7] INSTITUTE OF AERONAUTICAL ENGINEERING

@ (Autonomous)

(Approved by AICTE | NAAC Accreditation with ‘A++’ Grade | Accredited by NBA | Affiliated to JNTUH)
Dundigal, Hyderabad - 500 043, Telangana

OUTCOME BASED EDUCATION
WITH
CHOICE BASED CREDIT SYSTEM

BACHELOR OF TECHNOLOGY
MECHANICAL ENGINEERING

ACADEMIC REGULATIONS, COURSE CATALOGUE and SYLLABUS
BT25

B.Tech Regular Four Year Degree Program
(for the batches admitted from the academic year 2025 - 2026)

&

B.Tech (Lateral Entry Scheme)
(for the batches admitted from the academic year 2026 - 2027)

These rules and regulations may be altered / changed from time to time by the academic council
FAILURE TO READ AND UNDERSTAND THE RULES IS NOT AN EXCUSE

VISION

To bring forth students, professionally competent and socially progressive, capable of
working across cultures meeting the global standards ethically.

MISSION

To provide students with an extensive and exceptional education that prepares them to excel
in their profession, guided by dynamic intellectual community and be able to face the
technically complex world with creative leadership qualities.

Further, be instrumental in emanating new knowledge through innovative research that
emboldens entrepreneurship and economic development for the benefit of wide spread
community.

QUALITY POLICY

Our policy is to nurture and build diligent and dedicated community of engineers providing a
professional and unprejudiced environment, thus justifying the purpose of teaching and
satisfying the stake holders.

A team of well qualified and experienced professionals ensure quality education with its
practical application in all areas of the Institute.

i|Page

PROGRAM OUTCOMES (PO's)

Engineering Graduates will be able to:

PO1:

Engineering Knowledge: Apply knowledge of mathematics, natural science, computing,
engineering fundamentals and an engineering specialization as specified in WK1 to WK4
respectively to develop to the solution of complex engineering problem.

PO2:

Problem Analysis: Identify, formulate, review research literature and analyze complex
engineering problems reaching substantiated conclusions with consideration for sustainable
development. (WK1 to WK4)

PO3:

Development of Solutions: Design creative solutions for complex engineering problems and
design/develop systems/components/processes to meet identified needs with consideration for
the public health and safety, whole-life cost, net zero carbon, culture, society and
environment

as required. (WKY5).

PO4:

Conduct Investigations of Complex Problems: Conduct investigations of complex
engineering problems using research-based knowledge including design of experiments,
modelling, analysis & interpretation of data to provide valid conclusions. (WKS).

POS5:

Engineering Tool Usage: Create, select and apply appropriate techniques, resources and
modern engineering & IT tools, including prediction and modelling recognizing their
limitations to solve complex engineering problems. (WK2 and WK6).

PO6:

The Engineer and The World: Analyze and evaluate societal and environmental aspects
while solving complex engineering problems for its impact on sustainability with reference to
economy, health, safety, legal framework, culture and environment. (WK1, WKS5, and WK7).

PO7:

Ethics: Apply ethical principles and commit to professional ethics, human values, diversity
and inclusion; adhere to national & international laws. (WK9)

POS:

Individual and Collaborative Team work: Function effectively as an individual, and as a
member or leader in diverse/multi-disciplinary teams

POO9:

Communication: Communicate effectively and inclusively within the engineering
community and society at large, such as being able to comprehend and write effective reports
and design documentation, make effective presentations considering cultural, language, and
learning

differences

PO10:

Project Management and Finance: Apply knowledge and understanding of engineering
management principles and economic decision-making and apply these to one’s own work, as
a member and leader in a team, and to manage projects and in multidisciplinary
environments.

PO11:

Life-Long Learning: Recognize the need for, and have the preparation and ability for
i) independent and life-long learning ii) adaptability to new and emerging technologies and
iii) critical thinking in the broadest context of technological change. (WKS).

iii|Page

CONTENTS

Section | Particulars Page

1 Choice Based Credit System 1

2 Medium of Instruction 1

3 Programs Offered 1

4 Semester Structure 2

5 Registration / Dropping / Withdrawal 2

6 Credit System 3

7 Curricular Components 4

8 Evaluation Methodology 5

9 Attendance Requirements and Detention Policy 10
10 | Conduct of Semester End Examinations and Evaluation 10
11 Letter Grades and Grade Points 10
12 | Computation of SGPA and CGPA 11
13 | Illustration of Computation of SGPA and CGPA 12
14 | Revaluation 12
15 Promotion Policies 12
16 | Credit Exemption 13
17 | Award of Degree 13
18 | Conversion of CGPA into Equivalent Percentage of Marks 14
19 | B.Tech with Honours or Minor in Engineering 14
20 | Temporary Break of Study from the Program 17
21 Termination from the Program 18
22 | With-holding of Results 18
23 | Graduation Day 18
24 | Discipline 18
25 Grievance Redressal Committee 18
26 | Multiple Entry Multiple Exit Scheme (MEMES) 18
27 | Additional Requirements for Diploma Award 19
28 | Re-Entry into the B.Tech Program 19
29 | Break in Study and Maximum Duration 19
30 | Transitory Regulations to the Students Re-Admitted in BT25 Regulations 19
31 Student Transfers 20
32 | Academic regulations for B.Tech (Lateral entry students) from the academic year: 2026-27 20
33 Revision of Regulations and Curriculum 21

“Take up one idea.
Make that one idea your life-think of it, dream of it, live on that idea.
Let the brain muscles, nerves, every part of your body be full of that idea and just leave every other idea
alone. This is the way to success”
Swami Vivekananda

iv|Page

PRELIMINARY DEFINITIONS AND NOMENCLATURES

AICTE: Means All India Council for Technical Education, New Delhi.

Autonomous Institute: Means an institute designated as Autonomous by University Grants
Commission (UGC), New Delhi in concurrence with affiliating University (Jawaharlal Nehru
Technological University, Hyderabad) and State Government.

Academic Autonomy: Means freedom to an institute in all aspects of conducting its academic
programs, granted by UGC for Promoting Excellence.

Academic Council: The Academic Council is the highest academic body of the institute and is
responsible for the maintenance of standards of instruction, education and examination within the
institute. Academic Council is an authority as per UGC regulations and it has the right to take
decisions on all academic matters including academic research.

Academic Year: It is the period necessary to complete an actual course of study within a year. It
comprises two main semesters i.e., (one odd + one even) and one supplementary semester.

Branch: Means specialization in a program like B.Tech degree program in Aeronautical Engineering,
B.Tech degree program in Computer Science and Engineering etc.

Board of Studies (BOS): BOS is an authority as defined in UGC regulations, constituted by Head of
the Organization for each of the departments separately. They are responsible for curriculum design
and updation in respect of all the programs offered by a department.

Backlog Course: A course is considered to be a backlog course, if the student has obtained a failure
grade (F) in that course.

Basic Sciences: The courses offered in the areas of Mathematics, Physics, Chemistry etc., are
considered to be foundational in nature.

Betterment: Betterment is a way that contributes towards improvement of the students’ grade in any
course(s). It can be done by either (a) re-appearing or (b) re-registering for the course.

Commission: Means University Grants Commission (UGC), New Delhi.

Choice Based Credit System: The credit based semester system is one which provides flexibility in
designing curriculum and assigning credits based on the course content and hours of teaching along
with provision of choice for the student in the course selection.

Certificate Course: It is a course that makes a student to have hands-on expertise and skills required
for holistic development in a specific area/field.

Compulsory course: Course required to be undertaken for the award of the degree as per the
program.

Continuous Internal Examination: It is an examination conducted towards sessional assessment.

Core: The courses that are essential constituents of each engineering discipline are categorized as
professional core courses for that discipline.

Course: A course is offered by a department for learning in a particular semester.
Course Outcomes: The essential skills that need to be acquired by every student through a course.

Credit: A credit is a unit that gives weight to the value, level or time requirements of an academic
course. The number of 'Contact Hours' in a week of a particular course determines its credit value.
One credit is equivalent to one lecture/tutorial hour per week.

Credit point: It is the product of grade point and number of credits for a course.

viPage

Cumulative Grade Point Average (CGPA): It is a measure of cumulative performance of a student
over all the completed semesters. The CGPA is the ratio of total credit points secured by a student in
various courses in all semesters and the sum of the total credits of all courses in all the semesters. It is
expressed up to two decimal places.

Curriculum: Curriculum incorporates the planned interaction of students with instructional content,
materials, resources, and processes for evaluating the attainment of Program Educational Objectives.

Department: An academic entity that conducts relevant curricular and co-curricular activities,
involving both teaching and non-teaching staff, and other resources in the process of study for a
degree.

Detention in a Course: Student who does not obtain minimum prescribed attendance in a course
shall be detained in that particular course.

Dropping from Semester: Student who doesn’t want to register for any semester can apply in writing
in prescribed format before the commencement of that semester.

Elective Course: A course that can be chosen from a set of courses. An elective can be Professional
Elective and / or Open Elective.

Evaluation: Evaluation is the process of judging the academic performance of the student in her/his
courses. It is done through a combination of continuous internal assessment and semester end
examinations.

Experiential Engineering Education (ExEEd): Engineering entrepreneurship requires strong
technical skills in engineering design and computation with key business skills from marketing to
business model generation. Our students require sufficient skills to innovate in existing companies or
create their own.

Grade: It is an index of the performance of the students in a said course. Grades are indicated by
alphabets.

Grade Point: It is a numerical weight allotted to each letter grade on a 10 - point scale.

Honours: An Honours degree typically refers to a higher level of academic achievement at an
undergraduate level.

Institute: Means Institute of Aeronautical Engineering, Hyderabad unless indicated otherwise by the
context.

Massive Open Online Courses (MOOC): MOOC courses inculcate the habit of self-learning.
MOOC courses would be additional choices in all the elective group courses.

Minor: Minor are coherent sequences of courses which may be taken in addition to the courses
required for the B.Tech degree.

Pre-requisite: A specific course, the knowledge of which is required to complete before student
register another course at the next grade level.

Professional Elective: It indicates a course that is discipline centric. An appropriate choice of
minimum number of such electives as specified in the program will lead to a degree with
specialization.

Program: Means, UG degree program: Bachelor of Technology (B.Tech); PG degree program:
Master of Technology (M.Tech) / Master of Business Administration (MBA).

Program Educational Objectives: The broad career, professional and personal goals that every
student will achieve through a strategic and sequential action plan.

Project work: It is a design or research-based work to be taken up by a student during his/her final
year to achieve a particular aim. It is a credit based course and is to be planned carefully by the
student.

vi|[Page

Re-Appearing: A student can reappear only in the semester end examination for theory component of
a course to the regulations contained herein.

Registration: Process of enrolling into a set of courses in a semester of a program.

Regulations: The regulations, common to all B.Tech programs offered by Institute, are designated as
“BT23” and are binding on all the stakeholders.

Semester: It is a period of study consisting of 16 weeks of academic work equivalent to normally
minimum of 90 working days. Odd semester commences usually in July and even semester in
December of every year.

Semester End Examinations: It is an examination conducted for all courses offered in a semester at
the end of the semester.

S/he: Means “she” and “he” both.

Student Outcomes: The essential skill sets that need to be acquired by every student during her/his
program of study. These skill sets are in the areas of employability, entrepreneurial, social and
behavioral.

University: Means Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, is
an affiliating University.

Withdraw from a Course: Withdrawing from a course means that a student can drop from a course
within the first two weeks of odd or even semester (deadlines are different for summer sessions).
However, s/he can choose a substitute course in place of it, by exercising the option within 5 working
days from the date of withdrawal.

vii|Page

PREFACE
Dear Students,

The focus at IARE is to deliver value-based education with academically well qualified faculty and
infrastructure. It is a matter of pride that IARE continues to be the preferred destination for students to
pursue an engineering degree.

In the year 2015, IARE was granted academic autonomy status by University Grants Commission,
New Delhi under Jawaharlal Nehru Technology University Hyderabad. From then onwards, our prime
focus is on developing and delivering a curriculum which caters to the needs of various stakeholders.
The curriculum has unique features enabling students to develop critical thinking, solve problems,
analyze socially relevant issues, etc. The academic cycle designed on the basis of Outcome Based
Education (OBE) strongly emphasizes continuous improvement and this has made our curriculum
responsive to current requirements.

The curriculum at IARE has been developed by experts from academia and industry and it has unique
features to enhance problem solving skills apart from academic enrichment. The curriculum of B.Tech
program has been thoroughly revised as per AICTE / UGC / INTUH guidelines and have incorporated
unique features such as competency training / coding, industry driven elective, internship and many
more. The curriculum is designed in a way so as to impart engineering education in a holistic
approach towards Excellence.

I hope you will have a fruitful stay at IARE.

Dr. L V Narasimha Prasad
Principal

viii |[Page

I ARE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

o3

o

2}
Ton

2, 03
2 &
 ron \®

ACADEMIC REGULATIONS - BT25

B.Tech. Regular Four-Year Degree Program
(for the batches admitted from the academic year 2025 - 2026)
&
B.Tech. (Lateral Entry Scheme)
(for the batches admitted from the academic year 2026 - 2027)

For pursuing Four-year undergraduate Bachelor of Technology (B.Tech) degree program of study
in engineering offered by Institute of Aeronautical Engineering under Autonomous status.

A student after securing admission shall complete the B.Tech. program in a minimum period of four
academic years and a maximum period of eight academic years starting from the date of commencement
of first semester, failing which student shall forfeit seat in B.Tech. course. Each student has to secure a
minimum of 160 credits out of 164 credits for successful completion of the undergraduate program and
award of the B.Tech. degree. Additional 20/18 credits can be acquired for the degree of B.Tech with
Honours or Minor in Engineering. Separate certificate will be issued in addition to major degree
program mentioning that the student has cleared Honours / Minor specialization in respective courses.

1. CHOICE BASED CREDIT SYSTEM

The credit-based semester system provides flexibility in designing program curriculum and assigning
credits based on the course content and hours of teaching. The Choice Based Credit System (CBCS)
provides a ‘cafeteria’ type approach in which the students can take courses of their choice, learn at their
own pace, undergo additional courses and acquire more than the required credits, and adopt an
interdisciplinary approach to learning.

A course defines learning objectives and learning outcomes and comprises lectures / tutorials / laboratory
work / field based research work / capstone project / seminars / internship / assignments / MOOCs /
alternative assessment tools / presentations / self-study etc., or a combination of some of these. Under the
CBCS, the requirement for awarding a degree is prescribed in terms of number of credits to be completed
by the students.

2. MEDIUM OF INSTRUCTION

The medium of instruction shall be English for all courses, examinations, seminar presentations and
project work. The program curriculum will comprise courses of study as given in course structure, in
accordance with the prescribed syllabi.

3. PROGRAMS OFFERED
Presently, the institute is offering Bachelor of Technology (B.Tech) degree programs in Nine disciplines.
The various programs and their two-letter unique codes are given in Table 1.

Table 1: B.Tech programs offered

S.No | Name of the Program Title Code
1 Aeronautical Engineering AE 07
2 | Computer Science and Engineering CS 05
3 | Computer Science and Engineering (AI&ML) CA 34
4 Computer Science and Engineering (Data Science) CD 35
5 Information Technology IT 06
6 Electronics and Communication Engineering EC 04
7 Electrical and Electronics Engineering EE 02

1|Page

8 Mechanical Engineering ME 03

9 Civil Engineering CE 01

4. SEMESTER STRUCTURE

The undergraduate program is of four academic years and there shall be two semesters in each academic
year. There shall be a minimum of 15 weeks of instruction weeks, excluding the mid-term and semester-
end exams. Around 15 instruction hours, 30 instruction hours and 45 hours of learning need to be
followed per one credit of theory course, practical course and project/field-based learning respectively.
All second Saturday’s are observed as holiday.

Readmitted students and those admitted on transfer from JNTUH-affiliated institutes, universities, or
other institutions are required to pursue the prescribed courses and earn credits on par with regular
students, as prescribed by the respective Board of Studies.

5 REGISTRATION / DROPPING / WITHDRAWAL

The academic calendar includes important academic activities to assist the students and the faculty.
These includes commencement of class work, continuous internal examinations, preparation holidays and
semester end examinations. This enables the students to be well prepared and take full advantage of the
flexibility provided by the credit system.

5.1. Each student has to compulsorily register for course work at the beginning of each semester as per
the schedule mentioned in the academic calendar. It is compulsory for the student to register for
courses in time. The registration will be organized departmentally under the supervision of the
Head of the department.

5.2. In ABSENTIA, registration will not be permitted under any circumstances.

5.3. At the time of registration, students should have cleared all the dues of Institute and Hostel for the
previous semesters, paid the prescribed fees for the current semester and not been debarred from
the institute for a specified period on disciplinary or any other ground.

5.4. In the first two semesters, the prescribed course load per semester is fixed and is mandated to
register all the courses. Withdrawal / Dropping of courses in the first and second semester is not
allowed.

5.5. In all semesters, the average load is 20 credits / semester, with its minimum and maximum limits
being set at 16 and 24 credits. This flexibility enables students (from IV semester onwards) to
cope with the course work considering the academic strength and capability of student.

5.6. Dropping of Courses:
Within one week after the last date of first continuous internal examination, the student may in
consultation with his / her faculty mentor / adviser, drop one or more courses without prejudice to
the minimum number of credits as specified in clause 5.5. The dropped courses are not recorded in
the memorandum of grades. Student must complete the dropped course(s) by registering in the
forthcoming semester in order to earn the required credits.

5.7. Withdrawal from Courses:
A student is permitted to withdraw from a course before commencement first continuous internal
examination. Such withdrawals will be permitted without prejudice to the minimum number of
credits as specified in clause 5.5. A student cannot withdraw a course more than once and
withdrawal of reregistered courses is not permitted.

6. CREDIT SYSTEM

The B.Tech program shall consist of a number of courses and each course shall be assigned with credits.
The curriculum shall comprise Foundation Courses (FC), Professional Core (PC), Professional Electives
(PE), Open Electives (OE), Laboratory Courses, Skill Development Courses, Other Courses and
Mandatory Courses (MC) / Value Added Courses (VAC).

Depending on the complexity and volume of the course, the number of contact periods per week will be
assigned. Each theory and laboratory course carries credits based on the number of hours/weeks.

2|Page

Contact classes (Theory): 1 credit per lecture hour per week, 1 credit per tutorial hour per week.
Laboratory hours (Practical): 1 credit for 2 practical hours per week.

Project work: 1 credit for 4 hours in a semester for Project/Mini-Project session per week.

Skill Development Courses: 1 credit for 2 hours

Mandatory courses / Value added courses : 1 credit is awarded.

Category wise distribution of Credits is shown in Table 2.

Table 2: Category Wise Distribution of Credits

S.No Category ISP G (Sl ps? Total Credits
courses course(s)
1 BS - Basic Science 5 4/3 16 18
(1 - 4 credits, 4 - 3 Credits)
BS - Basic Science Laboratories 2 1 2
2 ES - Engineering Science 3 3 9 20
ES - Engineering Science Laboratories 2 1 2
MEC Courses 2 3/1 4
CSC Courses 3 3/1 5
3 HS - Humanities and Social Sciences | 3 3 6
HS - Humanities and Social Sciences 3 1 3
Laboratories
4 Professional Core - Theory 16 3 - 48
Professional Core - Laboratories 15 | - 15
5 Professional Electives 6 3 18
6 Open Electives 3 2 6
7 Project Work 1 14 14
8 Skill Development Courses 4 1 4
9 Industry Oriented Mini Project/ Summer | 2 2
Internship
10 | Field-Based Project / Internship 1 2 2
11 | Mandatory Courses / Value Added Course 3 1 3
12 | Innovation and Entrepreneurship 1 2 2
13 | Business Economics and Financial Analysis 1 3 3
14 | Fundamentals of Management 1 3 - 3
Total -- - 164

Major benefits of adopting the credit system are listed below:

7.
Courses in a curriculum may be of three kinds: Foundation courses, Core courses, Elective courses,
Project core, Other core courses, Skill development courses and Value added courses.

Quantification and uniformity in the listing of courses for all programs at institute, like program core,
electives and project work.

Ease of allocation of courses under different heads by using their credits to meet national
/international practices in technical education.

Convenience to specify the minimum / maximum limits of course load and its average per semester
in the form of credits to be earned by a student.

Flexibility in program duration for students by enabling them to pace their course load within
minimum/maximum limits based on their preparation and capabilities.

Wider choice of courses available from any department of the same institute or even from other
similar institute, either for credit or for audit.

Improved facility for students to optimize their learning by availing of transfer of credits earned by
them from one College to another.

CURRICULAR COMPONENTS

3|Page

Foundation course:

Foundation courses include the basic science and engineering science course based upon the content
leads to enhancement of skill and knowledge as well as value based and are aimed at man making
education.

Professional core (PC):

There may be a professional core course in every semester. These courses are to be compulsorily studied
by a student as a core requirement to complete the requirement of a program in the said discipline of
study.

Professional electives (PE) / Open electives (OE):

Electives provide breadth of experience in respective branch and application areas. The program
elective(s) is a course which can be chosen from a pool of courses. An elective may be professional
elective, is a discipline centric focusing on those courses which add generic proficiency to the students or
may be Open elective course, chosen from unrelated disciplines.

There are six professional elective tracks (PE-1 to PE-VI). Students can choose not more than two
courses from each track. Overall, students can opt for six professional electives which suit their capstone
project in consultation with the faculty advisor/mentor. Nevertheless, one course from each of the three
open electives has to be selected. A student may also opt for more elective courses in his/her area of
interest.

Students have the flexibility to choose from the list of professional electives offered by the Institute or
opt to register for the equivalent MOOCS courses as listed from time to time by the institute.

It may be:

e Supportive to the discipline of study

e Providing an expanded scope

e Enabling an exposure to some other discipline / domain

e Nurturing student’s proficiency / skill.

Provision for Early Registration of MOQOC:s:

e For a professional elective in a semester, students are allowed to register for an equivalent MOOCs
course listed from time to time.

e For example, a Professional Elective of VI semester shall be allowed to register under MOOCs
platform in V semester.

o The credits earned in one semester in advance can be submitted in the subsequent semester for the
assessment.

e The student who has registered in advance in an equivalent MOOCs course and fails to secure any
pass grade in the MOOCs course, can register for the regular course offered in the following semester
of their course catalogue.

Note: MOOCS courses are allowed only for professional electives.

Skill development courses are structured training courses which help students to acquire practical
abilities, competencies, and soft skills which are essential for academic, professional, and personal
growth.

Value Added Course (VAC):

Value-added courses that focus on professional values, traditional knowledge, and the sensitization of
societal issues are short, skill-oriented programs designed to help students grow ethically, culturally, and
socially beyond technical skills. The evaluation of value added courses shall be similar to theory courses.
However, the scheduling of these CIA and SEE may not be combined with regular SEE examinations.

Semester wise course break-up
Following are the TWO models of course catalogue out of which any student shall choose or
will be allotted with one model based on their academic performance.

i. Full Semester Internship (FSI) Model and
ii. Non Full Semester Internship (NFSI) Model

4|Page

A student with no current arrears upto IV semester shall be eligible to opt for FSI. Students can opt full
semester internship (FSI) in VIII semester. In Non-FSI Model, all the selected students shall carry out the
course work and capstone project as specified in the course cataloge.

8. EVALUATION METHODOLOGY

Total marks for each course shall be based on Continuous Internal Assessment (CIA) and Semester End
Examination (SEE). There shall have a uniform pattern of 40:60 for CIA and SEE of both theory and
practical courses. The institute shall conduct multiple CIA for theory courses. All the performances of a
student shall be considered for CIA marks distribution is shown in Table 3.

Table 3: Outline for Continuous Internal Assessments (CIA-1 and CIA-2) and SEE:

Activities CIA-1 CIA-2 SEE Total Marks
Continuous Internal Examination (CIE) 20 marks 20 marks 20 marks
Objective / Quiz 10 marks 10 marks 10 marks
Assignment 5 marks 5 marks S marks
Viva-Voce/PPT/Poster Presentation/ Case Study 5 marks 5 marks 5 marks
Semester End Examination (SEE) 60 marks 60 marks
Total -- -- 100 marks

8.1 Continuous Internal Assessments (CIA-1 and CIA-2)

Assessment is an ongoing process that begins with establishing clear and measurable expected outcomes
of student learning, provides students with sufficient opportunities to achieve those outcomes, and
concludes with gathering and interpreting evidence to determine how well students’ learning matches
expectations.

The first component CIA-1 of assessment is for 20 marks. This assessment and score process should be
completed after completing of first 50% of syllabus (2'%) of the course/s and within 45 working days of
semester program.

The second component CIA-2 of assessment is for 20 marks, this assessment and score process should be
completed after completing of remaining 50% of syllabus (2'?) of the course/s and within 45 working
days of semester program.

In case of a student who has failed to attend the CIA1 or CIA2 on a scheduled date, shall be deemed that
the student has dropped the examination. However, in case a student could not take the test on scheduled
date due to genuine reasons, may appeal to the HOD / Principal. The HOD / Principal in consultation
with the class in-charge shall decide about the genuineness of the case and decide to conduct Make-Up
examination to such candidate on the date fixed by the Examinations Control Office but before
commencement of the concerned semester end examinations.

The performance of a student in every course including value added courses, skill development courses,
laboratory courses, capstone project work will be evaluated for 100 marks each, with 40 marks allotted
for CIA and 60 marks for SEE, irrespective of the credits allocated.

8.2 Semester End Examination (SEE)

The semester end examinations, for theory courses, will be conducted for 60 marks consisting of two parts
viz. 1) Part- A for 10 marks and ii) Part - B for 50 marks.

Part-A is compulsory, consists of five short answer questions; each question carries two marks.

5|Page

Part-B consists of five questions carrying 10 marks each. There shall be two questions asked in the
question paper from each module with either-or choice and the student should answer either of the two
questions. The student shall answer one question from each of five modules.

The duration of SEE is 3 hours.

8.3 Passing Criteria:
To maintain high standards in all aspects of examinations at the institute, the institute shall follow the
standards of passing at CIA and SEE for each course.

a) A student shall be deemed to have satisfied the academic requirements and earned the credits
allotted to each course, if the student secures not less than 35% (21 marks out of 60 marks) in the
semester end examinations, and a minimum of 40% (40 marks out of 100 marks) in the sum total of
the Continuous Internal Assessment and Semester End Examination taken together; in terms of
letter grades, this implies securing ‘C’ grade or above in that course.

b) A student shall be deemed to have satisfied the academic requirements and earned the credits
allotted to Engineering Design Project / Engineering Development Project / Summer Internship, if
the student secures not less than 40% marks (i.e. 40 out of 100 allotted marks) in each of them. The
student is deemed to have failed, if he/she (i) does not submit a report on Engineering Design
Project / Engineering Development Project / Summer Internship or (ii) not make a presentation of
the same before the evaluation committee as per schedule, or (iii) secures less than 40% marks in
Field-Based Research Project / Industry Oriented Mini Project / Internship evaluations.

c) A student eligible to appear in the SEE for any course, is absent from it or failed (thereby failing to
secure ‘C’ grade or above) may re-appear for that course in the supplementary examination as and
when it is conducted. In such cases, internal marks (CIA) assessed earlier for that course will be
carried over, and added to the marks obtained in the SEE supplementary examination. If the student
secures sufficient marks for passing, ‘C’ grade or above shall be awarded as specified in clause
11.3.

8.4 Supplementary examinations

Supplementary examinations for the odd semester shall be conducted with the regular examinations of
even semester and vice versa. In case of failure in any course, a student may be permitted to register for
the same course when offered.

Advanced supplementary examinations in VIII semester courses may be conducted for those who failed
in any course offered in VIII semester. It may enable the students to receive their B.Tech provisional
certificate at an early date.

There shall be no supplementary examination in the successive semester. The students who could not
secure any pass grade in advance supplementary examinations have to wait for regular series examination
of next batch to write their backlog examination.

8.5 Laboratory Course

Evaluation methodology of laboratory course (CIA)

Each laboratory courses there shall be a CIA during the semester for 40 marks and 60 marks for SEE.
The 40 marks for internal evaluation marks are awarded as follows:

1. A write-up on day-to-day experiment in the laboratory (in terms of aim, components / procedure,
expected outcome) which shall be evaluated for 20 marks.

2. Internal practical examination conducted by the laboratory teacher concerned shall be evaluated for
10 marks.

3. The remaining 10 marks will be awarded for the project report submission and evaluation.

6|Page

Evaluation methodology of laboratory course (SEE)
The SEE shall be conducted by an external examiner along with the laboratory handling faculty. The
external examiner shall be appointed from other institutions and will be selected from the panel by the
Principal.
The SEE held for 3 hours. Total 60 marks are divided and allocated as shown below:
1. 10 marks for write-up
10 for experiment / program
10 for evaluation of results
10 marks for viva-voce on concerned laboratory course.

voA W

20 marks will be awarded for the solving Complex Tasks Descriptions (CTDs) / take-home project
identified by department advisory committee which will be announced at the beginning of the
semester.

8.6 Evaluation of Engineering Design Project and Engineering Development Project

Engineering Design and Development Projects is the high point of degree studies in engineering. The
transition of students to industry is still not optimal, and there is a disparity between the needs of industry
and the actual ability of academia to meet these needs. Each project is carried out under the supervision
of academic faculty and where appropriate an industry partner.

The Engineering Design Project and Engineering Development Project shall be evaluated for 100
marks each. out of which 40 marks for CIA and 60 marks for SEE. The evaluation committee shall
consist of a Head of the Department, Supervisor of the Project and a Senior Faculty Member of the
department. Student shall have to earn 40% marks, i.e 40 marks out of 100 marks. The student is deemed
to have failed, if he (i) does not submit a report on the project, or (ii) does not make a presentation of the
same before the internal committee as per schedule, or (iii) secures less than 40% marks in this course.

8.7 Evaluation of Summer Internship

A Summer Internship shall be undertaken in collaboration with an industry relevant to the student's area
of specialization. Students must register for the internship immediately after the completion of their V
semester examinations and pursue it during the summer vacation. The internship, preferably at a reputed
organization, must be documented in the form of a report and presented before a committee during the
VII semester, prior to the semester-end examinations.

The internship shall be evaluated for 100 external marks, out of which 40 marks for CIA and 60 marks
for SEE. The evaluation committee shall consist of an external examiner, the Head of the Department,
supervisor, and a senior faculty member from the department.

8.8 Additional Mandatory Courses for lateral entry B.Tech students

In addition to the non-credit mandatory courses for regular B.Tech students, the lateral entry students
shall take up the following three non-credit mandatory bridge courses (one in III semester, one in IV
semester and one in V semester) as listed in Table 4. The student shall pass the following non-credit
mandatory courses for the award of the degree and must clear these bridge courses before advancing to
the VII semester of the program.

Table-4: Additional Mandatory Courses for lateral entry students

S.No Additional mandatory courses for lateral entry students

1 Dip - Object Oriented Programming

2 Dip - Data Structures

Dip - Front-End Web Development

7|Page

8.9 Innovation and Entrepreneurship

Innovation and entrepreneurship course offered in III semester and its requires strong technical skills in
engineering design and computation with key business skills from marketing to business model
generation. Students require sufficient skills to innovate in existing companies or create their own.

This course will be evaluated for a total of 100 marks consisting of 40 marks for CIA and 60 marks for
SEE. Out of 40 marks of internal assessment, students has to submit Innovative Idea in a team of three /
four members in the given format. The SEE for 60 marks shall be conducted internally, students has to
present the Innovative Idea and it will be evaluated by internal course handling faculty with at least one
faculty member as examiner from the industry, both nominated by the Principal.

8.10 Capstone Project

The capstone project shall be initiated at the beginning of the VIII semester and the duration is one
semester. The student must present in consultation with his/her supervisor, the title, objective and plan of
action of his/her to the departmental committee for approval within two weeks from the commencement
of VIII semester. Only after obtaining the approval of the departmental committee, the student can start
his/her capstone project.

Student has to submit report of capstone project at the end of VIII semester. It shall be evaluated for 100
marks. Out of which 40 marks and 60 marks are allocated for CIA and SEE respectively. Evaluation shall
be done by a committee comprising the supervisor, Head of the department, and an external examiner
nominated by the Principal.

The external examiner shall evaluate the capstone project for 60 marks and the internal committee shall
evaluate it for 40 marks. The departmental committee consisting of Head of the department, supervisor
and a senior faculty member shall evaluate for 20 marks and supervisor shall evaluate for 20 marks.

The topics for the capstone project shall be different from the topics of Engineering design project /
Engineering development project / Summer Internship. The student is deemed to have failed, if he (i)
does not submit a capstone project, or (ii) does not make a presentation of the same before the external
examiner as per schedule, or (iii) secures less than 40% marks in the sum total of the CIE and SEE taken
together.

The external examiner will be selected for conducting viva-voce examination from the list of experts
selected by the Principal of the institute.

This gives students a platform to experience a research driven career in engineering, while developing a
device / systems and publishing in reputed SCI / SCOPUS indexed journals and/or filing an Intellectual
Property (IPR-Patent/Copyright) to aid communities around the world. Students should work
individually as per the guidelines issued by head of the department concerned. The benefits to students of
this mode of learning include increased engagement, fostering of critical thinking and greater
independence.

A student who has failed, may re-appear once for the above evaluation, when it is scheduled again; if
student fails in such ‘one re-appearance’ evaluation also, he/she has to appear for the same in the next
subsequent year, as and when it is scheduled.

A minimum of 50% of maximum marks shall be obtained to earn the corresponding credits.

8.11 Skill Development Courses

There are four skill development courses included in the curriculum in III, IV, V and VI semesters. Each
skill development course carries one credit. The evaluation pattern will be the same as that for a
laboratory course including internal and external assessments.

The objective of skill courses is to develop the cognitive skills as well as the psycho-motor skills.

8.12 Full Semester Internship (FSI)

FSI is a full semester internship program carry 14 credits. The FSI shall be opted in VIII semester.
During the FSI, student has to spend one full semester in an identified industry / firm / R&D organization
or another academic institution/University where sufficient facilities exist to carry out the project work.

8|Page

The selection procedure is:

e Choice of the students.

e CGPA (> 7.5) upto IV semester having no credit arrears.
e Competency Mapping / Allotment.

1t is recommended that the FSI Project work leads to a research publication in a reputed Journal /
Conference or the filing of patent / design with the patent office, or, the start-up initiative with a
sustainable and viable business model accepted by the incubation center of the institute together with the
formal registration of the startup.

9. ATTENDANCE REQUIREMENTS AND DETENTION POLICY

9.1 A student shall be eligible to appear for the semester end examinations, if the student acquires a
minimum of 75% of attendance in aggregate of all the courses for that semester.

9.2 Shortage of attendance in aggregate upto 10% (65% and above, and below 75%) in each semester
may be condoned by the college academic committee on genuine and valid grounds, based on the
student’s representation with supporting evidence.

9.3 A stipulated fee shall be payable for condoning of shortage of attendance.

9.4 Shortage of attendance below 65% in aggregate shall in NO case be condoned.

9.5 Students whose shortage of attendance is not condoned in any semester are not eligible to take their
semester end examinations of that semester. They get detained and their registration for that
semester shall stand cancelled, including all academic credentials (internal marks etc.) of that
semester. They will not be promoted to the next semester. They may seek re-registration for that
semester in the next academic year.

9.6 A student fulfilling the attendance requirement in the present semester shall not be eligible for
readmission into the same semester / class.

9.7 A student detained in a semester due to shortage of attendance may be re-admitted in the same
semester in the next academic year for fulfillment of academic requirements. The academic
regulations under which a student has been re-admitted shall be applicable. Further, no grade
allotments or SGPA/ CGPA calculations will be done for the entire semester in which the student
has been detained.

9.8 A student detained due to lack of credits, shall be promoted to the next academic year only after
acquiring the required number of academic credits. The academic regulations under which the
student has been readmitted shall be applicable to him.

10. CONDUCT OF SEMESTER END EXAMINATIONS AND EVALUATION

10.1 Semester end examination shall be conducted by the Controller of Examinations (COE) by inviting
question papers from the external examiners.

10.2 The Controller of Examinations (COE) shall invite external examiners to evaluate all semester end
examination answer scripts on the scheduled dates. Similarly, practical laboratory examinations shall
be conducted in the presence of external examiners to ensure transparency and fair evaluation.

10.3 Examinations control office shall consolidate the marks awarded by examiner/s and award the
grades.

11. LETTER GRADES AND GRADE POINTS

11.1 ABSOLUTE Grading system is followed for awarding the grade to each course.

11.2 Performance of students in each course, Theory, Laboratory, Industry-Oriented Mini Project/
Internship/ Skill development course and Project Work are expressed in terms of marks as well as in
Letter Grades based on absolute grading system.

11.3 To measure the performance of a student, a 10-point grading system is followed. The mapping

between the percentage of marks secured and the corresponding letter grade is as shown in the below
Table 5.

9|Page

Table-5: Grade Points Scale (Absolute Grading)

Range of % of Marks Secured in a Course Letter Grade Grade Point
Greater than or equal to 90 O (Outstanding) 10
80 and less than 90 A+ (Excellent) 9
70 and less than 80 A (Very Good) 8
60 and less than 70 B+ (Good) 7
50 and less than 60 B (Average) 6
40 and less than 50 C (Pass) 5
Below 40 F (Fail) 0
Absent AB (Absent) 0

11.3 A student is deemed to have passed and acquired to correspondent credits in particular course if s/he
obtains any one of the following grades: “O”, “A+”, “A”, “B+”, “B”, “C”.

11.4 A student who has obtained an ‘F’ grade in any course shall be deemed to have ‘failed’ and is
required to reappear for a supplementary exam as and when conducted. In such cases, internal marks
in those courses will remain the same as those obtained earlier.

11.5 A student who has not appeared for an examination in any course, ‘Ab’ grade will be allocated in
that course, and he/she is deemed to have ‘Failed’. Such student will be required to reappear for
supplementary/make-up exam as and when conducted. The internal marks in those courses will
remain the same as those obtained earlier.

11.6 The students earn a Grade Point (GP) in each course, on the basis of letter grade secured in that
course. Every student who passes a course will receive grade point GP > 5 (‘C’ grade or above).

11.7 At the end of each semester, the institute issues grade sheet indicating the SGPA and CGPA of the
student. However, grade sheet will not be issued to the student if s/he has any outstanding dues.

11.8 If a student earns more than 160 credits, only the courses corresponding to the best 160 credits
shall be considered for the computation of CGPA of B.Tech. degree.

12. COMPUTATION OF SGPA AND CGPA

The UGC recommends to compute the Semester Grade Point Average (SGPA) and Cumulative Grade
Point Average (CGPA). The credit points earned by a student are used for calculating the Semester Grade
Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both of which are important
performance indices of the student.

The Semester Grade Point Average (SGPA) is calculated only when all the courses offered in a semester
are cleared by a student. It is calculated by dividing the sum of credit points secured from all courses
registered in a semester, by the total number of credits registered during that semester. SGPA is rounded
off to two decimal places. SGPA for each semester is thus computed as

SGPA={¥N,C G }/{XN,C;}

where ‘i’ is the course indicator index (considering all courses in a semester), ‘N’ is the no. of courses
registered for the semester (as listed under the course structure of the branch), C; is the no. of credits

allotted to the i course, and G® represents the grade points corresponding to the letter grade awarded for
that i course.

10|Page

The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a
student in all semesters considered for registration. The CGPA is the ratio of the total credit points
secured by a student for the courses correspond to best 160 credits out of all registered courses in all
semesters, and the total number of credits correspond to those selected courses. CGPA is rounded off to
two decimal places. CGPA is thus computed at the end of each semester, from the I year II semester
onwards, as per the formula.

CGPA={YM,C G}/ {IM C}

where ‘M’ is the total no. of courses corresponding to the best 160 credits from the courses registered in
all eight semesters, j’ is the course indicator index (takes into account all courses from 1 to 8 semesters),
C; is the no. of credits allotted to the j™ course, and G;j represents the grade points (GP) corresponding to
the letter grade awarded for that j™ course.

The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

13.0 ILLUSTRATION OF COMPUTATION OF SGPA AND CGPA
13.1 Illustration for SGPA

Course Name Course Credits Grade letter Grade point (C(r::;?ti;lgli':(tle)
Course 1 4 A 8 4x8=32
Course 2 3 (@) 10 3x10=30
Course 3 3 C 5 3x5=15
Course 4 3 B 6 3x6=18
Course 5 3 A 8 3x8=24
Course 6 2 A+ 9 2x9=18
Course 7 1 C 5 Ix5=15
Course 8 1 (@) 10 Ix10=10

20 152

Thus, SGPA = 152/20=7.6

13.2. The CGPA of the entire B.Tech. program shall be calculated considering the best 160 credits earned
by the student.

13.3 For merit ranking or comparison purposes or any other listing, only the ‘rounded off” values of the
CGPAs will be used.

13.4 SGPA of a semester will be mentioned in the semester Memorandum of Grades if all courses of that
semester are passed in first attempt. Otherwise, the SGPA shall be mentioned only on the
Memorandum of Grades in which sitting he passed his last exam in that semester.

14. REVALUATION

If the examinee is not satisfied with the marks awarded, s’he may apply for revaluation of answer
booklets in prescribed format online within three (3) working days from the date of declaration of result
of the examination or issue of the statement of marks, whichever is earlier. The revaluation facility shall
be for theory papers only. The revaluation of answer booklets shall not be permitted in respect of the
marks awarded to the scripts of practical examination / project work (including theory part) and in viva
voce / oral / comprehensive examinations.

11|Page

15. PROMOTION POLICIES

The following academic requirements have to be satisfied in addition to the attendance requirements
mentioned in item no. 9.

S.No Promotion Conditions to be Fulfilled
1 First year first semester to first year | Regular course of study of first year first semester and
second semester fulfilment of attendance requirement.
2 First year second semester to Second | (i) Regular course of study of first year second semester and
year first semester fulfilment of attendance requirement

(i1) Must have secured at least 25% of the total credits up to
first year second semester from all the relevant regular and
supplementary examinations, whether the student takes
those examinations or not.

3 Second year first semester to Second | Regular course of study of second year first semester and
year second semester fulfilment of attendance requirement.

4 Second year second semester to Third | (i) Regular course of study of second year second semester and
year first semester fulfilment of attendance requirement.

(i1) Must have secured at least 25% of the total credits up to
second year second semester from all the relevant regular
and supplementary examinations, whether the student takes
those
examinations or not.

5 Third year first semester to Third year | Regular course of study of third year first semester and
second semester fulfilment of attendance requirement.

6 Third year second semester to Fourth | Regular course of study of third year second semester and
year first semester fulfilment of attendance requirement

7 Fourth year first semester to Fourth | Regular course of study of fourth year first semester and
year second semester fulfilment of attendance requirement

16. CREDIT EXEMPTION

A student (i) shall register for all courses covering 164 credits as specified and listed in the course
catalogue and (ii) earn 160 or more credits to successfully complete the undergraduate Program.

e Best 160 credits shall be considered for CGPA computation. The student can avail exemption of
courses totalling upto 4 credits other than professional core courses, laboratory courses, seminars,
capstone project, engineering design project / engineering development project / summer internship,
for optional drop out from these 164 credits registered.

e The Semester Grade Point Average (SGPA) of each semester shall be mentioned at the bottom of the
grade card, when all the subjects in that semester have been passed by the student.

e Credits earned by the student in either a Minor or Honors program cannot be counted towards the
required 160 credits for the award of the B.Tech. degree.

17. AWARD OF DEGREE

17.1 A student who registers for all the specified courses as listed in the course catalogue and secures the
required number of 160 credits within 8 academic years from the date of commencement of the first
academic year, shall be declared to have ‘qualified’ for the award of B.Tech. degree in the branch of
Engineering selected at the time of admission.

17.2 A student who qualifies for the award of the degree as listed in item 17.1 shall be placed in the
following classes.

17.3 A student with final CGPA (at the end of the undergraduate program) > 7.5, and fulfilling the
following conditions - shall be placed in ‘first class with distinction’. However,

a.

Should have passed all the courses in ‘first appearance’ within the first 4 academic years (or
8 sequential semesters) from the date of commencement of first semester.

Should not have been detained or prevented from writing the semester end examinations in

any semester due to shortage of attendance or any other reason.

12|Page

17.4

17.5

17.5

17.6

17.7

17.8

17.9

c. A student not fulfilling any of the above conditions with final CGPA > 7.5 shall be placed in
“first class’.

Students with final CGPA (at the end of the undergraduate program) > 6.5 but < 7.5 shall be placed
in ‘“first class’.

Students with final CGPA (at the end of the undergraduate program) > 5.5 but < 6.5, shall be
placed in ‘second class’.

All other students who qualify for the award of the degree (as per item 17.1), with final CGPA (at
the end of the B.Tech program) > 5.00 but < 5.5, shall be placed in ‘pass class’.

A student with final CGPA (at the end of the B.Tech program) <5.0 will not be eligible for the
award of the degree.

Students fulfilling the conditions listed under item 17.3 alone will be eligible for award of ‘Gold
Medal’.

If more than one student secures the same highest CGPA, then the following tie resolution criteria,
in the same order of preference shall be followed for selecting the Gold Medal winner, until the tie
is resolved: 1) more number of times secured highest SGPAs, ii) more number of O and A+ grades
in that order and iii) highest SGPA in the order of first semester to eight semester.

Grace Marks

Grace marks shall be given to those students who complete the course work of four year B.Tech.
degree, not secured pass grade in not more than three courses and adding a specified grace marks
enables the student to pass the course(s) as well as gets eligibility to receive the provisional degree
certificate.

Grace marks for students admitted under the R25 Academic Regulations should not exceed 0.15%
of the total maximum marks in all eight semesters (excluding the marks allocated for value added
courses and skill development courses). The grace marks shall only be added if a student fails in a
maximum of three courses and adding the above grace marks make the student eligible to receive
the provisional degree certificate.

All the candidates who register for the SEE will be issued a memorandum of grades sheet by the institute.
Apart from the semester wise memorandum of grades sheet, the institute will issue the provisional
certificate and consolidated grades memorandum certificate to the fulfilment of all the academic
requirements.

18. CONVERSION OF CGPA INTO EQUIVALENT PERCENTAGE OF MARKS

The following formula shall be used for the conversion of CGPA into equivalent marks, whenever it is
necessary.

Percentage (%) of Marks = (Final CGPA - 0.5) x 10

The Table 06 shows the Percentage Equivalence of Grade Points (for a 10 — Point Scale).

Table 06: Percentage Equivalence of Grade Points (for a 10 — Point Scale)

Grade Point Percentage of Marks / Class
5.5 50
6.0 55
6.5 60
7.0 65
7.5 70
8.0 75

13|Page

19. BTECH WITH HONOURS OR MINOR IN ENGINEERING

Students acquiring 160 credits or more are eligible to get B.Tech degree in Engineering. A student will
be eligible to get B.Tech degree with Honours or Minor in Engineering, if s’he completes an additional
20/18 credits (3/4 credits per course). These could be acquired through MOOCs from SWAYAM /
NPTEL only. The list for MOOCs will be a dynamic one, as new courses are added from time to time.
Few essential skill sets required for employability are also identified year wise. Students interested in
doing MOOC courses shall register the course title at their department office at the start of the semester
against the courses that are announced by the department. Any expense incurred for the MOOC course /
summer program should be met by the students.

Students having no credit arrears and a CGPA of 7.5 or above at the end of the fourth semester are
eligible to register for B.Tech (Honours / Minor). After registering for the B.Tech (Honours / Minor)
program, if a student fails in any course, s/he will not be eligible for B.Tech (Honours / Minor).

Honours Certificate for Vertical in his’/her OWN Branch for Research orientation; Minor in any
other branch for Improving Employability.

Honours will be reflected in the degree certificate as “B.Tech (Honours) in XYZ Engineering”. Similarly,
Minor as “B.Tech in XYZ Engineering with Minor in ABC”.

19.1. B.Tech with Honours

The key objectives of offering B.Tech with Honors program are:

e To expand the domain knowledge of the students laterally and vertically.

e To increase the employability of undergraduate students with expanded knowledge in one of the core
engineering disciplines.

e To provide an opportunity to students to pursue their higher studies in wider range of specializations.

Academic Regulations for B. Tech. Honours degree

1. The weekly instruction hours, internal and external evaluation and award of grades are on par with
regular 4-Years B. Tech. program.

2. For B. Tech with Honors program, a student needs to earn additional 20 credits (over and above the
required 160 credits for B.Tech degree). All these 20 credits required to be attained for B.Tech
Honors degree credits are distributed from V semester to VII semester.

3. After registering for the Honors program, if a student is unable to pass all courses in first attempt
and earn the required 20 credits, he/she shall not be awarded Honours degree. However, if the
student earns all the required 160 credits or more of B.Tech., he/she will be awarded only B.Tech
degree in the concerned branch.

4. There is no transfer of credits from courses of Honors program to regular B.Tech. degree course &
vice versa.

5. These 20 credits are to be earned from the additional courses offered by the host department in the
institute or from closely related departments in the institute as well as from the MOOCS platform
(NPTEL only).

6. The choice to opt/take the Honors program is purely on the choice of the students.

7. The student shall be given a choice of withdrawing all the courses registered and/or the credits
earned for Honours program at any time; and in that case the student will be awarded only B.Tech.
degree in the concerned branch on earning the required credits of 160.

8. The students of every branch can choose Honours program in their respective branches if they are
eligible for the Honors program. A student who chooses an Honors program is not eligible to
choose a Minor program and vice-versa.

9. A student can graduate with Honors if he/she fulfils the requirements for his/her regular B.Tech.
program as well as fulfills the requirements for Honours program.

10. The institute shall maintain a record of students registered and pursuing their Honors programs
branch-wise.

14|Page

Eligibility conditions of the students for the B.Tech Honors degree

a)
b)
©)

d)

f)

A student can opt for B.Tech. degree with Honors, if she/he passed all courses in first attempt in all
the semesters till the results announced and maintaining 7.5 or more CGPA.

If a student fails in any registered course of either B.Tech or Honours in any semester of four years
program, he/she will not be eligible for obtaining Honors degree. He will be eligible for only

Prior approval of mentor and Head of the Department for the enrolment into Honors program, before
commencement of V Semester, is mandatory.

If more than 30% of the students in a branch fulfill the eligibility criteria (as stated above), the
number of students given eligibility should be limited to 30%. The criteria to be followed for choosing
30% candidates in a branch may be the CGPA secured by the students till III semester.

Successful completion of 20 credits earmarked for Honours program with at least 7.5 CGPA along
with successful completion of 160 credits earmarked for regular B. Tech. Program with at least 7.5
CGPA and passing all courses in first attempt gives the eligibility for the award of B.Tech (Honors)
degree.

For CGPA calculation of B.Tech. course, the 20 credits of Honours program will not be considered.

Following are the details of such Honors which include some of the most interesting areas in the
profession today:

S.No | Department Honors scheme
1 Aeronautical Engineering Aerospace Engineering / Space Science etc.
Big data and Analytics / Cyber Physical Systems, Information
) Computer Science and Engineering | Security / Cognitive Science / Artificial Intelligence/ Machine
/ Information Technology Learning / Data Science / Internet of Things (IoT) / Cyber Security
etc.
3 Electronics and Communication Digital Communication / Signal Processing / Communication
Engineering Networks / VLSI Design / Embedded Systems etc.
4 Electrical and Electronics Renewable Energy systems / Energy and Sustainability / IoT
Engineering Applications in Green Energy Systems etc.
. . . Industrial Automation and Robotics / Manufacturing Sciences and
5 Mechanical Engineering . .
Computation Techniques etc.
6 Civil Engineering Structural Engineering / Environmental Engineering etc.

19.2 B.Tech with Minor in Engineering

The key objectives of offering B.Tech with Minor program are:

To expand the domain knowledge of the students in one of the other branches of engineering.

To increase the employability of undergraduate students keeping in view of better opportunity in
interdisciplinary areas of engineering & technology.

To provide an opportunity to students to pursue their higher studies in the inter-disciplinary areas in
addition to their own branch of study.

To offer the knowledge in the areas which are identified as emerging technologies/thrust areas of
Engineering.

Academic Regulations for B.Tech Degree with Minor programs

1.

2.

The weekly instruction hours, internal & external evaluation and award of grades are on par with
regular 4-Years B. Tech. program.

For B. Tech. with Minor, a student needs to earn additional 18 credits (over and above the required
160 credits for B. Tech degree). The courses are offered from V semester to VII semester only, to
obtain minor degree students required to obtain 18 credits.

After registering for the Minor program, if a student is unable to earn all the required 18 credits in a
specified duration (twice the duration of the course), he/she shall not be awarded Minor degree.
However, if the student earns all the required 160 credits of B.Tech, he/she will be awarded only

15|Page

10.

11.

B. Tech degree in the concerned branch.

There is no transfer of credits from Minor program courses to regular B. Tech. degree course &
vice versa.

These 18 credits are to be earned from the additional courses offered by the host department in the
institute as well as from the MOOCs platform.

For the course selected under MOOCs platform (NPTEL) following guidelines may be followed:

a) Prior to registration of MOOCs courses, formal approval of the courses, by the institute is
essential, before the issue of approval considers the parameters like the institute / agency
which is offering the course, syllabus, credits, duration of the program and mode of evaluation
etc.

b) Minimum credits for MOOCs course must be equal to or more than the credits specified in the
Minor course structure provided by the institute.

¢) Only Pass-grade / marks or above shall be considered for inclusion of grades in minor grade
memo.

d) Any expenses incurred for the MOOCs courses are to be met by the students only.
The choice to opt / take a Minor program is purely on the choice of the students.

The student shall be given a choice of withdrawing all the courses registered and / or the credits
earned for Minor program at any time; and in that case the student will be awarded only B. Tech.
degree in the concerned branch on earning the required credits of 160.

The student can choose only one Minor program along with his / her basic engineering degree. A
student who chooses an Honors program is not eligible to choose a Minor program and vice-
versa.

The institute shall maintain a record of students registered and pursuing their Minor programs,
minor program-wise and parent branch-wise.

The institute / department shall prepare the time-tables for each Minor course offered at their
respective institutes without any overlap/clash with other courses of study in the respective
semesters.

Eligibility conditions for the student to register for Minor course

a)

b)

c)

20.0
20.1

20.2

20.3

A student can opt for B.Tech. degree with Minor program if she/he has no active backlogs till 111
semester at the time of entering into V semester.

Prior approval of mentor and Head of the Department for the enrolment into Minor program,
before commencement of V Semester, is mandatory.

If more than 50% of the students in a branch fulfill the eligibility criteria (as stated above), the
number of students given eligibility should be limited to 50%.

TEMPORARY BREAK OF STUDY FROM THE PROGRAM

A candidate is normally not permitted to take a break from the study. However, if a candidate
intends to temporarily discontinue the program in the middle for valid reasons (such as accident or
hospitalization due to prolonged ill health) and to rejoin the program in a later respective semester,
s/he shall seek the approval from the Principal in advance. Such application shall be submitted
before the last date for payment of examination fee of the semester and forwarded through the
Head of the Department stating the reasons for such withdrawal together with supporting
documents and endorsement of his / her parent / guardian.

The institute shall examine such an application and if it finds the case to be genuine, it may permit
the student to temporarily withdraw from the program. Such permission is accorded only to those
who do not have any outstanding dues / demand at the College / University level including tuition
fees, any other fees, library materials etc.

The candidate has to rejoin the program after the break from the commencement of the respective
semester as and when it is offered.

16 |Page

20.4 The total period for completion of the program reckoned from the commencement of the semester
to which the candidate was first admitted shall not exceed the maximum period specified in clause
17. The maximum period includes the break period.

20.5 If any candidate is detained for any reason, the period of detention shall not be considered as
‘Break of Study’.

21. TERMINATION FROM THE PROGRAM

The admission of a student to the program may be terminated and the student is asked to leave the
institute in the following circumstances:

a. The student fails to satisfy the requirements of the program within the maximum period stipulated
for that program.

b. A student shall not be permitted to study any semester more than three times during the entire
program of study.

c. The student fails to satisfy the norms of discipline specified by the institute from time to time.

22. WITH-HOLDING OF RESULTS

If the student has not paid the fees to the institute at any stage, or has dues pending due to any reason
whatsoever, or if any case of indiscipline is pending, the result of the student may be withheld, and the
student will not be allowed to go into the next higher semester. The award or issue of the degree may also
be withheld in such cases.

23. GRADUATION DAY

The institute shall have its own annual Graduation Day for the award of degrees to the students
completing the prescribed academic requirements in each case, in consultation with the University and by
following the provisions in the Statute. The college shall award prizes and medals to meritorious students
and award them annually at the Graduation Day. This will greatly encourage the students to strive for
excellence in their academic work.

24. DISCIPLINE

Every student is required to observe discipline and decorum both inside and outside the institute and are
expected not to indulge in any activity which will tend to bring down the honour of the institute. If a
student indulges in malpractice in any of the theory / practical examination, continuous assessment
examinations, he/she shall be liable for punitive action as prescribed by the institute from time to time.

25. GRIEVANCE REDRESSAL COMMITTEE

The institute shall form a Grievance Redressal Committee for each course in each department with the
Course Teacher and the HOD as the members. The committee shall solve all grievances related to the
course under consideration.

26. MULTIPLE ENTRY MULTIPLE EXIT SCHEME (MEME)

26.1 Exit option after Second Year:
Students enrolled in the 4-Year B.Tech. program are permitted to exit the program after successful
completion of the second year (B.Tech. IV Semester). The students who desire to exit after the IV
year shall formally inform the exit plan one semester in advance i.e. at the commencement of 11
Semester itself. Such students need to fulfil the additional requirements as specified in Clause 27
described below.

Upon fulfilling the requirements like earning all the credits up to IV semester and successfully
completing the additional requirements, the students will be awarded a 2-year undergraduate (UG)
diploma in the concerned engineering branch.

27. ADDITIONAL REQUIREMENTS FOR DIPLOMA AWARD
To qualify for the diploma under the exit option, students must also complete 2 additional credits
through one of the following institute-prescribed pathways.

Work-based Vocational Course:

17|Page

Participation in a practical, hands-on vocational training program relevant to the engineering
field, typically conducted during the summer term.

Internship / Apprenticeship:
Completion of a minimum 8-week internship or apprenticeship in their related field to gain practical
industry exposure.

In addition, students must clear any associated course(s) or submit the internship/apprenticeship
report as per the institute schedule and guidelines.

28. RE-ENTRY INTO THE B.TECH PROGRAM
Students who have exited the B.Tech. program with a 2 Year UG Diploma may apply for re-entry
into the Fifth Semester of the B.Tech. program. Re-entry is subject to the following conditions.

o The student must surrender the awarded UG Diploma Certificate.

o Students who wish to rejoin in V semester must join the same B.Tech. program and same college
from which the student exited. Before rejoining, students should check for continuation of the
same branch at the college. If the specific branch is closed in that particular college, then student
should consult the University for the possible alternative solutions.

e Re-registered students will be governed by the academic regulations in effect at the time of re-
entry, regardless of the original regulations under which they were admitted.

o If a student opts to continue their studies without a gap after being awarded the diploma, they
must register for the third-year courses before the commencement of classwork.

29. BREAK IN STUDY AND MAXIMUM DURATION
Students are allowed to take a break of up to four years after completion of IV Semester with prior
University permission through the Principal of the college.

Re-entry after such a break is subject to the condition that the student completes all academic
requirements within twice the duration of the program (i.e., within 8 years for a 4-year B.Tech.
program).

30. TRANSITORY REGULATIONS TO THE STUDENTS RE-ADMITTED IN BT25
REGULATIONS:

30.1 Transitory regulations are applicable to the students detained due to shortage of attendance as well
as detained due to the shortage of credits and seeks permission to re-join the B.Tech program, where
BT25 regulations are in force.

30.2 A student detained due to shortage of attendance and re-admitted in BT25 regulations: Such
students shall be permitted to join the same semester, but in BT25 Regulations.

30.3 A student detained due to shortage of credits and re-admitted in BT25 regulations: Such students
shall be promoted to the next semester in BT25 regulations, only after acquiring the required
number of credits as per the corresponding regulations of his/her previous semester.

30.4 A student who has failed in any course in a specific regulation has to pass those courses in the
same regulations.

30.5 If a student is readmitted to BT25 Regulations and has any course with 80% of syllabus common
with his/her previous regulations, that particular course in BT25 Regulations will be substituted by
an equivalent course of BT23 regulations by the institute. All these details are summarized in a set
of look-up Table; one set for each B. Tech. branch.

30.6 Look Up Table of equivalence courses
A lookup table will be provided for the benefit of students and Principals. This lookup table will
include all the courses to be registered by students who have been re-admitted under the BT25
academic regulations from the BT23 academic regulations. Separate lookup tables will be provided
for the following categories of students:

a. Students re-admitted into the II Semester of the R25 Regulations

18|Page

Students re-admitted into the III Semester of the R25 Regulations
Students re-admitted into the IV Semester of the R25 Regulations,
Students re-admitted into the V Semester of the R25 Regulations
Students re-admitted into the VI Semester of the R25 Regulations
Students re-admitted into the VII Semester of the R25 Regulations
g. Students re-admitted into the VIII Semester of the R25 Regulations

o a0 o

For every B.Tech. branch there shall be separate set of seven lookup tables

Applicability of Look-up Table: The above look-up table shall be applicable for i) students who

seek readmission from BT23 regulations to BT25 regulation and are going to be re-admitted in the same
college and ii) detained students of one JNTUH affiliated non-autonomous college who seek admission
into another JNTUH affiliated non-autonomous college.

For these two categories of students, the Principals of the affiliated colleges need not consult the
University for the equivalence courses. However the Principals need to inform in the specified format,
the list of such students and equivalences derived from the transitory regulations.

30.7 These look-Up tables are not applicable for 1) the students who seek transfer from other Universities
to INTUH affiliated colleges, autonomous to non-autonomous and non-autonomous to autonomous
colleges under JINTUH. Such students should consult the University regarding equivalent courses,
as was in previous practice.

30.8 The BT25 Academic Regulations are applicable to a student from the year of re-admission.
However, the student is required to complete the study of B.Tech. degree within the stipulated
period of eight academic years from the year of first admission.

31. STUDENT TRANSFERS
31.1 There shall be no branch transfers after the completion of admission process.

32.2 There shall be no transfers from one college to another within the constituent colleges and units
of Jawaharlal Nehru Technological University Hyderabad.

33.3 The students seeking transfer to colleges affiliated to JINTUH from various other
universities / institutions have to pass the failed courses which are equivalent to the courses of
JNTUH in JNTUH system, and also pass the additional courses of INTUH which the students
have not studied at the earlier institution.

34.4 The transferred students from other Universities/Institutions to JNTUH affiliated colleges, shall be
given a chance to write CBTs for getting CIE component in the equivalent course(s) as per the
clearance letter issued by the University.

32. ACADEMIC REGULATIONS FOR B.TECH. (LATERAL ENTRY SCHEME) FROM THE
ACADEMIC YEAR: 2026-27

Eligibility for the award of B.Tech. Degree (LES):

1. The LES students after securing admission shall pursue a course of study for not less than three
academic years and not more than six academic years.

2. The student shall register for 123/124 credits and secure 120 credits with CGPA > 5 from III
semester to VIII semester, B.Tech. program (LES) for the award of B.Tech. degree.

3. The student can avail exemption of courses totaling up to 3/4 credits other than Professional core
courses, Laboratory Courses, Seminars, Project Work and Field Based Research Project Industry
Oriented Mini Project / Internship, for optional drop out.

4. The students, who fail to fulfil the requirement for the award of the degree in six academic years
from the year of admission, shall forfeit their seat in B.Tech.

5. The attendance requirements of B.Tech. (Regular) shall be applicable to B.Tech. (LES).

19|Page

6. Promotion Rules

The following academic requirements have to be satisfied in addition to the attendance

requirements mentioned in item no. 9.

S.No

Promotion

Conditions to be Fulfilled

1

Second year first semester to
Second year second semester

Regular course of study of second year first semester and
fulfilment of attendance requirement.

2

Second year second semester to
Third year first semester

(1) Regular course of study of second year second semester and
fulfilment of attendance requirement.

(i1) Must have secured at least 25% of the total credits up to
second year second semester from all the relevant regular
and supplementary examinations, whether the student takes
those examinations or not.

Third year first semester to
Third year second semester

Regular course of study of third year first semester and
fulfilment of attendance requirement.

Third year second semester to
Fourth year first semester

Regular course of study of third year second semester and
fulfilment of attendance requirement

Fourth year first semester to
Fourth year second semester

Regular course of study of fourth year first semester and
fulfilment of attendance requirement

7. All the other regulations as applicable to B.Tech. 4-year degree course (Regular) will hold good
for B.Tech. (Lateral Entry Scheme).
8. LES students are not permitted to exit the B.Tech. program after completion of second year
(B.Tech. IV Semester).

33. REVISION OF REGULATIONS AND CURRICULUM

The Institute from time to time may revise, amend or change the regulations, scheme of examinations
and syllabi if found necessary and on approval by the Academic Council and the Governing Body shall
be binding on the students, faculty, staff, all authorities of the Institute and others concerned.

FAILURE TO READ AND UNDERSTAND

THE REGULATIONS IS NOT AN EXCUSE

20|Page

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500 043

COURSE CATALOGUE - REGULATIONS: BT25

MECHANICAL ENGINEERING

I SEMESTER
S < Periods Per = Sche‘m ¢ (.)f
Course Course Name = 2 Categor, Week g | Examination
Code 2 < gory S Max. Marks
- L[T][P CIA [SEE] Total
INDUCTION PROGRAM
THEORY
AHSEO1 | Matrices and Calculus BSC | Foundation | 3 1 0| 4] 40|60 100
AHSEQ2 | Engineering Physics BSC | Foundation | 3 0 | 0] 3 |40]60] 100
AHSEO4 | English for Skill Enhancement HSC | Foundation | 3 0| 0| 3 | 40| 60| 100
AMEEO1 | Engineering Mechanics MEC | Foundation | 3 0| 0| 3 | 40| 60| 100
ACSEQ1 | Object Oriented Programming CSC | Foundation | 3 0 0 3 1 40 | 60| 100
PRACTICAL
AHsEo7 | Enslish Language and HSC | Foundation| 0 | 0 | 2| 1 | 40 | 60| 100
Communication Skills Laboratory
ACsEo3 | Obiect Oriented Programming CSC | Foundation| 0 | 0 | 2 | 1 | 40 | 60| 100
Laboratory
AHSEOS5 | Engineering Physics Laboratory BSC | Foundation | 0 0|2 1 | 40 | 60 | 100
AMEEOQ2 | Engineering workshop MEC | Foundation | 0 0| 2 1 | 40 | 60 | 100
TOTAL 15 | 01 | 08 | 20 | 360 | 540| 900
II SEMESTER
Course g 3 Periods Per -é Eizllﬁil:llzt(i)(fn
Code Course Name = 2 Category Week 5 Max. Marks
s L[T/[P CIA[SEE [Total
THEORY
AHSEOQ3 | Engineering Chemistry BSC | Foundation | 3 | 0 | O 3 40 | 60 | 100
AHSE(g| Ordinary Differential Equations and BSC | Foundation | 3 | 0 | 0 | 3 |40 60 | 100
Vector Calculus
AMEEO04| Thermodynamics MEC | Foundation | 3 | 0 | O 3 40 | 60 | 100
ACSEOQS5 | Data Structures CSC | Foundation | 3 [0 | O 3 40| 60 | 100
AEEEo1 | Basic Electrical and Electronics ESC | Foundation | 3 | 0 | 0 | 3 |40| 60 | 100
Engineering
PRACTICAL
AHSEO06 | Engineering Chemistry Laboratory BSC | Foundation | 0 | 0 | 2 1 40 | 60 | 100
AEER03 | Basic Electrical and Electronics ESC | Foundation | 0 | 0 [2| 1 [40]| 60 | 100
Engineering Laboratory
ACsEo7 | Programming for Problem Solving CSC | Foundation | 0 | 0 | 2 | 1 |40 60 | 100
Laboratory
ACSEO08 | Data Structures Laboratory CSC | Foundation | 0 | 0 | 2 1 40| 60 | 100
AMEEQ3 | Computer Aided Engineering Graphics MEC | Foundation | 1 0]2 2 140 | 60 | 100
TOTAL 16 | 00 | 10 | 21 [400] 600 | 1000

21|Page

INSTITUTE OF AERONAUTICAL ENGINEERING

2 (Autonomous)
o~ A Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

MATRICES AND CALCULUS

I Semester: AE/ME /CE /ECE /EEE /CSE / CSE (AI & ML) / CSE (DS) / IT

Course Code Category Hours/Week Credits Maximum Marks
) L T P C CIA SEE Total
AHSEO1 Foundation 3) - 4 40 60 100
Contact Classes: 48 | Tutorial Classes: 16 Practical Classes: Nil Total Classes: 64

Prerequisite: Basic Principles of Algebra and Calculus

I. COURSE OVERVIEW:

This course Matrices and Calculus is a foundation course of mathematics for all engineering branches. The
concepts of Matrices, Eigen Values, Eigen Vectors, Functions of Single and Several Variables, Fourier Series
and Multiple Integrals. This course is applicable for simulations, colour imaging process, finding optimal
solutions in all fields of industries.

II. COURSE OBJECTIVES:
The students will try to learn:
I The concept of the rank of a matrix, solve the system of linear equations, eigen values, eigen vectors.

I The geometrical approach to the mean value theorems and their application to the mathematical
problems.

IIT " The Fourier series expansion in standard intervals as well as arbitrary intervals.

IV The evaluation of multiple integrals and their applications.

III. COURSE OUTCOMES:
At the end of the course students should be able to:

CO1 Determine the rank and solutions of linear equations with elementary operations.
CO?2 Utilize the Eigen values, Eigen vectors for developing spectral matrices.

CO3 Make use of Cayley-Hamilton theorem for finding powers of the matrix.

CO4 Apply the mean value theorems for finding analytical problems involving derivatives.
CO5 Interpret the maxima and minima of given functions by finding the partial derivates.

CO 6 Determine the area of solid bounded regions by using the integral calculus.

22|Page

IV. COURSE CONTENT:

MODULE - I: MATRICES (09)

Rank of a matrix by Echelon form and Normal form, Inverse of non-singular matrices by Gauss-
Jordan method, system of linear equations: Solving system of homogeneous and non-
homogeneous equations. Gauss Seidel iteration method.

MODULE - II: EIGEN VALUES AND EIGEN VECTORS (10)

Linear transformation and orthogonal transformation: Eigen values, Eigen vectors and their
properties, diagonalization of a matrix, Cayley-Hamilton theorem (without proof), finding
inverse and power of a matrix by Cayley-Hamilton theorem, Quadratic forms and nature of the
Quadratic forms, reduction of Quadratic form to canonical form by orthogonal transformation

MODULE - III: SINGLE VARIABLE CALCULUS (10)
Limit and continuous of functions and its properties. mean value theorems: Rolle’s theorem,
Lagrange’s mean value theorem with their geometrical interpretation and applications.

Cauchy’s mean value theorem, Taylor’s series (all the theorems without proof).
Curve Tracing: Curve tracing in cartesian coordinates.

MODULE - IV: MULTIVARIABLE CALCULUS (9)
Definitions of limit and continuity, partial differentiation: Euler’s theorem, total derivative, Jacobian,
functional dependence & independence. Applications: maxima and minima of functions of two variables
and three variables using method of Lagrange multipliers

MODULE - V: MULTIPLE INTEGRALS (10)

Evaluation of double integrals (cartesian and polar coordinates), change of order of integration (only
cartesian form), change of variables for double integrals (cartesian to polar). evaluation of triple integrals,
change of variables for triple integrals (cartesian to spherical and cylindrical polar coordinates).
Applications: areas by double integrals and volumes by triple integrals.

V.TEXT BOOKS:
I. B.S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
II. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

VI.REFERENCE BOOKS:

I. R.K.JainandS.R. K. Iyengar, Advanced Engineering Mathematics, 3/ed, Narosa Publications, 5" Edition,
2016.

II. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, Calculus, 13/e, Pearson Publishers, 2013.

III. N.P. Bali and Manish Goyal, 4 text book of Engineering Mathematics, Laxmi Publications, Reprint,
2008.

IV. Dean G. Dufty, Advanced Engineering Mathematics with MATLAB, CRC Press.

V. Peter O’Neil, Advanced Engineering Mathematics, Cengage Learning.

VI. B.V.Ramana, Higher Engineering Mathematics, McGraw Hill Education.

VII. ELECTRONIC RESOURCES:

I. Engineering Mathematics - I, By Prof. Jitendra Kumar | I[IT Kharagpur
https://onlinecourses.nptel.ac.in/noc23 _ma88/preview

II. Advanced Calculus for Engineers, By Prof. Jitendra Kumar, Prof. Somesh Kumar | IIT Kharagpur
https://onlinecourses.nptel.ac.in/noc23 _ma86/preview

III. http://www.efunda.com/math/math _home/math.cfm

IV. http://www.ocw.mit.edu/resourcs/#Mathematics

V. http://www.sosmath.com

VI. http://www.mathworld.wolfram.com

23|Page

http://www.efunda.com/math/math_home/math.cfm
http://www.ocw.mit.edu/resourcs/#Mathematics
http://www.sosmath.com/
http://www.mathworld.wolfram.com/

VIII. MATERIAL ONLINE:

9

PN RO =

Course template

Tutorial question bank
Tech talk topics

Open end experiments
Definitions and terminology
Assignments

Model question paper — I
Model question paper - 11
Lecture notes

10. E-learning readiness videos (ELRV)
11. Power point presentation

24|Page

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal - 500 043, Hyderabad, Telangana

o3
AN
»'4
2]
10y

>
7 \2
Oy FOR ‘\%

COURSE CONTENT

ENGINEERING PHYSICS

I Semester: AE | ME | CE | ECE | EEE | CSE (AI & ML) | CSE (DS)
Il Semester: CSE | IT

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
AHSE02 Foundation
3 - - 3 40 60 100
Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Basic principles of physics

I. COURSE OVERVIEW:

The aim of this course is to enhance understanding of fundamental knowledge in physics needed for the future
technological advances. The framework prepares students to engage in scientific questioning and extend thinking to
investigations. The concepts cover current topics in the fields of solid state physics, modern physics,
superconductors and nanotechnology. This knowledge helps to develop the ability to apply the principles in many
technological sectors such as nanotechnology, optical fiber communication, quantum technology etc.

I1. COURSES OBJECTIVES:
The students will try to learn

I. Fundamental concepts needed to explain a crystal structure in terms of atom positions, unit cells, and crystal
symmetry.

II. Basic formulations in wave mechanics for the evolution of energy levels and quantization of energies for a
particle in a potential box with the help of mathematical description.

III. The metrics of optoelectronic components, lasers, optical fiber communication and be able to incorporate
them into systems for optimal performance.

IV. The appropriate magnetic, superconducting and basics of quantum computing required for various
engineering applications.

III. COURSE OUTCOMES:
At the end of the course students should be able to:

COl1 Use the general rules of indexing of directions and planes in lattices to identify the crystal systems and the
Bravais lattices.

CO2 Use the concepts of dual nature of matter and Schrodinger wave equation to a particle enclosed in
simple systems.

CO3 Analyze the concepts of laser with normal light in terms of mechanism for applications in different fields
and scientific practices.

CO4 Strengthen the knowledge on functionality of components in optical fiber communication system by using
the basics of signal propagation, attenuation and dispersion.

COs Gain deeper understanding on properties of magnetic and superconducting materials suitable for
engineering applications.

CO6 Review the basic principle, types, entanglement and the logic gates of quantum computers.

25|Page

IV. COURSE CONTENT:

MODULE -I: CRYSTAL STRUCTURES

Introduction, space lattice, basis, unit cell, lattice parameter, Bravais lattices, crystal systems, structure and
packing fractions of simple cubic, body centered cubic, face centered cubic crystals, directions and planes in
crystals, Miller indices, separation between successive [h k 1] planes.

MODULE -1I: QUANTUM PHYSICS
Waves and particles, de Broglie hypothesis, matter waves, Davisson and Germer’s experiment, Schrodinger’s
time independent wave equation, physical significance of the wave function, infinite square well potential.

MODULE -I1I: LASERS AND FIBER OPTICS
Characteristics of lasers, spontaneous and stimulated emission of radiation, population inversion, lasing action,
Ruby laser, He-Ne laser, applications of lasers.

Principle and construction of an optical fiber, acceptance angle, numerical aperture, types of optical fibers (Single
mode, multimode, step index, graded index), optical fiber communication system with block diagram,
applications of optical fibers.

MODULE -1V: MAGNETIC AND SUPERCONDUCTING PROPERTIES

Permeability, field intensity, magnetic field induction, magnetization, magnetic susceptibility, origin of magnetic
moment, Bohr magneton, classification of dia, para and ferro magnetic materials on the basis of magnetic
moment, Hysteresis curve.

Superconductivity, general properties, Meissner effect, effect of magnetic field, type-I & type-II superconductors,
BCS theory, applications of superconductors.

MODULE -V: QUANTUM COMPUTING

Introduction, linear algebra for quantum computation, Dirac’s Bra and Ket notation and their properties, Hilbert
space, Bloch’s sphere, concept of quantum computer, classical bits, Qubits, multiple Qubit system, quantum
computing system for information processing, evolution of quantum systems, quantum measurements,
entanglement, quantum gates, challenges and advantages of quantum computing over classical computation.

V. TEXTBOOKS:
1. Arthur Beiser, Shobhit Mahajan and Rai Choudhary, Concepts of Modern Physics, Tata McGraw Hill, 7%
Edition, 2017.
2. Thomas G. Wong, Introduction to Classical and Quantum Computing, Rooted Grove

VI. REFERENCE BOOKS:

1. HJ Callister, A Textbook of Materials Science and Engineering, Wiley Eastern Edition, 8" Edition, 2013.
2. Halliday, Resnick and Walker, Fundamentals of Physics, John Wiley &Sons,11% Edition, 2018.
3. Charles Kittel, Introduction to Solid State Physics, Wiley Eastern, 2019.
4. S.L. Gupta and V. Kumar, Elementary Solid State Physics, Pragathi Prakashan, 2019.
5. Michael A. Nielsen & Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge
University Press.
VII. ELECTRONICS RESOURCES:
1. NPTEL :: Physics - NOC:Quantum Mechanics I
2. NPTEL :: Physics - NOC:Introduction to Solid State Physics
3. NPTEL :: Physics - NOC:Solid State Physics
4. https://nptel.ac.in/courses/104104085
5. NPTEL :: Metallurgy and Material Science - NOC:Nanotechnology, Science and Applications

VIII. MATERIALS ONLINE
Course template

Tutorial question bank

Tech talk topics

Open end experiments
Definitions and terminology
Assignments

Model question paper — I

Nk L

26|Page

10.
11.

Model question paper - 11

Lecture notes

E-learning readiness videos (ELRV)
Power point presentation

27|Page

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal - 500 043, Hyderabad, Telangana

o3
A0
N
4
I‘/ON

>
7 \2
O ror W°

COURSE CONTENT

ENGLISH FOR SKILL ENHANCEMENT

I Semester: AE / ME / CE / ECE / EEE / CSE (Al &ML)/ CSE (DS)
II Semester: CSE / IT

Course Code Category Hours / Week | Credits Maximum Marks
) L | T P C CIA | SEE| Total
AHSE04 Foundation 3 B - 3 40 60 100
Contact Classes: 48 | Tutorial Classes: Nil| Practical Classes: Nil Total Classes: 48
Prerequisite:

I. COURSE OVERVIEW:

The principle aim of the course is that the students will have awareness about the importance of
English language in the contemporary times and also it emphasizes the students to learn this languageas
a skill (listening skill, speaking skill, reading skill and writing skill). Moreover, the course benefitsthe
students how to solve their day-to-day problems in speaking English language. Besides, it assiststhe
students to reduce the mother tongue influence and acquire the knowledge of neutral accent. Thecourse
provides theoretical and practical knowledge of English language and it enables students to participate
in debates about informative, persuasive, didactic, and commercial purposes.

I1. COURSE OBJECTIVES:
The students will try to learn:

I Standard pronunciation, appropriate word stress, and necessary intonation patterns foreffective
communication towards achieving academic and professional targets.

II Appropriate grammatical structures and also using the nuances of punctuation tools forpractical
purposes.

111 Critical aspect of speaking and reading for interpreting in-depth meaning between thesentences.

[v Conceptual awareness on writing in terms of unity, content, coherence, and linguisticaccuracy.

III. COURSE OUTCOMES:
After successful completion of the course, students should be able to:

CO1 Demonstrate the essential listening and communication skills required for academic and non-
academic purposes.

CO2 Explain ideas and discuss issues effectively in spoken English with a high level of fluency
and accuracy across different social contexts.

CO3 Enhance language proficiency to strengthen life skills and effectively navigate challenges in a
professional environment.

CO4 Interpret grammatical and lexical forms of English and apply them in specific
communicative contexts.

COS5 Develop the ability to comprehend, analyze, and interpret a variety of texts, enhancing
critical thinking, vocabulary, and the application of reading strategies for academic,
professional, and personal growth.

CO 6 Improve the ability to produce clear, coherent, and well-structured written content and
organization for academic, professional, and creative tenacities.

28| Page

MODULE - I: PERSPECTIVES (13)
Lesson on ‘The Generation Gap’ by Benjamin M. Spock from the
prescribed textbook titled English for the Young in the Digital World
published by Orient Black Swan Pvt. Ltd.

Vocabulary: The Concept of Word Formation -The Use of Prefixes and Suffixes - Words
Often Misspelt - Synonyms and Antonyms

Grammar: Identifying Common Errors in Writing with Reference to Parts of Speech

particularly Articles and Prepositions — Degrees of Comparison
Reading: Reading and Its Importance- Sub Skills of Reading — Skimming and
Scanning.

Writing: Sentence Structures and Types -Use of Phrases and Clauses in Sentences- Importance of
Proper Punctuation- Techniques for Writing Precisely —Nature and Style of Formal Writing.

MODULE - II: DIGITAL TRANSFORMATION (13)

Lesson on ‘Emerging Technologies’ from the prescribed textbook titled English for the
Young in the Digital World published by Orient Black Swan Pvt. Ltd.

Vocabulary: Homophones, Homonyms and Homographs,

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun
Agreement and Subject-verb Agreement.

Reading: Reading Strategies-Guessing Meaning from Context — Identifying Main Ideas
— Exercises for Practice,

Writing: Paragraph Writing — Types, Structures and Features of a Paragraph - Creating
Coherence — Linkers and Connectives - Organizing Principles in a Paragraph — Defining-
Describing People, Objects, Places and Events — Classifying- Providing Examples or
Evidence - Essay Writing - Writing Introduction and Conclusion.

MODULE - III: ATTITUDE AND GRATITUDE (13)

Poems on ‘Leisure’ by William Henry Davies and ‘Be Thankful’ - Unknown
Author from the prescribed textbook titled English for the Young in the Digital World
published by Orient Black Swan Pvt. Ltd.

Vocabulary: Words Often Confused - Words from Foreign Languages and their Use in
English.

Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers
and Tenses.

Reading:Sub-Skills of Reading — Identifying Topic Sentence and Providing Supporting
Ideas - Exercises for Practice.

Writing: Format of a Formal Letter-Writing Formal Letters E.g.., Letter of Complaint, Letter of Requisition,
Job Application with CV/Resume —Difference between Writing a Letter and an Email - Email Etiquette.

MODULE - 1V: ENTREPRENEURSHIP (12)
Lesson on ‘Why a Start-Up Needs to Find its Customers First’ by Pranav
Jain from the prescribed textbook titled English for the Young in the
Digital World published by Orient Black Swan Pvt. Ltd.

Vocabulary: Standard Abbreviations in English — Inferring Meanings of Words through
Context — Phrasal Verbs — Idioms.

Grammar: Redundancies and Clichés in Written Communication — Converting Passive
to

29|Page

Active Voice and Vice-Versa.
Reading: Prompt Engineering Techniques— Comprehending and Generating

Appropriate Prompts - Exercises for Practice

Writing: Writing Practices- Note Making-Précis Writing.

MODULE - V: INTEGRITY AND PROFESSIONALISM (13)
Lesson on ‘Professional Ethics’ from the prescribed textbook titled English for the
Young in the Digital World published by Orient Black Swan Pvt. Ltd.

Lesson on ‘Professional Ethics’ from the prescribed textbook titled English
for the Young in the Digital World published by Orient Black Swan Pvt.
Ltd.

Vocabulary: Technical Vocabulary and their Usage— One Word Substitutes — Collocations.
Grammar: Direct and Indirect Speech - Common Errors in English (Covering all the

other aspects of grammar which were not covered in the previous units)

Reading: Survey, Question, Read, Recite and Review (SQ3R Method) — Inferring the

Meaning and Evaluating a Text- Exercises for Practice

Writing: Report Writing - Technical Reports- Introduction — Characteristics of a Report —
Categories of Reports Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing
a Technical Report.

1. Board of Editors. 2025. English for the Young in the Digital World. Orient Black Swan

N —

W

=

WAk W=

Pvt. Ltd.

Swan, Michael. (2016). Practical English Usage. Oxford University Press. New Edition.

Karal, Rajeevan. 2023. English Grammar Just for You. Oxford University Press. New Delhi

2024. Empowering with Language: Communicative English for Undergraduates. Cengage Learning India
Pvt. Ltd. New Delhi

Sanjay Kumar & Pushp Lata. 2022. Communication Skills — A Workbook. Oxford University Press. New
Delhi

Wood,F.T. (2007). Remedial English Grammar. Macmillan.

Vishwamohan, Aysha. (2013). English for Technical Communication for Engineering Students. Mc
Graw-Hill Education India Pvt. Ltd

https://akanksha.iare.ac.in/index?route=course/details&course 1d=954
https://akanksha.iare.ac.in/index?route=course/details&course_id=10
https://akanksha.iare.ac.in/index?route=course/details&course 1d=352
https://akanksha.iareac.in/index?route=publicprofile&id=5075

Course template

Tutorial question bank

Tech talk topics

Open end experiments
Definitions and terminology
Assignments

Model question paper — I
Model question paper - 11
Lecture notes

10. E-learning readiness videos (ELRV)
11. Power point presentation

30|Page

https://akanksha.iareac.in/index?route=publicprofile&id=5075

INSTITUTE OF AERONAUTICAL ENGINEERING

. 8 (Autonomous)
%) & Dundigal - 500 043, Hyderabad, Telangana

2 <
% ror W

COURSE CONTENT

ENGINEERING MECHANICS
I Semester: AE / ME / CE
Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA SEE Total
AMEEO1 Foundation
3 0 0 3 40 60 100
Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes:48

Prerequisite: Physics

[. COURSE OVERVIEW:

Engineering Mechanics is a foundational course that introduces students to the principles of mechanics and their
applications in analyzing and solving real-world engineering problems. This course focuses on imparting a
comprehensive understanding of statics and dynamics, which are essential concepts for engineers across various
disciplines. Through a combination of theoretical concepts, mathematical derivations, and practical applications,
students will develop the skills necessary to analyze and predict the behavior of structures and systems under
different conditions.

I1. COURSES OBJECTIVES:
The students will try to learn

I. The application of mathematics and science principles to represent the free body diagrams in the area of
rigid body mechanics.

II. The conditions of static and dynamic equilibrium of bodies subjected to a particular force system for
solving the field problems.

III. The effects of force and motion while carrying out the innovative design functions of engineering.

[1I. COURSE OUTCOMES:
After successful completion of the course, students should be able to:

COl Determine the unknown forces by free body diagrams to a given equilibrium force system through laws
of mechanics.

CO2 Calculate the system of forces acting on wedge and screw jack by using the laws of static and dynamic
frictions.

CO3 Use the concepts of centroid in stability problems for evaluation of area moment of inertia.

CO4 Identify the mass moment of inertia of symmetrical and non-symmetrical section using the concepts of
centre of gravity.

CO5 Solve the position, velocity, acceleration and the characteristics of a body in dynamic equilibrium for
various types of motion using appropriate mathematical tools.

CO6 Develop the governing equation from first principles by using work - energy and impulse - momentum in
dynamic equilibrium condition.

31|Page

MODULE - I: INTRODUCTION TO ENGINEERING MECHANICS (10)

2DForce Systems: Basic concepts, particle equilibrium; rigid body equilibrium; system of forces, coplanar
concurrent forces, resultant, moment of forces and its application; couples and resultant of force system,
equilibrium of system of forces, free body diagrams, equations of equilibrium of coplanar systems.

MODULE - II: FRICTION, CENTROID AND CENTRE OF GRAVITY (8)
Friction: Types of friction, limiting friction, laws of friction, static and dynamic friction; motion of bodies,
wedge friction, screw jack.

Centroid and Centre of Gravity: Centroid of lines, areas and volumes from first principle, centroid of composite
sections; centre of gravity and its implications, theorems of Pappus—Guldinus.

MODULE - III: AREA MOMENT OF INERTIA AND MASS MOMENT OF INERTIA (8)

Area moment of inertia: Definition, moment of inertia of plane sections from first principles, theorems of
moment of inertia, moment of inertia of standard sections and composite sections; product of inertia, parallel
axis theorem, perpendicular axis theorem.

Mass Moment of Inertia: Moment of inertia of masses, transfer formula for mass moment of inertia, mass
moment of inertia of composite bodies.

MODULE - 1V: KINEMATICS OF RIGID BODIES AND IMPULSE - MOMENTUM METHOD (10)
Review of particle dynamics, rectilinear motion; Plane curvilinear motion (rectangular path, and polar
coordinates). Relative and constrained motion. Impulse-momentum (linear, angular); impact (direct and
oblique).

MODULE - V: KINETICS OF RIGID BODIES AND WORK - ENERGY PRINCIPLE (12)

Kinetics of rigid bodies, basic terms, D’ Alembert’s principle and its applications in plane motion and connected
bodies; instantaneous centre of rotation in plane motion and simple problems; work-kinetic energy, power,
potential energy. work energy principle and its application in plane motion of connected bodies.

1. K. Vijay Reddy, J. Suresh Kumar, “Singer’s Engineering Mechanics Statics and Dynamics”,
B S Publishers, 1% edition, 2011.
2. S.Bhavikatti, “4 Text Book of Engineering Mechanics”, New Age International, 5" edition, 2020.

S. Timoshenko, D. H. Young & J. V. Rao, “Engineering Mechanics”, 5 edition, TMH, 2017.
A. K. Tayal, “Engineering Mechanics”, Uma Publications, 14" edition, 2013.

R. K. Bansal “Engineering Mechanics”, Laxmi Publication, 8" edition, 2013.

Irving H. Shames, “Engineering Mechanics”, Prentice Hall, 4" edition, 2021.

R. C. Hibbler, “Engineering Mechanics: Principles of Statics and Dynamics”, Pearson Press,
5t edition, 2021.

6. Irving H. Shames (2006), “Engineering Mechanics”, Prentice Hall, 4™ edition, 2013.

SR W=

https://nptel.ac.in/courses/112106286
https://akanksha.iare.ac.in/index?route=course/details&course_id=33
https://akanksha.iare.ac.in/index ?route=course/details&course id=31
https://akanksha.iare.ac.in/index?route=course/details&course id=1293

D=

Course template

Tutorial question bank

Tech talk topics

Open end experiments
Definitions and terminology
Assignments

Model question paper - I
Model question paper - 11
Lecture notes

E-learning readiness videos (ELRV)
Power point presentation

TEO XN kWD

—_ O

32|Page

https://nptel.ac.in/courses/112106286
https://akanksha.iare.ac.in/index?route=course/details&course_id=33
https://akanksha.iare.ac.in/index?route=course/details&course_id=31

0“03

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal - 500 043, Hyderabad, Telangana

<
2]
1oy

7 <
% ror W

COURSE CONTENT
OBJECT ORIENTED PROGRAMMING

I Semester: AE/ME / CE /ECE /EEE / CSE / CSE (Al & ML)/ CSE (DS) / IT

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
ACSE(01 Foundation
3 0 0 3 40 60 100
Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisites: There are no prerequisites to take this course.

[. COURSE OVERVIEW:

This course introduces the principles of Object-Oriented Programming (OOP) and its role in solving complex
problems effectively. It provides a solid foundation in object-oriented concepts such as abstraction,
encapsulation, inheritance, polymorphism, and collaboration. The course also extends into file handling,
exception management, and concurrent execution, preparing students to design, develop, and manage robust
real-world applications.

II. COURSES OBJECTIVES:

The students will try to learn

I. The fundamental concepts and principles of object-oriented programming in high-level programming
languages.

II. The advanced concepts for developing well-structured and efficient programs that involve complex data
structures, numerical computations, or domain-specific operations.

III. The design and implementation features such as inheritance, polymorphism, and encapsulation for tackling
complex problems and creating well-organized, modular, and maintainable code.

IV.The usage of input/output interfaces to transmit and receive data to solve real-time computing problems.

II1. COURSE OUTCOMES:

At the end of the course, students should be able to:

CO1 Identify appropriate programming approaches to manage complexity.

CO2 Design modular, reusable, and adaptable software systems.

CO3 Apply structured problem-solving techniques to build reliable and maintainable applications.
CO4 Demonstrate the ability to handle data, manage errors, and ensure smooth program execution.
CO5 Develop applications that are efficient, scalable, and suitable for real-world scenarios

CO6 Develop contemporary solutions to software design problems using object-oriented principles.

33|Page

MODULE - I: Object-oriented concepts (10)

Complex systems: definition, characteristics, and five attributes (hierarchy, abstraction, emergence,
encapsulation, modularity).

Evolution of problem-solving: procedural vs. object-oriented thinking.

Objects as fundamental building blocks: state, behavior, and identity.

Benefits of OOP in managing complexity, Applications of OOP in real-world systems.

MODULE II: Abstraction, Encapsulation and Object Collaboration (09)

Abstraction: forms of abstraction (procedural, data, control), abstraction layers, mechanisms.
Encapsulation: information hiding, boundary definition, modularity.

Objects and message passing: collaboration through responsibilities.

Relationships: association, aggregation, composition, dependency.

MODULE III: Inheritance and Generalization (10)
Classification and taxonomy in object-oriented programming, Concepts of generalization and specialization.
Types of inheritance: single, multiple, and hierarchical (conceptual).

Challenges in multiple inheritance: ambiguity and the diamond problem (conceptual).
Importance of generalization for adaptability and method reuse.

MODULE 1V: Polymorphism and Interfaces (09)

Polymorphism: static vs dynamic polymorphism, Abstract classes, abstract operations, late binding, and
dynamic dispatch.

Interfaces as behavioral contracts, difference between interfaces and abstract classes (conceptual), Multiple
realizations of interfaces (role-based modeling).

MODULE V: File structures, Exception handling, Concurrent execution (09)

Working with Files: Files, need for file handling, types, modes, operations and error handling.

Exception handling: Detecting problems during execution and responding gracefully, preventing failures from
crashing the system and ensuring smooth execution.

Concurrent execution: Allowing multiple tasks to run simultaneously within a system, co-ordinating tasks to
avoid conflicts when sharing resources.

—_—

B W N =

. Matt Weisfeld, The Object-Oriented Thought Process, Addison Wesley Object Technology Series,

4™ Edition, 2013.

Grady Booch, Object-Oriented Analysis and Design with Applications, Addison-Wesley Professional, 3™
Edition, 2007.

Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and
Iterative Development, Addison-Wesley Professional, 3™ Edition, 2004.

. Timothy Budd, Introduction to object-oriented programming, Addison Wesley Object Technology

Series, 3" Edition, 2002.

. Gaston C. Hillar, Learning Object-Oriented Programming, Packt Publishing, 2015.
. Kingsley Sage, Concise Guide to Object-Oriented Programming, Springer International Publishing, 1%

Edition, 2019.

. Rudolf Pecinovsky, OOP - Learn Object Oriented Thinking and Programming, Tomas Bruckner, 2013.

. https://docs.oracle.com/javase/tutorial/java/concepts/

. https://www.w3schools.com/cpp/

. https://www.edx.org/learn/object-oriented-programming/

. https://www.geeksforgeeks.org/introduction-of-object-oriented-programming/

34|Page

Course template

Tutorial question bank
Tech talk topics
Open-ended experiments
Definitions and terminology
Assignments

Model question paper — I
Model question paper — 11

. Lecture notes

10. PowerPoint presentation

11. E-Learning Readiness Videos (ELRV)

R R e

35|Page

INSTITUTE OF AERONAUTICAL ENGINEERING

3 (Autonomous)
¢4 Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY

I Semester: AE/ ME / CE / ECE / EEE / CSE (Al &ML) / CSE (DS)
II Semester: CSE / IT

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
AHSE07 Foundation
- - 2 1 40 60 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Nil

I. COURSE OVERVIEW:

This laboratory course is designed to introduce students to create a wide exposure on language
learning techniques of the basic elements of listening skills, speaking skills, reading skills and writing
skills. In this laboratory, students are trained in communicative English language skills, phonetics,
word accent, word stress, rhythm, intonation, oral presentations and extempore speeches. Students are
also taught in terms of seminars, group-discussions, presenting techniques of writing, participating in
role plays, telephonic etiquettes, asking and giving directions, information transfer, debates,
description of persons, places and objects etc. The laboratory encourages students to work in a group,
engage in peer-reviews and inculcate team spirit through various exercises on grammar, vocabulary,
and pronunciation games etc. Students will make use of all these language skills in academic,
professional and real time situations.

II. COURSES OBJECTIVES
The students will try to learn:
I The computer-assisted multi-media instructions to make possible individualized
and independent language learning.
I The critical aspect of speaking and reading for interpreting in-depth meaning of the
sentences.
III' The language techniques for social interactions such as public speaking, group
discussions and interviews.
IV English speech sounds, word accent, intonation and rhythm patterns for effective
pronunciation.

36|Page

III. COURSE OUTCOMES:
At the end of the course, students will be able to:

COl

CO2

CO3
CO4

CO5

CO6

Dos

AR e

Discuss the prime necessities of listening skills for improving pronunciation in
academic and non-academic purposes.

Summarize the significance of speaking skills by using phonetics knowledge and
intonation patterns.

Express the usage of strong forms and weak forms in the connected speech.

Explain how writing skills fulfil the academic and non-academic requirements of
various written communicative functions.

Generalize the activities of Interactive Communication Skills to overcome the day-to-
day challenges.

Classify the roles of collaboration, risk-taking, multi-disciplinary awareness, and the
imagination in achieving creative responses to problems.

Turn up in a neat and formal dress code regularly and maintain punctuality.

Bring observation books and worksheets for every laboratory session without fail.

Keep lab record book up to date.

Students must adhere to the acceptable use of ICT resources policy.

CD ROM s, USB and other multimedia equipment are for college use only.

Replace headsets onto the monitor and rearrange your chairs back into their position as you
leave laboratory.

Get your lab worksheets evaluated and upload online within the stipulated time for online
evaluation by the faculty concerned.

Conduct yourself at the best to be a good learner.

Do not use the on/off switch to reboot the system.

Do not breach copyright regulations.

The not install or download any software or modify or delete any system files on any
laboratory computer.

Do not read or modify other users’ files.

Do not damage, remove, or disconnect any labels, parts, cables or equipment.

The not make undue noise in the laboratories. Be considerate of the other lab users- this is
study area.

No food and the beverages are allowed into computer laboratories.

37|Page

IV. COURSE CONTENT

Exercises for professional communication laboratory

Exercises —1 CALL LAB: Speech Sounds with Active Listening.
ICS LAB: introducing self and introducing others and feedback.

a. Common mispronunciations.
b. Errors committed in self-introduction and introducing others.

Exercises —2 CALL LAB: Listening to Distinguish Speech Sounds (minimal pairs) — Testing
Exercises.
ICS LAB: Ice Breaking Activity.
a. Difficulty in familiarizing with the sounds of English language, errors in using different
kinds of sounds, vowels and consonants.
b. supports a positive social climate; decreases in off task behaviors; improved social skills;
improves student enjoyment; and raises participation levels.

Exercises -3 CALL LAB: Listening for General Information Followed by Multiple Questions.
ICS LAB: Role Play Activity.

a. Listening actively to understand the information to respond.
b. Take on different roles and act out situations like ordering food in a restaurant, asking for
directions, or even having a phone conversation.

Exercises -4 CALL LAB: Listening Comprehension Activity.
ICS LAB: Social Etiquettes.

a. Enhancing their language skills, academic performance, and social interactions.
b. Positive social interactions, enhancing communication skills, and contributing to overall
personal and academic success.

Exercises -5 CALL LAB: Neutralization of Mother Tongue Influence (MTI).
ICS LAB: Describing Objects, Situations, Places, People and Events.

a. Influence of Mother tongue in spoken communication.
b. Strengthen the art of writing and spoken language.

Exercises — 6 CALL LAB: Techniques for Effective Listening.
ICS LAB: Story Telling.

a. actively engaging with the speaker to understand their message fully.
b. enhancing their language skills, creativity, and overall learning experience.

Exercises =7 CALL LAB: Identifying the Literal and Implied Meaning.
ICS LAB: Non-Verbal Communication

a. Listening for evaluation — Write summary — Listening for evaluation — Listening
comprehension exercises.
b. Attention of non-verbal ques.

Exercises—8 CALL LAB: Structure of syllables.
ICS LAB: JAM Sessions using public address system.

a. Practicing consonant clusters
b. Practicing different methods of dividing the syllables
c. Participating in just a minute session
Exercises -9 CALL LAB: Past tense and plural markers.
ICS LAB: Oral Presentations.

38|Page

a. Addition of suffixes to verbs.
b. Confidence and fluency in delivering different oral presentations.

Exercises —-10 CALL LAB: Minimal pairs.
ICS LAB: Debates.

a. Difficulties in understanding and remembering various homonyms, homophones and
homographs.

b. Problems in understanding the difference between debates and discussions, participating and
contributing.

Exercises -11 CALL LAB: Intonation.
ICS LAB: Group discussion.

a. Inability in focused listening, understanding the accent, vocabulary and discourse markers in
connected speech.
b. Lack of confidence in participating and contributing to Group discussions.

Exercises —12 CALL LAB: Demonstration on how to write leaflets, messages and notices.
ICS LAB: Techniques and methods to write summaries and reviews of videos.

a. Inadequacy and inappropriacy in writing leaflets, messages and notices.
b. Lack of proficiency in writing summaries and reviews of videos.

Exercises .13 CALL LAB: Pronunciation practice.
ICS LAB: Information transfer.

a. Influence of mother tongue in using English language.
b. Problems in interpreting data from diagram to text and text to diagram.

Exercises —-14 CALL LAB; Open Ended Experiments-Phonetics Practice.
ICS LAB: Picture Extempore.

a. Persistent problems in identifying the phonetic symbols, remembering and using them.
b. Execution while describing picture.

Exercises -15 CALL LAB: Open Ended experiments-Text to Speech.
ICS LAB: Writing slogan related to the image.

a. Difficulties in writing text to Speech.
b. Lack of fluency in writing slogans related to the images.

V. TEXT BOOKS:
1. Professional Communication laboratory manual

VI. REFERENCE BOOK

1. Meenakshi Raman, Sangeetha Sharma, Technical Communication Principles and Practices, Oxford
University Press, New Delhi, 3rd Edition, 2015.

2. Rhirdion, Daniel, Technical Communication, Cengage Learning, New Delhi, 1st Edition, 2009.

VII. ELECTRONICS RESOURCES

1. Cambridge online pronunciation dictionary https://dictionary.cambridge.org/
2. Fluentu website https://www.fluentu.com/

3. Repeat after us https://brycs.org/clearinghouse/3018/

4. Language lab https://brycs.org/clearinghouse/3018/

5. Oxford online videos

VIII. MATERIALS ONLINE
1. Course template
2. Lab manual

39|Page

INSTITUTE OF AERONAUTICAL ENGINEERING

3 (Autonomous)
/4 Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT
OBJECT ORIENTED PROGRAMMING LABORATORY

I Semester: AE / ME / CE / ECE / EEE / CSE / IT / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
ACSE03 Foundation
0 0 2 1 40 60 100
Contact Classes: Nil Tutorial Classes: NIL Practical Classes: 30 Total Classes: 30

Prerequisite: There are no prerequisites to take this course.

This course provides a solid foundation in object-oriented programming concepts and hands-on experience in
using them. It introduces the concepts of abstraction and reusable code design via the object-oriented paradigm.
Through a series of examples and exercises students gain coding skills and develop an understanding of
professional programming practices. Mastering Java facilitate the learning of other technologies.

The students will try to learn

I. The strong foundation with the Java Virtual Machine, its concepts and features.
II. The systematic understanding of key aspects of the Java Class Library
II1. The usage of a modern IDE with an object oriented programming language to develop programs.

At the end of the course students should be able to:

CO1 Develop non-trivial programs in a modern programming language.
CO 2 Apply the principles of selection and iteration.
CO3 Appreciate uses of modular programming concepts for handling complex problems.

CO4 Recognize and apply principle features of object-oriented design such as abstraction and
encapsulation.

CO5 Design classes with a view of flexibility and reusability.

CO 6 Code, test and evaluate small use cases to conform to a specification.

40|Page

EXERCISES FOR OBﬂR%B?X&%{ED PROGRAMMING

Note: Students are encouraged to bring their own laptops for
laboratory practice sessions.

1. Getting Started Exercises

1.1 Hel LoWorld

1. Install JDK on your machine.

2. Write a Hello-world program using JDK and a source-code editor, such as:

@)

o

@)

o

For All Platforms: Sublime Text, Atom
For Windows: TextPad, NotePad++
For macOS: jEdit, gedit

For Ubuntu: gedit

3. Do ALL the exercises.

1.2 Writing Good Programs

The only way to learn programming is program, program and program. Learning programming is like
learning cycling, swimming or any other sports. You can't learn by watching or reading books. Start to
program immediately. On the other hands, to improve your programming, you need to read many
books and study how the masters program.

It is easy to write programs that work. It is much harder to write programs that not only work but also
easy to maintain and understood by others — | call these good programs. In the real world, writing
program is not meaningful. You have to write good programs, so that others can understand and
maintain your programs.

Pay particular attention to:

1. Coding Style:

o

Read "Java Code Convention”

(@ https://www.oracle.com/technetwork/java/codeconventions-150003.pdf or google
"Java Code Convention").

Follow the Java Naming Conventions for variables, methods, and classes STRICTLY.
Use CamelCase for names. Variable and method names begin with lowercase, while class
names begin with uppercase. Use nouns for variables (e.g., radius) and class names
(e.g., Circle). Use verbs for methods (e.g., getArea(), isEmpty()).

Use Meaningful Names: Do not use names like a, b, ¢, d, x, x1, x2, and x1688 -
they are meaningless. Avoid single-alphabet names like i, j, k. They are easy to type, but
usually meaningless. Use single-alphabet names only when their meaning is clear,
eg. Xy, zfor co-ordinates andifor array index. Use meaningful names
like row and col (instead
of x and y, i and j, x1 and x2), numStudents (not n), maxGrade, size (not n),
and upperbound (not n again). Differentiate between singular and plural nouns (e.g.,
use books for an array of books, and book for each item).

41|Page

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf

o Use consistent indentation and coding style. Many IDEs (such as Eclipse/NetBeans)
can re-format your source codes with a single click.

2. Program Documentation: Comment! Comment! and more Comment to explain your code to
other people and to yourself three days later.

1.3 ChecRPassFail (if-else)

Write a program called CheckPassFail which prints "PASS" if the int variable "mark" is more than or
equal to 50; or prints "FAIL" otherwise. The program shall always print “DONE" before exiting.

Hints
Use >= for greater than or equal to comparison.

/* Trying if-else statement.
*/
public class CheckPassFail { // Save as "CheckPassFail.java"
public static void main(String[] args) { // Program entry point
int mark = 49; // Set the value of "mark" here!
System.out.println("The mark is " + mark);

// if-else statement

if (......) {
System.out.println(......)
} else {
System.out.println(......);
¥
System.out.println(......)
¥
¥
Try

mark = 0,49, 50, 51, 100 and verify your results.

Take note of the source-code indentation!!! Whenever you open a block with '{", indent all the
statements inside the block by 3 (or 4 spaces). When the block ends, un-indent the closing '}' to
align with the opening statement.

1.4 CheckOddEven (if-else)

Write a program called CheckOddEven which prints "0dd Number" if the int variable “number” is odd,
or "Even Number” otherwise. The program shall always print "bye!” before exiting.

Hints
nis an even number if (n % 2) is @; otherwise, it is an odd number. Use == for comparison, e.g., (n %
2) == 0.

/**
* Trying if-else statement and modulus (%) operator.
*/
public class CheckOddEven { // Save as "CheckOddEven.java"
public static void main(String[] args) { // Program entry point

int number = 49; // Set the value of "number" here!
System.out.println("The number is " + number);
if (...,) {
System.out.println(......); // even number
} else {
System.out.println(......) // odd number

42|Page

}
System.out.println(......);

Try

number = 0, 1, 88, 99, -1, -2 and verify your results.

Again, take note of the source-code indentation! Make it a good habit to ident your code properly, for
ease of reading your program.

1.5 PrintNumberInWord (nested-if, switch-case)

Write a program called PrintNumberInwWord which prints "ONE", "TWO".. , "NINE", "OTHER" if
the int variable "number" is 1, 2,... , 9, or other, respectively. Use (a) a "nested-if" statement; (b) a
"switch-case-default" statement.

Hints

/**
* Trying nested-if and switch-case statements.
*/
public class PrintNumberInWord { // Save as "PrintNumberInWord.java"
public static void main(String[] args) {
int number = 5; // Set the value of "number" here!

// Using nested-if

if (number == 1) { // Use == for comparison
System.out.println(......);

} else if (......) {

} else if (......) {

} else {

}

// Using switch-case-default
switch(number) {

case 1:
System.out.println(......); break; // Don't forget the "break"
after each case!
case 2:
System.out.println(......); break;
default: System.out.println(......);
}
}
}
Try

number = 0,1, 2, 3, .., 9, 10 and verify your results.

1.6 PrintDayInWord (nested-if, switch-case)

Write a program called PrintDayInWord which prints “Sunday”, “Monday”, .. “Saturday” if

43 |Page

the int variable "dayNumber" is @, 1, ..., 6, respectively. Otherwise, it shall print "Not a valid day". Use
(@) a "nested-if" statement; (b) a "switch-case-default" statement.

Try

dayNumber = 0,1, 2, 3, 4,5, 6, 7 and verify your results.

2. Exercises on Number Systems (for Science/Engineering
Students)

To be proficient in programming, you need to be able to operate on these number systems:
1. Decimal (used by human beings for input and output)
2. Binary (used by computer for storage and processing)
3. Hexadecimal (shorthand or compact form for binary)

2.1 Exercises (Number Systems Conversion)

1. Convert the following decimal numbers into binary and hexadecimal numbers:

a. 108
b. 4848
c. 9000

Convert the following binary numbers into hexadecimal and decimal numbers:

a. 10000000
b. 1ele10101010
Cc. 1000011000
Convert the following hexadecimal numbers into binary and decimal numbers:

a. 1234
b. 86F
c. ABCDE
Convert the following decimal numbers into binary equivalent:
a. 123.456D
b. 19.25D

2.2 Exercise (Integer Representation)

1. What are the ranges of 8-bit, 16-bit, 32-bit and 64-bit integer, in "unsigned" and "signed"
representation?

no

Give the value of 88, 9, 1, 127, and 255 in 8-bit unsigned representation.
3. Give the value of +88,-88,-1,0,+1, -128, and +127 in 8-bit 2's complement signed
representation.
Give the value of +88, -88, -1, 9, +1, -127, and +127 in 8-bit sign-magnitude representation.
Give the value of +88, -88, -1, 0, +1, -127 and +127 in 8-bit 1's complement representation.

vk

2.3 Exercises (Floating-point Numbers)

1. Compute the largest and smallest positive numbers that can be represented in the 32-bit
normalized form.

2. Compute the largest and smallest negative numbers can be represented in the 32-bit
normalized form.

w

Repeat (1) for the 32-bit denormalized form.

>

Repeat (2) for the 32-bit denormalized form.

44|Page

Hints:
1. Largest positive number: S=0, E=1111 1110 (254),F=111 1111 1111 1111 1111 1111
Smallest positive number: S=0, E=0000 00001 (1), F=000 0000 0000 0000 0000 ©000.
Same as above, but S=1.
Largest positive number: S=0, E=0, F=111 1111 1111 1111 1111 1111.
Smallest positive number: S=0, E=0, F=000 0000 0000 0000 0000 ©0001.
4. Same as above, but S=1.

w

2.4 Exercises (Data Representation)

For the following 16-bit codes:

0000 0000 0010 1010;
1000 0000 0010 1010;

Give their values, if they are representing:
1. a 16-bit unsigned integer;

a 16-bit signed integer;

two 8-bit unsigned integers;

two 8-bit signed integers;

a 16-bit Unicode characters;

two 8-bit ISO-8859-1 characters.

S T A

3. Exercises on Decision and Loop

3.7 SumAverageRunningInt (Decision & Loop)

Write a program called SumAverageRunningInt to produce the sum of1,2, 3, .., to1ee.
Store 1 and 100 in variables lowerbound and upperbound, so that we can change their values easily.
Also compute and display the average.

The output shall look like:

The sum of 1 to 100 is 5050

The average is 50.5

Hints

/**
* Compute the sum and average of running integers from a Ilowerbound to an
upperbound using loop.
*/
public class SumAverageRunningInt { // Save as "SumAverageRunningInt.java"
public static void main (String[] args) {
// Define variables
int sum = ©@; // The accumulated sum, init to ©
double average; // average in double
final int LOWERBOUND 1;
final int UPPERBOUND 100;

// Use a for-loop to sum from lowerbound to upperbound
for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {
// The loop index variable number =1, 2, 3, ..., 99, 100
sum += number; // same as "sum = sum + number"

}

// Compute average in double. Beware that int / int produces int!

45|Page

1. Modify the program to use a "while-do" loop instead of "for" loop.
int sum = @;

int number = LOWERBOUND; // declare and init loop index variable
while (number <= UPPERBOUND) { // test

sum += number;

++number; // update

}
2. Modify the program using do-while loop

int sum = ©;

int number = LOWERBOUND; // declare and init loop index variable
do {

sum += number;

++number; // update

} while (number <= UPPERBOUND); // test

3. What is the difference between "for" and "while-do" loops? What is the difference between "while-
do" and "do-while" loops?

4. Modify the program to sum from 111 to 8899, and compute the average. Introduce
an int variable called count to count the numbers in the specified range (to be used in computing
the average).

5. Modify the program to find the "sum of the squares" of all the numbers from 1 to 100, i.e. 1*1 +
2*¥2 + 3*3 + ... + 100*100

6. Modify the program to produce two sums: sum of odd numbers and sum of even numbers
from 1 to 100. Also computer their absolute difference.

3.2 Product1ToN (or Factorial) (Decision & Loop)

Write a program called Product1ToN to compute the product of integers from 1 to 10 (i.e., 1x2x3x...x10),
as an int. Take note that It is the same as factorial of N.

Hints
Declare an int variable called product, initialize to 1, to accumulate the product.

// Define variables

int product = 1; // The accumulated product, init to 1
final int LOWERBOUND 1;

final int UPPERBOUND 10;

Try
1. Compute the product from 1to 11, 1to12,1to 13 and 1to 14. Write down the product
obtained and decide if the results are correct.

HINTS: Factorial of 13 (=6227020800) is outside the range of int [-2147483648,
2147483647]. Take note that computer programs may not produce the correct result even
though the code seems correct!

2. Repeat the above, but use longto store the product. Compare the products obtained
with int for N=13 and N=14.

46 |Page

HINTS: With long, you can store factorial of up to 2e.

3.3 HarmonicSum (Decision & Loop)

Write a program called HarmonicSum to compute the sum of a harmonic series, as shown below,
where n=50000. The program shall compute the sum from left-to-right as well as from the right-to-left.
Are the two sums the same? Obtain the absolute difference between these two sums and explain the
difference. Which sum is more accurate?

Harmomc(n)=1+l+l+...+l
2 3 n
Hints
/%%

* Compute the sum of harmonics series from left-to-right and right-to-left.
*/
public class HarmonicSum { // Save as "HarmonicSum.java"
public static void main (String[] args) {
// Define variables
final int MAX_DENOMINATOR = 50000; // Use a more meaningful name instead of

double sumL2R = 0.0; // Sum from left-to-right
double sumR2L = 0.0; // Sum from right-to-left
double absDiff; // Absolute difference between the two sums

// for-loop for summing from left-to-right

for (int denominator = 1; denominator <= MAX_DENOMINATOR; ++denominator) {
// denominator = 1, 2, 3, 4, 5, ..., MAX DENOMINATOR
// Beware that int/int gives int, e.g., 1/2 gives 0.

}
System.out.println("The sum from left-to-right is: " + sumL2R);

// for-loop for summing from right-to-left

// Find the absolute difference and display
if (sumL2R > sumR2L)
else

3.4 ComputePI (Decision & Loop)

Write a program called ComputePI to compute the value of T, using the following series expansion.
Use the maximum denominator (MAX_DENOMINATOR) as the terminating condition
Try MAX_DENOMINATOR of 1000, 10000, 100000, 1000000 and compare the Pl obtained. Is this series
suitable for computing PI? Why?

111 1 1 1 1
B=Ax|l— o — T — e
3°5 7 9 11 13 15

Hints
Add to sum if the denominator % 4 is 1, and subtract from sum if it is 3.

double sum = 0.0;
int MAX_DENOMINATOR = 1000; // Try 10000, 100000, 1000000

47|Page

for (int denominator = 1; denominator <= MAX_DENOMINATOR; denominator += 2)

{
// denominator = 1, 3, 5, 7, ..., MAX_DENOMINATOR
if (denominator % 4 == 1) {
sum += ;
} else if (denominator % 4 == 3) {
sum -= ;
} else { // remainder of © or 2
System.out.println("Impossible!!!");
}
}
Try

1. Instead of using maximum denominator as the terminating condition, rewrite your program to use the
maximum number of terms (MAX_TERM) as the terminating condition.

int MAX_TERM = 10000; // number of terms used in computation
int sum = 0.0;
for (int term

[T i
-

; term <= MAX_TERM; term++) {
// term = 2, 3, 4, ..., MAX_TERM
if (term % 2 1) { // odd term number: add
sum += 1.0 / (term * 2 - 1);
} else { // even term number: subtract

2. JDK maintains the value of 1t in a built-in double constant called Math.PI (=3.141592653589793).
Add a statement to compare the values obtained and the Math.PI, in percents of Math.PI,
i.e., (piComputed / Math.PI) * 100

3.5 CozalLozaWoza (Decision & Loop)

Write a program called CozaLozalWoza which prints the numbers 1 to 110, 11 numbers per line. The
program shall print "Coza" in place of the numbers which are multiples of 3, "Loza" for multiples of 5,
"Woza" for multiples of 7, "Cozaloza" for multiples of 3 and 5, and so on. The output shall look like:

1 2 Coza 4 Loza Coza Woza 8 Coza Loza 11
Coza 13 Woza Cozaloza 16 17 Coza 19 Loza CozaWoza 22
23 Coza Loza 26 Coza Woza 29 Cozaloza 31 32 Coza

Hints

public class CozalLozaWoza { // Save as "CozalozaWoza.java"
public static void main(String[] args) {
final int LOWERBOUND = 1, UPPERBOUND = 1190;
for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {
// number = LOWERBOUND+1, LOWERBOUND+2, ..., UPPERBOUND
// Print "Coza" if number is divisible by 3

if (......) {
System.out.print("Coza");

}
// Print "Loza" if number is divisible by 5
if (...,) {
System.out.print(.....)
¥

48 |Page

not been

11;

Notes

// Print "Woza" if number is divisible by 7

// Print the number if it is not divisible by 3, 5 and 7 (i.e., it has
processed above)

if (aennn.) {

// After processing the number, print a newline if number is divisible by

// else print a space

AF { cooooo) {

System.out.println(); // print newline
} else {

System.out.print(......); // print a space
}

1. You cannot use nested-if (if ... else if ... else if ... else) for this problem. It is because the tests

are

not mutually exclusive. For example, 15 is divisible by both 3 and 5. Nested-if is only

applicable if the tests are mutually exclusive.

2. The tests above look messy. A better solution is to use a boolean flag to keep track of
whether the number has been processed, as follows:

final int LOWERBOUND = 1, UPPERBOUND = 110;

boolean printed;
for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {

printed = false; // init before processing each number
// Print "Coza" if number is divisible by 3

if (..en.) {
System.out.print(......);
printed = true; // processed!
}
// Print "Loza" if number is divisible by 5
if (..en.) {
System.out.print(.....)
printed = true; // processed!
}

// Print "Woza" if number is divisible by 7
// Print the number if it has not been processed
if (!printed) {

// After processing the number, print a newline if it is divisible by 11;
// else, print a space

3.6 Fibonacci (Decision & Loop)

Write a program called Fibonacci to print the first 20 Fibonacci numbers F(n), where F(n)=F(n-
1)+F(n-2) and F(1)=F(2)=1. Also compute their average. The output shall look like:

49 |Page

The first 20 Fibonacci numbers are:
11235813 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
The average is 885.5

Hints

Vo
* Print first 20 Fibonacci numbers and their average
*/

public class Fibonacci {

public static void main (String[] args) {

int n = 3; // The index n for F(n), starting from n=3, as n=1 and
n=2 are pre-defined
int fn; // F(n) to be computed

int fnMinusl = 1; // F(n-1), init to F(2)

int fnMinus2 = 1; // F(n-2), init to F(1)

int nMax = 20; // maximum n, inclusive

int sum = fnMinusl + fnMinus2; // Need sum to compute average
double average;

System.out.println("The first " + nMax + " Fibonacci numbers are:");

while (n <= nMax) { // n starts from 3
// n=3, 4, 5, ..., nMax
// Compute F(n), print it and add to sum

// Increment the index n and shift the numbers for the next iteration

++n;
fnMinus2 = fnMinusil;
fnMinusl = fn;

}

// Compute and display the average (=sum/nMax).
// Beware that int/int gives int.

Try

1. Tribonacci numbers are a sequence of numbers T(n) similar to Fibonacci numbers, except that a
number is formed by adding the three previous numbers, i.e, T(n)=T(n-1)+T(n-2)+T(n-3), T(1)
=T(2)=1, and T(3)=2. Write a program called Tribonacci to produce the first twenty Tribonacci
numbers.

3.7 ExtractDigits (Decision & Loop)

Write a program called ExtractDigits to extract each digit from an int, in the reverse order. For
example, if the int is 15423, the output shall be "3 2 4 5 1", with a space separating the digits.

Hints

The coding pattern for extracting individual digits from an integer n is:
1. Use (n % 10) to extract the last (least-significant) digit.
2. Usen = n / 1@ to drop the last (least-significant) digit.
3. Repeat if (n > @), i.e, more digits to extract.

Take note that n is destroyed in the process. You may need to clone a copy.

50| Page

intn=...;
while (n > @) {

int digit = n % 10; // Extract the least-significant digit
// Print this digit

n=n/ 10; // Drop the least-significant digit and repeat the loop

4. Exercises on Input, Decision and Loop

4.1 Add2Integer (Input)

Write a program called Add2Integers that prompts user to enter two integers. The program shall
read the two integers as int; compute their sum; and print the result. For example,

Enter first integer: 8
Enter second integer: 9
The sum is: 17

Hints

import java.util.Scanner; // For keyboard input
/**

* 1. Prompt user for 2 integers

& Read inputs as "int"
Compute their sum in
Print the result

" n

& int
*
*/

public class Add2Integers { // Save as "Add2Integers.java"

public static void main (String[] args) {
// Declare variables

int numberl, number2, sum;

b~ wnN

// Put up prompting messages and read inputs as "int"
Scanner in = new Scanner(System.in); // Scan the keyboard for input

System.out.print("Enter first integer: "); // No newline for prompting
message
numberl = in.nextInt(); // Read next input as "int"

in.close(); // Close Scanner

// Compute sum
sum =

// Display result
System.out.println("The sum is:

+ sum); // Print with newline

4.2 SumProductMinMax3 (Arithmetic & Min/Max)

Write a program called SumProductMinMax3 that prompts user for three integers. The program shall
read the inputs as int; compute the sum, product, minimum and maximum of the three integers; and
print the results. For example

Enter 1st integer: 8
Enter 2nd integer: 2
Enter 3rd integer: 9
The sum is: 19

51|Page

The product is: 144
The min is: 2
The max is: 9

Hints

// Declare variables

int numberl, number2, number3; // The 3 input integers
int sum, product, min, max; // To compute these

// Prompt and read inputs as "int
Scanner in = new Scanner(System.in); // Scan the keyboard

in.close();

// Compute sum and product
sum =
product =

// Compute min

// The "coding pattern" for computing min is:

// 1. Set min to the first item

// 2. Compare current min with the second item and update min if second item

is smaller

Try

// 3. Repeat for the next item

min = numberl; // Assume min is the 1st item

if (number2 < min) { // Check if the 2nd item is smaller than current min
min = number2; // Update min if so

}

if (number3 < min) { // Continue for the next item
min = number3;
¥

// Compute max - similar to min

1. Write a program called SumProductMinMax5 that prompts user for five integers. The program shall
read the inputs as int; compute the sum, product, minimum and maximum of the five integers; and
print the results. Use five int variables: numberl, number2, .., numbers5 to store the inputs.

4.3 CircleComputation (double & printf())

Write a program called CircleComputation that prompts user for the radius of a circle in
floating point number. The program shall read the input as double; compute the diameter,
circumference, and area of the circle in double; and print the values rounded to 2 decimal places. Use
System-provided constant Math.PI for pi. The formulas are:

diameter = 2.0 * radius;

area

Math.PI * radius * radius;

circumference = 2.0 * Math.PI * radius;

Hints

// Declare variables

52|Page

double radius, diameter, circumference, area; // inputs and results - all
in double

// Prompt and read inputs as "double"
System.out.print("Enter the radius: ");
radius = in.nextDouble(); // read input as double

// Compute in "double"

// Print results using printf() with the following format specifiers:
// %.2f for a double with 2 decimal digits

// %n for a newline

System.out.printf("Diameter is: %.2f%n", diameter);

Try

1. Write a program called SphereComputation that prompts user for the radius of a sphere in
floating point number. The program shall read the input as double; compute the volume and surface
area of the sphere in double; and print the values rounded to 2 decimal places. The formulas are:

surfaceArea = 4 * Math.PI * radius * radius;

volume = 4 /3 * Math.PI * radius * radius * radius; // But this does not work in
programming?! Why?

Take note that you cannot name the variable surface area with a space or surface-area with a dash.

2.

Java's naming convention is surfaceArea. Other languages recommend surface_area with an
underscore.

Write a program called CylinderComputation that prompts user for the
base radius and height of a cylinder in floating point number. The program shall read the inputs
as double; compute the base area, surface area, and volume of the cylinder; and print the values
rounded to 2 decimal places. The formulas are:

baseArea = Math.PI * radius * radius;
surfaceArea = 2.0 * Math.PI * radius + 2.0 * baseArea;

volume = baseArea * height;

4.4 Swap2Integers

Write a program called Swap2Integers that prompts user for two integers. The program shall read
the inputs as int, save in two variables called numberl and number2; swap the contents of the two
variables; and print the results. For examples,

Enter first integer: 9
Enter second integer: -9
After the swap, first integer is: -9, second integer is: 9

Hints
To swap the contents of two variables x and y, you need to introduce a temporary storage, say temp,
anddo:temp & x;x & y;y & temp.

53|Page

4.5 TncomeTaxCalculator (Decision)

The progressive income tax rate is mandated as follows:

Taxable Income Rate (%)
First $20,000 0
Next $20,000 10
Next $20,000 20
The remaining 30

For example, suppose that the taxable income is $85000, the income tax payable is $20000*0% +
$20000*10% + $20000*20% + $25000*30%.

Write a program called IncomeTaxCalculator that reads the taxable income (in int). The
program shall calculate the income tax payable (in double); and print the result rounded to 2 decimal
places. For examples,

Enter the taxable income: $41234
The income tax payable is: $2246.80

Enter the taxable income: $67891
The income tax payable is: $8367.30

Enter the taxable income: $85432
The income tax payable is: $13629.60

Enter the taxable income: $12345
The income tax payable is: $0.00

Hints

// Declare constants first (variables may use these constants)
// The keyword "final" marked these as constant (i.e., cannot be changed).
// Use uppercase words joined with underscore to name constants

final double TAX_RATE_ABOVE_20K = 0.1;
final double TAX_RATE_ABOVE_40K = 0.2;
final double TAX_RATE_ABOVE_60K = ©0.3;

// Declare variables
int taxableIncome;
double taxPayable;

// Compute tax payable in "double" using a nested-if to handle 4 cases

if (taxableIncome <= 20000) { // [0, 20000]
taxPayable = 5

} else if (taxableIncome <= 40000) { // [20001, 40000]
taxPayable = 8

} else if (taxableIncome <= 60000) { // [40001, 60000]
taxPayable = 8

} else { // [60001,]
taxPayable = ;

¥

// Alternatively, you could use the following nested-if conditions
// but the above follows the table data

//if (taxableIncome > 60000) { // [60001,]

/] cocoococ

//} else if (taxableIncome > 40000) { // [40001, 60000]
/ ccoococ

//} else if (taxableIncome > 20000) { // [20001, 40000]

54|Page

/] ...
//} else { // [0, 20000]

// Print results rounded to 2 decimal places
System.out.printf("The income tax payable is: $%.2f%n", ...);

Try

Suppose that a 10% tax rebate is announced for the income tax payable, capped at $1,000, modify
your program to handle the tax rebate. For example, suppose that the tax payable is $12,000, the
rebate is $1,000, as 10% of $12,000 exceed the cap.

4.6 IncomeTaxCalculatorWithSentinel (Decision & Loop)

Based on the previous exercise, write a program called IncomeTaxCalculatorWithSentinel which
shall repeat the calculation until user enter -1. For example,

Enter the taxable income (or -1 to end): $41000
The income tax payable is: $2200.00

Enter the taxable income (or -1 to end): $62000
The income tax payable is: $6600.00

Enter the taxable income (or -1 to end): $73123
The income tax payable is: $9936.90

Enter the taxable income (or -1 to end): $84328
The income tax payable is: $13298.40

Enter the taxable income: $-1
bye!

The -1 is known as the sentinel value. (Wiki: In programming, a sentinel value, also referred to as a flag
value, trip value, rogue value, signal value, or dummy data, is a special value which uses its presence as
a condition of termination.)

Hints
The coding pattern for handling input with sentinel value is as follows:

// Declare constants first
final int SENTINEL = -1; // Terminating value for input

// Declare variables
int taxableIncome;
double taxPayable;

// Read the first input to "seed" the while loop
System.out.print("Enter the taxable income (or -1 to end): $");
taxableIncome = in.nextInt();

while (taxableIncome != SENTINEL) {
// Compute tax payable

// Read the next input

55|Page

System.out.print("Enter the taxable income (or -1 to end): $");
taxableIncome = in.nextInt();
// Repeat the loop body, only if the input is not the SENTINEL value.
// Take note that you need to repeat these +two statements
inside/outside the loop!

}
System.out.println("bye!");

Take note that we repeat the input statements inside and outside the loop. Repeating statements is
NOT a good programming practice. This is because it is easy to repeat (Cntl-C/Cntl-V), but hard to
maintain and synchronize the repeated statements. In this case, we have no better choices!

4.7 PensionContributionCalculatorWithSentinel (Decision & Loop)

Based on the previous PensionContributionCalculator,
write a program called PensionContributionCalculatorWithSentinel which shall repeat the
calculations until user enter -1 for the salary. For examples,

Enter the monthly salary (or -1 to end): $5123
Enter the age: 21

The employee's contribution is: $1024.60

The employer's contribution is: $870.91

The total contribution is: $1895.51

Enter the monthly salary (or -1 to end): $5123
Enter the age: 64

The employee's contribution is: $384.22

The employer's contribution is: $461.07

The total contribution is: $845.30

Enter the monthly salary (or -1 to end): $-1
bye!

Hints

// Read the first input to "seed" the while loop
System.out.print("Enter the monthly salary (or -1 to end): $");
salary = in.nextInt();

while (salary != SENTINEL) {
// Read the remaining
System.out.print("Enter the age: ");
age = in.nextInt();

// Read the next input and repeat
System.out.print("Enter the monthly salary (or -1 to end): $");
salary = in.nextInt();

4.8 SalesTaxCalculator (Decision & Loop)

A sales tax of 7% is levied on all goods and services consumed. It is also mandatory that all the price
tags should include the sales tax. For example, if an item has a price tag of $107, the actual price
is $100 and $7 goes to the sales tax.

56|Page

Write a program using a loop to continuously input the tax-inclusive price (in double); compute the
actual price and the sales tax (in double); and print the results rounded to 2 decimal places. The
program shall terminate in response to input of -1; and print the total price, total actual price, and
total sales tax. For examples,

Enter the tax-inclusive price in dollars (or -1 to end): 107
Actual Price is: $100.00, Sales Tax is: $7.00

Enter the tax-inclusive price in dollars (or -1 to end): 214
Actual Price is: $200.00, Sales Tax is: $14.00

Enter the tax-inclusive price in dollars (or -1 to end): 321
Actual Price is: $300.00, Sales Tax is: $21.00

Enter the tax-inclusive price in dollars (or -1 to end): -1
Total Price is: $642.00

Total Actual Price is: $600.00

Total Sales Tax is: $42.00

Hints

// Declare constants
final double SALES_TAX_RATE = 0.07;
final int SENTINEL = -1; // Terminating value for input

// Declare variables

double price, actualPrice, salesTax; // inputs and results

double totalPrice = 0.0, totalActualPrice = 0.0, totalSalesTax = 0.9; // to
accumulate

// Read the first input to "seed" the while loop
System.out.print("Enter the tax-inclusive price in dollars (or -1 to end):

")s

price = in.nextDouble();

while (price != SENTINEL) {
// Compute the tax

// Read the next input and repeat

System.out.print("Enter the tax-inclusive price in dollars (or -1 to
end): ");

price = in.nextDouble();

}
// print totals

4.9 ReverseInt (Loop with Modulus/Divide)

Write a program that prompts user for a positive integer. The program shall read the input as int; and
print the "reverse" of the input integer. For examples,

Enter a positive integer: 12345
The reverse is: 54321

57|Page

Hints
Use the following coding pattern which uses a while-loop with repeated modulus/divide operations to
extract and drop the last digit of a positive integer.

// Declare variables
int inNumber; // to be input
int inDigit; // each digit

// Extract and drop the "last" digit repeatably using a while-loop with
modulus/divide operations
while (inNumber > @) {
inDigit = inNumber % 10; // extract the "last" digit
// Print this digit (which is extracted in reverse order)

inNumber /= 10; // drop "last" digit and repeat

4.70 SumOfDigitsInt (Loop with Modulus/Divide)

Write a program that prompts user for a positive integer. The program shall read the input as int;
compute and print the sum of all its digits. For examples,

Enter a positive integer: 12345
The sum of all digits is: 15

Hints
See "ReverselInt".

4.11 InputValidation (Loop with boolean flag)

Your program often needs to validate the user's inputs, e.g., marks shall be between 0 and 100.

Write a program that prompts user for an integer between 0-10 or 90-100. The program shall read
the input as int; and repeat until the user enters a valid input. For examples,

Enter a number between 0-10 or 90-100:
Invalid input, try again...

Enter a number between ©0-10 or 90-100: 50
Invalid input, try again...

Enter a number between ©-10 or 90-100: 101
Invalid input, try again...

Enter a number between ©0-10 or 90-100: 95
You have entered: 95

Hints

Use the following coding pattern which uses a do-while loop controlled by a boolean flag to do input
validation. We use a do-while instead of while-do loop as we need to execute the body to prompt and
process the input at least once.

1
=

// Declare variables
int numberIn; // to be input
boolean isValid; // boolean flag to control the loop

58|Page

// Use a do-while loop controlled by a boolean flag
// to repeatably read the input until a valid input is entered
isValid = false; // default assuming input is not valid
do {
// Prompt and read input

// Validate input by setting the boolean flag accordingly

if (numberIn) {

isValid = true; // exit the loop
} else {

System.out.println(......)Y; // Print error message and repeat
}

} while (!isValid);

4.12 AverageWithInputValidation (Loop with boolean flag)

Write a program that prompts user for the mark (between ©-100 in int) of 3 students; computes the
average (in double); and prints the result rounded to 2 decimal places. Your program needs to
perform input validation. For examples,

Enter
Enter

=

56
101

the mark (©-100) for student
the mark (©-100) for student

N

Invalid input, try again...

Enter

the mark (0-100) for student 2: -1

Invalid input, try again...

Enter
Enter

N

929
: 45

the mark (©-100) for student
the mark (0-100) for student

w

The average is: 66.67

Hints

// Declare constant
final int NUM_STUDENTS = 3;

// Declare variables

int numberlIn;

boolean isValid; // boolean flag to control the input validation loop
int sum = ©@;

double average;

for (int studentNo = 1; studentNo <= NUM_STUDENTS; ++studentNo) {
// Prompt user for mark with input validation
isValid = false; // reset assuming input is not valid
do {

5. Exercises on Nested-Loops

5.1 SquarePattern (nested-loop)

Write a program called SquarePattern that prompts user for the size (a non-negative integer

in int);

and prints the following square pattern using two nested for-loops.

59|Page

he size: 5

HHEHHFHEM
HoH HHHE A
HHHFHHES
HoHHHH A
H HH HHO®

Hints

The code pattern for printing 2D patterns using nested loops is:

// Outer loop to print each of the rows
for (int row = 1; row <= size; row++) { // row =1, 2, 3, ..., size
// Inner loop to print each of the columns of a particular row
for (int col = 1; col <= size; col++) { // col =1, 2, 3, ..., size
System.out.print(......) // Use print() without newline inside
the inner loop

// Print a newline after printing all the columns
System.out.println();

Notes

1. You should name the loop indexes row and col, NOT i and j, or x and y, or a and b, which
are meaningless.

2. Therowand col could start at 1 (and upto size), or start at® (and upto size-1). As
computer counts from @, it is probably more efficient to start from 8. However, since humans
counts from 1, it is easier to read if you start from 1.

Try

Rewrite the above program using nested while-do loops.

5.2 CheckerPattern (nested-loop)

Write a program called CheckerPattern that prompts user for the size (a non-negative integer
in int); and prints the following checkerboard pattern

#H#H#HHHH
#H#H#HHHHR

HHEHHHHH
HHH#HHHTEHS

#HHHHHH
#HHH#HHHEH

Hints

// Outer loop to print each of the rows
for (int row = 1; row <= size; row++) { // row =1, 2, 3, ..., size
// Inner loop to print each of the columns of a particular row
for (int col = 1; col <= size; col++) { // col =1, 2, 3, ..., size
if ((row % 2) == 0) { // row 2, 4, 6,

60|Page

System.out.print(......); // Use print() without newline inside
the inner loop

// Print a newline after printing all the columns
System.out.println();

5.3 TimeTable (nested-loop)

Write a program called TimeTable that prompts user for the size (a positive integer in int); and
prints the multiplication table as shown:

Enter the size: 10

*| 1 2 3 4 5 6 7 8 9 10
1] 1 2 3 4 5 6 7 8 9 1e
2] 2 4 6 8 10 12 14 16 18 20
3] 3 6 9 12 15 18 21 24 27 3@
4| 4 8 12 16 20 24 28 32 36 40
5] 5 1@ 15 20 25 30 35 40 45 50
6| 6 12 18 24 30 36 42 48 54 60
7| 7 14 21 28 35 42 49 56 63 70
8| 8 16 24 32 40 48 56 64 72 80
9| 9 18 27 36 45 54 63 72 81 90
10 | 10 20 30 40 50 60 70 80 90 100
Hints

1. Use printf() to format the output, e.g., each cell is %4d.

2. See "Java Basics" article.

5.4 TriangularPattern (nested-loop)

Write 4 programs called TriangularPatternX (X = A, B, C, D) that prompts user for the size
(a non-negative integer in int); and prints each of the patterns as shown:

Enter the size: 8

#H# H#HHHHEHH #H# H#HHHHEHH
#H# HHHHEH HHHHHEHH #
4 #HH# ## 44 #H # #
4 # ### 8 # ### 4 # ## #
HH# # H# #H # #H#HHH# # # #HHH#
#HHHHEH # # # # # # # HHHHEH
HHHHHEHH # # # # #H#HHHHEH
#H 48 HHHH # # ## 48 HH#H Y
(a) (b) (c) (d)
Hints

1. On the main diagonal, row = col. On the opposite diagonal, row + col = size + 1,
where row and col begin from 1.

2. You need to print the leading blanks, in order to push the # to the right. The trailing blanks
are optional, which does not affect the pattern.

3. Forpattern (a), if (row >= col) print #. Trailing blanks are optional.

4. For pattern (b), if (row + col <= size + 1) print #. Trailing blanks are optional.

61|Page

5. For pattern (¢),if (row >= col) print #; else print blank. Need to print
the leading blanks.

6. For pattern (d), if (row + col >= size + 1) print #; else print blank. Need to
print the leading blanks.

7. The coding pattern is:

// Outer loop to print each of the rows
for (int row = 1; row <= size; row++) { // row =1, 2, 3, ..., size
// Inner loop to print each of the columns of a particular row
for (int col = 1; col <= size; col++) { // col =1, 2, 3, ..., size
if (o.....) {
System.out.print("# ");
} else {
System.out.print(" "); // Need to print the "leading" blanks
}
}

// Print a newline after printing all the columns
System.out.println();

5.5 BoxPattern (nested-loop)

Write 4 programs called BoxPatternX (X = A, B, C, D) that prompts user for the size (a non-
negative integer in int); and prints the pattern as shown:

Enter the size: 8

#HHHHEHH #HHHHHH #HHHHEHH #HHHHHH #HHHHHEH
#
#
#
#
#
HHHEHHEHH HHEHHEHEH #HHEHHERH HHEHHEHEH HHHEHHEH
(a) (b) (c) (d) (e)
Hints
1. On the main diagonal, row = col. On the opposite diagonal, row + col = size + 1,
where row and col begin from 1.
2. For pattern (a), if (row == || row == size || col == || col == size) print
#; else print blank. Need to print the intermediate blanks.
3. For pattern (b), if (row == || row == size || row == col) print #; else print
blank.

5.6 HilLPattern (nested-loop)

Write 3 programs called Hil1PatternX (x = A, B, C, D) that prompts user for the size (a non-
negative integer in int); and prints the pattern as shown:

Enter the rows: 6

HHEHB B BB HA RSB # BHHEB BB R R A A B

HHEH BB HHHE B ## # BHHEBE HHHHH
HHHHH B HBH B R W HHHH B HHH B #HH#
HHBH B R Y #HHHH HHHH R HH ### ## #
BHHEH B R R HAH #H## BHHBH B R R HH ## # #
BHBB BB R AEAH B # BHBB BB R AR H B # #
(a) (b) BHB BB R RHH # # # #
SRR R ### ## #

62|Page

HHHHH #### #HHH
S EEEENEEEEE
I EEEEEEEEEE:
(c) (d)
Hints
For pattern (a):
for (int row = 1;) {
// numCol = 2*numRows - 1
for (int col = 1;) {
if ((row + col >= numRows + 1) && (row >= col - numRows + 1)) {
...... ;
} else {
...... 5
}

or, use 2 sequential inner loops to print the columns:

for (int row = 1; row <= rows; row++) {
for (int col = 1; col <= rows; col++) {
if ((row + col >= rows + 1)) {

for (int col = 2; col <= rows; col++) { // skip col =1
if (row >= col) {

5.7 NumberPattern (nested-loop)

Write 4 programs called NumberPatternX (X = A, B, C, D) that prompts user for the size (a non-
negative integer in int); and prints the pattern as shown:

Enter the size: 8

1 12345678 1 87654321
12 1234567 21 7654321
123 123456 321 654321
1234 12345 4321 54321
12345 1234 54321 4321
123456 123 654321 321
1234567 12 7654321 21
12345678 1 87654321 1

(a) (b) (c) (d)

63|Page

6. Magic(Special) Numbers

6.1. Amicable umbers

Two different numbers are said to be so Amicable numbers if each sum of divisors is equal to the
other number. Amicalble Numbers are: (220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232,
6368). For example,

Enter 1st number: 228

Enter 2nd number: 220
The numbers are Amicable Numbers.

Hints

220 and 284 are Amicable Numbers.

Divisors of 220 = 1, 2,4, 5, 10, 11, 20, 22, 44, 55, 110
1+2+4+5+10+11+20+22+44+55+110 = 284

Divisors of 284 = 1, 2, 4, 71, 142
1+2+4+71+142 = 220

6.2. Armstrong Number

Armstrong number is a positive number if it is equal to the sum of cubes of its digits is called
Armstrong number and if its sum is not equal to the number then it's not a Armstrong number. For
example,

Enter number=145
145 is not an Armstrong Number

Enter number = 153
153 is an Armstrong Number

Hints
Examples: 153 is Armstrong

(1*1*1)+(5*5*5)+(3*3*3) = 153

6.3. Capricorn Number

A number is called Capricorn or Kaprekar number whose square is divided into two parts in any
conditions and parts are added, the additions of parts is equal to the number, is called Capricorn or
Kaprekar number. For example,

Enter a number : 45

45 is a Capricorn/Kaprekar number
Enter a number : 297

297 is a Capricorn/Kaprekar number

64|Page

Enter a number : 44
44 is not a Capricorn/Kaprekar number

Hints
Number = 45
(45)2 = 2025

All parts for 2025:

202 +5 = 207 (not 45)
20 +25 = 45
2+ 025 = 27 (not45)

From the above we can see one combination is equal to number so that 45 is Capricorn or Kaprekar
number.

Try

Write a Java program to generate and show all Kaprekar numbers less than 1000.

6.4. Circular Prime

A circular prime is a prime number with the property that the number generated at each intermediate
step when cyclically permuting its digits will be prime. For example, 1193 is a circular prime, since
1931, 9311 and 3119 all are also prime. For example,

Enter a number : 137
137 is a Circular Prime
Enter a number : 44

44 is not a Circular Prime

6.5. Happy Number

A happy number is a natural number in a given number base that eventually reaches 1 when iterated
over the perfect digital invariant function for. Those numbers that do not end in 1 are -unhappy
numbers. For example,

Enter a number : 31
31 is a Happy number

Enter a number: 32
32 is not a Happy number

6.6. Automorphic Number

An Automorphic number is a number whose square “ends” in the same digits as the number itself. For
example,

Enter a number: 5
5 is a Automorphic Number

Enter a number : 25
25 is a Automorphic Number

Enter a number : 2
2 is not a Automorphic Number

65|Page

Hints
5*5 = 25, 6*6 = 36, 25*25 = 625

5,6,25 are automorphic numbers

6.7. Disarium Number

A number is called Disarium number if the sum of its power of the positions from left to right is equal
to the number. For example,

Enter a number: 135
135 is a Disarium Number

Enter a number : 32
32 is not a Disarium Number

Hints
17+32+53=1+9+125=135

6.8. Magic Number

Magic number is the if the sum of its digits recursively are calculated till a single digit If the single digit
is 1 then the number is a magic number. Magic number is very similar with Happy Number. For
example,

Enter a number : 226
226 is a Magic Number

Enter a number : 32
32 is not a Magic Number

Enter number = 541
153 is a Magic Number

Hints
226 is said to be a magic number

2+2+6=10 sum of digits is 10 then again 1+0=1 now we get a single digit number is 1.if we single
digit number will now 1 them it would not a magic number.

6.9. Neon Number

A neon number is a number where the sum of digits of square of the number is equal to the number.
For example if the input number is 9, its square is 9*9 = 81 and sum of the digits is 9. i.e. 9 is a neon
number. For example,

Enter a number: 9
9 is a Neon Number

Enter a number: 8
8 is not a Neon Number

66|Page

6.10. Palindromic Number

A palindromic number is a number that remains the same when its digits are reversed. For example,

Enter a number: 16461
16461 is a Palendromic Number

Enter a number: 1234
1234 is not a Plaindromic Number

6.11. Perfect Number

A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the
number itself. For instance, 6 has divisors 1,2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. For
example,

Enter a number: 6
6 is a Perfect Number

Enter a number: 3
3 is not a Perfect Number

6.12. Special Number

A number is said to be special number when the sum of factorial of its digits is equal to the number
itself. Example- 145 is a Special Number as 1!+4!+5!=145. For example,

Enter a number : 145
145 is a Special Number

Enter a number : 23
23 is not a Special Number

6.13. Spy Number

A spy number is a number where the sum of its digits equals the product of its digits. For example,
1124 is a spy number, the sum of its digits is 1+1+2+4=8 and the product of its digits is 1*1*2*4=8.
For example,

Enter a number: 1124
1124 is a Spy Number

Enter a number: 12
12 is not a Spy Number

6.14. Ugly Number

A number is said to be an Ugly number if positive numbers whose prime factors only include 2, 3, 5.
For example, 6(2x3), 8(2x2x2), 15(3x5) are ugly numbers while 14(2x7) is not ugly since it includes
another prime factor 7. Note that 1 is typically treated as an ugly number. For example,

Enter a number: 6
6 is an Ugly Number

Enter a number : 14
14 is not an Ugly Number

67|Page

7. Exercises on String and char Operations

7.1 ReverseString (String & char)

Write a program called ReverseString, which prompts user for aString, and prints
the reverse of the String by extracting and processing each character. The output shall look like:

Enter a String: abcdef
The reverse of the String "abcdef" is "fedcba".

Hints

For aStringcalled inStr, you can wuse inStr.length()to get thelength of the String;
and inStr.charAt(idx) to retrieve the char at the idx position, where idx begins at 0, up
to instr.length() - 1.

// Define variables
String inStr; // input String
int inStrLen; // length of the input String

// Prompt and read input as "String"
System.out.print("Enter a String: ");

inStr = in.next(); // use next() to read a String
inStrLen = inStr.length();

// Use inStr.charAt(index) in a loop to extract each character
// The String's index begins at @ from the left.
// Process the String from the right
for (int charIdx = inStrLen - 1; charldx >= @; --charIdx) {
// charIdx = inStrLen-1, inStrlLen-2, ... ,0

7.2 CountVowelsDigits (String & char)

Write a program called CountVowelsDigits, which prompts the user for a String, counts the
number of vowels (a, e, 1,0, u, A E I,0,U) and digits (9-9) contained in the string, and prints the
counts and the percentages (rounded to 2 decimal places). For example,

Enter a String: testingl2345
Number of vowels: 2 (16.67%)
Number of digits: 5 (41.67%)

Hints
1. To check if a char cis a digit, you can use boolean expression (¢ >= '@' & c <= '9");
or use built-in boolean function Character.isbigit(c).
2. You could use in.next().toLowerCase() to convert the input Stringto lowercase to
reduce the number of cases.
3. To print a%using printf(), you need to use %%. This is because % is a prefix for format
specifier in printf(), e.g. %d and %f.

7.3 PhoneKeyPad (String & char)
On you phone keypad, the alphabets are mapped to digits as follows:

ABC(2), DEF(3), GHI(4), JKL(5), MNO(6), PQRS(7), TUV(8), WXYZ(9).

68|Page

Write a program called PhoneKeyPad, which prompts user for a String (case insensitive), and
converts to a sequence of keypad digits. Use (a) a nested-if, (b) a switch-case-default.

Hints
I. Youcanuse in.next().toLowerCase() toread a String and convert it to lowercase to reduce
your cases.
2. In switch-case, you can handle multiple cases by omitting the break statement, e.g.,

switch (inChar) {
case 'a': case 'b': case 'c': // No break for 'a' and 'b', fall thru 'c’

System.out.print(2); break;

case 'd': case 'e': case 'f':

7.4 Caesar's Code (String & char)

Caesar's Code is one of the simplest encryption techniques. Each letter in the plaintext is replaced by a
letter some fixed number of position (n) down the alphabet cyclically. In this exercise, we shall
pick n=3. Thatis, 'A" is replaced by 'D', 'B' by 'E', 'C' by 'F', .., 'X"' by 'A', .., "Z" by 'C".

Write a program called CaesarCode to cipher the Caesar's code. The program shall prompt user for a
plaintext string consisting of mix-case letters only; compute the ciphertext; and print the ciphertext in
uppercase. For example,

Enter a plaintext string: Testing
The ciphertext string is: WHVWLQJ

Hints

1. Use in.next().toUpperCase() to read an input string and convert it into uppercase to
reduce the number of cases.

2. You can use a big nested-if with 26 cases ('A'-'Z'). But it is much better to
consider 'A" to 'W' asone case; 'X', 'Y' and 'Z" as 3 separate cases.

3. Take note thatchar 'A'is represented as Unicode number 65 and char 'D' as 68.
However, ‘A" + 3 gives 68. This is because char + intis implicitly casted to int +
int which returns an int value. To obtain a char value, you need to perform explicit type
casting using (char)('A" + 3).Try printing (‘A" + 3) with and without type casting.

7.5 Decipher Caesar's Code (String & char)

Write a program called DecipherCaesarCode to decipher the Caesar's code described in the previous
exercise. The program shall prompts user for a ciphertext string consisting of mix-case letters only;
compute the plaintext; and print the plaintext in uppercase. For example,

Enter a ciphertext string: wHVwLQ3J
The plaintext string is: TESTING

7.6 Exchange Cipher (String & char)

This simple cipher exchanges 'A' and 'Z', 'B' and 'Y"', 'C" and 'X', and so on.

69|Page

Write a program called ExchangeCipher that prompts user for a plaintext string consisting of mix-
case letters only. You program shall compute the ciphertext; and print the ciphertext in uppercase. For
examples,

Enter a plaintext string: abcXYZ
The ciphertext string is: ZYXCBA

Hints
1. Use in.next().toUpperCase() to read an input string and convert it into uppercase to
reduce the number of cases.
2. You can use a big nested-if with 26 cases ('A'-"Z"), or use the following relationship:

At + 'Z'" == 'B' + 'Y' == 'C' + 'X' == ... == plainTextChar + cipherTextChar
Hence, cipherTextChar = 'A' + 'Z' - plainTextChar

7.7 TestPalindromicWord and TestPalindromicPhrase (String & char)

A word that reads the same backward as forward is called a palindrome, e.g., "mom", "dad", "racecar",
"madam”, and "Radar" (case-insensitive).

Write a program called TestPalindromicWord, that prompts user for a word and prints ""xxx"
islis not a palindrome".

A phrase that reads the same backward as forward is also called a palindrome, e.g., "Madam, I'm
Adam", "A man, a plan, a canal - Panama!" (ignoring punctuation and capitalization).

Modify your program (called TestPalindromicPhrase) to check for palindromic phrase.

Use in.nextLine() to read a line of input.

Hints

1. Maintain two indexes, forwardIndex (fIdx) and backwardIndex (bIdx), to scan the phrase
forward and backward.

int fIdx = @, bIdx = strLen - 1;
while (fIdx < bIdx) {

++fIdx;

--bIdx;

}

// or
for (int fIdx = @, bIdx = strLen - 1; fIdx < bIdx; ++fIdx, --bIdx) {

2. You can check if a char cis a letter either using built-in boolean function Character.isLetter(c);

or boolean expression (¢ >= 'a' & c <= 'z").Skip the index if it does not contain a letter.
7.8 CheckBinStr (String & char)

The binary number system uses 2 symbols, 0 and 1. Write a program called CheckBinStr to verify a
binary string. The program shall prompt user for a binary string; and decide if the input string is a valid
binary string. For example,

Enter a binary string: 10101100
"10101100" is a binary string

Enter a binary string: 10120000

70|Page

"10120000" is NOT a binary string

Hints
Use the following coding pattern which involves a boolean flag to check the input string.

// Declare variables

String inStr; // The input string
int inStrLen; // The length of the input string
char inChar; // Each char of the input string

boolean isValid; // "is" or "is not" a valid binary string?

isValid = true; // Assume that the input is valid, unless our check fails

for (......) {
inChar = ;
if (!(inChar == '@' || inChar == '1')) {

isValid = false;
break; // break the loop upon first error, no need to continue for
more errors
// If this is not encountered, isValid remains true after the

loop.
}
}
if (isvalid) {
System.out.println(......)
} else {
System.out.println(......)

}

// or using one liner
//System.out.println(isvalid ? ... : ...);

7.9 CheckRHexStr (String & char)

The hexadecimal (hex) number system uses 16 symbols, 8-9 and A-F (or a-f). Write a program to
verify a hex string. The program shall prompt user for a hex string; and decide if the input string is a
valid hex string. For examples,

Enter a hex string: 123aBc
"123aBc" is a hex string

Enter a hex string: 123aBcx
"123aBcx" is NOT a hex string

Hints
if (!((inChar >= '@' && inChar <= '9")
|| (inChar >= 'A' && inChar <= 'F')

|| (inChar >= 'a' && inChar <= 'f'))) { // Use positive logic and then
reverse

7.10 Bin2Dec (String & char)

Write a program called Bin2Dec to convert an input binary string into its equivalent decimal number.
Your output shall look like:

Enter a Binary string: 1011
The equivalent decimal number for binary "1011" is: 11

71|Page

Enter a Binary string: 1234
error: invalid binary string "1234"

Hints

See "Code Example".

7.11 Hex2Dec (String & char)

Write a program called Hex2Dec to convert an input hexadecimal string into its equivalent decimal
number. Your output shall look like:

Enter a Hexadecimal string: 1a
The equivalent decimal number for hexadecimal "1a" is: 26

Enter a Hexadecimal string: 1y3
error: invalid hexadecimal string "1y3"

Hints

See "Code Example".

7.12 Oct2Dec (String & char)

Write a program called 0ct2Dec to convert an input Octal string into its equivalent decimal number.
For example,

Enter an Octal string: 147
The equivalent decimal number "147" is: 103

8. Exercises on Arrays

8.1 PrintArray (Array)

Write a program called PrintArray which prompts user for the number of items in an array (a non-
negative integer), and saves it in an int variable called NUM_ITEMS. It then prompts user for the values
of all the items and saves them in an int array called items. The program shall then print the
contents of the array in the form of [x1, x2, ..., xn]. For example,

Enter the number of items: 5
Enter the value of all items (separated by space): 3256 9
The values are: [3, 2, 5, 6, 9]

Hints

// Declare variables

tinal int NUM_ITEMS;

int[] items; // Declare array name, to be allocated after NUM_ITEMS is
known

// Prompt for for the number of items and read the input as "int

// Allocate the array
items = new int[NUM_ITEMS];

// Prompt and read the items into the "int" array, if array length > ©

72|Page

if (items.length > 0) {

// Print array contents, need to handle first item and subsequent items
differently
for (int i = @; i < items.length; ++i) {
if (1 == 0) {
// Print the first item without a leading commas

} else {
// Print the subsequent items with a leading commas
}
// or, using a one liner
//System.out.print((i ==0) ? Do)

8.2 PrintArrayInStars (Array)

Write a program called printArrayInStars which prompts user for the number of items in an
array (a non-negative integer), and saves it in an int variable called NUM_ITEMS. It then prompts user
for the values of all the items (non-negative integers) and saves them in an int array called items.
The program shall then print the contents of the array in a graphical form, with the array index and
values represented by number of stars. For examples,

Enter the number of items: 5

Enter the value of all items (separated by space): 7 4 3 0 7
0: *******(7)

(0)

okkokkokok (7))

AwWwNR

Hints

// Declare variables
final int NUM_ITEMS;

int[] items; // Declare array name, to be allocated after NUM_ITEMS is
known

// Print array in "index: number of stars" using a nested-loop
// Take note that rows are the array indexes and columns are the value in
that index
for (int idx = @; idx < items.length; ++idx) { // row
System.out.print(idx + ": ");
// Print value as the number of stars
for (int starNo = 1; starNo <= items[idx]; ++starNo) { // column
System.out.print("*");

8.3 GradesStatistics (Array)

73|Page

Write a program which prompts user for the number of students in a class (a non-negative integer),
and saves it in an int variable called numStudents. It then prompts user for the grade of each of the
students (integer between 0 to 100) and saves them in an int array called grades. The program shall
then compute and print the average (in double rounded to 2 decimal places) and minimum/maximum
(in int).

Enter the number of students: 5
Enter the grade for student 1: 98
Enter the grade for student 2: 78
Enter the grade for student 3: 78
Enter the grade for student 4: 87
Enter the grade for student 5: 76
The average is: 83.40

The minimum is: 76

The maximum is: 98

8.4 Hex2Bin (Array for Table Lookup)

Write a program called Hex2Bin that prompts user for a hexadecimal string and print its equivalent
binary string. The output shall look like:

Enter a Hexadecimal string: 1abc
The equivalent binary for hexadecimal "labc" is: 0001 1010 1011 1100

Hints
1. Use an array of 16 Strings containing binary strings corresponding to hexadecimal number ©-9A-
F (or a-f), as follows
final String[] HEX_BITS = {"0000", "0001", "0010", "0011",
"@9100", "@101", "0110", "e111",
"1000", "1001", "1010", "1011",
"11e0", "1le1", "111e", "1111"};

8.5 Dec2Hex (Array for Table Lookup)

Write a program called Dec2Hex that prompts user for a positive decimal number, read as int, and
print its equivalent hexadecimal string. The output shall look like:

Enter a decimal number: 1234
The equivalent hexadecimal number is 4D2

9. Exercises on Methods

9.7 exponent () (method)

Write a method called exponent(int base, int exp) that returns an int value of base raises to
the power of exp. The signature of the method is:

public static int exponent(int base, int exp);

Assume that exp is a non-negative integer and baseis an integer. Do not use any Math library
functions.
Also write the main() method that prompts user for the base and exp; and prints the result. For
example,

Enter the base: 3
Enter the exponent: 4

74|Page

3 raises to the power of 4 is: 81
Hints

public class Exponent {

public static void main(String[] args) {
// Declare variables
int exp; // exponent (non-negative integer)
int base; // base (integer)

// Print result
System.out.println(base +
+ exponent(base, exp));

}

raises to the power of " + exp + is:

// Returns "base" raised to the power "exp"
public static int exponent(int base, int exp) {
int product = 1; // resulting product

// Multiply product and base for exp number of times
for (......) {

product *= base;
}

return product;

9.2 1s0dd() (method)

Write a boolean method called is0dd() in a class called OddEvenTest, which takes an int as
input and returns true if the it is odd. The signature of the method is as follows:

public static boolean isOdd(int number);

Also write the main() method that prompts user for a number, and prints "ODD" or "EVEN". You
should test for negative input. For examples,

Enter a number: 9
9 is an odd number

Enter a number: 8
8 is an even number

Enter a number: -5

-5 is an odd number
Hints

See Notes.

9.3 hasEight () (method)

Write a boolean method called hasEight(), which takes an int as input and returns true if the
number contains the digit 8 (e.g., 18, 168, 1288). The signature of the method is as follows:
public static boolean hastEight(int number);

75|Page

Write a program called MagicSum, which prompts user for integers (or -1 to end), and produce the
sum of numbers containing the digit 8. Your program should use the above methods. A sample
output of the program is as follows:

Enter a positive integer (or -1 to end):

1

Enter a positive integer (or -1 to end): 2
3

8

Enter

a
a

Enter a positive integer (or -1 to end):
a positive integer (or -1 to end):
a

Enter a positive integer (or -1 to end): 88
Enter a positive integer (or -1 to end): -1
The magic sum is: 96

Hints
The coding pattern to repeat until input is -1 (called sentinel value) is:

final int SENTINEL = -1; // Terminating input
int number;

// Read first input to "seed" the while loop
System.out.print("Enter a positive integer (or -1 to end): ");
number = in.nextInt();

while (number != SENTINEL) { // Repeat until input is -1

// Read next input. Repeat if the input is not the SENTINEL

// Take note that you need to repeat these codes!
System.out.print("Enter a positive integer (or -1 to end): ");
number = in.nextInt();

You can either repeatably use modulus/divide (n%10 and n=n/10) to extract and drop each digit
in int; or convert the int to String and use the String's charAt () to inspect each char.

9.4 print() (Array & Method)

Write a method called print(), which takes an int array and print its contents in the form of [al,
a2, ..., an].Take note that there is no comma after the last element. The method's signature is as
follows:

public static void print(int[] array);

Also write a test driver to test this method (you should test on empty array, one-element array, and n-
element array).

How to handle double[] or float[]? You need to write a overloaded version for double[] and a
overloaded version for float[], with the following signatures:

public static void print(double[] array)
public static void print(float[] array)

The above is known as method overloading, where the same method name can have many versions,
differentiated by its parameter list.

76 |Page

Hints
For the first element, print its value; for subsequent elements, print commas followed by the value.

9.5 arrayToString() (Array & Method)

Write a method called arrayToString(), which takes an int array and return a String in the form
of [al, a2, ..., an]. Take note that this method returns a String, the previous exercise
returns void but prints the output. The method's signature is as follows:

public static String arrayToString(int[] array);

Also write a test driver to test this method (you should test on empty array, one-element array, and n-
element array).

Notes: This is similar to the built-in function Arrays.toString(). You could study its source code.

9.6 contains() (Array & Method)

Write a boolean method called contains(), which takes an array ofintand an int; and
returns true if the array contains the given int. The method's signature is as follows:

public static boolean contains(int[] array, int key);

Also write a test driver to test this method.

9.7 search() (Array & Method)

Write a method called search(), which takes an array of intand an int; and returns the
array index if the array contains the given int; or -1 otherwise. The method's signature is as follows:

public static int search(int[] array, int key);

Also write a test driver to test this method.

9.8 equals() (Array & Method)

Write a boolean method called equals (), which takes two arrays of int and returns true if the two
arrays are exactly the same (i.e, same length and same contents). The method's signature is as follows:

public static boolean equals(int[] arrayl, int[] array2)

Also write a test driver to test this method.

9.9 copyOof() (Array & Method)

Write a boolean method called copy0Of (), which takes an int Array and returns a copy of the given
array. The method's signature is as follows:

public static int[] copyOf(int[] array)

Also write a test driver to test this method.

Write another version for copyOf () which takes a second parameter to specify the length of the new
array. You should truncate or pad with zero so that the new array has the required length.

77|Page

public static int[] copyOf(int[] array, int newlLength)
NOTES: This is similar to the built-in function Arrays. copyOf().

9.10 swap() (Array & Method)

Write a method called swap (), which takes two arrays of int and swap their contents if they have
the same length. It shall return true if the contents are successfully swapped. The method's signature
is as follows:

public static boolean swap(int[] arrayl, int[] array2)

Also write a test driver to test this method.
Hints
You need to use a temporary location to swap two storage locations.

// Swap iteml and item2

int iteml, item2, temp;

temp = iteml;

iteml = item2;

item2 = itemil;

// You CANNOT simply do: iteml = item2; item2 = item2;

9.11 reverse() (Array & Method)

Write a method called reverse(), which takes an array of int and reverse its contents. For
example, the reverse of [1,2,3,4] is [4,3,2,1]. The method's signature is as follows:

public static void reverse(int[] array)

Take note that the array passed into the method can be modified by the method (this is called "pass
by reference"). On the other hand, primitives passed into a method cannot be modified. This is
because a clone is created and passed into the method instead of the original copy (this is called "pass
by value").

Also write a test driver to test this method.

Hints
You might use two indexes in the loop, one moving forward and one moving backward to point to the
two elements to be swapped.

for (int fIdx = @, bIdx = array.length - 1; fIdx < bIdx; ++fIdx, --bIdx) {

// Swap array[fIdx] and array[bIdx]
// Only need to transverse half of the array elements

You need to use a temporary location to swap two storage locations.

// Swap iteml and item2

int iteml, item2, temp;

temp = iteml;

iteml = item2;

item2 = iteml;

// You CANNOT simply do: iteml = item2; item2 = item2;

9.12 GradesStatistics (Array & Method)

Write a program called GradesStatistics, which reads inn grades (of int between © and 100,
inclusive) and displays the average, minimum, maximum, median and standard deviation. Display the

78|Page

floating-point values upto 2 decimal places. Your output shall ook like:

Enter the number of students: 4
Enter the grade for student 1: 50
Enter the grade for student 2: 51
Enter the grade for student 3: 56
Enter the grade for student 4: 53
The grades are: [50, 51, 56, 53]
The average is: 52.50

The median is: 52.00

The minimum is: 50

The maximum is: 56

The standard deviation is: 2.29

The formula for calculating standard deviation is:

1 oo :
g= J;ET;OII;Z — p?, where uis the mean

Hints:

public class GradesStatistics {

public static int[] grades; // Declare an int[], to be allocated later.
// This array is accessible by all the methods.

public static void main(String[] args) {

readGrades(); // Read and save the inputs in global int[] grades

System.out.println("The grades are: ");
print(grades);

System.out.println("The average is
System.out.println("The median is
System.out.println("The minimum is
System.out.println("The maximum is
System.out.println("The standard deviation is

+ median(grades));
+ min(grades));
+ max(grades));

}

// Prompt user for the number of students and allocate the global

array.

+ average(grades));

+ stdDev(grades));

"grades"

// Then, prompt user for grade, check for valid grade, and store in "grades".

public static void readGrades() { }

// Print the given int array in the form of [x1, x2, x3,..

public static void print(int[] array) { }

// Return the average value of the given int[]
public static double average(int[] array) { }

// Return the median value of the given int[]
// Median is the center element for odd-number array,

// or average of the two center elements for even-number array.

// Use Arrays.sort(anArray) to sort anArray in place.
public static double median(int[] array) { }

// Return the maximum value of the given int[]
public static int max(int[] array) {

int max = array[0]; // Assume that max is the first element

// From second element, if the element is more than max, set the max to this

element.

79|Page

}

// Return the minimum value of the given int[]

public static int min(int[] array) {

....... }

// Return the standard deviation of the given int[]
public static double stdDev(int[] array) { }

Take note that besides readGrade() that relies on global variable grades, all the methods are self-
contained general utilities that operate on any given array.

9.13 GradesHistogram (Array & Method)

Write a program called GradesHistogram, which reads in n grades (as in the previous exercise),
and displays the horizontal and vertical histograms. For example:

10
20
30
40
50
60
70
80
90

*
*

ES

o kkX

< kkk

- 29:
- 39:
- 49:
- 59:
- 69:

-100:

E3

*

E3

%k k kok ok

* %

ES

E3

*

* *

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100

10. Exercises on Command-line Arguments, Recursion

10.1 Arithmetic (Command-Line Arguments)

Write a program called Arithmetic that takes three command-line arguments: two integers
followed by an arithmetic operator (+, -, * or /). The program shall perform the corresponding
operation on the two integers and print the result. For example:

java Arithmetic 3 2 +

3+2

java Arithmetic 3 2 -

3-2

java Arithmetic 3 2 /

3/2

=5

=1

=1

80|Page

Hints

The method main(String[] args) takes an argument: "an array of String", which is often (but not
necessary) named args. This parameter captures the command-line arguments supplied by the user
when the program is invoked. For example, if a user invokes:

java Arithmetic 12345 4567 +

The

three command-line arguments "12345", "4567" and "+" will be captured in

a Stringarray {"12345", "4567", "+"}and passed into themain() method as the
argument args. That is,

args is: {"12345", "4567", "+"} // args is a String array

args.length is: 3 // length of the array

args[@] is: "12345" // 1lst element of the String array
args[1] is: "4567" // 2nd element of the String array
args[2] is: "+" // 3rd element of the String array
args[0].length() is: 5 // length of 1st String element
args[1].length() is: 4 // length of the 2nd String element
args[2].length() is: 1 // length of the 3rd String element

public class Arithmetic {
public static void main (String[] args) {

}

}

int operandl, operand2;
char theOperator;

// Check if there are 3 command-line arguments in the

// String[] args by using length variable of array.

if (args.length != 3) {
System.err.println("Usage: java Arithmetic intl int2 op");
return;

}

// Convert the 3 Strings args[@], args[1], args[2] to int and char.
// Use the Integer.parselnt(aStr) to convert a String to an int.
operandl = Integer.parseInt(args[9]);

operand2 =

// Get the operator, assumed to be the first character of
// the 3rd string. Use method charAt() of String.
theOperator = args[2].charAt(0);

System.out.print(args[@] + args[2] + args[1] + "=");

switch(theOperator) {
case ('-'): System.out.println(operandl - operand2); break;
case ('"+'):
case ('"*'):
case ('/'):
default:
System.err.println("Error: invalid operator!");

}

Notes:

To provide command-line arguments, use the "cmd" or "terminal” to run your program in the

form "java ClassName argl arg2".

To provide command-line arguments in Eclipse, right click the source code = "Run As" =
"Run Configurations..." = Select "Main" and choose the proper main class = Select "Arguments"”
= Enter the command-line arguments, e.g., "3 2 +" in "Program Arguments".

81|Page

) To provide command-line arguments in NetBeans, right click the "Project" name = "Set
Configuration” = "Customize..." = Select categories "Run" = Enter the command-line arguments,
e.g., "3 2 +" in the "Arguments" box (but make sure you select the proper Main class).

Question: Try "java Arithmetic 2 4 *" (in CMD shell and Eclipse/NetBeans) and explain the result
obtained. How to resolve this problem?

In Windows' CMD shell, * is known as a wildcard character, that expands to give the list of file in the
directory (called Shell Expansion). For example, "dir *.java" lists all the file with extension of
".java". You could double-quote the * to prevent shell expansion. Eclipse has a bug in handling this,
even * is double-quoted. NetBeans??

SumDigits (Command-line Arguments)
Write a program called SumDigits to sum up the individual digits of a positive integer, given in the

command line. The output shall look like:

java SumDigits 12345
The sum of digits =1 + 2 + 3 +4 + 5 = 15

Exercises on Recursion

In programming, a recursive function (or method) calls itself. The classical example is factorial(n),
which can be defined recursively as f(n)=n*f(n-1). Nonetheless, it is important to take note that a
recursive function should have a terminating condition (or base case), in the case of factorial, f(0)=1.
Hence, the full definition is:

factorial(n) 1, for n =0

n * factorial(n-1), for all n > 1

factorial(n)

For example, suppose n = 5:
// Recursive call

factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)
factorial(2) = 2 * factorial(1l)
factorial(1l) = 1 * factorial(9@)
factorial(®) = 1 // Base case
// Unwinding

factorial(l) =1 *1 =1
factorial(2) =2 *1 =2
factorial(3) =3 * 2 =6
factorial(4) = 4 * 6 = 24
factorial(5) = 5 * 24 = 120 (DONE)

10.2 Factorial Recursive

Write a recursive method called factorial() to compute the factorial of the given integer.
public static int factorial(int n)

The recursive algorithm is:

factorial(n) = 1, if n = ©
factorial(n) = n * factorial(n-1), if n > ©

Compare your code with the iterative version of the factorial():

factorial(n) = 1*2*3*,,.*n

82|Page

Hints
Writing recursive function is straight forward. You simply translate the recursive definition into code
with return.

// Return the factorial of the given integer, recursively
public static int factorial(int n) {

if (n == @) {
return 1; // base case
} else {

return n * factorial(n-1); // call itself
}

// or one liner
// return (n == @) ? 1 : n*factorial(n-1);
}

Notes
1. Recursive version is often much shorter.

2. The recursive version uses much more computational and storage resources, and it need to
save its current states before each successive recursive call, so as to unwind later.

10.3 Fibonacci (Recursive)

Write a recursive method to compute the Fibonacci number of n, defined as follows:

F(e) = o

F(1) = 1

F(n) = F(n-1) + F(n-2) for n >= 2

Compare the recursive version with the iterative version written earlier.
Hints

// Translate the recursive definition into code with return statements
public static int fibonacci(int n) {
if (n == 0) {
return 0;
} else if (n == 1) {
return 1;
} else {
return fibonacci(n-1) + fibonacci(n-2);

}

10.4 Length of a Running Number Sequence (Recursive)

A special number sequence is defined as follows:

S(1) =1

S(2) = 12

S(3) = 123

S(4) = 1234

S(9) = 123456789 // length is 9
S(10) = 12345678910 // length is 11
S(11) = 1234567891011 // length is 13
S(12) = 123456789101112 // length is 15

Write a recursive method to compute the length of S(n), defined as follows:

len(1l) =1

83|Page

len(n) = len(n-1) + numOfDigits(n)

Also write an iterative version.

10.5 GCD (Recursive)
Write a recursive method called gcd () to compute the greatest common divisor of two given integers.

public static void int gcd(int a, int b)

gcd(a,b)
gcd(a,b)

a, if b=20
gcd(b, remainder(a,b)), if b > @

11. More (Difficult) Exercises

11.1 JDK Source Code

Extract the source code of the class Math from the JDK source code (JDK Installed Directory = "1ib" =
"src.zip" = "java.base" = "java" = "lang" = "Math.java"). Study how constants such
as E and PI are defined. Also study how methods such as abs(), max(), min(), toDegree(), etc, are
written.

Also study the "Integer.java", "String.java".

11.2 Matrices (2D Arrays)

Similar to Math class, write aMatrix library that supports matrix operations (such as addition,
subtraction, multiplication) via 2D arrays. The operations shall support both double and int. Also
write a test class to exercise all the operations programmed.

Hints

public class Matrix {

// Method signatures

public static void print(int[][] m);

public static void print(double[][] m);

public static boolean haveSameDimension(int[][] m1, int[][] m2); // Used in
add(), subtract()

public static boolean haveSameDimension(double[][] m1, double[][] m2);

public static int[][] add(int[][] ml, int[][] m2);

public static double[][] add(double[][] ml, double[][] m2);

public static int[][] subtract(int[][] ml, int[][] m2);

public static double[][] subtract(double[][] ml, double[][] m2);

public static int[][] multiply(int[][] ml, int[][] m2);

public static double[][] multiply(double[][] ml, double[][] m2);

11.3 PrintAnimalPattern (Special Characters and Escape Sequences)

Write a program called PrintAnimalPattern, which uses println() to produce this pattern:

/%% ||

* | f----11
O '+

84|Page

Hints
Use escape sequence \uhhhh where hhhh are four hex digits to display Unicode characters such as ¥
and ©. ¥ is 165 (0@A5H) and © is 169 (0QA9H) in both I1ISO-8859-1 (Latin-1) and Unicode character sets.

Double-quote (") and black-slash (\) require escape sequence inside a String. Single quote (') does
not require escape sign.

Try

Print the same pattern using printf (). (Hints: Need to use %% to print a % in printf() because % is
the suffix for format specifier.)

11.4 Print Patterns (nested-loop)

Write a method to print each of the followings patterns using nested loops in a class
called PrintPatterns. The program shall prompt user for the sizde of the pattern. The signatures of
the methods are:

public static void printPatternX(int size); // X: A, B, C,...; size is a positive
integer.

B HEHBE B R SR B # #
B H BB R R H ### ## #
TR EEER #HHHH ##HH##
#HHH B HHEHEHH B HHHHHH
BHB B HH R BHEH B RS R H
HHEHBHEB R BB B HBEH BB RS RS
(a) (b) BHBHE R R H
HHEHEHH
#HHHH
#
#
(c)
1 12345678 1 87654321
12 1234567 21 7654321
123 123456 321 654321
1234 12345 4321 54321
1234 1234 54321 4321
1234 123 654321 321
1234 12 7654321 21
12345678 1 87654321 1
(d) (e) (f) (8)
1 123456787654321
121 1234567654321
12321 12345654321
1234321 123454321

85|Page

A W N R

P P R R R R R R
N NN NNNN

W W W W w w

EE T S S S N~ T S

[V BT T, Y

6 7
7 89
8901

ui A W N

N © 00 O b

o v b~ w

45 4
565
6 76
7 87

6 7

67876
(3)

w Bk OV N U1 W

A M ® 0O N
H U1 W R, VU NV W R

~

~

(h)

7

A N © 00 O B~ N
w Bk OV N U W
N © 00 O B

A v b W
ui A W N

(o))
uvli U1 U1 U

1 1234321
2 12321
3 121
4321 1
(1)
1 123456787654321
21 1234567 7654321
321 123456 654321
4321 12345 54321
4321 1234 4321
4321 123 321
4321 12 21
4321 1 1
(k)
5
7 6
987
10098

11.5 Print Triangles (nested-loop)

Write a method to print each of the following patterns using nested-loops in a class
called PrintTriangles. The program shall prompt user for the number of rows. The signatures of the
methods are:

public static void printXxx(int numRows); // Xxx is the pattern's name

R R R R
w N R
w R

o A N B

0o A N B

16

o A N B

16
32

(a)

0 A~ N R
0 AN R
0 AN R

16
16 32 16
32 64 32 16
64 128 64 32 16

PowerOf2Triangle

0o M N B
o h N R
0o AN R
=

86|Page

1 4 6 4 1 1 4 6 4 1

1 51010 5 1 1 5 10 10 5 1
1 6152015 6 1 1 6 15 20 15 6 1
(b) PascalTrianglel (c) PascalTriangle2

11.6 Trigonometric Series

Write a method to compute sin(x) and cos(x) using the following series expansion, in a class
called TrigonometricSeries. The signatures of the methods are:

public static double sin(double x, int numTerms); // x in radians, NOT degrees
public static double cos(double x, int numTerms);

xa 3 7 9

. X X x

S =x—grtg g
x? xt x® P

cos(x)=1——4+———+——--

21 4t el 8!
Compare the values computed using the series with the JDK
methods Math.sin(), Math.cos() at x=0, n/6, n/4, /3, n/2 using various numbers of terms.
Hints
Do not use int to compute the factorial; as factorial of 13 is outside the int range. Avoid generating
large numerator and denominator. Use double to compute the terms as:

- O)-6)

11.7 Exponential Series

Write a method to compute e and exp(x) using the following series expansion, in a class
called ExponentialSeries. The signatures of the methods are:

public static double exp(int numTerms); // X in radians
public static double exp(double x, int numTerms);

_ 1 1 1 1
e—1+ﬂ+§+§+a+'"
o x xz xB x4
e _1+F+E+E+I+."

11.8 Special Series

Write a method to compute the sum of the series in a class called SpecialSeries. The signature of
the method is:

public static double specialSeries(double x, int numTerms);

T o1x3 x° 1x3%x5 x7 1x3xb5x7 x° L<r<c1
%45 T2xax6- 7 '2xax6xg g 7 TLI=x=

1 =x
x+§ X?'F
11.9 FactorialInt (Handling Overflow)

Write a program called FactorialInt to list all the factorials that can be expressed as an int (i.e., 32-
bit signed integer in the range of [-2147483648, 2147483647]). Your output shall look like

The factorial of 1 is 1
The factorial of 2 is 2

87|Page

The factorial of 12 is 4790016600
The factorial of 13 is out of range

Hints

The maximum and minimum values of a 32-bit int are kept in
constants Integer.MAX_VALUE and Integer.MIN_VALUE, respectively. Try these statements:

System.out.println(Integer.MAX_VALUE);
System.out.println(Integer.MIN_VALUE);
System.out.println(Integer.MAX_VALUE + 1);

Take note that in the third statement, Java Runtime does not flag out an overflow error, but silently
wraps the number around. Hence, you cannot use F(n) * (n+1) > Integer.MAX_VALUE to check
for overflow. Instead, overflow occurs for F(n+1) if (Integer.MAX_VALUE / Factorial(n)) <
(n+1), i.e,, no more room for the next number.

Try

Modify your program called FactoriallLongto list all the factorial that can be expressed as
a long (64-bit signed integer). The maximum value forlongis kept in a constant
called Long.MAX_VALUE.

11.70 FibonacciInt (Handling Overflow)

Write a program called FibonacciInt to list all the Fibonacci numbers, which can be expressed as
an int (i.e., 32-bit signed integer in the range of [-2147483648, 2147483647]). The output shall
look like:

F(@)

F(1)
F(2)

F(45) = 1836311903
F(46) is out of the range of int

Hints
The maximum and minimum values of a 32-bit int are kept in
constants Integer .MAX_VALUE and Integer.MIN_VALUE, respectively. Try these statements:

System.out.println(Integer.MAX_VALUE);
System.out.println(Integer.MIN_VALUE);
System.out.println(Integer.MAX_VALUE + 1);

Take note that in the third statement, Java Runtime does not flag out an overflow error, but silently
wraps the number around. Hence, you cannot useF(n) = F(n-1) + F(n-2) >
Integer.MAX_VALUE to check for overflow. Instead, overflow occurs for F(n) if Integer.MAX_VALUE
- F(n-1) < F(n-2) (i.e., no more room for the next Fibonacci number).

Try
Write a similar program called TribonacciInt for Tribonacci numbers.

88|Page

11.177 Number System Conversion

Write a method call toRadix () which converts a positive integer from one radix into another. The
method has the following header:

public static String toRadix(String in, int inRadix, int outRadix) // The input
and output are treated as String.

Write a program called NumberConversion, which prompts the user for an input string, an input
radix, and an output radix, and display the converted number. The output shall look like:

Enter a number and radix: A1B2

Enter the input radix: 16

Enter the output radix: 2

"A1B2" in radix 16 is "1010000110110010" in radix 2.

11.12 NumberGuess

Write a program called NumberGuess to play the number guessing game. The program shall generate
a random number between @ and 99. The player inputs his/her guess, and the program shall response
with "Try higher”, "Try lower" or "You got it in n trials" accordingly. For example:

java NumberGuess

Key in your guess:

50

Try higher

70

Try lower

65

Try lower

61

You got it in 4 trials!

Hints

Use Math.random() to produce a random number in double between 0.0 (inclusive)
and 1.0 (exclusive). To produce an int between @ and 99, use:

final int SECRET_NUMBER = (int)(Math.random()*100); // truncate to int

11.13 WordGuess

Write a program called WordGuess to guess a word by trying to guess the individual characters. The
word to be guessed shall be provided using the command-line argument. Your program shall look
like:

java WordGuess testing

Key in one character or your guess word: t

Trial 1: t_ t

Key in one character or your guess word: g

Trial 2: t_t g

Key in one character or your guess word: e

Trial 3: te_t_ g

Key in one character or your guess word: testing
Congratulation!

You got in 4 trials

89|Page

Hin

ts

Set up a boolean array (of the length of the word to be guessed) to indicate the positions of the word

that

have been guessed correctly.

Check the length of the input String to determine whether the player enters a single character or a
guessed word. If the player enters a single character, check it against the word to be guessed, and
update the boolean array that keeping the result so far.

Try

Try retrieving the word to be guessed from a text file (or a dictionary) randomly.

11.714 DateUt1il

Complete the following methods in a class called DateUtil:

boolean is LeapYear‘ (int year‘): returns £ruUe if the given year isaleap year. A year is a leap year if it is divisible by 4
but not by 100, or it is divisible by 400.

boolean isValidDate(int year, int month, int day): reumstrueif the
given year, month and day constitute a given date. Assume that year is between 1 and 9999, month is between 1 (Jan) to 12 (Dec) and day
shall be between 1 and 28|29|30|31 depending on the month and whether it is a leap year.

int getDayOfWeek(int year, int month, int day): retumns the day of the week, where 0 for SUN, 1 for
MON, ..., 6 for SAT, for the given date. Assume that the date is valid.

String toString(int year, int month, int day): prints the given date in the format "Xxxxday d
mmm YYYY* eg. "Tuesday 14 Feb 2012". Assume that the given date is valid.

Hints

To find the day of the week (Reference: Wiki "Determination of the day of the week"):

vk W

6.
7.

For

1700- 1800- 1900- 2000- 2100- 2200- 2300- 2400-
4 2 0 6 4 2 0 6

Based on the first two digit of the year, get the number from the following "century” table.
Take note that the entries 4, 2, 0, 6 repeat.

Add to the last two digit of the year.

Add to "the last two digit of the year divide by 4, truncate the fractional part".

Add to the number obtained from the following month table:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Non-Leap Year 0 3 3 6 1 4 6 2 5 0 3 5

Leap Year 6 2 same as above

Add to the day.
The sum modulus 7 gives the day of the week, where 0 for SUN, 1 for MON, ..., 6 for SAT.

example: 2012, Feb, 17

(6 + 12 + 12/4 + 2 + 17) % 7 = 5 (Fri)

The

skeleton of the program is as follows:

/* Utilities for Date Manipulation */

pub

lic class DateUtil {

// Month's name - for printing

9 |Page

public static String[] strMonths
= {"Jan") "Feb", “Mar‘“’ "Apr‘“, "May", "Jun“’
Iljulll) IIAugll’ Ilsepll’ Iloctll, IINOVII’ "Dec"};

// Number of days in each month (for non-leap years)
public static int[] daysInMonths
= {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},

// Returns true if the given year is a leap year
public static boolean isLeapYear(int year) { }

// Return true if the given year, month, day is a valid date

// year: 1-9999

// month: 1(Jan)-12(Dec)

// day: 1-28|29|30|31. The last day depends on year and month

public static boolean isValidDate(int year, int month, int day) { }

// Return the day of the week, ©:Sun, 1:Mon, ..., 6:Sat
public static int getDayOfWeek(int year, int month, int day) { }

// Return String "xxxday d mmm yyyy" (e.g., Wednesday 29 Feb 2012)
public static String printDate(int year, int month, int day) { }

// Test Driver

public static void main(String[] args) {
System.out.println(isLeapYear(1900)); // false
System.out.println(isLeapYear(2000)); // true
System.out.println(isLeapYear(2011)); // false
System.out.println(isLeapYear(2012)); // true

System.out.println(isvalidDate(2012, 2, 29)); // true
System.out.println(isvalidDate(2011, 2, 29)); // false
System.out.println(isvalidDate(2099, 12, 31)); // true
System.out.println(isvValidDate (2099, 12, 32)); // false

System.out.println(getDayOfWeek (1982, 4, 24)); // 6:Sat
System.out.println(getDayOfWeek (2000, 1, 1)); // 6:Sat
System.out.println(getDayOfWeek (2054, 6, 19)); // 5:Fri
System.out.println(getDayOfWeek (2012, 2, 17)); // 5:Fri

System.out.println(toString(2012, 2, 14)); // Tuesday 14 Feb 2012

}

Notes

You can compare the day obtained with the Java's Calendar class as follows:

// Construct a Calendar instance with the given year, month and day

Calendar cal = new GregorianCalendar(year, month - 1, day); // month is @-based

// Get the day of the week number: 1 (Sunday) to 7 (Saturday)

int dayNumber = cal.get(Calendar.DAY_OF_WEEK);

String[] calendarDays = { "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday" };

// Print result

System.out.println("It is

+ calendarDays[dayNumber - 1]);

The calendar we used today is known as Gregorian calendar, which came into effect in October 15,
1582 in some countries and later in other countries. It replaces the Julian calendar. 10 days were
removed from the calendar, i.e, October 4, 1582 (Julian) was followed by October 15, 1582
(Gregorian). The only difference between the Gregorian and the Julian calendar is the "leap-year rule".
In Julian calendar, every four years is a leap year. In Gregorian calendar, a leap year is a year that is
divisible by 4 but not divisible by 100, or it is divisible by 400, i.e., the Gregorian calendar omits

91|Page

century years which are not divisible by 400. Furthermore, Julian calendar considers the first day of the

year as march 25th, instead of January 1st.

This above algorithm work for Gregorian dates only. It is difficult to modify the above algorithm to
handle pre-Gregorian dates. A better algorithm is to find the number of days from a known date.

12. Exercises on Classes and Objects

12.1 The Rectangle Class

A class called Rectangle, which models a rectangle with a length and a width (in float), is designed

as shown in the following class diagram. Write the Rectangle class.

Hints:

Rectangle

-length:float = 1.ef
-width:float = 1.of

+Rectangle()
+Rectangle(length:float,width:float)
+getLength():float
+setLength(length:float):void
+getWidth():float
+setWidth(width:float):void
+getArea():double
+getPerimeter():double

+toString():String e-------coooo-__L "Rectangle[length=?,width=?]"

The expected output is:

Rectangle[length=1.2,width=3.4]
Rectangle[length=1.0,width=1.0]
Rectangle[length=5.6,width=7.8]
length is: 5.6

width is: 7.8

area is: 43.68

perimeter is: 26.80

12.2 The Employee Class

A class called Employee, which models an employee with an ID, name and salary, is designed as
shown in the following class diagram. The method raiseSalary(percent) increases the salary by

Employee
-id:int
-firstName:String

-lastName:String
-salary:int

+Employee(id:int,firstName:String,
lastName:String,salary:int)
+getId():int

+getFirstName():String . "firstName Lastname"

+getLastName():String -
+getName():String ®--""""""""""~- -
+getSalary():int , salary * 12
+setSalary(salary:int):void o
+getAnnualSalary():int e---------- .

Increase the salary by the percent and

+raiseSalary(int percent):int e-------
return the new salary

+toString():Stringe_

-
-
-~

"Employee[id=?,name=firstName Lastname,salary=?]"

the
given
percent
age.
Write
the Emp
loyee
class.

Hints:

2|Page

The expected out is:

Employee[id=8,name=Peter Tan,salary=2500]
Employee[id=8,name=Peter Tan,salary=999]

id is: 8

firstname is: Peter

lastname is: Tan

salary is: 999

name is: Peter Tan

annual salary is: 11988

1098

Employee[id=8,name=Peter Tan,salary=1098]

12.3 The InvoiceItem Class

A class called InvoiceItem, which models an item of an invoice, with ID, description, quantity and
unit price, is designed as shown in the following class diagram. Write the InvoiceItem class.

Hints:
InvoiceItem
-id:String
-desc:String
-gqty:int
-unitPrice:double

+InvoiceItem(id:String,desc:String,
gqty:int,unitPrice:double)

+getId():String

+getDesc() :String

+getQty():int

+setQty(qgty:int) :void

+getUnitPrice() :double

+setUnitPrice(unitPrice:double):void

+getTotal():double @ ------c-ccomeme . unitPrice*qty

+toString():Stringe_

A
A

"Invoiceltem[id=?,desc=?,qty=?,unitPrice=?]"

The expected output is:

InvoiceItem[id=A101,desc=Pen Red,qty=888,unitPrice=0.08]
InvoiceItem[id=A101,desc=Pen Red,qty=999,unitPrice=0.99]

id is: Al101
desc is: Pen Red
gty is: 999

unitPrice is: 0.99
The total is: 989.01

93|Page

12.4 The Account Class

A class called Account, which models a bank account of a customer, is designed as shown in the
following class diagram. The methods credit(amount) and debit(amount) add or subtract the
given amount to the balance. The method transferTo(anotherAccount, amount) transfers the
given amount from this Account to the given anotherAccount. Write the Account class.

Hints:

Account

-id:String , Add amount to balance, return balance
-name:String /

-balance:int = @ /' If amount <= balance

+Account(id:String,name:String):’ subtract amount from balance
+Account(1c'i :String,name:String, ' : g[se print "Amount exceeded balance"
0 I i

balance.ln?) ;/ / return balance
+getId():String Lo
+getName():String f i _
+getBalance():int . ’; If amount <= balance _
+credit(amount:int):inte---' / | transfer amount to the given Account
+debit(amount:int):int e----- i /" else print "Amount exceeded balance"
+transferTo(another:Account, /' return balance

amount:int):int @----------- .
+toString():String e --------———--_. "Account[id=?,name=?,balance=?]"

The expected output is:

Account[id=A101,name=Tan Ah Teck,balance=88]
Account[id=A102,name=Kumar,balance=0]

ID: Alel
Name: Tan Ah Teck
Balance: 88

Account[id=A101,name=Tan Ah Teck,balance=188]
Account[id=A101,name=Tan Ah Teck,balance=138]
Amount exceeded balance
Account[id=A101,name=Tan Ah Teck,balance=138]
Account[id=A101,name=Tan Ah Teck,balance=38]
Account[id=A102,name=Kumar,balance=100]

94 |Page

12.5 The Date Class

A class called Date, which models a calendar date, is designed as shown in the following class
diagram. Write the Date class.

Hints:
. Date day = [1, 31]
-day:int P month = [1, 12]
-month:int year = [1980, 9999]
-year:int No input validation needed.
+Date(day:int,month:int,year:int)
+getDay():int
+getMonth():int
+getYear():int
+setDay(day:int):void
+setMonth(month:int) :void
+setYear(year:int):void
+setDate(day:int,month:int,year:int):void
S OS ERANE (SR N e S ESSSSS———] _ _ "dd/mm/yyyy" with leading zero

The expected output is:

01/02/2014
09/12/2099
Month: 12
Day: 9
Year: 2099
03/04/2016

13. Exercises on Inheritance

13.1 An Introduction to OOP Inheritance - The Circle and Cylinder Classes

This exercise shall guide you through the important concepts in inheritance.

Circle
-radius:double = 1.0
-color:String = "red"

+Circle()

+Circle(radius:double)

+Circle(radius:double,color:String)

+getRadius() :double

+setRadius(radius:double):void

+getColor():String

+setColor(color:String):void

+getArea():double

+toString():Stringe-----—-—-oooooooooo - "Circle[radius=r,color=c]”

superclass
extends subclass

Cylinder
-height:double = 1.8
+Cylinder()
+Cylinder(radius:double)
+Cylinder(radius:double,height:double)
+Cylinder(radius:double,height:double,

color:String)

+getHeight () :double
+setHeight (height:double):void
+getVolume() :double

In this exercise, a subclass called Cylinder is derived from the superclass Circle as shown in the
class diagram (where an an arrow pointing up from the subclass to its superclass). Study how the

95|Page

subclass Cylinder invokes the superclass' constructors (via super() and super(radius)) and
inherits the variables and methods from the superclass Circle

You can reuse the Circle class that you have created in the previous exercise. Make sure that you
keep "Circle.class" in the same directory.

public class Cylinder extends Circle { // Save as "Cylinder.java"
private double height; // private variable

// Constructor with default color, radius and height

public Cylinder() {
super(); // call superclass no-arg constructor Circle()
height = 1.0;

}

// Constructor with default radius, color but given height

public Cylinder(double height) {
super(); // call superclass no-arg constructor Circle()
this.height = height;

}

// Constructor with default color, but given radius, height

public Cylinder(double radius, double height) {
super(radius); // call superclass constructor Circle(r)
this.height = height;

}

// A public method for retrieving the height
public double getHeight() {
return height;

}

// A public method for computing the volume of cylinder
// use superclass method getArea() to get the base area
public double getVolume() {

return getArea()*height;

}

Method Overriding and "Super": The subclass Cylinder inherits getArea() method from its
superclass Circle. Try overriding the getArea() method in the subclass Cylinder to compute the
surface area (=2mxradiusxheight + 2xbase-area) of the cylinder instead of base area. That is,
if getArea() is called by acCircleinstance, it returns the area. If getArea()is called by
a Cylinder instance, it returns the surface area of the cylinder.

If you override the getArea() in the subclass Cylinder, the getVolume() no longer works. This is
because the getVolume() uses the overridden getArea() method found in the same class. (Java
runtime will search the superclass only if it cannot locate the method in this class). Fix
the getVolume().

Hints: After overridding the getArea() in subclass Cylinder, you can choose to invoke
the getArea() of the superclass Circle by calling super.getArea().

Try:
Provide a toString() method to the Cylinder class, which overrides the toString() inherited from
the superclass Circle, e.g.,

@Override
public String toString() { // in Cylinder class

9% |Page

return "Cylinder: subclass of " + super.toString() // use Circle's toString()
+ " height=" + height;

Try out the toString() method in TestCylinder.

13.2 Superclass Person and its subclasses

Write the classes as shown in the following class diagram. Mark all the overridden methods with
annotation @0override.

Person

-name:5S5tring
-address:5tring

+Person(name:String,address:String)
+getName():String
+getAddress():5tring
+setAddress(address:String) :void

+toString():String & --------——-—-————- "Person[name=?,address=2?]"
extends Z%
| |
Student Staff
-program:5tring -school:5tring
-year:int -pay:double
rosdulallitle +Staff(name:5tring,address:5tring,
+5tudent(name:S5tring,address:5tring, school:S5tring,pay:double)
program:String,year:int,fee:double) +getSchool():String
+getProgram():5tring +setSchool({school:5tring):void
+setProgram(program:String) :void +getPay () :double
+getYear():int +setPay(pay:double) :void
+setYear(year:int) :void +toString():String «
+getFee() :double %

+setFee(fee:double) :void
+toString():5tring «

L
%

"Staff[Person[name=?,address=?],
school=2?,pay=2]"

"Student[Person[name=?,address=2],
program=?,year=2,fee=2]"

97|Page

13.3 Point2D and Point3D

Write the classes as shown in the following class diagram. Mark all the overridden methods with
annotation @Ooverride.

Point2D

-x:float = 0.8f
-y:float = 0.0f

+Point2D(x:float,y:float)

+Point2D()

+getX():float

+setX(x:float):void

+getY():float

+setY(y:float):void

+setXY(x:float,y:float) :void _--""Array of {x,y}
+getXY():float[2]®---=----=--~ =

+to5tring() :String &------===----uom- oGy

extends

Point3D
-z:float = @.0f

+Point3D(x:float,y:float,z:float)
+Point3D()

+getZ():float
+setZ(z:flaot) :void
+setXYZ(x:float,y:flaot,z:float) :void _-- Array of {x,y,z}
+getXYZ():float[3] e----mmmmmemmmn- -7
+toString():Stringe---------------------- (%,v,2)

Hints:
1. You cannot assign floating-point literal say 1.1 (which is a double) to a float variable, you
need to add a suffix f, e.g. 0.0f, 1.1f.
2. The instance variables x and y are private in Point2D and cannot be accessed directly in the
subclass Point3D. You need to access via the public getters and setters. For example,

public void setXYZ(float x, float y, float z) {

setX(x); // or super.setX(x), use setter in superclass
setY(y);
this.z = z;

3. The method getXY() shall return a float array

public float[] getXY() {

float[] result = new float[2]; // construct an array of 2 elements
result[@] = ...

result[1] = ...

return result; // return the array

98 |Page

13.4 Point and MovablePoint

Write the classes as shown in the following class diagram. Mark all the overridden methods with
annotation @Override.

Point
-x:float = @.0f
-y:float = 0.0f
+Point(x:float,y:float)
+Point()

+getX():float

+setX(x:float) :void

+get¥ () :float

+set¥(y:float) :void
+setX¥(x:Tloat,y:float) :void

+getXY () :float[2]

+taString() :5tring e ==--cccccccacaaaaaad-. (¢, ¥)

extends é%

MovablePoint

-xSpeed:float = 0.6
-ySpeed:float = 0.6f

+MovablePoint (x:float,y:float,
xSpeed:float,ySpeed:float)

+MovablePoint (xSpeed:float,ySpeed:float)

+MovablePoint ()

+getXSpeed() :float

+setXSpeed(xSpeed:float) :void

+get¥Speed() : float , (x,y),speed=(xs,ys)"
+set¥Speed(ySpeed: float) :void ;’
+setSpeed(xSpeed:float,ySpeed: float) :void/]
+getSpeed() :float[2] v X :: xgpeegf
+toString() :Stringe----------mmmmeeem oo 2 y = yopeed,

+move () :MovablePoint #----------------------~- EIT RIS

Hints
1. You cannot assign floating-point literal say 1.1 (which is a double) to a float variable, you
need to add a suffix f, e.g. 0.0, 1.1f.
2. The instance variables x and y are private in Point and cannot be accessed directly in the
subclass MovablePoint. You need to access via the public getters and setters. For example,
you cannot write x += xSpeed, you need to write setX(getX() + xSpeed).

99 |Page

13.5 Superclass Shape and its subclasses Circle, Rectangle and Square

Shape
-color:String = "red"
-filled:boolean = true

+Shape()

+Shape(color:String,filled:boolean)

+getColor():String
+setColor(color:String) :void
+isFilled():boolean

+setFilled(filled:boolean):void

+toString():Stringe----------

“"Shape[color=?,filled=?]"

extends £>
|

Circle
-radius:double = 1.0

+Circle()
+Circle(radius:double)
+Circle(radius:double,
color:String,filled:boolean)
+getRadius() :double
+setRadius(radius:double):void
+getArea() :double
+getPerimeter() :double
+toString():String“

-
~

"Circle[Shape[color=?,
filled=?],radius=?]"

"Rectangle[Shape[color=7?,
filled=?],width=?,length=?1"

The length and width shall be
set to the same value.

“"Square[Rectangle[Shape[color=?,
filled=?],width=?,length=?]11"

|
Rectangle

-width:double = 1.0
-length:double = 1.0

+Rectangle()
+Rectangle(width:double,
length:double)
+Rectangle(width:double,
length:double, color:String,
filled:boolean)
+gethidth() :double
+setWidth(width:double):void
+getlength() :double
+setlength(legnth:double):void
+gethArea() :double
+getPerimeter() :double

ﬂ,,o+t05tring():5tring

T

Square

+Square()

+Square(side:double)

+Square(side:double,
color:String,filled:boolean)

N\, | +getSide() :double
‘\\\ +setSide(side:double):void

Y

\3!+setWidth(side:double):void
‘otsetlength(side:double):void
__’+t05tring():5tring

Write a superclass called Shape (as shown in the class diagram)

Write a test program to test all the methods defined in Shape.

Write two subclasses of Shape called Circle and Rectangle, as shown in the class diagram.

Write a class called Square, as a subclass of Rectangle. Convince yourself that Square can be
modeled as a subclass of Rectangle. Square has no instance variable, but inherits the instance
variables width and length from its superclass Rectangle.

) Provide the appropriate constructors (as shown in the class diagram).

Hints:

public Square(double side) {

super(side, side); // Call superclass Rectangle(double, double)

100|Page

. Override the toString() method to return "A Square with side=xxx, which is a
subclass of yyy", where yyy is the output of the toString() method from the superclass.

. Do you need to override the getArea() and getPerimeter()? Try them out.

. Override the setLength() and setWidth() to change both the width and length, so as to

maintain the square geometry.

14. Exercises on Polymorphism, Abstract Classes and Interfaces

14.1 Ex: Abstract Superclass Shape and Its Concrete Subclasses

Rewrite the superclass Shape and its subclasses Circle, Rectangle and Square, as shown in the class

diagram.

Shape is an abstract class

containing 2 abstract methods: getArea() and getPerimeter(),

where its concrete subclasses must provide its implementation. All instance variables shall
have protected access, i.e., accessible by its subclasses and classes in the same package. Mark all the

overridden methods with annotation @override.

<<abstract»>> Shape

#color:String = "red” [# denotes protected access
#filled:Boolean = true
+Shape()

+Shape(color:5tring,filled:boolean)
+getColor():String
+setColor(color:String):void
+isFilled():boolean
+setFilled(filled:boolean):void
+abstract getArea():double

+abstract getPerimeter():double
+toString():5tring @ ---------mmeeoool.

4}* extends

"Shape[color=2,filled=2]"

Circle
#radius:double = 1.0

+Circle()
+Circle(radius:double)
+Circle(radius:double,
color:5tring,filled:boolean)
+getRadius() :double
+setRadius(radius:double):void
+getArea():double
+getPerimeter():double
+toString():Stringe
"Circle[Shape[color=2,
filled=?],radius=?]"

i

4

"Rectangle[Shape[color=2, ,
filled=?],width=?,length=2?]"

"Square[Rectangle[Shape[color=?,
filled=?],width=2,length=2]]"

Rectangle

#width:double = 1.8
#length:double = 1.9

+Rectangle()
+Rectangle(width:double,length:double)
+Rectangle(width:double,length:double,
color:5String,filled:boolean)
+getWidth() :double
+setWidth(width:double) :void
+getlength() :double
+setlength(legnth:double):void
+getArea():double
+getPerimeter():double

£|1~.

Square

P+toString():String

+Square()
+5Square(side:double)
+5quare(side:double,color:String,
filled:boolean)
+getSide():double
+setSide(side:double):void
+setlidth(side:double):void
+setlLength(side:double):void

- a+toString() :String

In this exercise, Shape shall be defined as an abstract class, which contains:

101 |Page

. Two protected instance variables color(String) and filled(boolean). The protected variables
can be accessed by its subclasses and classes in the same package. They are denoted with
a "#' sign in the class diagram.

Getter and setter for all the instance variables, and toString().

. Two abstract methods getArea() and getPerimeter() (shown

diagram).
Subclasses Circle and Rectangle shall override the abstract methods getArea() and getP

in the class

erimeter() and provide the proper implementation. They also override the toString().

Write a test class to test these statements involving polymorphism and explain the outputs. Some

statements may trigger compilation errors. Explain the errors, if any.

Shape s1 =
System.out
System.out
System.out
System.out
System.out
System.out

Circle c1
System.out
System.out
System.out
System.out
System.out
System.out

Shape s2 =

Shape s3 =
System.out
System.out
System.out
System.out
System.out

Rectangle rl = (Rectangle)s3;
System.out.
System.out.
System.out.
System.out.

Shape s4 =

System.out.
System.out.
System.out.

System.out

= (Circle)si;

new Circle(5.5, "red", false); // Upcast Circle to Shape

.println(sl); // which version?
.println(sl.getArea()); // which version?
.println(sl.getPerimeter()); // which version?

.println(sl.getColor());
.println(sl.isFilled());
.println(sl.getRadius());

.println(cl);
.println(cl.getArea());
.println(cl.getPerimeter());
.println(cl.getColor());
.println(cl.isFilled());
.println(cl.getRadius());

new Shape();

new Rectangle(1.0, 2.0, "red", false); //
.println(s3);

.println(s3.getArea());
.println(s3.getPerimeter());
.println(s3.getColor());
.println(s3.getLength());

// downcast
println(rl);
println(ril.getArea());
println(ril.getColor());
println(rl.getLength());

new Square(6.6);
println(s4);

println(s4.getArea());
println(s4.getColor());
.println(s4.getSide());

// Upcast

// Take note that we downcast Shape s4 to Rectangle,
// which is a superclass of Square, instead of Square
Rectangle r2 = (Rectangle)s4;

System.out
System.out
System.out
System.out
System.out

.println(r2);
.println(r2.getArea());
.println(r2.getColor());
.println(r2.getSide());
.println(r2.getLength());

// Downcast Rectangle r2 to Square

// Downcast back to Circle

Upcast

102 |Page

Square sql = (Square)r2;
System.out.println(sql);
System.out.println(sql.getArea());
System.out.println(sql.getColor());
System.out.println(sql.getSide());
System.out.println(sql.getLength());

Try:

Explain the usage of the abstract method and abstract class?
14.2 GeometricObject Interface and its Implementation Classes Circle and Rectangle

Write an interface called GeometricObject, which contains 2 abstract methods: getArea() and
getPerimeter(), as shown in the class diagram. Also write an implementation class called Circle.
Mark all the overridden methods with annotation @override.

Geometricobject
<<interface>>

+getArea():double
+getPerimeter():double

__ e implements
Circle Rectangle

-radius:double -width:double

: : -length:double
+Circle(radius:double)
+tostring():String e +Rectangle(width:double,length:double)
+getArea():double +toString():String e
+getPerimeter():double +getArea():double v,

i +getPerimeter():double *.
"Circle[radius=r]" "Rectangle[width=?,length=?]"

103|Page

14.3 Ex: Movable Interface and its Implementation MovablePoint Class

Write an interface called Movaable, which contains 4 abstract methods moveUp(), moveDown(),
moveleft() and moveRight(), as shown in the class diagram. Also write an implementation class
called MovablePoint. Mark all the overridden methods with annotation @Override.

Movable
<<interfaces>

+moveUp() :void

+moveDown() : void
+moveleft():void
+moveRight():void

P abstract methods

: implements

MovablePoint

~X:1int

~y:int *-——-———---—1-1 ~ denotes package access
~xSpeed:int

~ySpeed:int

R 68 speed=(x, y)"
+MovablePoint (x:int,y:int, -~ (x, ¥) sp (x, v)

xSpeed:int,ySpeed: int)
+toString() :Stringe”

+moveUp() :void moveUp: y -= ySpeed
; moveDown: y += ySpeed

+moveDown() :void
+moveleft():void s moveleft: x -= xSpeed
moveRight: x += xSpeed

+moveRight():void

14.4 Movable Interface and Classes MovablePoint and MovableCircle

Write an interface called Movaable, which contains 4 abstract methods moveUp (), moveDown(),
movelLeft() and moveRight(),
as shown in the class diagram.

Write the implementation classes called MovablePoint and MovableCircle. Mark all the overridden
methods with annotation @0override.

104 |Page

<<interface>> Movable

+movelp() :void
+moveDown(') : void
+moveleft():void
+moveRight() :void

implements Z}

MowvablePoint MovableCircle

~x:int 1 -radius:int
~y:int ——— < -center:MovablePoint
NxSpeejf%nt composes +MovableCircle(x:int,y:int
CUEIPEELIImE xSpeed:int,ySpeed:int,
+MovablePoint(x:int,y:int, radius:int)
xSpeed: int,ySpeed:int) +toString() :Stringe
+toString() :String ¢ +movelp() :void E
+movelp():void i +moveDown() : void v
+moveDown() : void \ +moveLeft():void i
+moveleft():void H +moveRight():void H
+moveRight():void n\ v
‘1 ‘.‘.
"(x,y),speed=(x,y)" "(x,y),speed=(x,y),radius=2"

14.5 Interfaces Resizable and GeometricObject

GeometricObject
<<interface>>

+getPerimeter() :double
+getArea() :double

Circle = = coomo. ;
#radius:double o--4---_] # for protected

+Circle(radius:double)
jm——--- ++tosString() :S5tring

+getPerimeter() :double Resizable
+getArea():double <<interface>>
ﬁk +resize(percent:int):void

+ResizableCircle(radius:double)
-e+toString():5tring

I

I

i

I

|

| ResizableCircle i>
I

i

|

i +resize(percent:int):voide------- radius *= percent/100.0
I

R et ResizableCircle[Circle[radius=?]]

--------- Circle[radius=7]

Write the interface called GeometricObject, which declares two abstract methods: getParameter()
and getArea(), as specified in the class diagram.

105|Page

Hints:

public interface GeometricObject {
public double getPerimeter();

Write the implementation class Circle, with a protected variable radius, which implements the
interface GeometricObject

Hints:

public class Circle implements GeometricObject {
// Private variable

// Implement methods defined in the interface GeometricObject
@Override
public double getPerimeter() { }

Write a test program called TestCircle to test the methods defined in Circle.

The class ResizableCircle is defined as a subclass of the class Circle, which also implements an
interface called Resizable, as shown in class diagram. The interface Resizable declares
an abstract method resize(), which modifies the dimension (such as radius) by the given
percentage. Write the interface Resizable and the class ResizableCircle.

Hints:

public interface Resizable {
public double resize(...);

}

public class ResizableCircle extends Circle implements Resizeable {

// Constructor
public ResizableCircle(double radius) {
super(...);

}
// Implement methods defined in the interface Resizable
@Override
public double resize(int percent) { }
}
Try:

Write a test program called TestResizableCircle to test the methods defined in ResizableCircle
14.6 Abstract Superclass Animal and its Implementation Subclasses

Write the codes for all the classes shown in the class diagram. Mark all the overridden methods with
annotation @Override.

106 |[Page

Animal

<<abstracts>

-name:String

+Animal(name:String)
+greets():void ®--------- abstract

I
Cat

+Cat(name:S5tring)
+greets():void e

1
i
LY

Print "Meow"

|
Dog

+Dog(name:String)
+greets():void ---------------- Print
+greets(another:Dog) :void .

ﬁ} > Print
BigDog
+BigDog(name:String) | Print
+greets():voide----"-"""""
+greets(another:Dog) :void .- __ .
+greet5(another:BigDog):voidﬂ Gk
Y Print

"Woof"

"Woooof"

"Wooow"

"Woooooow"

"Wooooooooow"

14.7 Another View of Abstract Superclass Animal and its Implementation Subclasses

Examine the following codes and draw the class diagram.

abstract public class Animal {
abstract public void greeting();

}

public class Cat extends Animal {
@Override
public void greeting() {
System.out.println("Meow!");

}
}
public class Dog extends Animal {
@Override
public void greeting() {
System.out.println("Woof!");
}
public void greeting(Dog another) {
System.out.println("Woooooooooof!");
}
}

public class BigDog extends Dog {
@Override
public void greeting() {
System.out.println("Woow!");

}

@Override

107 |Page

public void greeting(Dog another) {

}

Try:

System.out.println("Woooooowwwww!");

Explain the outputs (or error) for the following test program.

public class TestAnimal {
public static void main(String[] args) {

}

// Using the subclasses

Cat catl = new Cat();
catl.greeting();

Dog dogl = new Dog();
dogl.greeting();

BigDog bigDogl = new BigDog();
bigDogl.greeting();

// Using Polymorphism

Animal animall = new Cat();
animall.greeting();

Animal animal2 = new Dog();
animal2.greeting();

Animal animal3 = new BigDog();
animal3.greeting();

Animal animal4 = new Animal();

// Downcast

Dog dog2 = (Dog)animal2;

BigDog bigDog2 = (BigDog)animal3;
Dog dog3 = (Dog)animal3;

Cat cat2 = (Cat)animal2;
dog2.greeting(dog3);
dog3.greeting(dog2);
dog2.greeting(bigDog2);
bigDog2.greeting(dog2);
bigDog2.greeting(bigDogl);

15. Final Notes

The only way to learn programming is program, program and program on challenging problems. The
problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging
problems available — used in training for various programming contests (such as International
Collegiate Programming Contest (ICPC), International Olympiad in Informatics (I0l)). Check out these

sites:

The ACM - ICPC International collegiate programming contest (https://icpc.global/)

The Topcoder Open (TCO) annual programming and design contest
(https://www.topcoder.com/)

Universidad de Valladolid's online judge (https://uva.onlinejudge.org/).

Peking University's online judge (http://poj.org/).

USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.
Google's coding competitions (https://codingcompetitions.withgoogle.com/codejam,
https://codingcompetitions.withgoogle.com/hashcode)

The ICFP programming contest (https://www.icfpconference.org/)

BME International 24-hours programming contest (https://www.challenge24.org/)

108 |Page

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/

e The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)
e Internet Problem Solving Contest (https://ipsc.ksp.sk/)

e Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

e Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

e OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

Students must solve problems and attain scores in the following coding contests:

Name of the contest Minimum number of problems to Required score
solve
. CodeChef 20 200
o Leetcode 20 200
. GeeksforGeeks 20 200
. SPQOJ 5 50
. InterviewBit 10 1000
o Hackerrank 25 250
. Codeforces 10 100
. BuildIT 50 500
Total score need to obtain 2500

Student must have any one of the following certifications:

e HackerRank — Java Basic Skills Certification

e Oracle Certified Associate Java Programmer OCAJP
e CodeChef - Learn Java Certification

e NPTEL - Programming in Java

e NPTEL - Data Structures and Algorithms in Java

—

Farrell, Joyce.Java Programming, Cengage Learning B S Publishers, 8™ Edition, 2020
2. Schildt, Herbert. Java: The Complete Reference 11" Edition, McGraw-Hill Education, 2018.

1. Deitel, Paul and Deitel, Harvey. Java: How to Program, Pearson, 11" Edition, 2018.

2. Evans, Benjamin J. and Flanagan, David. Java in a Nutshell, O’Reilly Media, 7* Edition, 2018.
3. Bloch, Joshua. Effective Java, Addison-Wesley Professional, 3" Edition, 2017.

4. Sierra, Kathy and Bates, Bert. Head First Java, O’Reilly Media, 2" Edition, 2005

1. https://docs.oracle.com/en/java/

2. https://www.geeksforgeeks.org/java

3. https://www.tutorialspoint.com/java/index.htm

4. https://www.coursera.org/courses?query=java

—_—

Syllabus
2. Lab manual

109 |Page

https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/
https://docs.oracle.com/en/java/
https://www.geeksforgeeks.org/java
https://www.tutorialspoint.com/java/index.htm
https://www.coursera.org/courses?query=java

o0e?

S

7, \2
¥ ron W

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal - 500 043, Hyderabad, Telangana

4,/0~

_

COURSE CONTENT

ENGINEERING PHYSICS LABORATORY

I Semester: AE | ME | CE | ECE | EEE | CSE (AI&ML) | CSE (DS)
Il Semester: CSE | IT

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
AHSEO05 Foundation
- - 2 1 40 60 100
Contact Classes: Nil | Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Basic Principles of Physics

The aim of the course is to provide hands on experience for experiments in different areas of physics. Students
will be able to perform the experiments with interest and an attitude of learning. This laboratory includes
experiments involving electromagnetism and optoelectronics. These also develop student’s expertise in
applying physical concepts to practical problem and apply it for different applications.

The students will try to learn:

I
II

111

Familiarize with the lab facilities, equipment, standard operating procedures.

The different kinds of functional magnetic materials which paves a way for them to use in
various technical and engineering applications.

The analytical techniques and graphical analysis to study the experimental data for
optoelectronicdevices.

IV The application of characteristics of lasers and its propagation in optical fiber communication.

After successful completion of the course, students should be able to:

COl1

CO2

CO3

CO4

COs

CO6

Identify the type of semiconductor using the principle of Hall effect and also determine the
energy gap and resistivity of a semiconductor diode using four probe method.

Ilustrate principle, working and application of wave propagation and compare the results of
frequency with theoretical harmonics and overtones.

Investigate the energy losses, curie temperature and properties associated with a given Ferro
magnetic material.

Examine launching of light through optical fiber from the concept of light gathering capacity of
numerical aperture and determine the divergence of Laser beam

Graph V-I /L-I characteristics of various optoelectronic devices like Light Emitting diode, Solar
cell at different intensities to understand their basic principle of functioning as well as to infer the
value of Planck’s constant.

Analyze the variation of magnetic field induction produced at various points along the axis of
current carrying coil.

110|Page

When a number represents a physical measurement, it is never exact because of the limitations of the
instrument used or the way it was employed etc. It is essential, therefore, that each experimental result be
presented in a way that indicates its reliability. The accuracy of result is important, for example, the calibration
of the measuring instruments or systematic errors on the part of whoever is taking the data.

The following table is useful in thinking about these concepts:

Problem Remedy
Mistakes and blunders Repeat measurements several times to check yourself
Systematic errors Use calibrated instruments properly and carefully
Random errors Treat data statistically and report on the average magnitude of
errors

e Keep your axes straight: If you need to plot "A vs B", or "A as a function of B", then A is on the
vertical axis and B is on the horizontal axis.

e The crucial part is choosing the range and scale for each axis. The range must be just large enough to
accommodate all data and small enough that the scale is readable.

e The scale should be spread out enough so that data take up most of the graph area and labeled so that
plotting (and reading) is easy. Where appropriate, error bars should be included to indicate the
uncertainty in measurements.

e When a line is drawn, it should be a smooth one that best fits data. In general, there should be as many
points on one side of the line as on the other. If data is taken properly, the line should pass inside of the
error bars for each point.

e If graph shows that one quantity is proportional to another, it should be a straight line that starts at the
origin and passes through the plotted data with as many points on one side as the other.

o If the slope of the line is to be found, choose two points on the line that are as far apart as possible. This
will minimize the error that is introduced in reading the value of those points.

e The slope is the difference between the vertical values of those points divided by the difference in the
horizontal values of those points.

o Write the work sheets for the allotted experiment and keep them ready before the beginning of
each lab.

e Perform the experiment and record the observations in the worksheets.
Analyze the results and get the work sheets evaluated by the faculty.

o Upload the evaluated reports online from CMS LOGIN within the stipulated time.

111|Page

2.1

2.2

3.1

3.2

4.1
4.2

5.1
52

Study the phenomenon of Hall effect and determine the charge carrier density and Hall coefficient of a
given sample.

Hint whether the given semiconductor is p - type or n - type using the principle of hall effect.

Determination of energy gap of a given semiconductor diode by measuring the variation of current as a
function of temperature.

Try to find the Fermi level of the given semiconductor

Determination of the resistivity by forcing current through two outer probes

Formulate the reading of voltage across the two inner probes of semiconductor by four probe method.

Determination of magnetic moment of a bar magnet.

Try to find horizontal component of earth’s magnetic field.

6.1 Evaluate the energy loss per unit volume of a given magnetic material per cycle by tracing the

hysteresis loop (B-H curve).

6.2 Observe the hysteresis loss of ferro magnetic materials.

7.1
7.2

8.1
8.2

9.1
9.2

Determine the curie temperature (Tc) of a ferromagnetic material.

Evaluate the relative permeability (p,) of a ferromagnetic material.

Determine the numerical aperture of a given optical fiber.

Calculate the acceptance angle of a given optical fiber.

Determination of the beam divergence of the given laser beam.

Try to estimate the laser output

112|Page

10.1Studying the characteristics of solar cell at different intensities

10.2Try to get the maximum workable power.

11.1 Studying V-I characteristics of LED in forward bias for different LEDs.

11.2 Measure the threshold voltage and forward resistance, and try for the dynamic Resistance

12.1 Determination of Planck’s constant by measuring threshold voltage of given LED.

12.2 Draw the L -I characteristics of the given LED.

13.1 Study the magnetic field along the axis of current carrying coil — Stewart and Gee’s method.

13.2 Estimate the magnetic lines of force.

14.1 Determination of frequency of a given tuning fork in longitudinal wave propagation.
14.2 Try to establish the transverse mode of wave propagation by understanding the theoretical harmonics and

overtones

1. Laboratory Experiments in College Physics”, C.H. Bernard and C.D. Epp, John Wiely and Sons, Inc., New
York, 1995.

—

. C.L. Arora, “Practical Physics”, S. Chand & Co., New Delhi, 3" Edition, 2012.

2. Vijay Kumar, Dr. T Radhakrishna, “Practical Physics for Engineering Students”, SM Enterprises, 2™
Edition, 2014.

3. Dr. Rizwana, “Engineering Physics Manual”, Spectrum Techno Press, 2018.

https://nptel.ac.in/translation

https://nptel.ac.in/courses/115105120

NPTEL:: courses-Sem 1 and 2 - Engineering Physics and Applied Physics I
Experimental Physics I - Course (nptel.ac.in)

NPTEL:: Physics - Waves and Oscillations

S W=

—_—

. Course template
Lab manual

L

113|Page

https://nptel.ac.in/translation
https://onlinecourses.nptel.ac.in/noc23_ph37/preview
https://archive.nptel.ac.in/courses/115/106/115106119/

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

ENGINEERING WORKSHOP

I Semester: AE/CE/ME / ECE / EEE / CSE (AI&ML) / CSE (DS)

II Semester: CSE / IT

Course Code Category Hours / Week | Credits Maximum Marks
T P C CIA SEE Total
AMEEO(02 Foundation
0 0 2 1 40 60 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes:45

Prerequisite: There is no prerequisite for this course.

I. COURSE OVERVIEW:

This course provides the opportunity to become confident with new tools, equipment, and techniques for
creating physical objects and mechanisms with a variety of materials. The students will learn principles of
contemporary trends in manufacturing processes, such as CNC machining and 3D printing, as well as gain
practical experience in carpentry, fitting, and welding. Skills learned in the course enable the students to learn
about the design process in digital manufacturing used in various industrial applications.

[I. COURSES OBJECTIVES:
The students will try to learn
I. The basics and hands-on practice of carpentry, fitting, and welding

II. The impart knowledge and skill to use tools, equipment, measuring instruments, and modern

techniques.

III. The concepts apply to the manufacturing processes of casting, moulding and forging.
IV. The basic machining operations by CNC lathe, CNC milling, and 3D printing machine.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

COo1 Select appropriate tools, work material and measuring instruments useful for carpentry, fitting,

and welding.

CO2 Use flat sheets for sheet metal and intricate shapes made from mild steel for Black smithy.

CO3 Choose appropriate components and tools to prepare pipe fitting and joints of specific shapes and
sizes.

CO4 Experiment with the moulding techniques for producing cast components in complex shapes
using different patterns.

CO 5 Execute hard soldering techniques to join similar and dissimilar materials used in industries.

CO6 Demonstrate appropriate equipment and methods for various machining processes used in CNC

machines and 3D printing for manufacturing industries.

114|Page

IV. COURSE CONTENT:

EXERCISES IN ENGINEERING WORKSHOP

Note: All dimensions are in mm in experiments.

Getting started experiments

Introduction

Engineering workshop provides both tools and equipments (or machinery) that are required for the
manufacture of the goods. Students are familiarized with basic workshop practice like Wood working,
Sheet metal, metal joining processes, manufacturing processes etc. and required to identify, operate
and control various machines, tools and equipments.

Safety

Safety is a vital issue in all workplaces. Before using any equipment and machines or attempt practical
work in a workshop everyone must understand basic safety rules. These rules will help keep all safe in
the workshop.

Safety Rules:

Always listen carefully to the teacher and follow instructions.

When learning how to use a machine, listen very carefully to all the instructions given by the
faculty / instructor. Ask questions, especially if you do not fully understand.

Always wear an apron as it will protect your clothes and holds lose clothing such as ties in place.
Bags should not be brought into a workshop as people can trip over them.

Do not use a machine if you have not been shown how to operate it safely by the faculty /
instructors

Know where the emergency stop buttons are positioned in the workshop. If you see an accident
at the other side of the workshop you can use the emergency stop button to turn off all electrical
power to machines.

Wherever required, wear protective equipment, such as goggles, safety glasses, masks, gloves,
hair nets, etc.

Always be patient, never rush in the workshop.

Always use a guard when working on a machine.

Keep hands away from moving/rotating machinery.

Use hand tools carefully, keeping both hands behind the cutting edge.

Report any UNSAFE condition or acts to instructor.

Report any damage to machines/equipment as this could cause an accident.

Keep your work area clean.

DO’s

Students must always wear uniform and shoes before entering the lab.
Proper code of conduct and ethics must be followed in the lab.
Note down the specifications/drawings before working on the preparation of models.

Receive the tools and materials required for preparation of models with signing in register.

115|Page

Properly fix hacksaw blade in frame with help of instructor.

Use of safety goggles / face shield during welding.

Do the models under the supervision/guidance of a faculty/ lab instructor only.
Keep the sufficient distance from other students while preparing models.

In case of fire use fire extinguisher/throw the sand provided in the lab.

In case of any physical injuries or emergencies use first aid box provided.

DONT's

1.

Do not touch electrical circuits of welding machine.

Be cautious while fixing hacksaw blade in frame, that may cause injuries to hand.
Don't touch /operate power tools without aid from instructors.

Don't gather while preparing models, that may hurt other with tools.

Don't unlock snip/sheet metal cutter lock, without use.

Introduction to carpentry

Carpentry is the process of shaping wood, using hand tools. The products produced are used

in building construction, such as doors and windows, furniture manufacturing, patterns for mouldin
g infoundries, etc. Carpentry work mainly involves the joining together of wooden pieces and
finishing the surfaces after shaping them. Hence, the term joining is also used commonly for
carpentry. A student studying the fundamentals of wood working has to know about timber and
other carpentry materials, wood working tools, carpentry operations and the method of making
common types of joints.

1.1. Experiments on carpentry

1. Preparation of the cross-half lap joint as shown in Fig. 1.1

150

50

50

12

25

Fig.1.1 Dimensions of pieces

116 |Page

50

50

30

12
—

25

150

Fig.1.2 Dimensions of pieces

2. Preparation of the dove tail joint as depicted in Fig.1.2

Try

1. Mortise and tenon joint preparation as illustrated in Fig.1.3 with dimensions of width = 50 mm and

tenon thickness = 10 mm.
2. End lap joint preparation as illustrated in Fig. 1.4. The end lap projection dimensions to be taken

into consideration are width = 50 mm and thickness = 15 mm.

Fig.1.3 Mortise and tenon joint Fig.1.4 End lap joint

2. Introduction to fitting

The term fitting, is related to assembly of parts, after bringing the dimension or shape to the required
size or form, in order to secure the necessary fit. The operations required for the same are usually
carried out on a work bench, hence the term bench work is also added with the name fitting. The
bench work and fitting play an important role in engineering. Although in today's industries most of
the work is done by automatic machines which produces the jobs with good accuracy but still it(job)
requires some hand operations called fitting operations.

117 |Page

2.1. Experiments on fitting

Making of a square fitting using mild steel plates of the specified size, as shown in Fig. 2.1
Making of a V-fit according to the size of the provided mild steel plates, as shown in Fig. 2.2

1.
2.

Try

1.
2.

15

20 20

x
F
¥

‘

L

Fig.2.1 Dimensions of mild steel plates

30

< »

50 |

50 |

* » *

Fig.2.2 Dimensions of mild steel plates

Straight fitting of mild steel plates to the specified sizes, as shown in Fig. 2.3
Making of semicircular fit with mild steel plates of the specified size, as depicted in Fig. 2.4

Fig.2.3 Dimensions of mild steel plates

¢

Fig.2.4 Dimensions of mild steel plates

3. Introduction to welding

Welding is a process for joining two similar or dissimilar metals by fusion. It joins different
metals/alloys, with or without the application of pressure and with or without the use of filler metal.
The fusion of metal takes place by means of heat. The heat may be generated either from combustion
of gases, electric arc, electric resistance or by chemical reaction. Welding provides a permanent joint
but it normally affects the metallurgy of the components. It is therefore usually accompanied by post
weld heat treatment for most of the critical components. The welding is widely used as a fabrication
and repairing process in industries. Some of the typical applications of welding include the fabrication
of ships, pressure vessels, automobile bodies, off-shore platform, bridges, welded pipes, sealing of
nuclear fuel and explosives, etc.

3.1. Experiments and demonstration on different welding techniques

1.

Creating the lap joint in accordance with the mild steel plates given, as shown in Fig .3.1

2. Making the butt joint as depicted in Fig. 3.2 using the mild steel plates as are offered.

118 |Page

= 3
2 3
- .
%0y %0
Fig.3.1 Dimensions of mild steel plates

Try

& s
(=4

3 3
¥ ¥

l 50 N k 50 N

Fig.3.2 Dimensions of mild steel plates

1. Construction of the tee joint using the mild steel plates provided, as shown in Fig. 3.3
2. As illustrated in Fig. 3.4, creating the corner (L) joint using the provided mild steel plates.

Fig.3.3 Tee joint

4. Introduction to sheet metal

Fig.3.4 Corner joint

Sheet metal work has its own significance in the engineering work. Many products, which fulfill the
household needs, decoration work and various engineering articles, are produced from sheet metals.
Common examples of sheet metal work are hoopers, canisters, guards, covers, pipes, hoods,
funnels, bends, boxes etc. Such articles are found less expensive, lighter in weight and in some cases
sheet metal products replace the use of castings or forgings.

4.1. Experiments on sheet metal forming

1. Create the rectangular tray as depicted in Fig. 4.1.

5_20 120

7

./// ﬁ I
A

%1

20 15| “‘lr

Fig.4.1 Dimensions of Gl sheet

119|Page

2. As illustrated in Fig.4.2, prepare the developing surface and create cylindrical tin.

100

a0

Fig.4.2 Dimensions of Gl sheet

Try

1. Construct the open scoop as depicted in Fig. 4.3

? I"fs' 70 =]

190 £

Fig.4.3 Dimensions of Gl sheet

2. create the hexagonal prism as shown in Fig.4.4

DEVELOPMENT

AR

25

Fig.4.4 Surface development of hexagonal prism

120|Page

5. Introduction to black smithy

Black smithy or Forging is an oldest shaping process used for the producing small articles
for which accuracy in size is not so important. The parts are shaped by heating them in an
open fire or hearth by the blacksmith and shaping them through applying compressive
forces using hammer. Thus forging is defined as the plastic deformation of metals at elevated
temperatures into a predetermined size or shape using compressive forces exerted through
some means of hand hammers, small power hammers, die, press or upsetting machine. It
consists essentially of changing or altering the shape and section of metal by hammering at a
temperature of about 980°C, at which the metal is entirely plastic and can be easily deformed
or shaped under pressure. The shop in which the various forging operations are carried out
is known as the smithy or smith’s shop.

5.1. Experiments on black smithy
1. Make the s-hook as depicted in Fig. 5.1 using the mild steel rod provided.
2. Construct the J-hook using the given mild steel rod as indicated in Fig. 5.2.

10" 8 8
30
X
Fig.5.1 Dimensions of S-hook Flg.52 Dimensions of J-hook

Try

1 Create the C - hook with the given mild steel rod as shown in Fig. 5.3
2 Prepare the U - bend with the given mild steel rod as shown in Fig. 5.4

1 30
30 |
& &
3
- x
Fig.5.3 Dimensions of C-hook Fig.5.4 Dimensions of U-hook

121|Page

6. Introduction to plumbing

Plumbing is a skilled trade of working with pipes or tubes and plumbing fixtures. The process is mainly
used for the supply of drinking water and the drainage of waste water, sometimes mixed with waste
floating materials in a living or working place. A plumber is someone who installs or
repairs piping systems, plumbing fixtures and equipment such as valves, washbasins, water heaters, wa
terclosests, etc. Thus it usually refers to a system of pipes and fixtures installed in a building for the
distribution of water and the removal of waterborne wastes.

6.1. Experiments and demonstration on plumbing
1.Form of PVC pipe fitting through various components as shown in Fig. 6.1

2. Form of Gl pipe fitting with various components, as shown in Fig. 6.2

Try

— |
b o |
pvc union male adapter 45°elbow reducing tee
€ ‘ 1} Q

_1 | R

complement reducing
coupling adacter female tee female elbow

s |

female copper

adapter equal tee 90"elbow socket adapter

Fig.6.1 PVC components for pipe fittings

Fig.6.2 Gl componets for pipe fittings

1. Form of PVC pipe fitting with reducer for water tap with different components as shown in Fig.

6.1

2. Form of Gl pipe fitting with different components as shown in Fig. 6.2 for different fluids.

7. Introduction to moulding

122 |Page

Moulding is the process of manufacturing by shaping liquid or pliable raw material using a rigid frame
called a mold or matrix. This itself may have been made using a pattern or model of the final object.

Amouldis a hollowed-out block that is filled with a liquid or pliable material such
as plastic, glass, metal, or ceramic raw material. The liquid hardens or sets inside the mould, adopting
its shape. A mould is a counterpart to a cast. The very common bi-valve moulding process uses two
moulds, one for each half of the object.

7.1. Experiments on mechanical components moulding (casting process)

1. Making of flange mould using a given pattern as shown in Fig.7.1

Core prints Split pattern with core prints [Core prints

\

Fig.7.1 Flange coupling pattern

2. Utilizing the provided pattern, create the bearing housing mould as shown in Fig. 7.2.

[

Fig.7.2 Bearing housing

Try

1. Making of dumble using a given pattern as shown in Fig.7.3
2. Using a single piece pattern, create a one-stepped shaft as shown in Fig. 7.4.

Cope pr . "\
- p \ \\1
Aligning 90 mm y
pin

45 m /,* ;
P

%
:~1 ' el _..‘
W/I////I’////

Fig.7.3 Dumble mould pattern Fig.7.4 Single stpeped shaft

https://en.wikipedia.org/wiki/Manufacturing
https://en.wikipedia.org/wiki/Plastic
https://en.wikipedia.org/wiki/Glass
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Ceramic
https://en.wikipedia.org/wiki/Casting

8. Introduction to concrete moulding and plaster of paris

Concrete is characterized by the type of aggregate or cement used, by the specific qualities
it manifests, or by the methods used to produce it. In ordinary structural concrete, the character of
the concrete is largely determined by a water-to-cement ratio. The lower the water content, all else
being equal, the stronger the concrete. The mixture must have just enough water to ensure that
each aggregate particle is completely surrounded by the cement paste, that the spaces between
the aggregate are filled, and that the concrete is liquid enough to be poured and spread
effectively.

Plaster of Paris is a white powder made from gypsum that mixes with water to form a paste that
hardens quickly and is used chiefly for casts and moulds. It can be effectively worked with metal
apparatuses or even abrasive sheets and can be shaped as per requirements. It is often applied in
the form of a quick-setting paste with water.

8.1.Experiment on concrete/cement cube moulding and demonstration

on plaster of paris mould making

1. Preparation of concrete cube by moulding technique as shown in Fig.8.1

150

Fig.8.1 Dimensions of concrete cube

2. Demonstration on plaster of paris mould making.

Try

1.

Preparation of any house hold specimens by plaster of paris mould making as shown in Fig. 8.2

2. Preparation of any intricate article by plaster of paris mould making as shown in Fig. 8.3

Fig.8.2 Plaster of paris House hold specimens

Fig.8.3 Plaster of paris intricate article

124 |Page

https://www.merriam-webster.com/dictionary/manifests

9. Introduction to hard soldering

Hard (silver) soldering (>450 °C) — Brass or silver is the bonding metal used in this process, and
requires a blowtorch to achieve the temperatures at which the solder metals. Hard soldering is used to

join precision components such as ferrous, brass, and copper.

9.1. Experiments on hard soldering

1. Soldering of two mild steel plates as shown in Fig. 9.1

2. Hard soldering of engine valve tappet as shown in Fig. 9.2

Fig.9.1 Soldering of mild steel plates

Fig.9.2 Engine valve tappet

Try

1. Hard soldering of copper with brass as shown in Fig.9.3

2. Hard soldering of stainless steel with brass as shown

in Fig.9.4

Fig.9.3 Hard soldering of copper with brass

Fig.9.4 Hard soldering of
stainless steel with brass

10. Demonstration on Computer Numerically Controlled (CNC)

lathe

CNC turning is a highly precise and efficient subtractive machining process that works on the principle
of the lathe machine. It involves placing the cutting tool against a turning workpiece to remove

materials and give the desired shape.

125|Page

Fig.10.1 CNC lathe

1. Demonstration of the plain turning process on a CNC lathe as shown in Fg.10.1
2. Demonstration of facing operations on a CNC lathe as shown in Fg.10.1.

11. Demonstration on Computer Numerically Controlled (CNC)
milling

CNC milling involves cutting a prismatic workpiece using multipoint cutting tools producing precision

components used in automotive and aeronautical industries.

Fig.11.1 CNC machining centre

1. Demonstration of plain milling (facing) on CNC milling as shown in Fig.11.1
2. Demonstration of precision slotting on CNC milling as shown in Fig.11.1.

12. Demonstration on 3D printing machine

3D printing or additive manufacturing enables to produce geometrically complex objects, shapes and
textures. It often uses less material than traditional manufacturing methods and allows the production
of prototypes / products that are not possible to produce economically with conventional

manufacturing.

126 |[Page

Fig.12.1 3D printer

1. Demonstration of 3D printing machine as shown in Fig.12.1 using Acrylonitrile butadiene styrene
(ABS) material
2. Demonstration of 3D printing machine as shown in Fig.12.1 using Polylactic acid (PLA) material.

13. Demonstration on 6- axis robot

Robots have seen in recent years an expansion of their field of use with new requirements related to the
increasing use of composites. The robots are then considered for machining operations (polishing,
cutting, drilling etc.) that require high performance in terms of position, orientation, followed by
trajectory precision and stiffness. The evolution of the performance of robots and programming
software provides new machining solutions. For complex parts, six axis robots offer more accessibility
than a machining center CNC 5 axis and allow the integration of additional axes to extend the
workspace.

Fig.13.1 6-Axis robot

1. Demonstration of the 6 — axis aristo robot as shown in Fig.13.1.
2. Demonstration of aristo sim software for robot movements and control.

14. Demonstration on cylindrical grinding machine

Most commonly, cylindrical grinding is used for grinding pieces with a central axis of rotation, like rods
and cylinders. This process involves using a cylindrical grinder, which is a type of machinery
categorized by rotation style and wheel device.

A grinding machine uses an abrasive product usually a rotating wheel to shape and finish a workpiece
by removing metal and generating a surface within a given tolerance. A grinding wheel is made with

127 |Page

abrasive grains bonded together. Each grain acts as a cutting tool, removing tiny chips from the
workpiece.

€C0 200

Fig.14.1 Cylindrical grinding machine

1. Demonstration of grinding process on a cylindrical grinding machine as shown in Fig.14.1
2. Demonstration of shaft grinding process on a cylindrical grinding machine as shown in Fig.14.1

V. TEXT BOOKS:

1. Hajra Choudhury S.K., Hajra Choudhury A.K. and NirjharRoy S.K., “Elements of Workshop Technology”,
Media promoters and publishers private limited, Mumbai, 4" Edition ,2020.

2. Kalpakjian S, Steven S. Schmid, “Manufacturing Engineering and Technology”, Pearson Education India
Edition, 7* Edition, 2019.

3. Gowri P. Hariharan, A. Suresh Babu,” Manufacturing Technology — I, Pearson Education, 3" Edition,
2018.

VI. REFERENCE BOOKS:

1. Gowri P. Hariharan, A. Suresh Babu, “Manufacturing Technology — I”, Pearson Education, 5" Edition,
2018.

2. Roy A. Lindberg, “Processes and Materials of Manufacture”, Prentice Hall India, 4™ Edition, 2017.
3. Rao P.N., “Manufacturing Technology”, Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

VII. ELECTRONICS RESOURCES:

1. https://elearn.nptel.ac.in/shop/iit-workshops/ongoing/additive-manufacturing-technologies-for-practicing-
engineers/.
2. https://akanksha.iare.ac.in/index ?route=course/details&course id=337

VIII. MATERIALS ONLINE:
1. Course Template
2. Laboratory manual

128 |Page

https://elearn.nptel.ac.in/shop/iit-workshops/ongoing/additive-manufacturing-technologies-for-practicing-engineers/
https://elearn.nptel.ac.in/shop/iit-workshops/ongoing/additive-manufacturing-technologies-for-practicing-engineers/
https://akanksha.iare.ac.in/index?route=course/details&course_id=337

INSTITUTE OF AERONAUTICAL ENGINEERING

3 (Autonomous)
9 Dundigal - 500 043, Hyderabad, Telangana

I Semester: CSE/IT
II Semester: AE / ME / CE / ECE / EEE/ CSE (Al & ML) /CSE(DS)

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
AHSEO03 Foundation
3 - - 3 40 60 100
Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Basic principles of chemistry

The course focuses on the fundamental concepts of chemistry and then builds an interface with their industrial
applications. It deals with the water purification processes, electrochemical principles in batteries, corrosion of
metallic structures and preventive methods to control corrosion in metals, engineering materials such as plastics,
fibers and elastomers, biodegradable polymers, renewable and non-renewable energy resources, nanomaterials,
lubricants, biosensors and spectroscopic techniques leading to diverse applications across various fields, It
cultivates the students to identify chemistry in each piece of finely engineered productsusedin industries.

The students will try to learn

V. The different parameters to remove causes of hardness of water and their reactions towards
complexometric method.

VI. The concepts of electrochemical principles and causes of corrosion in the new developments and
breakthroughs efficiently in engineering and technology.

VII. The fundamental knowledge of conventional and non conventional energy sources and their applications
in engineering.

VIII. The different types of materials with respect to mechanisms and its significance in industrial applications.

At the end of the course students should be able to:

COl Interpret the water quality characteristics for its usage in domestic and industrial purposes.
CO2 Use complexometry for calculation of hardness of water to avoid industrial problems.
CO3 Implement the principles of electrochemical systems to control the corrosion in metals.
CO4 Extend the applications of polymers based on their degradability and properties.

COS5 Choose the appropriate fuel based on their calorific value for energy efficient processes.

CO6 Predict the knowledge on viability of advanced materials for technological improvements in
various sectors.

129 |Page

MODULE-I: WATER AND ITS TREATMENT (10)

Introduction: Hardness, types, degree of hardness and units ; estimation of temporary and permanent hardness of
water by complexometric method, numerical problems; Potable water and its specifications (WHO), steps
involved in treatment of potable water, disinfection of potable water by chlorination and breakpoint
chlorination; Internal treatment of boiler feed water: Calgon conditioning, phosphate conditioning and colloidal
conditioning; external treatment methods: Softening of water by ion-exchange processes; desalination of
brackish water, reverse osmosis.

MODULE-II: ELECTROCHEMISTRY AND CORROSION (10)

Introduction: Electrode potential, standard electrode potential, Nernst equation (no derivation); Electrochemical
cells: Galvanic cell, cell representation, EMF of cell, numerical problems; Batteries: classification of batteries,
construction, working and applications of Zinc-air and Li-ion battery; Corrosion: Definition, Causes and effects
of corrosion; Theories of corrosion: Chemical and electrochemical theories of corrosion; Corrosion control
methods: Cathodic protection methods, sacrificial anode and impressed current methods.

MODULE-III: POLYMERS (9)

Polymers: Classification of polymers; types of polymerization-addition and condensation polymerization;
Plastics, elastomers and fibers: Preparation, properties and applications of PVC, Buna-S and Nylon 6,6;
Differences between thermoplastics and thermosetting plastics;

Conducting polymers: Definition, classification with examples, mechanism of conduction in trans poly
acetylene and applications of conducting polymers; Biodegradable polymers: poly lactic acid and their
applications.

MODULE-1V: ENERGY SOURCES (10)

Introduction and characteristics of good fuel; Fossil fuels: Introduction, classification, petroleum, refining of
crude oil; Cracking: Definition, types of cracking, moving bed catalytic cracking. LPG and CNG composition
and uses; Synthetic fuel: Fischer-Tropsch process; Alternative and non-conventional sources of energy: solar,
wind and hydropower advantages and disadvantages; Calorific value: units, HCV and LCV and Dulongs
formula, numerical problems.

MODULE-V: ADVANCED FUNCTIONAL MATERIALS (9)
Nanomaterials: Introduction, preparation of nanomaterials by sol-gel method, chemical reduction method and
applications of nanomaterials. Biosensors: Definition, Amperometric glucose monitor sensor; IR spectroscopy
in night vision-security; Pollution Under Control, CO sensor, Passive Infrared detection; Raman spectroscopy
application, Tumour detection in medical applications; Lubricants: characteristics of a good lubricant; properties
of lubricants: viscosity, flash and fire point, cloud and pour point.

3. JAIN &JAIN, P.C. Jain, Monika Jain, Engineering Chemistry , Dhanpat Rai publishing Company (P)
limited, 17™ edition, 2022.

4. Shashi Chawla, Text Book of Engineering Chemistry, Dhanat Rai and Company (P) Limited, 1% Edition,
2017.

1. Ramadevi, Dr, P Aparna and Rath, Cengage learning, 13" edition, 2025.
2. Donald. J Leo, Wiley, Engineering analysis of smart material systems, 1% Edition, 2007.
3. Nitin K Puri, Nanomaterials Synthesis Properties and Applications, I K international publishing
house
pvt Ltd,1* edition 2021.

6. Engineering chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M.
S.Krishnan.http://www.cdeep.iitb.ac.in/webpage data/nptel/Core%20Science/Engineering%20Chem
istry%201/About- Faculty.html

7. https://books.google.co.in/books?id=R 1JtyILNIsAC&pg=PR3&source=gbs_selected pages&cad=3
#v=onepage&q&f=false

8. https://books.google.co.in/books?id=eQTLCgAAQBAJ&pg=SA1PAS3&source=gbs_selected pages&ca
d=3#v=onepage&q&f=false

130|Page

https://www.dhanpatraibooks.com/author.php?a=JAIN%20&%20JAIN
https://www.dhanpatraibooks.com/author.php?a=P.C.%20Jain
https://www.dhanpatraibooks.com/author.php?a=Monika%20Jain
http://www.tndte.com/
http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chemistry%201/About-%20Faculty.html
http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chemistry%201/About-%20Faculty.html

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

Course template

Tutorial question bank

Tech talk topics

Open end experiments
Definitions and terminology
Assignments

Model question paper — 1
Model question paper - 11
Lecture notes

E-learning readiness videos (ELRV)
Power point presentation

131|Page

INSTITUTE OF AERONAUTICAL ENGINEERING

. 2 (Autonomous)
% 4§ Dundigal - 500 043, Hyderabad, Telangana

”
7, \2
¥ ron W°

CUUNILY LU L vINL

ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

IT Semester: AE/ME /CE/ECE /EEE /CSE /CSE (AI&ML) / CSE (DS) / IT

Course Code Category Hours/Week Credits Maximum Marks
) L T P C CIA SEE Total
AHSEO(S8 Foundation 3 i i 3 40 60 100
Contact Classes: 48 | Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: Basic Principles of Matrices and Calculus

I. COURSE OVERVIEW:

This course serves as a foundation course on differential equations and vector calculus. It includes
techniques for solving ordinary differential equations, partial differential equations, vector
differentiation and vector integration. It is designed to extract the mathematical developments, skills,
from basic concepts to advance level of engineering problems to meet the technological challenges.

II. COURSE OBJECTIVES:
The students will try to learn:
I The analytical methods for solving first and higher order differential equations with constant
coefficients.

I The analytical methods for formation and solving partial differential equations.
III The physical quantities of vector valued functions involved in engineering field.

IV The logic of vector theorems for finding line, surface and volume integrals.

III. COURSE OUTCOMES:
At the end of the course students should be able to:

CO1 Utilize the methods of differential equations for solving the orthogonal trajectories and
Newton’s law of cooling. cooling.

CO2 Solve the higher order linear differential equations with constant coefficients by using
method of variation of parameters.

CO3 Make use of analytical methods for PDE formation to solve boundary value problems.

CO4 Identify various techniques of Lagrange’s method for solving linear partial differential
equations which occur in science and engineering.

CO5 Interpret the vector differential operators and their relationships for solving engineering
problems.

CO6 Apply the integral transformations to surface, volume and line of different geometrical
models in the domain of engineering.

132|Page

IV. COURSE CONTENT:

MODULE-I: FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS (09)

Exact differential equations, equations reducible to exact differential equations, linear and Bernoulli’s equations,
orthogonal trajectories (only in cartesian coordinates). Applications: Newton’s law of cooling, law of natural
growth and decay.

MODULE-I1: ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER (10)
Higher order linear differential equations with constant coefficients: non-homogeneous terms of the type
e™, sinax ,cos ax, polynomials in x, e®*V(x) and x V(x), method of variation of parameters.

MODULE-III: LAPLACE TRANSFORMS (10)

Laplace transforms: Laplace transform of standard functions, first shifting theorem, Laplace transforms of
functions multiplied by ‘t’ and divided by ‘t’, Laplace transforms of derivatives and integrals of function,
evaluation of integrals by Laplace transforms, Laplace transform of periodic functions.

Inverse Laplace transform by different methods, Convolution theorem (without proof). Applications: solving
initial value problems by Laplace transform method

MODULE-IV: VECTOR DIFFERNTIATION (09)

Vector point functions and scalar point functions, gradient, divergence and curl, directional derivatives, vector
identities, scalar potential functions, solenoidal and irrotational vectors.

MODULE-V: VECTOR INTEGRATION (10)
Line, surface and volume integrals. theorems of Green, Gauss and Stokes (without proofs) and their applications.

V. TEXT BOOKS:
1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

VI. REFERENCE BOOKS:
1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/ed, Narosa Publications,
5™ Edition, 2016.
2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, Calculus, 13/e, Pearson Publishers,
2013.
3. N.P.Bali and Manish Goyal, 4 text book of Engineering Mathematics, Laxmi Publications,
Reprint, 2008
Dean G. Dufty, Advanced Engineering Mathematics with MATLAB, CRC Press.
. Peter O’Neil Advanced Engineering Mathematics, Cengage Learning.
6. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill Education.

o

VII. ELECTRONIC RESOURCES:
1. Engineering Mathematics - I, By Prof. Jitendra Kumar
|https://onlinecourses.nptel.ac.in/noc23 _ma88/preview

2. Advanced Calculus for Engineers, By Prof. Jitendra Kumar, Prof. Somesh Kumar
https://onlinecourses.nptel.ac.in/noc23 ma86/preview

3. http://www.efunda.com/math/math_home/math.cfm

4. http://www.ocw.mit.edu/resourcs/#Mathematics

5. http://www.sosmath.com

6. http://www.mathworld.wolfram.com

VIII. MATERIAL ONLINE:
12. Course template
13. Tutorial question bank
14. Tech talk topics
15. Open end experiments

133|Page

http://www.mathworld.wolfram.com/

16.
17.
18.
19.
20.
21.
22.

Definitions and terminology
Assignments

Model question paper — I

Model question paper - 11

Lecture notes

E-learning readiness videos (ELRV)
Power point presentation

134|Page

INSTITUTE OF AERONAUTICAL ENGINEERING

. : (Autonomous)
P\~ A Dundigal - 500 043, Hyderabad, Telangana
THERMODYNAMICS
IT Semester: ME
Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA SEE Total
AMEE04 Foundation
3 0 0 3 40 60 100
Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes:48
Prerequisite: Engineering Physics

I. COURSE OVERVIEW:

Thermodynamics is the science that deals with the relationship between heat and work and those properties
of systems that bear relation to heat and work. General laws of energy transformations concerning all types
of systems, mechanical, electrical and chemical may fall within the purview of this science. It is a science
basedon a number of empirical laws formed by experimentation from which all predictions concerning the
physical behavior of the system may be deduced by logical reasoning. The findings have been formalized
into the various laws of thermodynamics. The power cycles and refrigeration cycle based on
thermodynamic system is studied. The students are familiarizing with standard charts and tables.

II. COURSE OBJECTIVES:

The students will try to learn

I. The fundamental knowledge on concepts of physics and chemistry for obtaining the axiomatic
principles usingthermodynamic co-ordinates.

II. The thermodynamic disorderness in the real time physical systems like external/internal heat
engines, heatpumps to get the measure of performance characteristics.

IIl. The performance characteristics of open and closed systems of thermodynamic cycles for effective
delineationof real time applications.

IV. The thermodynamic cycles such as power and refrigerant cycles yields to alternative solutions to
conserve theenvironment

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO1 Recall the basic concepts of thermodynamic properties and working principles of remember
energy conversions in physical systems by laws of thermodynamics

CO2 Summarize the equivalence of two statements of second law of thermodynamics and understand
the entropy concepts for typical engineering problems

CO3 Explain the properties of pure substances and steam to emit relevant inlet and exit Understand
conditions of thermodynamic work bearing systems

CO4 Apply the significance of partial pressure and temperature to table the performance Apply
parameters of ideal gas mixtures

COS5 Identify the properties of air conditioning systems by practicing psychrometry chart Applyand
property tables

CO6 Illustrate the working of various air standard cycles and work out to get the Understand
performance characteristics

135|Page

IV. COURSE CONTENT:

MODULE-1: BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS (10)

System, control volume, surrounding, boundaries, universe, types of systems, macroscopic and microscopic
viewpoints, concept of continuum, thermodynamic equilibrium, state, property, process, cycle, reversibility,
quasi static process, irreversible process, causes of irreversibility, various flow and non-flow processes ,energy
in state and in transition, types-work and heat, point and path function, Zeroth law of thermodynamics, concept
of quality of temperature, Principles of thermometry, reference points, constant volume gas thermometer, ideal
gas scale, Joule’s experiment, first law of thermodynamics, PMM1, corollaries first law applied to a process,
applied to a flow system, steady flow energy equation.

MODULE-II: SECOND LAW OF THERMODYNAMICS (10)

Thermal reservoir, heat engine, heat pump, parameters of performance, second Law of thermodynamics, Kelvin
Planck and Clausius statements and their equivalence, Corollaries, PMM of second kind, Carnot’s principle,
Carnot cycle and its specialties, thermodynamic scale of temperature, Clausius inequality, Entropy, principle of
Entropy increase, availability and irreversibility, thermodynamic potentials, Gibbs and Helmholtz functions,
Maxwell relations, Clapeyron equation, elementary treatment of the Third Law of thermodynamics.

MODULE -III: PURE SUBSTANCES &GAS LAWS (09)

Phase transformations, T-S and H-S diagrams, P-V-T surfaces, triple point at critical state properties during
changeof phase, dryness fraction, Mollier charts, various thermodynamic processes and energy transfer, steam
calorimeter.

Gas Laws: Equation of state, specific and universal gas constants, throttling and free expansion processes,
VanderWaals equation

MODULE -1V: MIXTURES OF PERFECT GASES (10)

Mole fraction, mass friction, gravimetric and volumetric analysis, volume fraction, Dalton’s law of partial
pressure, Avogadro’s laws of additive volumes, and partial pressure, equivalent gas constant, internal energy,
enthalpy, specificheats and entropy of mixture of perfect gases; psychometric properties, dry bulb temperature,
wet bulb temperature, dew point temperature, thermodynamic wet bulb temperature, specific humidity, relative
humidity, saturated air, vapour pressure, degree of saturation, adiabatic saturation, Carrier’s equation,
Psychometric chart.

MODULE -V: POWER CYCLES (09)
Otto, Diesel, Dual combustion cycles, description and representation on P-V and T-S diagram, thermal
efficiency, mean effective pressures on air standard basis, comparison of cycles.

V. TEXT BOOKS:

1. P. K. Nag, “Engineering Thermodynamics”, Tata McGraw Hill, 6™ edition, 2017.

2. Yunus Cengel, Michael A. Boles, “Thermodynamics-An Engineering Approach”, Tata McGraw Hill, 8
edition,2017.

3. D.S. Kumar., “Engineering Thermodynamics”, S.K. Kataria and Sons, 2014.

VI. REFERENCE BOOKS:

1. R.K. Rajput., “Engineering Thermodynamics”, 4" edition, Laxmi Publications, 2016.

2. Mahesh M Rathore., “Thermal Engineering”, Tata McGraw Hill Publishers, 2013.

3. Y. V. C. Rao, “An Introduction to Thermodynamics”, Universities Press, 3™ edition, 2013.
4. K. Ramakrishna, “Engineering Thermodynamics”, Anuradha Publishers, 2" edition, 2011.
5. Holman. J.P, “Thermodynamics”, Tata McGraw Hill, 4% edition, 2013.

VII. ELECTRONICS RESOURCES:

5. https://nptel.ac.in/courses/112106286

6. https://akanksha.iare.ac.in/index?route=course/details&course id=33
7. https://akanksha.iare.ac.in/index?route=course/details&course_id=31
8. https://akanksha.iare.ac.in/index?route=course/details&course id=1293

VIII. MATERIALS ONLINE:
1. Course template
2. Tutorial question bank
3. Tech talk topics

136 |Page

https://nptel.ac.in/courses/112106286
https://akanksha.iare.ac.in/index?route=course/details&course_id=33
https://akanksha.iare.ac.in/index?route=course/details&course_id=31

Open end experiments

Definitions and terminology
Assignments

Model question paper - I

Model question paper - 11

. Lecture notes

10. E-learning readiness videos (ELRV)
11. Power point presentation

R RV

137|Page

INSTITUTE OF AERONAUTICAL ENGINEERING

03
A0
S
4
10y

P\
2 &
) rop

COURSE CONTENT

(Autonomous)
Dundigal - 500 043, Hyderabad, Telangana

DATA STRUCTURES

IT Semester: AE/ME /CE /ECE /EEE / CSE /IT / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
ACSE05 Core
3 - - 3 40 60 100

Contact Classes: 48

Tutorial Classes: Nil

Practical Classes: Nil

Total Classes: 48

Prerequisite: Essentials of Problem Solving

I. COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics
covered include managing complexity, analysis, static data structures, dynamic data structures and hashing
mechanisms. The main objective of the course is to teach the students how to select and design data structures and
algorithms that are appropriate for problems that they might encounter in real life. This course reaches to student
by power point presentations, lecture notes, and lab which involve the problem solving in mathematical and

engineering areas.

[I. COURSES OBJECTIVES:
The students will try to learn

1. The skills needed to understand and analyze performance trade-offs of different algorithms /
implementations and asymptotic analysis of their running time and memory usage.
1. The basic abstract data types (ADT) and associated algorithms: stacks, queues, lists, tree, graphs, hashing
and sorting, selection and searching.
1. The fundamentals of how to store, retrieve, and process data efficiently.

Iv. The implementing these data structures and algorithms in Python.

V. The essential for future programming and software engineering courses.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO 1 Interpret the complexity of the algorithm using the asymptotic notations.
CO 2 Select the appropriate searching and sorting technique for a given problem
CO 3 Construct programs on performing operations on linear and nonlinear data structures

for organization of a data

CO 4 Make use of linear data structures and nonlinear data structures solving real-time applications.
CO 5 Describe hashing techniques and collision resolution methods for accessing data with respect to

performance

CO 6 Compare various types of data structures; in terms of implementation, operations and performance.

138 |Page

IV.COURSE CONTENT:

MODULE - I: INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING (09)

Basic concepts: Introduction to data structures, classification of data structures, operations on data
structures, Algorithm Specification, Recursive algorithms, Data Abstraction, Performance analysis- time
complexity and space complexity, Introduction to Linear and Non Linear data structures,Searching
techniques: Linear and Binary search, Uniform Binary Search, Interpolation Search, Fibonacci Search;
Sorting techniques: Bubble, Selection, Insertion, and Quick, Merge, Radix and Shell Sort and comparison of
sorting algorithms.

MODULE - 1I: LINEAR DATA STRUCTURES (09)

Stacks: Stack ADT, definition and operations, Implementations of stacks using array, applications of stacks,
Arithmetic expression conversion and evaluation; Queues: Primitive operations; Implementation of queues
using

Arrays, applications of linear queue, circular queue and double ended queue (deque).

MODULE - I1I: LINKED LISTS (09)

Linked lists: Introduction, singly linked list, representation of a linked list in memory, operations on a single
linked list; Applications of linked lists: Polynomial representation and sparse matrix manipulation.

Types of linked lists: Circular linked lists, doubly linked lists; Linked list representation and operations of
Stack,linked list representation and operations of queue.

MODULE - 1V: NON LINEAR DATA STRUCTURES (09)

Trees: Basic concept, binary tree, binary tree representation, array and linked representations, binary tree
traversal, binary tree variants, threaded binary trees, application of trees, Graphs: Basic concept, graph
terminology, Graph Representations - Adjacency matrix, Adjacency lists, graph implementation, Graph
traversals — BFS, DFS, Application of graphs, Minimum spanning trees — Prims and Kruskal algorithms.

MODULE - V: BINARY TREES AND HASHING (09)

Binary search trees: Binary search trees, properties and operations; Balanced search trees: AVL trees;
Introduction to M- Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash
functions,collisions, applications of hashing.

V. TEXT BOOKS:
1. Rance D. Necaise, “Data Structures and Algorithms using Python”, Wiley Student Edition.
2. Benjamin Baka, David Julian, “Python Data Structures and Algorithms”, Packt Publishers, 2017.

VI.REFERENCE BOOKS:
1. S. Lipschutz, “Data Structures”, Tata McGraw Hill Education, 1% edition, 2008.
2. D. Samanta, “Classic Data Structures”, PHI Learning, 2™ edition, 2004.

VII. ELECTRONIC RESOURCES:

1. https://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm
2. https://www.codechef.com/certification/data-structures-and-algorithms/prepare

3. https://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html

4. https://online-learning.harvard.edu/course/data-structures-and-algorithms

VIII. MATERIALS ONLINE
Course template

Tutorial question bank
Tech talk topics
Assignments

Definitions and terminology
Open ended experiments
Model question paper-I
Model question paper-I1
Lecture notes

Power point presentations
ELRV videos

— = 0 00 1O N AW~

—_ O

139 |Page

http://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm
http://www.codechef.com/certification/data-structures-and-algorithms/prepare
http://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal - 500 043, Hyderabad, Telangana

3
o0
4
’/0’1

8

l
2 &
% rop

COURSE CONTENT

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

I Semester: CSE /IT
I1 Semester: CSE (AIML) / CSE(DS) / AERO / MECH / CE

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
AEEE(01 Foundation
3 - - 3 40 60 100
Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48

Prerequisite: There are no prerequisites to take this course.

. COURSE OVERVIEW:
The course introduces the basic concepts of circuit analysis which is the foundation for all subjects of the
electrical and electronics engineering. It includes the basic fundamental laws of electricity and magnetism with
an emphasis on resistors, inductors and capacitors (RLC) circuits applied to alternating current (AC) or direct
current (DC) of electrical networks. This course provides the hands-on experience on designing circuits using
Diodes, Bipolar Junction Transistors, and Field Effect Transistors. Provides the capability to extract the
characteristics of semiconductor devices and circuits with simulation tools.

II. COURSE OBJECTIVES:
The students will try to learn

I The fundamental principles of electrical circuits including DC and AC systems, and their analysis
using laws like KVL and KCL.

I The electrical installations, components of LT switchgear, battery characteristics, and methods for
calculating power and energy consumption.

Il The construction, working principles, and performance analysis of electrical machines such as
transformers, DC motors/generators, and induction motors.

IV~ The basics of semiconductor devices including diodes, rectifiers, BJTs, and FETs, along with their
applications in electronics.

[II. COURSE OUTCOMES:
At the end of the course students should be able to:
COl Analyze and solve simple electrical circuits using Ohm’s Law, Kirchhoff’s laws, and phasor
techniques for both DC and single-phase/three-phase AC circuits.
CO2 Identify various components of LT switchgear, types of batteries, and perform basic calculations
related to energy consumption and battery backup
CO3 Explain the construction, working principles, and characteristics of electrical machines including
transformers, DC motors/generators, and three-phase induction motors
CO4 Demonstrate an understanding of the operation and characteristics of P-N junction and Zener diodes,
and their role in rectifier and filter circuits.
CO5 Analyze BJT and FET configurations to understand their working, amplification modes, and
performance comparisons.
CO6 Apply the knowledge of electrical and electronic components to real-world applications such as
power systems, electronics circuits, and energy management.

140 |Page

MODULE - I: INTRODUCTION TO ELECTRICAL CIRCUITS (10)

D.C. Circuits: Electrical circuit elements (R, L and C), voltage and current sources, KVL and KCL,

analysis of simple circuits with dc excitation.

A.C. Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power,
reactive power, apparent power, power factor, Analysis of single-phase ac circuits, Three phase balanced
circuits, voltage and current relations instar and delta connections.

MODULE - II: ELECTRICAL INSTALLATIONS (08)
Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types
of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary
calculations for energy consumption, power factor improvement and battery backup.

MODULE - 11I: ELECTRICAL MACHINES (10)

Electrical Machines: Working principle of Single-phase transformer, equivalent circuit, losses in
transformers, efficiency, three phase transformer connections. Construction and working principle of DC
generators, EMF equation, working principle of DC motors.

Torque equations and Speed control of DC motors, Construction and working principle of Three phase
Induction motor, Torques equations and Speed control of Three phase induction motor. Construction and
working principle of synchronous generators.

MODULE - 1V: DIODES AND RECTIFIERS (10)

P-N Junction and Zener Diode: Principle of Operation Diode equation, Volt, Ampere characteristics,
Temperature dependence, Ideal versus practical, Static and dynamic resistances, Equivalent circuit, Zener
diode characteristics and applications.

Rectifiers and Filters: P-N junction as a rectifier, Half Wave Rectifier, Ripple Factor, Full Wave Rectifier,
Bridge Rectifier, Harmonic components in Rectifier Circuits, Filters — Inductor Filters, Capacitor Filters, L-
section Filters, - section Filters.

MODULE - V: BIPOLAR JUNCTION TRANSISTORS AND FIELD EFFECT TRANSISTOR (10)
Bipolar Junction Transistor (BJT): Construction, Principle of Operation, Amplifying Action, Common
Emitter, Common Base and Common Collector configurations, Comparison of CE, CB and CC
configurations.

Field Effect Transistor (FET): Construction, Principle of Operation, Comparison of BJT and FET,
Biasing FET.

1. Basic Electrical and electronics Engineering, M S Sukija and TK Nagasarkar, Oxford University, 1* Edition,
2012.

2. Basic Electrical and electronics Engineering, D P Kothari and I J Nagarath, McGraw Hill Education, 2™¢
Edition, 2020.

1. Electronic Devices and Circuits, R. L. Boylestad and Louis Nashelsky, PEI and PHI,9th Edition, 2006.

2. Millman’s Electronic Devices and Circuits,J. Millman, C. C. Halkias and Satyabrata Jit, TMH, 2nd Edition,
1998.

3. Fundamentals of Electrical Engineering, L. S. Bobrow, Oxford University Press, 12th edition, 2003.

4. Electrical and Electronic Technology, E. Hughes, Pearson Education, 10th Edition, 2010.

5. Electrical Engineering Fundamentals, V. D. Toro, Prentice Hall India, 2nd Edition, 1989.

https://www.igniteengineers.com
https://www.ocw.nthu.edu.tw
https://www.uotechnology.edu.iq
https://www.iare.ac.in

el S

1. Course template

141|Page

http://www.igniteengineers.com/
http://www.ocw.nthu.edu.tw/
http://www.uotechnology.edu.iq/
http://www.iare.ac.in/

9

NN bW

Tutorial question bank

Tech talk topics
Assignments

Definitions and terminology
Open ended experiments
Model question paper-I
Model question paper-II
Lecture notes

10. Power point presentations
11. ELRV videos

142 |Page

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal - 500 043, Hyderabad, Telangana

3
A0
7
Tow

A
2 &
% ron W

\j\

COURSE CONTENT
ENGINEERING CHEMISTRY LABORATORY

I Semester: CSE / IT
II Semester: AE / ME / CE / ECE / EEE / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
AHSE06 Foundation
- - 2 1 40 60 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

Prerequisite: Basic Principles of Chemistry

I. COURSE OVERVIEW:

The course encourages introducing analytical tools in an Engineering perspective. The course efforts to
provide the basic knowledge of analytical methodology, outlines the importance of volumetric analysis,
comprehensive instrumental analysis for properties of fuels, colorimetric analysis and spectroscopic analysis.
This practical approach gives the essence of analytical chemistry for skill development in determinations of
materials properties and its viability in the industry.

II. COURSES OBJECTIVES:
The students will try to learn:

'V The quantitative analysis to know the strength of unknown solutions by instrumental methods.
V1 The troubles of hard water and its estimation by analytical techniques.

VI The applications of appropriate lubricant for finely tuned machinery.

VIII The basic knowledge on quantity of light absorbed by the materials.

ITII. COURSE OUTCOMES:
After successful completion of the course students should be able to:

Use analytical techniques like conductometry and pH metry to recognize the electrical properties of
solutions

COl1
CO2 Utilize the potentiometer to characterize and measure the electrical potential of an analyte
CO3 Implement the principles of water analysis for domestic and industrial applications.

CO4 Synthesize the polymeric materials from monomers with polymerization process

Select different types of lubricants to know its properties for the proper lubrication of machinery in

CO3 industries.

CO6 Identify the absorption tendency of solids or liquids by using colorimetry

143 |Page

IV. COURSE CONTENT:

1. GETTING STARTED EXERCISES

1.1 Introduction to Chemistry Laboratory

The fundamental concepts and theories required for carrying out qualitative and quantitative analysis. Detailed

explanation on the analytical techniques used for qualitative analysis. Emphasis on instrumental method of

analysis and its advantages over conventional methods.

i.
ii.
1il.
iv.
v.

Vi.

Vii.

Types of analysis

Difference between qualitative and quantitative analysis

Common techniques of qualitative and quantitative analysis
Introduction to instrumental method of analysis

Introduction to basic techniques and handling of common apparatus
Discussion of Material Safety Data Sheet (MSDS) of chemicals

Identification of toxic signs and safety procedures of chemical laboratory

1.2 Safety Guidelines to Chemistry Laboratory

The chemistry laboratory must be a safe place in which to work and learn about chemistry.

ii.

iil.

iv.

vi.

Wear a chemical-resistant apron.

Be familiar with your lab work sheet before you come to lab. Follow all written and verbal instructions
carefully. Observe the safety alerts in the laboratory directions. If you do not understand a direction or
part of a procedure, ask the teacher before proceeding.

When entering the laboratory room, do not touch any equipment, chemicals, or other materials without
being instructed to do so. Perform only those experiments authorized by the instructor.

If you take more of a chemical substance from a container than you need, you should not return the
excess to the container. This might cause contamination of the substance remaining. Dispose of the
excess as your instructor directs.

Never smell anything in the laboratory unless your teacher tells you it is safe. Do not smell a substance
by putting your nose directly over the container and inhaling. Instead, waft the vapors toward your nose
by gently fanning the vapors toward yourself.

Do not directly touch any chemical with your hands. Never taste materials in the laboratory.

vii. Work areas should be kept clean and tidy at all times. Always replace lids or caps on bottles and jars.

1.3 Data recording and reports

Students must record their experimental values in the provided tables in this laboratory manual and reproduce
them in the laboratory worksheets. Worksheets are integral to recording the methodology and results of an
experiment. In engineering practice, the laboratory worksheets serve as a valuable reference to the technique
used in the laboratory. Note that the data collected will be an accurate and permanent record of the data obtained
during the experiment and the analysis of the results.

144 |Page

2. CONDUCTOMETRY

2.1 Estimation of the concentration of strong acid using conductometer
i. The basic principle of conductometric titrations
ii. Titration of unknown solution of acid with base

iii. Graphical plots on volume of titrant vs. conductance

3. CONDUCTOMETRY

3.1 Estimation of concentration of strong and weak acid in an acid mixture using conductometer

i. The basic principle of conductometric titrations
ii. Titration of unknown solution of mixture of acid with base
ii. Graphical plots on volume of titrant vs. conductance

4. POTENTIOMETRY

4.1 Estimation of iron content of the given solution by K>Cr:07 using potentiometer
i. The basic principle of potentiometric titrations
ii. Titration of Mohr’s salt with potassium dichromate

iii. Graphical plots on volume of titrant vs. potential

5. POTENTIOMETRY

5.1 Estimation of concentration of hydrochloric acid using potentiometer
i. The basic principle of conductometric titrations
ii. Titration of unknown solution of acid with base
iii. Graphical plots on volume of titrant vs. conductance

6. pH METRY

6.1 Determination of strength of given hydrochloric acid using pH meter
1. The basic principle of pH metry

ii. Titration of unknown solution with standard acid

iii. Graphical plots on volume of titrant vs. pH to obtain equivalence point

7. MEASUREMENT OF TOTAL DISSOLVED SOLIDS IN WATER

7.1 Measurement of total dissolved solids (TDS) in different water samples
1. Specifications of potable water
i. Measure the total dissolved solids in different water samples by TDS meter

8. COMPLEXOMETRY METHOD

8.1 Estimate the total hardness of water by EDTA
i. Principle of complexometric titration
ii Titration of water samples by using EDTA to find the total hardness in water.

9. PRECIPITATION METHOD

9.1 Determination of chloride content in water by Argentometry
i. Principle of Argentometric titration
ii. Titration of water samples by using AgNOs to find the chloride content in water.

145|Page

10 PREPARATION OF POLYMER

10.1 Preparation of Thiokol rubber by using sodium polysulphide.

I.
ii.

Significance of artificial rubbers in industries
Synthesize the Thiokol rubeer by using sodium polysulphide and ethylene dichloride

11. VISCOSITY OF LUBRICANT

11.1 Determine the viscosity of the lubricants using Ostwald’s viscometer

1.
ii.

The principle of viscosity of lubricant

Significance of viscosity index of lubricant

iii Viscosity of given lubricant by using Ostwald’s viscometer

12. PROPERTIES OF LUBRICANTS

12.1 Determine the flash and fire points of lubricants

1.

ii.

13.

13.1

1.

il.

Significance of flash and fire point of lubricant in industries
Flash and Fire points of a given lubricant by using Pensky Martens flash point apparatus

CLOUD AND POUR POINT OF LUBRICANTS

Determination of cloud and pout point of lubricants
Significance of cloud and pout point of lubricant in industries
Cloud and pour point of given lubricants by using cloud and pour point tester.

14. COLORIMETRY
14.1 Estimate the metal ion concentration using colorimeter

1.

il.
iii

Complexation of metal ion with ligands
Detection of absorbance of the colored metal -ligand complex solution
Graphical determination of concentration of the metal ions in the solution

V. TEXTBOOKS:

1.K. Mukkanti et. al,Practical Engineering Chemistry, B.S. Publications, Hyderabad.
2. Vogel’s, Quantitative chemical analysis, prentice Hall, 6" Edition, 2009.

VI. REFERENCE BOOKS:

1.

Solanki, M. K. Engineering Chemistry Laboratory Manual. (Edu creation Publishing, 2019).

Jeffery, G. H. in TEXTBOOK OF QUANTITATIVE CHEMICAL ANALYSIS (ed John Wiley and Sons)

(1989).

Gary-D-Christian, P. K. S. D., Kevin A. Schug. Analytical-Chemistry-by-Gary-D-Christian. 7 edn, Vol. 7

826 (Wiley, 2014).

Budinski, Kenneth G., Engineering materials: properties and selection, 5th edition, Prentice-Hall, 1996,

pg.423.

B. Ramadevi and P. Aparna, S Chand publications, lab manual for engineering chemistry, S Chand

publications, NewDelhi, 1% Edition 2022.

VII. ELECTRONICS RESOURCES:

6. https://nptel.ac.in/translation

7. https://nptel.ac.in/courses/115105120

8. https://archive.nptel.ac.in/courses/122/101/122101001/#

VIII. MATERIALS ONLINE

Chemistry Lab Course Template

2. Chemistry Lab Manual

146 |[Page

INSTITUTE OF AERONAUTICAL ENGINEERING

3 (Autonomous)
. & Dundigal - 500 043, Hyderabad, Telangana

7 \2
% por \\®

m
)
<
)
7,

COURSE CONTENT

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

II Semester: AERO / MECH / CIVIL

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
AEEE03 Foundation
- - 2 1 40 60 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: Nil

This course serves as a foundation course on electrical engineering. It covers a broad range of fundamental
electrical circuits and devices. The concepts of current, voltage, power, basic circuit elements, electrical and
electronic devices and their application in more complex electrical systems are to be imparted to the students.

The students will try to learn:
I. The basic laws for different circuits. 1. To introduce the concepts of electrical circuits and its
components.
II. To understand magnetic circuits, DC circuits and AC single phase and three phase circuits.
III. To study and understand the different types of DC, AC machines and Transformers.
IV. To import the knowledge of various electrical installations.
V. To introduce the concept of power, power factor and its improvement.
VI. To introduce the concepts of diodes and transistors.
VII. To impart the knowledge of various configurations, characteristics and application

At the end of the course, students should be able to:

CcOo1 To analyze and solve electrical circuits using network laws and theorems.
CcO2 To understand and analyze basic Electric and Magnetic circuits.

COo3 To study the working principles of Electrical Machines.

CO4 To introduce components of Low Voltage Electrical Installations.

CcO5 To identify and characterize diodes.

CcOo6 To study the characteristics of BIT and FET

1) For safety purpose the students should compulsory wear leather shoes.

2) Students should come in uniform prescribed.

i. For boys, half sleeve shirts, tucked in trousers

ii. For ladies, half sleeve overcoat, hair put inside the overcoat

3) After giving connections, staff members should be asked to verify the circuit connections.
4) Before staring the circuit connections check whether the circuit breaker is in OFF condition.
5) Circuit should be switched ON only after getting permission from the staff member.

6) To be careful with moving parts in the machine.

147 |Page

7)
8)

)]
2)
3)
4)
5)
6)

To come prepared with procedure relevant to the experiment.

Unplug electrical equipment after use.

Don’t assume that the power is disconnected.

Don’t attempt to repair electrical equipment.

Don’t come with any ornaments when working with electrical machines.

Don’t use an earth connection as a neutral.
Don’t touch any parts unnecessarily.

Don’t keep any fluids and chemicals nearing instruments and circuits.

148 |Page

EXERCISES FOR BASIC ELECTRICAL AND ELECTRICAL ENGINEERING
LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory
practice session

1. Getting Started Exercises

1.1 Introduction to electrical circuits

1. Understand the basic electrical equipment’s used in the laboratory.

2. Become familiar with the operation and usage of basic DC electrical laboratory devices, namely DC
power supplies and digital multimeter's.

3. Learn the measurement of resistance values using colour code and digital multimeter.

4. Learn the basics of circuit design using Simulink.

Try
1.Calculate the resistance value of Resistor — 1, Resistor — 2 and Resistor — 3 using colour code and verify
using a digital multimeter.

AL TF O LF ATl

Resistor — 1 Resistor — Resistor —

2. Design Circuit — 1 using Simulink and find the voltages V4, V2, V3 and Current I. Where Vs = 6V,
R1=100Q, R, =220 Q, Rs = 1k Q.

Ry Rz Rs3
| V1 V2 V3
-
Il
Vv
Circuit -1

149 |Page

3. Design Circuit — 2 using Simulink and find the currents |4, I and Is. Where Vs = 6 V, Ry = 100 Q, R; =
220 Q, Rz = 1k Q.

R1 Rz R3

<
|
mln

A

Circuit-2
2. Exercises on Basic Electrical Circuit

2.1 Ohm’s law

1.Examine Ohm'’s law of Circuit — 3 and draw the V-| characteristic of linear resistors R = 1k Q

Circuit - 3

Try

1. Verify Ohm'’s law of Circuit — 3 using Simulink and draw the V-I characteristics of a linear resistor R

=470k Q
2. An electric heater takes 1.48 kW from a voltage source of 220 V. Find the resistance of the heater.

2.2 Kirchhoff’'s voltage law

1. Examine Kirchhoff's voltage law using basic series DC Circuit - 4 with resistors. Where Vs = 6V,
Ri=100Q, R, =220 Q, R3 = 1k Q.

L. .

+

RSV,

= + +

Vs C_) \" R, V,
.

R <V,

Circuit-4

Try
1. Design and Verify Kirchhoff's voltage law for Circuit — 4 using Simulink.

2. Determine the voltage V. by replacing the resistor R, = 150 Q.

3. Find the total current | flowing through the Circuit — 4.

2.3 Kirchhoff’'s current law

1. Examine Kirchhoff's current law using basic parallel DC Circuits - 5 with resistors. Where Vs = 6V,

R1=100Q, R, =220Q,R3 =1k Q

150 |Page

&)

Circuit-5

Try
1. Design and Verify Kirchhoff's current law for Circuit — 5 using Simulink.
2. Determine the voltage I» by replacing the resistor R, = 150 Q.

3. Exercises on Transformers

3.1 Measurement of Voltage, Current and Real Power in primary and Secondary
Circuits of a Single Phase Transformer

1. Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-
Phase Transformer.

(0-5A,0-300V)

(0-5A,0-300V)
e UPF
O—M L (0-10)AMIL_ i
5 5 (D
(0-10)A MI m

0,
<!
e———

N
=
(=
W,
-
2 "
: : = |
P = = > o
2 = =3 Q A
£ V) 2 3 2 s
%)
Fi]
@ < HV

Single Phase 230V Single Phase 3KVA

Variac Transformer

Circuit-6
Try
1. Simulate a single-phase transformer circuit in NI Multisim Circuit-6
2. Measure voltage, current, and real power in both primary and secondary circuits.
3. Understand transformer behaviour under load conditions.

3.2 Verification of Relationship between Voltages and Currents (Star-Delta, Delta-
Delta, Delta-Star, Star-Star) in a Three Phase Transformer

1. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star Delta, Delta-
Delta, Delta-star, Star-Star)

151 |Page

g or-

o z
(0-10)A MI
~
=
)
; TPST Fuse £ 1= (G-I%MI
w N
b ®—/ A al Tw @J
= i -
= i (0—600)VMI R
%@—{—GOJ .
172] ¥ (0-600)V ML
S N i’ B B
2 el /_}9_
£ ¢
" e
3 Phase Variac J |
R 4
Delta to Delta
Circuit-7
(0-10)A MI (0-10)AMI
N ®
=) oS
s <
% TPST Fuse D) (0-600)V MI
- — 3 3
1- ' Y NG awn] Y L
oy wl
‘e }: J 3 £ o
3@—4’ | A
g [o-s00vMI | B ~—0 g ns—< B D
s @——00 A
] (—I j ¢
>
a
- & N] <l _ N
3 Phase Variac iy r
Star to Star
Circuit-8
(0-10)A MI
O-10)AMI [2 @
3 @t
A -600)V MI
; TPST Fuse j £ (0 ¥ 0) ?
i)
3 ®_/ = o 2 5 Y
RS 20 — = : L
& 3 F o
3 : i é A
O i (0-600)V MI o . D
< i N ™]
s @——00—] ot 2B B
g 3 4‘ 2 | \/
o ¥ o
- j >
3 Phase Variac Jl \> N
R R
Delta to Star
Circuit-9

152 |Page

O-10)AMI

TPST Fuse g 3 ” (0-10)AMI —
. - (o 600)V MI » N\ Y

-N_
—
4
v,
@
i®_/ 20A — T§ \“\d L
= :; z (0-600)VMI o | o
S ood | —] — .
) i £
2 i B B [.® }8 , B (D
D) ®——0N—] ¢ o
2 2I¢ —
Q. >
< (

> ® N N]

3 Phase Variac ~ Q

Star to Delta
Circuit- 10

Try

1. Simulate different three-phase transformer configurations:

Star-Star (Y-Y): Circuit 7

Delta-Delta (A-A): Circuit 8

Delta-Star (A-Y): Circuit 9

Star-Delta (Y-A): Circuit 10

2. Verify the theoretical relationship between line and phase voltages/currents in each configuration.
3. Analyze the voltage and current transformation ratios under balanced load conditions.

4. Measurement of Active and Reactive Power in a balanced Three phase circuit

1. Measurement of Active and Reactive Power in a balanced Three-phase circuit

N . (0-1)AMI | T i
% <‘R [{\ : - YY) - : R
= TPST Fuse D) (VA :
uw; [c 1
— ®_/r — 1 1
> 20A - l\:i ! L
= ' | A% (0-600)V . | vl o
= L " ! 1
é @J - v | A
s N = P
;O 00— =
2 - : -
= |3 T
[
3 Phase Variac (D*lﬂA, 0*600‘7)
UPF

Circuit - 11
Try
1. Simulate a balanced three-phase circuit circuit 11.
2. Measure active (P) and reactive (Q) power in the system.
3. Use of two-wattmeter or power measurement blocks for three-phase power analysis.

5. Performance Characteristics of a Separately Excited DC Shunt Motor

1. Conduct brake test on dc shunt motor and draw its speed - torque characteristics.

153 |Page

1 POINT STARTER

Circuit - 12
Try
1. Study and plot the performance characteristics of a separately excited DC shunt motor circuit-12.
2. Obtain the following characteristics:
Speed vs Armature Current
Torque vs Armature Current
Speed vs Torque
6. Performance Characteristics of a Three phase Induction Motor
1. Obtain the performance characteristics of a 3-Phase squirrel cage induction motor by conducting
brake test for circuit-13.
" Circuit - 13
Try
1. Determine the performance characteristics of a three-phase squirrel cage induction motor Circuit
2. Plot the following graphs:
Speed vs Torque
Torque vs Current
Speed vs Current
3. Understand the motor behavior under different loading conditions

7. No Load Characteristics of a Three-phase Alternator

. Draw the open circuit characteristics of an alternator for circuit-14

N

-]
5
3
soa/lza Lﬂ
v

Circuit - 14

154 |Page

Try
1. Determine the Open Circuit Characteristics (OCC) of a synchronous alternator.
2. Plot the generated voltage (E) versus field current (If) at synchronous speed with no load connected.

8. Study and operation of (i) Multimeters (ii) Function Generator (iii) Regulated Power
Supplies (iv) CRO

8.1 Multimeters

1. Study the working of Analog and Digital Multimeters and measure V, |, R for a test circuit.

Circuit - 15
Try
1. Measure voltage, current, and real power for test circuits
2. Current and real power for test circuits

8.2 Function Generator

1. Study the operation of a Function Generator and observe waveforms on CRO..

99939090
XG0 1 @

[&

FSAKON
Circuit - 16
Try
1. Understand the working principle and usage of the Function Generator
2. Perform basic operations and measurements using each instrument.

8.3 Regulated Power Supplies

1. Verify the operation of a Regulated Power Supply (0-30 V DC).

Circuit- 17

Try
1. Understand the working principle and usage of RPS Circuit 17
2. Perform basic operations and measurements using each instrument.

155|Page

8.4 CRO

1. Measure amplitude and frequency of a sine wave using CRO

Q| 5 2o st
(VU | S
e ——y | 2 -Q:i°'0:. :‘-;:—I-L J
= ol
|
¥ S (T i
Circuit - 18

Try
1. Understand the working principle and usage of CRO Circuit-18
2. Perform basic operations and measurements using each instrument.

9 Exercises on PN junction diode characteristics

Study the characteristics of PN junction diode as shown in Figure. 1
1K 0-200uA

AMN—(a)=
{D sy 1N40077T (D 020V
1

Figure. 1 diode as forward bias

Try
1. Plot the V-1 Characteristics of germanium diode and find the cut in voltage.

2. Design diode acts as switch and plot the switching times of diode.

10 Zener diode characteristics and voltage regulator

Study the characteristics of Zener diode as shown in Figure. 2

0-200mA
1kQ + _
AA @
A/ "
(t) 0-15V DC ® o0-20v
source -

J

Figure. 2 Circuit diagram for Zener diode as forward bias

156 |Page

Try

1. Design a Zener voltage regulator circuit to drive a load of 6V, 100 mW from an unregulated
input supply of Vmin = 8V, Vmax = 12V using a 6V Zener diode. .
Design square wave generator using Zener diode

Design for a Zener Transistor series voltage regulator circuit to drive a load of 6V, 1w,

i A~ W

from a supply of 10V with a £3V ripple voltage

1. Design a half-wave rectifier circuit and analyze its output as shown in Figure. 3

2. Analyze the rectifier output using a capacitor in shunt as a filter as shown in Figure. 3

0-200 mA
1N4007

= A
N | | P ©,
10V + +
50 Vde (v) Vac

(=)

<

Figure. 3 Circuit Diagram for Half Wave Rectifier without Filter

Try

1. Design half wave rectifier with an applied input AC power is 100 watts, and it is to deliver
an output power is 40 watts.

2. Design half wave rectifier with an AC supply of 230 V is applied through a transformer of turn ratio
10 : 1. Observe the output DC voltage, peak inverse voltage and identify dc output voltage if
transformer turns ratio changed to 20:1.

1. Design a Full-wave rectifier circuit and analyse its output as shown in Figure. 4

2. Analyse the rectifier output using a capacitor in shunt as a filter as shown in Figure. 4

N D1 0-200 mA

o +f';\' .
| 1
10V + "
50Hz R () Vde(v) Vac
AC Lo -]
D2 4

Figure 4: Circuit Diagram for Full Wave Rectifier without Filter

Try
1. Design a full wave rectifier with step down transformer and center tapped transformer. Justify the
operation.

2. Design Full wave rectifier with capacitive filter using 10uF and 1uF. Observe the ripple

1.Design a FET circuit and analyse its output as shown in Figure. 5

157 |Page

Ie

_ + Re¢
A =AM
S 1.0kOhm
I o . (0-200m4)
RB B [
an— oy B =
j00ka =" 2
(0-200)pA
+ v + - +
Ves _Z7| 'BE ™ v +
vV) Q CE
(0-30V) =< @©-20V)\ ") 0-20V) ;7\ Ve
- - B r_ (0-30V)

Figure 5: Circuit Diagram FET IN CS Configuration

Try

1. Design and simulate the FET in Common-Source configuration using NI LabVIEW (Multisim/ELVIS
environment).

2. Obtain and verify the Output Characteristics of the FET in NI Multisim.

1. A Chakrabarti, CircuitTheory, Dhanpat Rai Publications, 2004.

1. JPJ Millman, C C Halkias, Satyabrata Jit, Millman’s Electronic Devices and Circuits, Tata McGraw
Hill, 2" Edition, 1998.
2. RL Boylestad, Louis Nashelsky, Electronic Devices and Circuits, PEI/PHI, 9" Edition, 2006.

https://www.nptel.ac.in/Courses/117106108
https://www.gnindia.dronacharya.info/EEEDept/labmanuals.html
https://www.textofvideo.nptel.iitm.ac.in
https://www.textofvideo.nptel.iitm.ac.in/

B

Course template
. Lab manual

N =

1. M.S. Sukija and T.K. Nagasarkar, “Basic Electrical and electronics Engineering”, Oxford
University press, 1% Edition, 2012.

2. D.P. Kothari and 1.J. Nagarath, “Basic Electrical and electronics Engineering”, McGraw Hill
Education, 2" Edition,2020.

1. JPJ Millman, C C Halkias, Satyabrata Jit, Millman’s Electronic Devices and Circuits, Tata
McGraw Hill, 2 Edition, 1998.
2. RL Boylestad, Louis Nashelsky, Electronic Devices and Circuits, PEI/PHI, 9" Edition, 2006.
3. V.D. Toro, Prentice Hall India, “Electrical Engineering Fundamentals” 2™ Edition, 1989.

5. https://www.nptel.ac.in/Courses/117106108
6. https://www.gnindia.dronacharya.info/EEEDept/labmanuals.html

158 |Page

N —

https://www.textofvideo.nptel.iitm.ac.in
https://www.textofvideo.nptel.iitm.ac.in/

Course template

. Lab manual

159 |Page

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal - 500 043, Hyderabad, Telangana

o002
’/ON

S
4

>
2 &
Ok rop

COURSE CONTENT

PROGRAMMING FOR PROBLEM SOLVING LABORATORY

IT Semester: AE/ME /CE /ECE /EEE / CSE / IT / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
ACSEO07 Foundation
0 0 2 1 40 60 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: There is no prerequisite to take this course

I. COURSE OVERVIEW:

The course is designed with the fundamental programming skills and problem-solving strategies necessary to
tackle a wide range of computational challenges. Through hands-on programming exercises and projects,
students will learn how to write code, analyze problems and develop solutions using various programming
languages and tools. The course will cover fundamental programming concepts and gradually progress to more
advanced topics.

II. COURSES OBJECTIVES:
The students will try to learn
I The fundamental programming constructs and use of collection data types in Python.
II The ability to develop programs using object-oriented features.
IIT Basic data structures and algorithms for efficient problem-solving.
IV Principles of graph theory and be able to apply their knowledge to a wide range of practical problems
across various disciplines.

IT1. COURSE OUTCOMES:
At the end of the course students should be able to:

CO1 Adapt programming concepts, syntax, and data structures through hands on coding exercises
CO2 Develop the ability to solve a variety of programming problems and algorithms using python
CO3 Implement complex and custom data structures to solve real-world problems.

CO4 Demonstrate proficiency in implementing graph algorithms to solve variety of problems and
scenarios.

CO5 Develop critical thinking skills to solve the various real-world applications using graph theory.

o6 Learn the importance of numerical methods and apply them to tackle a wide range of
computational problems.

160 |[Page

IV. COURSE CONTENT:

EXERCISES FOR PROGRAMMING FOR PROBLEM SOLVING
LABORATORY

Note: Students are encouraged to bring their own laptops for
laboratory practice sessions.

1. Getting Started Exercises

1.1 Two Sum

Given an array of integers nums and an integer target, return indices of the two numbers such that
they add up to target. You may assume that each input would have exactly one solution, and you may
not use the same element twice. You can return the answer in any order.

Input: nums = [2, 7, 11, 15], target = 9

Output: [0, 1]

Explanation: Because nums[0] + nums[1] == 9, so return [0, 1].
Input: nums = [3, 2, 4], target = 6

Output: [1, 2]

Input: nums = [3, 3], target = 6

Output: [0, 1]

Hints:

def twoSum(self, nums: List[int], target: int) -> List[int]:
a=[]

Write code here

return a

1.2 Contains Duplicate

Given an integer array nums, return true if any value appears at least twice in the array, and return
false if every element is distinct.

Input: nums = [1, 2, 3, 1]

Output: true

Input: nums = [1, 2, 3, 4]

Output: false

Input: nums =[1,1,1,3,3,4,3,2,4,2]
Output: true

Hints:
def containsDuplicate(self, nums):
a = set() # set can have only distinct elements

Write code here

161 |Page

return False

1.3 Roman to Integer

Roman numerals are represented by seven different symbols: |, V, X, L, C, D and M.

Symbol Value
I 1

\ 5

X 10

L 50

C 100

D 500
M 1000

For example, 2 is written as Il in Roman numeral, just two ones added together. 12 is written as XI|,
which is simply X + II. The number 27 is written as XXVII, which is XX + V + Il.

Roman numerals are usually written largest to smallest from left to right. However, the numeral for
four is not Illl. Instead, the number four is written as IV. Because the one is before the five we subtract
it making four. The same principle applies to the number nine, which is written as IX. There are six
instances where subtraction is used:

| can be placed before V (5) and X (10) to make 4 and 9.

X can be placed before L (50) and C (100) to make 40 and 90.

C can be placed before D (500) and M (1000) to make 400 and 900.

Given a roman numeral, convert it to an integer.
Input: s = "[lI"

Output: 3

Input: s = "LVIII"

Output: 58

Hints:
def romanToInt(self, s: str) -> int:

Write code here

return number

1.4 Plus One

You are given a large integer represented as an integer array digits, where each digits[i] is the i*" digit
of the integer. The digits are ordered from most significant to least significant in left-to-right order.
The large integer does not contain any leading 0's. Increment the large integer by one and return the
resulting array of digits.

Input: digits = [1, 2, 3]

Output: [1, 2, 4]

Explanation: The array represents the integer 123.
Incrementing by one gives 123 + 1 = 124.

Thus, the result should be [1, 2, 4].

Hints:
def plusOne(self, digits: List[int]) -> List[int]:

162 |Page

n = len(digits)
Write code here

return digits

1.5 Majority Element

Given an array nums of size n, return the majority element. The majority element is the element that
appears more than |n / 2] times. You may assume that the majority element always exists in the array.

Input: nums = [3, 2, 3]

Output: 3

Input: nums =1[2,2,1,1, 1, 2, 2]
Output: 2

Hints:

def majorityElement(self, nums):

write code here

1.6 Richest Customer Wealth

You are given an m x n integer grid accounts where accounts[i][j] is the amount of money the i
customer has in the j' bank. Return the wealth that the richest customer has. A customer's wealth is
the amount of money they have in all their bank accounts. The richest customer is the customer that
has the maximum wealth.

Input: accounts = [[1, 2, 3], [3,2,1]]

Output: 6

Explanation:

1st customer has wealth=1+2+3 =6

2nd customer has wealth=3 +2 +1 =6

Both customers are considered the richest with a wealth of 6 each, so return 6.
Input: accounts = [[1, 5], [7,3],[3,5]]

Output: 10

Explanation:

1st customer has wealth = 6

2nd customer has wealth = 10

3rd customer has wealth = 8

The 2nd customer is the richest with a wealth of 10.
Input: accounts = [[2,8,7],[7,1,3],[1,9,5]]

Output: 17

Hints:
def maximumWealth(self, accounts: List[List[int]]) -> int:

write code here

163 |Page

1.7 Fizz Buzz

Given an integer n, return a string array answer (1-indexed) where:

answer[i] == "FizzBuzz" if i is divisible by 3 and 5.

answer[i] == "Fizz" if i is divisible by 3.

answer[i] == "Buzz" if i is divisible by 5.

answer[i] == i (as a string) if none of the above conditions are true.
Input: n = 3

Output: ["1","2","Fizz"]

Input:n =5

Output: ["1","2","Fizz","4","Buzz"]

Input: n = 15

Output: ["1","2","Fizz","4","Buzz","Fizz","7","8" "Fizz","Buzz","11","Fizz","13"," 14", "FizzBuzz"]
Hints:

def fizzBuzz(self, n: int) -> List[str]:

write code here

1.8 Number of Steps to Reduce a Number to Zero

Given an integer num, return the number of steps to reduce it to zero. In one step, if the current
number is even, you have to divide it by 2, otherwise, you have to subtract 1 from it.

Input: num = 14
Output: 6

Explanation:

14 is even; divide by 2 and obtain 7.
7 is odd; subtract 1 and obtain 6.
6 is even; divide by 2 and obtain 3.
e 3 s odd; subtract 1 and obtain 2.
e 2 iseven; divide by 2 and obtain 1.
e 1is odd; subtract 1 and obtain 0.
Input: num = 8

Output: 4

Explanation:

e 8is even; divide by 2 and obtain 4.

e 4iseven; divide by 2 and obtain 2.

e 2 iseven; divide by 2 and obtain 1.

e 1 is odd; subtract 1 and obtain 0.
Input: num = 123

Output: 12

Hints:
def numberOfSteps(self, n: int) -> int:

write code here

164 |Page

1.9 Running Sum of 1D Array

Given an array nums. We define a running sum of an array as runningSum[i] = sum (nums[0]...nums][i]).
Return the running sum of nums.

Input: nums = [1, 2, 3, 4]

Output: [1, 3, 6, 10]

Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].

Input: nums =[1,1,1,1, 1]

Output: [1, 2, 3,4, 5]

Explanation: Running sum is obtained as follows: [1, 1+1, T+1+1, T+1+1+1, T+1+1+1+1].

Input: nums = [3, 1, 2, 10, 1]

Output: [3, 4, 6, 16, 17]

Hints:
def runningSum(self, nums: List[int]) -> List[int]:

write code here

return answer

1.10 Remove Element

Given an integer array nums and an integer val, remove all occurrences of val in nums in-place. The
order of the elements may be changed. Then return the number of elements in nums which are not
equal to val. Consider the number of elements in nums which are not equal to val be k, to get
accepted, you need to do the following things:

e Change the array nums such that the first k elements of nums contain the elements which are
not equal to val. The remaining elements of nums are not important as well as the size of
nums.

e Return k.

Input: nums = [3, 2, 2, 3], val = 3

Output: 2, nums = [2, 2, _, _]

Explanation: Your function should return k = 2, with the first two elements of nums being 2.
It does not matter what you leave beyond the returned k (hence they are underscores).
Input: nums =[0,1,2,2,3,0,4,2], val = 2

Output: 5 nums = [0,1,4,0,3,___]

Explanation: Your function should return k = 5, with the first five elements of nums containing 0, 0, 1,
3,and 4.

Note that the five elements can be returned in any order.

It does not matter what you leave beyond the returned k (hence they are underscores).

Hints:
def removeElement(self, nums: List[int], val: int) -> int:

write code here

165|Page

return len(nums)

2. Matrix Operations

2.1 Add Two Matrices

Given two matrices X and Y, the task is to compute the sum of two matrices and then print it in
Python.
Input:
X=1[1, 2, 3],
[4, 5, 6],
(7,8, 9]l

Y=1[S 8, 7]
[6, 5, 4],
(3,2, 1]

Output:

Result = [[10, 10, 10],
[10, 10, 10],
[10, 10, 10]]

Hints:
Program to add two matrices using nested loop

X = [[1: 2, 3]:
[4, 5, 6],
[7, 8, 9]]

Y = [[918:7]:
[6:5:4]:
[3,2,1]]

result = [[0,0,0],
[0,0,0],
[0,0,0]]

iterate through rows
for i in range(len(X)):
write code here

for r in result:
print(r)

TRY

1. Take input as X = [[10, 20, 30],[41, 52, 63], [47, 58, 6911 Y = [[19,18,17],[66,35,49], [13,21,11]] and
verify the results.

2.2 Multiply Two Matrices

Given two matrices X and Y, the task is to compute the multiplication of two matrices and then print it.
Input:
X=1[1,7, 3],

[3, 5, 6],

166 |[Page

[6, 8, 9]

Y=1[71112]
[61 7[3[0]I
(4,59 1]

Output:

Result = [[55, 65, 49, 5],
[57, 68,72, 12],
[90, 107, 111, 21]]

Hints:
Program to multiply two matrices using list comprehension

take a 3x3 matrix
A = [[12) 7, 3])
[4.' 5) 6])
[7, 8, 9]]

take a 3x4 matrix
B = [[5: 8, 1, 2]:
[6J 7) 3) 0])
[4, 5, 9, 11]

result will be 3x4
write code here

for r in result:
print(r)

TRY

1. Take input as X = [[11, O, 30],[-41, -2, 63], [41, -5, -911 Y = [[19,-48,17],[-6,35,19], [13,1,-9]] and verify
the results.

2.3 Transpose of a Matrix

A matrix can be implemented using a nested list. Each element is treated as a row of the matrix. Find
the transpose of a matrix in multiple ways.

Input: [[1, 2], [3, 4], [5, 6]]

Output: [[1, 3, 5], [2, 4, 6]]

Explanation: Suppose we are given a matrix
([, 2,
(3. 4],
(5, 6]

Then the transpose of the given matrix will be,
11, 3,5,
[2, 4, 6]]

Hints:

Program to multiply two matrices using list comprehension

take a 3x3 matrix

A = [[12, 7, 3]:
[4, 5, 6],
[7, 8, 9]]

result will be 3x4

167 |Page

write code here

for r in result:
print(r)

TRY

1. Take input as X = [[11, O, 30],[-41, -2, 63], [41, -5, -9]] and verify the results.

2.4 Matrix Product

Matrix product problem we can solve using list comprehension as a potential shorthand to the
conventional loops. Iterate and find the product of the nested list and at the end return the
cumulative product using function.

Input: The original list: [[1, 4, 5], [7, 3], [4], [46, 7, 3]]
Output: The total element product in lists is: 1622880

Hints:
Matrix Product using list comprehension + loop

def prod(val):

write code here

initializing list
test_list = [[1, 4, 5], [7, 3], [4], [46, 7, 3]]

TRY

1. Take input list: [[1, 4, 5], [7, 3], [4], [46, 7, 3]] and verify the result.

3. Stack

3.1 Stack implementation using List

A stack is a linear data structure that stores items in a Last-In/First-Out (LIFO) or First-In/Last-Out
(FILO) manner. In stack, a new element is added at one end and an element is removed from that end
only. The insert and delete operations are often called push and pop.

Push

4 first out
Stack ’
Insertion and Deletion
happen on same end
'i‘L -

The functions associated with stack are:

e empty() - Returns whether the stack is empty
e size() — Returns the size of the stack
o top() / peek() — Returns a reference to the topmost element of the stack
e push(a) - Inserts the element ‘a’ at the top of the stack
e pop() — Deletes the topmost element of the stack
Hints:

Stack implementation using list
top=0

168 |Page

mymax=>5
def createStack():
stack=[]
return stack
def isEmpty(stack):

write code here

def Push(stack,item):

write code here

def Pop(stack):

write code here

create a stack object

stack = createStack()

while True:
print("1.Push")
print("2.Pop")
print("3.Display")
print("4.Quit")

write code here

TRY

1. Take input operations as [PUSH(A),PUSH(B),PUSH(C),POP,POP,POP,POP,PUSH(D)] and verify the
result.

2. Take input operations as [POP, POP, PUSH (A), PUSH (B), POP, and PUSH(C)] and verify the result.

3.2 Balanced Parenthesis Checking

Given an expression string, write a python program to find whether a given string has balanced
parentheses or not.

Input: {{[{O}}
Output: Balanced

Input: [{{}(]
Output: Unbalanced

Using stack One approach to check balanced parentheses is to use stack. Each time, when an open
parentheses is encountered push it in the stack, and when closed parenthesis is encountered, match it
with the top of stack and pop it. If stack is empty at the end, return Balanced otherwise, Unbalanced.

Hints:

Check for balanced parentheses in an expression
Open_lis_t = [ll[ll,ll ll’ll(ll]
close_list = ["]","}",")"]

Function to check parentheses

169 |Page

def check(myStr):
write code here

TRY

1. Take input as {[[{(}]1[]} and verify the result.
2. Take input as {[[{O}1{}} and verify the result.

3.3 Evaluation of Postfix Expression

Given a postfix expression, the task is to evaluate the postfix expression. Postfix expression: The
expression of the form “a b operator” (ab+) i.e., when a pair of operands is followed by an operator.

Input: str="231*+9-"
Output: -4

Explanation: If the expression is converted into an infix expression, it willbe2 + 3*1)-9=5-9 = -
4,

Input: str = “100200 + 2 /5* 7 +"
Output: 757
Procedure for evaluation postfix expression using stack:
o Create a stack to store operands (or values).
e Scan the given expression from left to right and do the following for every scanned element.
o Ifthe element is a number, push it into the stack.
o Ifthe element is an operator, pop operands for the operator from the stack. Evaluate the
operator and push the result back to the stack.
e When the expression is ended, the number in the stack is the final answer.
Hints:

Evaluate value of a postfix expression

Class to convert the expression
class Evaluate:

Constructor to initialize the class variables
def __init__ (self, capacity):

self.top = -1

self.capacity = capacity

This array is used a stack
self.array = []

Check if the stack is empty
def isEmpty(self):
write code here

def peek(self):
write code here

def pop(self):
write code here

def push(self, op):
write code here

170 |Page

def evaluatePostfix(self, exp):
write code here

Driver code
exp = "231%+9-"
obj = Evaluate(len(exp))

Function call
print("postfix evaluation: %d" % (obj.evaluatePostfix(exp)))

TRY

1. Take input str = “A B + C* D / E +" and verify the result.
2. Take input str = "XYZ- + W+ R /S -" and verify the result.

4. Queue

4.1 Linear Queue using List

Linear queue is a linear data structure that stores items in First in First out (FIFO) manner. With a
gueue the least recently added item is removed first. A good example of queue is any queue of
consumers for a resource where the consumer that came first is served first.

Queue

Insertion and Deletion
happen on different ends

Va

Rear
Enqueue Front Dequeue

First in first out

Hints:
Static implementation of linear queue
front=0
rear=0
mymax=>5
def createQueue():

queue=[] #empty list

return queue

def isEmpty(queue):

write code here

def enqueue(queue,item): # insert an element into the queue

write code here

def dequeue(queue): #remove an element from the queue

write code here

171 |Page

Driver code

queue = createQueue()

while True:
print("1.Enqueue™)
print("2.Dequeue")
print(“3.Display")
print("4.Quit")

write code here

TRY

1. Take input operations as
[ENQUEUE(A), DEQUEUE(),ENQUEUE(B), DEQUEUE(), ENQUEUE(C), DEQUEUE(),] and verify the result.

2. Take input operations as [ENQUEUE(A), ENQUEUE(B),DEQUEUE(),ENQUEUE(C),
DEQUEUE(),ENQUEUE(D), DEQUEUE(), ENQUEUE(C),DEQUEUE(),] and verify the result.

4.2 Stack using Queues

Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should
support all the functions of a normal stack (push, top, pop, and empty).

e void push(int x) Pushes element x to the top of the stack.
e int pop() Removes the element on the top of the stack and returns it.
e int top() Returns the element on the top of the stack.
e boolean empty() Returns true if the stack is empty, false otherwise.
Input:
["MyStack”, "push”, "push”, "top", "pop", "empty"]
(01 21 0. 10, 0
Output:

[null, null, null, 2, 2, false]

Hints:
class MyStack:
def _init_ (self):

write code here

def push(self, x: int) -> None:

write code here

def pop(self) -> int:

write code here

def top(self) -> int:

write code here

172 |Page

def empty(self) -> bool:

write code here

Your MyStack object will be instantiated and called as such:
obj = MyStack()

obj.push(x)

param_2 = obj.pop()

param_3 = obj.top()

param_4 = obj.empty()

HOH OH O O H

4.3 Implement Queue using Stacks

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should
support all the functions of a normal queue (push, peek, pop, and empty).

e void push(int x) Pushes element x to the back of the queue.

e int pop() Removes the element from the front of the queue and returns it.

e int peek() Returns the element at the front of the queue.

e boolean empty() Returns true if the queue is empty, false otherwise.
Input:

["MyQueue”, "push”, "push”, "peek

(0. 011, f21, 0, 0. 0
Output:

. "pop”, "empty”]

[null, null, null, 1, 1, false]

Hints:

class MyQueue:
def __init__ (self):

write code here

def push(self, x: int) -> None:

write code here

def pop(self) -> int:

write code here

def peek(self) -> int:

write code here

def empty(self) -> bool:
write code here

Your MyQueue object will be instantiated and called as such:
obj = MyQueue()
obj.push(x)

173 |Page

param_2 = obj.pop()
param_3 = obj.peek()
param_4 = obj.empty()

4.4 Circular Queue

A Circular Queue is an extended version of a normal queue where the last element of the queue is
connected to the first element of the queue forming a circle. The operations are performed based on
FIFO (First In First Out) principle. It is also called 'Ring Buffer.

Operations on Circular Queue:

. Front: Get the front item from the queue.
o Rear: Get the last item from the queue.
) enQueue(value) This function is used to insert an element into the circular queue. In a

circular queue, the new element is always inserted at the rear position.
e Check whether the queue is full - [i.e,, the rear end is in just before the front end in a
circular manner].
e Ifitis full then display Queue is full.
e If the queue is not full then, insert an element at the end of the queue.
deQueue() This function is used to delete an element from the circular queue. In a circular
queue, the element is always deleted from the front position.
e Check whether the queue is Empty.
o Ifitis empty then display Queue is empty.
e If the queue is not empty, then get the last element and remove it from

the queue.
enOueue(14) enQueue(22 enQueue(13 enQueue (-6

Front Rear Front Rear Front Front

deQueue! deQueue! enQueue(9 enQueue(20 enQueue(3

Implement Circular Queue using Array:
1. Initialize an array queue of size n, where n is the maximum number of elements that the
queue can hold.
2. Initialize two variables front and rear to -1.
3. Enqueue: To enqueue an element x into the queue, do the following:

. Increment rear by 1.
e Ifrearis equal to n, set rear to 0.
. If front is -1, set front to 0.
. Set queue[rear] to x.
4. Dequeue: To dequeue an element from the queue, do the following:
. Check if the queue is empty by checking if front is -1.
e [Ifitis, return an error message indicating that the queue is empty.
. Set x to queue [front].
. If front is equal to rear, set front and rear to -1.

174 |Page

. Otherwise, increment front by 1 and if front is equal to n, set front to 0.
. Return x.

Hints:

class CircularQueue():

constructor
def __init_ (self, size): # initializing the class
self.size = size

initializing queue with none
self.queue = [None for i in range(size)]
self.front = self.rear = -1

def enqueue(self, data):
Write code here

def dequeue(self):
Write code here

def display(self):
Write code here

Driver Code

ob = CircularQueue(5)
ob.enqueue(14)
ob.enqueue(22)
ob.enqueue(13)
ob.enqueue(-6)
ob.display()

print ("Deleted value =
print ("Deleted value
ob.display()
ob.enqueue(9)
ob.enqueue(20)
ob.enqueue(5)
ob.display()

TRY

, ob.dequeue())
, ob.dequeue())

1. Take input operations as [ENQUEUE(A,B,C,D,E,F),DEQUEUE(),DEQUEUE(), DEQUEUE(),ENQUEUE(G,H,]
and verify the result.

2. Take input operations as [DEQUEUE(),ENQUEUE(A,B,C,D,E,F),DEQUEUE(),ENQUEUE(G,H,I] and verify
the result.

5. Graph Representation

5.1 Build a graph

You are given an integer n. Determine if there is an unconnected graph with n vertices that contains at
least two connected components and contains the number of edges that is equal to the number of
vertices. Each vertex must follow one of these conditions:

e Its degree is less than or equal to 1.
e |t's a cut-vertex.
Note:

e The graph must be simple.

175|Page

e Loops and multiple edges are not allowed.
Input: First line: n

Output: Print Yes if it is an unconnected graph. Otherwise, print No.

Sample Input | Sample Output
3 No

Constraints: 1 < n < 100

Explanation: There is only one graph with the number of edges equal to the number of vertices
(triangle) which is connected.

5.2 Number of Sink Nodes in a Graph

Given a Directed Acyclic Graph of n nodes (numbered from 1 to n) and m edges. The task is to find the
number of sink nodes. A sink node is a node such that no edge emerges out of it.

Input: n = 4, m = 2, edges[] = {{2, 3}, {4, 3}}

O

O

Only node 1 and node 3 are sink nodes.
Input: n = 4, m = 2, edges[] = {{3, 2}, {3, 4}}
Output: 3

The idea is to iterate through all the edges. And for each edge, mark the source node from which the
edge emerged out. Now, for each node check if it is marked or not. And count the unmarked nodes.

Algorithm:
1. Make any array A[] of size equal to the number of nodes and initialize to 1.
2. Traverse all the edges one by one, say, u -> v.

(i) Mark A[u] as 1.
3. Now traverse whole array A[] and count number of unmarked nodes.
Hints:

Program to count number if sink nodes

Return the number of Sink Nodes.
def countSink(n, m, edgeFrom, edgeTo):

Write code here

return count

Driver Code
= 4
m= 2

=]

176 |[Page

edgeFrom = [2, 4]
edgeTo = [3, 3]

print(countSink(n, m, edgeFrom, edgeTo))

5.3 Connected Components in a Graph

Given n, i.e. total number of nodes in an undirected graph numbered from 1 to n and an integer €, i.e.
total number of edges in the graph. Calculate the total number of connected components in the
graph. A connected component is a set of vertices in a graph that are linked to each other by paths.

Input: First line of input line contains two integers' n and e. Next e line will contain two integers u and
v meaning that node u and node v are connected to each other in undirected fashion.

Output: For each input graph print an integer x denoting total number of connected components.

Sample Input | Sample Output
8 5 3
1 2
2 3
2 4
3 5
6 7

Constraints: All the input values are well within the integer range.

5.4 Transpose Graph

Transpose of a directed graph G is another directed graph on the same set of vertices with all of the
edges reversed compared to the orientation of the corresponding edges in G. That is, if G contains an
edge (u, v) then the converse/transpose/reverse of G contains an edge (v, u) and vice versa. Given a
graph (represented as adjacency list), we need to find another graph which is the transpose of the
given graph.

(i)

Input: figure (i) is the input graph.

Output: figure (i) is the transpose graph of the given graph.
0-->2

1-->0 4

2-->3

3-->0 4

4-->0

Explanation: We traverse the adjacency list and as we find a vertex v in the adjacency list of vertex u
which indicates an edge from u to v in main graph, we just add an edge from v to u in the transpose
graph i.e. add u in the adjacency list of vertex v of the new graph. Thus traversing lists of all vertices of

main graph we can get the transpose graph.

Hints:

177|Page

find transpose of a graph.
function to add an edge from vertex source to vertex dest
def addEdge(adj, src, dest):

adj[src].append(dest)

function to print adjacency list of a graph
def displayGraph(adj, v):

print()

function to get Transpose of a graph taking adjacency list of given graph and
that of Transpose graph
def transposeGraph(adj, transpose, v):

traverse the adjacency list of given graph and for each edge (u, v) add

an edge (v, u) in the transpose graph's adjacency list

Driver Code

v =25

adj = [[] for i in range(v)]
addEdge(adj, 0, 1)
addEdge(adj, @, 4)
addEdge(adj, @, 3)
addEdge(adj, 2, 0)
addEdge(adj, 3, 2)
addEdge(adj, 4, 1)

addEdge(adj, 4, 3)

Finding transpose of graph represented by adjacency list adj[]
transpose = [[]for i in range(v)]

transposeGraph(adj, transpose, v)

Displaying adjacency list of transpose graph i.e. b
displayGraph(transpose, V)

TRY

1. Take input operations as addEdge(A, B), addEdge(A, D), addEdge(A, C), addEdge(C, A),addEdge(A,
D), addEdge(C, B), addEdge(B, C) and verify the result.

5.5 Counting Triplets

You are given an undirected, complete graph G that contains N vertices. Each edge is colored in either
white or black. You are required to determine the number of triplets (i, j, k) (1 <i < j < k < N) of
vertices such that the edges (i, j), (j, k), (i, k) are of the same color.

There are M white edges and (N (N-1)/2) - M black edges.

Input:

First line: Two integers—Nand M (3 < N < 10% 1 < M < 3*10°

(i+ 1™ line: Two integers — ui and vi (1 < u;, vi < N) denoting that the edge (u; v)) is white in color.
Note: The conditions (u; vy # (u;, vj) and (u; v)) # (v, uy) are satisfied forall 1 <i <j < M.

.Output: Print an integer that denotes the number of triples that satisfy the mentioned condition.

Sample Input | Sample Output
5 3 4
1.5
2 5

178 |Page

Explanation: The triplets are: {(1, 2, 3), (1, 2, 4), (2, 3, 4), (1, 3, 4)}

The graph consisting of only white edges:

©
O,

The graph consisting of only black edges:

6. Graph Routing Algorithms

6.1 Seven Bridges of Konigsberg

There was 7 bridges connecting 4 lands around the city of Kénigsberg in Prussia. Was there any way
to start from any of the land and go through each of the bridges once and only once? Euler first
introduced graph theory to solve this problem. He considered each of the lands as a node of a graph
and each bridge in between as an edge in between. Now he calculated if there is any Eulerian Path in
that graph. If there is an Eulerian path then there is a solution otherwise not.

There are n nodes and m bridges in between these nodes. Print the possible path through each node
using each edges (if possible), traveling through each edges only once.

Map 2
No such path

Input: [[0,1,0,0,1],

179 |Page

[1,0,1,1,0]
[0,1,0,1,0]
[0,1,1,0,0],
[1,0,0,0, 0]]

Output:5->1->2->4->3->2

Input: [[0, 1,0, 1, 1],
[1,0,1,0, 1],
[0,1,01,1],
[1,1,1,0,0]
[1,0,1,0,0]]

Output: “No Solution"

Hints:
A Python program to print Eulerian trail in a
given Eulerian or Semi-Eulerian Graph

from collections import defaultdict

class Graph:
Constructor and destructor
def _init__ (self, V):
self.Vv =V
self.adj = defaultdict(list)

functions to add and remove edge
def addEdge(self, u, v):
def rmvEdge(self, u, v):

Methods to print Eulerian tour
def printEulerTour(self):

Find a vertex with odd degree

Print tour starting from oddv
self.printEulerUtil(u)

print()
def printEulerUtil(self, u):

Recur for all the vertices adjacent to this vertex
for v in self.adj[u]:

If edge u-v is not removed and it's a valid next edge

The function to check if edge u-v can be considered as next edge in Euler Tout

180 |Page

def isValidNextEdge(self, u, v):
The edge u-v is valid in one of the following two cases:

1) If v is the only adjacent vertex of u

H*

2) If there are multiple adjacents, then u-v is not a bridge
Do following steps to check if u-v is a bridge
2.a) count of vertices reachable from u

H H

++

2.b) Remove edge (u, v) and after removing
the edge, count vertices reachable from u

++

H*

2.c) Add the edge back to the graph
self.addEdge(u, v)

2.d) If countl is greater, then edge (u, v) is a bridge
return False if countl > count2 else True

A DFS based function to count reachable vertices from v

def DFSCount(self, v, visited):
Mark the current node as visited

Recur for all the vertices adjacent to this vertex

utility function to form edge between two vertices source and dest
def makeEdge(src, dest):
graph.addEdge(src, dest)

Driver code

Let us first create and test graphs shown in above figure
gl = Graph(4)

gl.addEdge(9, 1)

gl.addEdge(9, 2)

gl.addEdge(1, 2)

gl.addEdge(2, 3)

gl.printEulerTour()

g3 = Graph(4)
g3.addEdge(0, 1)
g3.addEdge(1, 9)
g3.addEdge(9, 2)
g3.addEdge(2, 9)
g3.addEdge(2, 3)
g3.addEdge(3, 1)
g3.printEulerTour()

TRY

1. Take input: [[1,0,1,0,1],[1,0,1,0,0],1[1,1,0,1,0],1[0,0,1,0,0],[1,0, 1,0, 0]] and verify the result.
2. Take input: [[0,0,1,0,1],[0,0,1,0,0],[1,0,0,1,01,[1,0,1,0,0],[1,1,1,0,0]] and verify the result.

6.2 Hamiltonian Cycle

The Hamiltonian cycle of undirected graph G = <V, E> is the cycle containing each vertex in V. If graph
contains a Hamiltonian cycle, it is called Hamiltonian graph otherwise it is non-Hamiltonian.

181 |Page

Hamiltonian Path in an undirected graph is a path that visits each vertex exactly once. A Hamiltonian cycle
(or Hamiltonian circuit) is a Hamiltonian path such that there is an edge (in the graph) from the last
vertex to the first vertex of the Hamiltonian path. Consider a graph G, and determine whether a given
graph contains Hamiltonian cycle or not. If it contains, then prints the path. Following are the input
and output of the required function.

Input: A 2D array graph [V][V] where V is the number of vertices in graph and graph [V][V] is adjacency
matrix representation of the graph. A value graph(i][j] is 1 if there is a direct edge from i to j, otherwise
graphli][j] is 0.

Output: An array path [V] that should contain the Hamiltonian Path. Path [i] should represent the it"
vertex in the Hamiltonian Path. The code should also return false if there is no Hamiltonian Cycle in
the graph.

For example, a Hamiltonian Cycle in the following graph is {0, 1, 2, 4, 3, 0}.
0)--(1)--(2)
| /N
| 7\

And the following graph doesn’t contain any Hamiltonian Cycle.
0)--(M--(2)
AN
|7\
|/ \
3))

Backtracking Algorithm: Create an empty path array and add vertex O to it. Add other vertices, starting
from the vertex 1. Before adding a vertex, check for whether it is adjacent to the previously added
vertex and not already added. If we find such a vertex, we add the vertex as part of the solution. If we
do not find a vertex then we return false.

Hints:

Python program for solution of Hamiltonian cycle problem

class Graph():
def _init_ (self, vertices):
self.graph = [[@ for column in range(vertices)]
for row in range(vertices)]
self.V = vertices

def isSafe(self, v, pos, path):
Check if current vertex and last vertex in path are adjacent

A recursive utility function to solve Hamiltonian cycle problem
def hamCycleUtil(self, path, pos):

182 |Page

def hamCycle(self):

def printSolution(self, path):
print ("Solution Exists: Following","is one Hamiltonian Cycle")
for vertex in path:
print (vertex, end = " ")
print (path[©], "\n")

Driver Code
''' Let us create the following graph
(0)--(1)--(2)
| /N
|7 \ |

(=mmmea- (4) '

gl = Graph(5)

gl.graph = [[0, 1, 0, 1, 0], [1, O, 1, 1, 1],
[GJ 1) e) e) 1)])[]') 1) @J 0) 1]J
[e, 1, 1, 1, @],]

Print the solution
gl.hamCycle();
''' Let us create the following graph
(8)--(1)--(2)
| /N
|7 \ |
| 7/ \ |
(3) (4) '
g2 = Graph(5)
g2.graph = [[0, 1, 0, 1, 0], [1, O, 1, 1, 1],
[G) 1J 0) 0) 1)]) [1) 1J e} 0) G]J
[e, 1, 1, e, 0],]

Print the solution
g2.hamCycle();

TRY

1. Takeagraph=1[[1,1,0,1,0],[1,1,1,1,1],[0,1,0,1,1,],[1,1,0,1,0], [0, 1, 1, 1, 0],] and verify the
results.

6.3 Number of Hamiltonian Cycle

Given an undirected complete graph of N vertices where N > 2. The task is to find the number of different
Hamiltonian cycle of the graph.

Complete Graph: A graph is said to be complete if each possible vertices is connected through an Edge.

Hamiltonian Cycle: It is a closed walk such that each vertex is visited at most once except the initial
vertex. and it is not necessary to visit all the edges.

Formula: (N-1)! /2

Input: N = 6

183 |Page

Output: Hamiltonian cycles = 60

Input: N = 4

Output: Hamiltonian cycles = 3

Explanation: Let us take the example of N = 4 complete undirected graph, The 3 different Hamiltonian
cycle is as shown below:

Hints:

Number of Hamiltonian cycles
import math as mt

Function that calculates number of Hamiltonian cycle
def Cycles(N):

Driver code

N =5

Number = Cycles(N)
print("Hamiltonian cycles =

, Number)

TRY

1. Take an input N=7 and verify the results.
2. Take an input N=10 and verify the results.

7. Shortest Path Algorithms

7.1 Travelling Salesman Problem

Given a set of cities and the distance between every pair of cities, the problem is to find the shortest
possible route that visits every city exactly once and returns to the starting point. The problem
statement gives a list of cities along with the distances between each city.

Objective: To start from the origin city, visit other cities only once, and return to the original city
again. Our target is to find the shortest possible path to complete the round-trip route.

184 |Page

185|Page

Here a graph is given where 1, 2, 3, and 4 represent the cities, and the weight associated with every edge
represents the distance between those cities. The goal is to find the shortest possible path for the tour that
starts from the origin city, traverses the graph while only visiting the other cities or nodes once, and
returns to the origin city.

For the above graph, the optimal route is to follow the minimum cost path: 1 -2 -4 - 3 - 1. And this
shortest route would cost 10 + 25 + 30 + 15 =80

Algorithm for Traveling Salesman Problem: We will use the dynamic programming approach to solve the
Travelling Salesman Problem (TSP).

e Agraph G=(V, E), which is a set of vertices and edges.

e Vs the set of vertices.

e F s the set of edges.

e Vertices are connected through edges.

o Dist(i,j) denotes the non-negative distance between two vertices, i and j.

Let’s assume S is the subset of cities and belongs to {1, 2, 3, ..., n} where 1, 2, 3...n are the cities and i, j are
two cities in that subset. Now cost(i, S, j) is defined in such a way as the length of the shortest path visiting
node in S, which is exactly once having the starting and ending point as i and j respectively.

For example, cost (1, {2, 3, 4}, 1) denotes the length of the shortest path where:

e Starting city is 1
o (Cities 2, 3, and 4 are visited only once
e The ending point is 1

The dynamic programming algorithm would be:

e Set cost(i, i) = 0, which means we start and end at i, and the cost is O.

e When |S| > 1, we define cost(i, S, 1) = ecwhere i !=1. Because initially, we do not know the exact
cost to reach city i to city 1 through other cities.

e Now, we need to start at 1 and complete the tour. We need to select the next city in such a way-

e cost(i, S, j) = min cost (i, S—{i}, j) + dist(i, j) where i €Sand i # |

For the given figure above, the adjacency matrix would be the following:

dist(i,) 17121 3| 4
7 o | 10| 15| 20
2 10 0 | 35 25
3 15135 0| 30
4 20 | 25 | 30| 0

Now S = {1, 2, 3, 4}. There are four elements. Hence the number of subsets will be 2”4 or 16. Those
subsets are-

1) |S| = Null:
{®}

2) IS| = 1:

{1}, {2}, {3}, (41
3)IS| =2:

{1, 2} {1, 3}, {1, 4} {2, 3}, {2, 4}, {3, 4}

186 |Page

4) S| = 3:
{1,231, {1, 2,4}, {2, 3, 4}, {1, 3, 4})

5) |S| = 4:
{1, 2, 3, 43

As we are starting at 1, we could discard the subsets containing city 1. The algorithm calculation steps:

1) || = ®:

cost (2, ®, 1) = dist(2, 1) = 10
cost (3, ®, 1) = dist(3, 1) = 15
cost (4, ®, 1) = dist(4, 1) = 20

2) S| =1:

cost (2, {3}, 1) = dist(2, 3) + cost (3, ®, 1) = 35+15 = 50
cost (2, {4}, 1) = dist(2, 4) + cost (4, ®, 1) = 25+20 = 45
cost (3, {2}, 1) = dist(3, 2) + cost (2, ®, 1) = 35+10 = 45
cost (3, {4}, 1) = dist(3, 4) + cost (4, ®, 1) = 30+20 = 50
cost (4, {2}, 1) = dist(4, 2) + cost (2, ®, 1) = 25+10 = 35
cost (4, {3}, 1) = dist(4, 3) + cost 3, ®, 1) = 30+15 = 45

3) |S| = 2:

cost (2, {3, 4}, 1) = min [dist[2,3] + Cost(3,{4},1) = 35+50 = 85,
dist[2,4]+Cost(4,{3},1) = 25+45 =701 =70

cost (3, {2, 4}, 1) = min [dist[3,2] + Cost(2,{4},1) = 35+45 = 80,
dist[3,4]+Cost(4,{2},1) = 30+35 =65] = 65

cost (4, {2, 3}, 1) = min [dist[4,2] + Cost(2,{3},1) = 25+50 = 75
dist[4,3] + Cost(3,{2},1) = 30445 =75] =75

4) S| = 3:

cost (1, {2, 3, 4}, 1) = min [dist[1,2]+Cost(2,{3,4},1) = 10+70 = 80
dist[1,3]+Cost(3,{2,4},1) = 15+65 = 80

dist[1,4]+Cost(4,{2,3},1) = 20+75=95] = 80

So the optimal solution would be 1-2-4-3-1

A 1 . <
-Bgl (3) —(4)
420) e
o~ \ .y 4 N\ < T

N ¥ 7N\ 72X 7\
3 U (j) E) 2 Q)
7N\ N\ 7N N 7N\
h \,‘3, 74 ‘ 3 ‘\\7%/) \\]2:/ ' \\,i/ l\ ,ﬁ,//]
7N\ F 7\ 7N N\
1) 1 @) Q) <) W)

Hints:

from sys import maxsize

from itertools, import permutations
V=14

def tsp(graph, s):

187 |Page

Driver code

graph = [[o, 10, 15, 20], [1e, e, 35, 25], [15, 35, @, 30], [20, 25, 30, 0]]
s =0

print(tsp(graph, s))

TRY

1. Take a below table values and verify the results.

dist(i, j) 171 2| 3| 4
7 0 | 40 | 25 | 40
2 20| 0 | 35| 25
3 25 | 35| 0 | 60
4 4 | 25 |30 | 0

7.2 Shortest Paths from Source to all Vertices (Dijkstra's Algorithm)

Given a graph and a source vertex in the graph, find the shortest paths from the source to all vertices in
the given graph.

Input: src = 0, the graph is shown below.

Output: 041219211198 14

Explanation: The distance from O to 1 = 4.

The minimum distance from0to 2 = 12. 0->1->2

The minimum distance from 0 to 3 = 19. 0->1->2->3
The minimum distance from 0 to 4 = 21. 0->7->6->5->4
The minimum distance from0to 5 = 11.0->7->6->5
The minimum distance from 0to 6 = 9. 0->7->6

The minimum distance from 0to 7 = 8. 0->7

The minimum distance from 0 to 8 = 14. 0->1->2->8

Hints:

Dijkstra's single source shortest path algorithm. The program is for adjacency
matrix representation of the graph

Library for INT_MAX
import sys

188 |Page

class Graph():
def __init_ (self, vertices):
self.V = vertices
self.graph = [[@ for column in range(vertices)]
for row in range(vertices)]

def printSolution(self, dist):
print("Vertex \tDistance from Source")
for node in range(self.V):
print(node, "\t", dist[node])

A utility function to find the vertex with minimum distance value,
from the set of vertices not yet included in shortest path tree
def minDistance(self, dist, sptSet):

Function that implements Dijkstra's single source shortest path
algorithm for a graph represented using adjacency matrix representation
def dijkstra(self, src):

Driver's code

g = Graph(9)

g'gr‘aph = [[0, 4, 0, 0, 0, 0, 0, 8, 0],
[4, o, 8, @0, @, 0, 0, 11, @],
[eJ 8’ eJ 7) 0) 4) eJ 0, 2])
[0, @, 7, 0, 9, 14, 0, 0, 0],
[o6, e, @, 9, 0, 10, 0, @, @],
[e, e, 4, 14, 10, 0, 2, 0, 9],
Gy G G G Gy 2 G ks G
[8, 11, o, o, 0, ©, 1, B, 7],

][0, e, 2, 0, 0, 0, 6, 7, 0]

g.dijkstra(e)

TRY

1. Take a below graph and verify the results.

7.3 Shortest Cycle in an Undirected Unweighted Graph

Given an undirected unweighted graph. The task is to find the length of the shortest cycle in the given
graph. If no cycle exists print -1.

189 |Page

Input: Consider the graph given below

Output: 4
Cycle6->1->5->0->6

Input: Consider the graph given below

Output: 3
Cycle6->1->2->6

Hints:

190 |Page

return -1

If graph contains cycle
else:
return ans

Driver Code
Number of vertices
n =717

Add edges
add_edge(0, 6)
add_edge(0, 5)
add_edge(5, 1)
add_edge(1, 6)
add_edge(2, 6)
add_edge(2, 3)
add_edge(3, 4)
add_edge(4, 1)

Function call
print(shortest cycle(n))

TRY
1. Take a below graph and verify the results.

7.4 Count Unique and all Possible Paths in a M x N Matrix

Count unique paths: The problem is to count all unique possible paths from the top left to the bottom
right of a M X N matrix with the constraints that from each cell you can either move only to the right or
down.

Input: M =2, N=2

Output: 2

Explanation: There are two paths
0.0 ->(@0 1->1.1)
0,0)->(1,00->(1, 1)

Input: M =2, N =3

Output: 3

Explanation: There are three paths
0.00->(0,1)->(02)->(1,2)

191 |Page

0,00->@©0,1D->(1,1->(1,2)
0,00->(1,0->(1,1)->(1,2)

Count all possible paths: We can recursively move to right and down from the start until we reach the
destination and then add up all valid paths to get the answer.

Procedure:

. Create a recursive function with parameters as row and column index
o Call this recursive function for N-1 and M-1

o In the recursive function

e IfN==10rM == 1thenreturn 1
e else call the recursive function with (N-1, M) and (N, M-1) and return the sum of this
. Print the answer

Hints:
Python program to count all possible paths from top left to bottom right

Function to return count of possible paths to reach cell at row number m and
column number n from the topmost leftmost cell (cell at 1, 1)

def numberOfPaths(m, n):
Driver program to test above function
m= 3

n =3
print(numberOfPaths(m, n))

TRY

1. Take input : M = 3, N = 2 and verify the results.
2. Take input: M =2, N = 1 and verify the results.

8. Graph Coloring

8.1 Graph Coloring using Greedy Algorithm

Greedy algorithm is used to assign colors to the vertices of a graph. It doesn’t guarantee to use
minimum colors, but it guarantees an upper bound on the number of colors. The basic algorithm never
uses more than d+1 colors where d is the maximum degree of a vertex in the given graph.

Basic Greedy Coloring Algorithm:

1. Color first vertex with first color.

2. Do following for remaining V-1 vertices.
a) Consider the currently picked vertex and color it with the lowest numbered color that has not
been used on any previously colored vertices adjacent to it. If all previously used colors appear on
vertices adjacent to v, assign a new color to it.

Hints:
Implement greedy algorithm for graph coloring

def addEdge(adj, v, w):

192 |Page

adj[v].append(w)

Note: the graph is undirected
adj[w].append(v)

return adj

Assigns colors (starting from ©) to all
vertices and prints the assignment of colors
def greedyColoring(adj, V):

Driver Code

gl = [[] for i in range(5)]
gl = addEdge(gl, 0, 1)
gl = addEdge(gl, 0, 2)
gl = addEdge(gl, 1, 2)
gl = addEdge(gl, 1, 3)

gl = addEdge(gl, 2, 3)

gl = addEdge(gl, 3, 4)
print("Coloring of graph 1 ")
greedyColoring(gl, 5)

g2 = [[] for i in range(5)]
g2 = addEdge(g2, 0, 1)
g2 = addEdge(g2, 0, 2)
g2 = addEdge(g2, 1, 2)
g2 = addEdge(g2, 1, 4)
g2 = addEdge(g2, 2, 4)
g2 = addEdge(g2, 4, 3)
print("\nColoring of graph 2")
greedyColoring(g2, 5)

Output:

Coloring of graph 1
Vertex 0 ---> Color 0
Vertex 1 ---> Color 1
Vertex 2 ---> Color 2
Vertex 3 ---> Color 0
Vertex 4 ---> Color 1

Coloring of graph 2

Vertex 0 ---> Color 0
Vertex 1 ---> Color 1
Vertex 2 ---> Color 2
Vertex 3 ---> Color 0
Vertex 4 ---> Color 3

8.2 Coloring a Cycle Graph

Given the number of vertices in a Cyclic Graph. The task is to determine the Number of colors required
to color the graph so that no two adjacent vertices have the same color.

Approach:
e If the no. of vertices is Even then it is Even Cycle and to color such graph we require 2 colors.

e If the no. of vertices is Odd then it is Odd Cycle and to color such graph we require 3 colors.

Input: Vertices = 3
Output: No. of colors require is: 3

193 |Page

Input: vertices = 4
Output: No. of colors require is: 2

Example 1: Even Cycle: Number of vertices = 4

o o
o o
Color required = 2
L o
o L
Example 2: Odd Cycle: Number of vertices = 5
o
L o
0 0
Color required = 3
o
o L)
0 @

Hints:
Find the number of colors required to color a cycle graph

Function to find Color required.
def Color(vertices):

194 |Page

Driver Code
vertices = 3
print ("No. of colors require is:", Color(vertices))

8.3 m Coloring Problem

Given an undirected graph and a number m, determine if the graph can be colored with at most m
colors such that no two adjacent vertices of the graph are colored with the same color.

Note: Here coloring of a graph means the assignment of colors to all vertices
Following is an example of a graph that can be colored with 3 different colors:

Input: graph ={0, 1, 1, 1},
{1,0,1,0},
{1.1,0, 1},
{1,0,1,0}
Output: Solution Exists: Following are the assigned colors: 1 2 3 2
Explanation: By coloring the vertices with following colors, adjacent vertices does not have same
colors

Input: graph = {1, 1,1, 1},
{1,.1,1,1},
{1,.1,1,1},
{1,1,1, 1}

Output: Solution does not exist

Explanation: No solution exits

Generate all possible configurations of colors. Since each node can be colored using any of the m
available colors, the total number of color configurations possible is mV. After generating a
configuration of color, check if the adjacent vertices have the same color or not. If the conditions are
met, print the combination and break the loop

Follow the given steps to solve the problem:

) Create a recursive function that takes the current index, number of vertices and output color
array
. If the current index is equal to number of vertices. Check if the output color configuration is

safe, i.e check if the adjacent vertices do not have same color. If the conditions are met, print the
configuration and break

° Assign a color to a vertex (1 to m)
. For every assigned color recursively call the function with next index and number of vertices
o If any recursive function returns true break the loop and returns true.

195 | Page

Hints:

Number of vertices in the graph
define 4 4

check if the colored graph is safe or not

def isSafe(graph, color):
check for every edge
for i in range(4):
for j in range(i + 1, 4):
if (graph[i][j] and color[j] == color[i]):
return False
return True

def graphColoring(graph, m, i, color):
write your code here

/* A utility function to print solution */

def printSolution(color):
print("Solution Exists:
for i in range(4):
print(color[i], end=" ")

Following are the assigned colors ")

Driver code

/* Create following graph and test whether it is 3 colorable

(3)---(2)

#1 /|

#1 /|

#1 /7 |

(0)---(1)

*/

graph = [
[0, 1, 1, 1],
[1J e) 1} 0])
[1J 1) 0} 1]J
51, 0, 1, o],

m = 3 # Number of colors

Initialize all color values as ©O.
This initialization is needed

correct functioning of isSafe()
color = [@ for i in range(4)]

Function call

if (not graphColoring(graph, m, @, color)):
print("Solution does not exist")

8.4 Edge Coloring of a Graph

Edge coloring of a graph is an assignment of “colors” to the edges of the graph so that no two
adjacent edges have the same color with an optimal number of colors. Two edges are said to be
adjacent if they are connected to the same vertex. There is no known polynomial time algorithm for
edge-coloring every graph with an optimal number of colors.

196 |Page

Input: ul =1,vl =4

u2=1v2=2
u3=2,v3=3
ud=3,vd=4

Output: Edge 1 is of color 1
Edge 2 is of color 2
Edge 3 is of color 1
Edge 4 is of color 2

The above input shows the pair of vertices (u;, vi) who have an edge between them. The output shows
the color assigned to the respective edges.

vl v

vi v3

Edge colorings are one of several different types of graph coloring problems. The above figure of a
Graph shows an edge coloring of a graph by the colors green and black, in which no adjacent edge
have the same color.

Algorithm:
1. Use BFS traversal to start traversing the graph.
2. Pick any vertex and give different colors to all of the edges connected to it, and mark those

edges as colored.

3. Traverse one of it's edges.
4. Repeat step to with a new vertex until all edges are colored.
Hints:

Edge Coloring
from queue import Queue

function to determine the edge colors
def colorEdges(ptr, gra, edgeColors, isVisited):
Write your code here

Driver Function

empty=set()

declaring vector of vector of pairs, to define Graph
gra=[]

edgeColors=[]

isVisited=[False]*100000

197 |Page

ver = 4

edge = 4

gra=[[] for _ in range(ver)]
edgeColors=[-1]*edge
gra[@].append((1, 0))
gra[1].append((0, 0))
gra[1].append((2, 1))
gra[2].append((1, 1))
gra[2].append((3, 2))
gra[3].append((2, 2))
gra[@].append((3, 3))
gra[3].append((0, 3))
colorkEdges (@, gra, edgeColors, isVisited)

printing all the edge colors

for i in range(edge):
print("Edge {} is of color {}".format(i + 1,edgeColors[i] + 1))

TRY

1. Write a program to implement graph coloring and edge coloring by consider the below graph and
verify the results.

9. Graph Traversal

9.1 Breadth First Search

The Breadth First Search (BFS) algorithm is used to search a graph data structure for a node that
meets a set of criteria. It starts at the root of the graph and visits all nodes at the current depth level
before moving on to the nodes at the next depth level.

For a given graph G, print BFS traversal from a given source vertex.

Hints:

BFS traversal from a given source vertex.
from collections import defaultdict

This class represents a directed graph using adjacency list representation
class Graph:

Constructor

def __init_ (self):
Default dictionary to store graph
self.graph = defaultdict(list)

Function to add an edge to graph
def addtEdge(self, u, v):
self.graph[u].append(v)
Function to print a BFS of graph
198 |Page

def BFS(self, s):
Write your code here

Create a graph given in the above diagram
= Graph()

.addEdge (0, 1)

.addEdge (0, 2)

.addEdge (1, 2)

.addEdge(2, ©0)

.addEdge(2, 3)

.addEdge (3, 3)

0Q 09 09 09 0u Ou 0o H

print("Following is Breadth First Traversal"” " (starting from vertex 2)")
g.BFS(2)

Output: Following is Breadth First Traversal (starting from vertex 2)
2031

9.2 Depth First Search

Depth First Traversal (or DFS) for a graph is similar to Depth First Traversal of a tree. The only catch
here is, that, unlike trees, graphs may contain cycles (a node may be visited twice). To avoid processing
a node more than once, use a boolean visited array. A graph can have more than one DFS traversal.

For a given graph G, print DFS traversal from a given source vertex.

Input:n=4,e=6
0->1,0->2,1->22->0,2->3,3->3

Output: DFS from vertex 1: 120 3

Explanation:

DFS Diagram:
1 » 2
0 — 3
A t

Input:n=4,e=6
2->0,0->2,1->2,0->1,3->3,1->3

Output: DFS from vertex 2: 2013

Explanation:
DFS Diagram:

199 |Page

https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

Hints:

DFS traversal from a given graph
from collections import defaultdict

This class represents a directed graph using adjacency list representation
class Graph:
Constructor
def __init_ (self):
Default dictionary to store graph
self.graph = defaultdict(list)

Function to add an edge to graph
def addtEdge(self, u, v):
self.graph[u].append(v)

A function used by DFS
def DFSUtil(self, v, visited):

The function to do DFS traversal. It uses recursive DFSUtil()

def DFS(self, v):
Write your code here

Driver's code
= Graph()
.addEdge (0, 1)
.addEdge (0, 2)
.addEdge (1, 2)
.addEdge(2, 9)
.addEdge(2, 3)
.addEdge (3, 3)
print("Following is Depth First Traversal (starting from vertex 2)")
Function call
g.DFS(2)

0Q 09 09 09 Ov Ou 09 +H

TRY

1. Write a program to implement breadth first search and depth first search by consider the below
graph and verify the results.

200 | Page

10. Minimum Spanning Tree (MST)

10.71 Kruskal’s Algorithm

In Kruskal's algorithm, sort all edges of the given graph in increasing order. Then it keeps on adding
new edges and nodes in the MST if the newly added edge does not form a cycle. It picks the minimum
weighted edge at first and the maximum weighted edge at last.

MST using Kruskal's algorithm:

1. Sort all the edges in non-decreasing order of their weight.
2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If the
cycle is not formed, include this edge. Else, discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. The Greedy
Choice is to pick the smallest weight edge that does not cause a cycle in the MST constructed so far.

Input: For the given graph G find the minimum cost spanning tree.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 — 1)

= 8 edges.

After sorting:

Weight | Source | Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4

201 |Page

10 5 4
11 1
14 3 5

~

Now pick all edges one by one from the sorted list of edges.

Output:

Hints:

Kruskal's algorithm to find minimum Spanning Tree of a given connected,
undirected and weighted graph

Class to represent a graph
class Graph:
def __init_ (self, vertices):
self.V = vertices
self.graph = []

Function to add an edge to graph
def addEdge(self, u, v, w):
self.graph.append([u, v, w])

def find(self, parent, i):
def union(self, parent, rank, x, y):

def KruskalMST(self):
write your code here

Driver code

g = Graph(4)
g.addEdge(0, 1, 10)
g.addEdge(@, 2, 6)
g.addEdge(0, 3, 5)
g.addEdge(1, 3, 15)
g.addEdge(2, 3, 4)
Function call

g.KruskalMST()

Output: Following are the edges in the constructed MST
2--3==

202 | Page

0--3==
0--1==10
Minimum Cost Spanning Tree: 19

10.2 Prim’s Algorithm

The Prim’s algorithm starts with an empty spanning tree. The idea is to maintain two sets of vertices.
The first set contains the vertices already included in the MST, and the other set contains the vertices
not yet included. At every step, it considers all the edges that connect the two sets and picks the
minimum weight edge from these edges. After picking the edge, it moves the other endpoint of the
edge to the set containing MST.

Prim’s Algorithm:
The working of Prim’s algorithm can be described by using the following steps:
1. Determine an arbitrary vertex as the starting vertex of the MST.
2. Follow steps 3 to 5 till there are vertices that are not included in the MST (known as fringe
vertex).
Find edges connecting any tree vertex with the fringe vertices.
Find the minimum among these edges.
Add the chosen edge to the MST if it does not form any cycle.
6. Return the MST and exit
Input: For the given graph G find the minimum cost spanning tree.

L AR i N
@ : @+ @
@@

Output: The final structure of the MST is as follows and the weight of the edges of the MST is (4 + 8 +

o ©

viAw

Hints:

Prim's Minimum Spanning Tree (MST) algorithm.
The program is for adjacency matrix representation of the graph

Library for INT_MAX
import sys

class Graph():
203 | Page

def init_ (self, vertices):
self.V = vertices
self.graph = [[@ for column in range(vertices)]
for row in range(vertices)]

A utility function to print
the constructed MST stored in parent]]
def printMST(self, parent):
print("Edge \tWeight")
for i in range(1, self.V):
print(parent[i], "-", i, "\t", self.graph[i][parent[i]])

A utility function to find the vertex with
minimum distance value, from the set of vertices

not yet included in shortest path tree
def minKey(self, key, mstSet):

def primMST(self):

Driver's code

g = Graph(5)

g.graph = [[0, 2, @, 6, @],
[21 01 3) 8) 5].'
[eJ 31 e) e) 7].'
[61 81 e) e) 9].'
[6, 5, 7, 9, @]]

g.primMST()

Output:

Edge Weight

0-1 2

1-2 3

0-3 6

1-4 5

TRY

1. Write a program to implement kruskal's algorithm and prim’s algorithm by consider the below graph
and verify the results.

204 | Page

11. Roots of Equations

11.1 Bisection Method

The Bisection method is also called the interval halving method, the binary search method or the
dichotomy method. This method is used to find root of an equation in a given interval that is value of
x" for which f(x) = 0. The method is based on The Intermediate Value Theorem which states that if
f(x) is a continuous function and there are two real numbers a and b such that f(a) * f(b) 0 and f(b) < 0),
then it is guaranteed that it has at least one root between them.

Assumptions:

1. f(x) is a continuous function in interval [a, b]
2. f(a) * f(b) < 0

Steps:

1. Find middle point c= (a + b)/2.

2. If f(c) == 0, then c is the root of the solution.
3. Else f(c)!=0

e If value f(a)*f(c) < 0 then root lies between a and c. So we recur for a and ¢
e Else If f(b)*f(c) < 0 then root lies between b and c. So we recur b and c.
e Else given function doesn't follow one of assumptions.

Since root may be a floating point number, we repeat above steps while difference between a and b is
greater than and equal to a value? (A very small value).

F(al)

Hints:

205 | Page

An example function whose solution is determined using Bisection Method.
The function is x"*3 - x"2 + 2
def func(x):

return x*x*x - x*x + 2

Prints root of func(x) with error of EPSILON
def bisection(a,b):
Write your code here

Driver code

Initial values assumed
a =-200

b = 300

bisection (a, b)

Output: The value of root is : -1.0025

TRY

1. Take an input function xA2 - xA3 + 2 and verify the results.
2. Take an input function x*3 - x*3 + 4 and verify the results.

11.2 Method of False Position

Given a function f(x) on floating number x and two numbers ‘a’ and ‘b’ such that f(a)*f(b) < 0 and f(x) is
continuous in [a, b]. Here f(x) represents algebraic or transcendental equation. Find root of function in
interval [a, b] (Or find a value of x such that f(x) is 0).

Input: A function of x, for example x3 — x2 + 2.
And two values: a = -200 and b = 300 such that
f(a)*f(b) < O, i.e., f(a) and f(b) have opposite signs.

Output: The value of root is : -1.00
OR any other value close to root.

Hints:
MAX_ITER = 1000000

An example function whose solution is determined using Regular Falsi Method.
The function is x"3 - x"2 + 2
def func(x):

return (x * x * x - x * x + 2)

Prints root of func(x) in interval [a, b]
def regulaFalsi(a , b):
Write your code here

Driver code to test above function
Initial values assumed

a =-200

b = 300

regulaFalsi(a, b)

TRY

206 | Page

1. Take an input function xA2 - xA3 + 2 and verify the results.
2. Take an input function x*3 - xA3 + 4 and verify the results.

11.3 Newton Raphson Method

Given a function f(x) on floating number x and an initial guess for root, find root of function in interval.
Here f(x) represents algebraic or transcendental equation.

Input: A function of x (for example x3 — x? + 2), derivative function of x (3x? — 2x for above example)
and an initial guess x0 = -20

Output: The value of root is: -1.00 or any other value close to root.

Algorithm:
Input: initial x, func(x), derivFunc(x)
Output: Root of Func()

1. Compute values of func(x) and derivFunc(x) for given initial x
2. Compute h: h = func(x) / derivFunc(x)
3. While h is greater than allowed error €

e h = func(x) / derivFunc(x)
e Xx=x-h

Hints:

Implementation of Newton Raphson Method for solving equations
An example function whose solution is determined using Bisection Method.
The function is x"3 - x"2 + 2
def func(x):
return x * x * x - x * x + 2

Derivative of the above function which is 3*x~x - 2*x
def derivFunc(x):
return 3 * x * x - 2 * x

Function to find the root
def newtonRaphson(x):
Write your code here

Driver program

X0 = -20
newtonRaphson(x0)
TRY

1. Take an input function x*2 - x*3 + 2 and verify the results.
2. Take an input function x*3 - xA3 + 4 and verify the results.

11.4 Secant Method

The secant method is used to find the root of an equation f(x) = 0. It is started from two distinct
estimates x1 and x2 for the root. It is an iterative procedure involving linear interpolation to a root. The
iteration stops if the difference between two intermediate values is less than the convergence factor.

Input: Equation = x3 + x -1
x1=0,x2=1,E =0.0001

207 |Page

Output: Root of the given equation = 0.682326
No. of iteration=5
Algorithm
Initialize: x1, x2, E, n // E = convergence indicator
calculate f(x1),f(x2)

if(f(x1) * f(x2) = E); //repeat the loop until the convergence
print 'x0' //value of the root
print 'n' //number of iteration

}

else
print "cannot found a root in the given interval"

Hints:

Find root of an equations using secant method
Function takes value of x and returns f(x)
def f(x):

we are taking equation as x”3+x-1

f = pow(x, 3) + x - 1;

return f;

def secant(x1, x2, E):

Write your code here

Driver code
initializing the values

x1 = 0;
X2 = 1;
E = 0.0001;

secant(x1, x2, E);

TRY

1. Take an input function xA2 - x + 2 and verify the results.
2. Take an input function x*3 - xA2 + 4 and verify the results.

11.5 Muller Method

Given a function f(x) on floating number x and three initial distinct guesses for root of the function, find
the root of function. Here, f(x) can be an algebraic or transcendental function.

Input: A function f(x) = x + 2x + 10x - 20 and three initial guesses - 0, 1 and 2.

Output: The value of the root is 1.3688 or any other value within permittable deviation from the root.
Input: A function f(x) = x - 5x + 2 and three initial guesses - 0, 1 and 2.

Output: The value of the root is 0.4021 or any other value within permittable deviation from the root.

Hints:

Find root of a function, f(x)
import math;

208 | Page

MAX_ITERATIONS = 10000;

Function to calculate f(x)
def f(x):
Taking f(x) = x ~ 3 + 2x ~ 2 + 10x - 20
return (1 * pow(x, 3) + 2 * x * x +
10 * x - 20);

def Muller(a, b, c):
Write your code here

Driver Code

a = 0;

b =1;

c = 2;

Muller(a, b, c);
TRY

1. Take an input function xA2 - xA3 + 2 and verify the results.
2. Take an input function x*3 - xA3 + 4 and verify the results.

12. Numerical Integration

12.1 Trapezoidal Rule for Approximate Value of Definite Integral

Trapezoidal rule is used to find the approximation of a definite integral. The basic idea in Trapezoidal
rule is to assume the region under the graph of the given function to be a trapezoid and calculate its
area.

b :
/ fla)de = (b—a) [M]

Hints:

Implement Trapezoidal rule

A sample function whose definite integral's approximate value is
computed using Trapezoidal rule
def y(x):

Declaring the function
f(x) = 1/(1+x*x)
return (1 / (1 + x * X))

Function to evaluate the value of integral
def trapezoidal (a, b, n):
Write your code here

Driver code

Range of definite integral
X0 = 0

xn = 1

Number of grids. Higher value means more accuracy
n==~6

print ("Value of integral is ",

209 |Page

"%.4f"%trapezoidal(x@, xn, n))

12.2 Simpson’s 1/3 Rule

Simpson’s 1/3 rule is a method for numerical approximation of definite integrals. Specifically, it is the
following approximation:

b (b—a) (a+ b)
6

fade = Co () + a4 o)

(1

Procedure:

In order to integrate any function f(x) in the interval (a, b), follow the steps given below:

1. Select a value for n, which is the number of parts the interval is divided into.
2. Calculate the width, h = (b-a)/n

3. Calculate the values of x0 to xn as x0 = a, x1 = x0 + h, ...xn-1 = xn-2 + h, xn = b.
Consider y = f(x). Now find the values of y (y0 to yn) for the corresponding x (x0 to xn) values.

4. Substitute all the above found values in the Simpson’s Rule Formula to calculate the integral
value.

Approximate value of the integral can be given by Simpson’s Rule:

n—1 n—2

b
| fla)de =~ ‘: (fo t fn A 4% Z fi+2+% Z J’})

o i=1.3.5 i=2.4.6

Input: Evaluate logx dx within limit 4 to 5.2.

First we will divide interval into six equal parts as number of interval should be even.

X : 4 42 44 46 48 50 52

logy : 1.38 143 148 152 156 1.60 1.64

Output: Now we can calculate approximate value of integral using above formula:
= h/3[(1.38 + 1.64) + 4 * (1.43 + 1.52 + 1.60) +2 *(1.48 + 1.56)]
=1.84

Hence the approximation of above integral is

1.827 using Simpson's 1/3 rule.

Hints:

Simpson's 1 / 3 rule
import math

Function to calculate f(x)
def func(x):
return math.log(x)

Function for approximate integral

def simpsons_(11, ul, n):
Write your code here

210 | Page

https://en.wikipedia.org/wiki/Simpson%27s_rule

Driver code

lower_limit = 4 # Lower limit
upper_limit = 5.2 # Upper limit
n==6 # Number of interval

print("%.6f"% simpsons_(lower_limit, upper_limit, n))

12.3 Simpson’s 3/8 Rule

The Simpson's 3/8 rule was developed by Thomas Simpson. This method is used for performing
numerical integrations. This method is generally used for numerical approximation of definite integrals.
Here, parabolas are used to approximate each part of curve.

Input: lower_limit = 1, upper_limit = 10, interval_limit = 10
Output: integration_result = 0.687927

Input: lower_limit = 1, upper_limit = 5, interval_limit = 3
Output: integration_result = 0.605835

Hints:
Implement Simpson's 3/8 rule

Given function to be integrated
def func(x):
return (float(1l) / (1 + x * x))

Function to perform calculations
def calculate(lower_limit, upper_limit, interval limit):
Write your code here

driver function
interval_limit = 10
lower_limit = 1
upper_limit 10

integral_res = calculate(lower_limit, upper_limit, interval limit)

rounding the final answer to 6 decimal places
print (round(integral res, 6))

13. Ordinary Differential Equations

13.1 The Euler Method

Given a differential equation dy/dx = f(x, y) with initial condition y(x0) = y0. Find its approximate
solution using Euler method.

Euler Method:

In mathematics and computational science, the Euler method (also called forward Euler method) is a
first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial

211 | Page

https://en.wikipedia.org/wiki/Euler_method

value.

Consider a differential equation dy/dx = f(x, y) with initial condition y(x0) = y0
then a successive approximation of this equation can be given by:

y(n+1) = y(n) + h * f(x(n), y(n))
where h = (x(n) — x(0)) / n, h indicates step size. Choosing smaller values of h leads to more accurate
results and more computation time.

Example:
Consider below differential equation dy/dx = (x + y + xy) with initial condition y(0) = 1 and step size h
= 0.025. Find y(0.1).

Solution:

f(x, y) = (x +y + xy)

x0=0,y0=1h=0.025

Now we can calculate y1 using Euler formula

y1 =y0 + h * f(x0, y0)
yl1=1+0.025*0+1+0*1)

y1 =1.025

y(0.025) = 1.025.

Similarly we can calculate y(0.050), y(0.075), ...y(0.1).
y(0.1) = 1.11167

Hints:

Find approximation of an ordinary differential equation using Euler method.

Consider a differential equation
#dy / dx =(x + y + xy)
def func(x, y):

return (X + y + X * vy)

Function for Euler formula
def euler(x0, y, h, x):
write code here

Driver Code
Initial Values

X0 = 0
yo = 1
h = 0.025

Value of x at which we need approximation
X = 0.1
euler(x0, yo, h, x)

13.2 Runge-Kutta Second Order Method

Given the following inputs:

1. An ordinary differential equation that defines the value of dy/dx in the form x and y.
d
((—Tg = f(aq y)

2. Initial value of y, i.e., y(0).
y(0) =y,

212 | Page

https://www.geeksforgeeks.org/second-order-linear-differential-equations/

The task is to find the value of unknown function y at a given point x, i.e. y(x).
Input: x0=0,y0=1,x=2h =02

Output: y(x) = 0.645590
Input: x0=2,y0=1,x=4,h =04
Output: y(x) = 4.122991

Approach:
The Runge-Kutta method finds an approximate value of y for a given x. Only first-order ordinary
differential equations can be solved by using the Runge-Kutta 2nd-order method.
Below is the formula used to compute the next value yn+1 from the previous value yn. Therefore:
Yn+1 = valueof yat (x =n + 1)
yn = value of y at (x = n)
where 0 ? n ? (x - xo)/h, h is step height
Xn+1 = Xo + h
The essential formula to compute the value of y(n+1):

K1 =h*f(xy)
K2 = h*f(x/2, y/2) or K1/2
Y1 = Yn + K2 + (h3)

The formula basically computes the next value yn+1 Using current y, plus the weighted average of two
increments:

o K1 is the increment based on the slope at the beginning of the interval, using y.
. K2 is the increment based on the slope at the midpoint of the interval, using (y + h*K1/2).
Hints:

Implement Runge-Kutta method

A sample differential equation
"dy/dx = (x - y)/2"

def dydx(x, y):
return (x +y - 2)

Finds value of y for a given x using step size h and initial value y@ at x@O.

def rungeKutta(x@, yo@, x, h):
write code here

Driver Code

X0 = 0
y =1
X = 2
h =0.2

print("y(x) =", rungeKutta(x@, y, x, h))

14. Final Notes

The only way to learn programming is program, program and program on challenging problems. The
problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging
problems available — used in training for various programming contests (such as International
Collegiate Programming Contest (ICPC), International Olympiad in Informatics (IOl)). Check out these
sites:

213 | Page

https://www.geeksforgeeks.org/runge-kutta-4th-order-method-solve-differential-equation/

e The ACM - ICPC International collegiate programming contest (https://icpc.global/)

e The Topcoder Open (TCO) annual programming and design contest
(https://www.topcoder.com/)

e Universidad de Valladolid's online judge (https://uva.onlinejudge.org/).

e Peking University's online judge (http://poj.org/).

e USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

e Google's coding competitions (https://codingcompetitions.withgoogle.com/codejam,
https://codingcompetitions.withgoogle.com/hashcode)

e The ICFP programming contest (https://www.icfpconference.org/)

e BME International 24-hours programming contest (https://www.challenge24.org/)

e The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

e Internet Problem Solving Contest (https://ipsc.ksp.sk/)

e Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

e Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

e OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

Students must solve problems and attain scores in the following coding contests:

Name of the contest Minimum number of problems to solve Required score
. CodeChef 20 200
. Leetcode 20 200
. GeeksforGeeks 20 200
. SPOJ 5 50
. InterviewBit 10 1000
. Hackerrank 25 250
. Codeforces 10 100
. BuildIT 50 500
Total score need to obtain 2500

Student must have any one of the following certification:

1 HackerRank - Problem Solving Skills Certification (Basic and Intermediate)
2. GeeksforGeeks — Data Structures and Algorithms Certification

3. CodeChef - Learn Python Certification

4. Interviewbit — DSA pro / Python pro

5. NPTEL - Programming, Data Structures and Algorithms

6. NPTEL — The Joy of Computing using Python

V. TEXT BOOKS:

1. Eric Matthes, “Python Crash Course: A Hands-On, Project-based Introduction to Programming”, No Starch
Press, 3rd Edition, 2023.

2. John M Zelle, “Python Programming: An Introduction to Computer Science”, Ingram short title, 3rd Edition,
2016.

VI.REFERENCE BOOKS:

1. Yashavant Kanetkar, Aditya Kanetkar, “Let Us Python”, BPB Publications, 2" Edition, 2019.
. Martin C. Brown, “Python: The Complete Reference”, Mc. Graw Hill, Indian Edition, 2018.

2
3. Paul Barry, “Head First Python: A Brain-Friendly Guide”, O’Reilly, 2" Edition, 2016
4

. Taneja Sheetal, Kumar Naveen, “Python Programming — A Modular Approach”, Pearson, 1% Edition,
2017.

5. RNageswar Rao, “Core Python Programming”, Dreamtech Press, 2018.

VII. ELECTRONICS RESOURCES

1. https://realPython.com/Python3-object-oriented-programming/

2. https://Python.swaroopch.com/oop.html

3. https://Python-textbok.readthedocs.io/en/1.0/Object Oriented Programming.html

214 | Page

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/
https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/
https://python-textbok.readthedocs.io/en/1.0/Object_Oriented_Programming.html

4. https://www.programiz.com/Python-programming/
5. https://www.geeksforgeeks.org/python-programming-language/

VIII. MATERIALS ONLINE

1. Course template
2. Lab Manual

215| Page

http://www.programiz.com/Python-programming/

INSTITUTE OF AERONAUTICAL ENGINEERING

3
50
7‘

/O’V

S
2]

2 &
 ror W

(Autonomous)
4 Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

DATA STRUCTURES LABORATORY

II Semester: AE/ME /CE /ECE /EEE /CSE /IT / CSE (AI&ML) / CSE (DS)

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
ACSE08 Foundation
- - 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil

Practical Classes: 45

Total Classes: 45

Prerequisite: Essentials of Problem Solving

I. COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development.
Topics covered include managing complexity, analysis, static data structures, dynamic data structures and
hashing mechanisms. The main objective of the course is to teach the students how to select and design data
structures and algorithms that are appropriate for problems that they might encounter in real life. This course
reaches to studentby power point presentations, lecture notes, and lab which involve the problem solving in

mathematical and engineering areas.

II. COURSES OBJECTIVES:
The students will try to learn

I. To provide students with skills needed to understand and analyze performance trade-offs of different

algorithms / implementations and asymptotic analysis of their running time and memory usage.

II. To provide knowledge of basic abstract data types (ADT) and associated algorithms: stacks, queues,

lists, tree, graphs, hashing and sorting, selection and searching.
II. The fundamentals of how to store, retrieve, and process data efficiently.
IV. To provide practice by specifying and implementing these data structures and algorithms in Python.
V. Understand essential for future programming and software engineering courses.

I1I. COURSE OUTCOMES:

At the end of the course students should be able to:

CO 1 Interpret the complexity of algorithm using the asymptotic notations.
CO 2 Select appropriate searching and sorting technique for a given problem.
CO 3 Construct programs on performing operations on linear and nonlinear data structures for

organization of a data.

CO 4 Make use of linear data structures and nonlinear data structures solving real time applications.

CO 5 Describe hashing techniques and collision resolution methods for efficiently accessing data with respect

to performance.

CO 6 Compare various types of data structures; in terms of implementation, operations and performance.

216 |Page

DATA STRUCTURES LABORATORY COURSE CONTENT

S No. Topic Name Page No.

1. Getting Started Exercises 5
Sum of last digits of two given numbers
Is N an exact multiple of M?
Combine Strings
Even or Odd
Second last digit of a given number
Alternate String Combiner
Padovan Sequence
Leaders in an array
Find the Value of a Number Raised to its Reverse
Mean of Array using Recursion
2. Searching 12
Linear / Sequential Search
Binary Search
Uniform Binary Search
Interpolation Search
. Fibonacci Search
3. Sorting 17
a. Bubble Sorting
b. Selection Sort
c. Insertion Sort

oK tho a0 To

® o0 oo

4. Divide and Conquer 21
a. Quick Sort
b. Merge Sort
c. Heap Sort
d. Radix Sort
e. Shell Sort
5. Stack 28

a. Implementation of Stack
b. Balanced Parenthesis Checking
¢. Evaluation of Postfix Expression
d. Infix to Postfix Expression Conversion
e. Reverse a Stack
6. Queue 33
a. Linear Queue
b. Stack using Queues
¢. Queue using Stacks
d. Circular Queue
e. Deque (Doubly Ended Queue)
7. Linked List 39
a. Singly Linked List
b. Linked List Cycle
c. Remove Linked List Elements
d. Reverse Linked List
e. Palindrome Linked List
f. Middle of the Linked List

217 |Page

10.

11.

12.

13.

14.

g. Convert Binary Number in a Linked List to Integer
Circular Single Linked List and Doubly Linked List

a. Circular Linked List

Doubly Linked List

Sorted Merge of Two Sorted Doubly Circular Linked Lists
Delete all occurrences of a given key in a Doubly Linked List
Delete a Doubly Linked List Node at a Given Position
Trees

Tree Creation and Basic Tree Terminologies

Binary Tree Traversal Techniques

Insertion in a Binary Tree in Level Order

Finding the Maximum Height or Depth of a Binary Tree
Deletion in a Binary Tree

Bmary Search Tree (BST)

a. Searching in Binary Search Tree

b. Find the node with Minimum Value in a BST

c. Check if a Binary Tree is BST or not

d. Second Largest Element in BST

e. Insertion in Binary Search Tree (BST)

AVL Tree

a. Insertion in an AVL Tree

b. Deletion in an AVL Tree

c. Count Greater Nodes in AVL Tree

d. Minimum Number of Nodes in an AVL Tree with given Height
Graph Traversal

a. Breadth First Search

Depth First Search

Best First Search (Informed Search)

Breadth First Traversal of a Graph

Depth First Search (DFS) for Disconnected Graph
M|n|mum Spanning Tree (MST)

a. Kruskal's Algorithm

b. Prim’s Algorithm

c. Total Number of Spanning Trees in a Graph

d. Minimum Product Spanning Tree

Final Notes

® a0 o

3 @ a0 oo

® a0 o

46

53

60

68

73

80

920

218 |Page

IV. COURSE CONTENT:

EXERCISES FOR DATA STRUCTURES LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory
practice sessions.

1. Getting Started Exercises

1.1 Sum of last digits of two given numbers

Rohit wants to add the last digits of two given numbers. For example, If the given numbers are 267 and
154, the output should be 11.

Below is the explanation -

Last digit of the 267 is 7

Last digit of the 154 is 4

Sum of 7and 4 = 11

Write a program to help Rohit achieve this for any given two numbers.

The prototype of the method should be -

int addLastDigits(int input1, int input2);

where input1 and input2 denote the two numbers whose last digits are to be added.
Note: The sign of the input numbers should be ignored.

if the input numbers are 267 and 154, the sum of last two digits should be 11
if the input numbers are 267 and -154, the sum of last two digits should be 11
if the input numbers are -267 and 154, the sum of last two digits should be 11
if the input numbers are -267 and -154, the sum of last two digits should be 11
Input: 267 154

Output: 11

Input: 267 -154

Output: 11

Input: -267 154

Output: 11

Input: -267 -154

Output: 11

import java.util.Scanner;

class AddLastDigitsFunction

{
int addLastDigits(int nl1, int n2)
{
Write code here
}
public static void main(String args[])
{
AddLastDigitsFunction obj = new AddLastDigitsFunction();
Write code here
System.out.println(obj.addLastDigits(n1,n2));
}
}

219 | Page

1.2 Is N an exact multiple of M?

Write a function that accepts two parameters and finds whether the first parameter is an exact multiple
of the second parameter. If the first parameter is an exact multiple of the second parameter, the
function should return 2 else it should return 1.

If either of the parameters are zero, the function should return 3.

Assumption: Within the scope of this question, assume that - the first parameter can be positive,
negative or zero the second parameter will always be >=0

Input: num1 = 10, num2 =5

Output: 2

Input: num1 = -10, num2 =5

Output: 2

Input: num1 =0, num2 =5

Output: 3

Input: num1 = 10, num2 = 3

Output: 1

public class MultipleChecker

{
public static int checkMultiple(int numl, int num2)
{
Write code here
}
public static void main(String[] args)
{
Write code here
}
}

1.3 Combine Strings

Given 2 strings, a and b, return a new string of the form short+long+short, with the shorter string on
the outside and the longer string in the inside. The strings will not be the same length, but they may
be empty (length 0).
If input is "hi" and "hello", then output will be "hihellohi'
Input: Enter the first string: "hi”
Enter the second string: “hello”
Output: “hihellohi”
Input: Enter the first string: “iare”
Enter the second string: “college”
Output: “iarecollegeiare”

public class StringCombiner

{
public static void main(String[] args)
{
Write code here
}
public static String combineStrings(String a, String b)
{
Write code here
}
}

220 | Page

1.4 Even or Odd

Write a function that accepts 6 input parameters. The first 5 input parameters are of type int. The sixth
input parameter is of type string. If the sixth parameter contains the value "even", the function is
supposed to return the count of how many of the first five input parameters are even. If the sixth
parameter contains the value "odd", the function is supposed to return the count of how many of the
first five input parameters are odd.

Example:

If the five input parameters are 12, 17, 19, 14, and 115, and the sixth parameter is "odd", the function
must return 3, because there are three odd numbers 17, 19 and 115.

If the five input parameters are 12, 17, 19, 14, and 115, and the sixth parameter is "even”, the function
must return 2, because there are two even numbers 12 and 14.

Note that zero is considered an even number.

Input: num1 = 12;

num?2 = 17;
num3 = 19;
num4 = 14;
num5 = 115;
type = "odd"

Output: 3

Input: num1 = 12;
num2 = 17;
num3 = 19;
num4 = 14;
num5 = 115;
type = "even”

Output: 2

public class NumberCounter

{

public static int countNumbers(int numl, int num2, int num3, int num4, int
num5, String type)

{
Write code here
}
public static void main(String[] args)
{
Write code here
}

1.5 Second last digit of a given number

Write a function that returns the second last digit of the given number. Second last digit is being
referred to the digit in the tens place in the given number.

Example: if the given number is 197, the second last digit is 9.

Note 1: The second last digit should be returned as a positive number. i.e. if the given number is -197,
the second last digit is 9.

Note 2: If the given number is a single digit number, then the second last digit does not exist. In such
cases, the function should return -1. i.e. if the given number is 5, the second last digit should be
returned as -1.

Input: 197

Output: 9

221 |Page

Input: 5
Output: -1
Input: -197
Output: 9

public class SecondLastDigit

{
public static int getSecondlLastDigit(int number)
{
write code here
}
public static void main(String[] args)
{
write code here
}
}

1.6 Alternate String Combiner

Given two strings, a and b, print a new string which is made of the following combination-first
character of a, the first character of b, second character of a, second character of b and so on.

Any characters left, will go to the end of the result.

Hello,World

HWeolrllod

Input: “Hello,World”

Output: "HWeolrllod”

Input: “lare,College”

Output: “ICaorlelege”

public class AlternateStringCombiner

{
public static void main(String[] args)
{
write code here
}
public static String combineStrings(String a, String b)
{
write code here
}
}

1.7 Padovan Sequence

The Padovan sequence is a sequence of numbers named after Richard Padovan, who attributed its
discovery to Dutch architect Hans van der Laan. The sequence was described by lan Stewart in his
Scientific American column Mathematical Recreations in June 1996. The Padovan sequence is defined
by the following recurrence relation:

P(n) = P(n-2) + P(n-3)

with the initial conditions P(0) = P(1) = P(2) = 1.

In this sequence, each term is the sum of the two preceding terms, similar to the Fibonacci sequence.
However, the Padovan sequence has different initial conditions and exhibits different growth patterns.
The first few terms of the Padovan sequence are: 1,1, 1, 2,2,3,4,5,7,9, 12, ...

Input: num = 10

Output: Padovan Sequence up to 10:

222 |Page

111223457912
Input: num = 20
Output: Padovan Sequence up to 20:

111223457912162128 37496586 114 151 200
public class PadovanSequence

{
public static int padovan(int n)
{
write code here
}
public static void main(String[] args)
{
write code here
}
}

1.8 Leaders in an array

Given an array arr of n positive integers, your task is to find all the leaders in the array. An element of
the array is considered a leader if it is greater than all the elements on its right side or if it is equal to
the maximum element on its right side. The rightmost element is always a leader.

Input: n = 6, arr[] = (16, 17, 4, 3, 5, 2}

Output: 17 5 2

Input: n =5, arr[] = {10, 4, 2, 4, 1}

Output: 10 4 4 1

Input: n = 4, arr[] = {5, 10, 20, 40}

Output: 40

Input: n = 4, arr[] = {30, 10, 10, 5}

Output: 30 10 10 5

import java.util.Arraylist;
import java.util.List;
public class Arrayleaders

{
public static List<Integer> findArraylLeaders(int[] arr)
{
write code here
}
public static void main(String[] args)
{
write code here
}
}

1.9 Find the Value of a Number Raised to its Reverse

Given a number N and its reverse R. The task is to find the number obtained when the number is raised
to the power of its own reverse

Input: N =2 R=2

Output: 4

Explanation: Number 2 raised to the power of its reverse 2 gives 4 which gives 4 as a result after
performing modulo 10°+7

223 | Page

Input: N = 57, R =75

Output: 262042770

Explanation: 577° modulo 10°+7 gives us the result as 262042770
public class NumberPower

{
public static long powerOfReverse(int N, int R)
{
write code here
}
public static void main(String[] args)
{
write code here
}
}

1.10 Mean of Array using Recursion

Find the mean of the elements of the array.

Mean = (Sum of elements of the Array) / (Total no of elements in Array)

Input: 12345

Output: 3.0

Input: 123

Output: 2.0

To find the mean using recursion assume that the problem is already solved for N-1 i.e. you have to
find for n

Sum of first N-1 elements = (Mean of N-1 elements) * (N-1)

Mean of N elements = (Sum of first N-1 elements + N-th elements) / (N)
public class ArrayMean

{
public static double findArrayMean(int[] arr)
{
write code here
}
public static void main(String[] args)
{
write code here
}
}
Try:

1. Kth Smallest Element: Given an array arr[] and an integer k where k is smaller than the size of the
array, the task is to find the kth smallest element in the given array. It is given that all array elements
are distinct.

Note: | and r denotes the starting and ending index of the array.

Input: n = 6, arr[] = {7, 10,4, 3,20, 15}, k=3,1=0,r=5

Output: 7

Explanation: 3rd smallest element in the given array is 7.

Input: n =5, arr[] = {7, 10, 4, 20, 15}, k = 4, =0 r=4

Output: 15

Explanation: 4th smallest element in the given array is 15.
Your task is to complete the function kthSmallest() which takes the array arr[], integers |
and r denoting the starting and ending index of the array and an integer k as input and

224 | Page

returns the kth smallest element.

2. Count pairs with given sum: Given an array of N integers, and an integer K, find the
number of pairs of elements in the array whose sum is equal to K. Your task is to complete
the function getPairsCount() which takes arr[], n and k as input parameters and returns the
number of pairs that have sum K.

Input: N =4, K=6,arr[] ={1,5,7, 1}

Output: 2

Explanation: arr[0] + arr[1] =1 + 5 =6 and arr[1] + arr[3] =5 + 1 = 6.

Input: N =4, K=2, arr[] ={1,1,1, 1}

Output: 6

Explanation: Each 1 will produce sum 2 with any 1.

2. Searching

2.1 Linear / Sequential Search

Linear search is defined as the searching algorithm where the list or data set is traversed from one end
to find the desired value. Given an array arr[] of n elements, write a recursive function to search a given
element x in arrf].

Find ‘6’

123456789 10

0 1 2 3 45 6 7 8 9
l

Index

Note : We find ‘6’ atindex °5° through linear search

Linear search procedure:

1. Start from the leftmost element of arr[] and one by one compare x with each element of arr[]
2. If x matches with an element, return the index.

3. If x doesn’t match with any of the elements, return -1.

Input: arr[] = {10, 20, 80, 30, 60, 50, 110, 100, 130, 170}
x =110;

Output: 6

Element x is present at index 6

Input: arr[] = {10, 20, 80, 30, 60, 50, 110, 100, 130, 170}
x = 175;

Output: -1

Element x is not present in arr[].

public class RecursivelLinearSearch

{
public static int recursivelinearSearch(int[] arr, int key, int index)
{
write code here
}

public static void main(String[] args)

225 | Page

write code here

2.2 Binary Search

Binary Search is defined as a searching algorithm used in a sorted array by repeatedly dividing the
search interval in half. The idea of binary search is to use the information that the array is sorted and
reduce the time complexity to O(log N).

>

1 2.3 4 5 6

0 7 8 9
search 46 [4]10[16|24[32[46] 76112144 [182]

L=0 1 2 3 M=4 5 6 7 8 H=9
46>32 | |
take uneer half |4| 10| 16|24 (32) 46| 76 | 112 | 144 | 182

0 1 2 3 4 L=5 6 M=7I 8 H=9
ke lower | 4] 10| 16[2432 46|76 (112) 144 | 182

0 1 2 3 4 L=M=5H=6 7 8 9
4|10] 16/ 2432(46) 76| 112|144 | 182]

Found 46
at Index.5

Conditions for Binary Search algorithm:
1. The data structure must be sorted.
2. Access to any element of the data structure takes constant time.

low ——— k—— high

x

|

mid = low + (high - low)/2

Binary Search Procedure:

1. Divide the search space into two halves by finding the middle index “mid".

2. Compare the middle element of the search space with the key.

3. If the key is found at middle element, the process is terminated.

4. If the key is not found at middle element, choose which half will be used as the next search space.
a. If the key is smaller than the middle element, then the left side is used for next search.
b. If the key is larger than the middle element, then the right side is used for next search.

5. This process is continued until the key is found or the total search space is exhausted.

Input: arr = [2, 5, 8, 12, 16, 23, 38, 56, 72, 91]
Output: target = 23
Element 23 is present at index 5

public class RecursiveBinarySearch
{

public static int recursiveBinarySearch(int[] arr, int key, int left, int
right)

{

226 |Page

https://www.geeksforgeeks.org/searching-algorithms/

write code here

}
public static void main(String[] args)
{
write code here
}

2.3 Uniform Binary Search

Uniform Binary Search is an optimization of Binary Search algorithm when many searches are made
on same array or many arrays of same size. In normal binary search, we do arithmetic operations to find
the mid points. Here we precompute mid points and fills them in lookup table. The array look-up
generally works faster than arithmetic done (addition and shift) to find the mid-point.

Input: array = {1, 3,5, 6,7, 8, 9}, v=3
Output: Position of 3 in array = 2

Input: array = {1, 3,5, 6,7, 8, 9}, v=7
Output: Position of 7 in array = 5

The algorithm is very similar to Binary Search algorithm, the only difference is a lookup table is created
for an array and the lookup table is used to modify the index of the pointer in the array which makes
the search faster. Instead of maintaining lower and upper bound the algorithm maintains an index and
the index is modified using the lookup table.

public class RecursiveUniformBinarySearch

{
public static int recursiveUniformBinarySearch(int[] arr, int key, int[]
lookupTable, int left, int right)

{
write code here
}
public static void main(String[] args)
{
write code here
}

2.4 Interpolation Search

Interpolation search works better than Binary Search for a Sorted and Uniformly Distributed array.
Binary search goes to the middle element to check irrespective of search-key. On the other hand,
Interpolation search may go to different locations according to search-key. If the value of the search-
key is close to the last element, Interpolation Search is likely to start search toward the end side.
Interpolation search is more efficient than binary search when the elements in the list are uniformly
distributed, while binary search is more efficient when the elements in the list are not uniformly
distributed.

Interpolation search can take longer to implement than binary search, as it requires the use of
additional calculations to estimate the position of the target element.

Input: arr = [1,2,3,4,5,6,7,8, 9]

227 |Page

Output: target = 5

public class InterpolationSearch

{
public static int interpolationSearch(int[] arr, int key)
{
write code here
}
public static void main(String[] args)
{
write code here
}
}

2.5 Fibonacci Search

Given a sorted array arr[] of size n and an element x to be searched in it. Return index of x if it is
present in array else return -1.

Input: arr[] = {2, 3,4, 10,40}, x =10
Output: 3
Element x is present at index 3.

Input: arr[] = {2, 3,4, 10, 40}, x = 11
Output: -1
Element x is not present.

Fibonacci Search is a comparison-based technique that uses Fibonacci numbers to search an element
in a sorted array.

Fibonacci Numbers are recursively defined as F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1. First few
Fibonacci Numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Fibonacci Search Procedure:

Let the searched element be x. The idea is to first find the smallest Fibonacci number that is greater
than or equal to the length of the given array. Let the found Fibonacci number be fib (m'th Fibonacci
number). We use (m-2)'th Fibonacci number as the index (If it is a valid index). Let (m-2)'th Fibonacci
Number be i, we compare arr[i] with x, if x is same, we return i. Else if x is greater, we recur for subarray
after i, else we recur for subarray before i.

Let arr[0..n-1] be the input array and the element to be searched be x.

1. Find the smallest Fibonacci number greater than or equal to n. Let this number be fibM [m‘th
Fibonacci number]. Let the two Fibonacci numbers preceding it be fibMm1 [(m-1)th Fibonacci
Number] and fibMm2 [(m-2)'th Fibonacci Number].

2. While the array has elements to be inspected:

i. Compare x with the last element of the range covered by fibMm?2

ii. If x matches, return index

iii. Else If x is less than the element, move the three Fibonacci variables two Fibonacci down,
indicating elimination of approximately rear two-third of the remaining array.

iv. Else x is greater than the element, move the three Fibonacci variables one Fibonacci down.
Reset offset to index. Together these indicate the elimination of approximately front one-
third of the remaining array.

3. Since there might be a single element remaining for comparison, check if fibMm1 is 1. If Yes,
compare x with that remaining element. If match, return index.

228 | Page

public class FibonacciSearch

{
public static int fibonacciSearch(int[] arr, int key)
{
write code here
}
public static void main(String[] args)
{
write code here
}
}

3. Sorting

3.1 Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements
if they are in the wrong order. This algorithm is not suitable for large data sets as its average and
worst-case time complexity is quite high.

Bubble Sort Procedure:
1. Traverse from left and compare adjacent elements and the higher one is placed at right side.
2. In this way, the largest element is moved to the rightmost end at first.

3. This process is then continued to find the second largest and place it and so on until the data is
sorted.

Input: arr = [6, 3, 0, 5]
Output:
First Pass:

i=o [6] 0] 3] 5 |

I
=1 [0] 6| 3| 5 |
0
i=2 [0] 3 | 6| 5 |
T—T:Sorted
(01315 6]
Second Pass:
i=o [0[3|56 |
e
=1 | ol 3] 5] 6|
t 2
R
: Sorted

Third Pass:

229 | Page

i=o | 0] 3| 5| 6 |
I
o[3]5]6 |

Sorted array

import java.util.Scanner;

class BubbleSortExample
{

public static void main(String[] args)

{ # write code here

}

public static void bubbleSort(int[] arr)
¢ # write code here

}

3.2 Selection Sort

Selection sort is a simple and efficient sorting algorithm that works by repeatedly selecting the smallest
(or largest) element from the unsorted portion of the list and moving it to the sorted portion of the list.
The algorithm repeatedly selects the smallest (or largest) element from the unsorted portion of the list
and swaps it with the first element of the unsorted part. This process is repeated for the remaining
unsorted portion until the entire list is sorted.

Input: arr = [64, 25, 12, 22, 11]
Output: arr = [11, 12, 22, 25, 64]

First Pass: For the first position in the sorted array, the whole array is traversed from index 0 to 4
sequentially. The first position where 64 is stored presently, after traversing whole array it is clear that
11 is the lowest value. Thus, replace 64 with 11. After one iteration 11, which happens to be the least

value in the array, tends to appear in the first position of the sorted list.
Swapping Elements

v v
64(25(12 (22 11

I_J

Position to h

old

Min element
Second Pass: For the second position, where 25 is present, again traverse the rest of the array in a
sequential manner. After traversing, we found that 12 is the second lowest value in the array and it

should appear at the second place in the array, thus swap these values.
Swapping

v

vy

11

25

12

22

64

already sorted

L

—

Min element

Min element

Position to hold
next min element

230 | Page

Third Pass: Now, for third place, where 25 is present again traverse the rest of the array and find the
third least value present in the array. While traversing, 22 came out to be the third least value and it
should appear at the third place in the array, thus swap 22 with element present at third position.

Swapping
s alic Min element
1|12 [25]|22 |64
already sorted [Position to hold

next min element

Fourth Pass: Similarly, for fourth position traverse the rest of the array and find the fourth least
element in the array. As 25 is the 4th lowest value hence, it will place at the fourth position.

T Min element
v

11 {12 | 22|25 |64 Hence no swap

already sorted | Position to hold
next min element

Fifth Pass: At last the largest value present in the array automatically get placed at the last position in
the array. The resulted array is the sorted array.

11 | 12 | 22| 25 |64

Sorted array

import java.util.Scanner;

class SelectionSortExample

{
public static void main(String[] args)
{
write code here
}
public static void selectionSort(int[] arr)
{
write code here
}
}

3.3 Insertion Sort

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your
hands. The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are
picked and placed at the correct position in the sorted part.

Insertion Sort Procedure:

1. To sort an array of size N in ascending order iterate over the array and compare the current element
(key) to its predecessor, if the key element is smaller than its predecessor, compare it to the elements
before.

2. Move the greater elements one position up to make space for the swapped element.

231 | Page

[E @ @ 6E [E E
B (7] (@) (2 (1] (5] (5]
JB B B (0] (2]] (5] (]
EalEafea] - fialsa]elo
@ & [[@ [&]
JE N 3 £ A B (5] (5]
[(=] (=] (1 A B (2]
[0 2 (2 [@ 3
[= & @ (5] (6] @ @

Input: arr = [4, 3, 2,10, 12, 1, 5, 6]
Output: arr = [1, 2, 3,4, 5,6, 10, 12]

import java.util.Scanner;
class InsertionSortExample
{
public static void main(String[] args)

{
}

write code here

public static void insertionSort(int[] arr)

{
}

write code here

4. Divide and Conquer

4.1 Quick Sort

QuickSort is a sorting algorithm based on the Divide and Conquer algorithm that picks an element as a
pivot and partitions the given array around the picked pivot by placing the pivot in its correct position
in the sorted array. The key process in quickSort is a partition(). The target of partitions is to place the
pivot (any element can be chosen to be a pivot) at its correct position in the sorted array and put all
smaller elements to the left of the pivot, and all greater elements to the right of the pivot. Partition is
done recursively on each side of the pivot after the pivot is placed in its correct position and this finally
sorts the array.

232 |Page

{10, 8o, 30, 90, 40, 50,

Aion m
70 (Last element)

{10, 30, 40, (50}) {90, (30)

P'trtltlon 'u"ouly \ / Partition around 80
{10, 30, {} {90}
Partltlon/
31(;ou11{c!|0
/ \ Partition
'around 30

{10} {

D

/@

The quick sort method can be summarized in three steps:

1. Pick: Select a pivot element.

2. Divide: Split the problem set, move smaller parts to the left of the pivot and larger items to the right.
3. Repeat and combine: Repeat the steps and combine the arrays that have previously been sorted.

Algorithm for Quick Sort Function:
//start —> Starting index, end --> Ending index
Quicksort(array, start, end)

{
if (start < end)
{
pIndex = Partition(A, start, end)
Quicksort(A,start,plndex-1)
Quicksort(A,pIndex+1, end)
}
}

Algorithm for Partition Function:
partition (array, start, end)

{
// Setting rightmost Index as pivot
pivot = arr[end];
i = (start - 1) // Index of smaller element and indicates the
// right position of pivot found so far
for (j = start; j <=end- 1; j++)
{
// If current element is smaller than the pivot
if (arr[j] < pivot)
{
i++; //increment index of smaller element
swap arr[i] and arr][j]
}
}
swap arr[i + 1] and arr[end])
return (i + 1)
}

233 | Page

Input: arr = [10, 80, 30, 90, 40, 50, 70]
Output: arr = [10, 30, 40, 50, 70, 80, 90]

import java.util.Scanner;

class QuickSortExample

{
public static void main(String[] args)
{
write code here
}
public static void quickSort(int[] arr, int low, int high)
{
write code here
}
public static int partition(int[] arr, int low, int high)
{
write code here
}
}

4.2 Merge Sort

Merge sort is defined as a sorting algorithm that works by dividing an array into smaller subarrays,
sorting each subarray, and then merging the sorted subarrays back together to form the final sorted
array. In simple terms, we can say that the process of merge sort is to divide the array into two halves,
sort each half, and then merge the sorted halves back together. This process is repeated until the entire
array is sorted.

38(27/43|10

10]27/3843

Input: arr = [12, 11,13, 5, 6, 7]
Output: arr =[5, 6, 7, 11, 12, 13]

import java.util.Scanner;

class MergeSortExample

{
public static void main(String[] args)
{
write code here
}

234 | Page

public static void mergeSort(int[] arr, int low, int high)

{
}

write code here

public static void merge(int[] arr, int low, int mid, int high)

{
}

write code here

4.3 Heap Sort

Heap sort is a comparison-based sorting technique based on Binary Heap data structure. It is similar to
the selection sort where we first find the minimum element and place the minimum element at the
beginning. Repeat the same process for the remaining elements.

Heap Sort Procedure:

First convert the array into heap data structure using heapify, then one by one delete the root node of
the Max-heap and replace it with the last node in the heap and then heapify the root of the heap.
Repeat this process until size of heap is greater than 1.

o Build a heap from the given input array.
) Repeat the following steps until the heap contains only one element:
e Swap the root element of the heap (which is the largest element) with the last element of the
heap.

e Remove the last element of the heap (which is now in the correct position).
e Heapify the remaining elements of the heap.
o The sorted array is obtained by reversing the order of the elements in the input array.

Input: arr = [12, 11, 13,5, 6, 7]
Output: Sorted arrayis5 6 7 11 12 13

import java.util.Scanner;

class HeapSortExample

{
public static void main(String[] args)
{
write code here
}
public static void heapSort(int[] arr)
{
write code here
}
public static void heapify(int[] arr, int n, int i)
{
write code here
}
}

235| Page

4.4 Radix Sort

Radix Sort is a linear sorting algorithm that sorts elements by processing them digit by digit. It is an
efficient sorting algorithm for integers or strings with fixed-size keys. Rather than comparing elements
directly, Radix Sort distributes the elements into buckets based on each digit's value. By repeatedly
sorting the elements by their significant digits, from the least significant to the most significant, Radix
Sort achieves the final sorted order.

Radix Sort Procedure:
The key idea behind Radix Sort is to exploit the concept of place value.
1. It assumes that sorting numbers digit by digit will eventually result in a fully sorted list.
2. Radix Sort can be performed using different variations, such as Least Significant Digit (LSD) Radix
Sort
or Most Significant Digit (MSD) Radix Sort.

To perform radix sort on the array [170, 45, 75, 90, 802, 24, 2, 66], we follow these steps:

170 45 75 20 802 24 2 66

Unsorted

Step 1: Find the largest element in the array, which is 802. It has three digits, so we will iterate three
times, once for each significant place.

Step 2: Sort the elements based on the unit place digits (X=0). We use a stable sorting technique, such
as counting sort, to sort the digits at each significant place.

Sorting based on the unit place:
Perform counting sort on the array based on the unit place digits.
The sorted array based on the unit place is [170, 90, 802, 2, 24, 45, 75, 66]

170 45 75 90 802 24 2 66
| Unsorted
Sorting based
on unit digit
‘ > 170 90 802 2 24 45 75 66

Sorted For Unit Digit
Step 3: Sort the elements based on the tens place digits.
Sorting based on the tens place:

Perform counting sort on the array based on the tens place digits.
The sorted array based on the tens place is [802, 2, 24, 45, 66, 170, 75, 90]

236 |Page

170 90 802 2 24 45 75 66

| Unsorted

Sorting based
on 10's digit
L» 802 2 24 45 66 170 75 90

Sorted Till 10'S Digit

Step 4: Sort the elements based on the hundreds place digits.

Sorting based on the hundreds place:
Perform counting sort on the array based on the hundreds place digits.
The sorted array based on the hundreds place is [2, 24, 45, 66, 75, 90, 170, 802]

802 2 24 45 66 170 75 20
| Unsorted
Sorting based
on 100's digit
L» 2 24 45 66 75 90 170 802

Sorting Till 100'S Digit
Step 5: The array is now sorted in ascending order.

The final sorted array using radix sort is [2, 24, 45, 66, 75, 90, 170, 802]
Array after performing Radix Sort for all digits

2 24 45 66 75 a0 170 802

import java.util.Arrays;

class RadixSortExample

{
public static void main(String[] args)
{
write code here
}
public static void radixSort(int[] arr)
{
write code here
}
public static int getMax(int[] arr)
{
write code here
}
public static void countSort(int[] arr, int exp)
{
write code here
}

237 |Page

4.5 Shell Sort

Shell sort is mainly a variation of Insertion Sort. In insertion sort, we move elements only one position
ahead. When an element has to be moved far ahead, many movements are involved. The idea of
ShellSort is to allow the exchange of far items. In Shell sort, we make the array h-sorted for a large
value of h. We keep reducing the value of h until it becomes 1. An array is said to be h-sorted if all
sublists of every h'th element are sorted.

Shell Sort Procedure:

1. Initialize the value of gap size h

2. Divide the list into smaller sub-part. Each must have equal intervals to h
3. Sort these sub-lists using insertion sort

4. Repeat this step 1 until the list is sorted.

5. Print a sorted list.

Procedure Shell_Sort(Array, N)
While Gap < Length(Array) /3 :
Gap = (Interval *3) + 1
End While Loop
While Gap > 0:
For (Outer = Gap; Outer < Length(Array); Outer++):
Insertion_Value = Array[Outer]
Inner = Outer;
While Inner > Gap-1 And Array[Inner — Gap] >= Insertion_Value:
Array[Inner] = Array[Inner — Gap]
Inner = Inner — Gap
End While Loop
Array[Inner] = Insertion_Value
End For Loop
Gap = (Gap -1) /3,
End While Loop
End Shell_Sort

import java.util.Scanner;

class ShellSortExample

{
public static void main(String[] args)
{
write code here
}
public static void shellSort(int[] arr)
{
write code here
}
}

238 | Page

5. Stack

5.1 Implementation of Stack

A stack is a linear data structure that stores items in a Last-In/First-Out (LIFO) or First-In/Last-Out (FILO)
manner. In stack, a new element is added at one end and an element is removed from that end only.
The insert and delete operations are often called push and pop.

Push

Last in, first out
Stack ’
Insertion and Deletion
happen on same end
?l =~

op Pop

The functions associated with stack are:
o empty() — Returns whether the stack is empty
e size() — Returns the size of the stack
e top() / peek() - Returns a reference to the topmost element of the stack
e push(a) — Inserts the element ‘a’ at the top of the stack
e pop() - Deletes the topmost element of the stack

class Stack

{

private int maxSize;
private int top;
private int[] stackArray;

public Stack(int size)

{
write code here
}
public void push(int value)
{
write code here
}
public int pop()
{
write code here
}
public int peek()
{
write code here
}
public boolean isEmpty()
{
write code here
}

public boolean isFull()
{

write code here

239 | Page

}

class StackExample

{

public static void main(String[] args)
{
Stack stack = new Stack(5);
stack.push(10);
stack.push(20);
stack.push(30);
stack.pop();
stack.peek();
stack.push(490);
stack.push(50);
stack.push(60);

5.2 Balanced Parenthesis Checking

Given an expression string, write a java program to find whether a given string has balanced
parentheses or not.

Input: "{(a+b)*(c-d)}"

Output: true

Input: "{(a+b)*[c-d)}"

Output: false

One approach to check balanced parentheses is to use stack. Each time, when an open parentheses is
encountered push it in the stack, and when closed parenthesis is encountered, match it with the top of
stack and pop it. If stack is empty at the end, return true otherwise, false

import java.util.Stack;

class BalancedParenthesisChecker

{
public static boolean isBalanced(String expression)
{
write code here
}
public static void main(String[] args)
{
String expressionl = "{(a+b)*(c-d)}";
String expression2 = "{(a+b)*[c-d)}";
write code here
}
}

5.3 Evaluation of Postfix Expression

Given a postfix expression, the task is to evaluate the postfix expression. Postfix expression: The
expression of the form “a b operator” (ab+) i.e., when a pair of operands is followed by an operator.
Input: str="231*+9-"

Output: -4

Explanation: If the expression is converted into an infix expression, it willbe2 + 3*1)-9=5-9 = -4.
Input: str = “100200 + 2 /5* 7 +"

240 | Page

Output: 757
Procedure for evaluation postfix expression using stack:
e C(Create a stack to store operands (or values).
e Scan the given expression from left to right and do the following for every scanned element.
o Ifthe element is a number, push it into the stack.
o Ifthe element is an operator, pop operands for the operator from the stack. Evaluate the
operator and push the result back to the stack.
e When the expression is ended, the number in the stack is the final answer.
import java.util.Stack;

class PostfixEvaluator

{
public static int evaluatePostfix(String expression)
{
write code here
}
public static int performOperation(char operator, int operandl, int operand2)
{
write code here
}
public static void main(String[] args)
{
write code here
}
}

5.4 Infix to Postfix Expression Conversion

For a given Infix expression, convert it into Postfix form.

Infix expression: The expression of the form “a operator b” (a + b) i.e., when an operator is in-between
every pair of operands.

Postfix expression: The expression of the form “a b operator” (ab+) i.e., When every pair of operands is
followed by an operator.

Infix to postfix expression conversion procedure:

1.
2.
3.

Scan the infix expression from left to right.

If the scanned character is an operand, put it in the postfix expression.

Otherwise, do the following

If the precedence and associativity of the scanned operator are greater than the
precedence and associativity of the operator in the stack [or the stack is empty or the stack
contains a ‘('], then push it in the stack. A" operator is right associative and other operators
like '+','="*" and /' are left-associative].

o Check especially for a condition when the operator at the top of the stack and
the scanned operator both are '*". In this condition, the precedence of the scanned
operator is higher due to its right associativity. So it will be pushed into the operator stack.

. In all the other cases when the top of the operator stack is the same as the
scanned operator, then pop the operator from the stack because of left associativity due to
which the scanned operator has less precedence.

Else, Pop all the operators from the stack which are greater than or equal to in
precedence than that of the scanned operator.

. After doing that Push the scanned operator to the stack. (If you encounter
parenthesis while popping then stop there and push the scanned operator in the stack.)

241 |Page

4. If the scanned character is a '(, push it to the stack.

5. If the scanned character is a)’, pop the stack and output it until a ‘(" is encountered, and
discard both the parenthesis.

6. Repeat steps 2-5 until the infix expression is scanned.

7. Once the scanning is over, Pop the stack and add the operators in the postfix expression until it
is not empty.

8. Finally, print the postfix expression.

Input: A+B*C+D
Output: ABC*+ D +

Input: (A +B)-C*(D/E) +F
Output: AB+CDE/*-F+
import java.util.Stack;

class Conversion

{

Write Code Here

}
5.5 Reverse a Stack

The stack is a linear data structure which works on the LIFO concept. LIFO stands for last in first out. In the
stack, the insertion and deletion are possible at one end the end is called the top of the stack. Define
two recursive functions BottomlInsertion() and Reverse() to reverse a stack using Python. Define some
basic function of the stack like push(), pop(), show(), empty(), for basic operation like respectively
append an item in stack, remove an item in stack, display the stack, check the given stack is empty or
not.

Bottominsertion(): this method append element at the bottom of the stack and Bottominsertion accept
two values as an argument first is stack and the second is elements, this is a recursive method.

Reverse(): the method is reverse elements of the stack, this method accept stack as an argument Reverse()
is also a Recursive() function. Reverse() is invoked BottomInsertion() method for completing the reverse
operation on the stack.

Input: Elements = [1, 2, 3, 4, 5]
Output: Original Stack

N W b~ U

Stack after Reversing

u b~ WN =

import java.util.Stack;
class StackClass {
Write Code Here

}
242 |Page

6. Queue

6.1 Linear Queue

Linear queue is a linear data structure that stores items in First in First out (FIFO) manner. With a queue
the least recently added item is removed first. A good example of queue is any queue of consumers for
a resource where the consumer that came first is served first.

Queue

Insertion and Deletion
happen on different ends

v

Rear
Enqueue Front Dequeue

First in first out

import java.util.Scanner;

public class LinearQueue

{
Write Code Here

}
public static boolean isEmpty() {

return front == rear;

}
public static boolean isFull() {

return rear == MAX;

}

public static void enqueue(int item)

{
Write Code Here

}

public static void dequeue()

{
Write Code Here

}
public static void display()

{
Write Code Here

}

public static void main(String[] args)

{
Write Code Here

}

6.2 Stack using Queues

Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should
support all the functions of a normal stack (push, top, pop, and empty).

e void push(int x) Pushes element x to the top of the stack.

e int pop() Removes the element on the top of the stack and returns it.

e int top() Returns the element on the top of the stack.

243 |Page

e boolean empty() Returns true if the stack is empty, false otherwise.
Input:
["MyStack”, "push”, "push”, "top", "pop", "empty"]
(0, 013, 121, 0, 0. 01
Output:
[null, null, null, 2, 2, false]

import java.util.LinkedList;
import java.util.Queue;

class MyStack
{

}
public void push(int x)
{
Write Code Here

}

Write Code Here

}

public int pop()
{

return queue.remove();

}

public int top() {
return queue.peek();

}

public boolean empty() {
return queue.isEmpty();

}
public static void main(String[] args)
{
Write Code Here
}

}
6.3 Queue using Stacks

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should
support all the functions of a normal queue (push, peek, pop, and empty).

e void push(int x) Pushes element x to the back of the queue.
int pop() Removes the element from the front of the queue and returns it.
int peek() Returns the element at the front of the queue.

e boolean empty() Returns true if the queue is empty, false otherwise.
Input:
["MyQueue", "push”, "push”, "peek
(0210000
Output:
[null, null, null, 1, 1, false]

. "pop”, "empty"]

import java.util.Stack;
class MyQueue {

private Stack<Integer> stackl;

244 |Page

private Stack<Integer> stack2;
public MyQueue() {
stackl = new Stack<>();
stack2 = new Stack<>();

gublic void push(int x) {
stackl.push(x);
gublic int pop()
{# Write Code Here
pusaic int peek()
i Write Code Here

}
public boolean empty() {

return stackl.isEmpty() && stack2.isEmpty();

}
public static void main(String[] args)
{
Write Code Here
}

6.4 Circular Queue

A Circular Queue is an extended version of a normal queue where the last element of the queue is
connected to the first element of the queue forming a circle. The operations are performed based on
FIFO (First In First Out) principle. It is also called 'Ring Buffer'.

Operations on Circular Queue:
Front: Get the front item from the queue.
Rear: Get the last item from the queue.

enQueue(value) This function is used to insert an element into the circular queue. In a circular

queue, the new element is always inserted at the rear position.

e Check whether the queue is full - [i.e,, the rear end is in just before the front end in a

circular manner].

e Ifitis full then display Queue is full.

o If the queue is not full then, insert an element at the end of the queue.
deQueue() This function is used to delete an element from the circular queue. In a circular

queue, the element is always deleted from the front position.
e Check whether the queue is Empty.
o Ifitis empty then display Queue is empty.

e If the queue is not empty, then get the last element and remove it from

the queue.

245 | Page

enQueue(14) enQueue(22) enQueue(13) enQueue(-6)
Front Rear Front Front

o0
OC

deQueue() deQueue() enQueue(9) enQueue(20) enQueue(5)

Front

Implement Circular Queue using Array:
5. Initialize an array queue of size n, where n is the maximum number of elements that the queue
can hold.
6. Initialize two variables front and rear to -1.
7. Enqueue: To enqueue an element x into the queue, do the following:

o Increment rear by 1.
e If rearis equal to n, set rear to 0.
. If front is -1, set front to 0.
. Set queuel[rear] to x.
8. Dequeue: To dequeue an element from the queue, do the following:
o Check if the queue is empty by checking if front is -1.
e [fitis, return an error message indicating that the queue is empty.
. Set x to queue [front].
. If front is equal to rear, set front and rear to -1.
o Otherwise, increment front by 1 and if front is equal to n, set front to 0.
. Return x.

class CircularQueue {

private int size;
private int front, rear;
private int[] queue;

public CircularQueue(int size) {
this.size = size;
this.queue = new int[size];
this.front = this.rear = -1;

public void enqueue(int data)

i Write Code Here
pugiic int dequeue()
{ # Write Code Here
pugiic void display()
{

Write Code Here

246 | Page

}

public static void main(String[] args)

{
Write Code Here

}
}

6.5 Deque (Doubly Ended Queue)

In a Deque (Doubly Ended Queue), one can perform insert (append) and delete (pop) operations from
both the ends of the container. There are two types of Deque:
1. Input Restricted Deque: Input is limited at one end while deletion is permitted at both ends.

2. Output Restricted Deque: Output is limited at one end but insertion is permitted at both ends.
Operations on Deque:

1 append(): This function is used to insert the value in its argument to the right end of the deque.

2 appendleft(): This function is used to insert the value in its argument to the left end of the deque.

3. pop(): This function is used to delete an argument from the right end of the deque.
4
5

popleft(): This function is used to delete an argument from the left end of the deque.
index(ele, beg, end): This function returns the first index of the value mentioned in arguments, starting
searching from beg till end index.

6. insert(i, a): This function inserts the value mentioned in arguments(a) at index(i) specified in
arguments.

7. remove(): This function removes the first occurrence of the value mentioned in arguments.

8. count(): This function counts the number of occurrences of value mentioned in arguments.

9. len(dequeue): Return the current size of the dequeue.

10. Deque[0]: We can access the front element of the deque using indexing with de[0].

11. Deque[-1]: We can access the back element of the deque using indexing with de[-1].

12. extend(iterable): This function is used to add multiple values at the right end of the deque. The argument
passed is iterable.

13. extendleft(iterable): This function is used to add multiple values at the left end of the deque. The argument
passed is iterable. Order is reversed as a result of left appends.

14. reverse(): This function is used to reverse the order of deque elements.

15. rotate(): This function rotates the deque by the number specified in arguments. If the number specified is
negative, rotation occurs to the left. Else rotation is to right.

import java.util.ArrayDeque;

import java.util.Deque;

public class DequeOperations

{
}

Write Code Here

7. Linked List

7.1 Singly Linked List

A singly linked list is a linear data structure in which the elements are not stored in contiguous memory
locations and each element is connected only to its next element using a pointer.
Head

H
BEROENEESaE

Data Next

Creating a linked list involves the following operations:
1. Creating a Node class:
2. Insertion at beginning:

247 | Page

Insertion at end
Insertion at middle
Update the node
Deletion at beginning
Deletion at end
Deletion at middle

9. Remove last node
10. Linked list traversal

11. Get length

class Node {
String data;
Node next;

© NV AW

Node(String data) {
this.data = data;
this.next = null;

}

class LinkedList

{
Write Code Here

}

public void insertAtEnd(String data)
{

Write Code Here

}

public void updateNode(String val, int index)
{

Write Code Here

}

public void remove_ first node() {
Write Code Here

}

public void remove_last_node()
{
Write Code Here
}

public void remove_at_index(int index)

{
Write Code Here

}

public void remove_node(String data)

{
Write Code Here

}

public int sizeOfLL()
{

Write Code Here

248 | Page

}

public void printLL()

{
Write Code Here

}

public static void main(String[] args)

{
Write Code Here

}
}

7.2 Linked List Cycle

Given head, the head of a linked list, determine if the linked list has a cycle in it. There is a cycle in a
linked list if there is some node in the list that can be reached again by continuously following the next
pointer. Internally, pos is used to denote the index of the node that tail's next pointer is connected to.
Note that pos is not passed as a parameter.

Return true if there is a cycle in the linked list. Otherwise, return false.

Input: head = [3, 2, 0, -4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 1st node (0-indexed).

(1 —{ 2 K
“.,_,_f_,,.' —
Input: head = [1, 2], pos =0
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the Oth node.

,"’" -. \I".

(1)

Input: head = [1], pos = -1
Output: false

Explanation: There is no cycle in the linked list.

class ListNode

{
Write Code Here
}
public class Solution
{
Write Code Here
}

249 |Page

7.3 Remove Linked List Elements

Given the head of a linked list and an integer val, remove all the nodes of the linked list that has
Node.val == val, and return the new head.

d

Input: head = [1, 2, 6, 3, 4, 5, 6], val =
Output: [1, 2, 3,4, 5]

Input: head =[], val = 1

Output: []

Input: head = [7,7,7, 7], val =
Output: []

class ListNode {
Write Code Here
¥

¥

public class Solution {
public boolean hasCycle(ListNode head)

{
Write Code Here

}

public static void main(String[] args)

{
Write Code Here

}
}

7.4 Reverse Linked List

Given the head of a singly linked list, reverse the list, and return the reversed list.
Input: head = [1, 2, 3, 4, 5]
Output: [5, 4, 3, 2, 1]

Input: head = [1, 2]
Output: [2, 1]

4
OO

250 | Page

class ListNode {
int val;
ListNode next;

ListNode(int val) {
this.val = val;
this.next = null;

}

public class Solution {
public ListNode reverselList(ListNode head)

{
Write Code Here

}

public static void main(String[] args)

{
Write Code Here

}

7.5 Palindrome Linked List

Given the head of a singly linked list, return true if it is a palindrome or false otherwise.

Input: head = [1, 2, 2, 1]
Output: true

(D—(2)

Input: head = [1, 2]
Output: false

class ListNode

{
Write Code Here

}

public class Solution {
public boolean isPalindrome(ListNode head)

{
Write Code Here
}
public static void main(String[] args)
{
Write Code Here
}

}
7.6 Middle of the Linked List

Given the head of a singly linked list, return the middle node of the linked list. If there are two middle
nodes, return the second middle node.

251 | Page

Input: head = [1, 2, 3,4, 5]
Output: [3, 4, 5]
Explanation: The middle node of the list is node 3.

Input: head = [1, 2, 3,4, 5, 6]

Output: [4, 5, 6]

Explanation: Since the list has two middle nodes with values 3 and 4, we return the second one.
class ListNode

{
Write Code Here

}
}

public class Solution

{
}

Write Code Here

public static void main(String[] args) {
Write Code Here
}
}

7.7 Convert Binary Number in a Linked List to Integer

Given head which is a reference node to a singly-linked list. The value of each node in the linked list is
either 0 or 1. The linked list holds the binary representation of a number.

Return the decimal value of the number in the linked list. The most significant bit is at the head of the
linked list.

O——O—0

Input: head = [1, 0, 1]
Output: 5
Explanation: (101) in base 2 = (5) in base 10
Input: head = [0]
Output: 0
class ListNode {
int val;
ListNode next;

ListNode(int val) {
this.val = val;
this.next = null;

}
}
public class Solution
{
Write Code Here
}

public static void main(String[] args)

252 | Page

{
Write Code Here

}

8. Circular Single Linked List and Doubly Linked List

8.1 Circular Linked List

The circular linked list is a linked list where all nodes are connected to form a circle. In a circular linked
list, the first node and the last node are connected to each other which forms a circle. There is no NULL
at the end.

Head

Operations on the circular linked list:
1. Insertion at the beginning
Insertion at the end
Insertion in between the nodes
Deletion at the beginning
Deletion at the end
Deletion in between the nodes
Traversal

Nouvhkwn

import java.util.Arraylist;
public class Main{
static class Node{
int data;
Node next;
Node(int data){
this.data
this.next

data;
null;

}
}

static class CircularLinkedList

{
Write Code Here

}
Node addAfter(int data, int item)

{
Write Code Here

}
void deleteNode(Node last, int key)

{
Write Code Here

}
System.

8.2 Doubly Linked List

The A doubly linked list is a type of linked list in which each node consists of 3 components:
1. *prev - address of the previous node

2. data - data item
3. *next - address of next node.

253 | Page

<« prev data next -

Double Linked List Node

Head

Next

Next Next Next NULL
[~ O e G e [
Prev Prev Frev

Next

Operations on the Double Linked List:

1. Insertion at the beginning
Insertion at the end
Insertion in between the nodes
Deletion at the beginning
Deletion at the end
Deletion in between the nodes
Traversal

Nouvuhkwn

254 | Page

255 | Page

Write Code Here

}

public class Main {
public static void main(String[] args)
{

Write Code Here

}
}

8.3 Sorted Merge of Two Sorted Doubly Circular Linked Lists

Given two sorted Doubly circular Linked List containing n1 and n2 nodes respectively. The problem is to
merge the two lists such that resultant list is also in sorted order.

Input: List 1 and List 2

head1l

Output: Merged List

final ‘

Procedure for Merging Doubly Linked List:

1. If head1 == NULL, return head?2.

2. If head2 == NULL, return head1.

3. Let last1 and last2 be the last nodes of the two lists respectively. They can be obtained with
the help of the previous links of the first nodes.

4. Get pointer to the node which will be the last node of the final list. If last1.data < last2.data,

then last_node = last2, Else last_node = last]1.

5. Update last1.next = last2.next = NULL.

6. Now merge the two lists as two sorted doubly linked list are being merged.
Refer merge procedure of this post. Let the first node of the final list be finalHead.

7. Update finalHead.prev = last_node and last_node.next = finalHead.

256 | Page

https://www.geeksforgeeks.org/merge-sort-for-doubly-linked-list/

8. Return finalHead.

class Node {
int data;
Node next, prev;

Node(int data) {

this.data = data;
this.next = null;
this.prev = null;
}
}
public class SortedMergeDoublyCircularLinkedList
{
Write Code Here
}
static Node mergeUtil(Node headl, Node head2)
{
Write Code Here
}
static void printList(Node head)
{
Write Code Here
}
public static void main(String[] args)
{
Write Code Here
}
}

8.4 Delete all occurrences of a given key in a Doubly Linked List

Given a doubly linked list and a key x. The problem is to delete all occurrences of the given key x from the
doubly linked list.

Input: 2 <->2 <-> 10 <-> 8 <->4 <->2<->5<->2
x=2
Output: 10 <-> 8 <->4 <->5

Algorithm:
delAllOccurOfGivenKey (head_ref, x)
if head_ref == NULL
return
Initialize current = head_ref
Declare next
while current = NULL
if current->data == x
next = current->next
deleteNode(head_ref, current)
current = next
else
current = current->next

257 |Page

class Node {
int data;
Node next, prev;

Node(int data) {
this.data
this.next
this.prev

data;
null;
null;

}

public class DeleteOccurrenceInDoublylLinkedList

{
Write Code Here

}

static Node deleteAllOccurOfX(Node head, int x)

{
Write Code Here

}

static void printList(Node head)

{
Write Code Here

}

public static void main(String[] args)

{
Write Code Here

}
}
8.5 Delete a Doubly Linked List Node at a Given Position

Given a doubly linked list and a position n. The task is to delete the node at the given position n from the
beginning.

Input: Initial doubly linked list
. A : R 1
10 1 8 | | 4 3 2 B=1 5

S i il 1

Output: Doubly Linked List after deletion of node at position n = 2

Procedure:
1. Get the pointer to the node at position n by traversing the doubly linked list up to the nth node
from the beginning.
2. Delete the node using the pointer obtained in Step 1.

class Node {
int data;
Node next, prev;

Node(int data) {
258 |Page

this.data = data;
this.next = null;
this.prev = null;
}
}
public class DeleteNodeAtGivenPosition
{
Write Code Here
}
static Node deleteNode(Node head, Node del)
{
Write Code Here
}
static Node deleteNodeAtGivenPos(Node head, int n)
{
Write Code Here
}
static void printList(Node head)
{
Write Code Here
}
}
9. Trees

9.1 Tree Creation and Basic Tree Terminologies

A tree data structure is a hierarchical structure that is used to represent and organize data in a way that

is easy to navigate and search. It is a collection of nodes that are connected by edges and has a
hierarchical relationship between the nodes.

‘ Tree Data Structure ‘

Root Key

Level 0

Level 1
Height
of the
tree

Level 2

Level3

Level 4

O
[eafNodes

259 | Page

Basic Terminologies in Tree:

1. Parent Node: The node which is a predecessor of a node is called the parent node of that node. {B} is
the parent node of {D, E}.
2. Child Node: The node which is the immediate successor of a node is called the child node of that node.
Examples: {D, E} are the child nodes of {B}.
3. Root Node: The topmost node of a tree or the node which does not have any parent node is called the
root node. {A} is the root node of the tree. A non-empty tree must contain exactly one root node and

exactly one path from the root to all other nodes of the tree.
4. Leaf Node or External Node: The nodes which do not have any child nodes are called leaf nodes. {K, L,
M, N, O, P} are the leaf nodes of the tree.
5. Ancestor of a Node: Any predecessor nodes on the path of the root to that node are called Ancestors of
that node. {A, B} are the ancestor nodes of the node {E}
6. Descendant: Any successor node on the path from the leaf node to that node. {E, I} are the descendants
of the node {B}.

7. Sibling: Children of the same parent node are called siblings. {D, E} are called siblings.

8. Level of a node: The count of edges on the path from the root node to that node. The root node has
level 0.

9. Internal node: A node with at least one child is called Internal Node.
10. Neighbour of a Node: Parent or child nodes of that node are called neighbors of that node.
11. Subtree: Any node of the tree along with its descendant.
import java.util.ArraylList;

import java.util.List;

public class TreeBasicTerminologies

{

Write Code Here
}

static void printChildren(int root, List<List<Integer>> adj)

{
Write Code Here

}

static void printLeafNodes(int root, List<List<Integer>> adj)

{
Write Code Here

}

static void printDegrees(int root, List<List<Integer>> adj)

{
Write Code Here

}
public static void main(String[] args)

{
Write Code Here

}

9.2 Binary Tree Traversal Techniques

A binary tree data structure can be traversed in following ways:

1.

Inorder Traversal

2. Preorder Traversal
3.
4. Level Order Traversal

Postorder Traversal

260 | Page

Inorder Traversal

4| 2 5‘1‘6‘3 7‘

Preorder Traversal
1 2 4 ‘ 5 ‘ 3 ‘ 6 | 7 ‘

Postorder Traversal

45 2‘6‘?

31‘

Algorithm Inorder (tree)

1. Traverse the left subtree, i.e., call Inorder(left->subtree)
2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right->subtree)

Algorithm Preorder (tree)

1. Visit the root.
2. Traverse the left subtree, i.e., call Preorder(left->subtree)
3. Traverse the right subtree, i.e., call Preorder(right->subtree)

Algorithm Postorder (tree)

1. Traverse the left subtree, i.e., call Postorder(left->subtree)
2. Traverse the right subtree, i.e., call Postorder(right->subtree)
3. Visit the root.

261 | Page

9.3 Insertion in a Binary Tree in Level Order

Given a binary tree and a key, insert the key into the binary tree at the first position available in level order.

Input: Consider the tree given below

262 |Page

(10)
OERO.
@O @0 G

After inserting 12

The idea is to do an iterative level order traversal of the given tree using queue. If we find a node whose
left child is empty, we make a new key as the left child of the node. Else if we find a node whose right
child is empty, we make the new key as the right child. We keep traversing the tree until we find a node
whose either left or right child is empty.
class Node

{
Write Code Here
}
public class BinaryTreeInsertion
{
Write Code Here
}
static Node insert(Node root, int key)
{
Write Code Here
}
public static void main(String[] args)
{
Write Code Here
}
}

9.4 Finding the Maximum Height or Depth of a Binary Tree

Given a binary tree, the task is to find the height of the tree. The height of the tree is the number of
edges in the tree from the root to the deepest node.

Note: The height of an empty tree is 0.

Input: Consider the tree below

Recursively calculate the height of the left and the right subtrees of a node and assign height to the
node as max of the heights of two children plus 1.

maxDepth('1’) = max(maxDepth('2'), maxDepth('3")) + 1 =2 + 1

because recursively

maxDepth('2") = max (maxDepth('4’), maxDepth('5)) + 1 =1 + 1 and (as height of both ‘4" and '5 are
1)

263 | Page

maxDepth('3) = 1

Procedure:

e Recursively do a Depth-first search.
e [f the tree is empty then return 0
Otherwise, do the following
Get the max depth of the left subtree recursively i.e. call maxDepth(tree->left-subtree)
Get the max depth of the right subtree recursively i.e. call maxDepth(tree->right-subtree)
Get the max of max depths of left and right subtrees and add 1 to it for the current node.
maxrgepth = max(maxdeptofleftsubiree, maxdepthofrightsubtree) + 1

Return max_depth.

class Node
{
int data;
Node left, right;

Node(int data) {
this.data = data;
this.left = null;

this.right = null;

}

public class MaximumDepthOfTree

{
Write Code Here

}

public static void main(String[] args)

{
Write Code Here

}

9.5 Deletion in a Binary Tree

Given a binary tree, delete a node from it by making sure that the tree shrinks from the bottom (i.e. the

deleted node is replaced by the bottom-most and rightmost node).

Input: Delete 10 in below tree

10

/\
20 30

Output:
30

/
20

Input: Delete 20 in below tree
10

/\
20 30

264 | Page

40

Output:
10

40 30

Algorithm:

1. Starting at the root, find the deepest and rightmost node in the binary tree and the node which we
want to delete.

2. Replace the deepest rightmost node’s data with the node to be deleted.
3. Then delete the deepest rightmost node.

Node to be deleted is 12 Replacing 12 with

deepest node
Deleting the o @

deepest node

265 | Page

class Node {
int data;
Node Lleft, right;

Node(int data) {
this.data = data;
this.left = null;
this.right = null;

}
}
public class BinaryTreeDeletion
{
Write Code Here
}
static void deleteDeepest(Node root, Node dNode)
{
Write Code Here
}
static Node deletion(Node root, int key)
{
Write Code Here
}
public static void main(String[] args)
{
Write Code Here
}
}

10. Binary Search Tree (BST)

10.7 Searching in Binary Search Tree

Given a BST, the task is to delete a node in this BST. For searching a value in BST, consider it as a sorted
array. Perform search operation in BST using Binary Search Algorithm.

Algorithm to search for a key in a given Binary Search Tree:
Let's say we want to search for the number X, We start at the root. Then:
o We compare the value to be searched with the value of the root.

e Ifit's equal we are done with the search if it's smaller we know that we need to go to the left
subtree because in a binary search tree all the elements in the left subtree are smaller and all
the elements in the right subtree are larger.

) Repeat the above step till no more traversal is possible
. If at any iteration, key is found, return True. Else False.

266 | Page

Consider The Following BST
Key=6

Compare Key With Root, i.e 8
as 6¢8, search in left subtree
of 8

AsKey (6) Is Greater Than 3,
Search In The Right Subtree Of 3

As 6 Is Equal To Key (6), So We Have
Found The Key

// Node class to represent each node of the BST
class Node {

int key;

Node left, right;

public Node(int item) {
key = item;
Left = right = null;
}
}
class BST

{
Write Code Here

}

267 |Page

10.2 Find the node with Minimum Value in a BST

Write a function to find the node with minimum value in a Binary Search Tree.

Input: Consider the tree given below

Output: 8

Input: Consider the tree given below

Output: 10

268 |Page

import java.util.ArraylList;
import java.util.List;

class Node {
int data;
Node Lleft, right;

public Node(int item) {
data = item;
Left = right = null;

}

class BinarySearchTree

{
Write Code Here

}

public static void main(String[] args)

{
Write Code Here

}

10.3 Check 1f a Binary Tree is BST or not

A binary search tree (BST) is a node-based binary tree data structure that has the following properties.

1. The left subtree of a node contains only nodes with keys less than the node’s key.

2. The right subtree of a node contains only nodes with keys greater than the node’s key.
3. Both the left and right subtrees must also be binary search trees.

4. Each node (item in the tree) has a distinct key.

Input: Consider the tree given below

\

(4
(2) (5)

Output: Check if max value in left subtree is smaller than the node and min value in right subtree
greater than the node, then print it “Is BST" otherwise “Not a BST"

Procedure:

If the current node is null then return true

If the value of the left child of the node is greater than or equal to the current node then return false
If the value of the right child of the node is less than or equal to the current node then return false

If the left subtree or the right subtree is not a BST then return false

Else return true

vk wmn =

269 |Page

class Node {
int data;
Node left, right;

public Node(int item) {
data = item;
left = right = null;

}
}
class BinaryTree
{
Write Code Here
}

boolean isBST(Node node) {
return isBSTUtil(node, Integer.MIN_VALUE, Integer.MAX_ VALUE);

}
boolean isBSTUtil(Node node, int min, int max)
i Write Code Here
}
public static void main(String[] args)
i Write Code Here
}

10.4 Second Largest Element in BST

Given a Binary search tree (BST), find the second largest element.

Input: Root of below BST
10
/
5
Output: 5

Input: Root of below BST
10

/\

5 20

30
Output: 20

Procedure: The second largest element is second last element in inorder traversal and second element
in reverse inorder traversal. We traverse given Binary Search Tree in reverse inorder and keep track of

270 | Page

counts of nodes visited. Once the count becomes 2, we print the node.

class Node {
int Rey;
Node Lleft, right;

public Node(int item) {
key = item;
Left = right = null;

}
}
class BinarySearchTree
{
Write Code Here
}

secondLargestUtil (node.right);
count++;

// If count is equal to 2 then this is the second largest
if (count == 2) {
System.out.println("The second largest element 1is
return;

"

+ node.key);

}

secondLargestUtil (node. Lleft);
}

// Function to find the second largest element
void secondLargest(Node node) {

count = 0;

secondLargestUtil (node);
}

// Driver code
public static void main(String[] args)

i Write Code Here
}

/

Try:

1. Kth largest element in BST when modification to BST is not allowed: Given a Binary Search Tree
(BST) and a positive integer k, find the k'th largest element in the Binary Search Tree. For a given BST, if
k = 3, then output should be 14, and if k = 5, then output should be 10.

271 | Page

10.5 Insertion in Binary Search Tree (BST)

Given a Binary search tree (BST), the task is to insert a new node in this BST.

Input: Consider a BST and insert the element 40 into it.

100 100

insert 40
20 B -ooenecneeeonsd » (20 500

10 30 10 30

40

Procedure for inserting a value in a BST:

A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start
searching for a key from the root until we hit a leaf node. Once a leaf node is found, the new node is
added as a child of the leaf node. The below steps are followed while we try to insert a node into a
binary search tree:

. Check the value to be inserted (say X) with the value of the current node (say val) we are in:
o If X is less than val move to the left subtree.
) Otherwise, move to the right subtree.
) Once the leaf node is reached, insert X to its right or left based on the relation between X and

the leaf node’s value.

272 |Page

// A utility class that represents an individual node in a BST
class Node {

int val;

Node Lleft, right;

public Node(int item) {
val = item;
Left = right = null;

}

class BinarySearchTree

{

Write Code Here

}

void inorder()

{

inorderRec(root);

}

void inorderRec(Node root)

{
Write Code Here

}
}

// Driver code
public static void main(String[] args)

{
Write Code Here

}
}

Try:

1. Check if two BSTs contain same set of elements: Given two Binary Search Trees consisting of
unique positive elements, we have to check whether the two BSTs contain the same set of elements or
not.

Input: Consider two BSTs which contains same set of elements {5, 10, 12, 15, 20, 25}, but the structure
of the two given BSTs can be different.

273 | Page

11. AVL Tree

11.7 Insertion in an AVL Tree

AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and
right subtrees cannot be more than one for all nodes. To make sure that the given tree remains AVL
after every insertion, we must augment the standard BST insert operation to perform some re-
balancing.
Following are two basic operations that can be performed to balance a BST without violating the BST
property (keys(left) < key(root) < keys(right)).

e Left Rotation

e Right Rotation

T1, T2 and T3 are subtrees of the tree, rooted with y (on the left side) or x (on the right side)

y X
/\ Right Rotation / o\
X T3 - - - - == T1 vy
/ \ i= 2 === = = /\
T1 T2 Left Rotation T2 T3

Keys in both of the above trees follow the following order

keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)

So BST property is not violated anywhere.

Procedure for inserting a node into an AVL tree

Let the newly inserted node be w

. Perform standard BST insert for w.

o Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced
node, y be the child of z that comes on the path from w to z and x be the grandchild of z that
comes on the path from w to z.

) Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There
can be 4 possible cases that need to be handled as x, y and z can be arranged in 4 ways.
) Following are the possible 4 arrangements:

e yisthe left child of z and x is the left child of y (Left Left Case)

e yisthe left child of z and x is the right child of y (Left Right Case)

e yisthe right child of z and x is the right child of y (Right Right Case)
e yis the right child of z and x is the left child of y (Right Left Case)

274 | Page

class TreeNode {
int val, height;
TreeNode Lleft, right;

TreeNode(int d) {
val = d;
height = 1;

}

}
class AVL_Tree {

write the code

}

TreeNode LeftRotate(TreeNode x)
{

write the code
}
public static void main(String[] args) {
write the code

}

11.2 Deletion in an AVL Tree

Given an AVL tree, make sure that the given tree remains AVL after every deletion, we must augment
the standard BST delete operation to perform some re-balancing. Following are two basic operations
that can be performed to re-balance a BST without violating the BST property (keys(left) < key(root) <

keys(right)).

1. Left Rotation
2. Right Rotation

T1, T2 and T3 are subtrees of the tree rooted with y (on left side)
or x (on right side)

y X
/\ Right Rotation !\
ROJE == === > T1L vy
/ \ G======-= /\
T1 T2 Left Rotation T2 T3

Keys in both of the above trees follow the following order
keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)
So BST property is not violated anywhere.

Procedure to delete a node from AVL tree:

Let w be the node to be deleted
1. Perform standard BST delete for w.

275 | Page

2. Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced
node, y be the larger height child of z, and x be the larger height child of y. Note that the
definitions of x and y are different from insertion here.

3. Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There
can be 4 possible cases that needs to be handled as x, y and z can be arranged in 4 ways. Following
are the possible 4 arrangements:

i. y is left child of z and x is left child of y (Left Left Case)

ii. yisleft child of zand x is right child of y (Left Right Case)
iii. yisright child of z and x is right child of y (Right Right Case)
iv. yisright child of z and x is left child of y (Right Left Case)

class TreeNode

{
int val, height;
TreeNode left, right;

TreeNode(int d) {
val = d;
height = 1;

}

class AVL_Tree {

TreeNode LeftRotate(TreeNode z)
{

Write code here

}

TreeNode rightRotate(TreeNode z)
{

Write code here

}

TreeNode insert(TreeNode node, int key)

{

Write code here

F

11.3 Count Greater Nodes in AVL Tree

Given an AVL tree, calculate number of elements which are greater than given value in AVL tree.

Input: x = 5
Root of below AVL tree
9
/\
1 10
/N N\
0 5 11
/ /N
-1 2 6
Output: 4
Explanation: There are 4 values which are greater than 5 in AVL tree which are 6, 9, 10 and 11.

276 | Page

https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
https://www.geeksforgeeks.org/avl-tree-set-1-insertion/

class TreeNode {
int key, height, desc;
TreeNode Lleft, right;

TreeNode(int d) {
key = d;
height = 1;
desc = 0;

}

class AVL_Tree

{

Write code here

}

TreeNode insert(TreeNode node, int key)

{

Write code here

}

TreeNode minValueNode(TreeNode node)

{

Write code here

}

TreeNode deleteNode(TreeNode root, int key)
{

Write code here

}

void preOrder(TreeNode node)

{

Write code here

}

public class Main

{

Write code here

}
}
11.4 Minimum Number of Nodes in an AVL Tree with given Height

Given the height of an AVL tree 'h’, the task is to find the minimum number of nodes the tree can have.

Input: H=0

Output: N = 1

Only '1' node is possible if the height
of the tree is '0' which is the root node.

Input: H =3
Output: N =7

Recursive approach:

In an AVL tree, we have to maintain the height balance property, i.e. difference in the height of the left
and the right subtrees cannot be other than -1, 0 or 1 for each node.

We will try to create a recurrence relation to find minimum number of nodes for a given height, n(h).

. For height = 0, we can only have a single node in an AVL tree, i.e. n(0) = 1

277 | Page

. For height = 1, we can have a minimum of two nodes in an AVL tree, i.e. n(1) = 2

. Now for any height ‘h’, root will have two subtrees (left and right). Out of which one has to be
of height h-1 and other of h-2. [root node excluded]

. So, n(h) = 1 + n(h-1) + n(h-2) is the required recurrence relation for h>=2 [1 is added for the
root node]

public class AVLTreeMinimumNodes {

public static int AVLnodes(int height)
{

Write code here

}

public static void main(String[] args) {
int H = 3;
System.out.println(AVLnodes(H)); // Output: 4

12. Graph Traversal

12.1 Breadth First Search

The Breadth First Search (BFS) algorithm is used to search a graph data structure for a node that
meets a set of criteria. It starts at the root of the graph and visits all nodes at the current depth level
before moving on to the nodes at the next depth level.

For a given graph G, print BFS traversal from a given source vertex.

278 | Page

import java.util.*;

public class Graph {
private Map<Integer, List<Integer>> graph;

public Graph()

{
graph = new HashMap<>();
}

public void addEdge(int u, int v) {
if (!graph.containsKey(u)) {
graph.put(u, new Arraylist<>());

}
graph.get(u).add(v);

public void BFS(int s)
{

Write code here

}

public static void main(String[] args)
{

Write code here

}
}

Output: Following is Breadth First Traversal (starting from vertex 2)
2031

12.2 Depth First Search

Depth First Traversal (or DFS) for a graph is similar to Depth First Traversal of a tree. The only catch
here is, that, unlike trees, graphs may contain cycles (a node may be visited twice). To avoid processing
a node more than once, use a boolean visited array. A graph can have more than one DFS traversal.

For a given graph G, print DFS traversal from a given source vertex.

Input:n=4,e=6
0->1,0->2,1->2,2->0,2->3,3->3

Output: DFS from vertex 1: 120 3

Explanation:
DFS Diagram:

279 | Page

https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

Input:n=4,e=6
2->0,0->2,1->2,0->1,3->3,1->3

Output: DFS from vertex 2: 20 1 3

Explanation:
DFS Diagram:

280 | Page

12.3 Best First Search (Informed Search)

The idea of Best First Search is to use an evaluation function to decide which adjacent is most
promising and then explore. Best First Search falls under the category of Heuristic Search or Informed
Search.

Implementation of Best First Search:
We use a priority queue or heap to store the costs of nodes that have the lowest evaluation function
value. So the implementation is a variation of BFS, we just need to change Queue to PriorityQueue.

Algorithm:
Best-First-Search(Graph g, Node start)
1) Create an empty PriorityQueue
PriorityQueue pq;
2) Insert "start" in pq.
pq.insert(start)
3) Until PriorityQueue is empty
u = PriorityQueue.DeleteMin
If u is the goal
Exit
Else
Foreach neighbor v of u
If v "Unvisited"
Mark v "Visited"
pq.insert(v)
Mark u "Examined"
End procedure

Input: Consider the graph given below.

. We start from source “S” and search for goal “I" using given costs and Best First search.
) pq initially contains S
. We remove S from pqg and process unvisited neighbors of S to pqg.
. pg now contains {A, C, B} (C is put before B because C has lesser cost)
. We remove A from pqg and process unvisited neighbors of A to pg.
° pg now contains {C, B, E, D}
. We remove C from pq and process unvisited neighbors of C to pq.
e pg now contains {B, H, E, D}
. We remove B from pq and process unvisited neighbors of B to pg.

e pg now contains {H, E, D, F, G}

281 | Page

o We remove H from pq.
. Since our goal “I" is a neighbor of H, we return.

import java.util.*;

public class BestFirstSearch {
static int v = 14;
static List<List<Pair<Integer, Integer>>> graph = new ArraylList<>();
static void addedge(int x, int y, int cost) {
graph.get(x).add(new Pair<>(y, cost));
graph.get(y).add(new Pair<>(x, cost));
}

static void best first search(int actual_Src, int target, int n)

{

Write code here

}

public static void main(String[] args)
{

Write code here

}
}
12.4 Breadth First Traversal of a Graph

Given a directed graph. The task is to do Breadth First Traversal of this graph starting from 0.

One can move from node u to node v only if there's an edge from u to v. Find the BFS traversal of the
graph starting from the Oth vertex, from left to right according to the input graph. Also, you should
only take nodes directly or indirectly connected from Node 0 in consideration.

Input: Consider the graph given below where V = 5, E = 4, edges = {(0,1), (0,2), (0,3), (2,4)}

Output: 01234

Explanation:

0 is connected to 1, 2, and 3.

2 is connected to 4.

So starting from 0, it will go to 1 then 2 then 3. After this 2 to 4, thus BFS willbe 012 3 4.

Input: Consider the graph given below where V = 3, E = 2, edges = {(0, 1), (0, 2)}

282 | Page

Output: 0 12

Explanation:

0 is connected to 1, 2. So starting from 0, it will go to 1 then 2, thus BFS will be 0 1 2.

Your task is to complete the function bfsOfGraph() which takes the integer V denoting the number of
vertices and adjacency list as input parameters and returns a list containing the BFS traversal of the
graph starting from the Oth vertex from left to right.

import java.util.*;

class Graph {
private int V;
private LinkedList<Integer>[] adj;

Graph(int v) {
V = v;
adj = new LinkedList[v];
for (int i = @; i < v; ++i)
adj[i] = new LinkedList();
}

void addEdge(int v, int w) {
adj[v].add(w);
}

void BFS(int s)

{
Write Code Here

}

public static void main(String args[]) {
Write Code Here

}

12.5 Depth First Search (DFS) for Disconnected Graph

Given a Disconnected Graph, the task is to implement DFS or Depth First Search Algorithm for this
Disconnected Graph.

Input: Consider the graph given below.

283 | Page

//

start
Output: 0 1 2 3

Procedure for DFS on Disconnected Graph:
Iterate over all the vertices of the graph and for any unvisited vertex, run a DFS from that vertex.

284 |Page

import java.util.ArraylList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

// Class representing a directed graph using adjacency List representation
class Graph

{# Write Code Here
}
public Graph()
{graph = new HashMap<>();
}
public void addEdge(int u, int v)
}; Write Code Here
pr'i}vate void DFSUtil(int v, boolean[] visited)
i Write Code Here
}

}

public void DFS() {
boolean[] visited = new boolean[graph.size()];
Write Code Here

}
public static void main(String[] args)
{
Write Code Here
}
}
Try:

1. Detect a negative cycle in a Graph (Bellman Ford): A Bellman-Ford algorithm is also guaranteed to find
the shortest path in a graph, similar to Dijkstra’s algorithm. Although Bellman-Ford is slower than
Dijkstra’s algorithm, it is capable of handling graphs with negative edge weights, which makes it more
versatile. The shortest path cannot be found if there exists a negative cycle in the graph. If we continue to
go around the negative cycle an infinite number of times, then the cost of the path will continue to
decrease (even though the length of the path is increasing).

Consider a graph G and detect a negative cycle in the graph using Bellman Ford algorithm.

B — 2 — D

285 | Page

13. Minimum Spanning Tree (MST)

13.7 Kruskal’s Algorithm

In Kruskal's algorithm, sort all edges of the given graph in increasing order. Then it keeps on adding
new edges and nodes in the MST if the newly added edge does not form a cycle. It picks the minimum
weighted edge at first and the maximum weighted edge at last.

MST using Kruskal's algorithm:

4. Sort all the edges in non-decreasing order of their weight.

5. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If the
cycle is not formed, include this edge. Else, discard it.

6. Repeat step#2 until there are (V-1) edges in the spanning tree.

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. The Greedy
Choice is to pick the smallest weight edge that does not cause a cycle in the MST constructed so far.

Input: For the given graph G find the minimum cost spanning tree.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 — 1)
= 8 edges.

After sorting:

Weight | Source | Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

286 | Page

Now pick all edges one by one from the sorted list of edges.

;
4 N\ 9
2 \
\ 4
Q- 0

// Kruskal's algorithm to find minimum Spanning Tree of a given connected,
import java.util.*;

Output:

public class Graph {

class Edge implements Comparable<Edge> {
int src, dest, weight;

// Comparator function used for sorting edges
public int compareTo(Edge compareEdge) {
return this.weight - compareEdge.weight;
}
}

private int V; // Number of vertices
private List<Edge> edges; // List of edges

public Graph(int vertices) {
this.V = vertices;
this.edges = new ArraylList<>();

}
public void addEdge(int u, int v, int w)
i Write Code Here
priiate void union(int[] parent, int[] rank, int x, int y)
i Write Code Here
}
public void KruskalMST()
i Write Code Here
}

public static void main(String[] args) {
Graph g = new Graph(4);

g.addEdge(0, 1, 10);
g.addEdge(0, 2, 6);
g.addEdge(0, 3, 5);
g.addEdge(1, 3, 15);
g.addEdge(2, 3, 4);

287 |Page

// Function call

g.KruskalMST();
}
}
Output: Following are the edges in the constructed MST
2--3==4
0--3==
0--1==10

Minimum Cost Spanning Tree: 19

13.2 Prim’s Algorithm

The Prim’s algorithm starts with an empty spanning tree. The idea is to maintain two sets of vertices.
The first set contains the vertices already included in the MST, and the other set contains the vertices
not yet included. At every step, it considers all the edges that connect the two sets and picks the
minimum weight edge from these edges. After picking the edge, it moves the other endpoint of the
edge to the set containing MST.

Prim’s Algorithm:
The working of Prim'’s algorithm can be described by using the following steps:
7. Determine an arbitrary vertex as the starting vertex of the MST.
8. Follow steps 3 to 5 till there are vertices that are not included in the MST (known as fringe
vertex).
9. Find edges connecting any tree vertex with the fringe vertices.
10. Find the minimum among these edges.
11. Add the chosen edge to the MST if it does not form any cycle.
12. Return the MST and exit
Input: For the given graph G find the minimum cost spanning tree.

% an aa N
@ - ©-- ©®
@@

Output: The final structure of the MST is as follows and the weight of the edges of the MST is (4 + 8 +

1T+2+4+2+7+9) =37
/‘ 7&\

0. ©

288 | Page

import java.util.Arrays;
public class Graph {

private int V; // Number of vertices
private 1int[][] graph; // Adjacency matrix representation of graph

public Graph(int vertices) {
this.V = vertices;
this.graph = new int[V][V];

}

public void printMST(int[] parent) {
System.out.println("Edge \tWeight");
for (int 1 = 1; 1 < V; i++) {

System.out.println(parent[i] + " - " + 1 + "\t" +
graph[i][parent[i]]);
}
}
private int minKey(int[] key, boolean[] mstSet)
{
Write Code Here
}
public void primMST()
{
Write Code Here
}
public static void main(String[] args)
{
Write Code Here
}
}
Output:
Edge Weight
0-1 2
1-2 3
0-3 6
1-4 5

13.3 Total Number of Spanning Trees in a Graph

If a graph is a complete graph with n vertices, then total number of spanning trees is n™2 where n is
the number of nodes in the graph. In complete graph, the task is equal to counting different labeled
trees with n nodes for which have Cayley's formula.

Laplacian matrix:
A Laplacian matrix L, where L[i, i] is the degree of node i and L[i, j] = -1 if there is an edge between

nodes i and j, and otherwise L[i, j] = 0.

Kirchhoff's theorem provides a way to calculate the number of spanning trees for a given graph as a
determinant of a special matrix. Consider the following graph,

289 | Page

All possible spanning trees are as follows:

In order to calculate the number of spanning trees, construct a Laplacian matrix L, where L[i, i] is the

degree of node i and L[j, j] = —1 if there is an edge between nodes i and j, and otherwise L][i, j] = 0.
for the above graph, The Laplacian matrix will look like this

3 -1 -1 -1

11 0 0
L=141 0 2 -1
-1 0 -1 2

The number of spanning trees equals the determinant of a matrix.
The Determinant of a matrix that can be obtained when we remove any row and any column from L.
For example, if we remove the first row and column, the result will be,

1 0 0
0 2 -1|)=3.

0 -1 2

det(

The determinant is always the same, regardless of which row and column we remove from L.

290 | Page

import java.util.Arrays;

public class NumberOfSpanningTrees {

static final int MAX = 100;
static final int MOD = 1000000007 ;
void multiply(long[][] A, long[][] B, long[][] C, int size) {
for (int 1 = 0; 1 < size; i++) {
for (int j = 0; j < size; j++) {
C[i][3] = eé;
for (int k = 6; R < size; kR++) {
C[1][3] = (C[1][3] + A[1][R] * B[R][]]) % MOD;

}

}
}
void power(long[][] A, int N, long[][] result, int size)

{
Write Code Here

}

Long numOfSpanningTree(int[][] graph, int V)
{
Write Code Here

}

public static void main(String[] args) {
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
int[][] graph = { { €, 1, 1, 1}, {1, 6, 1, 1 }, {1, 1,86, 1}, {1, 1,
1, e}k

NumberOfSpanningTrees obj = new NumberOfSpanningTrees();
System.out.println(obj.numOfSpanningTree(graph, V));

13.4 Minimum Product Spanning Tree

A minimum product spanning tree for a weighted, connected, and undirected graph is a spanning tree
with a weight product less than or equal to the weight product of every other spanning tree. The
weight product of a spanning tree is the product of weights corresponding to each edge of the
spanning tree. All weights of the given graph will be positive for simplicity.

Input:

9

Output: Minimum Product that we can obtain is 180 for above graph by choosing edges 0-1, 1-2, 0-3
and 1-4

291 | Page

This problem can be solved using standard minimum spanning tree algorithms like Kruskal and prim’s
algorithm, but we need to modify our graph to use these algorithms. Minimum spanning tree
algorithms tries to minimize the total sum of weights, here we need to minimize the total product of
weights. We can use the property of logarithms to overcome this problem.

logw1* w2 *w3 * ... * wN) = log(w1) + log(w2) + log(w3) + log(wN)

We can replace each weight of the graph by its log value, then we apply any minimum spanning tree
algorithm which will try to minimize the sum of log(wi) which in turn minimizes the weight product.
import java.util.Arrays;

public class MinimumProductMST {
// Number of vertices in the graph
static final int V = 5;

// A utility function to find the vertex with minimum key value, from the set

// vertices not yet included in MST
int minKey(int key[], boolean mstSet[]) {
int min = Integer.MAX _VALUE, min_index = -1;

for (int v = 6; v < V; v++) {
if (mstSet[v] == false && key[v] < min) {
min = Rey[v];
min_index = v;

}

return min_index;

}

void printMST(int parent[], int n, int graph[][])
{
Write Code Here
}

void primMST(int inputGraph[][], int LogGraph[][])

{
Write Code Here

}
voild minimumProductMST(int graph[][])

{
Write Code Here

}
public static void main(String[] args)

{
Write Code Here

}
}

13.5 Reverse Delete Algorithm for Minimum Spanning Tree

In Reverse Delete algorithm, we sort all edges in decreasing order of their weights. After sorting, we
one by one pick edges in decreasing order. We include current picked edge if excluding current edge
causes disconnection in current graph. The main idea is delete edge if its deletion does not lead to
disconnection of graph.

Algorithm:
1. Sort all edges of graph in non-increasing order of edge weights.
2. Initialize MST as original graph and remove extra edges using step 3.

292 |Page

3. Pick highest weight edge from remaining edges and check if deleting the edge disconnects the
graph or not.
If disconnects, then we don't delete the edge.
Else we delete the edge and continue.

Input: Consider the graph below

293 |Page

https://www.geeksforgeeks.org/check-removing-given-edge-disconnects-given-graph/
https://www.geeksforgeeks.org/check-removing-given-edge-disconnects-given-graph/

Next is 9. We cannot delete 9 as deleting it causes disconnection.

WE DONOT
DELET THIS
Q)

We continue this way and following edges remain in final MST.
Edges in MST

3.4

0.7

(2 3)

(2. 5)

(VR0

(5.6)

(2 8)

6.7

294 | Page

Try:
1. Detect Cycle in a Directed Graph: Given the root of a Directed graph, The task is to check whether
the graph contains a cycle or not.

Input: N=4,E=6

295 | Page

|

W e— N

Output: Yes
Explanation: The diagram clearly shows a cycle 0 -> 2 -> 0

14. Final Notes

The only way to learn programming is program, program and program on challenging problems. The
problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging
problems available — used in training for various programming contests (such as International
Collegiate Programming Contest (ICPC), International Olympiad in Informatics (IOl)). Check out these

sites:
[]

The ACM - ICPC International collegiate programming contest (https://icpc.global/)
The Topcoder Open (TCO) annual programming and design contest
(https://www.topcoder.com/)

Universidad de Valladolid’s online judge (https://uva.onlinejudge.org/).

Peking University's online judge (http://poj.org/).

USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.
Google's coding competitions (https://codingcompetitions.withgoogle.com/codejam,
https://codingcompetitions.withgoogle.com/hashcode)

The ICFP programming contest (https://www.icfpconference.org/)

BME International 24-hours programming contest (https://www.challenge24.org/)
The International Obfuscated C Code Contest (https://wwwO.us.ioccc.org/main.html)
Internet Problem Solving Contest (https://ipsc.ksp.sk/)

Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)
OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores
Students must solve problems and attain scores in the following coding contests:

Name of the contest Minimum number of problems to solve Required score
CodeChef 20 200
Leetcode 20 200
GeeksforGeeks 20 200
SPQOJ 5 50
InterviewBit 10 1000
Hackerrank 25 250
Codeforces 10 100
BuildIT 50 500

Total score need to obtain 2500

Student must have any one of the following certification:

2.

HackerRank - Problem Solving Skills Certification (Basic and Intermediate)

2. GeeksforGeeks — Data Structures and Algorithms Certification

296 | Page

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/
https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/

®© N VU AW

B

—

CodeChef - Learn Data Structures and Algorithms Certification
Interviewbit — DSA pro / Python pro

Edx — Data Structures and Algorithms

NPTEL — Programming, Data Structures and Algorithms

NPTEL - Introduction to Data Structures and Algorithms
NPTEL — Data Structures and Algorithms

NPTEL — Programming and Data Structure

Rance D. Necaise, “Data Structures and Algorithms using Python”, Wiley Student Edition.
Benjamin Baka, David Julian, “Python Data Structures and Algorithms”, Packt Publishers, 2017.

S. Lipschutz, “Data Structures”, Tata McGraw Hill Education, 1st Edition, 2008.
D. Samanta, “Classic Data Structures”, PHI Learning, 2nd Edition, 2004.

https://www.tutorialspoint.com/data_structures_algorithms/algorithms basics.htm
https://www.codechef.com/certification/data-structures-and-algorithms/prepare
https://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html
https://online-learning.harvard.edu/course/data-structures-and-algorithms

Syllabus
Lab manual

297 |Page

INSTITUTE OF AERONAUTICAL ENGINEERING

: (Autonomous)
/4 Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

COMPUTER AIDED ENGINEERING GRAPHICS

I Semester: CSE / IT
I1 Semester: CSE (AI&ML) / CSE(DS) / ECE / EEE / AERO/MECH / CE

Course Code Category Hours / Week | Credits Maximum Marks
L T P C CIA | SEE Total
AMEEO03 Foundation
1 0 2 2 40 60 100
Contact Classes: 15| Tutorial Classes: Nil Practical Classes: 30 Total Classes: 45

Prerequisite: There is no prerequisite required to this course

I. COURSE OVERVIEW:
Engineering Drawing is the technique that develops the ability to visualize any object with all
physical and dimensional configurations. The AutoCAD software assists in preparation of
drawings to carry out sophisticated design and analysis of machine components and structures.
This is the foundation course for civil engineering, mechanical engineering and aeronautical
engineering that are improving their technologies in the era of digital manufacturing and
construction.

II. COURSE OBJECTIVES:

The students will try to learn:

I. The illustration of different objects using technical drawings using concepts of engineering drawing.
II. The standard principles of orthographic projection of objects for making technical drawings.
1. The representation of draw sectional views and pictorial views of solids.

IV. The computer aided drafting skills for producing the 2D and 3D drawings.

III. COURSE OUTCOMES:
At the end of the course students should be able to:

CO1 Demonstrate the use of draw, modify and dimension commands of AutoCAD for
development of drawings used in design and analysis of structures.

CO2 Explain the constructional procedure of scales, conic sections and special
curves used in engineering practices.

CO3 Utilize the principles of orthographic projection for projections of points, lines, planes
and regular solids using first angle projections.

CO4 Interpret the sectional views and true shape of the section for revealing interior
features of an object

COS5 Illustrate the development of surfaces for construction of storage vessels, chemical

vessels, boilers, and chimneys in industrial applications

CO6 Make use of the concept of orthographic and isometric projections for converting

isometric view to orthographic views and Vice-versa for engineering applications.

298 |Page

MODULE - I: Introduction to engineering graphics

Principles of engineering graphics and their significance, scales, plain & diagonal, conic sections
including the rectangular hyperbola, general method, cycloid, epicycloid and hypocycloid,
introduction to computer aided drafting, views, commands.

MODULE - II: Orthographic projections

Principles of orthographic projections, conventions, projections of points and lines, projections of
plane regular geometric figures. Computer aided orthographic projections, points, lines and planes.

MODULE - III: Projections of regular solids

Projections of regular solids, auxiliary views, sections or sectional views of right regular solids,
prism. Cylinder, pyramid, cone, computer aided projections of solids, sectional views.

MODULE - 1V: Development of surfaces

Development of surfaces of right regular solids, prism, cylinder, pyramid and cone, development of
surfaces using computer aided drafting.

MODULE - V: Isometric projections

principles of isometric projection, isometric scale, isometric views, conventions, isometric views of
lines, plane figures, simple and compound solids, isometric projection of objects having non-
isometric lines. Isometric projection of spherical parts, conversion of isometric views to
orthographic views and vice-versa, conventions, conversion of orthographic projection into
isometric view using computer aided drafting.

1. N.D. Bhatt; Engineering Drawing Charotar Publishing House PVT Ltd, 15" edition 2011.
2. K. Venugoplal; Engineering Drawing and graphics Using AutoCAD, 3 edition 2007.

VI
1. Basant Agrawal and C M Agrawal; Engineering Drawing, McGraw Hill, 3™ Edition 2011.
2. K L Narayana, P Kannaiah; Engineering Drawing, New age international (P) limited, 3™ edition,
2022.
3. M. B. Shah, B.C. Rane; Engineering Drawing, Pearson publications.

1. https://archieve.nptel.ac.in/cources/112/103/112103019.
2. https://archieve.nptel.ac.in/cources/112/105/112105294.

1. Course Template
2. Laboratory manual

299 |Page

https://archieve.nptel.ac.in/cources/112/103/112103019

EXERCISES ON COMPUTER AIDED ENGINEERING GRAPHICS

Note: Students are encouraged to bring their own laptops for laboratory
practice sessions.

1. Getting Started Exercises

1.1 Introduction to AUTOCAD
AutoCAD is a widely-used computer-aided design (CAD) software application developed by
Autodesk. It has been an industry standard for drafting and designing since its inception in
the early 1980s. AutoCAD provides a versatile platform for creating and editing 2D and 3D
drawings and models, making it an essential tool in various fields such as architecture,
engineering, construction, manufacturing, and more.

i. Install AUTO CAD

ii. Purpose and Application
iii. Interface and Tools

iv. Precision and Accuracy

v. 2D and 3D Modeling

vi. Collaboration and Sharing
vii. Customization

viii. Industry Usage

ix. Versions and Licensing

1.1 Commands
The main purpose of using commands and shortcuts in AutoCAD boils down to increased
productivity. They allow you to execute functions more quickly, as you don't need to search
through the entire AutoCAD interface for the right tool. You can just type the command, and
the function window appears.

i. Basic Drawing Commands

ii. Editing Commands

iii. Dimensioning Commands

iv. Advanced and Miscellaneous Commands

Basic Drawing Commands:
o Line (LINE): Draws straight line segments between two points.
o Circle (CIRCLE): Creates circles by specifying a center point and radius.
o Rectangle (RECTANGLE): Constructs rectangles by defining two opposing corners.
o Arc (ARC): Draws arcs based on different methods, such as specifying start, end,
and radius or center, start, and angle.

Editing Commands:

o Erase (ERASE): Deletes selected objects from the drawing.

o Copy (COPY): Copies objects to a specified location.

o Move (MOVE): Relocates selected objects to a different position.

o Trim (TRIM): Cuts selected objects at the cutting edges defined by other objects.

o Extend (EXTEND): Extends objects to meet the boundaries of other objects.
Dimensioning Commands:

o Line Dimension (DIMLINEAR): Adds linear dimensions to objects.

o Aligned Dimension (DIMALIGNED): Creates dimensions aligned with an angle of

the object.
o Radial Dimension (DIMRADIUS): Add radius dimensions to arcs and circles.

300 | Page

o Diameter Dimension (DIMDIAMETER): Creates diameter dimensions for circles.
Advanced and Miscellaneous Commands:

o Hatch (HATCH): Fills enclosed areas with a pattern or gradient.
Offset (OFFSET): Creates parallel copies of objects at a specified distance.
Block (BLOCK): Defines reusable blocks (collections of objects) in the drawing.
Insert (INSERT): Inserts predefined blocks into the drawing.
Viewport (VPORTS): Manages viewports for layout and plotting in paper space.
Layer (LAYER): Manages layers for organizing and controlling object visibility.

O O O O O

TRY: Observe Exercise 1.1 in Solid works and in Creo software.

2. Introduction to Engineering Drawing

Engineering drawing, often referred to as technical drawing or drafting, is a graphical
representation of an object, system, or structure used in various fields of engineering,
manufacturing, and architecture. These drawings serve as a universal language that
communicates design ideas, specifications, and instructions in a precise and standardized
manner.

2.1 Basic Exercises

To be proficient in engineering drawing, basic exercises are required.
i. ldentify the basic tools used for drafting
ii. Types of lines
iii. Arcs
iv. Circles

2.2 Practicing the standard lettering and numbering

Practicing standard lettering and numbering in engineering drawing is crucial for creating
clear, professional, and easily understandable technical drawings. Proper lettering and
numbering enhance communication and ensure that your drawings convey information
accurately.

The following exercises are to be practiced to become proficient in lettering and numbering.
1. Use the correct fonts
2. Maintain uniformity
3. Lettering style
4. Height and spacing

Try: The following questions are to be answered in Solid works
1. How to use correct fonts in Solid Works
2. What are the commands are used to maintain uniformity of lettering and numbering.

3. Dimensioning

Dimensioning in engineering drawing is a crucial aspect that involves adding measurements
and annotations to convey the size, location, and tolerances of objects, features, and
components accurately. Proper dimensioning is essential for manufacturing, construction,
and other engineering processes.

3.1 Exercises on Dimensioning

1. Understanding and use of the conventional dimensioning techniques.
2. Placing the dimension lines

3. Extension lines

4. Dimensions on angles

301 |Page

Hint: 1. The following Fig.3.1 shows the type of dimensioning on 2D drawing.

50

=
\35* =]

100

40

1o

Fig.3.1 Dimensioning on 2D drawing

Hint: 2. The following Fig.3.2 shows the type of dimensioning on concentric
circles.

68

58

50 -
[40 ——=

= 210 =y

-

27
=

%

Fig.3.2 Dimensioning on Concentric circle
Try: Demonstrate the exercise 3 in Solid Works and CREO software.

2150 | @75 @ 40 4
@100 | @50 | @20

4. Geometrical Constructions

Geometric construction is useful for learning how to use geometric tools like a ruler,
compass, and straightedge to draw various angles, line segments, bisectors, and other forms
of polygons, arcs, circles, and other geometric figures. Fig.4.1 shows the various geometric
shapes to draw orthographic projections of lines, planes and solids.

Fig.4.1 Geometric shapes

302 | Page

Point of
intersection

| \
. J’% /X }» / \ r ight angle (90°) 180°
‘ A

",
K 90° A \r Aore than 90 A
perpendicular Less than 90° %
lines £ i \ o :
Parallel Intersecting Rightangle Acute angle Obtuse mgk‘ conuumeuary Supplementary
lines. angles
/\ Altitude %a “I%\
/ k
Equilateral triangle Isosceles triangle
(all sides (two sides QH av:le Scalene triangle
equal length) equal length) T (three sides
Right triangle ©* unequal length)
Toads] [Oppoie ade [y \ome T\ o
; e
" el
bl | e | L » | sermr\
Square Rectangle Rhombus Rhomboid Trapezoid Trapezium
/\ o P /"A"" ﬁ /H\\
{ \
('. wes] i sictes [7sides { asite » { 109 > 12 udes |
\ / \
_/ N _/
Pentagon Hexagon Heptagon Octagon Nonagon Decagon Dodecagon

Semi-circle. Quadtant, Tngentarc

~—) (2 [\{\‘ A /Q\
| (} V [
\Ram \@ W' \\Q// \K’

S:«"'npnl

rd ingent fine Concentric Eccentric

A
ngle arcles circles

4.1. Exercises on Geometrical Constructions

To become proficient in engineering graphics geometrical constructions are required:
Drawing lines, angles, triangle, square, pentagon, hexagon, octagon. Dividing line into equal
or proportional parts. Drawing lines and arcs tangent to each other.

1. Divide a 16 cm straight line into a given number of equal parts say 5.
2. Divide a 8 cm line into 9 number of parts.

3. Bisect a given 45 degree sector.

4. Bisect a given straight line.

5. To draw a perpendicular to a given line from a point within it.

6. Construct a regular polygon, given the length of its side.

Hint: Dividing a line into equal number of parts

0 0
0 0
R R R
Q Q Q
3 P P
M N M N M N DI

Given Step 1 Step 2 Step 3 Step 4

Try: The exercise 4 in Solid Works and CREO software.

5. Conic Sections

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface
intersecting a plane. The three types of conic section are the hyperbola, the parabola, and
the ellipse.

5.1. Exercises on Conic Sections
1. Draw an ellipse with the distance of the focus from the directrix at 50mm and

303|Page

eccentricity = 2/3 (Eccentricity method)

Draw an ellipse with the distance of the focus from the directrix at 60mm and
eccentricity = 2/3 (Eccentricity method)

Draw an ellipse with the distance of the focus from the directrix at 80mm and
eccentricity = 2/3 (Eccentricity method)

Draw a parabola with the distance of the focus from the directrix at 50 mm
(Eccentricity method).

Draw a parabola with the distance of the focus from the directrix at 40mm
(Eccentricity method).

A vertex of a hyperbola is 60 mm from its focus. Draw two parts of the hyperbola; if
the eccentricity is 3/2.

A vertex of a hyperbola is 50 mm from its focus. Draw two parts of the hyperbola; if
the eccentricity is 1.5.

Try: The exercise 5 in Solid Works and CREO software.

6. Technical Sketching and Shape Description

6.1. Projections of planes and regular solids

1.

Draw the projections of a regular pentagon of 30 mm side, having its surface inclined
at 30° to the H.P. and a side parallel to the H.P. and inclined at an angle of 60° to the
V.P.

Draw the projections of a regular hexagon of 40 mm side, having one of its sides in the
H.P. and inclined at 60° to the V.P., and its surface making an angle of 45° with the H.P.
Draw the projections of a regular hexagon of 35 mm side, having one of its sides in the
H.P. and inclined at 50° to the V.P., and its surface making an angle of 45° with the H.P.
Draw the projections of a regular pentagon of 40 mm side, having one of its sides in
the H.P. and inclined at 30° to the V.P., and its surface making an angle of 45° with the
H.P.

Try: The exercise 6.3 in Solid Works and CREO software.

7. Sectional views

A sectional view represents the part of an object remaining after a portion is assumed to
have been cut and removed. The exposed cut surface is then indicated by section lines.
Hidden features behind the cutting plane are omitted, unless required for dimensioning or
for definition of the part.

7.1. Exercise on Sectional views of right regular solids, prism, cylinder, pyramid,
cone.

1.

A pentagonal pyramid, base 40 mm side and axis 60 mm long has its base horizontal
and an edge of the base parallel to the V.P. A horizontal section plane cuts it at a
distance of 20 mm above the base. Draw its front view and sectional top view.

A hexagonal prism, side of base 40 mm and height 70 mm is resting on one of its
corners on the H.P. with a longer edge containing that corner inclined at 40° to the H.P.
and a rectangular face parallel to the V.P. Draw the front view and sectional top view of
the cut prism when a horizontal section plane cuts the prism in two equal halves. Draw
the front view and sectional top view of the cut prism.

A pentagonal pyramid, base 40 mm side and axis 70 mm long has one of its triangular
faces in the V.P. and the edge of the base contained by that face makes an angle of 40°
with the H.P. Draw its projections.

Draw the projections of a cone, base 50 mm diameter and axis 75 mm long, lying on a

304 | Page

generator on the ground with the top view of the axis making an angle of 45° with the
V.P.

Try: The exercise 7.1 and 7.2 in Solid Works and CREO software.

8. Development of surfaces

Knowledge of development is very useful in sheet metal work, construction of storage
vessels, chemical vessels, boilers, and chimneys. Such vessels are manufactured from plates
that are cut according to these developments and then properly bend into desired shaped.

8.1. Exercise on Basics of development of surfaces

1. Draw the development of the lateral surfaces of a right square prism of edge of base 30
mm and axis 50 mm long.

2. Draw the development of the complete surface of a cylindrical drum. Diameter is 40 mm
and height 60 mm.

8.2. Exercise on Development of surfaces of Prisms

1. A hexagonal prism of base side 20 mm and height 45 mm is resting on one of its ends
on the HP with two of its lateral faces parallel to the VP. It is cut by a plane
perpendicular to the VP and inclined at 30° to the HP. The plane meets the axis at a
distance of 20 mm above the base. Draw the development of the lateral surfaces of the
lower portion of the prism.

2. A hexagonal prism, edge of base 20 mm and axis 50 mm long, rests with its base on HP
such that one of its rectangular faces is parallel to VP. It is cut by a plane perpendicular
to VP, inclined at 45° to HP and passing through the right corner of the top face of the
prism. (i) Draw the sectional top view. (ii)Develop the lateral surfaces of the truncated
prism.

3. A pentagonal prism, side of base 25 mm and altitude 50 mm, rests on its base on the
HP such that an edge of the base is parallel to VP and nearer to the observer. It is cut
by a plane inclined at 45° to HP, perpendicular to VP and passing through the center of
the axis. (i) Draw the development of the complete surfaces of the truncated prism.

4. A pentagonal prism of side of base 30 mm and altitude 60 mm stands on its base on HP
such that a vertical face is parallel to VP and away from observer. It is cut by a plane
perpendicular to VP, inclined at an angle of 50° to HP and passing through the axis 35
mm above the base. Draw the development of the lower portion of the prism.

Try : The exercise 8.1 and 8.2 in Solid Works and CREO software.

9. Exercise on Development of surfaces-2

9.1. Exercise on Development of surfaces of cylinder and cone

1. Draw the development of the lateral surface of the lower portion of a cylinder of
diameter 50 mm and axis 70 mm when sectioned by a plane inclined at 40° to HP and
perpendicular to VP and bisecting axis.

2. A Cone of base diameter 60 mm and height 70 mm is resting on its base on HP. It is cut
by a plane perpendicular to VP and inclined at 30° to HP. The plane bisects the axis of
the cone. Draw the development of its lateral surface.

9.2. Exercise on Development of surfaces of pyramid

1. Draw the development of the lateral surfaces of a square pyramid, side of base 25 mm

305|Page

and height 50 mm, resting with its base on HP and an edge of the base parallel to VP.

2. A square pyramid of base side 25 mm and altitude 50 mm rests on it base on the HP
with two sides of the base parallel to the VP. It is cut by a plane bisecting the axis and
inclined a 30° to the base. Draw the development of the lateral surfaces of the lower
part of the cut pyramid.

3. A pentagonal pyramid side of base 30 mm and height 52 mm stands with its base on
HP and an edge of the base is parallel to VP and nearer to it. It is cut by a plane
perpendicular to VP, inclined at 40° to HP and passing through a point on the axis 32
mm above the base. Draw the sectional top view. Develop the lateral surface of the
truncated pyramid.

Try: The exercise 9.1 and 9.2 in Solid Works and CREO software.

10. Orthographic views

Orthographic views are two-dimensional views of three-dimensional objects.
Orthographic views are created by projecting a view of an object onto a plane which is
usually positioned so that it is parallel to one of the planes of the object.

10.1. Exercise on Conversion of isometric view to orthographic projections using
CAD

1. Draw the front view, side view and top view for the below Fig.10.1

Fig.10.1

2. Draw the front view, side view and top view for the below Fig.10.2.

306 | Page

Fig.10.2

3. Draw the front view, side view and top view for the below Fig.10.3.

”~ < |
W o
N ‘ \\/ /\/
N " - \
A7 N
Fig.10.3

4. Draw the front view, side view and top view for the below Fig.10.4.

307 | Page

Fig.10.4

Try: Practice Exercise 10 in Solid Works

11. Isometric projection of planes

Isometric projection is a method for visually representing three-dimensional objects in two
dimensions in technical and engineering drawings. It is an axonometric projection in which
the three coordinate axes appear equally foreshortened and the angle between any two of
them is 120 degrees.

11.1. Isometric scale

In engineering and technical drawing, an isometric scale is a method used to create an
isometric projection of a three-dimensional object onto a two-dimensional surface, such as a
drawing sheet or a computer screen. Isometric projection is a type of pictorial representation
that shows an object in a three-dimensional view with all three principal axes (x, y, and z) at
equal angles to the picture plane. An isometric scale is used to ensure that the dimensions
and proportions of objects in the isometric drawing are accurate and maintain the proper
relationships.

11.2. Exercise on Isometric projections of circle, square and rectangle and solids

1. Draw the isometric view of a circle of 60 mm diameter whose surface is parallel to the
V.P.

2. Draw the isometric view of a square of side 60 mm whose surface is parallel to the H.P.

Draw the isometric view of a circle of 40 mm radius whose surface is parallel to the H.P.

4. Draw the isometric view of a square prism, side of the base 20 mm long and the axis 40
mm long, when its axis is i) Veritcal and ii) Horizontal.

5. Draw the isometric view of the semi-circle whose front view of its surface is parallel to
the V.P.. The diameter of semi-circle is 60 mm.

w

Try : The exercise 11.2 in Solid Works and CREO software.

12. Isometric projections of solids

12.1. Exercise on conversion of orthographic view to isometric view using
CAD

1. Draw the isometric view for the given orthographic views Fig.12.1

308 | Page

_t
4
o
=3 A
L { 75 |
©t - _
b1 20 25 ry
: ; A - 2 > a 4—-—20 -
| 1
AN &
15 18 B
¥ 2
I |
]
L = [= Jd

Fig.12.1

2. Draw the isometric view for the given orthographic views for Fig.12.2

A j ‘ 16 6] 1|
e Rt |
] 9 ERE

e\ Ll f=
|5|H1||§,.ITI/Ezf [

Fig.12.2

20

1

.

32

3.Draw the isometric view for the given orthographic views by assuming the dimensions for
Fig.12.3

AddO0ONamma)
o] o | o] oFd| o)
R nNEE N
o[o] o] o] s E]

ORI NOELEC
@EE_@F—]I, o DN o \| o N

Fig.12.3

Try : The exercise 12 in Solid Works and CREO software.

309 | Page

13.Demonstration of SOLID WORKS Software

1. Introduction to SOLID WORKS
2. Demonstration of commands
3. 2D drawings
3. 3D drawings

V. TEXT BOOKS:
1. Frederick E Giesecke, Alva Mitchell, Henry C Spencer, Ivan L Hill, John T Dygdon, James E. Novak,
R. O. Loving, Shawna Lockhart, Cindy Johnson, Technical Drawing with Engineering Graphics,
Pearson Education, 15" Edition, 2016.
2. Kulkarni D.M, Rastogi A.P. and Sarkar A K., Engineering Graphics with Auto CAD. (Revised Edition),
Prentice Hall India, New Delhi, 2011.
3. Donald Hearn, “Computer Graphics”, 12% Edition, Pearson, 2021.

VI. REFERENCE BOOKS:

1. Basant Agrawal and C M Agrawal, Engineering Drawing, McGraw Hill, 3™ Edition, 2018.
2. James M. Leake, Molly Hathaway Goldstein, Jacob L. Borgerson, Engineering Design
Graphics, Modelling and Visualization, Wiley, 3" Edition, 2020.

VII. ELECTRONICS RESOURCES:
4. https://archive.nptel.ac.in/courses/112/103/112103019.
5. https://archive.nptel.ac.in/courses/112/105/112105294.

VIII. MATERIALS ONLINE:

3. Course Template
4. Laboratory manual

310 | Page

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal - 500 043, Hyderabad, Telangana

UNDERTAKING BY STUDENT / PARENT

“To make the students attend the classes regularly from the first day of starting of classes and be aware of the
College regulations, the following undertaking form is introduced which should be signed by both student and
parent. The same should be submitted to the Dean of Academic”.

I, Mr. / Ms. joining I Semester / III Semester for
the academic year 20 -20 /20 -20 in Institute of Aeronautical Engineering, Hyderabad, do hereby
undertake and abide by the following terms, and I will bring the ACKNOWLEDGEMENT duly signed by me
and my parent and submit it to the Dean of Academic.

1. T will attend all the classes as per the timetable from the starting day of the semester specified in the institute
Academic Calendar. In case, I do not turn up even after two weeks of starting of classes, I shall be ineligible
to continue for the current academic year.

2. I will be regular and punctual to all the classes (theory/laboratory/project) and secure attendance of not less
than 75% in every course as stipulated by Institute. I am fully aware that an attendance of less than 65% in
more than 60% of theory courses in a semester will make me lose one year.

3. I will compulsorily follow the dress code prescribed by the college.

I will conduct myself in a highly disciplined and decent manner both inside the classroom and on campus,
failing which suitable action may be taken against me as per the rules and regulations of the institute.

5. 1 will concentrate on my studies without wasting time in the Campus/Hostel/Residence and attend all the
tests to secure more than the minimum prescribed Class/Sessional Marks in each course. I will submit the
assignments given in time to improve my performance.

6. I will not use Mobile Phone in the institute premises and also, I will not involve in any form of ragging
inside or outside the campus. I am fully aware that using mobile phone to the institute premises is not
permissible and involving in Ragging is an offence and punishable as per INTUH/UGC rules and the law.

7. 1 declare that I shall not indulge in ragging, eve-teasing, smoking, consuming alcohol drug abuse or any
other anti-social activity in the college premises, hostel, on educational tours, industrial visits or elsewhere.

8. I will pay tuition fees, examination fees and any other dues within the stipulated time as required by the
Institution / authorities, failing which I will not be permitted to attend the classes.

9. T will not cause or involve in any sort of violence or disturbance both within and outside the college campus.

10. IfI absent myself continuously for 3 days, my parents will have to meet the HOD concerned / Principal.

11. T hereby acknowledge that I have received a copy of BT23 Academic Rules and Regulations, course
catalogue and syllabus copy and hence, I shall abide by all the rules specified in it.

ACKNOWLEDGEMENT

I have carefully gone through the terms of the undertaking mentioned above and I understand that following these
are for my/his/her own benefit and improvement. I also understand that if I/he/she fail to comply with these
terms, shall be liable for suitable action as per Institute/JNTUH/AICTE/UGC rules and the law. I undertake that
I/he/she will strictly follow the above terms.

Signature of Student with Date Signature of Parent with Date
Name & Address with Phone Number

311 | Page

