2. Write a program called CylinderComputation that prompts user for the

base radius and height of a cylinder in floating point number. The program shall read the inputs

as double; compute the base area, surface area, and volume of the cylinder; and print the values

rounded to 2 decimal places. The formulas are:

baseArea = Math.PI * radius * radius;

surfaceArea = 2.0 * Math.PI * radius + 2.0 * baseArea;

volume = baseArea * height;

4.4 Swap2Integers

Write a program called Swap2Integers that prompts user for two integers. The program shall read

the inputs as int, save in two variables called number1 and number2; swap the contents of the two

variables; and print the results. For examples,

62 | P a g e

Enter first integer: 9
Enter second integer: -9
After the swap, first integer is: -9, second integer is: 9

Hints

To swap the contents of two variables x and y, you need to introduce a temporary storage, say temp,

and do: temp ⇐ x; x ⇐ y; y ⇐ temp.

4.5 IncomeTaxCalculator (Decision)

The progressive income tax rate is mandated as follows:

Taxable Income Rate (%)

First $20,000 0

Next $20,000 10

Next $20,000 20

The remaining 30

For example, suppose that the taxable income is $85000, the income tax payable is $20000*0% +

$20000*10% + $20000*20% + $25000*30%.

Write a program called IncomeTaxCalculator that reads the taxable income (in int). The

program shall calculate the income tax payable (in double); and print the result rounded to 2 decimal

places. For examples,

Enter the taxable income: $41234
The income tax payable is: $2246.80

Enter the taxable income: $67891
The income tax payable is: $8367.30

Enter the taxable income: $85432
The income tax payable is: $13629.60

Enter the taxable income: $12345
The income tax payable is: $0.00

Hints

 // Declare constants first (variables may use these constants)
 // The keyword "final" marked these as constant (i.e., cannot be changed).
 // Use uppercase words joined with underscore to name constants
 final double TAX_RATE_ABOVE_20K = 0.1;
 final double TAX_RATE_ABOVE_40K = 0.2;
 final double TAX_RATE_ABOVE_60K = 0.3;

 // Declare variables
 int taxableIncome;
 double taxPayable;

 // Compute tax payable in "double" using a nested-if to handle 4 cases
 if (taxableIncome <= 20000) { // [0, 20000]
 taxPayable =;
 } else if (taxableIncome <= 40000) { // [20001, 40000]
 taxPayable =;

63 | P a g e

 } else if (taxableIncome <= 60000) { // [40001, 60000]
 taxPayable =;
 } else { // [60001,]
 taxPayable =;
 }
 // Alternatively, you could use the following nested-if conditions
 // but the above follows the table data
 //if (taxableIncome > 60000) { // [60001,]
 //
 //} else if (taxableIncome > 40000) { // [40001, 60000]
 //
 //} else if (taxableIncome > 20000) { // [20001, 40000]
 //
 //} else { // [0, 20000]
 //
 //}

 // Print results rounded to 2 decimal places
 System.out.printf("The income tax payable is: $%.2f%n", ...);

Try

Suppose that a 10% tax rebate is announced for the income tax payable, capped at $1,000, modify

your program to handle the tax rebate. For example, suppose that the tax payable is $12,000, the

rebate is $1,000, as 10% of $12,000 exceed the cap.

4.6 IncomeTaxCalculatorWithSentinel (Decision & Loop)

Based on the previous exercise, write a program called IncomeTaxCalculatorWithSentinel which

shall repeat the calculation until user enter -1. For example,

Enter the taxable income (or -1 to end): $41000
The income tax payable is: $2200.00

Enter the taxable income (or -1 to end): $62000
The income tax payable is: $6600.00

Enter the taxable income (or -1 to end): $73123
The income tax payable is: $9936.90

Enter the taxable income (or -1 to end): $84328
The income tax payable is: $13298.40

Enter the taxable income: $-1
bye!

The -1 is known as the sentinel value. (Wiki: In programming, a sentinel value, also referred to as a flag

value, trip value, rogue value, signal value, or dummy data, is a special value which uses its presence as

a condition of termination.)

Hints

The coding pattern for handling input with sentinel value is as follows:

 // Declare constants first
 final int SENTINEL = -1; // Terminating value for input

 // Declare variables
 int taxableIncome;
 double taxPayable;

64 | P a g e

 // Read the first input to "seed" the while loop
 System.out.print("Enter the taxable income (or -1 to end): $");
 taxableIncome = in.nextInt();

 while (taxableIncome != SENTINEL) {
 // Compute tax payable

 // Print result

 // Read the next input
 System.out.print("Enter the taxable income (or -1 to end): $");
 taxableIncome = in.nextInt();
 // Repeat the loop body, only if the input is not the SENTINEL value.
 // Take note that you need to repeat these two statements
inside/outside the loop!
 }
 System.out.println("bye!");

Take note that we repeat the input statements inside and outside the loop. Repeating statements is

NOT a good programming practice. This is because it is easy to repeat (Cntl-C/Cntl-V), but hard to

maintain and synchronize the repeated statements. In this case, we have no better choices!

4.7 PensionContributionCalculatorWithSentinel (Decision & Loop)

Based on the previous PensionContributionCalculator,

write a program called PensionContributionCalculatorWithSentinel which shall repeat the

calculations until user enter -1 for the salary. For examples,

Enter the monthly salary (or -1 to end): $5123
Enter the age: 21
The employee's contribution is: $1024.60
The employer's contribution is: $870.91
The total contribution is: $1895.51

Enter the monthly salary (or -1 to end): $5123
Enter the age: 64
The employee's contribution is: $384.22
The employer's contribution is: $461.07
The total contribution is: $845.30

Enter the monthly salary (or -1 to end): $-1
bye!

Hints

 // Read the first input to "seed" the while loop
 System.out.print("Enter the monthly salary (or -1 to end): $");
 salary = in.nextInt();

 while (salary != SENTINEL) {
 // Read the remaining
 System.out.print("Enter the age: ");
 age = in.nextInt();

 // Read the next input and repeat

65 | P a g e

 System.out.print("Enter the monthly salary (or -1 to end): $");
 salary = in.nextInt();
 }

4.8 SalesTaxCalculator (Decision & Loop)

A sales tax of 7% is levied on all goods and services consumed. It is also mandatory that all the price

tags should include the sales tax. For example, if an item has a price tag of $107, the actual price

is $100 and $7 goes to the sales tax.

Write a program using a loop to continuously input the tax-inclusive price (in double); compute the

actual price and the sales tax (in double); and print the results rounded to 2 decimal places. The

program shall terminate in response to input of -1; and print the total price, total actual price, and

total sales tax. For examples,

Enter the tax-inclusive price in dollars (or -1 to end): 107
Actual Price is: $100.00, Sales Tax is: $7.00

Enter the tax-inclusive price in dollars (or -1 to end): 214
Actual Price is: $200.00, Sales Tax is: $14.00

Enter the tax-inclusive price in dollars (or -1 to end): 321
Actual Price is: $300.00, Sales Tax is: $21.00

Enter the tax-inclusive price in dollars (or -1 to end): -1
Total Price is: $642.00
Total Actual Price is: $600.00
Total Sales Tax is: $42.00

Hints

 // Declare constants
 final double SALES_TAX_RATE = 0.07;
 final int SENTINEL = -1; // Terminating value for input

 // Declare variables
 double price, actualPrice, salesTax; // inputs and results
 double totalPrice = 0.0, totalActualPrice = 0.0, totalSalesTax = 0.0; // to
accumulate

 // Read the first input to "seed" the while loop
 System.out.print("Enter the tax-inclusive price in dollars (or -1 to end):
");
 price = in.nextDouble();

 while (price != SENTINEL) {
 // Compute the tax

 // Accumulate into the totals

 // Print results

 // Read the next input and repeat
 System.out.print("Enter the tax-inclusive price in dollars (or -1 to
end): ");
 price = in.nextDouble();
 }
 // print totals

66 | P a g e

4.9 ReverseInt (Loop with Modulus/Divide)

Write a program that prompts user for a positive integer. The program shall read the input as int; and

print the "reverse" of the input integer. For examples,

Enter a positive integer: 12345
The reverse is: 54321

Hints

Use the following coding pattern which uses a while-loop with repeated modulus/divide operations to

extract and drop the last digit of a positive integer.

 // Declare variables
 int inNumber; // to be input
 int inDigit; // each digit

 // Extract and drop the "last" digit repeatably using a while-loop with
modulus/divide operations
 while (inNumber > 0) {
 inDigit = inNumber % 10; // extract the "last" digit
 // Print this digit (which is extracted in reverse order)

 inNumber /= 10; // drop "last" digit and repeat
 }

4.10 SumOfDigitsInt (Loop with Modulus/Divide)

Write a program that prompts user for a positive integer. The program shall read the input as int;

compute and print the sum of all its digits. For examples,

Enter a positive integer: 12345
The sum of all digits is: 15

Hints

See "ReverseInt".

4.11 InputValidation (Loop with boolean flag)

Your program often needs to validate the user's inputs, e.g., marks shall be between 0 and 100.

Write a program that prompts user for an integer between 0-10 or 90-100. The program shall read

the input as int; and repeat until the user enters a valid input. For examples,

Enter a number between 0-10 or 90-100: -1
Invalid input, try again...
Enter a number between 0-10 or 90-100: 50
Invalid input, try again...
Enter a number between 0-10 or 90-100: 101
Invalid input, try again...
Enter a number between 0-10 or 90-100: 95
You have entered: 95

67 | P a g e

Hints

Use the following coding pattern which uses a do-while loop controlled by a boolean flag to do input

validation. We use a do-while instead of while-do loop as we need to execute the body to prompt and

process the input at least once.

 // Declare variables
 int numberIn; // to be input
 boolean isValid; // boolean flag to control the loop

 // Use a do-while loop controlled by a boolean flag
 // to repeatably read the input until a valid input is entered
 isValid = false; // default assuming input is not valid
 do {
 // Prompt and read input

 // Validate input by setting the boolean flag accordingly
 if (numberIn) {
 isValid = true; // exit the loop
 } else {
 System.out.println(......); // Print error message and repeat
 }
 } while (!isValid);

4.12 AverageWithInputValidation (Loop with boolean flag)

Write a program that prompts user for the mark (between 0-100 in int) of 3 students; computes the

average (in double); and prints the result rounded to 2 decimal places. Your program needs to

perform input validation. For examples,

Enter the mark (0-100) for student 1: 56
Enter the mark (0-100) for student 2: 101
Invalid input, try again...
Enter the mark (0-100) for student 2: -1
Invalid input, try again...
Enter the mark (0-100) for student 2: 99
Enter the mark (0-100) for student 3: 45
The average is: 66.67

Hints

 // Declare constant
 final int NUM_STUDENTS = 3;

 // Declare variables
 int numberIn;
 boolean isValid; // boolean flag to control the input validation loop
 int sum = 0;
 double average;

 for (int studentNo = 1; studentNo <= NUM_STUDENTS; ++studentNo) {
 // Prompt user for mark with input validation

 isValid = false; // reset assuming input is not valid
 do {

 } while (!isValid);

68 | P a g e

 sum +=;
 }

5. Exercises on Nested-Loops

5.1 SquarePattern (nested-loop)

Write a program called SquarePattern that prompts user for the size (a non-negative integer

in int); and prints the following square pattern using two nested for-loops.

Enter the size: 5

Hints

The code pattern for printing 2D patterns using nested loops is:

 // Outer loop to print each of the rows
 for (int row = 1; row <= size; row++) { // row = 1, 2, 3, ..., size
 // Inner loop to print each of the columns of a particular row
 for (int col = 1; col <= size; col++) { // col = 1, 2, 3, ..., size
 System.out.print(......); // Use print() without newline inside
the inner loop

 }
 // Print a newline after printing all the columns
 System.out.println();
 }

Notes

1. You should name the loop indexes row and col, NOT i and j, or x and y, or a and b, which

are meaningless.

2. The row and col could start at 1 (and upto size), or start at 0 (and upto size-1). As

computer counts from 0, it is probably more efficient to start from 0. However, since humans

counts from 1, it is easier to read if you start from 1.

Try

Rewrite the above program using nested while-do loops.

5.2 CheckerPattern (nested-loop)

Write a program called CheckerPattern that prompts user for the size (a non-negative integer

in int); and prints the following checkerboard pattern.

Enter the size: 7

 # # # # # # #

 # # # # # # #

 # # # # # # #

69 | P a g e

Hints

 // Outer loop to print each of the rows
 for (int row = 1; row <= size; row++) { // row = 1, 2, 3, ..., size
 // Inner loop to print each of the columns of a particular row
 for (int col = 1; col <= size; col++) { // col = 1, 2, 3, ..., size
 if ((row % 2) == 0) { // row 2, 4, 6, ...

 }
 System.out.print(......); // Use print() without newline inside
the inner loop

 }
 // Print a newline after printing all the columns
 System.out.println();
 }

5.3 TimeTable (nested-loop)

Write a program called TimeTable that prompts user for the size (a positive integer in int); and

prints the multiplication table as shown:

Enter the size: 10
 * | 1 2 3 4 5 6 7 8 9 10
--
 1 | 1 2 3 4 5 6 7 8 9 10
 2 | 2 4 6 8 10 12 14 16 18 20
 3 | 3 6 9 12 15 18 21 24 27 30
 4 | 4 8 12 16 20 24 28 32 36 40
 5 | 5 10 15 20 25 30 35 40 45 50
 6 | 6 12 18 24 30 36 42 48 54 60
 7 | 7 14 21 28 35 42 49 56 63 70
 8 | 8 16 24 32 40 48 56 64 72 80
 9 | 9 18 27 36 45 54 63 72 81 90
10 | 10 20 30 40 50 60 70 80 90 100

Hints

1. Use printf() to format the output, e.g., each cell is %4d.

2. See "Java Basics" article.

5.4 TriangularPattern (nested-loop)

Write 4 programs called TriangularPatternX (X = A, B, C, D) that prompts user for the size

(a non-negative integer in int); and prints each of the patterns as shown:

Enter the size: 8

70 | P a g e

 (a) (b) (c) (d)

Hints

1. On the main diagonal, row = col. On the opposite diagonal, row + col = size + 1,

where row and col begin from 1.

2. You need to print the leading blanks, in order to push the # to the right. The trailing blanks

are optional, which does not affect the pattern.

3. For pattern (a), if (row >= col) print #. Trailing blanks are optional.

4. For pattern (b), if (row + col <= size + 1) print #. Trailing blanks are optional.

5. For pattern (c), if (row >= col) print #; else print blank. Need to print

the leading blanks.

6. For pattern (d), if (row + col >= size + 1) print #; else print blank. Need to

print the leading blanks.

7. The coding pattern is:

// Outer loop to print each of the rows
 for (int row = 1; row <= size; row++) { // row = 1, 2, 3, ..., size
 // Inner loop to print each of the columns of a particular row
 for (int col = 1; col <= size; col++) { // col = 1, 2, 3, ..., size
 if (......) {
 System.out.print("# ");
 } else {
 System.out.print(" "); // Need to print the "leading" blanks
 }
 }
 // Print a newline after printing all the columns
 System.out.println();
 }

5.5 BoxPattern (nested-loop)

Write 4 programs called BoxPatternX (X = A, B, C, D) that prompts user for the size (a non-

negative integer in int); and prints the pattern as shown:

Enter the size: 8

 (a) (b) (c) (d) (e)

Hints

1. On the main diagonal, row = col. On the opposite diagonal, row + col = size + 1,

where row and col begin from 1.

2. For pattern (a), if (row == 1 || row == size || col == 1 || col == size) print

#; else print blank. Need to print the intermediate blanks.

3. For pattern (b), if (row == 1 || row == size || row == col) print #; else print

blank.

71 | P a g e

5.6 HillPattern (nested-loop)

Write 3 programs called HillPatternX (X = A, B, C, D) that prompts user for the size (a non-

negative integer in int); and prints the pattern as shown:

Enter the rows: 6

 # # # # # # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # # # # # # # # #

 (a) (b) # # # # # # # # # # # # #
 # # # # # # # # # # # # #
 # # # # # # # # # # # # #
 # # # # # # # # # # # # #
 # # # # # # # # # # # #
 (c) (d)

Hints

For pattern (a):

for (int row = 1;) {

 // numCol = 2*numRows - 1
 for (int col = 1;) {
 if ((row + col >= numRows + 1) && (row >= col - numRows + 1)) {
 ;
 } else {
 ;
 }
 }
 ;
 }

or, use 2 sequential inner loops to print the columns:

 for (int row = 1; row <= rows; row++) {

 for (int col = 1; col <= rows; col++) {

 if ((row + col >= rows + 1)) {

 } else {

 }

 }

 for (int col = 2; col <= rows; col++) { // skip col = 1
 if (row >= col) {

 } else {

 }
 }

 }

5.7 NumberPattern (nested-loop)

Write 4 programs called NumberPatternX (X = A, B, C, D) that prompts user for the size (a non-

72 | P a g e

negative integer in int); and prints the pattern as shown:

Enter the size: 8

1 1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1
1 2 1 2 3 4 5 6 7 2 1 7 6 5 4 3 2 1
1 2 3 1 2 3 4 5 6 3 2 1 6 5 4 3 2 1
1 2 3 4 1 2 3 4 5 4 3 2 1 5 4 3 2 1
1 2 3 4 5 1 2 3 4 5 4 3 2 1 4 3 2 1
1 2 3 4 5 6 1 2 3 6 5 4 3 2 1 3 2 1
1 2 3 4 5 6 7 1 2 7 6 5 4 3 2 1 2 1
1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1 1
 (a) (b) (c) (d)

6. Magic(Special) Numbers

6.1. Amicable umbers

Two different numbers are said to be so Amicable numbers if each sum of divisors is equal to the

other number. Amicalble Numbers are: (220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232,

6368). For example,

Enter 1st number: 228

Enter 2nd number: 220

The numbers are Amicable Numbers.

Hints

220 and 284 are Amicable Numbers.

Divisors of 220 = 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110

1+2+4+5+10+11+20+22+44+55+110 = 284

Divisors of 284 = 1, 2, 4, 71, 142

1+2+4+71+142 = 220

6.2. Armstrong Number

Armstrong number is a positive number if it is equal to the sum of cubes of its digits is called

Armstrong number and if its sum is not equal to the number then it’s not a Armstrong number. For

example,

Enter number=145

145 is not an Armstrong Number

Enter number = 153

153 is an Armstrong Number

Hints

Examples: 153 is Armstrong

73 | P a g e

(1*1*1)+(5*5*5)+(3*3*3) = 153

6.3. Capricorn Number

A number is called Capricorn or Kaprekar number whose square is divided into two parts in any

conditions and parts are added, the additions of parts is equal to the number, is called Capricorn or

Kaprekar number. For example,

Enter a number : 45

45 is a Capricorn/Kaprekar number

Enter a number : 297

297 is a Capricorn/Kaprekar number

Enter a number : 44

44 is not a Capricorn/Kaprekar number

Hints

Number = 45

(45)2 = 2025

All parts for 2025:

202 + 5 = 207 (not 45)

20 + 25 = 45

2+ 025 = 27 (not 45)

From the above we can see one combination is equal to number so that 45 is Capricorn or Kaprekar

number.

Try

Write a Java program to generate and show all Kaprekar numbers less than 1000.

6.4. Circular Prime

A circular prime is a prime number with the property that the number generated at each intermediate

step when cyclically permuting its digits will be prime. For example, 1193 is a circular prime, since

1931, 9311 and 3119 all are also prime. For example,

Enter a number : 137

137 is a Circular Prime

Enter a number : 44

44 is not a Circular Prime

6.5. Happy Number

A happy number is a natural number in a given number base that eventually reaches 1 when iterated

over the perfect digital invariant function for. Those numbers that do not end in 1 are -unhappy

numbers. For example,

Enter a number : 31

31 is a Happy number

Enter a number : 32

32 is not a Happy number

74 | P a g e

6.6. Automorphic Number

An Automorphic number is a number whose square “ends” in the same digits as the number itself. For

example,

Enter a number : 5

5 is a Automorphic Number

Enter a number : 25

25 is a Automorphic Number

Enter a number : 2

2 is not a Automorphic Number

Hints

5*5 = 25, 6*6 = 36, 25*25 = 625

5,6,25 are automorphic numbers

6.7. Disarium Number

A number is called Disarium number if the sum of its power of the positions from left to right is equal

to the number. For example,

Enter a number : 135

135 is a Disarium Number

Enter a number : 32

32 is not a Disarium Number

Hints

11 + 32 + 53 = 1 + 9 + 125 = 135

6.8. Magic Number

Magic number is the if the sum of its digits recursively are calculated till a single digit If the single digit

is 1 then the number is a magic number. Magic number is very similar with Happy Number. For

example,

Enter a number : 226

226 is a Magic Number

Enter a number : 32

32 is not a Magic Number

Enter number = 541

153 is a Magic Number

Hints

226 is said to be a magic number

75 | P a g e

2+2+6=10 sum of digits is 10 then again 1+0=1 now we get a single digit number is 1.if we single

digit number will now 1 them it would not a magic number.

6.9. Neon Number

A neon number is a number where the sum of digits of square of the number is equal to the number.

For example if the input number is 9, its square is 9*9 = 81 and sum of the digits is 9. i.e. 9 is a neon

number. For example,

Enter a number: 9

9 is a Neon Number

Enter a number: 8

8 is not a Neon Number

6.10. Palindromic Number

A palindromic number is a number that remains the same when its digits are reversed. For example,

Enter a number : 16461

16461 is a Palendromic Number

Enter a number : 1234

1234 is not a Plaindromic Number

6.11. Perfect Number

A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the

number itself. For instance, 6 has divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. For

example,

Enter a number : 6

6 is a Perfect Number

Enter a number : 3

3 is not a Perfect Number

6.12. Special Number

A number is said to be special number when the sum of factorial of its digits is equal to the number

itself. Example- 145 is a Special Number as 1!+4!+5!=145. For example,

Enter a number : 145

145 is a Special Number

Enter a number : 23

23 is not a Special Number

6.13. Spy Number

A spy number is a number where the sum of its digits equals the product of its digits. For example,

1124 is a spy number, the sum of its digits is 1+1+2+4=8 and the product of its digits is 1*1*2*4=8.

For example,

Enter a number : 1124

1124 is a Spy Number

76 | P a g e

Enter a number : 12

12 is not a Spy Number

6.14. Ugly Number

A number is said to be an Ugly number if positive numbers whose prime factors only include 2, 3, 5.

For example, 6(2×3), 8(2x2x2), 15(3×5) are ugly numbers while 14(2×7) is not ugly since it includes

another prime factor 7. Note that 1 is typically treated as an ugly number. For example,

Enter a number : 6

6 is an Ugly Number

Enter a number : 14

14 is not an Ugly Number

7. Exercises on String and char Operations

7.1 ReverseString (String & char)

Write a program called ReverseString, which prompts user for a String, and prints

the reverse of the String by extracting and processing each character. The output shall look like:

Enter a String: abcdef
The reverse of the String "abcdef" is "fedcba".

Hints

For a String called inStr, you can use inStr.length() to get the length of the String;

and inStr.charAt(idx) to retrieve the char at the idx position, where idx begins at 0, up

to instr.length() - 1.

 // Define variables
 String inStr; // input String
 int inStrLen; // length of the input String

 // Prompt and read input as "String"
 System.out.print("Enter a String: ");
 inStr = in.next(); // use next() to read a String
 inStrLen = inStr.length();

 // Use inStr.charAt(index) in a loop to extract each character
 // The String's index begins at 0 from the left.
 // Process the String from the right
 for (int charIdx = inStrLen - 1; charIdx >= 0; --charIdx) {
 // charIdx = inStrLen-1, inStrLen-2, ... ,0

 }

7.2 CountVowelsDigits (String & char)

Write a program called CountVowelsDigits, which prompts the user for a String, counts the

number of vowels (a, e, i, o, u, A, E, I, O, U) and digits (0-9) contained in the string, and prints the

counts and the percentages (rounded to 2 decimal places). For example,

Enter a String: testing12345

77 | P a g e

Number of vowels: 2 (16.67%)
Number of digits: 5 (41.67%)

Hints

1. To check if a char c is a digit, you can use boolean expression (c >= '0' && c <= '9');

or use built-in boolean function Character.isDigit(c).

2. You could use in.next().toLowerCase() to convert the input String to lowercase to

reduce the number of cases.

3. To print a % using printf(), you need to use %%. This is because % is a prefix for format

specifier in printf(), e.g., %d and %f.

7.3 PhoneKeyPad (String & char)

On you phone keypad, the alphabets are mapped to digits as follows:

 ABC(2), DEF(3), GHI(4), JKL(5), MNO(6), PQRS(7), TUV(8), WXYZ(9).

Write a program called PhoneKeyPad, which prompts user for a String (case insensitive), and

converts to a sequence of keypad digits. Use (a) a nested-if, (b) a switch-case-default.

Hints
1. You can use in.next().toLowerCase() to read a String and convert it to lowercase to reduce

your cases.

2. In switch-case, you can handle multiple cases by omitting the break statement, e.g.,

switch (inChar) {

 case 'a': case 'b': case 'c': // No break for 'a' and 'b', fall thru 'c'

 System.out.print(2); break;
 case 'd': case 'e': case 'f':

 default:

}

7.4 Caesar's Code (String & char)

Caesar's Code is one of the simplest encryption techniques. Each letter in the plaintext is replaced by a

letter some fixed number of position (n) down the alphabet cyclically. In this exercise, we shall

pick n=3. That is, 'A' is replaced by 'D', 'B' by 'E', 'C' by 'F', ..., 'X' by 'A', ..., 'Z' by 'C'.

Write a program called CaesarCode to cipher the Caesar's code. The program shall prompt user for a

plaintext string consisting of mix-case letters only; compute the ciphertext; and print the ciphertext in

uppercase. For example,

Enter a plaintext string: Testing
The ciphertext string is: WHVWLQJ

Hints

1. Use in.next().toUpperCase() to read an input string and convert it into uppercase to

reduce the number of cases.

2. You can use a big nested-if with 26 cases ('A'-'Z'). But it is much better to

consider 'A' to 'W' as one case; 'X', 'Y' and 'Z' as 3 separate cases.

78 | P a g e

3. Take note that char 'A' is represented as Unicode number 65 and char 'D' as 68.

However, 'A' + 3 gives 68. This is because char + int is implicitly casted to int +

int which returns an int value. To obtain a char value, you need to perform explicit type

casting using (char)('A' + 3). Try printing ('A' + 3) with and without type casting.

7.5 Decipher Caesar's Code (String & char)

Write a program called DecipherCaesarCode to decipher the Caesar's code described in the previous

exercise. The program shall prompts user for a ciphertext string consisting of mix-case letters only;

compute the plaintext; and print the plaintext in uppercase. For example,

Enter a ciphertext string: wHVwLQJ
The plaintext string is: TESTING

7.6 Exchange Cipher (String & char)

This simple cipher exchanges 'A' and 'Z', 'B' and 'Y', 'C' and 'X', and so on.

Write a program called ExchangeCipher that prompts user for a plaintext string consisting of mix-

case letters only. You program shall compute the ciphertext; and print the ciphertext in uppercase. For

examples,

Enter a plaintext string: abcXYZ
The ciphertext string is: ZYXCBA

Hints

1. Use in.next().toUpperCase() to read an input string and convert it into uppercase to

reduce the number of cases.

2. You can use a big nested-if with 26 cases ('A'-'Z'), or use the following relationship:

'A' + 'Z' == 'B' + 'Y' == 'C' + 'X' == ... == plainTextChar + cipherTextChar

Hence, cipherTextChar = 'A' + 'Z' - plainTextChar

7.7 TestPalindromicWord and TestPalindromicPhrase (String & char)

A word that reads the same backward as forward is called a palindrome, e.g., "mom", "dad", "racecar",

"madam", and "Radar" (case-insensitive).

Write a program called TestPalindromicWord, that prompts user for a word and prints ""xxx"

is|is not a palindrome".

A phrase that reads the same backward as forward is also called a palindrome, e.g., "Madam, I'm

Adam", "A man, a plan, a canal - Panama!" (ignoring punctuation and capitalization).

Modify your program (called TestPalindromicPhrase) to check for palindromic phrase.

Use in.nextLine() to read a line of input.

Hints

1. Maintain two indexes, forwardIndex (fIdx) and backwardIndex (bIdx), to scan the phrase

forward and backward.

 int fIdx = 0, bIdx = strLen - 1;

 while (fIdx < bIdx) {

 ++fIdx;

 --bIdx;

79 | P a g e

 }

 // or
 for (int fIdx = 0, bIdx = strLen - 1; fIdx < bIdx; ++fIdx, --bIdx) {

 }

2. You can check if a char c is a letter either using built-in boolean function Character.isLetter(c);

or boolean expression (c >= 'a' && c <= 'z'). Skip the index if it does not contain a letter.

7.8 CheckBinStr (String & char)

The binary number system uses 2 symbols, 0 and 1. Write a program called CheckBinStr to verify a

binary string. The program shall prompt user for a binary string; and decide if the input string is a valid

binary string. For example,

Enter a binary string: 10101100
"10101100" is a binary string

Enter a binary string: 10120000
"10120000" is NOT a binary string

Hints

Use the following coding pattern which involves a boolean flag to check the input string.

// Declare variables
 String inStr; // The input string
 int inStrLen; // The length of the input string
 char inChar; // Each char of the input string
 boolean isValid; // "is" or "is not" a valid binary string?

 isValid = true; // Assume that the input is valid, unless our check fails
 for (......) {
 inChar =;
 if (!(inChar == '0' || inChar == '1')) {
 isValid = false;
 break; // break the loop upon first error, no need to continue for
more errors
 // If this is not encountered, isValid remains true after the
loop.
 }
 }
 if (isValid) {
 System.out.println(......);
 } else {
 System.out.println(......);
 }
 // or using one liner
 //System.out.println(isValid ? ... : ...);

7.9 CheckHexStr (String & char)

The hexadecimal (hex) number system uses 16 symbols, 0-9 and A-F (or a-f). Write a program to

verify a hex string. The program shall prompt user for a hex string; and decide if the input string is a

valid hex string. For examples,

Enter a hex string: 123aBc
"123aBc" is a hex string

Enter a hex string: 123aBcx

80 | P a g e

"123aBcx" is NOT a hex string

Hints

if (!((inChar >= '0' && inChar <= '9')

 || (inChar >= 'A' && inChar <= 'F')

 || (inChar >= 'a' && inChar <= 'f'))) { // Use positive logic and then
reverse

}

7.10 Bin2Dec (String & char)

Write a program called Bin2Dec to convert an input binary string into its equivalent decimal number.

Your output shall look like:

Enter a Binary string: 1011
The equivalent decimal number for binary "1011" is: 11

Enter a Binary string: 1234
error: invalid binary string "1234"

Hints

See "Code Example".

7.11 Hex2Dec (String & char)

Write a program called Hex2Dec to convert an input hexadecimal string into its equivalent decimal

number. Your output shall look like:

Enter a Hexadecimal string: 1a
The equivalent decimal number for hexadecimal "1a" is: 26

Enter a Hexadecimal string: 1y3
error: invalid hexadecimal string "1y3"

Hints

See "Code Example".

7.12 Oct2Dec (String & char)

Write a program called Oct2Dec to convert an input Octal string into its equivalent decimal number.

For example,

Enter an Octal string: 147
The equivalent decimal number "147" is: 103

8. Exercises on Arrays

8.1 PrintArray (Array)

Write a program called PrintArray which prompts user for the number of items in an array (a non-

negative integer), and saves it in an int variable called NUM_ITEMS. It then prompts user for the values

of all the items and saves them in an int array called items. The program shall then print the

contents of the array in the form of [x1, x2, ..., xn]. For example,

81 | P a g e

Enter the number of items: 5
Enter the value of all items (separated by space): 3 2 5 6 9
The values are: [3, 2, 5, 6, 9]

Hints

 // Declare variables
 tinal int NUM_ITEMS;
 int[] items; // Declare array name, to be allocated after NUM_ITEMS is
known

 // Prompt for for the number of items and read the input as "int"

 NUM_ITEMS =

 // Allocate the array
 items = new int[NUM_ITEMS];

 // Prompt and read the items into the "int" array, if array length > 0
 if (items.length > 0) {

 for (int i = 0; i < items.length; ++i) { // Read all items

 }
 }

 // Print array contents, need to handle first item and subsequent items
differently

 for (int i = 0; i < items.length; ++i) {
 if (i == 0) {
 // Print the first item without a leading commas

 } else {
 // Print the subsequent items with a leading commas

 }
 // or, using a one liner
 //System.out.print((i == 0) ? :);
 }

8.2 PrintArrayInStars (Array)

Write a program called printArrayInStars which prompts user for the number of items in an

array (a non-negative integer), and saves it in an int variable called NUM_ITEMS. It then prompts user

for the values of all the items (non-negative integers) and saves them in an int array called items.

The program shall then print the contents of the array in a graphical form, with the array index and

values represented by number of stars. For examples,

Enter the number of items: 5
Enter the value of all items (separated by space): 7 4 3 0 7
0: *******(7)
1: ****(4)
2: ***(3)
3: (0)
4: *******(7)

Hints

 // Declare variables
 final int NUM_ITEMS;

82 | P a g e

 int[] items; // Declare array name, to be allocated after NUM_ITEMS is
known

 // Print array in "index: number of stars" using a nested-loop
 // Take note that rows are the array indexes and columns are the value in
that index
 for (int idx = 0; idx < items.length; ++idx) { // row
 System.out.print(idx + ": ");
 // Print value as the number of stars
 for (int starNo = 1; starNo <= items[idx]; ++starNo) { // column
 System.out.print("*");
 }

 }

8.3 GradesStatistics (Array)

Write a program which prompts user for the number of students in a class (a non-negative integer),

and saves it in an int variable called numStudents. It then prompts user for the grade of each of the

students (integer between 0 to 100) and saves them in an int array called grades. The program shall

then compute and print the average (in double rounded to 2 decimal places) and minimum/maximum

(in int).

Enter the number of students: 5
Enter the grade for student 1: 98
Enter the grade for student 2: 78
Enter the grade for student 3: 78
Enter the grade for student 4: 87
Enter the grade for student 5: 76
The average is: 83.40
The minimum is: 76
The maximum is: 98

8.4 Hex2Bin (Array for Table Lookup)

Write a program called Hex2Bin that prompts user for a hexadecimal string and print its equivalent

binary string. The output shall look like:

Enter a Hexadecimal string: 1abc
The equivalent binary for hexadecimal "1abc" is: 0001 1010 1011 1100

Hints

1. Use an array of 16 Strings containing binary strings corresponding to hexadecimal number 0-9A-

F (or a-f), as follows

final String[] HEX_BITS = {"0000", "0001", "0010", "0011",

 "0100", "0101", "0110", "0111",

 "1000", "1001", "1010", "1011",

 "1100", "1101", "1110", "1111"};

8.5 Dec2Hex (Array for Table Lookup)

Write a program called Dec2Hex that prompts user for a positive decimal number, read as int, and

print its equivalent hexadecimal string. The output shall look like:

Enter a decimal number: 1234

83 | P a g e

The equivalent hexadecimal number is 4D2

9. Exercises on Methods

9.1 exponent() (method)

Write a method called exponent(int base, int exp) that returns an int value of base raises to

the power of exp. The signature of the method is:

 public static int exponent(int base, int exp);

Assume that exp is a non-negative integer and base is an integer. Do not use any Math library

functions.

Also write the main() method that prompts user for the base and exp; and prints the result. For

example,

Enter the base: 3
Enter the exponent: 4
3 raises to the power of 4 is: 81

Hints

......

public class Exponent {

 public static void main(String[] args) {
 // Declare variables
 int exp; // exponent (non-negative integer)
 int base; // base (integer)

 // Prompt and read exponent and base

 // Print result
 System.out.println(base + " raises to the power of " + exp + " is: "
+ exponent(base, exp));
 }

 // Returns "base" raised to the power "exp"
 public static int exponent(int base, int exp) {
 int product = 1; // resulting product

 // Multiply product and base for exp number of times
 for (......) {
 product *= base;
 }

 return product;
 }
}

9.2 isOdd() (method)

Write a boolean method called isOdd() in a class called OddEvenTest, which takes an int as

input and returns true if the it is odd. The signature of the method is as follows:

public static boolean isOdd(int number);

84 | P a g e

Also write the main() method that prompts user for a number, and prints "ODD" or "EVEN". You

should test for negative input. For examples,

Enter a number: 9
9 is an odd number

Enter a number: 8
8 is an even number

Enter a number: -5
-5 is an odd number

Hints

See Notes.

9.3 hasEight() (method)

Write a boolean method called hasEight(), which takes an int as input and returns true if the

number contains the digit 8 (e.g., 18, 168, 1288). The signature of the method is as follows:

public static boolean hasEight(int number);

Write a program called MagicSum, which prompts user for integers (or -1 to end), and produce the

sum of numbers containing the digit 8. Your program should use the above methods. A sample

output of the program is as follows:

Enter a positive integer (or -1 to end): 1

Enter a positive integer (or -1 to end): 2

Enter a positive integer (or -1 to end): 3

Enter a positive integer (or -1 to end): 8

Enter a positive integer (or -1 to end): 88

Enter a positive integer (or -1 to end): -1

The magic sum is: 96

Hints

The coding pattern to repeat until input is -1 (called sentinel value) is:

final int SENTINEL = -1; // Terminating input
int number;

// Read first input to "seed" the while loop
System.out.print("Enter a positive integer (or -1 to end): ");
number = in.nextInt();

while (number != SENTINEL) { // Repeat until input is -1

 // Read next input. Repeat if the input is not the SENTINEL
 // Take note that you need to repeat these codes!
 System.out.print("Enter a positive integer (or -1 to end): ");
 number = in.nextInt();
}

You can either repeatably use modulus/divide (n%10 and n=n/10) to extract and drop each digit

in int; or convert the int to String and use the String's charAt() to inspect each char.

85 | P a g e

9.4 print() (Array & Method)

Write a method called print(), which takes an int array and print its contents in the form of [a1,

a2, ..., an]. Take note that there is no comma after the last element. The method's signature is as

follows:

public static void print(int[] array);

Also write a test driver to test this method (you should test on empty array, one-element array, and n-

element array).

How to handle double[] or float[]? You need to write a overloaded version for double[] and a

overloaded version for float[], with the following signatures:

public static void print(double[] array)
public static void print(float[] array)

The above is known as method overloading, where the same method name can have many versions,

differentiated by its parameter list.

Hints

For the first element, print its value; for subsequent elements, print commas followed by the value.

9.5 arrayToString() (Array & Method)

Write a method called arrayToString(), which takes an int array and return a String in the form

of [a1, a2, ..., an]. Take note that this method returns a String, the previous exercise

returns void but prints the output. The method's signature is as follows:

public static String arrayToString(int[] array);

Also write a test driver to test this method (you should test on empty array, one-element array, and n-

element array).

Notes: This is similar to the built-in function Arrays.toString(). You could study its source code.

9.6 contains() (Array & Method)

Write a boolean method called contains(), which takes an array of int and an int; and

returns true if the array contains the given int. The method's signature is as follows:

public static boolean contains(int[] array, int key);

Also write a test driver to test this method.

9.7 search() (Array & Method)

Write a method called search(), which takes an array of int and an int; and returns the

array index if the array contains the given int; or -1 otherwise. The method's signature is as follows:

public static int search(int[] array, int key);

Also write a test driver to test this method.

9.8 equals() (Array & Method)

Write a boolean method called equals(), which takes two arrays of int and returns true if the two

arrays are exactly the same (i.e., same length and same contents). The method's signature is as follows:

86 | P a g e

public static boolean equals(int[] array1, int[] array2)

Also write a test driver to test this method.

9.9 copyOf() (Array & Method)

Write a boolean method called copyOf(), which takes an int Array and returns a copy of the given

array. The method's signature is as follows:

public static int[] copyOf(int[] array)

Also write a test driver to test this method.

Write another version for copyOf() which takes a second parameter to specify the length of the new

array. You should truncate or pad with zero so that the new array has the required length.

public static int[] copyOf(int[] array, int newLength)

NOTES: This is similar to the built-in function Arrays.copyOf().

9.10 swap() (Array & Method)

Write a method called swap(), which takes two arrays of int and swap their contents if they have

the same length. It shall return true if the contents are successfully swapped. The method's signature

is as follows:

public static boolean swap(int[] array1, int[] array2)

Also write a test driver to test this method.

Hints

You need to use a temporary location to swap two storage locations.

// Swap item1 and item2
int item1, item2, temp;
temp = item1;
item1 = item2;
item2 = item1;
// You CANNOT simply do: item1 = item2; item2 = item2;

9.11 reverse() (Array & Method)

Write a method called reverse(), which takes an array of int and reverse its contents. For

example, the reverse of [1,2,3,4] is [4,3,2,1]. The method's signature is as follows:

public static void reverse(int[] array)

Take note that the array passed into the method can be modified by the method (this is called "pass

by reference"). On the other hand, primitives passed into a method cannot be modified. This is

because a clone is created and passed into the method instead of the original copy (this is called "pass

by value").

Also write a test driver to test this method.

Hints

You might use two indexes in the loop, one moving forward and one moving backward to point to the

two elements to be swapped.

87 | P a g e

for (int fIdx = 0, bIdx = array.length - 1; fIdx < bIdx; ++fIdx, --bIdx) {

 // Swap array[fIdx] and array[bIdx]
 // Only need to transverse half of the array elements
}

You need to use a temporary location to swap two storage locations.

// Swap item1 and item2
int item1, item2, temp;
temp = item1;
item1 = item2;
item2 = item1;
// You CANNOT simply do: item1 = item2; item2 = item2;

9.12 GradesStatistics (Array & Method)

Write a program called GradesStatistics, which reads in n grades (of int between 0 and 100,

inclusive) and displays the average, minimum, maximum, median and standard deviation. Display the

floating-point values upto 2 decimal places. Your output shall look like:

Enter the number of students: 4
Enter the grade for student 1: 50
Enter the grade for student 2: 51
Enter the grade for student 3: 56
Enter the grade for student 4: 53
The grades are: [50, 51, 56, 53]
The average is: 52.50
The median is: 52.00
The minimum is: 50
The maximum is: 56
The standard deviation is: 2.29

The formula for calculating standard deviation is:

Hints:

public class GradesStatistics {
 public static int[] grades; // Declare an int[], to be allocated later.
 // This array is accessible by all the methods.

 public static void main(String[] args) {
 readGrades(); // Read and save the inputs in global int[] grades
 System.out.println("The grades are: ");
 print(grades);
 System.out.println("The average is " + average(grades));
 System.out.println("The median is " + median(grades));
 System.out.println("The minimum is " + min(grades));
 System.out.println("The maximum is " + max(grades));
 System.out.println("The standard deviation is " + stdDev(grades));
 }

 // Prompt user for the number of students and allocate the global "grades"
array.
 // Then, prompt user for grade, check for valid grade, and store in "grades".
 public static void readGrades() { }

88 | P a g e

 // Print the given int array in the form of [x1, x2, x3,..., xn].
 public static void print(int[] array) { }

 // Return the average value of the given int[]
 public static double average(int[] array) { }

 // Return the median value of the given int[]
 // Median is the center element for odd-number array,
 // or average of the two center elements for even-number array.
 // Use Arrays.sort(anArray) to sort anArray in place.
 public static double median(int[] array) { }

 // Return the maximum value of the given int[]
 public static int max(int[] array) {
 int max = array[0]; // Assume that max is the first element
 // From second element, if the element is more than max, set the max to this
element.

 }

 // Return the minimum value of the given int[]
 public static int min(int[] array) { }

 // Return the standard deviation of the given int[]
 public static double stdDev(int[] array) { }
}

Take note that besides readGrade() that relies on global variable grades, all the methods are self-

contained general utilities that operate on any given array.

9.13 GradesHistogram (Array & Method)

Write a program called GradesHistogram, which reads in n grades (as in the previous exercise),

and displays the horizontal and vertical histograms. For example:

 0 - 9: ***

 10 - 19: ***

 20 - 29:

 30 - 39:

 40 - 49: *

 50 - 59: *****

 60 - 69:

 70 - 79:

 80 - 89: *

 90 -100: **

 *

 *

 * * *

 * * * *

 * * * * * *

 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100

89 | P a g e

10. Exercises on Command-line Arguments, Recursion

10.1 Arithmetic (Command-Line Arguments)

Write a program called Arithmetic that takes three command-line arguments: two integers

followed by an arithmetic operator (+, -, * or /). The program shall perform the corresponding

operation on the two integers and print the result. For example:

java Arithmetic 3 2 +
3+2=5

java Arithmetic 3 2 -
3-2=1

java Arithmetic 3 2 /
3/2=1

Hints

The method main(String[] args) takes an argument: "an array of String", which is often (but not

necessary) named args. This parameter captures the command-line arguments supplied by the user

when the program is invoked. For example, if a user invokes:

java Arithmetic 12345 4567 +

The three command-line arguments "12345", "4567" and "+" will be captured in

a String array {"12345", "4567", "+"} and passed into the main() method as the

argument args. That is,

args is: {"12345", "4567", "+"} // args is a String array
args.length is: 3 // length of the array
args[0] is: "12345" // 1st element of the String array
args[1] is: "4567" // 2nd element of the String array
args[2] is: "+" // 3rd element of the String array
args[0].length() is: 5 // length of 1st String element
args[1].length() is: 4 // length of the 2nd String element
args[2].length() is: 1 // length of the 3rd String element

public class Arithmetic {
 public static void main (String[] args) {
 int operand1, operand2;
 char theOperator;

 // Check if there are 3 command-line arguments in the
 // String[] args by using length variable of array.
 if (args.length != 3) {
 System.err.println("Usage: java Arithmetic int1 int2 op");
 return;
 }

 // Convert the 3 Strings args[0], args[1], args[2] to int and char.
 // Use the Integer.parseInt(aStr) to convert a String to an int.
 operand1 = Integer.parseInt(args[0]);
 operand2 =

 // Get the operator, assumed to be the first character of
 // the 3rd string. Use method charAt() of String.
 theOperator = args[2].charAt(0);
 System.out.print(args[0] + args[2] + args[1] + "=");

90 | P a g e

 switch(theOperator) {
 case ('-'): System.out.println(operand1 - operand2); break;
 case ('+'):
 case ('*'):
 case ('/'):
 default:
 System.err.println("Error: invalid operator!");
 }
 }
}

Notes:

• To provide command-line arguments, use the "cmd" or "terminal" to run your program in the

form "java ClassName arg1 arg2".

• To provide command-line arguments in Eclipse, right click the source code ⇒ "Run As" ⇒

"Run Configurations..." ⇒ Select "Main" and choose the proper main class ⇒ Select "Arguments"

⇒ Enter the command-line arguments, e.g., "3 2 +" in "Program Arguments".

• To provide command-line arguments in NetBeans, right click the "Project" name ⇒ "Set

Configuration" ⇒ "Customize..." ⇒ Select categories "Run" ⇒ Enter the command-line arguments,

e.g., "3 2 +" in the "Arguments" box (but make sure you select the proper Main class).

Question: Try "java Arithmetic 2 4 *" (in CMD shell and Eclipse/NetBeans) and explain the result

obtained. How to resolve this problem?

In Windows' CMD shell, * is known as a wildcard character, that expands to give the list of file in the

directory (called Shell Expansion). For example, "dir *.java" lists all the file with extension of

".java". You could double-quote the * to prevent shell expansion. Eclipse has a bug in handling this,

even * is double-quoted. NetBeans??

SumDigits (Command-line Arguments)

Write a program called SumDigits to sum up the individual digits of a positive integer, given in the

command line. The output shall look like:

java SumDigits 12345
The sum of digits = 1 + 2 + 3 + 4 + 5 = 15

Exercises on Recursion

In programming, a recursive function (or method) calls itself. The classical example is factorial(n),

which can be defined recursively as f(n)=n*f(n-1). Nonetheless, it is important to take note that a

recursive function should have a terminating condition (or base case), in the case of factorial, f(0)=1.

Hence, the full definition is:

factorial(n) = 1, for n = 0

factorial(n) = n * factorial(n-1), for all n > 1

For example, suppose n = 5:

// Recursive call
factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)
factorial(2) = 2 * factorial(1)
factorial(1) = 1 * factorial(0)
factorial(0) = 1 // Base case
// Unwinding

91 | P a g e

factorial(1) = 1 * 1 = 1
factorial(2) = 2 * 1 = 2
factorial(3) = 3 * 2 = 6
factorial(4) = 4 * 6 = 24
factorial(5) = 5 * 24 = 120 (DONE)

10.2 Factorial Recursive

Write a recursive method called factorial() to compute the factorial of the given integer.

public static int factorial(int n)

The recursive algorithm is:

factorial(n) = 1, if n = 0

factorial(n) = n * factorial(n-1), if n > 0

Compare your code with the iterative version of the factorial():

factorial(n) = 1*2*3*...*n

Hints

Writing recursive function is straight forward. You simply translate the recursive definition into code

with return.

// Return the factorial of the given integer, recursively
public static int factorial(int n) {
 if (n == 0) {
 return 1; // base case
 } else {
 return n * factorial(n-1); // call itself
 }
 // or one liner
 // return (n == 0) ? 1 : n*factorial(n-1);
}

Notes

1. Recursive version is often much shorter.

2. The recursive version uses much more computational and storage resources, and it need to

save its current states before each successive recursive call, so as to unwind later.

10.3 Fibonacci (Recursive)

Write a recursive method to compute the Fibonacci number of n, defined as follows:

F(0) = 0

F(1) = 1

F(n) = F(n-1) + F(n-2) for n >= 2

Compare the recursive version with the iterative version written earlier.

Hints

// Translate the recursive definition into code with return statements
public static int fibonacci(int n) {
 if (n == 0) {
 return 0;
 } else if (n == 1) {
 return 1;
 } else {
 return fibonacci(n-1) + fibonacci(n-2);
 }
}

92 | P a g e

10.4 Length of a Running Number Sequence (Recursive)

A special number sequence is defined as follows:

S(1) = 1

S(2) = 12

S(3) = 123

S(4) = 1234

......

S(9) = 123456789 // length is 9
S(10) = 12345678910 // length is 11
S(11) = 1234567891011 // length is 13
S(12) = 123456789101112 // length is 15
......

Write a recursive method to compute the length of S(n), defined as follows:

len(1) = 1

len(n) = len(n-1) + numOfDigits(n)

Also write an iterative version.

10.5 GCD (Recursive)

Write a recursive method called gcd() to compute the greatest common divisor of two given integers.

public static void int gcd(int a, int b)

gcd(a,b) = a, if b = 0

gcd(a,b) = gcd(b, remainder(a,b)), if b > 0

11. More (Difficult) Exercises

11.1 JDK Source Code

Extract the source code of the class Math from the JDK source code (JDK Installed Directory ⇒ "lib" ⇒

"src.zip" ⇒ "java.base" ⇒ "java" ⇒ "lang" ⇒ "Math.java"). Study how constants such

as E and PI are defined. Also study how methods such as abs(), max(), min(), toDegree(), etc, are

written.

Also study the "Integer.java", "String.java".

11.2 Matrices (2D Arrays)

Similar to Math class, write a Matrix library that supports matrix operations (such as addition,

subtraction, multiplication) via 2D arrays. The operations shall support both double and int. Also

write a test class to exercise all the operations programmed.

Hints

public class Matrix {
 // Method signatures
 public static void print(int[][] m);
 public static void print(double[][] m);
 public static boolean haveSameDimension(int[][] m1, int[][] m2); // Used in
add(), subtract()

93 | P a g e

 public static boolean haveSameDimension(double[][] m1, double[][] m2);
 public static int[][] add(int[][] m1, int[][] m2);
 public static double[][] add(double[][] m1, double[][] m2);
 public static int[][] subtract(int[][] m1, int[][] m2);
 public static double[][] subtract(double[][] m1, double[][] m2);
 public static int[][] multiply(int[][] m1, int[][] m2);
 public static double[][] multiply(double[][] m1, double[][] m2);

}

11.3 PrintAnimalPattern (Special Characters and Escape Sequences)

Write a program called PrintAnimalPattern, which uses println() to produce this pattern:

 '__'

 (©©)

 /========\/

 / || %% ||

* ||----||

 ¥¥ ¥¥

 "" ""

Hints

Use escape sequence \uhhhh where hhhh are four hex digits to display Unicode characters such as ¥

and ©. ¥ is 165 (00A5H) and © is 169 (00A9H) in both ISO-8859-1 (Latin-1) and Unicode character sets.

Double-quote (") and black-slash (\) require escape sequence inside a String. Single quote (') does

not require escape sign.

Try

Print the same pattern using printf(). (Hints: Need to use %% to print a % in printf() because % is

the suffix for format specifier.)

11.4 Print Patterns (nested-loop)

Write a method to print each of the followings patterns using nested loops in a class

called PrintPatterns. The program shall prompt user for the sizde of the pattern. The signatures of

the methods are:

public static void printPatternX(int size); // X: A, B, C,...; size is a positive
integer.

 # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # # # # # #

 (a) (b) # # # # # # # # #

 # # # # # # #

 # # # # #

 # # #

 #

 (c)

94 | P a g e

1 1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1

1 2 1 2 3 4 5 6 7 2 1 7 6 5 4 3 2 1

1 2 3 1 2 3 4 5 6 3 2 1 6 5 4 3 2 1

1 2 3 4 1 2 3 4 5 4 3 2 1 5 4 3 2 1

1 2 3 4 5 1 2 3 4 5 4 3 2 1 4 3 2 1

1 2 3 4 5 6 1 2 3 6 5 4 3 2 1 3 2 1

1 2 3 4 5 6 7 1 2 7 6 5 4 3 2 1 2 1

1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1 1

 (d) (e) (f) (g)

 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1

 1 2 1 1 2 3 4 5 6 7 6 5 4 3 2 1

 1 2 3 2 1 1 2 3 4 5 6 5 4 3 2 1

 1 2 3 4 3 2 1 1 2 3 4 5 4 3 2 1

 1 2 3 4 5 4 3 2 1 1 2 3 4 3 2 1

 1 2 3 4 5 6 5 4 3 2 1 1 2 3 2 1

 1 2 3 4 5 6 7 6 5 4 3 2 1 1 2 1

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1

 (h) (i)

1 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1

1 2 2 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

1 2 3 3 2 1 1 2 3 4 5 6 6 5 4 3 2 1

1 2 3 4 4 3 2 1 1 2 3 4 5 5 4 3 2 1

1 2 3 4 5 5 4 3 2 1 1 2 3 4 4 3 2 1

1 2 3 4 5 6 6 5 4 3 2 1 1 2 3 3 2 1

1 2 3 4 5 6 7 7 6 5 4 3 2 1 1 2 2 1

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1 1

 (j) (k)

 1

 2 3 2

 3 4 5 4 3

 4 5 6 7 6 5 4

 5 6 7 8 9 8 7 6 5

 6 7 8 9 0 1 0 9 8 7 6

 7 8 9 0 1 2 3 2 1 0 9 8 7

8 9 0 1 2 3 4 5 4 3 2 1 0 9 8

 (l)

11.5 Print Triangles (nested-loop)

Write a method to print each of the following patterns using nested-loops in a class

called PrintTriangles. The program shall prompt user for the number of rows. The signatures of the

methods are:

95 | P a g e

public static void printXxx(int numRows); // Xxx is the pattern's name

 1

 1 2 1

 1 2 4 2 1

 1 2 4 8 4 2 1

 1 2 4 8 16 8 4 2 1

 1 2 4 8 16 32 16 8 4 2 1

 1 2 4 8 16 32 64 32 16 8 4 2 1

1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

 (a) PowerOf2Triangle

1 1

1 1 1 1

1 2 1 1 2 1

1 3 3 1 1 3 3 1

1 4 6 4 1 1 4 6 4 1

1 5 10 10 5 1 1 5 10 10 5 1

1 6 15 20 15 6 1 1 6 15 20 15 6 1

(b) PascalTriangle1 (c) PascalTriangle2

11.6 Trigonometric Series

Write a method to compute sin(x) and cos(x) using the following series expansion, in a class

called TrigonometricSeries. The signatures of the methods are:

public static double sin(double x, int numTerms); // x in radians, NOT degrees
public static double cos(double x, int numTerms);

Compare the values computed using the series with the JDK

methods Math.sin(), Math.cos() at x=0, π/6, π/4, π/3, π/2 using various numbers of terms.

Hints

Do not use int to compute the factorial; as factorial of 13 is outside the int range. Avoid generating

large numerator and denominator. Use double to compute the terms as:

11.7 Exponential Series

Write a method to compute e and exp(x) using the following series expansion, in a class

called ExponentialSeries. The signatures of the methods are:

public static double exp(int numTerms); // x in radians
public static double exp(double x, int numTerms);

96 | P a g e

11.8 Special Series

Write a method to compute the sum of the series in a class called SpecialSeries. The signature of

the method is:

public static double specialSeries(double x, int numTerms);

11.9 FactorialInt (Handling Overflow)

Write a program called FactorialInt to list all the factorials that can be expressed as an int (i.e., 32-

bit signed integer in the range of [-2147483648, 2147483647]). Your output shall look like:

The factorial of 1 is 1

The factorial of 2 is 2

...

The factorial of 12 is 479001600

The factorial of 13 is out of range

Hints

The maximum and minimum values of a 32-bit int are kept in

constants Integer.MAX_VALUE and Integer.MIN_VALUE, respectively. Try these statements:

System.out.println(Integer.MAX_VALUE);

System.out.println(Integer.MIN_VALUE);

System.out.println(Integer.MAX_VALUE + 1);

Take note that in the third statement, Java Runtime does not flag out an overflow error, but silently

wraps the number around. Hence, you cannot use F(n) * (n+1) > Integer.MAX_VALUE to check

for overflow. Instead, overflow occurs for F(n+1) if (Integer.MAX_VALUE / Factorial(n)) <

(n+1), i.e., no more room for the next number.

Try

Modify your program called FactorialLong to list all the factorial that can be expressed as

a long (64-bit signed integer). The maximum value for long is kept in a constant

called Long.MAX_VALUE.

11.10 FibonacciInt (Handling Overflow)

Write a program called FibonacciInt to list all the Fibonacci numbers, which can be expressed as

an int (i.e., 32-bit signed integer in the range of [-2147483648, 2147483647]). The output shall

look like:

F(0) = 1

F(1) = 1

F(2) = 2

...

97 | P a g e

F(45) = 1836311903

F(46) is out of the range of int

Hints

The maximum and minimum values of a 32-bit int are kept in

constants Integer.MAX_VALUE and Integer.MIN_VALUE, respectively. Try these statements:

System.out.println(Integer.MAX_VALUE);

System.out.println(Integer.MIN_VALUE);

System.out.println(Integer.MAX_VALUE + 1);

Take note that in the third statement, Java Runtime does not flag out an overflow error, but silently

wraps the number around. Hence, you cannot use F(n) = F(n-1) + F(n-2) >

Integer.MAX_VALUE to check for overflow. Instead, overflow occurs for F(n) if Integer.MAX_VALUE

– F(n-1) < F(n-2) (i.e., no more room for the next Fibonacci number).

Try

Write a similar program called TribonacciInt for Tribonacci numbers.

11.11 Number System Conversion

Write a method call toRadix() which converts a positive integer from one radix into another. The

method has the following header:

public static String toRadix(String in, int inRadix, int outRadix) // The input
and output are treated as String.

Write a program called NumberConversion, which prompts the user for an input string, an input

radix, and an output radix, and display the converted number. The output shall look like:

Enter a number and radix: A1B2
Enter the input radix: 16
Enter the output radix: 2
"A1B2" in radix 16 is "1010000110110010" in radix 2.

11.12 NumberGuess

Write a program called NumberGuess to play the number guessing game. The program shall generate

a random number between 0 and 99. The player inputs his/her guess, and the program shall response

with "Try higher", "Try lower" or "You got it in n trials" accordingly. For example:

java NumberGuess
Key in your guess:
50
Try higher
70
Try lower
65
Try lower
61
You got it in 4 trials!

Hints

Use Math.random() to produce a random number in double between 0.0 (inclusive)

and 1.0 (exclusive). To produce an int between 0 and 99, use:

98 | P a g e

final int SECRET_NUMBER = (int)(Math.random()*100); // truncate to int

11.13 WordGuess

Write a program called WordGuess to guess a word by trying to guess the individual characters. The

word to be guessed shall be provided using the command-line argument. Your program shall look

like:

java WordGuess testing
Key in one character or your guess word: t
Trial 1: t__t___
Key in one character or your guess word: g
Trial 2: t__t__g
Key in one character or your guess word: e
Trial 3: te_t__g
Key in one character or your guess word: testing
Congratulation!
You got in 4 trials

Hints

Set up a boolean array (of the length of the word to be guessed) to indicate the positions of the word

that have been guessed correctly.

Check the length of the input String to determine whether the player enters a single character or a

guessed word. If the player enters a single character, check it against the word to be guessed, and

update the boolean array that keeping the result so far.

Try

Try retrieving the word to be guessed from a text file (or a dictionary) randomly.

11.14 DateUtil

Complete the following methods in a class called DateUtil:

• boolean isLeapYear(int year): returns true if the given year is a leap year. A year is a leap year if it is divisible by 4

but not by 100, or it is divisible by 400.

• boolean isValidDate(int year, int month, int day) : returns true if the

given year, month and day constitute a given date. Assume that year is between 1 and 9999, month is between 1 (Jan) to 12 (Dec) and day

shall be between 1 and 28|29|30|31 depending on the month and whether it is a leap year.

• int getDayOfWeek(int year, int month, int day) : returns the day of the week, where 0 for SUN, 1 for

MON, ..., 6 for SAT, for the given date. Assume that the date is valid.

• String toString(int year, int month, int day) : prints the given date in the format "xxxday d
mmm yyyy", e.g., "Tuesday 14 Feb 2012". Assume that the given date is valid.

Hints

To find the day of the week (Reference: Wiki "Determination of the day of the week"):

1. Based on the first two digit of the year, get the number from the following "century" table.

2. Take note that the entries 4, 2, 0, 6 repeat.

3. Add to the last two digit of the year.

4. Add to "the last two digit of the year divide by 4, truncate the fractional part".

5. Add to the number obtained from the following month table:

1700- 1800- 1900- 2000- 2100- 2200- 2300- 2400-

4 2 0 6 4 2 0 6

99 | P a g e

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Non-Leap Year 0 3 3 6 1 4 6 2 5 0 3 5

Leap Year 6 2 same as above

6. Add to the day.

7. The sum modulus 7 gives the day of the week, where 0 for SUN, 1 for MON, ..., 6 for SAT.

For example: 2012, Feb, 17

(6 + 12 + 12/4 + 2 + 17) % 7 = 5 (Fri)

The skeleton of the program is as follows:

/* Utilities for Date Manipulation */
public class DateUtil {

 // Month's name – for printing
 public static String[] strMonths
 = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

 // Number of days in each month (for non-leap years)
 public static int[] daysInMonths
 = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

 // Returns true if the given year is a leap year
 public static boolean isLeapYear(int year) { }

 // Return true if the given year, month, day is a valid date
 // year: 1-9999
 // month: 1(Jan)-12(Dec)
 // day: 1-28|29|30|31. The last day depends on year and month
 public static boolean isValidDate(int year, int month, int day) { }

 // Return the day of the week, 0:Sun, 1:Mon, ..., 6:Sat
 public static int getDayOfWeek(int year, int month, int day) { }

 // Return String "xxxday d mmm yyyy" (e.g., Wednesday 29 Feb 2012)
 public static String printDate(int year, int month, int day) { }

 // Test Driver
 public static void main(String[] args) {
 System.out.println(isLeapYear(1900)); // false
 System.out.println(isLeapYear(2000)); // true
 System.out.println(isLeapYear(2011)); // false
 System.out.println(isLeapYear(2012)); // true

 System.out.println(isValidDate(2012, 2, 29)); // true
 System.out.println(isValidDate(2011, 2, 29)); // false
 System.out.println(isValidDate(2099, 12, 31)); // true
 System.out.println(isValidDate(2099, 12, 32)); // false

 System.out.println(getDayOfWeek(1982, 4, 24)); // 6:Sat
 System.out.println(getDayOfWeek(2000, 1, 1)); // 6:Sat
 System.out.println(getDayOfWeek(2054, 6, 19)); // 5:Fri
 System.out.println(getDayOfWeek(2012, 2, 17)); // 5:Fri

 System.out.println(toString(2012, 2, 14)); // Tuesday 14 Feb 2012
 }

100 | P a g e

}

Notes

You can compare the day obtained with the Java's Calendar class as follows:

// Construct a Calendar instance with the given year, month and day
Calendar cal = new GregorianCalendar(year, month - 1, day); // month is 0-based
// Get the day of the week number: 1 (Sunday) to 7 (Saturday)
int dayNumber = cal.get(Calendar.DAY_OF_WEEK);
String[] calendarDays = { "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday" };
// Print result
System.out.println("It is " + calendarDays[dayNumber - 1]);

The calendar we used today is known as Gregorian calendar, which came into effect in October 15,

1582 in some countries and later in other countries. It replaces the Julian calendar. 10 days were

removed from the calendar, i.e., October 4, 1582 (Julian) was followed by October 15, 1582

(Gregorian). The only difference between the Gregorian and the Julian calendar is the "leap-year rule".

In Julian calendar, every four years is a leap year. In Gregorian calendar, a leap year is a year that is

divisible by 4 but not divisible by 100, or it is divisible by 400, i.e., the Gregorian calendar omits

century years which are not divisible by 400. Furthermore, Julian calendar considers the first day of the

year as march 25th, instead of January 1st.

This above algorithm work for Gregorian dates only. It is difficult to modify the above algorithm to

handle pre-Gregorian dates. A better algorithm is to find the number of days from a known date.

12. Exercises on Classes and Objects

12.1 The Rectangle Class

A class called Rectangle, which models a rectangle with a length and a width (in float), is designed

as shown in the following class diagram. Write the Rectangle class.

Hints:

The expected output is:

Rectangle[length=1.2,width=3.4]
Rectangle[length=1.0,width=1.0]
Rectangle[length=5.6,width=7.8]
length is: 5.6
width is: 7.8
area is: 43.68

101 | P a g e

perimeter is: 26.80

12.2 The Employee Class

A class called Employee, which models an employee with an ID, name and salary, is designed as

shown in the following class diagram. The method raiseSalary(percent) increases the salary by

the given percentage. Write the Employee class.

Hints:

The expected out is:

Employee[id=8,name=Peter Tan,salary=2500]
Employee[id=8,name=Peter Tan,salary=999]
id is: 8
firstname is: Peter
lastname is: Tan
salary is: 999
name is: Peter Tan
annual salary is: 11988
1098
Employee[id=8,name=Peter Tan,salary=1098]

12.3 The InvoiceItem Class

A class called InvoiceItem, which models an item of an invoice, with ID, description, quantity and

unit price, is designed as shown in the following class diagram. Write the InvoiceItem class.

Hints:

102 | P a g e

The expected output is:

InvoiceItem[id=A101,desc=Pen Red,qty=888,unitPrice=0.08]
InvoiceItem[id=A101,desc=Pen Red,qty=999,unitPrice=0.99]
id is: A101
desc is: Pen Red
qty is: 999
unitPrice is: 0.99
The total is: 989.01

12.4 The Account Class

A class called Account, which models a bank account of a customer, is designed as shown in the

following class diagram. The methods credit(amount) and debit(amount) add or subtract the

given amount to the balance. The method transferTo(anotherAccount, amount) transfers the

given amount from this Account to the given anotherAccount. Write the Account class.

Hints:

103 | P a g e

The expected output is:

Account[id=A101,name=Tan Ah Teck,balance=88]
Account[id=A102,name=Kumar,balance=0]
ID: A101
Name: Tan Ah Teck
Balance: 88
Account[id=A101,name=Tan Ah Teck,balance=188]
Account[id=A101,name=Tan Ah Teck,balance=138]
Amount exceeded balance
Account[id=A101,name=Tan Ah Teck,balance=138]
Account[id=A101,name=Tan Ah Teck,balance=38]
Account[id=A102,name=Kumar,balance=100]

104 | P a g e

12.5 The Date Class

A class called Date, which models a calendar date, is designed as shown in the following class

diagram. Write the Date class.

Hints:

The expected output is:

01/02/2014
09/12/2099
Month: 12
Day: 9
Year: 2099
03/04/2016

13. Exercises on Inheritance

13.1 An Introduction to OOP Inheritance - The Circle and Cylinder Classes

This exercise shall guide you through the important concepts in inheritance.

In this exercise, a subclass called Cylinder is derived from the superclass Circle as shown in the

class diagram (where an an arrow pointing up from the subclass to its superclass). Study how the

105 | P a g e

subclass Cylinder invokes the superclass' constructors (via super() and super(radius)) and

inherits the variables and methods from the superclass Circle.

You can reuse the Circle class that you have created in the previous exercise. Make sure that you

keep "Circle.class" in the same directory.

public class Cylinder extends Circle { // Save as "Cylinder.java"
 private double height; // private variable

 // Constructor with default color, radius and height
 public Cylinder() {
 super(); // call superclass no-arg constructor Circle()
 height = 1.0;
 }
 // Constructor with default radius, color but given height
 public Cylinder(double height) {
 super(); // call superclass no-arg constructor Circle()
 this.height = height;
 }
 // Constructor with default color, but given radius, height
 public Cylinder(double radius, double height) {
 super(radius); // call superclass constructor Circle(r)
 this.height = height;
 }

 // A public method for retrieving the height
 public double getHeight() {
 return height;
 }

 // A public method for computing the volume of cylinder
 // use superclass method getArea() to get the base area
 public double getVolume() {
 return getArea()*height;
 }
}

Method Overriding and "Super": The subclass Cylinder inherits getArea() method from its

superclass Circle. Try overriding the getArea() method in the subclass Cylinder to compute the

surface area (=2π×radius×height + 2×base-area) of the cylinder instead of base area. That is,

if getArea() is called by a Circle instance, it returns the area. If getArea() is called by

a Cylinder instance, it returns the surface area of the cylinder.

If you override the getArea() in the subclass Cylinder, the getVolume() no longer works. This is

because the getVolume() uses the overridden getArea() method found in the same class. (Java

runtime will search the superclass only if it cannot locate the method in this class). Fix

the getVolume().

Hints: After overridding the getArea() in subclass Cylinder, you can choose to invoke

the getArea() of the superclass Circle by calling super.getArea().

Try:

Provide a toString() method to the Cylinder class, which overrides the toString() inherited from

the superclass Circle, e.g.,

@Override

public String toString() { // in Cylinder class

106 | P a g e

 return "Cylinder: subclass of " + super.toString() // use Circle's toString()
 + " height=" + height;
}

Try out the toString() method in TestCylinder.

13.2 Superclass Person and its subclasses

Write the classes as shown in the following class diagram. Mark all the overridden methods with

annotation @Override.

107 | P a g e

13.3 Point2D and Point3D

Write the classes as shown in the following class diagram. Mark all the overridden methods with

annotation @Override.

Hints:

1. You cannot assign floating-point literal say 1.1 (which is a double) to a float variable, you

need to add a suffix f, e.g. 0.0f, 1.1f.

2. The instance variables x and y are private in Point2D and cannot be accessed directly in the

subclass Point3D. You need to access via the public getters and setters. For example,

public void setXYZ(float x, float y, float z) {

 setX(x); // or super.setX(x), use setter in superclass
 setY(y);
 this.z = z;
 }

3. The method getXY() shall return a float array:

public float[] getXY() {

 float[] result = new float[2]; // construct an array of 2 elements
 result[0] = ...
 result[1] = ...
 return result; // return the array
 }

108 | P a g e

13.4 Point and MovablePoint

Write the classes as shown in the following class diagram. Mark all the overridden methods with

annotation @Override.

Hints

1. You cannot assign floating-point literal say 1.1 (which is a double) to a float variable, you

need to add a suffix f, e.g. 0.0f, 1.1f.

2. The instance variables x and y are private in Point and cannot be accessed directly in the

subclass MovablePoint. You need to access via the public getters and setters. For example,

you cannot write x += xSpeed, you need to write setX(getX() + xSpeed).

109 | P a g e

13.5 Superclass Shape and its subclasses Circle, Rectangle and Square

Write a superclass called Shape (as shown in the class diagram)

Write a test program to test all the methods defined in Shape.

Write two subclasses of Shape called Circle and Rectangle, as shown in the class diagram.

Write a class called Square, as a subclass of Rectangle. Convince yourself that Square can be

modeled as a subclass of Rectangle. Square has no instance variable, but inherits the instance

variables width and length from its superclass Rectangle.

• Provide the appropriate constructors (as shown in the class diagram).

Hints:

public Square(double side) {

 super(side, side); // Call superclass Rectangle(double, double)
}

110 | P a g e

• Override the toString() method to return "A Square with side=xxx, which is a

subclass of yyy", where yyy is the output of the toString() method from the superclass.

• Do you need to override the getArea() and getPerimeter()? Try them out.

• Override the setLength() and setWidth() to change both the width and length, so as to

maintain the square geometry.

14. Exercises on Polymorphism, Abstract Classes and Interfaces

14.1 Ex: Abstract Superclass Shape and Its Concrete Subclasses

Rewrite the superclass Shape and its subclasses Circle, Rectangle and Square, as shown in the class

diagram.

Shape is an abstract class containing 2 abstract methods: getArea() and getPerimeter(),

where its concrete subclasses must provide its implementation. All instance variables shall

have protected access, i.e., accessible by its subclasses and classes in the same package. Mark all the

overridden methods with annotation @Override.

In this exercise, Shape shall be defined as an abstract class, which contains:

111 | P a g e

• Two protected instance variables color(String) and filled(boolean). The protected variables

can be accessed by its subclasses and classes in the same package. They are denoted with

a '#' sign in the class diagram.

• Getter and setter for all the instance variables, and toString().

• Two abstract methods getArea() and getPerimeter() (shown in italics in the class

diagram).

• Subclasses Circle and Rectangle shall override the abstract methods getArea() and getP

erimeter() and provide the proper implementation. They also override the toString().

Write a test class to test these statements involving polymorphism and explain the outputs. Some

statements may trigger compilation errors. Explain the errors, if any.

Shape s1 = new Circle(5.5, "red", false); // Upcast Circle to Shape
System.out.println(s1); // which version?
System.out.println(s1.getArea()); // which version?
System.out.println(s1.getPerimeter()); // which version?
System.out.println(s1.getColor());
System.out.println(s1.isFilled());
System.out.println(s1.getRadius());

Circle c1 = (Circle)s1; // Downcast back to Circle
System.out.println(c1);
System.out.println(c1.getArea());
System.out.println(c1.getPerimeter());
System.out.println(c1.getColor());
System.out.println(c1.isFilled());
System.out.println(c1.getRadius());

Shape s2 = new Shape();

Shape s3 = new Rectangle(1.0, 2.0, "red", false); // Upcast
System.out.println(s3);
System.out.println(s3.getArea());
System.out.println(s3.getPerimeter());
System.out.println(s3.getColor());
System.out.println(s3.getLength());

Rectangle r1 = (Rectangle)s3; // downcast
System.out.println(r1);
System.out.println(r1.getArea());
System.out.println(r1.getColor());
System.out.println(r1.getLength());

Shape s4 = new Square(6.6); // Upcast
System.out.println(s4);
System.out.println(s4.getArea());
System.out.println(s4.getColor());
System.out.println(s4.getSide());

// Take note that we downcast Shape s4 to Rectangle,
// which is a superclass of Square, instead of Square
Rectangle r2 = (Rectangle)s4;
System.out.println(r2);
System.out.println(r2.getArea());
System.out.println(r2.getColor());
System.out.println(r2.getSide());
System.out.println(r2.getLength());

// Downcast Rectangle r2 to Square

112 | P a g e

Square sq1 = (Square)r2;
System.out.println(sq1);
System.out.println(sq1.getArea());
System.out.println(sq1.getColor());
System.out.println(sq1.getSide());
System.out.println(sq1.getLength());

Try:

Explain the usage of the abstract method and abstract class?

14.2 GeometricObject Interface and its Implementation Classes Circle and Rectangle

Write an interface called GeometricObject, which contains 2 abstract methods: getArea() and

getPerimeter(), as shown in the class diagram. Also write an implementation class called Circle.

Mark all the overridden methods with annotation @Override.

113 | P a g e

14.3 Ex: Movable Interface and its Implementation MovablePoint Class

Write an interface called Movaable, which contains 4 abstract methods moveUp(), moveDown(),

moveLeft() and moveRight(), as shown in the class diagram. Also write an implementation class

called MovablePoint. Mark all the overridden methods with annotation @Override.

14.4 Movable In ter face and Classes MovablePoint and MovableCircle

Write an interface called Movaable, which contains 4 abstract methods moveUp(), moveDown(),

moveLeft() and moveRight(),

as shown in the class diagram.

Write the implementation classes called MovablePoint and MovableCircle. Mark all the overridden

methods with annotation @Override.

114 | P a g e

14.5 Interfaces Resizable and GeometricObject

Write the interface called GeometricObject, which declares two abstract methods: getParameter()

and getArea(), as specified in the class diagram.

115 | P a g e

Hints:

public interface GeometricObject {
 public double getPerimeter();

}

Write the implementation class Circle, with a protected variable radius, which implements the

interface GeometricObject.

Hints:

public class Circle implements GeometricObject {
 // Private variable

 // Constructor

 // Implement methods defined in the interface GeometricObject
 @Override
 public double getPerimeter() { }

}

Write a test program called TestCircle to test the methods defined in Circle.

The class ResizableCircle is defined as a subclass of the class Circle, which also implements an

interface called Resizable, as shown in class diagram. The interface Resizable declares

an abstract method resize(), which modifies the dimension (such as radius) by the given

percentage. Write the interface Resizable and the class ResizableCircle.

Hints:

public interface Resizable {
 public double resize(...);
}

public class ResizableCircle extends Circle implements Resizeable {

 // Constructor
 public ResizableCircle(double radius) {
 super(...);
 }

 // Implement methods defined in the interface Resizable
 @Override
 public double resize(int percent) { }
}

Try:

Write a test program called TestResizableCircle to test the methods defined in ResizableCircle.

14.6 Abstract Superclass Animal and its Implementation Subclasses

Write the codes for all the classes shown in the class diagram. Mark all the overridden methods with

annotation @Override.

116 | P a g e

14.7 Another View of Abstract Superclass Animal and its Implementation Subclasses

Examine the following codes and draw the class diagram.

abstract public class Animal {
 abstract public void greeting();
}

public class Cat extends Animal {
 @Override
 public void greeting() {
 System.out.println("Meow!");
 }
}
public class Dog extends Animal {
 @Override
 public void greeting() {
 System.out.println("Woof!");
 }

 public void greeting(Dog another) {
 System.out.println("Woooooooooof!");
 }
}

public class BigDog extends Dog {
 @Override
 public void greeting() {
 System.out.println("Woow!");
 }

 @Override

117 | P a g e

 public void greeting(Dog another) {
 System.out.println("Woooooowwwww!");
 }
}

Try:

Explain the outputs (or error) for the following test program.

public class TestAnimal {
 public static void main(String[] args) {
 // Using the subclasses
 Cat cat1 = new Cat();
 cat1.greeting();
 Dog dog1 = new Dog();
 dog1.greeting();
 BigDog bigDog1 = new BigDog();
 bigDog1.greeting();

 // Using Polymorphism
 Animal animal1 = new Cat();
 animal1.greeting();
 Animal animal2 = new Dog();
 animal2.greeting();
 Animal animal3 = new BigDog();
 animal3.greeting();
 Animal animal4 = new Animal();

 // Downcast
 Dog dog2 = (Dog)animal2;
 BigDog bigDog2 = (BigDog)animal3;
 Dog dog3 = (Dog)animal3;
 Cat cat2 = (Cat)animal2;
 dog2.greeting(dog3);
 dog3.greeting(dog2);
 dog2.greeting(bigDog2);
 bigDog2.greeting(dog2);
 bigDog2.greeting(bigDog1);
 }
}

15. Final Notes

The only way to learn programming is program, program and program on challenging problems. The

problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging

problems available – used in training for various programming contests (such as International

Collegiate Programming Contest (ICPC), International Olympiad in Informatics (IOI)). Check out these

sites:

• The ACM - ICPC International collegiate programming contest (https://icpc.global/)

• The Topcoder Open (TCO) annual programming and design contest

(https://www.topcoder.com/)

• Universidad de Valladolid’s online judge (https://uva.onlinejudge.org/).

• Peking University’s online judge (http://poj.org/).

• USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

• Google’s coding competitions (https://codingcompetitions.withgoogle.com/codejam,

https://codingcompetitions.withgoogle.com/hashcode)

• The ICFP programming contest (https://www.icfpconference.org/)

• BME International 24-hours programming contest (https://www.challenge24.org/)

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/

118 | P a g e

• The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

• Internet Problem Solving Contest (https://ipsc.ksp.sk/)

• Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

• Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

• OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

Students must solve problems and attain scores in the following coding contests:

 Name of the contest Minimum number of problems to

solve

Required score

• CodeChef 20 200

• Leetcode 20 200

• GeeksforGeeks 20 200

• SPOJ 5 50

• InterviewBit 10 1000

• Hackerrank 25 250

• Codeforces 10 100

• BuildIT 50 500

Total score need to obtain 2500

Student must have any one of the following certifications:

• HackerRank – Java Basic Skills Certification

• Oracle Certified Associate Java Programmer OCAJP

• CodeChef - Learn Java Certification

• NPTEL – Programming in Java

• NPTEL – Data Structures and Algorithms in Java

V. TEXT BOOKS:

1. Farrell, Joyce.Java Programming, Cengage Learning B S Publishers, 8th Edition, 2020

2. Schildt, Herbert. Java: The Complete Reference 11th Edition, McGraw-Hill Education, 2018.

VI. REFERENCE BOOKS:

1. Deitel, Paul and Deitel, Harvey. Java: How to Program, Pearson, 11th Edition, 2018.

2. Evans, Benjamin J. and Flanagan, David. Java in a Nutshell, O’Reilly Media, 7th Edition, 2018.

3. Bloch, Joshua. Effective Java, Addison-Wesley Professional, 3rd Edition, 2017.

4. Sierra, Kathy and Bates, Bert. Head First Java, O’Reilly Media, 2nd Edition, 2005

VII. ELECTRONICS RESOURCES:

1. https://docs.oracle.com/en/java/

2. https://www.geeksforgeeks.org/java

3. https://www.tutorialspoint.com/java/index.htm

4. https://www.coursera.org/courses?query=java

VIII. MATERIALS ONLINE;

1. Syllabus

2. Lab manual

https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/
https://docs.oracle.com/en/java/
https://www.geeksforgeeks.org/java
https://www.tutorialspoint.com/java/index.htm
https://www.coursera.org/courses?query=java

119 | P a g e

COURSE CONTENT

 ENGINEERING PHYSICS LABORATORY

I Semester: AE ǀ ME ǀ CE ǀ ECE ǀ EEE ǀ CSE (AI&ML) ǀ CSE (DS)

II Semester: CSE ǀ IT

Course Code Category Hours / Week Credits Maximum Marks

AHSE05 Foundation
L T P C CIA SEE Total

- - 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Basic Principles of Physics

I. COURSE OVERVIEW:

The aim of the course is to provide hands on experience for experiments in different areas of physics. Students

will be able to perform the experiments with interest and an attitude of learning. This laboratory includes

experiments involving electromagnetism and optoelectronics. These also develop student’s expertise in

applying physical concepts to practical problem and apply it for different applications.

II. COURSES OBJECTIVES:

 The students will try to learn:

I Familiarize with the lab facilities, equipment, standard operating procedures.

II The different kinds of functional magnetic materials which paves a way for them to use in

various technical and engineering applications.

III The analytical techniques and graphical analysis to study the experimental data for

optoelectronic devices.

IV The application of characteristics of lasers and its propagation in optical fiber communication.

III. COURSE OUTCOMES:

 After successful completion of the course, students should be able to:

CO1 Identify the type of semiconductor using the principle of Hall effect and also determine the

energy gap and resistivity of a semiconductor diode using four probe method.

CO2 Illustrate principle, working and application of wave propagation and compare the results of

frequency with theoretical harmonics and overtones.

CO3 Investigate the energy losses, curie temperature and properties associated with a given Ferro

magnetic material.

CO4 Examine launching of light through optical fiber from the concept of light gathering capacity of

numerical aperture and determine the divergence of Laser beam

CO5 Graph V-I /L-I characteristics of various optoelectronic devices like Light Emitting diode, Solar

cell at different intensities to understand their basic principle of functioning as well as to infer the

value of Planck’s constant.

CO6 Analyze the variation of magnetic field induction produced at various points along the axis of

current carrying coil.

120 | P a g e

IV.COURSE SYLLABUS:

1. GETTING STARTED EXCERCISES

1.1 On Errors and Uncertainty in a measurement:

When a number represents a physical measurement, it is never exact because of the limitations of the

instrument used or the way it was employed etc. It is essential, therefore, that each experimental result be

presented in a way that indicates its reliability. The accuracy of result is important, for example, the calibration

of the measuring instruments or systematic errors on the part of whoever is taking the data.

The following table is useful in thinking about these concepts:

Problem Remedy

Mistakes and blunders Repeat measurements several times to check yourself

Systematic errors Use calibrated instruments properly and carefully

Random errors Treat data statistically and report on the average magnitude of

errors

1.2 Making a good graph:

• Keep your axes straight: If you need to plot "A vs B", or "A as a function of B", then A is on the

vertical axis and B is on the horizontal axis.

• The crucial part is choosing the range and scale for each axis. The range must be just large enough to

accommodate all data and small enough that the scale is readable.

• The scale should be spread out enough so that data take up most of the graph area and labeled so that

plotting (and reading) is easy. Where appropriate, error bars should be included to indicate the

uncertainty in measurements.

• When a line is drawn, it should be a smooth one that best fits data. In general, there should be as many

points on one side of the line as on the other. If data is taken properly, the line should pass inside of the

error bars for each point.

• If graph shows that one quantity is proportional to another, it should be a straight line that starts at the

origin and passes through the plotted data with as many points on one side as the other.

• If the slope of the line is to be found, choose two points on the line that are as far apart as possible. This

will minimize the error that is introduced in reading the value of those points.

• The slope is the difference between the vertical values of those points divided by the difference in the

horizontal values of those points.

1.3 Data recording and worksheets

• Write the work sheets for the allotted experiment and keep them ready before the beginning of

each lab.

• Perform the experiment and record the observations in the worksheets.

• Analyze the results and get the work sheets evaluated by the faculty.

• Upload the evaluated reports online from CMS LOGIN within the stipulated time.

121 | P a g e

GETTING STARTED WITH EXPERIMENTATION

 2. HALL EFFECT (LORENTZ FORCE)

2.1 Study the phenomenon of Hall effect and determine the charge carrier density and Hall coefficient of a

given sample.

2.2 Hint whether the given semiconductor is p - type or n - type using the principle of hall effect.

3. ENERGY GAP OF A SEMICONDUCTOR DIODE

3.1 Determination of energy gap of a given semiconductor diode by measuring the variation of current as a

function of temperature.

3.2 Try to find the Fermi level of the given semiconductor

4. RESISTIVITY – FOUR PROBE METHOD

4.1 Determination of the resistivity by forcing current through two outer probes

4.2 Formulate the reading of voltage across the two inner probes of semiconductor by four probe method.

5. MAGNETIC MOMENT

5.1 Determination of magnetic moment of a bar magnet.

5.2 Try to find horizontal component of earth’s magnetic field.

6. B-H CURVE WITH CRO

6.1 Evaluate the energy loss per unit volume of a given magnetic material per cycle by tracing the

hysteresis loop (B-H curve).

6.2 Observe the hysteresis loss of ferro magnetic materials.

7. FERROMAGNETIC MATERIAL

7.1 Determine the curie temperature (Tc) of a ferromagnetic material.

7.2 Evaluate the relative permeability (µr) of a ferromagnetic material.

8. OPTICAL FIBER

8.1 Determine the numerical aperture of a given optical fiber.

8.2 Calculate the acceptance angle of a given optical fiber.

9. LASER DIVERGENCE

9.1 Determination of the beam divergence of the given laser beam.

9.2 Try to estimate the laser output

122 | P a g e

10. SOLAR CELL

10.1 Studying the characteristics of solar cell at different intensities

10.2 Try to get the maximum workable power.

11. LIGHT EMITTING DIODE

11.1 Studying V-I characteristics of LED in forward bias for different LEDs.

11.2 Measure the threshold voltage and forward resistance, and try for the dynamic Resistance

12. PLANCK’S CONSTANT

12.1 Determination of Planck’s constant by measuring threshold voltage of given LED.

12.2 Draw the L -I characteristics of the given LED.

13. STEWART GEE’S APPARATUS

13.1 Study the magnetic field along the axis of current carrying coil – Stewart and Gee’s method.

13.2 Estimate the magnetic lines of force.

14. MELDE’S EXPERIMENT

14.1 Determination of frequency of a given tuning fork in longitudinal wave propagation.

14.2 Try to establish the transverse mode of wave propagation by understanding the theoretical harmonics and

overtones

V. TEXTBOOKS:

1. Laboratory Experiments in College Physics”, C.H. Bernard and C.D. Epp, John Wiely and Sons, Inc., New

York, 1995.

VI. REFERENCE BOOKS:

1. C. L. Arora, “Practical Physics”, S. Chand & Co., New Delhi, 3rd Edition, 2012.

2. Vijay Kumar, Dr. T Radhakrishna, “Practical Physics for Engineering Students”, SM Enterprises, 2nd

Edition, 2014.

3. Dr. Rizwana, “Engineering Physics Manual”, Spectrum Techno Press, 2018.

VII. ELECTRONICS RESOURCES:

1. https://nptel.ac.in/translation

2. https://nptel.ac.in/courses/115105120

3. NPTEL:: courses-Sem 1 and 2 - Engineering Physics and Applied Physics I

4. Experimental Physics I - Course (nptel.ac.in)

5. NPTEL:: Physics - Waves and Oscillations

VIII. MATERIALS ONLINE:

1. Course template

2. Lab manual

https://nptel.ac.in/translation
https://onlinecourses.nptel.ac.in/noc23_ph37/preview
https://archive.nptel.ac.in/courses/115/106/115106119/

123 | P a g e

COURSE CONTENT

ENGINEERING WORKSHOP

I Semester: AE / CE / ME / ECE / EEE / CSE (AI&ML) / CSE (DS)

II Semester: CSE / IT

Course Code Category Hours / Week Credits Maximum Marks

AMEE02 Foundation
L T P C CIA SEE Total

0 0 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes:45

Prerequisite: There is no prerequisite for this course.

I. COURSE OVERVIEW:

This course provides the opportunity to become confident with new tools, equipment, and techniques for

creating physical objects and mechanisms with a variety of materials. The students will learn principles of

contemporary trends in manufacturing processes, such as CNC machining and 3D printing, as well as gain

practical experience in carpentry, fitting, and welding. Skills learned in the course enable the students to learn

about the design process in digital manufacturing used in various industrial applications.

II. COURSES OBJECTIVES:

The students will try to learn

I. The basics and hands-on practice of carpentry, fitting, and welding

II. The impart knowledge and skill to use tools, equipment, measuring instruments, and modern

techniques.

III. The concepts apply to the manufacturing processes of casting, moulding and forging.

IV. The basic machining operations by CNC lathe, CNC milling, and 3D printing machine.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO 1 Select appropriate tools, work material and measuring instruments useful for carpentry, fitting,

and welding.

CO 2 Use flat sheets for sheet metal and intricate shapes made from mild steel for Black smithy.

CO 3 Choose appropriate components and tools to prepare pipe fitting and joints of specific shapes and

sizes.

CO 4 Experiment with the moulding techniques for producing cast components in complex shapes

using different patterns.

CO 5 Execute hard soldering techniques to join similar and dissimilar materials used in industries.

CO 6 Demonstrate appropriate equipment and methods for various machining processes used in CNC

machines and 3D printing for manufacturing industries.

124 | P a g e

IV. COURSE CONTENT:

EXERCISES IN ENGINEERING WORKSHOP

Note: All dimensions are in mm in experiments.

Getting started experiments

Introduction

Engineering workshop provides both tools and equipments (or machinery) that are required for the

manufacture of the goods. Students are familiarized with basic workshop practice like Wood working,

Sheet metal, metal joining processes, manufacturing processes etc. and required to identify, operate

and control various machines, tools and equipments.

Safety

Safety is a vital issue in all workplaces. Before using any equipment and machines or attempt practical

work in a workshop everyone must understand basic safety rules. These rules will help keep all safe in

the workshop.

Safety Rules:

• Always listen carefully to the teacher and follow instructions.

• When learning how to use a machine, listen very carefully to all the instructions given by the

faculty / instructor. Ask questions, especially if you do not fully understand.

• Always wear an apron as it will protect your clothes and holds lose clothing such as ties in place.

• Bags should not be brought into a workshop as people can trip over them.

• Do not use a machine if you have not been shown how to operate it safely by the faculty /

instructors

• Know where the emergency stop buttons are positioned in the workshop. If you see an accident

at the other side of the workshop you can use the emergency stop button to turn off all electrical

power to machines.

• Wherever required, wear protective equipment, such as goggles, safety glasses, masks, gloves,

hair nets, etc.

• Always be patient, never rush in the workshop.

• Always use a guard when working on a machine.

• Keep hands away from moving/rotating machinery.

• Use hand tools carefully, keeping both hands behind the cutting edge.

• Report any UNSAFE condition or acts to instructor.

• Report any damage to machines/equipment as this could cause an accident.

• Keep your work area clean.

DO’s

• Students must always wear uniform and shoes before entering the lab.

• Proper code of conduct and ethics must be followed in the lab.

• Note down the specifications/drawings before working on the preparation of models.

• Receive the tools and materials required for preparation of models with signing in register.

125 | P a g e

• Properly fix hacksaw blade in frame with help of instructor.

• Use of safety goggles / face shield during welding.

• Do the models under the supervision/guidance of a faculty/ lab instructor only.

• Keep the sufficient distance from other students while preparing models.

• In case of fire use fire extinguisher/throw the sand provided in the lab.

• In case of any physical injuries or emergencies use first aid box provided.

DONT’s

• Do not touch electrical circuits of welding machine.

• Be cautious while fixing hacksaw blade in frame, that may cause injuries to hand.

• Don’t touch /operate power tools without aid from instructors.

• Don’t gather while preparing models, that may hurt other with tools.

• Don’t unlock snip/sheet metal cutter lock, without use.

1. Introduction to carpentry

Carpentry is the process of shaping wood, using hand tools. The products produced are used

in building construction, such as doors and windows, furniture manufacturing, patterns for mouldin

g infoundries, etc. Carpentry work mainly involves the joining together of wooden pieces and

finishing the surfaces after shaping them. Hence, the term joining is also used commonly for

carpentry. A student studying the fundamentals of wood working has to know about timber and

other carpentry materials, wood working tools, carpentry operations and the method of making

common types of joints.

1.1. Experiments on carpentry

1. Preparation of the cross-half lap joint as shown in Fig. 1.1

2. Preparation of the dove tail joint as

depicted in Fig.1.2

126 | P a g e

Try

1. Mortise and tenon joint preparation as illustrated in Fig.1.3 with dimensions of width = 50 mm and

tenon thickness = 10 mm.

2. End lap joint preparation as illustrated in Fig. 1.4. The end lap projection dimensions to be taken

into consideration are width = 50 mm and thickness = 15 mm.

2. Introduction to fitting

The term fitting, is related to assembly of parts, after bringing the dimension or shape to the required

size or form, in order to secure the necessary fit. The operations required for the same are usually

carried out on a work bench, hence the term bench work is also added with the name fitting. The

bench work and fitting play an important role in engineering. Although in today's industries most of

the work is done by automatic machines which produces the jobs with good accuracy but still it(job)

requires some hand operations called fitting operations.

2.1. Experiments on fitting

1. Making of a square fitting using mild steel plates of the specified size, as shown in Fig. 2.1

2. Making of a V-fit according to the size of the provided mild steel plates, as shown in Fig. 2.2

Try

1. Straight fitting of mild steel plates to the specified sizes, as shown in Fig. 2.3

2. Making of semicircular fit with mild steel plates of the specified size, as depicted in Fig. 2.4

127 | P a g e

3. Introduction to welding

Welding is a process for joining two similar or dissimilar metals by fusion. It joins different

metals/alloys, with or without the application of pressure and with or without the use of filler metal.

The fusion of metal takes place by means of heat. The heat may be generated either from combustion

of gases, electric arc, electric resistance or by chemical reaction. Welding provides a permanent joint

but it normally affects the metallurgy of the components. It is therefore usually accompanied by post

weld heat treatment for most of the critical components. The welding is widely used as a fabrication

and repairing process in industries. Some of the typical applications of welding include the fabrication

of ships, pressure vessels, automobile bodies, off-shore platform, bridges, welded pipes, sealing of

nuclear fuel and explosives, etc.

3.1. Experiments and demonstration on different welding techniques

1. Creating the lap joint in accordance with the mild steel plates given, as shown in Fig .3.1

2. Making the butt joint as depicted in Fig. 3.2 using the mild steel plates as are offered.

Try

1. Construction of the tee joint using the mild steel plates provided, as shown in Fig. 3.3

2. As illustrated in Fig. 3.4, creating the corner (L) joint using the provided mild steel plates.

128 | P a g e

4.

Introduction to sheet metal

Sheet metal work has its own significance in the engineering work. Many products, which fulfill the

household needs, decoration work and various engineering articles, are produced from sheet metals.

Common examples of sheet metal work are hoopers, canisters, guards, covers, pipes, hoods,

funnels, bends, boxes etc. Such articles are found less expensive, lighter in weight and in some cases

sheet metal products replace the use of castings or forgings.

4.1. Experiments on sheet metal forming

1. Create the rectangular tray as depicted in Fig. 4.1.

 2. As illustrated in Fig.4.2, prepare the developing surface and create cylindrical tin.

129 | P a g e

Try

1. Construct the open scoop as depicted in Fig. 4.3

2. create the hexagonal

prism as shown in

Fig.4.4

5. Introduction to black smithy

Black smithy or Forging is an oldest shaping process used for the producing small articles

for which accuracy in size is not so important. The parts are shaped by heating them in an

open fire or hearth by the blacksmith and shaping them through applying compressive

forces using hammer. Thus forging is defined as the plastic deformation of metals at elevated

temperatures into a predetermined size or shape using compressive forces exerted through

some means of hand hammers, small power hammers, die, press or upsetting machine. It

consists essentially of changing or altering the shape and section of metal by hammering at a

temperature of about 980°C, at which the metal is entirely plastic and can be easily deformed

or shaped under pressure. The shop in which the various forging operations are carried out

is known as the smithy or smith’s shop.

5.1. Experiments on black smithy
1. Make the s-hook as depicted in Fig. 5.1 using the mild steel rod provided.

2. Construct the J-hook using the given mild steel rod as indicated in Fig. 5.2.

130 | P a g e

3.

Try

1 Create the C - hook with the given mild steel rod as shown in Fig. 5.3

2 Prepare the U - bend with the given mild steel rod as shown in Fig. 5.4

131 | P a g e

6. Introduction to plumbing
Plumbing is a skilled trade of working with pipes or tubes and plumbing fixtures. The process is mainly

used for the supply of drinking water and the drainage of waste water, sometimes mixed with waste

floating materials in a living or working place. A plumber is someone who installs or

repairs piping systems, plumbing fixtures and equipment such as valves, washbasins, water heaters, wa

terclosests, etc. Thus it usually refers to a system of pipes and fixtures installed in a building for the

distribution of water and the removal of waterborne wastes.

6.1. Experiments and demonstration on plumbing

 1.Form of PVC pipe fitting through various components as shown in Fig. 6.1

2. Form of GI pipe fitting with various components, as shown in Fig. 6.2

Try

1. Form of PVC pipe fitting with reducer for water tap with different components as shown in Fig.

6.1

2. Form of GI pipe fitting with different components as shown in Fig. 6.2 for different fluids.

132 | P a g e

7. Introduction to moulding

Moulding is the process of manufacturing by shaping liquid or pliable raw material using a rigid frame

called a mold or matrix. This itself may have been made using a pattern or model of the final object.

A mould is a hollowed-out block that is filled with a liquid or pliable material such

as plastic, glass, metal, or ceramic raw material. The liquid hardens or sets inside the mould, adopting

its shape. A mould is a counterpart to a cast. The very common bi-valve moulding process uses two

moulds, one for each half of the object.

7.1. Experiments on mechanical components moulding (casting process)

1. Making of flange mould using a given pattern as shown in Fig.7.1

 2. Utilizing the provided pattern, create the bearing housing mould as shown in Fig. 7.2.

Try

1. Making of dumble using a given pattern as shown in Fig.7.3

2. Using a single piece pattern, create a one-stepped shaft as shown in Fig. 7.4.

https://en.wikipedia.org/wiki/Manufacturing
https://en.wikipedia.org/wiki/Plastic
https://en.wikipedia.org/wiki/Glass
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Ceramic
https://en.wikipedia.org/wiki/Casting

133 | P a g e

8. Introduction to concrete moulding and plaster of paris

Concrete is characterized by the type of aggregate or cement used, by the specific qualities

it manifests, or by the methods used to produce it. In ordinary structural concrete, the character of

the concrete is largely determined by a water-to-cement ratio. The lower the water content, all else

being equal, the stronger the concrete. The mixture must have just enough water to ensure that

each aggregate particle is completely surrounded by the cement paste, that the spaces between

the aggregate are filled, and that the concrete is liquid enough to be poured and spread

effectively.

Plaster of Paris is a white powder made from gypsum that mixes with water to form a paste that

hardens quickly and is used chiefly for casts and moulds. It can be effectively worked with metal

apparatuses or even abrasive sheets and can be shaped as per requirements. It is often applied in

the form of a quick-setting paste with water.

8.1.Experiment on concrete/cement cube moulding and demonstration

on plaster of paris mould making

 1. Preparation of concrete cube by moulding technique as shown in Fig.8.1

 2. Demonstration on plaster of paris mould making.

Try

1. Preparation of any house hold specimens by plaster of paris mould making as shown in Fig. 8.2

2. Preparation of any intricate article by plaster of paris mould making as shown in Fig. 8.3

https://www.merriam-webster.com/dictionary/manifests

134 | P a g e

9. Introduction to hard soldering

Hard (silver) soldering (>450 °C) – Brass or silver is the bonding metal used in this process, and

requires a blowtorch to achieve the temperatures at which the solder metals. Hard soldering is used to

join precision components such as ferrous, brass, and copper.

9.1. Experiments on hard soldering

1. Soldering of two mild steel plates as shown in Fig. 9.1

2. Hard soldering of engine valve tappet as shown in Fig. 9.2

Try

1. Hard soldering of copper with brass as shown in Fig.9.3

2. Hard soldering of stainless steel with brass as shown in Fig.9.4

135 | P a g e

10. Demonstration on Computer Numerically Controlled (CNC)

lathe
CNC turning is a highly precise and efficient subtractive machining process that works on the principle

of the lathe machine. It involves placing the cutting tool against a turning workpiece to remove

materials and give the desired shape.

1. Demonstration of the plain turning process on a CNC lathe as shown in Fg.10.1

2. Demonstration of facing operations on a CNC lathe as shown in Fg.10.1.

11. Demonstration on Computer Numerically Controlled (CNC)

milling

CNC milling involves cutting a prismatic workpiece using multipoint cutting tools producing precision

components used in automotive and aeronautical industries.

1. Demonstration of plain milling (facing) on CNC milling as shown in Fig.11.1

2. Demonstration of precision slotting on CNC milling as shown in Fig.11.1.

136 | P a g e

12. Demonstration on 3D printing machine

3D printing or additive manufacturing enables to produce geometrically complex objects, shapes and

textures. It often uses less material than traditional manufacturing methods and allows the production

of prototypes / products that are not possible to produce economically with conventional

manufacturing.

1. Demonstration of 3D printing machine as shown in Fig.12.1 using Acrylonitrile butadiene styrene

(ABS) material

2. Demonstration of 3D printing machine as shown in Fig.12.1 using Polylactic acid (PLA) material.

13. Demonstration on 6- axis robot

Robots have seen in recent years an expansion of their field of use with new requirements related to the

increasing use of composites. The robots are then considered for machining operations (polishing,

cutting, drilling etc.) that require high performance in terms of position, orientation, followed by

trajectory precision and stiffness. The evolution of the performance of robots and programming

software provides new machining solutions. For complex parts, six axis robots offer more accessibility

than a machining center CNC 5 axis and allow the integration of additional axes to extend the

workspace.

1. Demonstration of the 6 – axis aristo robot as shown in Fig.13.1.

2. Demonstration of aristo sim software for robot movements and control.

137 | P a g e

14. Demonstration on cylindrical grinding machine

Most commonly, cylindrical grinding is used for grinding pieces with a central axis of rotation, like rods

and cylinders. This process involves using a cylindrical grinder, which is a type of machinery

categorized by rotation style and wheel device.

A grinding machine uses an abrasive product usually a rotating wheel to shape and finish a workpiece

by removing metal and generating a surface within a given tolerance. A grinding wheel is made with

abrasive grains bonded together. Each grain acts as a cutting tool, removing tiny chips from the

workpiece.

1. Demonstration of grinding process on a cylindrical grinding machine as shown in Fig.14.1

2. Demonstration of shaft grinding process on a cylindrical grinding machine as shown in Fig.14.1

V. TEXT BOOKS:

1. Hajra Choudhury S.K., Hajra Choudhury A.K. and NirjharRoy S.K., “Elements of Workshop Technology”,

Media promoters and publishers private limited, Mumbai, 4th Edition ,2020.

2. Kalpakjian S, Steven S. Schmid, “Manufacturing Engineering and Technology”, Pearson Education India

Edition, 7th Edition, 2019.

3. Gowri P. Hariharan, A. Suresh Babu,” Manufacturing Technology – I”, Pearson Education, 3rd Edition,

2018.

VI. REFERENCE BOOKS:

1. Gowri P. Hariharan, A. Suresh Babu, “Manufacturing Technology – I”, Pearson Education, 5th Edition,

2018.

2. Roy A. Lindberg, “Processes and Materials of Manufacture”, Prentice Hall India, 4th Edition, 2017.

3. Rao P.N., “Manufacturing Technology”, Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

VII. ELECTRONICS RESOURCES:

1. https://elearn.nptel.ac.in/shop/iit-workshops/ongoing/additive-manufacturing-technologies-for-practicing-

engineers/.

2. https://akanksha.iare.ac.in/index?route=course/details&course_id=337

VIII. MATERIALS ONLINE:

1. Course Template

2. Laboratory manual

https://elearn.nptel.ac.in/shop/iit-workshops/ongoing/additive-manufacturing-technologies-for-practicing-engineers/
https://elearn.nptel.ac.in/shop/iit-workshops/ongoing/additive-manufacturing-technologies-for-practicing-engineers/
https://akanksha.iare.ac.in/index?route=course/details&course_id=337

138 | P a g e

COURSE CONTENT

 ENGINEERING CHEMISTRY

I Semester: CSE/ IT

II Semester: AE / ME / CE / ECE / EEE/ CSE (AI & ML) /CSE(DS)

Course Code Category Hours / Week Credits Maximum Marks

AHSE03 Foundation
L T P C CIA SEE Total

3 - - 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Basic principles of chemistry

I. COURSE OVERVIEW:

The course focuses on the fundamental concepts of chemistry and then builds an interface with their industrial

applications. It deals with the water purification processes, electrochemical principles in batteries, corrosion of

metallic structures and preventive methods to control corrosion in metals, engineering materials such as plastics,

fibers and elastomers, biodegradable polymers, renewable and non-renewable energy resources, nanomaterials,

lubricants, biosensors and spectroscopic techniques leading to diverse applications across various fields, It

cultivates the students to identify chemistry in each piece of finely engineered products used i n industries.

II. COURSES OBJECTIVES:

The students will try to learn

V. The different parameters to remove causes of hardness of water and their reactions towards

complexometric method.

VI. The concepts of electrochemical principles and causes of corrosion in the new developments and

breakthroughs efficiently in engineering and technology.

VII. The fundamental knowledge of conventional and non conventional energy sources and their applications

in engineering.

VIII. The different types of materials with respect to mechanisms and its significance in industrial applications.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Interpret the water quality characteristics for its usage in domestic and industrial purposes.

CO2 Use complexometry for calculation of hardness of water to avoid industrial problems.

CO3 Implement the principles of electrochemical systems to control the corrosion in metals.

CO4 Extend the applications of polymers based on their degradability and properties.

CO5 Choose the appropriate fuel based on their calorific value for energy efficient processes.

CO6 Predict the knowledge on viability of advanced materials for technological improvements in

various sectors.

139 | P a g e

IV. COURSE CONTENT:

MODULE-I: WATER AND ITS TREATMENT (10)

Introduction: Hardness, types, degree of hardness and units ; estimation of temporary and permanent hardness of

water by complexometric method, numerical problems; Potable water and its specifications (WHO), steps

involved in treatment of potable water, disinfection of potable water by chlorination and breakpoint

chlorination; Internal treatment of boiler feed water: Calgon conditioning, phosphate conditioning and colloidal

conditioning; external treatment methods: Softening of water by ion-exchange processes; desalination of

brackish water, reverse osmosis.

MODULE-II: ELECTROCHEMISTRY AND CORROSION (10)

Introduction: Electrode potential, standard electrode potential, Nernst equation (no derivation); Electrochemical

cells: Galvanic cell, cell representation, EMF of cell, numerical problems; Batteries: classification of batteries,

construction, working and applications of Zinc-air and Li-ion battery; Corrosion: Definition, Causes and effects

of corrosion; Theories of corrosion: Chemical and electrochemical theories of corrosion; Corrosion control

methods: Cathodic protection methods, sacrificial anode and impressed current methods.

MODULE-III: POLYMERS (9)

Polymers: Classification of polymers; types of polymerization-addition and condensation polymerization;

Plastics, elastomers and fibers: Preparation, properties and applications of PVC, Buna-S and Nylon 6,6;

Differences between thermoplastics and thermosetting plastics;

Conducting polymers: Definition, classification with examples, mechanism of conduction in trans poly

acetylene and applications of conducting polymers; Biodegradable polymers: poly lactic acid and their

applications.

MODULE–IV: ENERGY SOURCES (10)

Introduction and characteristics of good fuel; Fossil fuels: Introduction, classification, petroleum, refining of

crude oil; Cracking: Definition, types of cracking, moving bed catalytic cracking. LPG and CNG composition

and uses; Synthetic fuel: Fischer-Tropsch process; Alternative and non-conventional sources of energy: solar,

wind and hydropower advantages and disadvantages; Calorific value: units, HCV and LCV and Dulongs

formula, numerical problems.

MODULE-V: ADVANCED FUNCTIONAL MATERIALS (9)

Nanomaterials: Introduction, preparation of nanomaterials by sol-gel method, chemical reduction method and

applications of nanomaterials. Biosensors: Definition, Amperometric glucose monitor sensor; IR spectroscopy

in night vision-security; Pollution Under Control, CO sensor, Passive Infrared detection; Raman spectroscopy

application, Tumour detection in medical applications; Lubricants: characteristics of a good lubricant; properties

of lubricants: viscosity, flash and fire point, cloud and pour point.

V. TEXT BOOKS:

3. JAIN &JAIN, P.C. Jain, Monika Jain, Engineering Chemistry , Dhanpat Rai publishing Company (P)

limited, 17th edition, 2022.

4. Shashi Chawla, Text Book of Engineering Chemistry, Dhanat Rai and Company (P) Limited, 1st Edition,

2017.

VI. REFERENCE BOOKS:

 1. Ramadevi, Dr, P Aparna and Rath, Cengage learning, 13th edition, 2025.
 2. Donald. J Leo, Wiley, Engineering analysis of smart material systems, 1st Edition, 2007.

 3. Nitin K Puri, Nanomaterials Synthesis Properties and Applications, I K international
publishing house
 pvt Ltd,1st edition 2021.

VII. ELECTRONICS RESOURCES:

6. Engineering chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M.

S.Krishnan.http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chem

istry%201/About- Faculty.html

7. https://books.google.co.in/books?id=R1JtyILNIsAC&pg=PR3&source=gbs_selected_pages&cad=3

#v=onepage&q&f=false

8. https://books.google.co.in/books?id=eQTLCgAAQBAJ&pg=SA1PA53&source=gbs_selected_pages&ca

d=3#v=onepage&q&f=false

https://www.dhanpatraibooks.com/author.php?a=JAIN%20&%20JAIN
https://www.dhanpatraibooks.com/author.php?a=P.C.%20Jain
https://www.dhanpatraibooks.com/author.php?a=Monika%20Jain
http://www.tndte.com/
http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chemistry%201/About-%20Faculty.html
http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chemistry%201/About-%20Faculty.html

140 | P a g e

VIII. MATERIALS ONLINE

12. Course template

13. Tutorial question bank

14. Tech talk topics

15. Open end experiments

16. Definitions and terminology

17. Assignments

18. Model question paper – I

19. Model question paper - II

20. Lecture notes

21. E-learning readiness videos (ELRV)

22. Power point presentation

141 | P a g e

COURSE CONTENT

ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

II Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI&ML) / CSE (DS) / IT

Course Code Category Hours/Week Credits Maximum Marks

AHSE08

Foundation
L T P C CIA SEE Total

3 - - 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Basic Principles of Matrices and Calculus

I. COURSE OVERVIEW:

This course serves as a foundation course on differential equations and vector calculus. It includes

techniques for solving ordinary differential equations, partial differential equations, vector

differentiation and vector integration. It is designed to extract the mathematical developments, skills,

from basic concepts to advance level of engineering problems to meet the technological challenges.

II. COURSE OBJECTIVES:

The students will try to learn:

I The analytical methods for solving first and higher order differential equations with constant

coefficients.

II The analytical methods for formation and solving partial differential equations.

III The physical quantities of vector valued functions involved in engineering field.

IV The logic of vector theorems for finding line, surface and volume integrals.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO1 Utilize the methods of differential equations for solving the orthogonal trajectories and

Newton’s law of cooling. cooling.

 CO2 Solve the higher order linear differential equations with constant coefficients by using

method of variation of parameters.

CO3 Make use of analytical methods for PDE formation to solve boundary value problems.

CO4 Identify various techniques of Lagrange’s method for solving linear partial differential

equations which occur in science and engineering.

CO5 Interpret the vector differential operators and their relationships for solving engineering

problems.

CO6 Apply the integral transformations to surface, volume and line of different geometrical

models in the domain of engineering.

142 | P a g e

IV. COURSE CONTENT:

MODULE-I: FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS (09)

Exact differential equations, equations reducible to exact differential equations, linear and Bernoulli’s equations,

orthogonal trajectories (only in cartesian coordinates). Applications: Newton’s law of cooling, law of natural

growth and decay.

MODULE-II: ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER (10)

Higher order linear differential equations with constant coefficients: non-homogeneous terms of the type

 polynomials in , and , method of variation of parameters.

MODULE-III: LAPLACE TRANSFORMS (10)

Laplace transforms: Laplace transform of standard functions, first shifting theorem, Laplace transforms of

functions multiplied by ‘t’ and divided by ‘t’, Laplace transforms of derivatives and integrals of function,

evaluation of integrals by Laplace transforms, Laplace transform of periodic functions.

Inverse Laplace transform by different methods, Convolution theorem (without proof). Applications: solving

initial value problems by Laplace transform method

MODULE–IV: VECTOR DIFFERNTIATION (09)

Vector point functions and scalar point functions, gradient, divergence and curl, directional derivatives, vector

identities, scalar potential functions, solenoidal and irrotational vectors.

.

MODULE–V: VECTOR INTEGRATION (10)

Line, surface and volume integrals. theorems of Green, Gauss and Stokes (without proofs) and their applications.

V. TEXT BOOKS:

1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.

2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

VI. REFERENCE BOOKS:

1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/ed, Narosa Publications,

5th Edition, 2016.

2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, Calculus, 13/e, Pearson Publishers,

2013.

3. N.P.Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications,

Reprint, 2008

4. Dean G. Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press.

5. Peter O’Neil Advanced Engineering Mathematics, Cengage Learning.

6. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill Education.

VII. ELECTRONIC RESOURCES:

1. Engineering Mathematics - I, By Prof. Jitendra Kumar

|https://onlinecourses.nptel.ac.in/noc23_ma88/preview

2. Advanced Calculus for Engineers, By Prof. Jitendra Kumar, Prof. Somesh Kumar

https://onlinecourses.nptel.ac.in/noc23_ma86/preview

3. http://www.efunda.com/math/math_home/math.cfm

4. http://www.ocw.mit.edu/resourcs/#Mathematics

5. http://www.sosmath.com

6. http://www.mathworld.wolfram.com

VIII. MATERIAL ONLINE:

12. Course template

13. Tutorial question bank

14. Tech talk topics

15. Open end experiments

http://www.mathworld.wolfram.com/

143 | P a g e

16. Definitions and terminology

17. Assignments

18. Model question paper – I

19. Model question paper - II

20. Lecture notes

21. E-learning readiness videos (ELRV)

22. Power point presentation

144 | P a g e

COURSE CONTENT

NETWORK ANALYSIS AND SYNTHESIS

 II Semester: EEE / ECE

Course Code Category Hours / Week Credits Maximum Marks

AEEE04 Foundation
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Matrices and Calculus and Electrical Circuits

I. COURSE OVERVIEW:

This course covers transient and steady-state analysis of RL, RC, and RLC circuits in both series and

parallel configurations. It introduces Laplace transform techniques for circuit analysis and applications. The

course also covers two-port network parameters and their interconnections. Additionally, it explores filter

design concepts, including low-pass, high-pass, band-pass, and band-stop filters, and attenuators and

network synthesis.

II. COURSE OBJECTIVES:
The students will try to learn:

I. The RL, RC, and RLC circuits under different excitations using integro-differential and Laplace transform

approaches.

II. The two-port electrical networks and apply network topology concepts like tie-set and cut-set matrices for

circuit analysis.

III. The various filter and attenuator configurations for frequency-selective and signal conditioning

applications.

IV. The electrical networks using driving-point functions, positive real functions, and classical synthesis

methods such as Foster and Cauer forms.

III. COURSE OUTCOMES:
The students will try to learn:

CO1 Observe the response of transient and steady state analysis of RL, RC and RLC circuits (Series and

Parallel).
CO2 Examine the behavior of circuits using Laplace transforms
CO3 Synthesize and manipulate abstruse network topology constructs to derive and interpret tie-set

and cut-set matrices for intricate electrical networks.
CO4 Design and critically evaluate multifaceted constant-K and M-derived filter architectures across diverse

frequency spectra, employing advanced network synthesis principles.
CO5 Apply different types of attenuators and equalizers to control signal strength and improve sound or

signal quality in networks.
CO6 Learn to analyze and design different network types using impedance, admittance, poles, and zeros, and

apply methods to create LC, RC, and RL circuits.

145 | P a g e

IV. COURSE CONTENT:

MODULE-I: TRANSIENT ANALYSIS (10)

Significance of Initial conditions of R, L and C elements.

Transient response of series RL, RC and RLC circuits using integro-differential approach for DC and Sinusoidal

excitations.

Transient response of parallel RL, RC and RLC circuits using integro-differential approach for DC and

Sinusoidal excitations.

MODULE-II: ELECTRICAL CIRCUIT ANALYSIS USING LAPLACE TRANSFORMS (10)

Laplace Transforms of step, ramp, exponential, impulse functions (inputs).

Transient response of series RL, RC and RLC circuits using Laplace Transforms approach for DC and

Sinusoidal excitations.

Transient response of parallel RL, RC and RLC circuits using Laplace Transforms approach for DC and

Sinusoidal excitations.

MODULE-III: TWO PORT NETWORK PARAMETERS AND NETWORK TOPOLOGY (09)

Two port network parameters: Open circuit impedance, short-circuit admittance, Transmission, Hybrid

parameters & inter-relationships, Series, parallel and cascade connection of two port networks

Network Topology: Graph, tree, chord, Tie-set, cut-set, incident matrices, Problems on Tie-set and

cut-set matrices.

MODULE-IV: FILTERS AND ATTENUATORS (10)

Filters: Classification of Filters, Filter Networks, Constant-K Filters-Low pass, high pass, Band pass,

band-stop filters, M-derived Filters- T and π filters- Low pass, high pass.

Attenuators: Types – T, π , L, Bridge T and lattice ,Asymmetrical Attenuators T, π , L Equalizers- Types-

Series, Shunt, Constant resistance, bridge T attenuation, bridge T phase, Lattice attenuation, lattice Phase

equalizers

MODULE-V: NETWORK SYNTHESIS (09)

Network Synthesis: Driving point impedance and admittance, transfer impedance and admittance, network

functions of Ladder and non-ladder networks, Poles, Zeros analysis of network functions, Hurwitz polynomials,

Positive Real Functions, synthesis of LC, RC and RL Functions by foster and causer methods.

V. TEXT BOOKS:

1. Van Valkenburg M.E, “Network Analysis”, Prentice Hall of India, 3rd Edition, 2000.

2. Ravish R Singh, “Network Analysis and Synthesis”, McGraw Hill, 2nd Edition, 2019.

VI. REFERENCE BOOKS:

1. B. Subramanyam, “Electric Circuit Analysis”, Dreamtech Press & Wiley, 2021.

2. James W.Nilsson, Susan A.Riedel, “Electric Circuits”, Pearson, 11th Edition, 2020.

3. A Sudhakar, Shyammohan S Palli, “Circuits and Networks: Analysis and Synthesis”, McGraw Hill, 5th

Edition, 2017.
4. Jagan N.C, Lakshrninarayana C., “Network Analysis”, B.S. Publications, 3rd Edition, 2014.

5. William Hayt H, Kimmerly Jack E. and Steven Durbin M, “Engineering Circuit Analysis”, McGraw Hill,

6th Edition, 2002.
6. Chakravarthy A., “Circuit Theory”, Dhanpat Rai & Co., First Edition, 1999.

VII. ELECTRONIC RESOURCES:

1. https://nptel.ac.in/courses/108/104/108104139/

2. https://www.researchgate.net

3. https://www.electrical4u.com

4. https://www.iare.ac.in

VIII. MATERIALS ONLINE:

1. Course template

2. Tutorial question bank

3. Tech talk topics

4. Open end experiments

5. Definitions and terminology

http://www.iare.ac.in/

146 | P a g e

6. Assignments

7. Model question paper - I

8. Model question paper - II

9. Lecture notes

10. E-learning readiness videos (ELRV)

11. Power point presentation

147 | P a g e

COURSE CONTENT

DATA STRUCTURES

II Semester: AE / ME / CE / ECE / EEE / CSE / IT / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week Credits Maximum Marks

ACSE05

Core
L T P C CIA SEE Total

3 - - 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Essentials of Problem Solving

I. COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics

covered include managing complexity, analysis, static data structures, dynamic data structures and hashing

mechanisms. The main objective of the course is to teach the students how to select and design data structures and

algorithms that are appropriate for problems that they might encounter in real life. This course reaches to student

by power point presentations, lecture notes, and lab which involve the problem solving in mathematical and

engineering areas.

II. COURSES OBJECTIVES:

The students will try to learn

I. The skills needed to understand and analyze performance trade-offs of different algorithms /
implementations and asymptotic analysis of their running time and memory usage.

II. The basic abstract data types (ADT) and associated algorithms: stacks, queues, lists, tree, graphs, hashing
and sorting, selection and searching.

III. The fundamentals of how to store, retrieve, and process data efficiently.
IV. The implementing these data structures and algorithms in Python.
V. The essential for future programming and software engineering courses.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO 1 Interpret the complexity of the algorithm using the asymptotic notations.

CO 2 Select the appropriate searching and sorting technique for a given problem

CO 3 Construct programs on performing operations on linear and nonlinear data structures

for organization of a data
CO 4 Make use of linear data structures and nonlinear data structures solving real-time applications.

CO 5 Describe hashing techniques and collision resolution methods for accessing data with respect to

performance
CO 6 Compare various types of data structures; in terms of implementation, operations and performance.

148 | P a g e

IV. COURSE CONTENT:

MODULE – I: INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING (09)

Basic concepts: Introduction to data structures, classification of data structures, operations on data

structures, Algorithm Specification, Recursive algorithms, Data Abstraction, Performance analysis- time

complexity and space complexity, Introduction to Linear and Non Linear data structures,Searching

techniques: Linear and Binary search, Uniform Binary Search, Interpolation Search, Fibonacci Search;

Sorting techniques: Bubble, Selection, Insertion, and Quick, Merge, Radix and Shell Sort and comparison of

sorting algorithms.

MODULE – II: LINEAR DATA STRUCTURES (09)

Stacks: Stack ADT, definition and operations, Implementations of stacks using array, applications of stacks,

Arithmetic expression conversion and evaluation; Queues: Primitive operations; Implementation of queues

using

Arrays, applications of linear queue, circular queue and double ended queue (deque).

MODULE – III: LINKED LISTS (09)

Linked lists: Introduction, singly linked list, representation of a linked list in memory, operations on a single

linked list; Applications of linked lists: Polynomial representation and sparse matrix manipulation.

Types of linked lists: Circular linked lists, doubly linked lists; Linked list representation and operations of

Stack, linked list representation and operations of queue.

MODULE – IV: NON LINEAR DATA STRUCTURES (09)

Trees: Basic concept, binary tree, binary tree representation, array and linked representations, binary tree

traversal, binary tree variants, threaded binary trees, application of trees, Graphs: Basic concept, graph

terminology, Graph Representations - Adjacency matrix, Adjacency lists, graph implementation, Graph

traversals – BFS, DFS, Application of graphs, Minimum spanning trees – Prims and Kruskal algorithms.

MODULE – V: BINARY TREES AND HASHING (09)

Binary search trees: Binary search trees, properties and operations; Balanced search trees: AVL trees;

Introduction to M- Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash

functions, collisions, applications of hashing.

V. TEXT BOOKS:

1. Rance D. Necaise, “Data Structures and Algorithms using Python”, Wiley Student Edition.

2. Benjamin Baka, David Julian, “Python Data Structures and Algorithms”, Packt Publishers, 2017.

VI. REFERENCE BOOKS:

1. S. Lipschutz, “Data Structures”, Tata McGraw Hill Education, 1st edition, 2008.

2. D. Samanta, “Classic Data Structures”, PHI Learning, 2nd edition, 2004.

VII. ELECTRONIC RESOURCES:

1. https://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm

2. https://www.codechef.com/certification/data-structures-and-algorithms/prepare
3. https://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html

4. https://online-learning.harvard.edu/course/data-structures-and-algorithms

VIII. MATERIALS ONLINE

1 Course template

2 Tutorial question bank

3 Tech talk topics

4 Assignments

5 Definitions and terminology

6 Open ended experiments

7 Model question paper-I

8 Model question paper-II

9 Lecture notes

10 Power point presentations

11 ELRV videos

http://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm
http://www.codechef.com/certification/data-structures-and-algorithms/prepare
http://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html

149 | P a g e

COURSE CONTENT

ESSENTIALS OF PROBLEM SOLVING

I Semester: CSE / IT / CSE (AI&ML) / CSE (DS)

II Semester: ECE / EEE

Course Code Category Hours / Week Credits Maximum Marks

ACSE02 Foundation
L T P C CIA SEE Total

3 0 0 3 40 60 100

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: There is no prerequisite to take this course

I. COURSE OVERVIEW:

This course aims to provide exposure to problem solving through programming. Useful graph theory

concepts, numerical techniques, and their applications to real world problems are discussed. Graph

theoretical notions and the use of algorithms, both in the mathematical theory of graphs and its applications

are discussed. Student will also learn how to implement and interpret numerical solutions by writing a well-

designed computer programs in regard to their efficiency and suitability for real-life applications.

II. COURSES OBJECTIVES:

 The students will try to learn

I. The fundamental concepts of graph theory and its properties.

II. The basics related to paths and cycles using Eulerian and Hamiltonian cycles.

III. The applications of graph colouring and traversal algorithms for solving real-time problems.

IV. The numerical methods to solve algebraic equations.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO1 Outline the graph terminologies, graph representation, and relate them to practical examples.

CO2 Build efficient graph routing algorithms for various optimization problems on graphs.

CO3 Use effective techniques from graph theory to solve problems in networking and

telecommunication.

CO4 Interpret the fundamental concepts of polynomials, roots of equations and solve corresponding

problems using computer programs.

CO5 Apply the knowledge of numerical methods to solve algebraic and transcendental equations

arising in real-life situations.

CO6 Solve numerical integrals and ordinary differential equations to simulate discrete time algorithms.

150 | P a g e

IV. COURSE CONTENT:

MODULE - I GRAPH THEORY (08)

Graph terminology, digraphs, weighted graphs, complete graphs, graph complements, bipartite graphs, graph

combinations, isomorphisms, matrix representations of graphs, incidence and adjacency matrices, degree

sequence.

MODULE - II GRAPH ROUTES (10)

Eulerian circuit: Konigsberg bridge problem, touring a graph; Eulerian graphs, Hamiltonian cycles, the

traveling salesman problem; Shortest paths: Dijkstra’s algorithm, walks using matrices.

MODULE - III GRAPH COLORING AND GRAPH ALGORITHMS (10)

Four color theorem, vertex coloring, edge coloring, coloring variations, first-fit coloring algorithm.

Graph traversal: depth-first search, bread-first search and its applications; Minimum spanning trees: Kruskal’s

and Prim’s algorithm, union-find structure.

MODULE - IV: ALGEBRAIC AND TRANSCENDENTAL EQUATIONS (10)

Algebraic equations, method of false position, bisection method, iteration method, Newton-Raphson method,

Secant method, Ramanujan’s Method, Muller’s method (Approximation up to 2 decimals only).

MODULE - V: NUMERICAL INTEGRATION AND ORDINARY DIFFERENTIATIAL EQUATIONS

(10)

Trapezoidal rule, Simpson’s 1/3 rule, Simpson’s 3/8 rule, Solution by Taylor’s series, Euler’s method of

solving an ordinary differential equation numerically, Runge-Kutta’s second order method of solving ordinary

differential equations (Approximation up to 2 decimals only).

V. TEXT BOOKS:

4. Karin R Saoub, Graph Theory: An Introduction to Proofs, Algorithms, and Applications, 1st edition,

Chapman and Hall, 2021.

5. S S Sastry, Introductory Methods of Numerical Analysis, 5th edition, 2012.

VI. REFERENCE BOOKS:

1. Mahinder Kumar Jain, Numerical Methods: For Scientific and Scientific Computation, New Age

International Pvt. Ltd., 7th edition, 2019.

2. P Kandasamy, K Thilagavathy, K Gunavathi, Numerical Methods, S Chand and Company, 2006.

3. R Balakrishnan, K Ranganathan, A Textbook of Graph Theory, Springer Exclusive, 2nd edition, 2019.

4. Jann Kiusalaas, Numerical Methods in Engineering with Python, Cambridge University Press, 2nd

edition 2010.

5. Gary Chartrand, Ping Zhang, A First Course in Graph Theory, Dover Publications Inc., 2012.

6. James F. Epperson, An Introduction to Numerical Methods and Analysis, Wiley, 2nd edition, 2013.

VII. ELECTRONICS RESOURCES:

1. https://www.geeksforgeeks.org/numerical-methods-and-calculus-gq/

2. https://www.geeksforgeeks.org/program-for-bisection-method/

3. https://ocw.mit.edu/courses/2-993j-introduction-to-numerical-analysis-for-engineering-13-002j-spring-

2005/pages/lecture-notes/

4. https://www.tutorialspoint.com/graphs-and-its-traversal-algorithms

5. https://web.mit.edu/urban_or_book/www/book/chapter6/6.4.4.html

6. https://www.hackerearth.com/practice/algorithms/graphs/minimum-spanning-tree/tutorial/

7. https://www.codingninjas.com/studio/library/euler-and-hamilton-paths

VIII. MATERIALS ONLINE

1. Course template

2. Tutorial question bank

3. Tech-talk topics

4. Open-ended experiments

5. Definitions and terminology

6. Assignments

7. Model question paper – I

8. Model question paper – II

9. Lecture notes

151 | P a g e

10. PowerPoint presentation

11. E-Learning Readiness Videos (ELRV)

152 | P a g e

COURSE CONTENT

 ENGINEERING CHEMISTRY LABORATORY

I Semester: CSE / IT

II Semester: AE / ME / CE / ECE / EEE / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week Credits Maximum Marks

AHSE06 Foundation
L T P C CIA SEE Total

- - 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

Prerequisite: Basic Principles of Chemistry

I. COURSE OVERVIEW:

The course encourages introducing analytical tools in an Engineering perspective. The course efforts to

provide the basic knowledge of analytical methodology, outlines the importance of volumetric analysis,

comprehensive instrumental analysis for properties of fuels, colorimetric analysis and spectroscopic analysis.

This practical approach gives the essence of analytical chemistry for skill development in determinations of

materials properties and its viability in the industry.

 II. COURSES OBJECTIVES:

 The students will try to learn:

V The quantitative analysis to know the strength of unknown solutions by instrumental methods.

VI The troubles of hard water and its estimation by analytical techniques.

VII The applications of appropriate lubricant for finely tuned machinery.

VIII The basic knowledge on quantity of light absorbed by the materials.

III. COURSE OUTCOMES:

After successful completion of the course students should be able to:

CO1
Use analytical techniques like conductometry and pH metry to recognize the electrical properties of
solutions

CO2 Utilize the potentiometer to characterize and measure the electrical potential of an analyte

CO3 Implement the principles of water analysis for domestic and industrial applications.

CO4 Synthesize the polymeric materials from monomers with polymerization process

CO5
Select different types of lubricants to know its properties for the proper lubrication of machinery in

industries.

CO6 Identify the absorption tendency of solids or liquids by using colorimetry

153 | P a g e

IV. COURSE CONTENT:

1. GETTING STARTED EXERCISES

1.1 Introduction to Chemistry Laboratory

The fundamental concepts and theories required for carrying out qualitative and quantitative analysis. Detailed

explanation on the analytical techniques used for qualitative analysis. Emphasis on instrumental method of

analysis and its advantages over conventional methods.

i. Types of analysis

ii. Difference between qualitative and quantitative analysis

iii. Common techniques of qualitative and quantitative analysis

iv. Introduction to instrumental method of analysis

v. Introduction to basic techniques and handling of common apparatus

vi. Discussion of Material Safety Data Sheet (MSDS) of chemicals

vii. Identification of toxic signs and safety procedures of chemical laboratory

1.2 Safety Guidelines to Chemistry Laboratory

 The chemistry laboratory must be a safe place in which to work and learn about chemistry.

i. Wear a chemical-resistant apron.

ii. Be familiar with your lab work sheet before you come to lab. Follow all written and verbal instructions

carefully. Observe the safety alerts in the laboratory directions. If you do not understand a direction or

part of a procedure, ask the teacher before proceeding.

iii. When entering the laboratory room, do not touch any equipment, chemicals, or other materials without

being instructed to do so. Perform only those experiments authorized by the instructor.

iv. If you take more of a chemical substance from a container than you need, you should not return the

excess to the container. This might cause contamination of the substance remaining. Dispose of the

excess as your instructor directs.

v. Never smell anything in the laboratory unless your teacher tells you it is safe. Do not smell a substance

by putting your nose directly over the container and inhaling. Instead, waft the vapors toward your nose

by gently fanning the vapors toward yourself.

vi. Do not directly touch any chemical with your hands. Never taste materials in the laboratory.

vii. Work areas should be kept clean and tidy at all times. Always replace lids or caps on bottles and jars.

1.3 Data recording and reports

Students must record their experimental values in the provided tables in this laboratory manual and reproduce

them in the laboratory worksheets. Worksheets are integral to recording the methodology and results of an

experiment. In engineering practice, the laboratory worksheets serve as a valuable reference to the technique

used in the laboratory. Note that the data collected will be an accurate and permanent record of the data obtained

during the experiment and the analysis of the results.

154 | P a g e

2. CONDUCTOMETRY

2.1 Estimation of the concentration of strong acid using conductometer

i. The basic principle of conductometric titrations

ii. Titration of unknown solution of acid with base

iii. Graphical plots on volume of titrant vs. conductance

3. CONDUCTOMETRY

3.1 Estimation of concentration of strong and weak acid in an acid mixture using conductometer

i. The basic principle of conductometric titrations

ii. Titration of unknown solution of mixture of acid with base

ii. Graphical plots on volume of titrant vs. conductance

4. POTENTIOMETRY

4.1 Estimation of iron content of the given solution by K2Cr2O7 using potentiometer

i. The basic principle of potentiometric titrations

ii. Titration of Mohr’s salt with potassium dichromate

iii. Graphical plots on volume of titrant vs. potential

5. POTENTIOMETRY

5.1 Estimation of concentration of hydrochloric acid using potentiometer

 i. The basic principle of conductometric titrations

 ii. Titration of unknown solution of acid with base

 iii. Graphical plots on volume of titrant vs. conductance

6. pH METRY

6.1 Determination of strength of given hydrochloric acid using pH meter

 i. The basic principle of pH metry

 ii. Titration of unknown solution with standard acid

 iii. Graphical plots on volume of titrant vs. pH to obtain equivalence point

7. MEASUREMENT OF TOTAL DISSOLVED SOLIDS IN WATER

7.1 Measurement of total dissolved solids (TDS) in different water samples

i. Specifications of potable water

i. Measure the total dissolved solids in different water samples by TDS meter

8. COMPLEXOMETRY METHOD

8.1 Estimate the total hardness of water by EDTA

 i. Principle of complexometric titration

 ii Titration of water samples by using EDTA to find the total hardness in water.

9. PRECIPITATION METHOD

9.1 Determination of chloride content in water by Argentometry

i. Principle of Argentometric titration

ii. Titration of water samples by using AgNO3 to find the chloride content in water.

155 | P a g e

10 PREPARATION OF POLYMER

10.1 Preparation of Thiokol rubber by using sodium polysulphide.

i. Significance of artificial rubbers in industries

ii. Synthesize the Thiokol rubeer by using sodium polysulphide and ethylene dichloride

11. VISCOSITY OF LUBRICANT

11.1 Determine the viscosity of the lubricants using Ostwald’s viscometer

 i. The principle of viscosity of lubricant

 ii. Significance of viscosity index of lubricant

 iii Viscosity of given lubricant by using Ostwald’s viscometer

12. PROPERTIES OF LUBRICANTS

12.1 Determine the flash and fire points of lubricants

i. Significance of flash and fire point of lubricant in industries

ii. Flash and Fire points of a given lubricant by using Pensky Martens flash point apparatus

13. CLOUD AND POUR POINT OF LUBRICANTS

13.1 Determination of cloud and pout point of lubricants

i. Significance of cloud and pout point of lubricant in industries

ii. Cloud and pour point of given lubricants by using cloud and pour point tester.

14. COLORIMETRY

14.1 Estimate the metal ion concentration using colorimeter

i. Complexation of metal ion with ligands

ii. Detection of absorbance of the colored metal -ligand complex solution

iii Graphical determination of concentration of the metal ions in the solution

V. TEXTBOOKS:

1.K. Mukkanti et. al,Practical Engineering Chemistry, B.S. Publications, Hyderabad.

2. Vogel’s, Quantitative chemical analysis, prentice Hall, 6th Edition, 2009.

VI. REFERENCE BOOKS:

1. Solanki, M. K. Engineering Chemistry Laboratory Manual. (Edu creation Publishing, 2019).

2. Jeffery, G. H. in TEXTBOOK OF QUANTITATIVE CHEMICAL ANALYSIS (ed John Wiley and Sons)

(1989).

3. Gary-D-Christian, P. K. S. D., Kevin A. Schug. Analytical-Chemistry-by-Gary-D-Christian. 7 edn, Vol. 7

826 (Wiley, 2014).

4. Budinski, Kenneth G., Engineering materials: properties and selection, 5th edition, Prentice-Hall, 1996,

pg.423.

5. B. Ramadevi and P. Aparna, S Chand publications, lab manual for engineering chemistry, S Chand

publications, NewDelhi,1st Edition 2022.

VII. ELECTRONICS RESOURCES:

6. https://nptel.ac.in/translation

7. https://nptel.ac.in/courses/115105120

8. https://archive.nptel.ac.in/courses/122/101/122101001/#

VIII. MATERIALS ONLINE

1. Chemistry Lab Course Template

2. Chemistry Lab Manual

156 | P a g e

COURSE CONTENT

NETWORK ANALYSIS AND SYNTHESIS LABORATORY

II Semester: EEE / ECE

Course Code Category Hours / Week Credits Maximum Marks

AEEE05 Foundation
L T P C CIA SEE Total

0 0 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

 Prerequisite: Matrices and Calculus and Electrical Circuits

I. COURSE OVERVIEW:

The Network Analysis and Synthesis Laboratory provides hands-on experience in designing and analyzing

electrical systems using various network theorems. Students learn to measure three-phase active and reactive

power, study resonance, and evaluate circuit responses through simulation tools. The lab covers experiments

on resonance, time response analysis, two-port networks, power measurement, coupled circuits, filters, and

fundamental theorems. It equips students with practical skills to analyze complex DC and AC circuits and

apply theoretical concepts effectively.

II. COURSE OBJECTIVES:
The students will try to learn:

I. The RL, RC, and RLC circuits under different excitations using integro-differential and Laplace transform

approaches.

II. The two-port electrical networks and apply network topology concepts like tie-set and cut-set matrices for

circuit analysis.

III. The various filter and attenuator configurations for frequency-selective and signal conditioning

applications.

IV. The electrical networks using driving-point functions, positive real functions, and classical synthesis

methods such as Foster and Cauer forms.

III. COURSE OUTCOMES:
The students will try to learn:

CO1 Simulate and analyze electrical circuits to verify resonance phenomena, network theorems, and

power measurement techniques.
CO2 Evaluate time and frequency domain responses of RL, RC, and filter circuits using circuit

simulation tools.
CO3 Determine and interpret two-port network parameters for diverse interconnection configurations.
CO4 Measure active, reactive, and three-phase power in balanced star and delta connected systems.
CO5 Analyze coupling effects in magnetically coupled circuits through coefficient, self, and mutual

inductance calculations.
CO6 Validate classical theorems and compensation principles for optimizing circuit performance.

157 | P a g e

NETWORK ANALYSIS AND SYNTHESIS LABORATORY
Dos

1) For safety purpose the students should compulsory wear leather shoes.

2) Students should come in uniform prescribed.

i. For boys, half sleeve shirts, tucked in trousers

ii. For ladies, half sleeve overcoat, hair put inside the overcoat

3) After giving connections, staff members should be asked to verify the circuit connections.

4) Before staring the circuit connections check whether the circuit breaker is in OFF condition.

5) Circuit should be switched ON only after getting permission from the staff member.

6) To be careful with moving parts in the machine.

7) To come prepared with procedure relevant to the experiment.

8) Unplug electrical equipment after use.

Dont’s

1) Don’t assume that the power is disconnected.

2) Don’t attempt to repair electrical equipment.

3) Don’t come with any ornaments when working with electrical machines.

4) Don’t use an earth connection as a neutral.

5) Don’t touch any parts unnecessarily.

6) Don’t keep any fluids and chemicals nearing instruments and circuits.

158 | P a g e

COURSE CONTENT

PROGRAMMING FOR PROBLEM SOLVING LABORATORY

II Semester: AE / ME / CE / ECE / EEE / CSE / IT / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week Credits Maximum Marks

ACSE07 Foundation
L T P C CIA SEE Total

0 0 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: There is no prerequisite to take this course

I. COURSE OVERVIEW:

The course is designed with the fundamental programming skills and problem-solving strategies necessary to

tackle a wide range of computational challenges. Through hands-on programming exercises and projects,

students will learn how to write code, analyze problems and develop solutions using various programming

languages and tools. The course will cover fundamental programming concepts and gradually progress to more

advanced topics.

II. COURSES OBJECTIVES:

 The students will try to learn

I The fundamental programming constructs and use of collection data types in Python.

II The ability to develop programs using object-oriented features.

III Basic data structures and algorithms for efficient problem-solving.

IV Principles of graph theory and be able to apply their knowledge to a wide range of practical problems

across various disciplines.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO1 Adapt programming concepts, syntax, and data structures through hands on coding exercises

CO2 Develop the ability to solve a variety of programming problems and algorithms using python

CO3 Implement complex and custom data structures to solve real-world problems.

CO4
Demonstrate proficiency in implementing graph algorithms to solve variety of problems and

scenarios.

CO5 Develop critical thinking skills to solve the various real-world applications using graph theory.

CO6
Learn the importance of numerical methods and apply them to tackle a wide range of

computational problems.

159 | P a g e

IV. COURSE CONTENT:

EXERCISES FOR PROGRAMMING FOR PROBLEM SOLVING

LABORATORY

Note: Students are encouraged to bring their own laptops for

laboratory practice sessions.

1. Getting Started Exercises

1.1 Two Sum

 Given an array of integers nums and an integer target, return indices of the two numbers such that

they add up to target. You may assume that each input would have exactly one solution, and you may

not use the same element twice. You can return the answer in any order.

Input: nums = [2, 7, 11, 15], target = 9

Output: [0, 1]

Explanation: Because nums[0] + nums[1] == 9, so return [0, 1].

Input: nums = [3, 2, 4], target = 6

Output: [1, 2]

Input: nums = [3, 3], target = 6

Output: [0, 1]

Hints:

def twoSum(self, nums: List[int], target: int) -> List[int]:
 a=[]
 # Write code here
 …

 return a

1.2 Contains Duplicate

Given an integer array nums, return true if any value appears at least twice in the array, and return

false if every element is distinct.

Input: nums = [1, 2, 3, 1]

Output: true

Input: nums = [1, 2, 3, 4]

Output: false

Input: nums = [1, 1, 1, 3, 3, 4, 3, 2, 4, 2]

Output: true

Hints:

def containsDuplicate(self, nums):

 a = set() # set can have only distinct elements

 # Write code here
 …

160 | P a g e

 return False

1.3 Roman to Integer

Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M.

Symbol Value

I 1

V 5

X 10

L 50

C 100

D 500

M 1000

For example, 2 is written as II in Roman numeral, just two ones added together. 12 is written as XII,

which is simply X + II. The number 27 is written as XXVII, which is XX + V + II.

Roman numerals are usually written largest to smallest from left to right. However, the numeral for

four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract

it making four. The same principle applies to the number nine, which is written as IX. There are six

instances where subtraction is used:

I can be placed before V (5) and X (10) to make 4 and 9.

X can be placed before L (50) and C (100) to make 40 and 90.

C can be placed before D (500) and M (1000) to make 400 and 900.

Given a roman numeral, convert it to an integer.

Input: s = "III"

Output: 3

Input: s = "LVIII"

Output: 58

Hints:

def romanToInt(self, s: str) -> int:

 # Write code here
 …

 return number

1.4 Plus One

You are given a large integer represented as an integer array digits, where each digits[i] is the ith digit

of the integer. The digits are ordered from most significant to least significant in left-to-right order.

The large integer does not contain any leading 0's. Increment the large integer by one and return the

resulting array of digits.

Input: digits = [1, 2, 3]

Output: [1, 2, 4]

Explanation: The array represents the integer 123.

Incrementing by one gives 123 + 1 = 124.

Thus, the result should be [1, 2, 4].

Hints:
def plusOne(self, digits: List[int]) -> List[int]:

161 | P a g e

 n = len(digits)
 # Write code here
 …

 return digits

1.5 Majority Element

Given an array nums of size n, return the majority element. The majority element is the element that

appears more than ⌊n / 2⌋ times. You may assume that the majority element always exists in the array.

Input: nums = [3, 2, 3]

Output: 3

Input: nums = [2, 2, 1, 1, 1, 2, 2]

Output: 2

Hints:

def majorityElement(self, nums):

 # write code here

 …

1.6 Richest Customer Wealth

You are given an m x n integer grid accounts where accounts[i][j] is the amount of money the ith

customer has in the jth bank. Return the wealth that the richest customer has. A customer's wealth is

the amount of money they have in all their bank accounts. The richest customer is the customer that

has the maximum wealth.

Input: accounts = [[1, 2, 3], [3,2,1]]

Output: 6

Explanation:

1st customer has wealth = 1 + 2 + 3 = 6

2nd customer has wealth = 3 + 2 + 1 = 6

Both customers are considered the richest with a wealth of 6 each, so return 6.

Input: accounts = [[1, 5], [7,3],[3,5]]

Output: 10

Explanation:

1st customer has wealth = 6

2nd customer has wealth = 10

3rd customer has wealth = 8

The 2nd customer is the richest with a wealth of 10.

Input: accounts = [[2,8,7],[7,1,3],[1,9,5]]

Output: 17

Hints:

def maximumWealth(self, accounts: List[List[int]]) -> int:

 # write code here

 …

162 | P a g e

1.7 Fizz Buzz

Given an integer n, return a string array answer (1-indexed) where:

answer[i] == "FizzBuzz" if i is divisible by 3 and 5.

answer[i] == "Fizz" if i is divisible by 3.

answer[i] == "Buzz" if i is divisible by 5.

answer[i] == i (as a string) if none of the above conditions are true.

Input: n = 3

Output: ["1","2","Fizz"]

Input: n = 5

Output: ["1","2","Fizz","4","Buzz"]

Input: n = 15

Output: ["1","2","Fizz","4","Buzz","Fizz","7","8","Fizz","Buzz","11","Fizz","13","14","FizzBuzz"]

Hints:

def fizzBuzz(self, n: int) -> List[str]:

 # write code here

 …

1.8 Number of Steps to Reduce a Number to Zero

Given an integer num, return the number of steps to reduce it to zero. In one step, if the current

number is even, you have to divide it by 2, otherwise, you have to subtract 1 from it.

Input: num = 14

Output: 6

Explanation:

• 14 is even; divide by 2 and obtain 7.

• 7 is odd; subtract 1 and obtain 6.

• 6 is even; divide by 2 and obtain 3.

• 3 is odd; subtract 1 and obtain 2.

• 2 is even; divide by 2 and obtain 1.

• 1 is odd; subtract 1 and obtain 0.

Input: num = 8

Output: 4

Explanation:

• 8 is even; divide by 2 and obtain 4.

• 4 is even; divide by 2 and obtain 2.

• 2 is even; divide by 2 and obtain 1.

• 1 is odd; subtract 1 and obtain 0.

Input: num = 123

Output: 12

Hints:

def numberOfSteps(self, n: int) -> int:

 # write code here

 …

163 | P a g e

1.9 Running Sum of 1D Array

Given an array nums. We define a running sum of an array as runningSum[i] = sum (nums[0]…nums[i]).

Return the running sum of nums.

Input: nums = [1, 2, 3, 4]

Output: [1, 3, 6, 10]

Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].

Input: nums = [1, 1, 1, 1, 1]

Output: [1, 2, 3, 4, 5]

Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1].

Input: nums = [3, 1, 2, 10, 1]

Output: [3, 4, 6, 16, 17]

Hints:

def runningSum(self, nums: List[int]) -> List[int]:

 # write code here

 …

 return answer

1.10 Remove Element

Given an integer array nums and an integer val, remove all occurrences of val in nums in-place. The

order of the elements may be changed. Then return the number of elements in nums which are not

equal to val. Consider the number of elements in nums which are not equal to val be k, to get

accepted, you need to do the following things:

• Change the array nums such that the first k elements of nums contain the elements which are

not equal to val. The remaining elements of nums are not important as well as the size of

nums.

• Return k.

Input: nums = [3, 2, 2, 3], val = 3

Output: 2, nums = [2, 2, _, _]

Explanation: Your function should return k = 2, with the first two elements of nums being 2.

It does not matter what you leave beyond the returned k (hence they are underscores).

Input: nums = [0,1,2,2,3,0,4,2], val = 2

Output: 5, nums = [0,1,4,0,3,_,_,_]

Explanation: Your function should return k = 5, with the first five elements of nums containing 0, 0, 1,

3, and 4.

Note that the five elements can be returned in any order.

It does not matter what you leave beyond the returned k (hence they are underscores).

Hints:

def removeElement(self, nums: List[int], val: int) -> int:

 # write code here

 …

164 | P a g e

 return len(nums)

2. Matrix Operations

2.1 Add Two Matrices

Given two matrices X and Y, the task is to compute the sum of two matrices and then print it in

Python.

Input:

 X= [[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]]

Y = [[9, 8, 7],

 [6, 5, 4],

 [3, 2, 1]]

Output:

 Result = [[10, 10, 10],

 [10, 10, 10],

 [10, 10, 10]]

Hints:
Program to add two matrices using nested loop

X = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

Y = [[9,8,7],
 [6,5,4],
 [3,2,1]]

result = [[0,0,0],
 [0,0,0],
 [0,0,0]]

iterate through rows
for i in range(len(X)):
 # write code here
 …

for r in result:
 print(r)

TRY

1. Take input as X = [[10, 20, 30],[41, 52, 63], [47, 58, 69]] Y = [[19,18,17],[66,35,49], [13,21,11]] and

verify the results.

2.2 Multiply Two Matrices

Given two matrices X and Y, the task is to compute the multiplication of two matrices and then print it.

Input:

 X= [[1, 7, 3],

 [3, 5, 6],

165 | P a g e

 [6, 8, 9]]

Y = [[1, 1, 1, 2],

 [6, 7, 3, 0],

 [4, 5, 9, 1]]

Output:

 Result = [[55, 65, 49, 5],

 [57, 68, 72, 12],

 [90, 107, 111, 21]]

Hints:
Program to multiply two matrices using list comprehension

take a 3x3 matrix
A = [[12, 7, 3],
 [4, 5, 6],
 [7, 8, 9]]

take a 3x4 matrix
B = [[5, 8, 1, 2],
 [6, 7, 3, 0],
 [4, 5, 9, 1]]

result will be 3x4
write code here
 …
for r in result:
 print(r)

TRY

1. Take input as X = [[11, 0, 30],[-41, -2, 63], [41, -5, -9]] Y = [[19,-48,17],[-6,35,19], [13,1,-9]] and verify

the results.

2.3 Transpose of a Matrix

A matrix can be implemented using a nested list. Each element is treated as a row of the matrix. Find

the transpose of a matrix in multiple ways.

Input: [[1, 2], [3, 4], [5, 6]]

Output: [[1, 3, 5], [2, 4, 6]]

Explanation: Suppose we are given a matrix

 [[1, 2],

 [3, 4],

 [5, 6]]

Then the transpose of the given matrix will be,

 [[1, 3, 5],

 [2, 4, 6]]

Hints:

Program to multiply two matrices using list comprehension

take a 3x3 matrix
A = [[12, 7, 3],
 [4, 5, 6],
 [7, 8, 9]]

result will be 3x4

166 | P a g e

write code here
 …
for r in result:
 print(r)

TRY

1. Take input as X = [[11, 0, 30],[-41, -2, 63], [41, -5, -9]] and verify the results.

2.4 Matrix Product

Matrix product problem we can solve using list comprehension as a potential shorthand to the

conventional loops. Iterate and find the product of the nested list and at the end return the

cumulative product using function.

Input: The original list: [[1, 4, 5], [7, 3], [4], [46, 7, 3]]

Output: The total element product in lists is: 1622880

Hints:

Matrix Product using list comprehension + loop

def prod(val):
 # write code here
 …

initializing list
test_list = [[1, 4, 5], [7, 3], [4], [46, 7, 3]]

TRY

1. Take input list: [[1, 4, 5], [7, 3], [4], [46, 7, 3]] and verify the result.

3. Stack

3.1 Stack implementation using List

A stack is a linear data structure that stores items in a Last-In/First-Out (LIFO) or First-In/Last-Out

(FILO) manner. In stack, a new element is added at one end and an element is removed from that end

only. The insert and delete operations are often called push and pop.

The functions associated with stack are:

• empty() – Returns whether the stack is empty

• size() – Returns the size of the stack

• top() / peek() – Returns a reference to the topmost element of the stack

• push(a) – Inserts the element ‘a’ at the top of the stack

• pop() – Deletes the topmost element of the stack

Hints:

Stack implementation using list

top=0

167 | P a g e

mymax=5

def createStack():

 stack=[]

 return stack

def isEmpty(stack):

 # write code here

 …

def Push(stack,item):

 # write code here

 …

def Pop(stack):

 # write code here

 …

create a stack object

stack = createStack()

while True:

 print("1.Push")

 print("2.Pop")

 print("3.Display")

 print("4.Quit")

 # write code here

 …

TRY

1. Take input operations as [PUSH(A),PUSH(B),PUSH(C),POP,POP,POP,POP,PUSH(D)] and verify the

result.

2. Take input operations as [POP, POP, PUSH (A), PUSH (B), POP, and PUSH(C)] and verify the result.

3.2 Balanced Parenthesis Checking

Given an expression string, write a python program to find whether a given string has balanced

parentheses or not.

Input: {[]{()}}

Output: Balanced

Input: [{}{}(]

Output: Unbalanced

Using stack One approach to check balanced parentheses is to use stack. Each time, when an open

parentheses is encountered push it in the stack, and when closed parenthesis is encountered, match it

with the top of stack and pop it. If stack is empty at the end, return Balanced otherwise, Unbalanced.

Hints:

Check for balanced parentheses in an expression
open_list = ["[","{","("]
close_list = ["]","}",")"]

Function to check parentheses

168 | P a g e

def check(myStr):
 # write code here

 …

TRY

1. Take input as {[]{()}[][]} and verify the result.

2. Take input as {[]{()}[]{}} and verify the result.

3.3 Evaluation of Postfix Expression

Given a postfix expression, the task is to evaluate the postfix expression. Postfix expression: The

expression of the form “a b operator” (ab+) i.e., when a pair of operands is followed by an operator.

Input: str = “2 3 1 * + 9 -“

Output: -4

Explanation: If the expression is converted into an infix expression, it will be 2 + (3 * 1) – 9 = 5 – 9 = -

4.

Input: str = “100 200 + 2 / 5 * 7 +”

Output: 757

Procedure for evaluation postfix expression using stack:

• Create a stack to store operands (or values).

• Scan the given expression from left to right and do the following for every scanned element.

o If the element is a number, push it into the stack.

o If the element is an operator, pop operands for the operator from the stack. Evaluate the

operator and push the result back to the stack.

• When the expression is ended, the number in the stack is the final answer.

Hints:

Evaluate value of a postfix expression

Class to convert the expression
class Evaluate:

 # Constructor to initialize the class variables
 def __init__(self, capacity):
 self.top = -1
 self.capacity = capacity

 # This array is used a stack
 self.array = []

 # Check if the stack is empty
 def isEmpty(self):

 # write code here

 …

 def peek(self):

 # write code here

 …

 def pop(self):

 # write code here

 …

 def push(self, op):

 # write code here

169 | P a g e

 …

 def evaluatePostfix(self, exp):

 # write code here

 …

Driver code
exp = "231*+9-"
obj = Evaluate(len(exp))

Function call
print("postfix evaluation: %d" % (obj.evaluatePostfix(exp)))

TRY

1. Take input str = “A B + C* D / E +” and verify the result.

2. Take input str = “XYZ- + W+ R / S -” and verify the result.

4. Queue

4.1 Linear Queue using List

Linear queue is a linear data structure that stores items in First in First out (FIFO) manner. With a

queue the least recently added item is removed first. A good example of queue is any queue of

consumers for a resource where the consumer that came first is served first.

Hints:

Static implementation of linear queue

front=0

rear=0

mymax=5

def createQueue():

 queue=[] #empty list

 return queue

def isEmpty(queue):

 # write code here

 …

def enqueue(queue,item): # insert an element into the queue

 # write code here

 …

def dequeue(queue): #remove an element from the queue

 # write code here

170 | P a g e

 …

Driver code

queue = createQueue()

while True:

 print("1.Enqueue")

 print("2.Dequeue")

 print("3.Display")

 print("4.Quit")

 # write code here

 …

TRY

1. Take input operations as

[ENQUEUE(A),DEQUEUE(),ENQUEUE(B),DEQUEUE(),ENQUEUE(C),DEQUEUE(),] and verify the result.

2. Take input operations as [ENQUEUE(A), ENQUEUE(B),DEQUEUE(),ENQUEUE(C),

DEQUEUE(),ENQUEUE(D), DEQUEUE(), ENQUEUE(C),DEQUEUE(),] and verify the result.

4.2 Stack using Queues

Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should

support all the functions of a normal stack (push, top, pop, and empty).

• void push(int x) Pushes element x to the top of the stack.

• int pop() Removes the element on the top of the stack and returns it.

• int top() Returns the element on the top of the stack.

• boolean empty() Returns true if the stack is empty, false otherwise.

Input:

["MyStack", "push", "push", "top", "pop", "empty"]

[[], [1], [2], [], [], []]

Output:

[null, null, null, 2, 2, false]

Hints:

class MyStack:

 def __init__(self):

 # write code here

 …

 def push(self, x: int) -> None:

 # write code here

 …

 def pop(self) -> int:

 # write code here

 …

 def top(self) -> int:

 # write code here

 …

171 | P a g e

 def empty(self) -> bool:

 # write code here

 …

Your MyStack object will be instantiated and called as such:

obj = MyStack()

obj.push(x)

param_2 = obj.pop()

param_3 = obj.top()

param_4 = obj.empty()

4.3 Implement Queue using Stacks

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should

support all the functions of a normal queue (push, peek, pop, and empty).

• void push(int x) Pushes element x to the back of the queue.

• int pop() Removes the element from the front of the queue and returns it.

• int peek() Returns the element at the front of the queue.

• boolean empty() Returns true if the queue is empty, false otherwise.

Input:

["MyQueue", "push", "push", "peek", "pop", "empty"]

[[], [1], [2], [], [], []]

Output:

[null, null, null, 1, 1, false]

Hints:

class MyQueue:

 def __init__(self):

 # write code here

 …

 def push(self, x: int) -> None:

 # write code here

 …

 def pop(self) -> int:

 # write code here

 …

 def peek(self) -> int:

 # write code here

 …

 def empty(self) -> bool:

 # write code here

 …

Your MyQueue object will be instantiated and called as such:

obj = MyQueue()

obj.push(x)

172 | P a g e

param_2 = obj.pop()

param_3 = obj.peek()

param_4 = obj.empty()

4.4 Circular Queue

A Circular Queue is an extended version of a normal queue where the last element of the queue is

connected to the first element of the queue forming a circle. The operations are performed based on

FIFO (First In First Out) principle. It is also called ‘Ring Buffer’.

Operations on Circular Queue:

• Front: Get the front item from the queue.

• Rear: Get the last item from the queue.

• enQueue(value) This function is used to insert an element into the circular queue. In a

circular queue, the new element is always inserted at the rear position.

• Check whether the queue is full – [i.e., the rear end is in just before the front end in a

circular manner].

• If it is full then display Queue is full.

• If the queue is not full then, insert an element at the end of the queue.

• deQueue() This function is used to delete an element from the circular queue. In a circular

queue, the element is always deleted from the front position.

• Check whether the queue is Empty.

• If it is empty then display Queue is empty.

• If the queue is not empty, then get the last element and remove it from

the queue.

Implement Circular Queue using Array:

1. Initialize an array queue of size n, where n is the maximum number of elements that the

queue can hold.

2. Initialize two variables front and rear to -1.

3. Enqueue: To enqueue an element x into the queue, do the following:

• Increment rear by 1.

• If rear is equal to n, set rear to 0.

• If front is -1, set front to 0.

• Set queue[rear] to x.

4. Dequeue: To dequeue an element from the queue, do the following:

• Check if the queue is empty by checking if front is -1.

• If it is, return an error message indicating that the queue is empty.

• Set x to queue [front].

• If front is equal to rear, set front and rear to -1.

173 | P a g e

• Otherwise, increment front by 1 and if front is equal to n, set front to 0.

• Return x.

Hints:

class CircularQueue():

 # constructor
 def __init__(self, size): # initializing the class
 self.size = size

 # initializing queue with none
 self.queue = [None for i in range(size)]
 self.front = self.rear = -1

 def enqueue(self, data):
 # Write code here
 …

 def dequeue(self):
 # Write code here
 …

 def display(self):
 # Write code here
 …

Driver Code
ob = CircularQueue(5)
ob.enqueue(14)
ob.enqueue(22)
ob.enqueue(13)
ob.enqueue(-6)
ob.display()
print ("Deleted value = ", ob.dequeue())
print ("Deleted value = ", ob.dequeue())
ob.display()
ob.enqueue(9)
ob.enqueue(20)
ob.enqueue(5)
ob.display()

TRY

1. Take input operations as [ENQUEUE(A,B,C,D,E,F),DEQUEUE(),DEQUEUE(),DEQUEUE(),ENQUEUE(G,H,I]

and verify the result.

2. Take input operations as [DEQUEUE(),ENQUEUE(A,B,C,D,E,F),DEQUEUE(),ENQUEUE(G,H,I] and verify

the result.

5. Graph Representation

5.1 Build a graph

You are given an integer n. Determine if there is an unconnected graph with n vertices that contains at

least two connected components and contains the number of edges that is equal to the number of

vertices. Each vertex must follow one of these conditions:

• Its degree is less than or equal to 1.

• It's a cut-vertex.

Note:

• The graph must be simple.

174 | P a g e

• Loops and multiple edges are not allowed.

Input: First line: n

Output: Print Yes if it is an unconnected graph. Otherwise, print No.

Sample Input Sample Output

3 No

Constraints: 1 ≤ n ≤ 100

Explanation: There is only one graph with the number of edges equal to the number of vertices

(triangle) which is connected.

5.2 Number of Sink Nodes in a Graph

Given a Directed Acyclic Graph of n nodes (numbered from 1 to n) and m edges. The task is to find the

number of sink nodes. A sink node is a node such that no edge emerges out of it.

Input: n = 4, m = 2, edges[] = {{2, 3}, {4, 3}}

Only node 1 and node 3 are sink nodes.

Input: n = 4, m = 2, edges[] = {{3, 2}, {3, 4}}

Output: 3

The idea is to iterate through all the edges. And for each edge, mark the source node from which the

edge emerged out. Now, for each node check if it is marked or not. And count the unmarked nodes.

Algorithm:

1. Make any array A[] of size equal to the number of nodes and initialize to 1.

2. Traverse all the edges one by one, say, u -> v.

 (i) Mark A[u] as 1.

3. Now traverse whole array A[] and count number of unmarked nodes.

Hints:

Program to count number if sink nodes

Return the number of Sink Nodes.
def countSink(n, m, edgeFrom, edgeTo):
 # Write code here
 …

 return count

Driver Code
n = 4
m = 2

175 | P a g e

edgeFrom = [2, 4]
edgeTo = [3, 3]

print(countSink(n, m, edgeFrom, edgeTo))

5.3 Connected Components in a Graph

Given n, i.e. total number of nodes in an undirected graph numbered from 1 to n and an integer e, i.e.

total number of edges in the graph. Calculate the total number of connected components in the

graph. A connected component is a set of vertices in a graph that are linked to each other by paths.

Input: First line of input line contains two integers’ n and e. Next e line will contain two integers u and

v meaning that node u and node v are connected to each other in undirected fashion.

Output: For each input graph print an integer x denoting total number of connected components.

Sample Input Sample Output

8 5 3

1 2

2 3

2 4

3 5

6 7

Constraints: All the input values are well within the integer range.

5.4 Transpose Graph
Transpose of a directed graph G is another directed graph on the same set of vertices with all of the

edges reversed compared to the orientation of the corresponding edges in G. That is, if G contains an

edge (u, v) then the converse/transpose/reverse of G contains an edge (v, u) and vice versa. Given a

graph (represented as adjacency list), we need to find another graph which is the transpose of the

given graph.

Input: figure (i) is the input graph.

Output: figure (ii) is the transpose graph of the given graph.

0--> 2

1--> 0 4

2--> 3

3--> 0 4

4--> 0

Explanation: We traverse the adjacency list and as we find a vertex v in the adjacency list of vertex u

which indicates an edge from u to v in main graph, we just add an edge from v to u in the transpose

graph i.e. add u in the adjacency list of vertex v of the new graph. Thus traversing lists of all vertices of

main graph we can get the transpose graph.

176 | P a g e

Hints:

find transpose of a graph.
function to add an edge from vertex source to vertex dest
def addEdge(adj, src, dest):
 adj[src].append(dest)

function to print adjacency list of a graph
def displayGraph(adj, v):
 …
 print()

function to get Transpose of a graph taking adjacency list of given graph and
that of Transpose graph
def transposeGraph(adj, transpose, v):
 # traverse the adjacency list of given graph and for each edge (u, v) add
 # an edge (v, u) in the transpose graph's adjacency list
 …

Driver Code
v = 5
adj = [[] for i in range(v)]
addEdge(adj, 0, 1)
addEdge(adj, 0, 4)
addEdge(adj, 0, 3)
addEdge(adj, 2, 0)
addEdge(adj, 3, 2)
addEdge(adj, 4, 1)
addEdge(adj, 4, 3)

Finding transpose of graph represented by adjacency list adj[]
transpose = [[]for i in range(v)]
transposeGraph(adj, transpose, v)

Displaying adjacency list of transpose graph i.e. b
displayGraph(transpose, v)

TRY

1. Take input operations as addEdge(A, B), addEdge(A, D), addEdge(A, C), addEdge(C, A),addEdge(A,

D), addEdge(C, B), addEdge(B, C) and verify the result.

5.5 Counting Triplets

You are given an undirected, complete graph G that contains N vertices. Each edge is colored in either

white or black. You are required to determine the number of triplets (i, j, k) (1 ≤ i < j < k ≤ N) of

vertices such that the edges (i, j), (j, k), (i, k) are of the same color.

There are M white edges and (N (N-1)/2) – M black edges.

Input:

First line: Two integers – N and M (3 ≤ N ≤ 105, 1 ≤ M ≤ 3 * 105)

 (i+1)th line: Two integers – ui and vi (1 ≤ ui, vi ≤ N) denoting that the edge (ui, vi) is white in color.

Note: The conditions (ui, vi) ≠ (uj, vj) and (ui, vi) ≠ (vj, uj) are satisfied for all 1 ≤ i < j ≤ M.

.Output: Print an integer that denotes the number of triples that satisfy the mentioned condition.

Sample Input Sample Output

 5 3 4

1 5

177 | P a g e

2 5

3 5

Explanation: The triplets are: {(1, 2, 3), (1, 2, 4), (2, 3, 4), (1, 3, 4)}

The graph consisting of only white edges:

The graph consisting of only black edges:

6. Graph Routing Algorithms

6.1 Seven Bridges of Konigsberg

There was 7 bridges connecting 4 lands around the city of Königsberg in Prussia. Was there any way

to start from any of the land and go through each of the bridges once and only once? Euler first

introduced graph theory to solve this problem. He considered each of the lands as a node of a graph

and each bridge in between as an edge in between. Now he calculated if there is any Eulerian Path in

that graph. If there is an Eulerian path then there is a solution otherwise not.

There are n nodes and m bridges in between these nodes. Print the possible path through each node

using each edges (if possible), traveling through each edges only once.

178 | P a g e

Input: [[0, 1, 0, 0, 1],

 [1, 0, 1, 1, 0],

 [0, 1, 0, 1, 0],

 [0, 1, 1, 0, 0],

 [1, 0, 0, 0, 0]]

Output: 5 -> 1 -> 2 -> 4 -> 3 -> 2

Input: [[0, 1, 0, 1, 1],

 [1, 0, 1, 0, 1],

 [0, 1, 0, 1, 1],

 [1, 1, 1, 0, 0],

 [1, 0, 1, 0, 0]]

Output: "No Solution"

Hints:

A Python program to print Eulerian trail in a

given Eulerian or Semi-Eulerian Graph

from collections import defaultdict

class Graph:

Constructor and destructor

def __init__(self, V):

self.V = V

 self.adj = defaultdict(list)

functions to add and remove edge

def addEdge(self, u, v):

def rmvEdge(self, u, v):

 …

Methods to print Eulerian tour

def printEulerTour(self):

 # Find a vertex with odd degree

 …

 # Print tour starting from oddv

self.printEulerUtil(u)

 print()

def printEulerUtil(self, u):

 # Recur for all the vertices adjacent to this vertex

for v in self.adj[u]:

 # If edge u-v is not removed and it's a valid next edge
The function to check if edge u-v can be considered as next edge in Euler Tout

179 | P a g e

 def isValidNextEdge(self, u, v):
 # The edge u-v is valid in one of the following two cases:

 # 1) If v is the only adjacent vertex of u
 …

 # 2) If there are multiple adjacents, then u-v is not a bridge
 # Do following steps to check if u-v is a bridge
 # 2.a) count of vertices reachable from u
 …

 # 2.b) Remove edge (u, v) and after removing
 # the edge, count vertices reachable from u
 …

 # 2.c) Add the edge back to the graph
 self.addEdge(u, v)

 # 2.d) If count1 is greater, then edge (u, v) is a bridge
 return False if count1 > count2 else True

 # A DFS based function to count reachable vertices from v

 def DFSCount(self, v, visited):
 # Mark the current node as visited
 …
 # Recur for all the vertices adjacent to this vertex
 …
 # utility function to form edge between two vertices source and dest
 def makeEdge(src, dest):
 graph.addEdge(src, dest)

Driver code
Let us first create and test graphs shown in above figure
g1 = Graph(4)
g1.addEdge(0, 1)
g1.addEdge(0, 2)
g1.addEdge(1, 2)
g1.addEdge(2, 3)
g1.printEulerTour()

g3 = Graph(4)
g3.addEdge(0, 1)
g3.addEdge(1, 0)
g3.addEdge(0, 2)
g3.addEdge(2, 0)
g3.addEdge(2, 3)
g3.addEdge(3, 1)
g3.printEulerTour()

TRY

1. Take input: [[1, 0, 1, 0, 1], [1, 0, 1, 0, 0], [1, 1, 0, 1, 0], [0, 0, 1, 0, 0], [1, 0, 1, 0, 0]] and verify the result.

2. Take input: [[0, 0, 1, 0, 1], [0, 0, 1, 0, 0], [1, 0, 0, 1, 0], [1, 0, 1, 0, 0], [1, 1, 1, 0, 0]] and verify the result.

6.2 Hamiltonian Cycle

The Hamiltonian cycle of undirected graph G = <V, E> is the cycle containing each vertex in V. If graph

contains a Hamiltonian cycle, it is called Hamiltonian graph otherwise it is non-Hamiltonian.

180 | P a g e

Hamiltonian Path in an undirected graph is a path that visits each vertex exactly once. A Hamiltonian cycle

(or Hamiltonian circuit) is a Hamiltonian path such that there is an edge (in the graph) from the last

vertex to the first vertex of the Hamiltonian path. Consider a graph G, and determine whether a given

graph contains Hamiltonian cycle or not. If it contains, then prints the path. Following are the input

and output of the required function.

Input: A 2D array graph [V][V] where V is the number of vertices in graph and graph [V][V] is adjacency

matrix representation of the graph. A value graph[i][j] is 1 if there is a direct edge from i to j, otherwise

graph[i][j] is 0.

Output: An array path [V] that should contain the Hamiltonian Path. Path [i] should represent the ith

vertex in the Hamiltonian Path. The code should also return false if there is no Hamiltonian Cycle in

the graph.

For example, a Hamiltonian Cycle in the following graph is {0, 1, 2, 4, 3, 0}.

(0)--(1)--(2)

 | / \ |

 | / \ |

 | / \ |

(3)-------(4)

And the following graph doesn’t contain any Hamiltonian Cycle.

(0)--(1)--(2)

 | / \ |

 | / \ |

 | / \ |

(3) (4)

Backtracking Algorithm: Create an empty path array and add vertex 0 to it. Add other vertices, starting

from the vertex 1. Before adding a vertex, check for whether it is adjacent to the previously added

vertex and not already added. If we find such a vertex, we add the vertex as part of the solution. If we

do not find a vertex then we return false.

Hints:

Python program for solution of Hamiltonian cycle problem

class Graph():
 def __init__(self, vertices):
 self.graph = [[0 for column in range(vertices)]
 for row in range(vertices)]
 self.V = vertices

 def isSafe(self, v, pos, path):
 # Check if current vertex and last vertex in path are adjacent
 …

 # A recursive utility function to solve Hamiltonian cycle problem
 def hamCycleUtil(self, path, pos):

181 | P a g e

 …

 def hamCycle(self):
 …

 def printSolution(self, path):
 print ("Solution Exists: Following","is one Hamiltonian Cycle")
 for vertex in path:
 print (vertex, end = " ")
 print (path[0], "\n")

Driver Code

''' Let us create the following graph
 (0)--(1)--(2)
 | / \ |
 | / \ |
 | / \ |
 (3)-------(4) '''
g1 = Graph(5)
g1.graph = [[0, 1, 0, 1, 0], [1, 0, 1, 1, 1],
 [0, 1, 0, 0, 1,],[1, 1, 0, 0, 1],
 [0, 1, 1, 1, 0],]

Print the solution
g1.hamCycle();

''' Let us create the following graph
 (0)--(1)--(2)
 | / \ |
 | / \ |
 | / \ |
 (3) (4) '''
g2 = Graph(5)
g2.graph = [[0, 1, 0, 1, 0], [1, 0, 1, 1, 1],
 [0, 1, 0, 0, 1,], [1, 1, 0, 0, 0],
 [0, 1, 1, 0, 0],]

Print the solution
g2.hamCycle();

TRY

1. Take a graph = [[1, 1, 0, 1, 0], [1, 1, 1, 1, 1], [0, 1, 0, 1, 1,], [1, 1, 0, 1, 0], [0, 1, 1, 1, 0],] and verify the

results.

6.3 Number of Hamiltonian Cycle

Given an undirected complete graph of N vertices where N > 2. The task is to find the number of different

Hamiltonian cycle of the graph.

Complete Graph: A graph is said to be complete if each possible vertices is connected through an Edge.

Hamiltonian Cycle: It is a closed walk such that each vertex is visited at most once except the initial

vertex. and it is not necessary to visit all the edges.

Formula: (N – 1)! / 2

Input: N = 6

182 | P a g e

Output: Hamiltonian cycles = 60

Input: N = 4

Output: Hamiltonian cycles = 3

Explanation: Let us take the example of N = 4 complete undirected graph, The 3 different Hamiltonian

cycle is as shown below:

Hints:

Number of Hamiltonian cycles
import math as mt

Function that calculates number of Hamiltonian cycle

def Cycles(N):
 …

Driver code

N = 5
Number = Cycles(N)
print("Hamiltonian cycles = ", Number)

TRY

1. Take an input N=7 and verify the results.

2. Take an input N=10 and verify the results.

7. Shortest Path Algorithms

7.1 Travelling Salesman Problem

Given a set of cities and the distance between every pair of cities, the problem is to find the shortest

possible route that visits every city exactly once and returns to the starting point. The problem

statement gives a list of cities along with the distances between each city.

Objective: To start from the origin city, visit other cities only once, and return to the original city

again. Our target is to find the shortest possible path to complete the round-trip route.

183 | P a g e

184 | P a g e

Here a graph is given where 1, 2, 3, and 4 represent the cities, and the weight associated with every edge

represents the distance between those cities. The goal is to find the shortest possible path for the tour that

starts from the origin city, traverses the graph while only visiting the other cities or nodes once, and

returns to the origin city.

For the above graph, the optimal route is to follow the minimum cost path: 1 – 2 – 4 – 3 - 1. And this

shortest route would cost 10 + 25 + 30 + 15 =80

Algorithm for Traveling Salesman Problem: We will use the dynamic programming approach to solve the

Travelling Salesman Problem (TSP).

• A graph G=(V, E), which is a set of vertices and edges.

• V is the set of vertices.

• E is the set of edges.

• Vertices are connected through edges.

• Dist(i,j) denotes the non-negative distance between two vertices, i and j.

Let’s assume S is the subset of cities and belongs to {1, 2, 3, …, n} where 1, 2, 3…n are the cities and i, j are

two cities in that subset. Now cost(i, S, j) is defined in such a way as the length of the shortest path visiting

node in S, which is exactly once having the starting and ending point as i and j respectively.

For example, cost (1, {2, 3, 4}, 1) denotes the length of the shortest path where:

• Starting city is 1

• Cities 2, 3, and 4 are visited only once

• The ending point is 1

The dynamic programming algorithm would be:

• Set cost(i,, i) = 0, which means we start and end at i, and the cost is 0.

• When |S| > 1, we define cost(i, S, 1) = ∝ where i !=1 . Because initially, we do not know the exact

cost to reach city i to city 1 through other cities.

• Now, we need to start at 1 and complete the tour. We need to select the next city in such a way-

• cost(i, S, j) = min cost (i, S−{i}, j) + dist(i, j) where i ∈ S and i ≠ j

For the given figure above, the adjacency matrix would be the following:

dist(i, j) 1 2 3 4

1 0 10 15 20

2 10 0 35 25

3 15 35 0 30

4 20 25 30 0

Now S = {1, 2, 3, 4}. There are four elements. Hence the number of subsets will be 2^4 or 16. Those

subsets are-

1) |S| = Null:

{Φ}

2) |S| = 1:

{{1}, {2}, {3}, {4}}

3) |S| = 2:

185 | P a g e

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

4) |S| = 3:

{{1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4}}

5) |S| = 4:

{{1, 2, 3, 4}}

As we are starting at 1, we could discard the subsets containing city 1. The algorithm calculation steps:

1) |S| = Φ:

cost (2, Φ, 1) = dist(2, 1) = 10

cost (3, Φ, 1) = dist(3, 1) = 15

cost (4, Φ, 1) = dist(4, 1) = 20

2) |S| = 1:

cost (2, {3}, 1) = dist(2, 3) + cost (3, Φ, 1) = 35+15 = 50

cost (2, {4}, 1) = dist(2, 4) + cost (4, Φ, 1) = 25+20 = 45

cost (3, {2}, 1) = dist(3, 2) + cost (2, Φ, 1) = 35+10 = 45

cost (3, {4}, 1) = dist(3, 4) + cost (4, Φ, 1) = 30+20 = 50

cost (4, {2}, 1) = dist(4, 2) + cost (2, Φ, 1) = 25+10 = 35

cost (4, {3}, 1) = dist(4, 3) + cost (3, Φ, 1) = 30+15 = 45

3) |S| = 2:

cost (2, {3, 4}, 1) = min [dist[2,3] + Cost(3,{4},1) = 35+50 = 85,

dist[2,4]+Cost(4,{3},1) = 25+45 = 70] = 70

cost (3, {2, 4}, 1) = min [dist[3,2] + Cost(2,{4},1) = 35+45 = 80,

dist[3,4]+Cost(4,{2},1) = 30+35 = 65] = 65

cost (4, {2, 3}, 1) = min [dist[4,2] + Cost(2,{3},1) = 25+50 = 75

dist[4,3] + Cost(3,{2},1) = 30+45 = 75] = 75

4) |S| = 3:

cost (1, {2, 3, 4}, 1) = min [dist[1,2]+Cost(2,{3,4},1) = 10+70 = 80

dist[1,3]+Cost(3,{2,4},1) = 15+65 = 80

dist[1,4]+Cost(4,{2,3},1) = 20+75 = 95] = 80

So the optimal solution would be 1-2-4-3-1

Hints:

from sys import maxsize
from itertools, import permutations
V = 4
def tsp(graph, s):
 …

186 | P a g e

Driver code
graph = [[0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0]]
s = 0
print(tsp(graph, s))

TRY

1. Take a below table values and verify the results.

dist(i, j) 1 2 3 4

1 0 40 25 40

2 20 0 35 25

3 25 35 0 60

4 40 25 30 0

7.2 Shortest Paths from Source to all Vertices (Dijkstra's Algorithm)

Given a graph and a source vertex in the graph, find the shortest paths from the source to all vertices in

the given graph.

Input: src = 0, the graph is shown below.

Output: 0 4 12 19 21 11 9 8 14

Explanation: The distance from 0 to 1 = 4.

The minimum distance from 0 to 2 = 12. 0->1->2

The minimum distance from 0 to 3 = 19. 0->1->2->3

The minimum distance from 0 to 4 = 21. 0->7->6->5->4

The minimum distance from 0 to 5 = 11. 0->7->6->5

The minimum distance from 0 to 6 = 9. 0->7->6

The minimum distance from 0 to 7 = 8. 0->7

The minimum distance from 0 to 8 = 14. 0->1->2->8

Hints:

Dijkstra's single source shortest path algorithm. The program is for adjacency
matrix representation of the graph

Library for INT_MAX

187 | P a g e

import sys

class Graph():
 def __init__(self, vertices):
 self.V = vertices
 self.graph = [[0 for column in range(vertices)]
 for row in range(vertices)]

 def printSolution(self, dist):
 print("Vertex \tDistance from Source")
 for node in range(self.V):
 print(node, "\t", dist[node])

 # A utility function to find the vertex with minimum distance value,
 # from the set of vertices not yet included in shortest path tree
 def minDistance(self, dist, sptSet):
 …

 # Function that implements Dijkstra's single source shortest path
 # algorithm for a graph represented using adjacency matrix representation
 def dijkstra(self, src):
 …

Driver's code
g = Graph(9)
g.graph = [[0, 4, 0, 0, 0, 0, 0, 8, 0],
 [4, 0, 8, 0, 0, 0, 0, 11, 0],
 [0, 8, 0, 7, 0, 4, 0, 0, 2],
 [0, 0, 7, 0, 9, 14, 0, 0, 0],
 [0, 0, 0, 9, 0, 10, 0, 0, 0],
 [0, 0, 4, 14, 10, 0, 2, 0, 0],
 [0, 0, 0, 0, 0, 2, 0, 1, 6],
 [8, 11, 0, 0, 0, 0, 1, 0, 7],
 [0, 0, 2, 0, 0, 0, 6, 7, 0]
]

g.dijkstra(0)

TRY

1. Take a below graph and verify the results.

7.3 Shortest Cycle in an Undirected Unweighted Graph

Given an undirected unweighted graph. The task is to find the length of the shortest cycle in the given

graph. If no cycle exists print -1.

188 | P a g e

Input: Consider the graph given below

Output: 4

Cycle 6 -> 1 -> 5 -> 0 -> 6

Input: Consider the graph given below

Output: 3

Cycle 6 -> 1 -> 2 -> 6

Hints:

from sys import maxsize as INT_MAX
from collections import deque

N = 100200

gr = [0] * N
for i in range(N):
 gr[i] = []

Function to add edge
def add_edge(x: int, y: int) -> None:
 global gr
 gr[x].append(y)
 gr[y].append(x)

Function to find the length of the shortest cycle in the graph
def shortest_cycle(n: int) -> int:

 # To store length of the shortest cycle
 ans = INT_MAX

 # For all vertices
 # write code here
 …

 # If graph contains no cycle
 if ans == INT_MAX:

189 | P a g e

 return -1

 # If graph contains cycle
 else:
 return ans

Driver Code
Number of vertices
n = 7
Add edges
add_edge(0, 6)
add_edge(0, 5)
add_edge(5, 1)
add_edge(1, 6)
add_edge(2, 6)
add_edge(2, 3)
add_edge(3, 4)
add_edge(4, 1)

Function call
print(shortest_cycle(n))

TRY

1. Take a below graph and verify the results.

7.4 Count Unique and all Possible Paths in a M x N Matrix

Count unique paths: The problem is to count all unique possible paths from the top left to the bottom

right of a M X N matrix with the constraints that from each cell you can either move only to the right or

down.

Input: M = 2, N = 2

Output: 2

Explanation: There are two paths

(0, 0) -> (0, 1) -> (1, 1)

(0, 0) -> (1, 0) -> (1, 1)

Input: M = 2, N = 3

Output: 3

Explanation: There are three paths

(0, 0) -> (0, 1) -> (0, 2) -> (1, 2)

190 | P a g e

(0, 0) -> (0, 1) -> (1, 1) -> (1, 2)

(0, 0) -> (1, 0) -> (1, 1) -> (1, 2)

Count all possible paths: We can recursively move to right and down from the start until we reach the

destination and then add up all valid paths to get the answer.

Procedure:

• Create a recursive function with parameters as row and column index

• Call this recursive function for N-1 and M-1

• In the recursive function

• If N == 1 or M == 1 then return 1

• else call the recursive function with (N-1, M) and (N, M-1) and return the sum of this

• Print the answer

Hints:

Python program to count all possible paths from top left to bottom right

Function to return count of possible paths to reach cell at row number m and
column number n from the topmost leftmost cell (cell at 1, 1)

def numberOfPaths(m, n):
 …

Driver program to test above function
m = 3
n = 3
print(numberOfPaths(m, n))

TRY

1. Take input : M = 3, N = 2 and verify the results.

2. Take input : M = 2, N = 1 and verify the results.

8. Graph Coloring

8.1 Graph Coloring using Greedy Algorithm

Greedy algorithm is used to assign colors to the vertices of a graph. It doesn’t guarantee to use

minimum colors, but it guarantees an upper bound on the number of colors. The basic algorithm never

uses more than d+1 colors where d is the maximum degree of a vertex in the given graph.

Basic Greedy Coloring Algorithm:

1. Color first vertex with first color.

2. Do following for remaining V-1 vertices.

a) Consider the currently picked vertex and color it with the lowest numbered color that has not

been used on any previously colored vertices adjacent to it. If all previously used colors appear on

vertices adjacent to v, assign a new color to it.

Hints:

Implement greedy algorithm for graph coloring

def addEdge(adj, v, w):

191 | P a g e

 adj[v].append(w)
 # Note: the graph is undirected
 adj[w].append(v)
 return adj

Assigns colors (starting from 0) to all
vertices and prints the assignment of colors
def greedyColoring(adj, V):
 …

Driver Code
g1 = [[] for i in range(5)]
g1 = addEdge(g1, 0, 1)
g1 = addEdge(g1, 0, 2)
g1 = addEdge(g1, 1, 2)
g1 = addEdge(g1, 1, 3)
g1 = addEdge(g1, 2, 3)
g1 = addEdge(g1, 3, 4)
print("Coloring of graph 1 ")
greedyColoring(g1, 5)

g2 = [[] for i in range(5)]
g2 = addEdge(g2, 0, 1)
g2 = addEdge(g2, 0, 2)
g2 = addEdge(g2, 1, 2)
g2 = addEdge(g2, 1, 4)
g2 = addEdge(g2, 2, 4)
g2 = addEdge(g2, 4, 3)
print("\nColoring of graph 2")
greedyColoring(g2, 5)

Output:

Coloring of graph 1

Vertex 0 ---> Color 0

Vertex 1 ---> Color 1

Vertex 2 ---> Color 2

Vertex 3 ---> Color 0

Vertex 4 ---> Color 1

Coloring of graph 2

Vertex 0 ---> Color 0

Vertex 1 ---> Color 1

Vertex 2 ---> Color 2

Vertex 3 ---> Color 0

Vertex 4 ---> Color 3

8.2 Coloring a Cycle Graph

Given the number of vertices in a Cyclic Graph. The task is to determine the Number of colors required

to color the graph so that no two adjacent vertices have the same color.

Approach:

• If the no. of vertices is Even then it is Even Cycle and to color such graph we require 2 colors.

• If the no. of vertices is Odd then it is Odd Cycle and to color such graph we require 3 colors.

Input: Vertices = 3

Output: No. of colors require is: 3

192 | P a g e

Input: vertices = 4

Output: No. of colors require is: 2

Example 1: Even Cycle: Number of vertices = 4

Color required = 2

Example 2: Odd Cycle: Number of vertices = 5

Color required = 3

Hints:

Find the number of colors required to color a cycle graph

Function to find Color required.

def Color(vertices):
 …

193 | P a g e

Driver Code
vertices = 3
print ("No. of colors require is:", Color(vertices))

8.3 m Coloring Problem

Given an undirected graph and a number m, determine if the graph can be colored with at most m

colors such that no two adjacent vertices of the graph are colored with the same color.

Note: Here coloring of a graph means the assignment of colors to all vertices

Following is an example of a graph that can be colored with 3 different colors:

Input: graph = {0, 1, 1, 1},

 {1, 0, 1, 0},

 {1, 1, 0, 1},

 {1, 0, 1, 0}

Output: Solution Exists: Following are the assigned colors: 1 2 3 2

Explanation: By coloring the vertices with following colors, adjacent vertices does not have same

colors

Input: graph = {1, 1, 1, 1},

 {1, 1, 1, 1},

 {1, 1, 1, 1},

 {1, 1, 1, 1}

Output: Solution does not exist

Explanation: No solution exits

Generate all possible configurations of colors. Since each node can be colored using any of the m

available colors, the total number of color configurations possible is mV. After generating a

configuration of color, check if the adjacent vertices have the same color or not. If the conditions are

met, print the combination and break the loop

Follow the given steps to solve the problem:

• Create a recursive function that takes the current index, number of vertices and output color

array

• If the current index is equal to number of vertices. Check if the output color configuration is

safe, i.e check if the adjacent vertices do not have same color. If the conditions are met, print the

configuration and break

• Assign a color to a vertex (1 to m)

• For every assigned color recursively call the function with next index and number of vertices

• If any recursive function returns true break the loop and returns true.

194 | P a g e

Hints:

Number of vertices in the graph
define 4 4

check if the colored graph is safe or not

def isSafe(graph, color):
 # check for every edge
 for i in range(4):
 for j in range(i + 1, 4):
 if (graph[i][j] and color[j] == color[i]):
 return False
 return True

def graphColoring(graph, m, i, color):
 # write your code here
 …

/* A utility function to print solution */

def printSolution(color):
 print("Solution Exists:" " Following are the assigned colors ")
 for i in range(4):
 print(color[i], end=" ")

Driver code
/* Create following graph and test whether it is 3 colorable
(3)---(2)
| / |
| / |
| / |
(0)---(1)
*/
graph = [
 [0, 1, 1, 1],
 [1, 0, 1, 0],
 [1, 1, 0, 1],
 [1, 0, 1, 0],
]
m = 3 # Number of colors

Initialize all color values as 0.
This initialization is needed
correct functioning of isSafe()
color = [0 for i in range(4)]

Function call
if (not graphColoring(graph, m, 0, color)):
 print("Solution does not exist")

8.4 Edge Coloring of a Graph

Edge coloring of a graph is an assignment of “colors” to the edges of the graph so that no two

adjacent edges have the same color with an optimal number of colors. Two edges are said to be

adjacent if they are connected to the same vertex. There is no known polynomial time algorithm for

edge-coloring every graph with an optimal number of colors.

195 | P a g e

Input: u1 = 1, v1 = 4

 u2 = 1, v2 = 2

 u3 = 2, v3 = 3

 u4 = 3, v4 = 4

Output: Edge 1 is of color 1

 Edge 2 is of color 2

 Edge 3 is of color 1

 Edge 4 is of color 2

The above input shows the pair of vertices (ui, vi) who have an edge between them. The output shows

the color assigned to the respective edges.

Edge colorings are one of several different types of graph coloring problems. The above figure of a

Graph shows an edge coloring of a graph by the colors green and black, in which no adjacent edge

have the same color.

Algorithm:

1. Use BFS traversal to start traversing the graph.

2. Pick any vertex and give different colors to all of the edges connected to it, and mark those

edges as colored.

3. Traverse one of it’s edges.

4. Repeat step to with a new vertex until all edges are colored.

Hints:

Edge Coloring

from queue import Queue

function to determine the edge colors
def colorEdges(ptr, gra, edgeColors, isVisited):
 # Write your code here
 …

Driver Function
empty=set()
declaring vector of vector of pairs, to define Graph
gra=[]
edgeColors=[]
isVisited=[False]*100000

196 | P a g e

ver = 4
edge = 4
gra=[[] for _ in range(ver)]
edgeColors=[-1]*edge
gra[0].append((1, 0))
gra[1].append((0, 0))
gra[1].append((2, 1))
gra[2].append((1, 1))
gra[2].append((3, 2))
gra[3].append((2, 2))
gra[0].append((3, 3))
gra[3].append((0, 3))
colorEdges(0, gra, edgeColors, isVisited)

printing all the edge colors
for i in range(edge):
 print("Edge {} is of color {}".format(i + 1,edgeColors[i] + 1))

TRY

1. Write a program to implement graph coloring and edge coloring by consider the below graph and

verify the results.

9. Graph Traversal

9.1 Breadth First Search

The Breadth First Search (BFS) algorithm is used to search a graph data structure for a node that

meets a set of criteria. It starts at the root of the graph and visits all nodes at the current depth level

before moving on to the nodes at the next depth level.

For a given graph G, print BFS traversal from a given source vertex.

Hints:

BFS traversal from a given source vertex.

from collections import defaultdict

This class represents a directed graph using adjacency list representation
class Graph:

 # Constructor
 def __init__(self):
 # Default dictionary to store graph
 self.graph = defaultdict(list)

 # Function to add an edge to graph
 def addEdge(self, u, v):
 self.graph[u].append(v)

 # Function to print a BFS of graph

197 | P a g e

 def BFS(self, s):
 # Write your code here
 …

Create a graph given in the above diagram
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)

print("Following is Breadth First Traversal" " (starting from vertex 2)")
g.BFS(2)

Output: Following is Breadth First Traversal (starting from vertex 2)

2 0 3 1

9.2 Depth First Search

Depth First Traversal (or DFS) for a graph is similar to Depth First Traversal of a tree. The only catch

here is, that, unlike trees, graphs may contain cycles (a node may be visited twice). To avoid processing

a node more than once, use a boolean visited array. A graph can have more than one DFS traversal.

For a given graph G, print DFS traversal from a given source vertex.

Input: n = 4, e = 6

0 -> 1, 0 -> 2, 1 -> 2, 2 -> 0, 2 -> 3, 3 -> 3

Output: DFS from vertex 1: 1 2 0 3

Explanation:

DFS Diagram:

Input: n = 4, e = 6

2 -> 0, 0 -> 2, 1 -> 2, 0 -> 1, 3 -> 3, 1 -> 3

Output: DFS from vertex 2: 2 0 1 3

Explanation:

DFS Diagram:

https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

198 | P a g e

Hints:

DFS traversal from a given graph
from collections import defaultdict

This class represents a directed graph using adjacency list representation
class Graph:
 # Constructor
 def __init__(self):
 # Default dictionary to store graph
 self.graph = defaultdict(list)

 # Function to add an edge to graph
 def addEdge(self, u, v):
 self.graph[u].append(v)

 # A function used by DFS
 def DFSUtil(self, v, visited):
 …

 # The function to do DFS traversal. It uses recursive DFSUtil()

 def DFS(self, v):
 # Write your code here
 …

Driver's code
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
print("Following is Depth First Traversal (starting from vertex 2)")
Function call
g.DFS(2)

TRY

1. Write a program to implement breadth first search and depth first search by consider the below

graph and verify the results.

199 | P a g e

10. Minimum Spanning Tree (MST)

10.1 Kruskal’s Algorithm

In Kruskal’s algorithm, sort all edges of the given graph in increasing order. Then it keeps on adding

new edges and nodes in the MST if the newly added edge does not form a cycle. It picks the minimum

weighted edge at first and the maximum weighted edge at last.

MST using Kruskal’s algorithm:

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If the

cycle is not formed, include this edge. Else, discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

Kruskal’s algorithm to find the minimum cost spanning tree uses the greedy approach. The Greedy

Choice is to pick the smallest weight edge that does not cause a cycle in the MST constructed so far.

Input: For the given graph G find the minimum cost spanning tree.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 – 1)

= 8 edges.

After sorting:

Weight Source Destination

1 7 6

2 8 2

2 6 5

4 0 1

4 2 5

6 8 6

7 2 3

7 7 8

8 0 7

8 1 2

9 3 4

200 | P a g e

10 5 4

11 1 7

14 3 5

Now pick all edges one by one from the sorted list of edges.

Output:

Hints:

Kruskal's algorithm to find minimum Spanning Tree of a given connected,
undirected and weighted graph

Class to represent a graph
class Graph:
 def __init__(self, vertices):
 self.V = vertices
 self.graph = []

 # Function to add an edge to graph
 def addEdge(self, u, v, w):
 self.graph.append([u, v, w])

 def find(self, parent, i):
 …

 def union(self, parent, rank, x, y):
 …

 def KruskalMST(self):
 # write your code here

…

Driver code
g = Graph(4)
g.addEdge(0, 1, 10)
g.addEdge(0, 2, 6)
g.addEdge(0, 3, 5)
g.addEdge(1, 3, 15)
g.addEdge(2, 3, 4)

Function call
g.KruskalMST()

Output: Following are the edges in the constructed MST

2 -- 3 == 4

0 -- 3 == 5

201 | P a g e

0 -- 1 == 10

Minimum Cost Spanning Tree: 19

10.2 Prim’s Algorithm

The Prim’s algorithm starts with an empty spanning tree. The idea is to maintain two sets of vertices.

The first set contains the vertices already included in the MST, and the other set contains the vertices

not yet included. At every step, it considers all the edges that connect the two sets and picks the

minimum weight edge from these edges. After picking the edge, it moves the other endpoint of the

edge to the set containing MST.

Prim’s Algorithm:

The working of Prim’s algorithm can be described by using the following steps:

1. Determine an arbitrary vertex as the starting vertex of the MST.

2. Follow steps 3 to 5 till there are vertices that are not included in the MST (known as fringe

vertex).

3. Find edges connecting any tree vertex with the fringe vertices.

4. Find the minimum among these edges.

5. Add the chosen edge to the MST if it does not form any cycle.

6. Return the MST and exit

Input: For the given graph G find the minimum cost spanning tree.

Output: The final structure of the MST is as follows and the weight of the edges of the MST is (4 + 8 +

1 + 2 + 4 + 2 + 7 + 9) = 37.

Hints:

Prim's Minimum Spanning Tree (MST) algorithm.
The program is for adjacency matrix representation of the graph

Library for INT_MAX
import sys

class Graph():
 def __init__(self, vertices):

202 | P a g e

 self.V = vertices
 self.graph = [[0 for column in range(vertices)]
 for row in range(vertices)]

 # A utility function to print
 # the constructed MST stored in parent[]
 def printMST(self, parent):
 print("Edge \tWeight")
 for i in range(1, self.V):
 print(parent[i], "-", i, "\t", self.graph[i][parent[i]])

 # A utility function to find the vertex with
 # minimum distance value, from the set of vertices
 # not yet included in shortest path tree
 def minKey(self, key, mstSet):

 …
 def primMST(self):
 …

Driver's code
g = Graph(5)
g.graph = [[0, 2, 0, 6, 0],
 [2, 0, 3, 8, 5],
 [0, 3, 0, 0, 7],
 [6, 8, 0, 0, 9],
 [0, 5, 7, 9, 0]]

g.primMST()

Output:

Edge Weight

0 - 1 2

1 - 2 3

0 - 3 6

1 - 4 5

TRY

1. Write a program to implement kruskal’s algorithm and prim’s algorithm by consider the below graph

and verify the results.

203 | P a g e

11. Roots of Equations

11.1 Bisection Method

The Bisection method is also called the interval halving method, the binary search method or the

dichotomy method. This method is used to find root of an equation in a given interval that is value of

‘x’ for which f(x) = 0. The method is based on The Intermediate Value Theorem which states that if

f(x) is a continuous function and there are two real numbers a and b such that f(a) * f(b) 0 and f(b) < 0),

then it is guaranteed that it has at least one root between them.

Assumptions:

1. f(x) is a continuous function in interval [a, b]

2. f(a) * f(b) < 0

Steps:

1. Find middle point c= (a + b)/2.

2. If f(c) == 0, then c is the root of the solution.

3. Else f(c) != 0

• If value f(a)*f(c) < 0 then root lies between a and c. So we recur for a and c

• Else If f(b)*f(c) < 0 then root lies between b and c. So we recur b and c.

• Else given function doesn’t follow one of assumptions.

Since root may be a floating point number, we repeat above steps while difference between a and b is

greater than and equal to a value? (A very small value).

Hints:

An example function whose solution is determined using Bisection Method.
The function is x^3 - x^2 + 2
def func(x):
 return x*x*x - x*x + 2

Prints root of func(x) with error of EPSILON

def bisection(a,b):
 # Write your code here
 …

Driver code

204 | P a g e

Initial values assumed
a =-200
b = 300
bisection (a, b)

Output: The value of root is : -1.0025

TRY

1. Take an input function x^2 - x^3 + 2 and verify the results.

2. Take an input function x^3 - x^3 + 4 and verify the results.

11.2 Method of False Position

Given a function f(x) on floating number x and two numbers ‘a’ and ‘b’ such that f(a)*f(b) < 0 and f(x) is

continuous in [a, b]. Here f(x) represents algebraic or transcendental equation. Find root of function in

interval [a, b] (Or find a value of x such that f(x) is 0).

Input: A function of x, for example x3 – x2 + 2.

 And two values: a = -200 and b = 300 such that

 f(a)*f(b) < 0, i.e., f(a) and f(b) have opposite signs.

Output: The value of root is : -1.00

 OR any other value close to root.

Hints:

MAX_ITER = 1000000

An example function whose solution is determined using Regular Falsi Method.
The function is x^3 - x^2 + 2
def func(x):
 return (x * x * x - x * x + 2)

Prints root of func(x) in interval [a, b]
def regulaFalsi(a , b):
 # Write your code here
 …

Driver code to test above function
Initial values assumed
a =-200
b = 300
regulaFalsi(a, b)

TRY

1. Take an input function x^2 - x^3 + 2 and verify the results.

2. Take an input function x^3 - x^3 + 4 and verify the results.

11.3 Newton Raphson Method

Given a function f(x) on floating number x and an initial guess for root, find root of function in interval.

Here f(x) represents algebraic or transcendental equation.

Input: A function of x (for example x3 – x2 + 2), derivative function of x (3x2 – 2x for above example)

and an initial guess x0 = -20

Output: The value of root is: -1.00 or any other value close to root.

205 | P a g e

Algorithm:

Input: initial x, func(x), derivFunc(x)

Output: Root of Func()

1. Compute values of func(x) and derivFunc(x) for given initial x

2. Compute h: h = func(x) / derivFunc(x)

3. While h is greater than allowed error ε

• h = func(x) / derivFunc(x)

• x = x – h

Hints:

Implementation of Newton Raphson Method for solving equations
An example function whose solution is determined using Bisection Method.
The function is x^3 - x^2 + 2
def func(x):
 return x * x * x - x * x + 2

Derivative of the above function which is 3*x^x - 2*x
def derivFunc(x):
 return 3 * x * x - 2 * x

Function to find the root
def newtonRaphson(x):
 # Write your code here
 …

Driver program
x0 = -20
newtonRaphson(x0)

TRY

1. Take an input function x^2 - x^3 + 2 and verify the results.

2. Take an input function x^3 - x^3 + 4 and verify the results.

11.4 Secant Method

The secant method is used to find the root of an equation f(x) = 0. It is started from two distinct

estimates x1 and x2 for the root. It is an iterative procedure involving linear interpolation to a root. The

iteration stops if the difference between two intermediate values is less than the convergence factor.

Input: Equation = x3 + x – 1

 x1 = 0, x2 = 1, E = 0.0001

Output: Root of the given equation = 0.682326

 No. of iteration=5

Algorithm

Initialize: x1, x2, E, n // E = convergence indicator

calculate f(x1),f(x2)

if(f(x1) * f(x2) = E); //repeat the loop until the convergence

 print 'x0' //value of the root

 print 'n' //number of iteration

}

206 | P a g e

else

 print "cannot found a root in the given interval"

Hints:

Find root of an equations using secant method
Function takes value of x and returns f(x)
def f(x):
 # we are taking equation as x^3+x-1
 f = pow(x, 3) + x - 1;
 return f;

def secant(x1, x2, E):
 # Write your code here
 …

Driver code
initializing the values
x1 = 0;
x2 = 1;
E = 0.0001;
secant(x1, x2, E);

TRY

1. Take an input function x^2 - x + 2 and verify the results.

2. Take an input function x^3 - x^2 + 4 and verify the results.

11.5 Muller Method

Given a function f(x) on floating number x and three initial distinct guesses for root of the function, find

the root of function. Here, f(x) can be an algebraic or transcendental function.

Input: A function f(x) = x + 2x + 10x - 20 and three initial guesses - 0, 1 and 2 .

Output: The value of the root is 1.3688 or any other value within permittable deviation from the root.

Input: A function f(x) = x - 5x + 2 and three initial guesses - 0, 1 and 2.

Output: The value of the root is 0.4021 or any other value within permittable deviation from the root.

Hints:

Find root of a function, f(x)
import math;

MAX_ITERATIONS = 10000;

Function to calculate f(x)
def f(x):
 # Taking f(x) = x ^ 3 + 2x ^ 2 + 10x - 20
 return (1 * pow(x, 3) + 2 * x * x +
 10 * x - 20);

def Muller(a, b, c):
 # Write your code here
 …

207 | P a g e

Driver Code
a = 0;
b = 1;
c = 2;
Muller(a, b, c);

TRY

1. Take an input function x^2 - x^3 + 2 and verify the results.

2. Take an input function x^3 - x^3 + 4 and verify the results.

12. Numerical Integration

12.1 Trapezoidal Rule for Approximate Value of Definite Integral

Trapezoidal rule is used to find the approximation of a definite integral. The basic idea in Trapezoidal

rule is to assume the region under the graph of the given function to be a trapezoid and calculate its

area.

Hints:

Implement Trapezoidal rule

A sample function whose definite integral's approximate value is
computed using Trapezoidal rule
def y(x):

 # Declaring the function
 # f(x) = 1/(1+x*x)
 return (1 / (1 + x * x))

Function to evaluate the value of integral
def trapezoidal (a, b, n):
 # Write your code here
 …

Driver code
Range of definite integral
x0 = 0
xn = 1

Number of grids. Higher value means more accuracy
n = 6
print ("Value of integral is ",
 "%.4f"%trapezoidal(x0, xn, n))

12.2 Simpson’s 1/3 Rule

Simpson’s 1/3 rule is a method for numerical approximation of definite integrals. Specifically, it is the

following approximation:

https://en.wikipedia.org/wiki/Simpson%27s_rule

208 | P a g e

Procedure:

In order to integrate any function f(x) in the interval (a, b), follow the steps given below:

1. Select a value for n, which is the number of parts the interval is divided into.

2. Calculate the width, h = (b-a)/n

3. Calculate the values of x0 to xn as x0 = a, x1 = x0 + h, …..xn-1 = xn-2 + h, xn = b.

Consider y = f(x). Now find the values of y (y0 to yn) for the corresponding x (x0 to xn) values.

4. Substitute all the above found values in the Simpson’s Rule Formula to calculate the integral

value.

Approximate value of the integral can be given by Simpson’s Rule:

Input: Evaluate logx dx within limit 4 to 5.2.

First we will divide interval into six equal parts as number of interval should be even.

x : 4 4.2 4.4 4.6 4.8 5.0 5.2

logx : 1.38 1.43 1.48 1.52 1.56 1.60 1.64

Output: Now we can calculate approximate value of integral using above formula:

 = h/3[(1.38 + 1.64) + 4 * (1.43 + 1.52 + 1.60) +2 *(1.48 + 1.56)]

 = 1.84

Hence the approximation of above integral is

1.827 using Simpson's 1/3 rule.

Hints:

Simpson's 1 / 3 rule
import math

Function to calculate f(x)
def func(x):
 return math.log(x)

Function for approximate integral
def simpsons_(ll, ul, n):
 # Write your code here
 …

Driver code

lower_limit = 4 # Lower limit
upper_limit = 5.2 # Upper limit
n = 6 # Number of interval
print("%.6f"% simpsons_(lower_limit, upper_limit, n))

12.3 Simpson’s 3/8 Rule

The Simpson’s 3/8 rule was developed by Thomas Simpson. This method is used for performing

numerical integrations. This method is generally used for numerical approximation of definite integrals.

209 | P a g e

Here, parabolas are used to approximate each part of curve.

Input: lower_limit = 1, upper_limit = 10, interval_limit = 10

Output: integration_result = 0.687927

Input: lower_limit = 1, upper_limit = 5, interval_limit = 3

Output: integration_result = 0.605835

Hints:

Implement Simpson's 3/8 rule

Given function to be integrated

def func(x):
 return (float(1) / (1 + x * x))

Function to perform calculations
def calculate(lower_limit, upper_limit, interval_limit):
 # Write your code here
 …

driver function
interval_limit = 10
lower_limit = 1
upper_limit = 10

integral_res = calculate(lower_limit, upper_limit, interval_limit)

rounding the final answer to 6 decimal places
print (round(integral_res, 6))

13. Ordinary Differential Equations

13.1 The Euler Method

Given a differential equation dy/dx = f(x, y) with initial condition y(x0) = y0. Find its approximate

solution using Euler method.

Euler Method:

In mathematics and computational science, the Euler method (also called forward Euler method) is a

first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial

value.

Consider a differential equation dy/dx = f(x, y) with initial condition y(x0) = y0

then a successive approximation of this equation can be given by:

y(n+1) = y(n) + h * f(x(n), y(n))

where h = (x(n) – x(0)) / n, h indicates step size. Choosing smaller values of h leads to more accurate

results and more computation time.

Example:

Consider below differential equation dy/dx = (x + y + xy) with initial condition y(0) = 1 and step size h

= 0.025. Find y(0.1).

https://en.wikipedia.org/wiki/Euler_method

210 | P a g e

Solution:

f(x, y) = (x + y + xy)

x0 = 0, y0 = 1, h = 0.025

Now we can calculate y1 using Euler formula

y1 = y0 + h * f(x0, y0)

y1 = 1 + 0.025 *(0 + 1 + 0 * 1)

y1 = 1.025

y(0.025) = 1.025.

Similarly we can calculate y(0.050), y(0.075),y(0.1).

y(0.1) = 1.11167

Hints:

Find approximation of an ordinary differential equation using Euler method.

Consider a differential equation
dy / dx =(x + y + xy)
def func(x, y):
 return (x + y + x * y)

Function for Euler formula
def euler(x0, y, h, x):
 # write code here
 …

Driver Code
Initial Values
x0 = 0
y0 = 1
h = 0.025

Value of x at which we need approximation

x = 0.1
euler(x0, y0, h, x)

13.2 Runge-Kutta Second Order Method

Given the following inputs:

1. An ordinary differential equation that defines the value of dy/dx in the form x and y.

2. Initial value of y, i.e., y(0).

The task is to find the value of unknown function y at a given point x, i.e. y(x).

Input: x0 = 0, y0 = 1, x = 2, h = 0.2

Output: y(x) = 0.645590

Input: x0 = 2, y0 = 1, x = 4, h = 0.4;

Output: y(x) = 4.122991

Approach:

The Runge-Kutta method finds an approximate value of y for a given x. Only first-order ordinary

differential equations can be solved by using the Runge-Kutta 2nd-order method.

Below is the formula used to compute the next value yn+1 from the previous value yn. Therefore:

https://www.geeksforgeeks.org/second-order-linear-differential-equations/
https://www.geeksforgeeks.org/runge-kutta-4th-order-method-solve-differential-equation/

211 | P a g e

yn+1 = value of y at (x = n + 1)

yn = value of y at (x = n)

where 0 ? n ? (x - x0)/h, h is step height

 xn+1 = x0 + h

The essential formula to compute the value of y(n+1):

K1 = h * f(x, y)

K2 = h * f(x/2, y/2) or K1/2

yn+1 = yn + K2 + (h3)

The formula basically computes the next value yn+1 using current yn plus the weighted average of two

increments:

• K1 is the increment based on the slope at the beginning of the interval, using y.

• K2 is the increment based on the slope at the midpoint of the interval, using (y + h*K1/2).

Hints:

Implement Runge-Kutta method

A sample differential equation
"dy/dx = (x - y)/2"

def dydx(x, y):
 return (x + y - 2)

Finds value of y for a given x using step size h and initial value y0 at x0.
def rungeKutta(x0, y0, x, h):
 # write code here
 …

Driver Code
x0 = 0
y = 1
x = 2
h = 0.2
print("y(x) =", rungeKutta(x0, y, x, h))

14. Final Notes

The only way to learn programming is program, program and program on challenging problems. The

problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging

problems available – used in training for various programming contests (such as International

Collegiate Programming Contest (ICPC), International Olympiad in Informatics (IOI)). Check out these

sites:

• The ACM - ICPC International collegiate programming contest (https://icpc.global/)

• The Topcoder Open (TCO) annual programming and design contest

(https://www.topcoder.com/)

• Universidad de Valladolid’s online judge (https://uva.onlinejudge.org/).

• Peking University’s online judge (http://poj.org/).

• USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

• Google’s coding competitions (https://codingcompetitions.withgoogle.com/codejam,

https://codingcompetitions.withgoogle.com/hashcode)

• The ICFP programming contest (https://www.icfpconference.org/)

• BME International 24-hours programming contest (https://www.challenge24.org/)

• The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/
https://www0.us.ioccc.org/main.html

212 | P a g e

• Internet Problem Solving Contest (https://ipsc.ksp.sk/)

• Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

• Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

• OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

Students must solve problems and attain scores in the following coding contests:

 Name of the contest Minimum number of problems to solve Required score

• CodeChef 20 200

• Leetcode 20 200

• GeeksforGeeks 20 200

• SPOJ 5 50

• InterviewBit 10 1000

• Hackerrank 25 250

• Codeforces 10 100

• BuildIT 50 500

Total score need to obtain 2500

Student must have any one of the following certification:

1. HackerRank - Problem Solving Skills Certification (Basic and Intermediate)

2. GeeksforGeeks – Data Structures and Algorithms Certification

3. CodeChef - Learn Python Certification

4. Interviewbit – DSA pro / Python pro

5. NPTEL – Programming, Data Structures and Algorithms

6. NPTEL – The Joy of Computing using Python

V. TEXT BOOKS:

1. Eric Matthes, “Python Crash Course: A Hands-On, Project-based Introduction to Programming”, No Starch

Press, 3rd Edition, 2023.
2. John M Zelle, “Python Programming: An Introduction to Computer Science”, Ingram short title, 3rd Edition,

 2016.

VI. REFERENCE BOOKS:

1. Yashavant Kanetkar, Aditya Kanetkar, “Let Us Python”, BPB Publications, 2nd Edition, 2019.

2. Martin C. Brown, “Python: The Complete Reference”, Mc. Graw Hill, Indian Edition, 2018.

3. Paul Barry, “Head First Python: A Brain-Friendly Guide”, O’Reilly, 2nd Edition, 2016

4. Taneja Sheetal, Kumar Naveen, “Python Programming – A Modular Approach”, Pearson, 1st Edition,

2017.

5. R Nageswar Rao, “Core Python Programming”, Dreamtech Press, 2018.

VII. ELECTRONICS RESOURCES

8. https://realPython.com/Python3-object-oriented-programming/

9. https://Python.swaroopch.com/oop.html

10. https://Python-textbok.readthedocs.io/en/1.0/Object_Oriented_Programming.html

11. https://www.programiz.com/Python-programming/

12. https://www.geeksforgeeks.org/python-programming-language/

VIII. MATERIALS ONLINE

1. Course template

2. Lab Manual

https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/
https://python-textbok.readthedocs.io/en/1.0/Object_Oriented_Programming.html
http://www.programiz.com/Python-programming/

213 | P a g e

COURSE CONTENT

COMPUTER AIDED ENGINEERING GRAPHICS

I Semester: CSE / IT

II Semester: CSE (AI&ML) / CSE(DS) / ECE / EEE / AERO / MECH / CE

Course Code Category Hours / Week Credits Maximum Marks

AMEE03 Foundation
L T P C CIA SEE Total

1 0 2 2 40 60 100

Contact Classes: 15 Tutorial Classes: Nil Practical Classes: 30 Total Classes: 45

Prerequisite: There is no prerequisite required to this course

I. COURSE OVERVIEW:

Engineering Drawing is the technique that develops the ability to visualize any object with all

physical and dimensional configurations. The AutoCAD software assists in preparation of

drawings to carry out sophisticated design and analysis of machine components and structures.

This is the foundation course for civil engineering, mechanical engineering and aeronautical

engineering that are improving their technologies in the era of digital manufacturing and

construction.

II. COURSE OBJECTIVES:

The students will try to learn:

I. The illustration of different objects using technical drawings using concepts of engineering drawing.

II. The standard principles of orthographic projection of objects for making technical drawings.

III. The representation of draw sectional views and pictorial views of solids.

IV. The computer aided drafting skills for producing the 2D and 3D drawings.

 III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO1 Demonstrate the use of draw, modify and dimension commands of AutoCAD for

development of drawings used in design and analysis of structures.

CO2 Explain the constructional procedure of scales, conic sections and special

curves used in engineering practices.
CO3 Utilize the principles of orthographic projection for projections of points, lines, planes

and regular solids using first angle projections.

CO4 Interpret the sectional views and true shape of the section for revealing interior

features of an object veal interior features of an object

CO5 Illustrate the development of surfaces for construction of storage vessels, chemical

vessels, boilers, and chimneys in industrial applications

CO6 Make use of the concept of orthographic and isometric projections for converting

isometric view to orthographic views and Vice-versa for engineering applications.

214 | P a g e

IV. COURE CONTENT:

MODULE – I: Introduction to engineering graphics

Principles of engineering graphics and their significance, scales, plain & diagonal, conic sections

including the rectangular hyperbola, general method, cycloid, epicycloid and hypocycloid,

introduction to computer aided drafting, views, commands.

MODULE – II: Orthographic projections

Principles of orthographic projections, conventions, projections of points and lines, projections of
plane regular geometric figures. Computer aided orthographic projections, points, lines and planes.

MODULE – III: Projections of regular solids

Projections of regular solids, auxiliary views, sections or sectional views of right regular solids,
prism. Cylinder, pyramid, cone, computer aided projections of solids, sectional views.

MODULE – IV: Development of surfaces

Development of surfaces of right regular solids, prism, cylinder, pyramid and cone, development of
surfaces using computer aided drafting.

MODULE – V: Isometric projections

principles of isometric projection, isometric scale, isometric views, conventions, isometric views of
lines, plane figures, simple and compound solids, isometric projection of objects having non-
isometric lines. Isometric projection of spherical parts, conversion of isometric views to
orthographic views and vice-versa, conventions, conversion of orthographic projection into
isometric view using computer aided drafting.

V.TEXT BOOKS:

1. N.D. Bhatt; Engineering Drawing Charotar Publishing House PVT Ltd, 15th edition 2011.

2. K. Venugoplal; Engineering Drawing and graphics Using AutoCAD, 3rd edition 2007.

VI. REFERENCE BOOKS:

1. Basant Agrawal and C M Agrawal; Engineering Drawing, McGraw Hill, 3rd Edition 2011.

2. K L Narayana, P Kannaiah; Engineering Drawing, New age international (P) limited, 3rd edition,

2022.

3. M. B. Shah, B.C. Rane; Engineering Drawing, Pearson publications.

VII. ELECTRONIC RESOURCES:

1. https://archieve.nptel.ac.in/cources/112/103/112103019.

2. https://archieve.nptel.ac.in/cources/112/105/112105294.

VIII. MATERIALS ONLINE:

1. Course Template

2. Laboratory manual

https://archieve.nptel.ac.in/cources/112/103/112103019

215 | P a g e

EXCERCISES ON
COMPUTER AIDED ENGINEERING GRAPHICS

Note: Students are encouraged to bring their own laptops for laboratory

practice sessions.

1. Getting Started Exercises
1.1 Introduction to AUTOCAD

AutoCAD is a widely-used computer-aided design (CAD) software application developed by

Autodesk. It has been an industry standard for drafting and designing since its inception in

the early 1980s. AutoCAD provides a versatile platform for creating and editing 2D and 3D

drawings and models, making it an essential tool in various fields such as architecture,

engineering, construction, manufacturing, and more.

i. Install AUTO CAD

ii. Purpose and Application

iii. Interface and Tools

iv. Precision and Accuracy

v. 2D and 3D Modeling

vi. Collaboration and Sharing

vii. Customization

viii. Industry Usage

ix. Versions and Licensing

1.1 Commands

The main purpose of using commands and shortcuts in AutoCAD boils down to increased

productivity. They allow you to execute functions more quickly, as you don't need to search

through the entire AutoCAD interface for the right tool. You can just type the command, and

the function window appears.

i. Basic Drawing Commands

ii. Editing Commands

iii. Dimensioning Commands

iv. Advanced and Miscellaneous Commands

Basic Drawing Commands:

o Line (LINE): Draws straight line segments between two points.

o Circle (CIRCLE): Creates circles by specifying a center point and radius.

o Rectangle (RECTANGLE): Constructs rectangles by defining two opposing corners.

o Arc (ARC): Draws arcs based on different methods, such as specifying start, end,

and radius or center, start, and angle.

Editing Commands:

o Erase (ERASE): Deletes selected objects from the drawing.

o Copy (COPY): Copies objects to a specified location.

216 | P a g e

o Move (MOVE): Relocates selected objects to a different position.

o Trim (TRIM): Cuts selected objects at the cutting edges defined by other objects.

o Extend (EXTEND): Extends objects to meet the boundaries of other objects.

Dimensioning Commands:

o Line Dimension (DIMLINEAR): Adds linear dimensions to objects.

o Aligned Dimension (DIMALIGNED): Creates dimensions aligned with an angle of

the object.

o Radial Dimension (DIMRADIUS): Add radius dimensions to arcs and circles.

o Diameter Dimension (DIMDIAMETER): Creates diameter dimensions for circles.

Advanced and Miscellaneous Commands:

o Hatch (HATCH): Fills enclosed areas with a pattern or gradient.

o Offset (OFFSET): Creates parallel copies of objects at a specified distance.

o Block (BLOCK): Defines reusable blocks (collections of objects) in the drawing.

o Insert (INSERT): Inserts predefined blocks into the drawing.

o Viewport (VPORTS): Manages viewports for layout and plotting in paper space.

o Layer (LAYER): Manages layers for organizing and controlling object visibility.

TRY: Observe Exercise 1.1 in Solid works and in Creo software.

2. Introduction to Engineering Drawing
Engineering drawing, often referred to as technical drawing or drafting, is a graphical
representation of an object, system, or structure used in various fields of engineering,
manufacturing, and architecture. These drawings serve as a universal language that
communicates design ideas, specifications, and instructions in a precise and standardized
manner.

2.1 Basic Exercises
To be proficient in engineering drawing, basic exercises are required.

i. Identify the basic tools used for drafting

ii. Types of lines

iii. Arcs

iv. Circles

2.2 Practicing the standard lettering and numbering

Practicing standard lettering and numbering in engineering drawing is crucial for creating

clear, professional, and easily understandable technical drawings. Proper lettering and

numbering enhance communication and ensure that your drawings convey information

accurately.

The following exercises are to be practiced to become proficient in lettering and numbering.

1. Use the correct fonts

2. Maintain uniformity

3. Lettering style

4. Height and spacing

Try: The following questions are to be answered in Solid works

1. How to use correct fonts in Solid Works

2. What are the commands are used to maintain uniformity of lettering and numbering.

3. Dimensioning

217 | P a g e

Dimensioning in engineering drawing is a crucial aspect that involves adding measurements

and annotations to convey the size, location, and tolerances of objects, features, and

components accurately. Proper dimensioning is essential for manufacturing, construction,

and other engineering processes.

3.1 Exercises on Dimensioning

1. Understanding and use of the conventional dimensioning techniques.

2. Placing the dimension lines

3. Extension lines

4. Dimensions on angles

Hint: 1. The following Fig.3.1 shows the type of dimensioning on 2D drawing.

Fig.3.1 Dimensioning on 2D drawing

Hint: 2. The following Fig.3.2 shows the type of dimensioning on concentric

circles.

Fig.3.2 Dimensioning on Concentric circle

Try: Demonstrate the exercise 3 in Solid Works and CREO software.

4. Geometrical Constructions

218 | P a g e

Geometric construction is useful for learning how to use geometric tools like a ruler,

compass, and straightedge to draw various angles, line segments, bisectors, and other forms

of polygons, arcs, circles, and other geometric figures. Fig.4.1 shows the various geometric

shapes to draw orthographic

projections of lines, planes and

solids.

Fig.4.1 Geometric shapes

4.1. Exercises on Geometrical Constructions
To become proficient in engineering graphics geometrical constructions are required:

Drawing lines, angles, triangle, square, pentagon, hexagon, octagon. Dividing line into equal

or proportional parts. Drawing lines and arcs tangent to each other.

1. Divide a 16 cm straight line into a given number of equal parts say 5.

2. Divide a 8 cm line into 9 number of parts.

3. Bisect a given 45 degree sector.

4. Bisect a given straight line.

5. To draw a perpendicular to a given line from a point within it.

6. Construct a regular polygon, given the length of its side.

Hint: Dividing a line into equal number of parts

Try: The exercise 4 in Solid Works and CREO software.

219 | P a g e

5. Conic Sections

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface

intersecting a plane. The three types of conic section are the hyperbola, the parabola, and

the ellipse.

5.1. Exercises on Conic Sections

1. Draw an ellipse with the distance of the focus from the directrix at 50mm and

eccentricity = 2/3 (Eccentricity method)

2. Draw an ellipse with the distance of the focus from the directrix at 60mm and

eccentricity = 2/3 (Eccentricity method)

3. Draw an ellipse with the distance of the focus from the directrix at 80mm and

eccentricity = 2/3 (Eccentricity method)

4. Draw a parabola with the distance of the focus from the directrix at 50 mm

(Eccentricity method).

5. Draw a parabola with the distance of the focus from the directrix at 40mm

(Eccentricity method).

6. A vertex of a hyperbola is 60 mm from its focus. Draw two parts of the hyperbola; if

the eccentricity is 3/2.

7. A vertex of a hyperbola is 50 mm from its focus. Draw two parts of the hyperbola; if

the eccentricity is 1.5.

Try: The exercise 5 in Solid Works and CREO software.

6. Technical Sketching and Shape Description

6.1. Projections of planes and regular solids

1. Draw the projections of a regular pentagon of 30 mm side, having its surface inclined

at 30° to the H.P. and a side parallel to the H.P. and inclined at an angle of 60° to the

V.P.

2. Draw the projections of a regular hexagon of 40 mm side, having one of its sides in the

H.P. and inclined at 60° to the V.P., and its surface making an angle of 45° with the H.P.

3. Draw the projections of a regular hexagon of 35 mm side, having one of its sides in the

H.P. and inclined at 50° to the V.P., and its surface making an angle of 45° with the H.P.

4. Draw the projections of a regular pentagon of 40 mm side, having one of its sides in

the H.P. and inclined at 30° to the V.P., and its surface making an angle of 45° with the

H.P.

Try: The exercise 6.3 in Solid Works and CREO software.

7. Sectional views

A sectional view represents the part of an object remaining after a portion is assumed to

have been cut and removed. The exposed cut surface is then indicated by section lines.

Hidden features behind the cutting plane are omitted, unless required for dimensioning or

for definition of the part.

7.1. Exercise on Sectional views of right regular solids, prism, cylinder, pyramid,

cone.

1. A pentagonal pyramid, base 40 mm side and axis 60 mm long has its base horizontal

and an edge of the base parallel to the V.P. A horizontal section plane cuts it at a

distance of 20 mm above the base. Draw its front view and sectional top view.

220 | P a g e

2. A hexagonal prism, side of base 40 mm and height 70 mm is resting on one of its

corners on the H.P. with a longer edge containing that corner inclined at 40° to the H.P.

and a rectangular face parallel to the V.P. Draw the front view and sectional top view of

the cut prism when a horizontal section plane cuts the prism in two equal halves. Draw

the front view and sectional top view of the cut prism.

3. A pentagonal pyramid, base 40 mm side and axis 70 mm long has one of its triangular

faces in the V.P. and the edge of the base contained by that face makes an angle of 40°

with the H.P. Draw its projections.

4. Draw the projections of a cone, base 50 mm diameter and axis 75 mm long, lying on a

generator on the ground with the top view of the axis making an angle of 45° with the

V.P.

Try: The exercise 7.1 and 7.2 in Solid Works and CREO software.

8. Development of surfaces

Knowledge of development is very useful in sheet metal work, construction of storage

vessels, chemical vessels, boilers, and chimneys. Such vessels are manufactured from plates

that are cut according to these developments and then properly bend into desired shaped.

8.1. Exercise on Basics of development of surfaces

1. Draw the development of the lateral surfaces of a right square prism of edge of base 30

mm and axis 50 mm long.

2. Draw the development of the complete surface of a cylindrical drum. Diameter is 40 mm

and height 60 mm.

8.2. Exercise on Development of surfaces of Prisms

1. A hexagonal prism of base side 20 mm and height 45 mm is resting on one of its ends

on the HP with two of its lateral faces parallel to the VP. It is cut by a plane

perpendicular to the VP and inclined at 30° to the HP. The plane meets the axis at a

distance of 20 mm above the base. Draw the development of the lateral surfaces of the

lower portion of the prism.

2. A hexagonal prism, edge of base 20 mm and axis 50 mm long, rests with its base on HP

such that one of its rectangular faces is parallel to VP. It is cut by a plane perpendicular

to VP, inclined at 45° to HP and passing through the right corner of the top face of the

prism. (i) Draw the sectional top view. (ii)Develop the lateral surfaces of the truncated

prism.

3. A pentagonal prism, side of base 25 mm and altitude 50 mm, rests on its base on the

HP such that an edge of the base is parallel to VP and nearer to the observer. It is cut

by a plane inclined at 45° to HP, perpendicular to VP and passing through the center of

the axis. (i) Draw the development of the complete surfaces of the truncated prism.

4. A pentagonal prism of side of base 30 mm and altitude 60 mm stands on its base on HP

such that a vertical face is parallel to VP and away from observer. It is cut by a plane

perpendicular to VP, inclined at an angle of 50° to HP and passing through the axis 35

mm above the base. Draw the development of the lower portion of the prism.

Try : The exercise 8.1 and 8.2 in Solid Works and CREO software.

9. Exercise on Development of surfaces-2

9.1. Exercise on Development of surfaces of cylinder and cone

1. Draw the development of the lateral surface of the lower portion of a cylinder of

221 | P a g e

diameter 50 mm and axis 70 mm when sectioned by a plane inclined at 40° to HP and

perpendicular to VP and bisecting axis.

2. A Cone of base diameter 60 mm and height 70 mm is resting on its base on HP. It is cut

by a plane perpendicular to VP and inclined at 30° to HP. The plane bisects the axis of

the cone. Draw the development of its lateral surface.

9.2. Exercise on Development of surfaces of pyramid

1. Draw the development of the lateral surfaces of a square pyramid, side of base 25 mm

and height 50 mm, resting with its base on HP and an edge of the base parallel to VP.

2. A square pyramid of base side 25 mm and altitude 50 mm rests on it base on the HP

with two sides of the base parallel to the VP. It is cut by a plane bisecting the axis and

inclined a 30° to the base. Draw the development of the lateral surfaces of the lower

part of the cut pyramid.

3. A pentagonal pyramid side of base 30 mm and height 52 mm stands with its base on

HP and an edge of the base is parallel to VP and nearer to it. It is cut by a plane

perpendicular to VP, inclined at 40° to HP and passing through a point on the axis 32

mm above the base. Draw the sectional top view. Develop the lateral surface of the

truncated pyramid.

Try: The exercise 9.1 and 9.2 in Solid Works and CREO software.

10. Orthographic views

Orthographic views are two-dimensional views of three-dimensional objects.

Orthographic views are created by projecting a view of an object onto a plane which is

usually positioned so that it is parallel to one of the planes of the object.

10.1. Exercise on Conversion of isometric view to orthographic projections using

CAD

1. Draw the front view, side view and top view for the below Fig.10.1

Fig.10.1

2. Draw the front view, side view and top view for the below Fig.10.2.

222 | P a g e

Fig.10.2

3. Draw the front view, side view and top view for the below Fig.10.3.

Fig.10.3

4. Draw the front view, side view and top view for the below Fig.10.4.

223 | P a g e

Fig.10.4

Try: Practice Exercise 10 in Solid Works

11. Isometric projection of planes

Isometric projection is a method for visually representing three-dimensional objects in two

dimensions in technical and engineering drawings. It is an axonometric projection in which

the three coordinate axes appear equally foreshortened and the angle between any two of

them is 120 degrees.

11.1. Isometric scale

In engineering and technical drawing, an isometric scale is a method used to create an

isometric projection of a three-dimensional object onto a two-dimensional surface, such as a

drawing sheet or a computer screen. Isometric projection is a type of pictorial representation

that shows an object in a three-dimensional view with all three principal axes (x, y, and z) at

equal angles to the picture plane. An isometric scale is used to ensure that the dimensions

and proportions of objects in the isometric drawing are accurate and maintain the proper

relationships.

11.2. Exercise on Isometric projections of circle, square and rectangle and solids

1. Draw the isometric view of a circle of 60 mm diameter whose surface is parallel to the

V.P.

2. Draw the isometric view of a square of side 60 mm whose surface is parallel to the H.P.

3. Draw the isometric view of a circle of 40 mm radius whose surface is parallel to the H.P.

4. Draw the isometric view of a square prism, side of the base 20 mm long and the axis 40

mm long, when its axis is i) Veritcal and ii) Horizontal.

5. Draw the isometric view of the semi-circle whose front view of its surface is parallel to

the V.P.. The diameter of semi-circle is 60 mm.

Try : The exercise 11.2 in Solid Works and CREO software.

1. Isometric projections of solids

12.1. Exercise on conversion of orthographic view to isometric view using

CAD

1. Draw the isometric view for the given orthographic views Fig.12.1

224 | P a g e

Fig.12.1

2. Draw the isometric view for the given orthographic views for Fig.12.2

Fig.12.2

3.Draw the isometric view for the given orthographic views by assuming the dimensions for

Fig.12.3

Fig.12.3

Try : The exercise 12 in Solid Works and CREO software.

13.Demonstration of SOLID WORKS Software

225 | P a g e

1. Introduction to SOLID WORKS

2. Demonstration of commands

3. 2D drawings

3. 3D drawings

V. TEXT BOOKS:

1. Frederick E Giesecke, Alva Mitchell, Henry C Spencer, Ivan L Hill, John T Dygdon, James E. Novak,

R. O. Loving, Shawna Lockhart, Cindy Johnson, Technical Drawing with Engineering Graphics,

Pearson Education, 15th Edition, 2016.

2. Kulkarni D.M, Rastogi A.P. and Sarkar A.K., Engineering Graphics with Auto CAD. (Revised Edition),

Prentice Hall India, New Delhi, 2011.

3. Donald Hearn, “Computer Graphics”, 12th Edition, Pearson, 2021.

VI. REFERENCE BOOKS:

1. Basant Agrawal and C M Agrawal, Engineering Drawing, McGraw Hill, 3rd Edition, 2018.

2. James M. Leake, Molly Hathaway Goldstein, Jacob L. Borgerson, Engineering Design

 Graphics, Modelling and Visualization, Wiley, 3rd Edition, 2020.

VII. ELECTRONICS RESOURCES:

4. https://archive.nptel.ac.in/courses/112/103/112103019.

5. https://archive.nptel.ac.in/courses/112/105/112105294.

VIII. MATERIALS ONLINE:

3. Course Template

4. Laboratory manual

226 | P a g e

COURSE CONTENT

DATA STRUCTURES LABORATORY

 II Semester: AE / ME / CE / ECE / EEE / CSE / IT / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week Credits Maximum Marks

ACSE08

Foundation
L T P C CIA SEE Total

- - 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Essentials of Problem Solving

I. COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development.

Topics covered include managing complexity, analysis, static data structures, dynamic data structures and

hashing mechanisms. The main objective of the course is to teach the students how to select and design data

structures and algorithms that are appropriate for problems that they might encounter in real life. This course

reaches to student by power point presentations, lecture notes, and lab which involve the problem solving in

mathematical and engineering areas.

II. COURSES OBJECTIVES:

The students will try to learn

I. To provide students with skills needed to understand and analyze performance trade-offs of different

algorithms / implementations and asymptotic analysis of their running time and memory usage.

II. To provide knowledge of basic abstract data types (ADT) and associated algorithms: stacks, queues,

lists, tree, graphs, hashing and sorting, selection and searching.

III. The fundamentals of how to store, retrieve, and process data efficiently.

IV. To provide practice by specifying and implementing these data structures and algorithms in Python.

V. Understand essential for future programming and software engineering courses.

III. COURSE OUTCOMES:

At the end of the course students should be able to:
CO 1 Interpret the complexity of algorithm using the asymptotic notations.

CO 2 Select appropriate searching and sorting technique for a given problem.

CO 3 Construct programs on performing operations on linear and nonlinear data structures for

organization of a data.

CO 4 Make use of linear data structures and nonlinear data structures solving real time applications.

CO 5 Describe hashing techniques and collision resolution methods for efficiently accessing data with respect

to performance.
CO 6 Compare various types of data structures; in terms of implementation, operations and performance.

227 | P a g e

DATA STRUCTURES LABORATORY COURSE CONTENT

S No. Topic Name Page No.

1. Getting Started Exercises

a. Sum of last digits of two given numbers

b. Is N an exact multiple of M?

c. Combine Strings

d. Even or Odd

e. Second last digit of a given number

f. Alternate String Combiner

g. Padovan Sequence

h. Leaders in an array

i. Find the Value of a Number Raised to its Reverse

j. Mean of Array using Recursion

5

2. Searching

a. Linear / Sequential Search

b. Binary Search

c. Uniform Binary Search

d. Interpolation Search

e. Fibonacci Search

12

3. Sorting

a. Bubble Sorting

b. Selection Sort

c. Insertion Sort

17

4. Divide and Conquer

a. Quick Sort

b. Merge Sort

c. Heap Sort

d. Radix Sort

e. Shell Sort

21

5. Stack

a. Implementation of Stack

b. Balanced Parenthesis Checking

c. Evaluation of Postfix Expression

d. Infix to Postfix Expression Conversion

e. Reverse a Stack

28

6. Queue

a. Linear Queue

b. Stack using Queues

c. Queue using Stacks

d. Circular Queue

e. Deque (Doubly Ended Queue)

33

7. Linked List

a. Singly Linked List

b. Linked List Cycle

c. Remove Linked List Elements

d. Reverse Linked List

e. Palindrome Linked List

f. Middle of the Linked List

39

228 | P a g e

g. Convert Binary Number in a Linked List to Integer

8. Circular Single Linked List and Doubly Linked List

a. Circular Linked List

b. Doubly Linked List

c. Sorted Merge of Two Sorted Doubly Circular Linked Lists

d. Delete all occurrences of a given key in a Doubly Linked List

e. Delete a Doubly Linked List Node at a Given Position

46

9. Trees

a. Tree Creation and Basic Tree Terminologies

b. Binary Tree Traversal Techniques

c. Insertion in a Binary Tree in Level Order

d. Finding the Maximum Height or Depth of a Binary Tree

e. Deletion in a Binary Tree

53

10. Binary Search Tree (BST)

a. Searching in Binary Search Tree

b. Find the node with Minimum Value in a BST

c. Check if a Binary Tree is BST or not

d. Second Largest Element in BST

e. Insertion in Binary Search Tree (BST)

60

11. AVL Tree

a. Insertion in an AVL Tree

b. Deletion in an AVL Tree

c. Count Greater Nodes in AVL Tree

d. Minimum Number of Nodes in an AVL Tree with given Height

68

12. Graph Traversal

a. Breadth First Search

b. Depth First Search

c. Best First Search (Informed Search)

d. Breadth First Traversal of a Graph

e. Depth First Search (DFS) for Disconnected Graph

73

13. Minimum Spanning Tree (MST)

a. Kruskal’s Algorithm

b. Prim’s Algorithm

c. Total Number of Spanning Trees in a Graph

d. Minimum Product Spanning Tree

80

14. Final Notes 90

229 | P a g e

IV. COURSE CONTENT:

EXERCISES FOR DATA STRUCTURES LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory

practice sessions.

1. Getting Started Exercises

1.1 Sum of last digits of two given numbers

Rohit wants to add the last digits of two given numbers. For example, If the given numbers are 267 and

154, the output should be 11.

Below is the explanation -

Last digit of the 267 is 7

Last digit of the 154 is 4

Sum of 7 and 4 = 11

Write a program to help Rohit achieve this for any given two numbers.

The prototype of the method should be -

int addLastDigits(int input1, int input2);

where input1 and input2 denote the two numbers whose last digits are to be added.

Note: The sign of the input numbers should be ignored.

if the input numbers are 267 and 154, the sum of last two digits should be 11

if the input numbers are 267 and -154, the sum of last two digits should be 11

if the input numbers are -267 and 154, the sum of last two digits should be 11

if the input numbers are -267 and -154, the sum of last two digits should be 11

Input: 267 154

Output: 11

Input: 267 -154

Output: 11

Input: -267 154

Output: 11

Input: -267 -154

Output: 11

import java.util.Scanner;

class AddLastDigitsFunction
{
 int addLastDigits(int n1, int n2)

{
 # Write code here
 }

 public static void main(String args[])
 {
 AddLastDigitsFunction obj = new AddLastDigitsFunction();
 # Write code here
 System.out.println(obj.addLastDigits(n1,n2));
 }

}

230 | P a g e

1.2 Is N an exact multiple of M?

Write a function that accepts two parameters and finds whether the first parameter is an exact multiple

of the second parameter. If the first parameter is an exact multiple of the second parameter, the

function should return 2 else it should return 1.

If either of the parameters are zero, the function should return 3.

Assumption: Within the scope of this question, assume that - the first parameter can be positive,

negative or zero the second parameter will always be >=0

Input: num1 = 10, num2 = 5

Output: 2

Input: num1 = -10, num2 = 5

Output: 2

Input: num1 = 0, num2 = 5

Output: 3

Input: num1 = 10, num2 = 3

Output: 1

public class MultipleChecker
{
 public static int checkMultiple(int num1, int num2)
 {
 # Write code here
 }

 public static void main(String[] args)
 {
 # Write code here
 }
}

1.3 Combine Strings

Given 2 strings, a and b, return a new string of the form short+long+short, with the shorter string on

the outside and the longer string in the inside. The strings will not be the same length, but they may

be empty (length 0).

If input is "hi" and "hello", then output will be "hihellohi"

Input: Enter the first string: “hi”

 Enter the second string: “hello”

Output: “hihellohi”

Input: Enter the first string: “iare”

 Enter the second string: “college”

Output: “iarecollegeiare”

public class StringCombiner
{
 public static void main(String[] args)
 {
 # Write code here
 }

 public static String combineStrings(String a, String b)
 {
 # Write code here
 }
}

231 | P a g e

1.4 Even or Odd

Write a function that accepts 6 input parameters. The first 5 input parameters are of type int. The sixth

input parameter is of type string. If the sixth parameter contains the value "even", the function is

supposed to return the count of how many of the first five input parameters are even. If the sixth

parameter contains the value "odd", the function is supposed to return the count of how many of the

first five input parameters are odd.

Example:

If the five input parameters are 12, 17, 19, 14, and 115, and the sixth parameter is "odd", the function

must return 3, because there are three odd numbers 17, 19 and 115.

If the five input parameters are 12, 17, 19, 14, and 115, and the sixth parameter is "even", the function

must return 2, because there are two even numbers 12 and 14.

Note that zero is considered an even number.

Input: num1 = 12;

 num2 = 17;

 num3 = 19;

 num4 = 14;

 num5 = 115;

 type = "odd"

Output: 3

Input: num1 = 12;

 num2 = 17;

 num3 = 19;

 num4 = 14;

 num5 = 115;

 type = "even"

Output: 2

public class NumberCounter
{
 public static int countNumbers(int num1, int num2, int num3, int num4, int
num5, String type)
 {
 # Write code here
 }

 public static void main(String[] args)
 {
 # Write code here
 }
}

1.5 Second last digit of a given number

Write a function that returns the second last digit of the given number. Second last digit is being

referred to the digit in the tens place in the given number.

Example: if the given number is 197, the second last digit is 9.

Note 1: The second last digit should be returned as a positive number. i.e. if the given number is -197,

the second last digit is 9.

Note 2: If the given number is a single digit number, then the second last digit does not exist. In such

cases, the function should return -1. i.e. if the given number is 5, the second last digit should be

returned as -1.

Input: 197

Output: 9

232 | P a g e

Input: 5

Output: -1

Input: -197

Output: 9

public class SecondLastDigit
{
 public static int getSecondLastDigit(int number)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

1.6 Alternate String Combiner

Given two strings, a and b, print a new string which is made of the following combination-first

character of a, the first character of b, second character of a, second character of b and so on.

Any characters left, will go to the end of the result.

Hello,World

HWeolrllod

Input: “Hello,World”

Output: “HWeolrllod”

Input: “Iare,College”

Output: “ICaorlelege”

public class AlternateStringCombiner
{
 public static void main(String[] args)
 {
 # write code here
 }
 public static String combineStrings(String a, String b)
 {
 # write code here
 }
}

1.7 Padovan Sequence

The Padovan sequence is a sequence of numbers named after Richard Padovan, who attributed its

discovery to Dutch architect Hans van der Laan. The sequence was described by Ian Stewart in his

Scientific American column Mathematical Recreations in June 1996. The Padovan sequence is defined

by the following recurrence relation:

P(n) = P(n-2) + P(n-3)

with the initial conditions P(0) = P(1) = P(2) = 1.

In this sequence, each term is the sum of the two preceding terms, similar to the Fibonacci sequence.

However, the Padovan sequence has different initial conditions and exhibits different growth patterns.

The first few terms of the Padovan sequence are: 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, ...

Input: num = 10

Output: Padovan Sequence up to 10:

233 | P a g e

 1 1 1 2 2 3 4 5 7 9 12

Input: num = 20

Output: Padovan Sequence up to 20:

 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37 49 65 86 114 151 200
public class PadovanSequence
{
 public static int padovan(int n)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

1.8 Leaders in an array

Given an array arr of n positive integers, your task is to find all the leaders in the array. An element of

the array is considered a leader if it is greater than all the elements on its right side or if it is equal to

the maximum element on its right side. The rightmost element is always a leader.

Input: n = 6, arr[] = (16, 17, 4, 3, 5, 2}

Output: 17 5 2

Input: n = 5, arr[] = {10, 4, 2, 4, 1}

Output: 10 4 4 1

Input: n = 4, arr[] = {5, 10, 20, 40}

Output: 40

Input: n = 4, arr[] = {30, 10, 10, 5}

Output: 30 10 10 5

import java.util.ArrayList;
import java.util.List;
public class ArrayLeaders
{
 public static List<Integer> findArrayLeaders(int[] arr)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

1.9 Find the Value of a Number Raised to its Reverse

Given a number N and its reverse R. The task is to find the number obtained when the number is raised

to the power of its own reverse

Input : N = 2, R = 2

Output: 4

Explanation: Number 2 raised to the power of its reverse 2 gives 4 which gives 4 as a result after

performing modulo 109+7

234 | P a g e

Input: N = 57, R = 75

Output: 262042770

Explanation: 5775 modulo 109+7 gives us the result as 262042770

public class NumberPower
{
 public static long powerOfReverse(int N, int R)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

1.10 Mean of Array using Recursion

Find the mean of the elements of the array.

Mean = (Sum of elements of the Array) / (Total no of elements in Array)

Input: 1 2 3 4 5

Output: 3.0

Input: 1 2 3

Output: 2.0

To find the mean using recursion assume that the problem is already solved for N-1 i.e. you have to

find for n

Sum of first N-1 elements = (Mean of N-1 elements) * (N-1)

Mean of N elements = (Sum of first N-1 elements + N-th elements) / (N)

public class ArrayMean
{
 public static double findArrayMean(int[] arr)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

Try:

1. Kth Smallest Element: Given an array arr[] and an integer k where k is smaller than the size of the

array, the task is to find the kth smallest element in the given array. It is given that all array elements

are distinct.

Note: l and r denotes the starting and ending index of the array.

Input: n = 6, arr[] = {7, 10, 4, 3, 20, 15}, k = 3, l = 0, r = 5

Output: 7

Explanation: 3rd smallest element in the given array is 7.

Input: n = 5, arr[] = {7, 10, 4, 20, 15}, k = 4, l=0 r=4

Output: 15

Explanation: 4th smallest element in the given array is 15.

Your task is to complete the function kthSmallest() which takes the array arr[], integers l

and r denoting the starting and ending index of the array and an integer k as input and

235 | P a g e

returns the kth smallest element.

2. Count pairs with given sum: Given an array of N integers, and an integer K, find the

number of pairs of elements in the array whose sum is equal to K. Your task is to complete

the function getPairsCount() which takes arr[], n and k as input parameters and returns the

number of pairs that have sum K.

Input: N = 4, K = 6, arr[] = {1, 5, 7, 1}

Output: 2

Explanation: arr[0] + arr[1] = 1 + 5 = 6 and arr[1] + arr[3] = 5 + 1 = 6.

Input: N = 4, K = 2, arr[] = {1, 1, 1, 1}

Output: 6

Explanation: Each 1 will produce sum 2 with any 1.

236 | P a g e

2. Searching

2.1 Linear / Sequential Search

Linear search is defined as the searching algorithm where the list or data set is traversed from one end

to find the desired value. Given an array arr[] of n elements, write a recursive function to search a given

element x in arr[].

Linear search procedure:

1. Start from the leftmost element of arr[] and one by one compare x with each element of arr[]

2. If x matches with an element, return the index.

3. If x doesn’t match with any of the elements, return -1.

Input: arr[] = {10, 20, 80, 30, 60, 50, 110, 100, 130, 170}

 x = 110;

Output: 6

Element x is present at index 6

Input: arr[] = {10, 20, 80, 30, 60, 50, 110, 100, 130, 170}

 x = 175;

Output: -1

Element x is not present in arr[].

public class RecursiveLinearSearch
{
 public static int recursiveLinearSearch(int[] arr, int key, int index)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 # write code here
 }
}

2.2 Binary Search

Binary Search is defined as a searching algorithm used in a sorted array by repeatedly dividing the

search interval in half. The idea of binary search is to use the information that the array is sorted and

reduce the time complexity to O(log N).

https://www.geeksforgeeks.org/searching-algorithms/

237 | P a g e

Conditions for Binary Search algorithm:

1. The data structure must be sorted.

2. Access to any element of the data structure takes constant time.

Binary Search Procedure:

1. Divide the search space into two halves by finding the middle index “mid”.
2. Compare the middle element of the search space with the key.

3. If the key is found at middle element, the process is terminated.

4. If the key is not found at middle element, choose which half will be used as the next search space.

 a. If the key is smaller than the middle element, then the left side is used for next search.

 b. If the key is larger than the middle element, then the right side is used for next search.

5. This process is continued until the key is found or the total search space is exhausted.

Input: arr = [2, 5, 8, 12, 16, 23, 38, 56, 72, 91]

Output: target = 23

 Element 23 is present at index 5

public class RecursiveBinarySearch
{
 public static int recursiveBinarySearch(int[] arr, int key, int left, int
right)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 # write code here
 }
}

2.3 Uniform Binary Search

238 | P a g e

Uniform Binary Search is an optimization of Binary Search algorithm when many searches are made

on same array or many arrays of same size. In normal binary search, we do arithmetic operations to find

the mid points. Here we precompute mid points and fills them in lookup table. The array look-up

generally works faster than arithmetic done (addition and shift) to find the mid-point.

Input: array = {1, 3, 5, 6, 7, 8, 9}, v=3

Output: Position of 3 in array = 2

Input: array = {1, 3, 5, 6, 7, 8, 9}, v=7

Output: Position of 7 in array = 5

The algorithm is very similar to Binary Search algorithm, the only difference is a lookup table is created

for an array and the lookup table is used to modify the index of the pointer in the array which makes

the search faster. Instead of maintaining lower and upper bound the algorithm maintains an index and

the index is modified using the lookup table.

public class RecursiveUniformBinarySearch
{
 public static int recursiveUniformBinarySearch(int[] arr, int key, int[]
lookupTable, int left, int right)
 {
 # write code here
 }
 public static void main(String[] args)
 {
 # write code here
 }
}

2.4 Interpolation Search

Interpolation search works better than Binary Search for a Sorted and Uniformly Distributed array.

Binary search goes to the middle element to check irrespective of search-key. On the other hand,

Interpolation search may go to different locations according to search-key. If the value of the search-

key is close to the last element, Interpolation Search is likely to start search toward the end side.

Interpolation search is more efficient than binary search when the elements in the list are uniformly

distributed, while binary search is more efficient when the elements in the list are not uniformly

distributed.

Interpolation search can take longer to implement than binary search, as it requires the use of

additional calculations to estimate the position of the target element.

Input: arr = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Output: target = 5

public class InterpolationSearch
{
 public static int interpolationSearch(int[] arr, int key)
 {
 # write code here
 }

 public static void main(String[] args)
 {

239 | P a g e

 # write code here
 }
}

2.5 Fibonacci Search

Given a sorted array arr[] of size n and an element x to be searched in it. Return index of x if it is

present in array else return -1.

Input: arr[] = {2, 3, 4, 10, 40}, x = 10

Output: 3

Element x is present at index 3.

Input: arr[] = {2, 3, 4, 10, 40}, x = 11

Output: -1

Element x is not present.

Fibonacci Search is a comparison-based technique that uses Fibonacci numbers to search an element

in a sorted array.

Fibonacci Numbers are recursively defined as F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1. First few

Fibonacci Numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Fibonacci Search Procedure:

Let the searched element be x. The idea is to first find the smallest Fibonacci number that is greater

than or equal to the length of the given array. Let the found Fibonacci number be fib (m’th Fibonacci

number). We use (m-2)’th Fibonacci number as the index (If it is a valid index). Let (m-2)’th Fibonacci

Number be i, we compare arr[i] with x, if x is same, we return i. Else if x is greater, we recur for subarray

after i, else we recur for subarray before i.

Let arr[0..n-1] be the input array and the element to be searched be x.

1. Find the smallest Fibonacci number greater than or equal to n. Let this number be fibM [m’th

Fibonacci number]. Let the two Fibonacci numbers preceding it be fibMm1 [(m-1)’th Fibonacci

Number] and fibMm2 [(m-2)’th Fibonacci Number].

2. While the array has elements to be inspected:

i. Compare x with the last element of the range covered by fibMm2

ii. If x matches, return index

iii. Else If x is less than the element, move the three Fibonacci variables two Fibonacci down,

indicating elimination of approximately rear two-third of the remaining array.

iv. Else x is greater than the element, move the three Fibonacci variables one Fibonacci down.

Reset offset to index. Together these indicate the elimination of approximately front one-

third of the remaining array.

3. Since there might be a single element remaining for comparison, check if fibMm1 is 1. If Yes,

compare x with that remaining element. If match, return index.

public class FibonacciSearch
{
 public static int fibonacciSearch(int[] arr, int key)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 # write code here
 }

240 | P a g e

}

241 | P a g e

3. Sorting

3.1 Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements

if they are in the wrong order. This algorithm is not suitable for large data sets as its average and

worst-case time complexity is quite high.

Bubble Sort Procedure:

1. Traverse from left and compare adjacent elements and the higher one is placed at right side.

2. In this way, the largest element is moved to the rightmost end at first.

3. This process is then continued to find the second largest and place it and so on until the data is

sorted.

Input: arr = [6, 3, 0, 5]

Output:

First Pass:

Second Pass:

Third Pass:

import java.util.Scanner;

class BubbleSortExample
{
 public static void main(String[] args)
 {

 # write code here

242 | P a g e

 }

 public static void bubbleSort(int[] arr)
 {

 # write code here

 }
}

3.2 Selection Sort

Selection sort is a simple and efficient sorting algorithm that works by repeatedly selecting the smallest

(or largest) element from the unsorted portion of the list and moving it to the sorted portion of the list.

The algorithm repeatedly selects the smallest (or largest) element from the unsorted portion of the list

and swaps it with the first element of the unsorted part. This process is repeated for the remaining

unsorted portion until the entire list is sorted.

Input: arr = [64, 25, 12, 22, 11]

Output: arr = [11, 12, 22, 25, 64]

First Pass: For the first position in the sorted array, the whole array is traversed from index 0 to 4

sequentially. The first position where 64 is stored presently, after traversing whole array it is clear that

11 is the lowest value. Thus, replace 64 with 11. After one iteration 11, which happens to be the least

value in the array, tends to appear in the first position of the sorted list.

Second Pass: For the second position, where 25 is present, again traverse the rest of the array in a

sequential manner. After traversing, we found that 12 is the second lowest value in the array and it

should appear at the second place in the array, thus swap these values.

Third Pass: Now, for third place, where 25 is present again traverse the rest of the array and find the

third least value present in the array. While traversing, 22 came out to be the third least value and it

should appear at the third place in the array, thus swap 22 with element present at third position.

Fourth Pass: Similarly, for fourth position traverse the rest of the array and find the fourth least

element in the array. As 25 is the 4th lowest value hence, it will place at the fourth position.

243 | P a g e

Fifth Pass: At last the largest value present in the array automatically get placed at the last position in

the array. The resulted array is the sorted array.

import java.util.Scanner;

class SelectionSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void selectionSort(int[] arr)
 {
 # write code here
 }
}

3.3 Insertion Sort

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your

hands. The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are

picked and placed at the correct position in the sorted part.

Insertion Sort Procedure:

1. To sort an array of size N in ascending order iterate over the array and compare the current element

 (key) to its predecessor, if the key element is smaller than its predecessor, compare it to the elements

 before.

2. Move the greater elements one position up to make space for the swapped element.

Input: arr = [4, 3, 2, 10, 12, 1, 5, 6]

Output: arr = [1, 2, 3, 4, 5, 6, 10, 12]

import java.util.Scanner;

class InsertionSortExample
{

244 | P a g e

 public static void main(String[] args)
 {

write code here
 }

 public static void insertionSort(int[] arr)
 {
 # write code here
 }
}

245 | P a g e

4. Divide and Conquer

4.1 Quick Sort

QuickSort is a sorting algorithm based on the Divide and Conquer algorithm that picks an element as a

pivot and partitions the given array around the picked pivot by placing the pivot in its correct position

in the sorted array. The key process in quickSort is a partition(). The target of partitions is to place the

pivot (any element can be chosen to be a pivot) at its correct position in the sorted array and put all

smaller elements to the left of the pivot, and all greater elements to the right of the pivot. Partition is

done recursively on each side of the pivot after the pivot is placed in its correct position and this finally

sorts the array.

The quick sort method can be summarized in three steps:

1. Pick: Select a pivot element.

2. Divide: Split the problem set, move smaller parts to the left of the pivot and larger items to the right.

3. Repeat and combine: Repeat the steps and combine the arrays that have previously been sorted.

Algorithm for Quick Sort Function:

//start –> Starting index, end --> Ending index

Quicksort(array, start, end)

{

 if (start < end)

 {

 pIndex = Partition(A, start, end)

 Quicksort(A,start,pIndex-1)

 Quicksort(A,pIndex+1, end)

 }

}

Algorithm for Partition Function:

partition (array, start, end)

{

 // Setting rightmost Index as pivot

 pivot = arr[end];

 i = (start - 1) // Index of smaller element and indicates the

 // right position of pivot found so far

for (j = start; j <= end- 1; j++)

246 | P a g e

 {

 // If current element is smaller than the pivot

 if (arr[j] < pivot)

 {

 i++; // increment index of smaller element

 swap arr[i] and arr[j]

 }

 }

 swap arr[i + 1] and arr[end])

 return (i + 1)

}

Input: arr = [10, 80, 30, 90, 40, 50, 70]

Output: arr = [10, 30, 40, 50, 70, 80, 90]

import java.util.Scanner;

class QuickSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void quickSort(int[] arr, int low, int high)
 {
 # write code here
 }

 public static int partition(int[] arr, int low, int high)
 {
 # write code here
 }
}

4.2 Merge Sort

Merge sort is defined as a sorting algorithm that works by dividing an array into smaller subarrays,

sorting each subarray, and then merging the sorted subarrays back together to form the final sorted

array. In simple terms, we can say that the process of merge sort is to divide the array into two halves,

sort each half, and then merge the sorted halves back together. This process is repeated until the entire

array is sorted.

247 | P a g e

Input: arr = [12, 11, 13, 5, 6, 7]

Output: arr = [5, 6, 7, 11, 12, 13]

import java.util.Scanner;

class MergeSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void mergeSort(int[] arr, int low, int high)
 {
 # write code here
 }

 public static void merge(int[] arr, int low, int mid, int high)
 {
 # write code here
 }
}

4.3 Heap Sort

Heap sort is a comparison-based sorting technique based on Binary Heap data structure. It is similar to

the selection sort where we first find the minimum element and place the minimum element at the

beginning. Repeat the same process for the remaining elements.

Heap Sort Procedure:

First convert the array into heap data structure using heapify, then one by one delete the root node of

the Max-heap and replace it with the last node in the heap and then heapify the root of the heap.

Repeat this process until size of heap is greater than 1.

• Build a heap from the given input array.

• Repeat the following steps until the heap contains only one element:

• Swap the root element of the heap (which is the largest element) with the last element of the

heap.

• Remove the last element of the heap (which is now in the correct position).

• Heapify the remaining elements of the heap.

• The sorted array is obtained by reversing the order of the elements in the input array.

Input: arr = [12, 11, 13, 5, 6, 7]

Output: Sorted array is 5 6 7 11 12 13

import java.util.Scanner;

class HeapSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

248 | P a g e

 public static void heapSort(int[] arr)
 {
 # write code here
 }

 public static void heapify(int[] arr, int n, int i)
 {
 # write code here
 }
}

4.4 Radix Sort

Radix Sort is a linear sorting algorithm that sorts elements by processing them digit by digit. It is an

efficient sorting algorithm for integers or strings with fixed-size keys. Rather than comparing elements

directly, Radix Sort distributes the elements into buckets based on each digit’s value. By repeatedly

sorting the elements by their significant digits, from the least significant to the most significant, Radix

Sort achieves the final sorted order.

Radix Sort Procedure:

The key idea behind Radix Sort is to exploit the concept of place value.

1. It assumes that sorting numbers digit by digit will eventually result in a fully sorted list.

2. Radix Sort can be performed using different variations, such as Least Significant Digit (LSD) Radix

Sort

 or Most Significant Digit (MSD) Radix Sort.

To perform radix sort on the array [170, 45, 75, 90, 802, 24, 2, 66], we follow these steps:

Step 1: Find the largest element in the array, which is 802. It has three digits, so we will iterate three

times, once for each significant place.

Step 2: Sort the elements based on the unit place digits (X=0). We use a stable sorting technique, such

as counting sort, to sort the digits at each significant place.

Sorting based on the unit place:

Perform counting sort on the array based on the unit place digits.

The sorted array based on the unit place is [170, 90, 802, 2, 24, 45, 75, 66]

249 | P a g e

Step 3: Sort the elements based on the tens place digits.

Sorting based on the tens place:

Perform counting sort on the array based on the tens place digits.

The sorted array based on the tens place is [802, 2, 24, 45, 66, 170, 75, 90]

Step 4: Sort the elements based on the hundreds place digits.

Sorting based on the hundreds place:

Perform counting sort on the array based on the hundreds place digits.

The sorted array based on the hundreds place is [2, 24, 45, 66, 75, 90, 170, 802]

Step 5: The array is now sorted in ascending order.

The final sorted array using radix sort is [2, 24, 45, 66, 75, 90, 170, 802]

import java.util.Arrays;

class RadixSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void radixSort(int[] arr)
 {
 # write code here
 }

 public static int getMax(int[] arr)
 {

250 | P a g e

 # write code here
 }

 public static void countSort(int[] arr, int exp)
 {
 # write code here
 }
}

4.5 Shell Sort

Shell sort is mainly a variation of Insertion Sort. In insertion sort, we move elements only one position

ahead. When an element has to be moved far ahead, many movements are involved. The idea of

ShellSort is to allow the exchange of far items. In Shell sort, we make the array h-sorted for a large

value of h. We keep reducing the value of h until it becomes 1. An array is said to be h-sorted if all

sublists of every h’th element are sorted.

Shell Sort Procedure:

1. Initialize the value of gap size h

2. Divide the list into smaller sub-part. Each must have equal intervals to h

3. Sort these sub-lists using insertion sort

4. Repeat this step 1 until the list is sorted.

5. Print a sorted list.

Procedure Shell_Sort(Array, N)

 While Gap < Length(Array) /3 :

 Gap = (Interval * 3) + 1

 End While Loop

 While Gap > 0 :

 For (Outer = Gap; Outer < Length(Array); Outer++):

 Insertion_Value = Array[Outer]

 Inner = Outer;

 While Inner > Gap-1 And Array[Inner – Gap] >= Insertion_Value:

 Array[Inner] = Array[Inner – Gap]

 Inner = Inner – Gap

 End While Loop

 Array[Inner] = Insertion_Value

 End For Loop

 Gap = (Gap -1) /3;

 End While Loop

End Shell_Sort

import java.util.Scanner;

class ShellSortExample
{
 public static void main(String[] args)
 {
 # write code here
 }

 public static void shellSort(int[] arr)
 {
 # write code here

251 | P a g e

 }
}

252 | P a g e

5. Stack

5.1 Implementation of Stack

A stack is a linear data structure that stores items in a Last-In/First-Out (LIFO) or First-In/Last-Out (FILO)

manner. In stack, a new element is added at one end and an element is removed from that end only.

The insert and delete operations are often called push and pop.

The functions associated with stack are:

• empty() – Returns whether the stack is empty

• size() – Returns the size of the stack

• top() / peek() – Returns a reference to the topmost element of the stack

• push(a) – Inserts the element ‘a’ at the top of the stack

• pop() – Deletes the topmost element of the stack

class Stack
{
 private int maxSize;
 private int top;
 private int[] stackArray;

 public Stack(int size)
 {
 # write code here
 }

 public void push(int value)
 {
 # write code here
 }

 public int pop()
 {
 # write code here
 }

 public int peek()
 {
 # write code here
 }

 public boolean isEmpty()
 {

 # write code here
 }

 public boolean isFull()
 {
 # write code here

253 | P a g e

 }
}

class StackExample
{
 public static void main(String[] args)
 {
 Stack stack = new Stack(5);
 stack.push(10);
 stack.push(20);
 stack.push(30);
 stack.pop();
 stack.peek();
 stack.push(40);
 stack.push(50);
 stack.push(60);
 }
}

5.2 Balanced Parenthesis Checking

Given an expression string, write a java program to find whether a given string has balanced

parentheses or not.

Input: "{(a+b)*(c-d)}"

Output: true

Input: "{(a+b)*[c-d)}"

Output: false

One approach to check balanced parentheses is to use stack. Each time, when an open parentheses is

encountered push it in the stack, and when closed parenthesis is encountered, match it with the top of

stack and pop it. If stack is empty at the end, return true otherwise, false

import java.util.Stack;

class BalancedParenthesisChecker
{
 public static boolean isBalanced(String expression)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 String expression1 = "{(a+b)*(c-d)}";
 String expression2 = "{(a+b)*[c-d)}";

 # write code here
 }
}

5.3 Evaluation of Postfix Expression

Given a postfix expression, the task is to evaluate the postfix expression. Postfix expression: The

expression of the form “a b operator” (ab+) i.e., when a pair of operands is followed by an operator.

Input: str = “2 3 1 * + 9 -“

Output: -4

Explanation: If the expression is converted into an infix expression, it will be 2 + (3 * 1) – 9 = 5 – 9 = -4.

Input: str = “100 200 + 2 / 5 * 7 +”

254 | P a g e

Output: 757

Procedure for evaluation postfix expression using stack:

• Create a stack to store operands (or values).

• Scan the given expression from left to right and do the following for every scanned element.

o If the element is a number, push it into the stack.

o If the element is an operator, pop operands for the operator from the stack. Evaluate the

operator and push the result back to the stack.

• When the expression is ended, the number in the stack is the final answer.

import java.util.Stack;

class PostfixEvaluator
{
 public static int evaluatePostfix(String expression)
 {
 # write code here
 }

 public static int performOperation(char operator, int operand1, int operand2)
 {
 # write code here
 }

 public static void main(String[] args)
 {
 # write code here
 }
}

5.4 Infix to Postfix Expression Conversion

For a given Infix expression, convert it into Postfix form.

Infix expression: The expression of the form “a operator b” (a + b) i.e., when an operator is in-between

every pair of operands.

Postfix expression: The expression of the form “a b operator” (ab+) i.e., When every pair of operands is

followed by an operator.

Infix to postfix expression conversion procedure:

1. Scan the infix expression from left to right.

2. If the scanned character is an operand, put it in the postfix expression.

3. Otherwise, do the following

• If the precedence and associativity of the scanned operator are greater than the

precedence and associativity of the operator in the stack [or the stack is empty or the stack

contains a ‘(‘], then push it in the stack. [‘^‘ operator is right associative and other operators

like ‘+‘,’–‘,’*‘ and ‘/‘ are left-associative].

• Check especially for a condition when the operator at the top of the stack and

the scanned operator both are ‘^‘. In this condition, the precedence of the scanned

operator is higher due to its right associativity. So it will be pushed into the operator stack.

• In all the other cases when the top of the operator stack is the same as the

scanned operator, then pop the operator from the stack because of left associativity due to

which the scanned operator has less precedence.

• Else, Pop all the operators from the stack which are greater than or equal to in

precedence than that of the scanned operator.

• After doing that Push the scanned operator to the stack. (If you encounter

parenthesis while popping then stop there and push the scanned operator in the stack.)

255 | P a g e

4. If the scanned character is a ‘(‘, push it to the stack.

5. If the scanned character is a ‘)’, pop the stack and output it until a ‘(‘ is encountered, and

discard both the parenthesis.

6. Repeat steps 2-5 until the infix expression is scanned.

7. Once the scanning is over, Pop the stack and add the operators in the postfix expression until it

is not empty.

8. Finally, print the postfix expression.

Input: A + B * C + D

Output: A B C * + D +

Input: ((A + B) – C * (D / E)) + F

Output: A B + C D E / * - F +

import java.util.Stack;

class Conversion

{

 # Write Code Here

}

5.5 Reverse a Stack

The stack is a linear data structure which works on the LIFO concept. LIFO stands for last in first out. In the

stack, the insertion and deletion are possible at one end the end is called the top of the stack. Define

two recursive functions BottomInsertion() and Reverse() to reverse a stack using Python. Define some

basic function of the stack like push(), pop(), show(), empty(), for basic operation like respectively

append an item in stack, remove an item in stack, display the stack, check the given stack is empty or

not.

BottomInsertion(): this method append element at the bottom of the stack and BottomInsertion accept

two values as an argument first is stack and the second is elements, this is a recursive method.

Reverse(): the method is reverse elements of the stack, this method accept stack as an argument Reverse()

is also a Recursive() function. Reverse() is invoked BottomInsertion() method for completing the reverse

operation on the stack.

Input: Elements = [1, 2, 3, 4, 5]

Output: Original Stack

5

4

3

2

1

Stack after Reversing

1

2

3

4

5

import java.util.Stack;
class StackClass {

Write Code Here
 }

256 | P a g e

6. Queue

6.1 Linear Queue

Linear queue is a linear data structure that stores items in First in First out (FIFO) manner. With a queue

the least recently added item is removed first. A good example of queue is any queue of consumers for

a resource where the consumer that came first is served first.

import java.util.Scanner;

public class LinearQueue

{
 # Write Code Here

}
 public static boolean isEmpty() {
 return front == rear;
 }
 public static boolean isFull() {
 return rear == MAX;
 }
 public static void enqueue(int item)

{
Write Code Here
}

 public static void dequeue()

{
Write Code Here
}

public static void display()
{

 # Write Code Here
 }
 public static void main(String[] args)

{
 # Write Code Here

}
}

6.2 Stack using Queues

Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should

support all the functions of a normal stack (push, top, pop, and empty).

• void push(int x) Pushes element x to the top of the stack.

• int pop() Removes the element on the top of the stack and returns it.

• int top() Returns the element on the top of the stack.

257 | P a g e

• boolean empty() Returns true if the stack is empty, false otherwise.

Input:

["MyStack", "push", "push", "top", "pop", "empty"]

[[], [1], [2], [], [], []]

Output:

[null, null, null, 2, 2, false]

import java.util.LinkedList;
import java.util.Queue;

class MyStack

 {
 # Write Code Here

 }
 public void push(int x)

{
 # Write Code Here

}
 }

 public int pop()

{
 return queue.remove();
 }

 public int top() {
 return queue.peek();
 }

 public boolean empty() {
 return queue.isEmpty();
 }
 public static void main(String[] args)

{
 # Write Code Here

}
}

6.3 Queue using Stacks

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should

support all the functions of a normal queue (push, peek, pop, and empty).

• void push(int x) Pushes element x to the back of the queue.

• int pop() Removes the element from the front of the queue and returns it.

• int peek() Returns the element at the front of the queue.

• boolean empty() Returns true if the queue is empty, false otherwise.

Input:

["MyQueue", "push", "push", "peek", "pop", "empty"]

[[], [1], [2], [], [], []]

Output:

[null, null, null, 1, 1, false]

import java.util.Stack;

class MyQueue {

 private Stack<Integer> stack1;

258 | P a g e

 private Stack<Integer> stack2;
 public MyQueue() {
 stack1 = new Stack<>();
 stack2 = new Stack<>();
 }
 public void push(int x) {
 stack1.push(x);
 }
 public int pop()

{
 # Write Code Here
 }
 public int peek()

{
Write Code Here
}

 public boolean empty() {
 return stack1.isEmpty() && stack2.isEmpty();
 }
 public static void main(String[] args)

{
 # Write Code Here

}
}

6.4 Circular Queue

A Circular Queue is an extended version of a normal queue where the last element of the queue is

connected to the first element of the queue forming a circle. The operations are performed based on

FIFO (First In First Out) principle. It is also called ‘Ring Buffer’.

Operations on Circular Queue:

• Front: Get the front item from the queue.

• Rear: Get the last item from the queue.

• enQueue(value) This function is used to insert an element into the circular queue. In a circular

queue, the new element is always inserted at the rear position.

• Check whether the queue is full – [i.e., the rear end is in just before the front end in a

circular manner].

• If it is full then display Queue is full.

• If the queue is not full then, insert an element at the end of the queue.

• deQueue() This function is used to delete an element from the circular queue. In a circular

queue, the element is always deleted from the front position.

• Check whether the queue is Empty.

• If it is empty then display Queue is empty.

• If the queue is not empty, then get the last element and remove it from

the queue.

259 | P a g e

Implement Circular Queue using Array:

5. Initialize an array queue of size n, where n is the maximum number of elements that the queue

can hold.

6. Initialize two variables front and rear to -1.

7. Enqueue: To enqueue an element x into the queue, do the following:

• Increment rear by 1.

• If rear is equal to n, set rear to 0.

• If front is -1, set front to 0.

• Set queue[rear] to x.

8. Dequeue: To dequeue an element from the queue, do the following:

• Check if the queue is empty by checking if front is -1.

• If it is, return an error message indicating that the queue is empty.

• Set x to queue [front].

• If front is equal to rear, set front and rear to -1.

• Otherwise, increment front by 1 and if front is equal to n, set front to 0.

• Return x.

class CircularQueue {

 private int size;
 private int front, rear;
 private int[] queue;

 public CircularQueue(int size) {
 this.size = size;
 this.queue = new int[size];
 this.front = this.rear = -1;
 }

 public void enqueue(int data)

{
Write Code Here
}

 public int dequeue()
{

 # Write Code Here
}

 public void display()
{
Write Code Here

260 | P a g e

 }
 public static void main(String[] args)

{
Write Code Here

 }
}

6.5 Deque (Doubly Ended Queue)

In a Deque (Doubly Ended Queue), one can perform insert (append) and delete (pop) operations from

both the ends of the container. There are two types of Deque:

1. Input Restricted Deque: Input is limited at one end while deletion is permitted at both ends.

2. Output Restricted Deque: Output is limited at one end but insertion is permitted at both ends.

Operations on Deque:

1. append(): This function is used to insert the value in its argument to the right end of the deque.

2. appendleft(): This function is used to insert the value in its argument to the left end of the deque.

3. pop(): This function is used to delete an argument from the right end of the deque.

4. popleft(): This function is used to delete an argument from the left end of the deque.

5. index(ele, beg, end): This function returns the first index of the value mentioned in arguments, starting

searching from beg till end index.

6. insert(i, a): This function inserts the value mentioned in arguments(a) at index(i) specified in

arguments.

7. remove(): This function removes the first occurrence of the value mentioned in arguments.

8. count(): This function counts the number of occurrences of value mentioned in arguments.

9. len(dequeue): Return the current size of the dequeue.

10. Deque[0]: We can access the front element of the deque using indexing with de[0].

11. Deque[-1]: We can access the back element of the deque using indexing with de[-1].

12. extend(iterable): This function is used to add multiple values at the right end of the deque. The argument

passed is iterable.

13. extendleft(iterable): This function is used to add multiple values at the left end of the deque. The argument

passed is iterable. Order is reversed as a result of left appends.

14. reverse(): This function is used to reverse the order of deque elements.

15. rotate(): This function rotates the deque by the number specified in arguments. If the number specified is

negative, rotation occurs to the left. Else rotation is to right.

import java.util.ArrayDeque;
import java.util.Deque;

public class DequeOperations
{
 # Write Code Here
}

261 | P a g e

7. Linked List

7.1 Singly Linked List

A singly linked list is a linear data structure in which the elements are not stored in contiguous memory

locations and each element is connected only to its next element using a pointer.

Creating a linked list involves the following operations:

1. Creating a Node class:

2. Insertion at beginning:

3. Insertion at end

4. Insertion at middle

5. Update the node

6. Deletion at beginning

7. Deletion at end

8. Deletion at middle

9. Remove last node

10. Linked list traversal

11. Get length

class Node {
 String data;
 Node next;

 Node(String data) {
 this.data = data;
 this.next = null;
 }
}

class LinkedList

{
Write Code Here

 }

 public void insertAtEnd(String data)

{
 # Write Code Here
 }

 public void updateNode(String val, int index)

{
Write Code Here
}

 public void remove_first_node() {
 # Write Code Here
 }

 public void remove_last_node()

{
 # Write Code Here

262 | P a g e

 }

 public void remove_at_index(int index)

 {
Write Code Here

 }

 public void remove_node(String data)

{
 # Write Code Here
 }

 public int sizeOfLL()

{
 # Write Code Here

}

 public void printLL()

{
 # Write Code Here

}

 public static void main(String[] args)

{
 # Write Code Here
 }
}

7.2 Linked List Cycle

Given head, the head of a linked list, determine if the linked list has a cycle in it. There is a cycle in a

linked list if there is some node in the list that can be reached again by continuously following the next

pointer. Internally, pos is used to denote the index of the node that tail's next pointer is connected to.

Note that pos is not passed as a parameter.

Return true if there is a cycle in the linked list. Otherwise, return false.

Input: head = [3, 2, 0, -4], pos = 1

Output: true

Explanation: There is a cycle in the linked list, where the tail connects to the 1st node (0-indexed).

Input: head = [1, 2], pos = 0

Output: true

Explanation: There is a cycle in the linked list, where the tail connects to the 0th node.

Input: head = [1], pos = -1

Output: false

263 | P a g e

Explanation: There is no cycle in the linked list.

class ListNode
{

 # Write Code Here
}

public class Solution

{
 # Write Code Here

}
}

7.3 Remove Linked List Elements

Given the head of a linked list and an integer val, remove all the nodes of the linked list that has

Node.val == val, and return the new head.

Input: head = [1, 2, 6, 3, 4, 5, 6], val = 6

Output: [1, 2, 3, 4, 5]
Input: head = [], val = 1

Output: []
Input: head = [7, 7, 7, 7], val = 7

Output: []

class ListNode {
 # Write Code Here
 }
}
public class Solution {
 public boolean hasCycle(ListNode head)

{
 # Write Code Here
 }

 public static void main(String[] args)

{
 # Write Code Here
 }
}

7.4 Reverse Linked List

Given the head of a singly linked list, reverse the list, and return the reversed list.

Input: head = [1, 2, 3, 4, 5]

Output: [5, 4, 3, 2, 1]

264 | P a g e

Input: head = [1, 2]

Output: [2, 1]

class ListNode {
 int val;
 ListNode next;

 ListNode(int val) {
 this.val = val;
 this.next = null;
 }
}

public class Solution {
 public ListNode reverseList(ListNode head)

{
 # Write Code Here
 }

 public static void main(String[] args)

{
 # Write Code Here

}

7.5 Palindrome Linked List

Given the head of a singly linked list, return true if it is a palindrome or false otherwise.

Input: head = [1, 2, 2, 1]

Output: true

Input: head = [1, 2]

Output: false

class ListNode
{

265 | P a g e

Write Code Here
}

public class Solution {
 public boolean isPalindrome(ListNode head)

{
 # Write Code Here

}

 public static void main(String[] args)

{
Write Code Here

 }
}

7.6 Middle of the Linked List

Given the head of a singly linked list, return the middle node of the linked list. If there are two middle

nodes, return the second middle node.

Input: head = [1, 2, 3, 4, 5]

Output: [3, 4, 5]

Explanation: The middle node of the list is node 3.

Input: head = [1, 2, 3, 4, 5, 6]

Output: [4, 5, 6]

Explanation: Since the list has two middle nodes with values 3 and 4, we return the second one.

class ListNode
{

 # Write Code Here
 }
}
public class Solution
 {
 # Write Code Here
 }

 public static void main(String[] args) {
 # Write Code Here
 }
}

7.7 Convert Binary Number in a Linked List to Integer

Given head which is a reference node to a singly-linked list. The value of each node in the linked list is

either 0 or 1. The linked list holds the binary representation of a number.

Return the decimal value of the number in the linked list. The most significant bit is at the head of the

linked list.

Input: head = [1, 0, 1]

Output: 5

Explanation: (101) in base 2 = (5) in base 10

Input: head = [0]

266 | P a g e

Output: 0

class ListNode {
 int val;
 ListNode next;

 ListNode(int val) {
 this.val = val;
 this.next = null;
 }
}

public class Solution

 {
 # Write Code Here

 }

 public static void main(String[] args)

{
Write Code Here

 }
}

267 | P a g e

8. Circular Single Linked List and Doubly Linked List

8.1 Circular Linked List

The circular linked list is a linked list where all nodes are connected to form a circle. In a circular linked

list, the first node and the last node are connected to each other which forms a circle. There is no NULL

at the end.

Operations on the circular linked list:

1. Insertion at the beginning

2. Insertion at the end

3. Insertion in between the nodes

4. Deletion at the beginning

5. Deletion at the end

6. Deletion in between the nodes

7. Traversal

import java.util.ArrayList;
public class Main{
 static class Node{
 int data;
 Node next;
 Node(int data){
 this.data = data;
 this.next = null;
 }
 }
 static class CircularLinkedList

{
 # Write Code Here
 }
 Node addAfter(int data, int item)

{
 # Write Code Here
 }
void deleteNode(Node last, int key)

{
 # Write Code Here

}
 System.

8.2 Doubly Linked List

The A doubly linked list is a type of linked list in which each node consists of 3 components:

1. *prev - address of the previous node

2. data - data item

3. *next - address of next node.

268 | P a g e

 Double Linked List Node

Operations on the Double Linked List:

1. Insertion at the beginning

2. Insertion at the end

3. Insertion in between the nodes

4. Deletion at the beginning

5. Deletion at the end

6. Deletion in between the nodes

7. Traversal

269 | P a g e

import java.util.Scanner;

class Node {
 int data;
 Node next;
 Node prev;

 Node(int data) {
 this.data = data;
 this.next = null;
 this.prev = null;
 }
}

class DLinkedList {
 Node head;
 int ctr;

 DLinkedList() {
 this.head = null;
 this.ctr = 0;
 }

 void insertBeg(int data)

{
Write Code Here

 }
 void insertEnd(int data)

{
Write Code Here

 }

 void deleteBeg()

{
Write Code Here
}

 void deleteEnd()
{

 # Write Code Here
 }

 void insertPos(int pos, int data)

{
Write Code Here

 }

 void deletePos(int pos)

{
 # Write Code Here
 }

 void traverseF()

{
 # Write Code Here
 }

 void traverseR()

{

270 | P a g e

 # Write Code Here
}

public class Main {
 public static void main(String[] args)
 {
 # Write Code Here
 }
}

8.3 Sorted Merge of Two Sorted Doubly Circular Linked Lists

Given two sorted Doubly circular Linked List containing n1 and n2 nodes respectively. The problem is to

merge the two lists such that resultant list is also in sorted order.

Input: List 1 and List 2

Output: Merged List

Procedure for Merging Doubly Linked List:

1. If head1 == NULL, return head2.

2. If head2 == NULL, return head1.

3. Let last1 and last2 be the last nodes of the two lists respectively. They can be obtained with

the help of the previous links of the first nodes.

4. Get pointer to the node which will be the last node of the final list. If last1.data < last2.data,

then last_node = last2, Else last_node = last1.

5. Update last1.next = last2.next = NULL.

6. Now merge the two lists as two sorted doubly linked list are being merged.

Refer merge procedure of this post. Let the first node of the final list be finalHead.

7. Update finalHead.prev = last_node and last_node.next = finalHead.

https://www.geeksforgeeks.org/merge-sort-for-doubly-linked-list/

271 | P a g e

8. Return finalHead.

class Node {
 int data;
 Node next, prev;

 Node(int data) {
 this.data = data;
 this.next = null;
 this.prev = null;
 }
}

public class SortedMergeDoublyCircularLinkedList
 {
Write Code Here
 }

 static Node mergeUtil(Node head1, Node head2)
 {
Write Code Here
 }

 static void printList(Node head)
 {
Write Code Here
 }

 public static void main(String[] args)
 {
 # Write Code Here
 }
}

8.4 Delete all occurrences of a given key in a Doubly Linked List

Given a doubly linked list and a key x. The problem is to delete all occurrences of the given key x from the

doubly linked list.

Input: 2 <-> 2 <-> 10 <-> 8 <-> 4 <-> 2 <-> 5 <-> 2

 x = 2

Output: 10 <-> 8 <-> 4 <-> 5

Algorithm:

delAllOccurOfGivenKey (head_ref, x)

 if head_ref == NULL

 return

 Initialize current = head_ref

 Declare next

 while current != NULL

 if current->data == x

 next = current->next

 deleteNode(head_ref, current)

 current = next

 else

 current = current->next

272 | P a g e

class Node {
 int data;
 Node next, prev;

 Node(int data) {
 this.data = data;
 this.next = null;
 this.prev = null;
 }
}

public class DeleteOccurrenceInDoublyLinkedList

{
 # Write Code Here
 }

 static Node deleteAllOccurOfX(Node head, int x)

{
Write Code Here

 }

 static void printList(Node head)

{
 # Write Code Here

}

 public static void main(String[] args)

{
Write Code Here

 }

}

8.5 Delete a Doubly Linked List Node at a Given Position

Given a doubly linked list and a position n. The task is to delete the node at the given position n from the

beginning.

Input: Initial doubly linked list

Output: Doubly Linked List after deletion of node at position n = 2

Procedure:

1. Get the pointer to the node at position n by traversing the doubly linked list up to the nth node

from the beginning.

2. Delete the node using the pointer obtained in Step 1.

class Node {
 int data;
 Node next, prev;

 Node(int data) {

273 | P a g e

 this.data = data;
 this.next = null;
 this.prev = null;
 }
}

public class DeleteNodeAtGivenPosition
 {
 # Write Code Here
 }

 static Node deleteNode(Node head, Node del)
 {
 # Write Code Here
 }

 static Node deleteNodeAtGivenPos(Node head, int n)
 {
 # Write Code Here
 }
 static void printList(Node head)
 {
 # Write Code Here
 }
}

274 | P a g e

9. Trees

9.1 Tree Creation and Basic Tree Terminologies

A tree data structure is a hierarchical structure that is used to represent and organize data in a way that

is easy to navigate and search. It is a collection of nodes that are connected by edges and has a

hierarchical relationship between the nodes.

275 | P a g e

Basic Terminologies in Tree:

1. Parent Node: The node which is a predecessor of a node is called the parent node of that node. {B} is

the parent node of {D, E}.

2. Child Node: The node which is the immediate successor of a node is called the child node of that node.

Examples: {D, E} are the child nodes of {B}.

3. Root Node: The topmost node of a tree or the node which does not have any parent node is called the

root node. {A} is the root node of the tree. A non-empty tree must contain exactly one root node and

exactly one path from the root to all other nodes of the tree.

4. Leaf Node or External Node: The nodes which do not have any child nodes are called leaf nodes. {K, L,

M, N, O, P} are the leaf nodes of the tree.

5. Ancestor of a Node: Any predecessor nodes on the path of the root to that node are called Ancestors of

that node. {A, B} are the ancestor nodes of the node {E}

6. Descendant: Any successor node on the path from the leaf node to that node. {E, I} are the descendants

of the node {B}.

7. Sibling: Children of the same parent node are called siblings. {D, E} are called siblings.

8. Level of a node: The count of edges on the path from the root node to that node. The root node has

level 0.

9. Internal node: A node with at least one child is called Internal Node.

10. Neighbour of a Node: Parent or child nodes of that node are called neighbors of that node.

11. Subtree: Any node of the tree along with its descendant.

import java.util.ArrayList;
import java.util.List;

public class TreeBasicTerminologies

{

 # Write Code Here
 }
static void printChildren(int root, List<List<Integer>> adj)

{
 # Write Code Here
 }
 static void printLeafNodes(int root, List<List<Integer>> adj)

{
 # Write Code Here
 }
 static void printDegrees(int root, List<List<Integer>> adj)

{
 # Write Code Here
 }
 public static void main(String[] args)

{
 # Write Code Here
 }
}

9.2 Binary Tree Traversal Techniques

A binary tree data structure can be traversed in following ways:

1. Inorder Traversal

2. Preorder Traversal

3. Postorder Traversal

4. Level Order Traversal

276 | P a g e

Algorithm Inorder (tree)

1. Traverse the left subtree, i.e., call Inorder(left->subtree)

2. Visit the root.

3. Traverse the right subtree, i.e., call Inorder(right->subtree)

Algorithm Preorder (tree)

1. Visit the root.

2. Traverse the left subtree, i.e., call Preorder(left->subtree)

3. Traverse the right subtree, i.e., call Preorder(right->subtree)

Algorithm Postorder (tree)

1. Traverse the left subtree, i.e., call Postorder(left->subtree)

2. Traverse the right subtree, i.e., call Postorder(right->subtree)

3. Visit the root.

277 | P a g e

import java.util.Scanner;
class Node

{
 # Write Code Here

}
class BT {
 Node root;
 BT() {
 this.root = null;
 }
 void insert(int data)

{
Write Code Here
}

 Node insertRec(Node root, int data)
{

 # Write Code Here
 }
 void postorder(Node root)

{
 # Write Code Here
 }
 void preorder(Node root)

{
 # Write Code Here
 }
 }
 void inorder(Node root)

{
Write Code Here

 }
}

public class BinaryTreeTraversal {
 public static void main(String[] args)

 {
 # Write Code Here
 }
 }
 }
}

9.3 Insertion in a Binary Tree in Level Order

Given a binary tree and a key, insert the key into the binary tree at the first position available in level order.

Input: Consider the tree given below

Output:

278 | P a g e

The idea is to do an iterative level order traversal of the given tree using queue. If we find a node whose

left child is empty, we make a new key as the left child of the node. Else if we find a node whose right

child is empty, we make the new key as the right child. We keep traversing the tree until we find a node

whose either left or right child is empty.

class Node
{
Write Code Here
}

public class BinaryTreeInsertion
{
Write Code Here
 }
 static Node insert(Node root, int key)
{
Write Code Here
 }

 public static void main(String[] args)
{
 # Write Code Here
 }
}

9.4 Finding the Maximum Height or Depth of a Binary Tree

Given a binary tree, the task is to find the height of the tree. The height of the tree is the number of

edges in the tree from the root to the deepest node.

Note: The height of an empty tree is 0.

Input: Consider the tree below

Recursively calculate the height of the left and the right subtrees of a node and assign height to the

node as max of the heights of two children plus 1.

maxDepth(‘1’) = max(maxDepth(‘2’), maxDepth(‘3’)) + 1 = 2 + 1

because recursively

maxDepth(‘2’) = max (maxDepth(‘4’), maxDepth(‘5’)) + 1 = 1 + 1 and (as height of both ‘4’ and ‘5’ are

1)

279 | P a g e

maxDepth(‘3’) = 1

Procedure:

• Recursively do a Depth-first search.

• If the tree is empty then return 0

• Otherwise, do the following

• Get the max depth of the left subtree recursively i.e. call maxDepth(tree->left-subtree)

• Get the max depth of the right subtree recursively i.e. call maxDepth(tree->right-subtree)

• Get the max of max depths of left and right subtrees and add 1 to it for the current node.

• Return max_depth.

class Node
{
 int data;
 Node left, right;

 Node(int data) {
 this.data = data;
 this.left = null;
 this.right = null;
 }
}

public class MaximumDepthOfTree

{
 # Write Code Here
 }

 public static void main(String[] args)

{
 # Write Code Here

 }

9.5 Deletion in a Binary Tree

Given a binary tree, delete a node from it by making sure that the tree shrinks from the bottom (i.e. the

deleted node is replaced by the bottom-most and rightmost node).

Input: Delete 10 in below tree

 10

 / \

 20 30

Output:

 30

 /

 20

Input: Delete 20 in below tree

 10

 / \

 20 30

280 | P a g e

 \

 40

Output:

 10

 / \

40 30

Algorithm:

1. Starting at the root, find the deepest and rightmost node in the binary tree and the node which we

want to delete.

2. Replace the deepest rightmost node’s data with the node to be deleted.

3. Then delete the deepest rightmost node.

281 | P a g e

class Node {
 int data;
 Node left, right;

 Node(int data) {
 this.data = data;
 this.left = null;
 this.right = null;
 }
}

public class BinaryTreeDeletion
{
 # Write Code Here
 }
 static void deleteDeepest(Node root, Node dNode)
{
 # Write Code Here
}
 static Node deletion(Node root, int key)
{
 # Write Code Here
}

 public static void main(String[] args)
{
 # Write Code Here
}
}

282 | P a g e

10. Binary Search Tree (BST)

10.1 Searching in Binary Search Tree

Given a BST, the task is to delete a node in this BST. For searching a value in BST, consider it as a sorted

array. Perform search operation in BST using Binary Search Algorithm.

Algorithm to search for a key in a given Binary Search Tree:

Let’s say we want to search for the number X, We start at the root. Then:

• We compare the value to be searched with the value of the root.

• If it’s equal we are done with the search if it’s smaller we know that we need to go to the left

subtree because in a binary search tree all the elements in the left subtree are smaller and all

the elements in the right subtree are larger.

• Repeat the above step till no more traversal is possible

• If at any iteration, key is found, return True. Else False.

283 | P a g e

// Node class to represent each node of the BST
class Node {
 int key;
 Node left, right;

 public Node(int item) {
 key = item;
 left = right = null;
 }
}
class BST
{
Write Code Here
}

284 | P a g e

 Node search(int key) {
 return searchRec(root, key);
}
 Node searchRec(Node root, int key)

{
Write Code Here
}

 public static void main(String[] args)
{
 # Write Code Here
 }
}

10.2 Find the node with Minimum Value in a BST

Write a function to find the node with minimum value in a Binary Search Tree.

Input: Consider the tree given below

Output: 8

Input: Consider the tree given below

Output: 10

285 | P a g e

import java.util.ArrayList;
import java.util.List;

class Node {
 int data;
 Node left, right;

 public Node(int item) {
 data = item;
 left = right = null;
 }
}

class BinarySearchTree

{
 # Write Code Here
 }

 public static void main(String[] args)

{
Write Code Here

 }
}

10.3 Check if a Binary Tree is BST or not

A binary search tree (BST) is a node-based binary tree data structure that has the following properties.

1. The left subtree of a node contains only nodes with keys less than the node’s key.

2. The right subtree of a node contains only nodes with keys greater than the node’s key.

3. Both the left and right subtrees must also be binary search trees.

4. Each node (item in the tree) has a distinct key.

Input: Consider the tree given below

Output: Check if max value in left subtree is smaller than the node and min value in right subtree

greater than the node, then print it “Is BST” otherwise “Not a BST”

Procedure:

1. If the current node is null then return true

2. If the value of the left child of the node is greater than or equal to the current node then return false

3. If the value of the right child of the node is less than or equal to the current node then return false

4. If the left subtree or the right subtree is not a BST then return false

5. Else return true

286 | P a g e

class Node {
 int data;
 Node left, right;

 public Node(int item) {
 data = item;
 left = right = null;
 }
}

class BinaryTree

{
Write Code Here
}

 boolean isBST(Node node) {
 return isBSTUtil(node, Integer.MIN_VALUE, Integer.MAX_VALUE);
 }

 boolean isBSTUtil(Node node, int min, int max)

{
Write Code Here
}

 public static void main(String[] args)

{
Write Code Here
}

}

10.4 Second Largest Element in BST

Given a Binary search tree (BST), find the second largest element.

Input: Root of below BST

 10

 /

 5

Output: 5

Input: Root of below BST

 10

 / \

 5 20

 \

 30

Output: 20

Procedure: The second largest element is second last element in inorder traversal and second element

in reverse inorder traversal. We traverse given Binary Search Tree in reverse inorder and keep track of

287 | P a g e

counts of nodes visited. Once the count becomes 2, we print the node.

class Node {
 int key;
 Node left, right;

 public Node(int item) {
 key = item;
 left = right = null;
 }
}

class BinarySearchTree

{
Write Code Here
}

 secondLargestUtil(node.right);
 count++;

 // If count is equal to 2 then this is the second largest
 if (count == 2) {
 System.out.println("The second largest element is " + node.key);
 return;
 }

 secondLargestUtil(node.left);
 }

 // Function to find the second largest element
 void secondLargest(Node node) {
 count = 0;
 secondLargestUtil(node);
 }

 // Driver code
 public static void main(String[] args)

{
Write Code Here
}

}

Try:

1. Kth largest element in BST when modification to BST is not allowed: Given a Binary Search Tree

(BST) and a positive integer k, find the k’th largest element in the Binary Search Tree. For a given BST, if

k = 3, then output should be 14, and if k = 5, then output should be 10.

288 | P a g e

10.5 Insertion in Binary Search Tree (BST)

Given a Binary search tree (BST), the task is to insert a new node in this BST.

Input: Consider a BST and insert the element 40 into it.

Procedure for inserting a value in a BST:

A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start

searching for a key from the root until we hit a leaf node. Once a leaf node is found, the new node is

added as a child of the leaf node. The below steps are followed while we try to insert a node into a

binary search tree:

• Check the value to be inserted (say X) with the value of the current node (say val) we are in:

• If X is less than val move to the left subtree.

• Otherwise, move to the right subtree.

• Once the leaf node is reached, insert X to its right or left based on the relation between X and

the leaf node’s value.

289 | P a g e

// A utility class that represents an individual node in a BST
class Node {
 int val;
 Node left, right;

 public Node(int item) {
 val = item;
 left = right = null;
 }
}

class BinarySearchTree

{

Write Code Here

 }

 void inorder()

{
 inorderRec(root);
 }

 void inorderRec(Node root)

{
 # Write Code Here

 }
 }

 // Driver code
 public static void main(String[] args)

{
 # Write Code Here

 }
}

Try:

1. Check if two BSTs contain same set of elements: Given two Binary Search Trees consisting of

unique positive elements, we have to check whether the two BSTs contain the same set of elements or

not.

Input: Consider two BSTs which contains same set of elements {5, 10, 12, 15, 20, 25}, but the structure

of the two given BSTs can be different.

290 | P a g e

11. AVL Tree

11.1 Insertion in an AVL Tree

AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and

right subtrees cannot be more than one for all nodes. To make sure that the given tree remains AVL

after every insertion, we must augment the standard BST insert operation to perform some re-

balancing.

Following are two basic operations that can be performed to balance a BST without violating the BST

property (keys(left) < key(root) < keys(right)).

• Left Rotation

• Right Rotation

T1, T2 and T3 are subtrees of the tree, rooted with y (on the left side) or x (on the right side)

Keys in both of the above trees follow the following order

keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)

So BST property is not violated anywhere.

Procedure for inserting a node into an AVL tree

Let the newly inserted node be w

• Perform standard BST insert for w.

• Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced

node, y be the child of z that comes on the path from w to z and x be the grandchild of z that

comes on the path from w to z.

• Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There

can be 4 possible cases that need to be handled as x, y and z can be arranged in 4 ways.

• Following are the possible 4 arrangements:

• y is the left child of z and x is the left child of y (Left Left Case)

• y is the left child of z and x is the right child of y (Left Right Case)

• y is the right child of z and x is the right child of y (Right Right Case)

• y is the right child of z and x is the left child of y (Right Left Case)

291 | P a g e

class TreeNode {
 int val, height;
 TreeNode left, right;

 TreeNode(int d) {
 val = d;
 height = 1;
 }
}
class AVL_Tree {

 # write the code
 }

 TreeNode leftRotate(TreeNode x)

{
write the code
}

 public static void main(String[] args) {
 # write the code

}

11.2 Deletion in an AVL Tree

Given an AVL tree, make sure that the given tree remains AVL after every deletion, we must augment

the standard BST delete operation to perform some re-balancing. Following are two basic operations

that can be performed to re-balance a BST without violating the BST property (keys(left) < key(root) <

keys(right)).

1. Left Rotation

2. Right Rotation

T1, T2 and T3 are subtrees of the tree rooted with y (on left side)

or x (on right side)

Keys in both of the above trees follow the following order

 keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)

So BST property is not violated anywhere.

Procedure to delete a node from AVL tree:

Let w be the node to be deleted

1. Perform standard BST delete for w.

292 | P a g e

2. Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced

node, y be the larger height child of z, and x be the larger height child of y. Note that the

definitions of x and y are different from insertion here.

3. Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There

can be 4 possible cases that needs to be handled as x, y and z can be arranged in 4 ways. Following

are the possible 4 arrangements:

i. y is left child of z and x is left child of y (Left Left Case)

ii. y is left child of z and x is right child of y (Left Right Case)

iii. y is right child of z and x is right child of y (Right Right Case)

iv. y is right child of z and x is left child of y (Right Left Case)

class TreeNode
{

 int val, height;
 TreeNode left, right;

 TreeNode(int d) {
 val = d;
 height = 1;
 }
}

class AVL_Tree {

 TreeNode leftRotate(TreeNode z)

{
Write code here
}

 TreeNode rightRotate(TreeNode z)

{
Write code here

 }

 TreeNode insert(TreeNode node, int key)

{
Write code here

 }

11.3 Count Greater Nodes in AVL Tree

Given an AVL tree, calculate number of elements which are greater than given value in AVL tree.

Input: x = 5

 Root of below AVL tree

 9

 / \

 1 10

 / \ \

 0 5 11

 / / \

 -1 2 6

Output: 4

Explanation: There are 4 values which are greater than 5 in AVL tree which are 6, 9, 10 and 11.

https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
https://www.geeksforgeeks.org/avl-tree-set-1-insertion/

293 | P a g e

class TreeNode {
 int key, height, desc;
 TreeNode left, right;

 TreeNode(int d) {
 key = d;
 height = 1;
 desc = 0;
 }
}

class AVL_Tree

{
Write code here

 }

 TreeNode insert(TreeNode node, int key)

{
Write code here

 }
 TreeNode minValueNode(TreeNode node)

{
Write code here
}

 TreeNode deleteNode(TreeNode root, int key)

{
 # Write code here
}

void preOrder(TreeNode node)
{
Write code here
}

public class Main

{
Write code here

 }
}

 11.4 Minimum Number of Nodes in an AVL Tree with given Height

Given the height of an AVL tree ‘h’, the task is to find the minimum number of nodes the tree can have.

Input: H = 0

Output: N = 1

Only '1' node is possible if the height

of the tree is '0' which is the root node.

Input: H = 3

Output: N = 7

Recursive approach:

In an AVL tree, we have to maintain the height balance property, i.e. difference in the height of the left

and the right subtrees cannot be other than -1, 0 or 1 for each node.

We will try to create a recurrence relation to find minimum number of nodes for a given height, n(h).

• For height = 0, we can only have a single node in an AVL tree, i.e. n(0) = 1

294 | P a g e

• For height = 1, we can have a minimum of two nodes in an AVL tree, i.e. n(1) = 2

• Now for any height ‘h’, root will have two subtrees (left and right). Out of which one has to be

of height h-1 and other of h-2. [root node excluded]

• So, n(h) = 1 + n(h-1) + n(h-2) is the required recurrence relation for h>=2 [1 is added for the

root node]

public class AVLTreeMinimumNodes {

 public static int AVLnodes(int height)

{
Write code here

 }

 public static void main(String[] args) {
 int H = 3;
 System.out.println(AVLnodes(H)); // Output: 4
 }
}

295 | P a g e

12. Graph Traversal

12.1 Breadth First Search

The Breadth First Search (BFS) algorithm is used to search a graph data structure for a node that

meets a set of criteria. It starts at the root of the graph and visits all nodes at the current depth level

before moving on to the nodes at the next depth level.

For a given graph G, print BFS traversal from a given source vertex.

import java.util.*;

public class Graph {
 private Map<Integer, List<Integer>> graph;

 public Graph()

{
 graph = new HashMap<>();
 }

 public void addEdge(int u, int v) {
 if (!graph.containsKey(u)) {
 graph.put(u, new ArrayList<>());
 }
 graph.get(u).add(v);
 }

 public void BFS(int s)
{
Write code here
}

 public static void main(String[] args)

{
Write code here

 }
}

Output: Following is Breadth First Traversal (starting from vertex 2)

2 0 3 1

12.2 Depth First Search

Depth First Traversal (or DFS) for a graph is similar to Depth First Traversal of a tree. The only catch

here is, that, unlike trees, graphs may contain cycles (a node may be visited twice). To avoid processing

a node more than once, use a boolean visited array. A graph can have more than one DFS traversal.

For a given graph G, print DFS traversal from a given source vertex.

Input: n = 4, e = 6

0 -> 1, 0 -> 2, 1 -> 2, 2 -> 0, 2 -> 3, 3 -> 3

Output: DFS from vertex 1: 1 2 0 3

Explanation:

DFS Diagram:

https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

296 | P a g e

Input: n = 4, e = 6

2 -> 0, 0 -> 2, 1 -> 2, 0 -> 1, 3 -> 3, 1 -> 3

Output: DFS from vertex 2: 2 0 1 3

Explanation:

DFS Diagram:

import java.util.*;
class Graph {
 private Map<Integer, List<Integer>> graph;

 public Graph() {
 // Initialize the graph as a HashMap of ArrayLists
 graph = new HashMap<>();
 }
 public void addEdge(int u, int v)

{
Write code here

 }

 public void DFS(int v) {

 DFSUtil(v, visited);
 }
 public static void main(String[] args)

{
Write code here

 }

}

297 | P a g e

12.3 Best First Search (Informed Search)

The idea of Best First Search is to use an evaluation function to decide which adjacent is most

promising and then explore. Best First Search falls under the category of Heuristic Search or Informed

Search.

Implementation of Best First Search:

We use a priority queue or heap to store the costs of nodes that have the lowest evaluation function

value. So the implementation is a variation of BFS, we just need to change Queue to PriorityQueue.

Algorithm:

Best-First-Search(Graph g, Node start)

 1) Create an empty PriorityQueue

 PriorityQueue pq;

 2) Insert "start" in pq.

 pq.insert(start)

 3) Until PriorityQueue is empty

 u = PriorityQueue.DeleteMin

 If u is the goal

 Exit

 Else

 Foreach neighbor v of u

 If v "Unvisited"

 Mark v "Visited"

 pq.insert(v)

 Mark u "Examined"

End procedure

Input: Consider the graph given below.

• We start from source “S” and search for goal “I” using given costs and Best First search.

• pq initially contains S

• We remove S from pq and process unvisited neighbors of S to pq.

• pq now contains {A, C, B} (C is put before B because C has lesser cost)

• We remove A from pq and process unvisited neighbors of A to pq.

• pq now contains {C, B, E, D}

• We remove C from pq and process unvisited neighbors of C to pq.

• pq now contains {B, H, E, D}

• We remove B from pq and process unvisited neighbors of B to pq.

• pq now contains {H, E, D, F, G}

298 | P a g e

• We remove H from pq.

• Since our goal “I” is a neighbor of H, we return.

import java.util.*;

public class BestFirstSearch {
 static int v = 14;
 static List<List<Pair<Integer, Integer>>> graph = new ArrayList<>();
 static void addedge(int x, int y, int cost) {
 graph.get(x).add(new Pair<>(y, cost));
 graph.get(y).add(new Pair<>(x, cost));
 }

 static void best_first_search(int actual_Src, int target, int n)

{
Write code here

 }

 public static void main(String[] args)

{
Write code here

 }
}

12.4 Breadth First Traversal of a Graph

Given a directed graph. The task is to do Breadth First Traversal of this graph starting from 0.

One can move from node u to node v only if there's an edge from u to v. Find the BFS traversal of the

graph starting from the 0th vertex, from left to right according to the input graph. Also, you should

only take nodes directly or indirectly connected from Node 0 in consideration.

Input: Consider the graph given below where V = 5, E = 4, edges = {(0,1), (0,2), (0,3), (2,4)}

Output: 0 1 2 3 4

Explanation:

0 is connected to 1, 2, and 3.

2 is connected to 4.

So starting from 0, it will go to 1 then 2 then 3. After this 2 to 4, thus BFS will be 0 1 2 3 4.

Input: Consider the graph given below where V = 3, E = 2, edges = {(0, 1), (0, 2)}

299 | P a g e

Output: 0 1 2

Explanation:

0 is connected to 1, 2. So starting from 0, it will go to 1 then 2, thus BFS will be 0 1 2.

Your task is to complete the function bfsOfGraph() which takes the integer V denoting the number of

vertices and adjacency list as input parameters and returns a list containing the BFS traversal of the

graph starting from the 0th vertex from left to right.

import java.util.*;

class Graph {
 private int V;
 private LinkedList<Integer>[] adj;

 Graph(int v) {
 V = v;
 adj = new LinkedList[v];
 for (int i = 0; i < v; ++i)
 adj[i] = new LinkedList();
 }

 void addEdge(int v, int w) {
 adj[v].add(w);
 }

 void BFS(int s)

{
Write Code Here

 }
 }

 public static void main(String args[]) {
 # Write Code Here
 }
}

12.5 Depth First Search (DFS) for Disconnected Graph

Given a Disconnected Graph, the task is to implement DFS or Depth First Search Algorithm for this

Disconnected Graph.

Input: Consider the graph given below.

300 | P a g e

Output: 0 1 2 3

Procedure for DFS on Disconnected Graph:

301 | P a g e

Iterate over all the vertices of the graph and for any unvisited vertex, run a DFS from that vertex.

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

// Class representing a directed graph using adjacency list representation
class Graph

{
 # Write Code Here
}

 public Graph()

{
 graph = new HashMap<>();
 }

 public void addEdge(int u, int v)

{
Write Code Here
}

 private void DFSUtil(int v, boolean[] visited)
{
Write Code Here
}

 }

 public void DFS() {
 boolean[] visited = new boolean[graph.size()];

Write Code Here
}

 public static void main(String[] args)

{
Write Code Here

 }
}

Try:

1. Detect a negative cycle in a Graph (Bellman Ford): A Bellman-Ford algorithm is also guaranteed to find

the shortest path in a graph, similar to Dijkstra’s algorithm. Although Bellman-Ford is slower than

Dijkstra’s algorithm, it is capable of handling graphs with negative edge weights, which makes it more

versatile. The shortest path cannot be found if there exists a negative cycle in the graph. If we continue to

go around the negative cycle an infinite number of times, then the cost of the path will continue to

decrease (even though the length of the path is increasing).

Consider a graph G and detect a negative cycle in the graph using Bellman Ford algorithm.

302 | P a g e

303 | P a g e

13. Minimum Spanning Tree (MST)

13.1 Kruskal’s Algorithm

In Kruskal’s algorithm, sort all edges of the given graph in increasing order. Then it keeps on adding

new edges and nodes in the MST if the newly added edge does not form a cycle. It picks the minimum

weighted edge at first and the maximum weighted edge at last.

MST using Kruskal’s algorithm:

4. Sort all the edges in non-decreasing order of their weight.

5. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If the

cycle is not formed, include this edge. Else, discard it.

6. Repeat step#2 until there are (V-1) edges in the spanning tree.

Kruskal’s algorithm to find the minimum cost spanning tree uses the greedy approach. The Greedy

Choice is to pick the smallest weight edge that does not cause a cycle in the MST constructed so far.

Input: For the given graph G find the minimum cost spanning tree.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 – 1)

= 8 edges.

After sorting:

Weight Source Destination

1 7 6

2 8 2

2 6 5

4 0 1

4 2 5

6 8 6

7 2 3

7 7 8

8 0 7

8 1 2

9 3 4

10 5 4

11 1 7

14 3 5

Now pick all edges one by one from the sorted list of edges.

304 | P a g e

Output:

// Kruskal's algorithm to find minimum Spanning Tree of a given connected,
import java.util.*;

public class Graph {

 class Edge implements Comparable<Edge> {
 int src, dest, weight;

 // Comparator function used for sorting edges
 public int compareTo(Edge compareEdge) {
 return this.weight - compareEdge.weight;
 }
 }

 private int V; // Number of vertices
 private List<Edge> edges; // List of edges

 public Graph(int vertices) {
 this.V = vertices;
 this.edges = new ArrayList<>();
 }

 public void addEdge(int u, int v, int w)

{
Write Code Here
}

 private void union(int[] parent, int[] rank, int x, int y)
{
Write Code Here
}

 public void KruskalMST()

{
Write Code Here

 }
 public static void main(String[] args) {
 Graph g = new Graph(4);
 g.addEdge(0, 1, 10);
 g.addEdge(0, 2, 6);
 g.addEdge(0, 3, 5);
 g.addEdge(1, 3, 15);
 g.addEdge(2, 3, 4);

 // Function call
 g.KruskalMST();

305 | P a g e

 }

}
Output: Following are the edges in the constructed MST

2 -- 3 == 4

0 -- 3 == 5

0 -- 1 == 10

Minimum Cost Spanning Tree: 19

13.2 Prim’s Algorithm

The Prim’s algorithm starts with an empty spanning tree. The idea is to maintain two sets of vertices.

The first set contains the vertices already included in the MST, and the other set contains the vertices

not yet included. At every step, it considers all the edges that connect the two sets and picks the

minimum weight edge from these edges. After picking the edge, it moves the other endpoint of the

edge to the set containing MST.

Prim’s Algorithm:

The working of Prim’s algorithm can be described by using the following steps:

7. Determine an arbitrary vertex as the starting vertex of the MST.

8. Follow steps 3 to 5 till there are vertices that are not included in the MST (known as fringe

vertex).

9. Find edges connecting any tree vertex with the fringe vertices.

10. Find the minimum among these edges.

11. Add the chosen edge to the MST if it does not form any cycle.

12. Return the MST and exit

Input: For the given graph G find the minimum cost spanning tree.

Output: The final structure of the MST is as follows and the weight of the edges of the MST is (4 + 8 +

1 + 2 + 4 + 2 + 7 + 9) = 37.

306 | P a g e

import java.util.Arrays;

public class Graph {

 private int V; // Number of vertices
 private int[][] graph; // Adjacency matrix representation of graph

 public Graph(int vertices) {
 this.V = vertices;
 this.graph = new int[V][V];
 }
 public void printMST(int[] parent) {
 System.out.println("Edge \tWeight");
 for (int i = 1; i < V; i++) {
 System.out.println(parent[i] + " - " + i + "\t" +
graph[i][parent[i]]);
 }
 }
 private int minKey(int[] key, boolean[] mstSet)

{
 # Write Code Here

 }
 public void primMST()

{
 # Write Code Here

 }
 public static void main(String[] args)

{
 # Write Code Here

 }
}

Output:

Edge Weight

0 - 1 2

1 - 2 3

0 - 3 6

1 - 4 5

13.3 Total Number of Spanning Trees in a Graph

If a graph is a complete graph with n vertices, then total number of spanning trees is n(n-2) where n is

the number of nodes in the graph. In complete graph, the task is equal to counting different labeled

trees with n nodes for which have Cayley’s formula.

Laplacian matrix:

A Laplacian matrix L, where L[i, i] is the degree of node i and L[i, j] = −1 if there is an edge between

nodes i and j, and otherwise L[i, j] = 0.

Kirchhoff’s theorem provides a way to calculate the number of spanning trees for a given graph as a

determinant of a special matrix. Consider the following graph,

307 | P a g e

All possible spanning trees are as follows:

In order to calculate the number of spanning trees, construct a Laplacian matrix L, where L[i, i] is the

degree of node i and L[i, j] = −1 if there is an edge between nodes i and j, and otherwise L[i, j] = 0.

for the above graph, The Laplacian matrix will look like this

The number of spanning trees equals the determinant of a matrix.

The Determinant of a matrix that can be obtained when we remove any row and any column from L.

For example, if we remove the first row and column, the result will be,

The determinant is always the same, regardless of which row and column we remove from L.

308 | P a g e

import java.util.Arrays;

public class NumberOfSpanningTrees {

 static final int MAX = 100;
 static final int MOD = 1000000007;
 void multiply(long[][] A, long[][] B, long[][] C, int size) {
 for (int i = 0; i < size; i++) {
 for (int j = 0; j < size; j++) {
 C[i][j] = 0;
 for (int k = 0; k < size; k++) {
 C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD;
 }
 }
 }
 }
 void power(long[][] A, int N, long[][] result, int size)

{
Write Code Here
}

 long numOfSpanningTree(int[][] graph, int V)

{
Write Code Here

 }

 public static void main(String[] args) {
 int V = 4; // Number of vertices in graph
 int E = 5; // Number of edges in graph
 int[][] graph = { { 0, 1, 1, 1 }, { 1, 0, 1, 1 }, { 1, 1, 0, 1 }, { 1, 1,
1, 0 } };

 NumberOfSpanningTrees obj = new NumberOfSpanningTrees();
 System.out.println(obj.numOfSpanningTree(graph, V));
 }
}

13.4 Minimum Product Spanning Tree

A minimum product spanning tree for a weighted, connected, and undirected graph is a spanning tree

with a weight product less than or equal to the weight product of every other spanning tree. The

weight product of a spanning tree is the product of weights corresponding to each edge of the

spanning tree. All weights of the given graph will be positive for simplicity.

Input:

Output: Minimum Product that we can obtain is 180 for above graph by choosing edges 0-1, 1-2, 0-3

and 1-4

This problem can be solved using standard minimum spanning tree algorithms like Kruskal and prim’s

algorithm, but we need to modify our graph to use these algorithms. Minimum spanning tree

309 | P a g e

algorithms tries to minimize the total sum of weights, here we need to minimize the total product of

weights. We can use the property of logarithms to overcome this problem.

log(w1* w2 * w3 * …. * wN) = log(w1) + log(w2) + log(w3) ….. + log(wN)

We can replace each weight of the graph by its log value, then we apply any minimum spanning tree

algorithm which will try to minimize the sum of log(wi) which in turn minimizes the weight product.

import java.util.Arrays;

public class MinimumProductMST {
 // Number of vertices in the graph
 static final int V = 5;

 // A utility function to find the vertex with minimum key value, from the set
of
 // vertices not yet included in MST
 int minKey(int key[], boolean mstSet[]) {
 int min = Integer.MAX_VALUE, min_index = -1;

 for (int v = 0; v < V; v++) {
 if (mstSet[v] == false && key[v] < min) {
 min = key[v];
 min_index = v;
 }
 }

 return min_index;
 }

 void printMST(int parent[], int n, int graph[][])

{
Write Code Here
}

 void primMST(int inputGraph[][], int logGraph[][])
{
Write Code Here
}

 void minimumProductMST(int graph[][])
{
Write Code Here
}

 public static void main(String[] args)
 {
 # Write Code Here
 }
}

13.5 Reverse Delete Algorithm for Minimum Spanning Tree

In Reverse Delete algorithm, we sort all edges in decreasing order of their weights. After sorting, we

one by one pick edges in decreasing order. We include current picked edge if excluding current edge

causes disconnection in current graph. The main idea is delete edge if its deletion does not lead to

disconnection of graph.

Algorithm:

1. Sort all edges of graph in non-increasing order of edge weights.

2. Initialize MST as original graph and remove extra edges using step 3.

3. Pick highest weight edge from remaining edges and check if deleting the edge disconnects the

graph or not.

https://www.geeksforgeeks.org/check-removing-given-edge-disconnects-given-graph/
https://www.geeksforgeeks.org/check-removing-given-edge-disconnects-given-graph/

310 | P a g e

 If disconnects, then we don’t delete the edge.

Else we delete the edge and continue.

Input: Consider the graph below

If we delete highest weight edge of weight 14, graph doesn’t become disconnected, so we remove it.

Next we delete 11 as deleting it doesn’t disconnect the graph.

Next we delete 10 as deleting it doesn’t disconnect the graph.

Next is 9. We cannot delete 9 as deleting it causes disconnection.

311 | P a g e

We continue this way and following edges remain in final MST.

Edges in MST

(3, 4)

(0, 7)

(2, 3)

(2, 5)

(0, 1)

(5, 6)

(2, 8)

(6, 7)

312 | P a g e

import java.util.ArrayList;
import java.util.Collections;

// Edge class to represent edges in the graph
class Edge {
 int src, dest, weight;

 Edge(int src, int dest, int weight) {
 this.src = src;
 this.dest = dest;
 this.weight = weight;
 }
}
class Graph

{
Write Code Here

 }

 // Function to add an edge to the graph
 void addEdge(int u, int v, int w) {
 # Write Code Here
 }
 void dfs(int v, boolean[] visited)

{
 # Write Code Here
 }

 // Function to check if the graph is connected
 boolean connected()
 {
 # Write Code Here
 }
void reverseDeleteMST()
 {
 # Write Code Here
 }
}

public class ReverseDeleteMST {
 public static void main(String[] args)
 {
 # Write Code Here
 }
}

Try:

1. Detect Cycle in a Directed Graph: Given the root of a Directed graph, The task is to check whether

the graph contains a cycle or not.

Input: N = 4, E = 6

313 | P a g e

Output: Yes

Explanation: The diagram clearly shows a cycle 0 -> 2 -> 0

14. Final Notes

The only way to learn programming is program, program and program on challenging problems. The

problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging

problems available – used in training for various programming contests (such as International

Collegiate Programming Contest (ICPC), International Olympiad in Informatics (IOI)). Check out these

sites:

• The ACM - ICPC International collegiate programming contest (https://icpc.global/)

• The Topcoder Open (TCO) annual programming and design contest

(https://www.topcoder.com/)

• Universidad de Valladolid’s online judge (https://uva.onlinejudge.org/).

• Peking University’s online judge (http://poj.org/).

• USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

• Google’s coding competitions (https://codingcompetitions.withgoogle.com/codejam,

https://codingcompetitions.withgoogle.com/hashcode)

• The ICFP programming contest (https://www.icfpconference.org/)

• BME International 24-hours programming contest (https://www.challenge24.org/)

• The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

• Internet Problem Solving Contest (https://ipsc.ksp.sk/)

• Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

• Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

• OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

Students must solve problems and attain scores in the following coding contests:

 Name of the contest Minimum number of problems to solve Required score

• CodeChef 20 200

• Leetcode 20 200

• GeeksforGeeks 20 200

• SPOJ 5 50

• InterviewBit 10 1000

• Hackerrank 25 250

• Codeforces 10 100

• BuildIT 50 500

Total score need to obtain 2500

Student must have any one of the following certification:

2. HackerRank - Problem Solving Skills Certification (Basic and Intermediate)

2. GeeksforGeeks – Data Structures and Algorithms Certification

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/
https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/

314 | P a g e

3. CodeChef - Learn Data Structures and Algorithms Certification

4. Interviewbit – DSA pro / Python pro

5. Edx – Data Structures and Algorithms

5. NPTEL – Programming, Data Structures and Algorithms

6. NPTEL – Introduction to Data Structures and Algorithms

7. NPTEL – Data Structures and Algorithms

8. NPTEL – Programming and Data Structure

V. TEXT BOOKS:

1. Rance D. Necaise, “Data Structures and Algorithms using Python”, Wiley Student Edition.

2. Benjamin Baka, David Julian, “Python Data Structures and Algorithms”, Packt Publishers, 2017.

VI. REFERENCE BOOKS:

1. S. Lipschutz, “Data Structures”, Tata McGraw Hill Education, 1st Edition, 2008.

2. D. Samanta, “Classic Data Structures”, PHI Learning, 2nd Edition, 2004.

VII. ELECTRONICS RESOURCES:

1. https://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm

2. https://www.codechef.com/certification/data-structures-and-algorithms/prepare

3. https://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html

4. https://online-learning.harvard.edu/course/data-structures-and-algorithms

VIII. MATERIALS ONLINE

1. Syllabus

2. Lab manual

315 | P a g e

UNDERTAKING BY STUDENT / PARENT

“To make the students attend the classes regularly from the first day of starting of classes and be aware of the

College regulations, the following undertaking form is introduced which should be signed by both student and

parent. The same should be submitted to the Dean of Academic”.

I, Mr. / Ms. -- joining I Semester / III Semester for

the academic year 20 - 20 / 20 - 20 in Institute of Aeronautical Engineering, Hyderabad, do hereby

undertake and abide by the following terms, and I will bring the ACKNOWLEDGEMENT duly signed by me

and my parent and submit it to the Dean of Academic.

1. I will attend all the classes as per the timetable from the starting day of the semester specified in the institute

Academic Calendar. In case, I do not turn up even after two weeks of starting of classes, I shall be ineligible

to continue for the current academic year.

2. I will be regular and punctual to all the classes (theory/laboratory/project) and secure attendance of not less

than 75% in every course as stipulated by Institute. I am fully aware that an attendance of less than 65% in

more than 60% of theory courses in a semester will make me lose one year.

3. I will compulsorily follow the dress code prescribed by the college.

4. I will conduct myself in a highly disciplined and decent manner both inside the classroom and on campus,

failing which suitable action may be taken against me as per the rules and regulations of the institute.

5. I will concentrate on my studies without wasting time in the Campus/Hostel/Residence and attend all the

tests to secure more than the minimum prescribed Class/Sessional Marks in each course. I will submit the

assignments given in time to improve my performance.

6. I will not use Mobile Phone in the institute premises and also, I will not involve in any form of ragging

inside or outside the campus. I am fully aware that using mobile phone to the institute premises is not

permissible and involving in Ragging is an offence and punishable as per JNTUH/UGC rules and the law.

7. I declare that I shall not indulge in ragging, eve-teasing, smoking, consuming alcohol drug abuse or any

other anti-social activity in the college premises, hostel, on educational tours, industrial visits or elsewhere.

8. I will pay tuition fees, examination fees and any other dues within the stipulated time as required by the

Institution / authorities, failing which I will not be permitted to attend the classes.

9. I will not cause or involve in any sort of violence or disturbance both within and outside the college campus.

10. If I absent myself continuously for 3 days, my parents will have to meet the HOD concerned / Principal.

11. I hereby acknowledge that I have received a copy of BT23 Academic Rules and Regulations, course

catalogue and syllabus copy and hence, I shall abide by all the rules specified in it.

 --- -----------

ACKNOWLEDGEMENT

I have carefully gone through the terms of the undertaking mentioned above and I understand that following these

are for my/his/her own benefit and improvement. I also understand that if I/he/she fail to comply with these

terms, shall be liable for suitable action as per Institute/JNTUH/AICTE/UGC rules and the law. I undertake that

I/he/she will strictly follow the above terms.

Signature of Student with Date Signature of Parent with Date

Name & Address with Phone Number

