

OUTCOME BASED EDUCATION WITH CHOICE BASED CREDIT SYSTEM

MASTER OF TECHNOLOGY POWER ELECTRONICS AND ELECTRICAL DRIVES

ACADEMIC REGULATIONS, COURSE STRUCTURE AND SYLLABI UNDER AUTONOMOUS STATUS

M.Tech Regular Two Year Degree Program (for the batches admitted from the academic year 2016 - 17)

FAILURE TO READ AND UNDERSTAND THE REGULATIONS IS NOT AN EXCUSE

CONTENTS

	Preliminary Definitions and Nomenclatures & Foreword	i-iii
1	Choice Based Credit System	01
2	Medium of Instruction	01
3	Eligibility for Admission	02
4	Unique course identification code	02
5	Types of Courses	02
6	Semester Structure	03
7	Program Duration	03
8	Curriculum and Course structure	04
9	Evaluation Methodology	05
10	Attendance Requirements and Detention Policy	07
11	Conduct of Semester End Examinations and Evaluation	08
12	Scheme for the Award of Grade	08
13	Letter Grades and Grade Points	09
14	Computation of SGPA and CGPA	09
15	Illustration of Computation of SGPA and CGPA	10
16	Photocopy / Revaluation	10
17	Graduation Requirements	10
18	Award of Degree	11
19	Improvement Of Grade	11
20	Termination from the Program	11
21	With-holding of Results	11
22	Graduation Day	11
23	Discipline	12
24	Grievance Redressal Committee	12
25	Transitory Regulations	12
26	Revision of Regulations and Curriculum	12
27	Course Structure of PEED	13
28	Syllabus	17
29	Vision and Mission of the Institute	92
30	M.Tech - Program Outcomes (POs)	92
31	Frequently asked Questions and Answers about autonomy	94
32	Malpractice Rules	98
32	Undertaking by Student / Parent	101

"Take up one idea.

Make that one idea you're life-think of it, dream of it, and live on that idea. Let the brain muscles, nerves, every part of your body be full of that idea and just leave every other idea alone.

This is the way to success"

Swami Vivekananda

PRELIMINARY DEFINITIONS AND NOMENCLATURES

Academic Council: The Academic Council is the highest academic body of the institute and is responsible for the maintenance of standards of instruction, education and examination within the institute. Academic Council is an authority as per UGC regulations and it has the right to take decisions on all academic matters including academic research.

Academic Autonomy: Means freedom to an institute in all aspects of conducting its academic programs, granted by UGC for Promoting Excellence.

Academic Year: It is the period necessary to complete an actual course of study within a year. It comprises two consecutive semesters i.e., Even and Odd semester.

AICTE: Means All India Council for Technical Education, New Delhi.

Autonomous Institute: Means an institute designated as autonomous by University Grants Commission (UGC), New Delhi in concurrence with affiliating University (Jawaharlal Nehru Technological University, Hyderabad) and State Government.

Backlog Course: A course is considered to be a backlog course if the student has obtained a failure grade (F) in that course.

Basic Sciences: The courses offered in the areas of Mathematics, Physics, Chemistry, Biology etc., are considered to be foundational in nature.

Betterment: Betterment is a way that contributes towards improvement of the students' grade in any course(s). It can be done by either (a) re-appearing or (b) re-registering for the course.

Board of Studies (BOS): BOS is an authority as defined in UGC regulations, constituted by Head of the Organization for each of the departments separately. They are responsible for curriculum design and updating in respect of all the programs offered by a department.

Certificate course: It is a course that makes a student gain hands -on experience and skill required for holistic development in a specific area/field.

Choice Based Credit System: The credit based semester system is one which provides flexibility in designing curriculum and assigning credits based on the course content and hours of teaching along with provision of choice for the student in the course selection.

Compulsory course: Course required to be undertaken for the award of the degree as per the program.

Commission: Means University Grants Commission (UGC), New Delhi.

Continuous Internal Examination: It is an examination conducted towards internal assessment.

Course: A course is a subject offered by the University for learning in a particular semester.

Course Outcomes: The essential skills that need to be acquired by every student through a course.

Credit: A credit is a unit that gives weight to the value, level or time requirements of an academic course. The number of 'Contact Hours' in a week of a particular course determines its credit value. One credit is equivalent to one lecture hour per week.

Credit point: It is the product of grade point and number of credits for a course.

Cumulative Grade Point Average (CGPA): It is a measure of cumulative performance of a student over all the completed semesters. The CGPA is the ratio of total credit points secured by a student in various courses in all semesters and the sum of the total credits of all courses in all the semesters. It is expressed upto two decimal places.

Curriculum: Curriculum incorporates the planned interaction of students with instructional content, materials, resources and processes for evaluating the attainment of Program Educational Objectives.

Degree with Specialization: A student who fulfills all the program requirements of her/his discipline and successfully completes a specified set of professional elective courses in a specialized area is eligible to receive a degree with specialization like Structural Engineering, Embedded Systems, CSE, etc.

Department: An academic entity that conducts relevant curricular and co-curricular activities, involving both teaching and non-teaching staff and other resources in the process of study for a degree.

Detention in a course: Student who does not obtain minimum prescribed attendance in a course shall be detained in that particular course.

Dropping from the Semester: A student who doesn't want to register for any semester, can apply in writing in prescribed format before commencement of that semester.

Elective Course: A course that can be chosen from a set of courses. An elective can be Professional Elective and/or Open Elective.

Evaluation: Evaluation is the process of judging the academic performance of the student in her/h is courses. It is done through a combination of continuous internal assessment and semester end examinations.

Grade: It is an index of the performance of the students in a said course. Grades are indicated by alphabets.

Grade Point: It is a numerical weight allotted to each letter grade on a 10 point scale.

Institute: Means Institute of Aeronautical Engineering, Hyderabad unless indicated otherwise by the context.

Massive Open Online Course (MOOC): MOOC courses inculcate the habit of self learning. MOOC courses would be additional choices in all the elective group courses.

Pre-requisite: A course, the knowledge of which is required for registration into higher level course.

Core: The courses that are essential constituents of each engineering discipline are categorized as professional core courses for that discipline.

Professional Elective: A course that is discipline centric. An appropriate choice of minimum number of such electives as specified in the program will lead to a degree with specialization.

Program: Means, Master of Technology (M.Tech) degree program / UG degree program: B.Tech.

Program Educational Objectives: The broad career, professional and personal goals that every student will achieve through a strategic and sequential action plan.

Project work: It is a design or research based work to be taken up by a student during his/her second year to achieve a particular aim. It is a credit based course and is to be planned carefully by the student.

Re-Appearing: A student can reappear only in the semester end examination for the theory component of a course, subject to the regulations contained herein.

Registration: Process of enrolling into a set of courses in a semester of a Program.

Regulations: The regulations, common to all M.Tech programs offered by Institute are designated as "IARE-R16" and are binding on all the stakeholders.

Semester: It is a period of study consisting of 15 to 18 weeks of academic work equivalent to normally 90 working days. The odd semester starts usually in July and even semester in December.

Semester End Examinations: It is an examination conducted for all courses offered in a semester at the end of the semester.

S/he: Means "she" and "he" both.

Student Outcomes: The essential skill sets that need to be acquired by every student during her/his program of study. These skill sets are in the areas of employability, entrepreneurial, social and behavioral.

University: Means the Jawaharlal Nehru Technological University Hyderabad, Hyderabad.

Withdraw from a Course: Withdrawing from a course means that a student can drop from a course within the first two weeks of the odd or even semester (deadlines are different for summer sessions). However s/he can choose a substitute course in place of it by exercising the option within 5 working days from the date of withdrawal.

Words 'he', 'him', 'his', occur, they imply 'she', 'her', 'hers' also.

FOREWORD

The autonomy is conferred to Institute of Aeronautical Engineering (IARE), Hyderabad by University Grants Commission (UGC), New Delhi based on its performance as well as future commitment and competency to impart quality education. It is a mark of its ability to function independently in accordance with the set norms of the monitoring bodies like J N T University Hyderabad (JNTUH), Hyderabad and AICTE. It reflects the confidence of the affiliating University in the autonomous institution to uphold and maintain standards it expects to deliver on its own behalf and thus awards degrees on behalf of the institute. Thus, an autonomous institution is given the freedom to have its own **curriculum, examination system** and **monitoring mechanism**, independent of the affiliating University but under its observance.

IARE is proud to win the credence of all the above bodies monitoring the quality in education and has gladly accepted the responsibility of sustaining, if not improving upon the standards and ethics for which it has been striving for more than a decade in reaching its present standing in the arena of contemporary technical education. As a follow up, statutory bodies like Academic Council and Boards of Studies are constituted with the guidance of the Governing Body of the institute and recommendations of the JNTUH to frame the regulations, course structure and syllabi under autonomous status.

The autonomous regulations, course structure and syllabi have been prepared after prolonged and detailed interaction with several expertise solicited from academics, industry and research, in accordance with the vision and mission of the institute to order to produce a quality engineering graduate to the society.

All the faculty, parents and students are requested to go through all the rules and regulations carefully. Any clarifications needed are to be sought at appropriate time and with principal of the institute, without presumptions, to avoid unwanted subsequent inconveniences and embarrassments. The Cooperation of all the stake holders is sought for the successful implementation of the autonomous system in the larger interests of the institute and brighter prospects of engineering graduates.

PRINCIPAL

ACADEMIC REGULATIONS

M. Tech. Regular Two Year Degree Program (for the batches admitted from the academic year 2016 - 17)

For pursuing two year postgraduate Master Degree program of study in Engineering (M.Tech) offered by Institute of Aeronautical Engineering under Autonomous status and herein after referred to as IARE.

1.0 CHOICE BASED CREDIT SYSTEM

The Indian Higher Education Institutions (HEI's) are changing from the conventional course structure to Choice Based Credit System (CBCS) along with introduction to semester system at first year itself. The semester system helps in accelerating the teaching learning process and enables vertical and horizontal mobility in learning.

The credit based semester system provides flexibility in designing curriculum and assigning credits based on the course content and hours of teaching. The choice based credit system provides a 'cafeteria' type approach in which the students can take courses of their choice, learn at their own pace, undergo additional courses and acquire more than the required credits and adopt an interdisciplinary approach to learning.

Choice Based Credit System (CBCS) is a flexible system of learning and provides choice for students to select from the prescribed elective courses. A course defines learning objectives and learning outcomes and comprises of lectures / tutorials / laboratory work / field work / project work / comprehensive examination / viva / seminars / assignments / presentations / self-study etc. or a combination of some of these.

Under the CBCS, the requirement for awarding a degree is prescribed in terms of number of credits to be completed by the students.

The CBCS permits students to:

- 1. Choose electives from a wide range of elective courses offered by the departments of the Institute.
- 2. Undergo additional courses of interest.
- 3. Adopt an inter-disciplinary approach in learning.
- 4. Make the best use of expertise of the available faculty.

2.0 MEDIUM OF INSTRUCTION

The medium of instruction shall be English for all courses, examinations, seminar presentations and project work. The curriculum will comprise courses of study as given in course curriculum in accordance with the prescribed syllabi.

3.0 ELIGIBILITY FOR ADMISSION

The admissions for category A and B seats shall be as per the guidelines of Telangana State Councilfor Higher Education (TSCHE) in consonance with government reservation policy.

- a) Under Category A: 70% of the seats are filled based on GATE/PGECET ranks.
- b) Under Category B: 30% seats are filled on merit basis as per guidelines of TSCHE.

4.0 UNIQUE COURSE IDENTIFICATION CODE

Every specialization of the M.Tech programme will be placed in one of the seven groups as listed in the Table 1.

S. No	Specialization	Offering Department	Code
1	Structural Engineering	Civil Engineering	ST
2	Power Electronics and Electrical Drives	Electrical and Electronics Engineering	PE
3	CAD / CAM	Mechanical Engineering	CC
4	Embedded Systems	Electronics and Communication Engineering	ES
5	Computer Science and Engineering	Computer Science and Engineering	CS
6	Software Engineering	Information Technology	SE
7	Aerospace Engineering	Aeronautical Engineering	AE

Table 1: Group of Courses

5.0 TYPES OF COURSES

Courses in a programme may be of two kinds: Core and Elective.

Core Course:

There may be a core course in every semester. This is the course which is to be compulsorily studied by a student as a core requirement to complete the requirement of a programme in said discipline of study.

Elective Course:

Electives provide breadth of experience in respective branch and applications areas. Electivecourse is a course which can be chosen from a pool of courses. It may be:

- Supportive to the discipline of study
- Providing an expanded scope
- Enabling an exposure to some other discipline/domain
- Nurturing student's proficiency/skill.

An elective may be discipline centric (Professional Elective) focusing on those courses which add generic proficiency to the students or may be chosen from supportive/general discipline called as "Open Elective".

There shall be four professional elective groups out of which students can choose not more than two courses from each group. Overall, students can opt for four professional elective courses which suit their project work in consultation with the faculty advisor/mentor. In addition, one course from each of the two open electives has to be selected. A student may also opt for more elective courses in his/her area of interest.

6.0 SEMESTER STRUCTURE

The institute shall follow semester pattern. An academic year shall consist of a first semester and a second semester and the summer term. Each semester shall be of 23 weeks (Table 2) duration and this period includes time for course work, examination preparation and conduct of examinations. Each main semester shall have a minimum of 90 working days; out of which number of contact days for teaching / practical shall be 75 and 15 days shall be for examination preparation. The duration for each semester shall be a minimum of 17 weeks of instruction. The Academic Calendar is declared at the beginning of the academic year as given in Table 2.

	I Spell Instruction Period	9 weeks		
	I Mid Examinations	1 week		
FIRST SEMESTER	II Spell Instruction Period	8 weeks	21 weeks	
(23 weeks)	II Mid Examinations	1 week		
	Preparation and Practical Examinations	2 weeks		
	Semester End Examinations		2 weeks	
Semester Break and Supplementary Exams				
	I Spell Instruction Period	9 weeks		
	I Mid Examinations	1 week	21 weeks	
SECOND SEMESTER	II Spell Instruction Period	8 weeks		
(23 weeks)	II Mid Examinations	1 Week		
	Preparation & Practical Examinations	2 weeks		
	Semester End Examinations		2 weeks	
Summer Vacation				
THIRD SEMESTER Project Work Phase - I			18 weeks	
FOURTH SEMESTER Project Work Phase - II			18 weeks	

Table 2: Academic Calendar

7.0 PROGRAM DURATION

A student shall be declared eligible for the award of M.Tech degree, if s/he pursues a course of study and completes it successfully in not less than two academic years and not more than four academic years. A student, who fails to fulfill all the academic requirements for the award of the degree within four academic years from the year of his/her admission, shall forfeit his/her seat in M.Tech course.

- a) A student will be eligible for the award of M.Tech degree on securing a minimum of 5.0/10.0 CGPA.
- b) In the event of non-completion of project work and/or non-submission of the project report by the end of the fourth semester, the candidate shall re-register by paying the semester fee for the project. In such a case, the candidate will not be permitted to submit the report earlier than three months and not later than six months from the date of registration.

8.0 CURRICULUM AND COURSE STRUCTURE

The curriculum shall comprise Core Courses, Elective Courses, Laboratory Course, Comprehensive Examination, Internship and Project Work. The list of elective courses may include subjects from allied disciplines also.

Each Theory and Laboratory course carries credits based on the number of hours/week as follows:

- Lecture Hours (Theory): 1 credit per lecture hour per week.
- Laboratory Hours (Practical): 1 credit for 2 practical hours, 2 credits for 3 or 4 practical hours per week.
- **Project Work:** 1 credit for 4 hours of project work per week.

8.1 Credit distribution for courses offered is shown in Table 3. Table 3: Credit distribution

S. No	Course	Hours	Credits
1	Core Courses	3	3
2	Elective Courses	3	3
3	MOOC Courses	-	2
4	Laboratory Courses	3	2
5	Seminar and Technical Writing	3	2
6	Comprehensive Examination	-	2
7	Project Work	128	30

8.2 Course wise break-up for the total credits:

Total Theory Courses (12) Core Courses (06) + Professional Electives (04) + Open Electives (02)	06 @ 3 credits + 06 @ 3 credits	36	
Total Laboratory Courses (03)	03 @ 2 credits	06	
MOOC Courses (02)	02 @ 2 credits	04	
Seminar and Technical Writing (01)	1 @ 2 credits	02	
Comprehensive Examination (01)	1 @ 2 credits	02	
Project Work	1 @ 30 credits	30	
TOTAL CREDITS			

9.0 EVALUATION METHODOLOGY

9.1 Theory Course:

Each theory course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Evaluation (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIE during the semester, marks are awarded by taking average of two sessional examinations.

9.1.1 Semester End Examination (SEE):

The SEE shall be conducted for 70 marks of 3 hours duration. The syllabus for the theory courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern shall be as defined below. Two full questions with 'either' 'or' choice will be drawn from

each unit. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

The emphasis on the questions is broadly based on the following criteria:

9.1.2 Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty/teacher handling the course as given in Table 4. CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Technical Seminar and TermPaper.

Table 4: Assessment pattern for Theory Courses

COMPONENT	THEORY		
Type of	CIE Exam Technical Seminar and		TOTAL MARKS
Assessment	(Sessional) Term Paper		
Max. CIA	25	5	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

9.2 Laboratory Course:

Each lab will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment. The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being a internal examiner and another is external examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

All the drawing related courses are evaluated in line with lab courses. The distribution shall be 30 marks for internal evaluation (20 marks for day–to–day work, and 10 marks for internal tests) and 70 marks for semester end lab examination. There shall be ONE internal test for 10 marks each in a semester.

9.3 MOOC Courses:

Meeting with the global requirements, to inculcate the habit of self learning and in compliance with UGC guidelines, MOOC (Massive Open Online Course) courses have been introduced as electives.

- 9.3.1 The proposed MOOC Courses would be additional choices in all the elective groups subject to the vailability during the respective semesters and respective departments will declare the list of the courses at the beginning of the semester. Course content for the selected MOOC Courses shall be drawn from respective MOOCs links or shall be supplied by the department. Course will be mentored by faculty members and Assessment and evaluation of the courses shall be done by the department.
- 9.3.2 There shall be one Mid Sessional Examination (Quiz exam for 30 marks) after 8 weeks of the commencement of the course and semester end evaluation (Descriptive exam for 70 marks) shall be done along with other regular courses.
- 9.3.3 Two credits will be awarded upon successful completion of each MOOC Course.
- 9.3.4 Students interested in doing MOOC Courses shall register the course title at their department office at the start of the semester against the courses that are announced by the department.

9.4 Project work

Normally, the project work should be carried out at Host Institute (Institute of Aeronautical Engineering). However, it can also be carried out in any of the recognized Educational Institutions, National Laboratories, Research Institutions, Industrial Organizations, Service Organizations or Government Organizations with the prior permission from the guide and concerned Head of the Department. A student shall submit the outcome of the project work in the form of a dissertation.

- 9.4.1 The student shall submit the project work synopsis at the end of III semester for Phase-I of project evaluation. The Phase-I of project work shall be evaluated by Project Review Committee (PRC) at the end of the third semester for a maximum of 100 marks. Head of the Department (HOD) shall constitute a PRC comprising of senior faculty of the specialization, Guide and Head of the Department.
- 9.4.2 The first phase of project work is to be carried out in IV semester for Phase –II of Project work. The student will be allowed to appear for final viva voce examination at the end of IV semester only if s/he has submitted s/he project work in the form of paper for presentation / publication in a conference/journal and produce the proof of acceptance of the paper from the organizers/publishers.
- 9.4.3 The student shall submit the project work in the form of dissertation at least four weeks ahead of the completion of the program. Head of the Department shall constitute an Internal Evaluation Committee (IEC) comprising of the Chairman BOS (PG), HOD and Guide. As per convenes of all meeting for open pre-submission seminar evaluation of the student. If the open pre-submission seminar by a student is not satisfactory, another seminar shall be scheduled within two weeks.

S.No	Project Phases	Mode	Evaluation Committee	Marks
1		Continuous evaluation at the end of III Semester	Guide	30
2	Phase - I	Evaluation at the end of III Semester	Project Review Committee (PRC) comprising of senior faculty of the specialization, guide and HOD.	70
Total(Phase – I)			100	
3		An open pre- submission seminar by the student	The Internal Evaluation Committee (IEC) comprising of the Chairman, BOS (PG), HOD and guide wherein the HOD convenes its meeting.	30
4	Phase - II	End Semester Examination (An open seminar followed by viva- voce)	The External Evaluation Committee (EEC) comprising of External Examiner, HOD and guide wherein the HOD shall be the chairman of the committee.	70
Total(Phase-II)				100

The evaluation of the project work and the marks allotted are as under:

- 9.4.4 As soon as a student submits his project work, Principal shall appoint the External Examiner among the panel of examiners recommended by the Chairman, BOS (PG).
- 9.4.5 The Principal shall schedule the End Semester Examination in project work soon after the completion of the study of program and a student can appear for the same provided s/he has earned successfully all the requisite credits. The student shall produce the dissertation duly certified by the guide and HOD during the Examination.
- 9.4.6 The project reports of M. Tech students who have not completed their course work successfully will be evaluated in that semester itself and the result sent confidentially to the Controller of Examinations. The results of the project work evaluation will b declared by the Controller of Examinations only after the successful completion of the courses by those students.

9.5 Comprehensive Examination

The comprehensive examination is aimed at assessing the student's understanding of various Foundation, Skill and Core courses studied by the end of II semester and is intended to test the student's grasp of the chosen field of study. The comprehensive examination is an online test evaluated for 100 marks.

10.0 ATTENDANCE REQUIREMENTS AND DETENTION POLICY

10.1 It is desirable for a candidate to put on 100% attendance in each course. In every course (theory/laboratory), student has to maintain a minimum of 80% attendance including the days of attendance in sports, games, NCC and NSS activities to be eligible for appearing in Semester End Examination of the course.

- 10.2 For cases of medical issues, deficiency of attendance in each course to the extent of 15% may be condoned by the Institute Academic Committee (CAC) on the recommendation of Head of the Department if his/her attendance is between 80% to 65% in every course, subjected to submission of medical certificate and other needful documents to the concerned department.
- 10.3 The basis for the calculation of the attendance shall be the period prescribed by the institute by its calendar of events. For late admission, attendance is reckoned from the date of admission to the program.
- 10.4 However, in case of a student having less than 65% attendance in any course, s/he shall be detained in the course and in no case such process will be relaxed.
- 10.5 Students whose shortage of attendance is not condoned in any subject are not eligible to write their semester end examination of that courses and their registration shall stand cancelled.
- 10.6 A prescribed fee shall be payable towards Condonation of shortage of attendance
- 10.7 A candidate shall put in a minimum required attendance at least in three (3) theory courses for getting promoted to next higher class / semester. Otherwise, s/he shall be declared detained and has to repeat semester.
- 10.8 A student shall not be promoted to the next semester unless he satisfies the attendance requirement of the present semester, as applicable. They may seek readmission into that semester when offered next. If any candidate fulfills the attendance requirement in the present semester, s/he shall not be eligible for readmission into the same class.

11.0 CONDUCT OF SEMESTER END EXAMINATIONS AND EVALUATION

- 11.1 Semester end examination shall be conducted by the Controller of Examinations (COE) by inviting Question Papers from the External Examiners.
- 11.2 Question papers may be moderated for the coverage of syllabus, pattern of questions by Semester End Examination Committee chaired by Head of the Department one day before the commencement of semester end examinations.
- 11.3 Internal Examiner shall prepare a detailed scheme of valuation.
- 11.4 The answer papers of semester end examination should be evaluated by the internal examiner immediately after the completion of exam and the award sheet should be submitted to COE in a sealed cover before the same papers are kept for second evaluation by external examiner.
- 11.5 In case of difference is more than 15% of marks, the answer paper shall be re-evaluated by a third examiner appointed by the Examination Committee and marks awarded by him shall be taken as final.
- 11.6 HOD shall invite 3-9 external examiners to evaluate all the end semester answer scripts ona prescribed date(s). Practical laboratory exams are conducted involving external examiners.
- 11.7 Examination Control Committee shall consolidate the marks awarded by internal and external examiners to award grades.

12.0 SCHEME FOR THE A WARD OF GRADE

- 12.1 A student shall be deemed to have satisfied the minimum academic requirements and earn the credits for each theory course, if s/he secures:
 - i. Not less than 40% marks for each theory course in the semester end examination, and
 - ii. A minimum of 50% marks for each theory course considering both CIA and SEE

- 12.2 A student shall be deemed to have satisfied the minimum academic requirements and earn the credits for each Laboratory / Seminar and Technical Writing / Project, if s/he secures
 - i. Not less than 40% marks for each Laboratory / Seminar and Technical Writing / Project course in the semester end examination,
 - ii. A minimum of 50% marks for each Laboratory / Seminar and Technical Writing / Project course considering both internal and semester end examination.
- 12.3 If a candidate fails to secure a pass in a particular course, it is mandatory that s/he shall register and reappear for the examination in that course during the next semester when examination is conducted in that course. It is mandatory that s/he should continue to register and reappear for the examination till s/he secures a pass.

13.0 LETTER GRADES AND GRADE POINTS

13.1 Performances of students in each course are expressed in terms of marks as well as in Letter Grades based on absolute grading system. The UGC recommends a 10 point grading system with the following letter grades as given below:

Range of Marks	Grade Point	Letter Grade
100 - 80	10	S (Superior)
70-79	9	A+ (Excellent)
60-69	8	A (Very Good)
55 - 59	7	B+ (Good)
50-54	6	B (Average)
Below 50	0	F (Fail)
Absent	0	Ab (Absent)
Authorized Break of Study	0	ABS

- 13.2 A student is deemed to have passed and acquired to correspondent credits in particular course if s/he obtains any one of the following grades: "S", "A+", "A", "B+", "B".
- 13.3 A student obtaining Grade F shall be declared as failed and will be required to reappear in he examination.
- 13.3 At the end of each semester, the institute issues grade sheet indicating the SGPA and CGPA of the student. However, grade sheet will not be issued to the student if s/he has any outstanding dues.

14.0 COMPUTATION OF SGPA AND CGPA

The UGC recommends to compute the Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA). The credit points earned by a student are used for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both of which are important performance indices of the student. SGPA is equal to the sum of all the total points earned by the student in a given semester divided by the number of credits registered by the student in that semester. CGPA gives the sum of all the total points earned in all the previous semesters and the current semester divided by the number of credits. Thus,

$$SGPA = \sum_{i=1}^{n} (C_i G_i) / \sum_{i=1}^{n} C_i$$

Where, C_i is the number of credits of the i^{th} course and G_i is the grade point scored by the student in the i^{th} course and *n* represent the number of courses in which a students is registered in the concerned semester.

$$CGPA = \sum_{j=1}^{m} (C_j S_j) / \sum_{j=1}^{m} C_j$$

Where, S_j is the SGPA of the j^{th} semester and C_j is the total number of credits upto the semester and m represent the number of semesters completed in which a student registered upto the semester. The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

Course Name	Course Credits	Grade letter	Grade point	Credit Point (Credit x Grade)
Course 1	3	А	8	3 x 8 = 24
Course 2	4	B+	7	4 x 7 = 28
Course 3	3	В	6	3 x 6 = 18
Course 4	3	0	10	$3 \ge 10 = 30$
Course 5	3	С	5	3 x 5 = 15
Course 6	4	В	6	4 x 6 = 24
	20			139

15.0 ILLUSTRATION OF COMPUTATION OF SGPA AND CGPA 15.1 Illustration for SGPA

Thus, SGPA = 139 / 20 = 6.95

15.2 Illustration for CGPA

Semester 1	Semester 2	Semester 3	Semester 4
Credit: 20	Credit: 22	Credit: 25	Credit: 26
SGPA: 6.9	SGPA: 7.8	SGPA: 5.6	SGPA: 6.0

Thus,
$$CGPA = \frac{20x6.9 + 22x7.8 + 25x5.6 + 26x6.0}{93} = 6.51$$

16.0 PHOTOCOPY / REVALUATION

A student, who seeks the revaluation of the answer script, is directed to apply for the photocopy of his/her semester examination answer paper(s) in the theory course(s) within 2 working days from the declaration of results in the prescribed format to the Controller of Examinations through the Head of the Department. On receiving the photocopy, the student can consult with a competent member of faculty and seek the opinion for revaluation. Based on the recommendations, the student can register for the revaluation with prescribed fee. The Controller of Examinations shall arrange for the revaluation and declare the results. Revaluation is not permitted to the courses other than theory courses.

17.0 GRADUATION REQUIREMENTS

The following academic requirements shall be met for the award of M. Tech degree.

- 17.1 Student shall register and acquire minimum attendance in all courses and secure 80 credits.
- 17.2 A student who fails to earn 80 credits within four consecutive academic years from the year of his/her admission with a minimum CGPA of 5.0, shall forfeit his/her degree and his/her admission stands cancelled.

18.0 AWARD OF DEGREE

$CGPA \ge 7.5$	$CGPA \ge 6.5$ and < 7.5	$CGPA \ge 5.5$ and < 6.5	$CGPA \ge 5.0$ and < 5.5	CGPA < 5.0
First Class with Distinction	First Class	Second Class	Pass Class	Fail

Classification of degree will be as follows:

- a) In case a student takes more than one attempt in clearing a course, the final marks secured shall be indicated by * mark in the grade sheet.
- b) All the candidates who register for the semester end examination will be issued of grade sheet by the Institute. Apart from the semester wise grade sheet, the institute will issue the provisional certificate subject to the fulfillment of all the academic requirements.

19.0 IMPROVEMENT OF GRADE:

A candidate, after becoming eligible for the award of the degree, may reappear for the final examination in any of the theory courses as and when conducted for the purpose of improving the aggregate and the grade. But this reappearance shall be within a period of two academic years after becoming eligible for the award of the degree.

However, this facility shall not be availed of by a candidate who has taken the Original Degree Certificate. Candidates shall not be permitted to reappear either for CIE in any course or for Semester End Examination (SEE) in laboratory courses (including Project Viva-voce) for the purpose of improvement.

20.0 TERMINATION FROM THE PROGRAM

The admission of a student to the program may be terminated and the student may be asked toleave the institute in the following circumstances:

- a) The student fails to satisfy the requirements of the program within the maximum period stipulated for that program.
- b) The student fails to satisfy the norms of discipline specified by the institute from time to time.

21.0 WITH-HOLDING OF RESULTS

If the candidate has not paid any dues to the institute / if any case of indiscipline / malpractice is pending against him/her, the results of the candidate will be withheld. The issue of the degree is liable to be withheld in such cases.

22.0 GRADUATION DAY

The institute shall have its own annual Graduation Day for the award of Degrees to students completing the prescribed academic requirements in each case, in consultation with the University and by following the provisions in the Statute.

The institute shall institute prizes and medals to meritorious students annually on GraduationDay. This will greatly encourage the students to strive for excellence in their academic work.

23.0 DISCIPLINE

Every student is required to observe discipline and decorum both inside and outside the institute and not to indulge in any activity which will tend to bring down the honor of the institute. If a student indulges in malpractice in any of the theory / practical examination, continuous assessment examinations he/she shall be liable for punitive action as prescribed by the Institute from time to time.

24.0 GRIEVANCE REDRESSAL COMMITTEE

The institute shall form a Grievance Redressal Committee for each course in each department with the Course Teacher and the HOD as the members. This Committee shall solve all grievances related to the course under consideration.

25.0 TRANSITORY REGULATIONS

- 25.1 A student who has been detained in any semester of previous regulations for not satisfying the attendance requirements shall be permitted to join in the corresponding semester of this regulation.
- 25.2 Semester End Examination in each course under the regulations that precede immediately these regulations shall be conducted three times after the conduct of last regular examination under those regulations. Thereafter, the failed students, if any, shall take examination in the equivalent papers of these regulations as suggested by the Chairman, BOS concerned.

26.0 REVISION OF REGULATIONS AND CURRICULUM

The Institute from time to time may revise, amend or change the regulations, scheme of examinations and syllabi if found necessary and on approval by the Academic Council and the Governing Body shall come into force and shall be binding on the students, faculty, staff, all authorities of the Institute and others concerned.

FAILURE TO READ AND UNDERSTAND THE REGULATIONS IS NOT AN EXCUSE

POWER ELECTRONICS AND ELECTRICAL DRIVES

COURSE STRUCTURE

I SEMESTER

Course Code	Course Name		Category		eriods per week		Credits	Scheme of Examination Max. Marks		tion
coue				L	Т	Р	C	CIA	SEE	Total
THEORY										
BPE001	Power Electronic Control of DC Drives	PC	Core	3	-	-	3	30	70	100
BPE002	AC to DC Converters	PC	Core	3	-	-	3	30	70	100
BPE003	Special Machines and their Controllers	PC	Core	3	-	-	3	30	70	100
	Professional Elective - I	PE	Elective	3	-	-	3	30	70	100
	Professional Elective - II		Elective	3	-	-	3	30	70	100
	Open Elective - I	OE	Elective	3	-	-	3	30	70	100
BPE301	MOOC – I (Massive Open Online Course)	PE	Elective	-	-	3	2	30	70	100
PRACTICAL								•		
BPE101	Power Converters and Electric Drives LaboratoryPCCore		-	-	3	2	30	70	100	
TOTAL					00	06	22	240	560	800

II SEMESTER

Course Code	Course Name	Subject Area	Category	Periods per week		er stil		Scheme of Examination Max. Marks		ation
		Š '		L	Т	Р	C	CIA	SEF	Total
THEORY	7									
BPE004	Power Electronic Control of AC Drives	PC	Core	3	-	-	3	30	70	100
BPE005	DC to AC Converters	PC	Core	3	-	-	3	30	70	100
BPE006	Flexible AC Transmission Systems (FACTS)	PC	Core	3	-	-	3	30	70	100
	Professional elective - III	PE	PE Elective		-	-	3	30	70	100
	Professional elective - IV	PE	Elective	3	-	-	3	30	70	100
	Open Elective - II	OE	Elective	3	-	-	3	30	70	100
PRACTI	PRACTICAL									
BPE102	Electrical Drives Simulation Laboratory	PC	Core	-	-	3	2	30	70	100
BPE103	Application Development Mini Project Laboratory	-	Core	-	-	3	2	30	70	100
TOTAL						06	22	240	560	800

III SEMESTER

Course Code	Course Name		Category	Perio per weel		per stip		Ex	Scheme of xamination Iax. Marks	
				L	Т	Р	Ŭ	CIA	SEE	Total
THEORY										
BPE401	Seminar & Technical Writing PC Core		-	-	3	2	30	70	100	
BPE302	MOOC - II (Massive Open Online Course)		Elective	-	-	3	2	30	70	100
Practical										
BPE501	Comprehensive Examination	-	Core	-	-	-	2	30	70	100
BPE601	IProject Work (Phase-1)-Core		-	-	-	10	100	-	100	
TOTAL					0	06	16	190	210	400

IV SEMESTER

Course Code	Course Name	Subject Area	Category	Periods per week			er still		Scheme of Examination Max. Marks	
coue		S.		L	Т	Р	C	CIA	SEE	Total
BPE602	BPE602Project Work (Phase - II)-Core			-	-	-	20	30	70	100
	TOTAL			00	00	00	20	30	70	100

PROFESSIONAL ELECTIVES

GROUP – I: CONTROL SYSTEMS

Course Code	Course Title
BPE201	Control system design
BPE202	Optimization Techniques in Power Electronics
BPE203	Programmable logic controllers and their applications
BPE204	Advanced control systems

GROUP – II: ADVANCED POWERELECTRONICS

Course Code	Course Title
BPE205	Computer Aided Design of Power Electronics Circuits
BPE206	Advanced Power Semiconductor Devices
BPE207	Power Electronics in Renewable Energy Systems
BPE208	Multilevel Inverters

GROUP-III: POWER ELECTRONICS INTERFACE TO POWER SYSTEMS

Course Code	Course Title					
BPE209	Soft Computing Techniques					
BPE210	Power Quality					
BPE211	Analysis of Inverters					
BPE212	Smart Grid Design and Analysis					

GROUP-IV: CONTROLLERS FOR POWER ELECTRONICS

Course Code	Course Title
BPE213	Computer Aided Design of Instrumentation System
BPE214	Intelligent Controllers
BPE215	Software Tools for Power Electronics
BPE216	Digital Controller for Power Electronics

OPEN ELECTIVES – I

Course Code	Course Title					
BST701	Disaster Management					
BPE701	Renewable Energy Systems*					
BCC701	Automotive Design					
BES001	Embedded C					
BCS701	Advanced JAVAProgramming and Web Services					
BAE701	Introduction to Aerospace Engineering					
Note: * indicates that subject not offered to the students of Electrical and Electronics Engineering Department						

OPEN ELECTIVES – II

Course Code	Course Title					
BST702	Geo Spatial Techniques					
BPE702	Solar Photo Voltaic Energy Conversion*					
BCC702	Computer Graphics					
BES702	Microcontrollers for Embedded System Design					
BCS702	Linux Programming					
BCS703	Research Methodology					
BAE702	Industrial Aerodynamics and Wind Energy					
Note: * indicates that subject not offered to the students of Electrical and Electronics Engineering Department						

SYLLABUS (I – III SEMESTERS)

POWER ELECTRONIC CONTROL OF DC DRIVES

I Semester	: PEED								
Cou	rse Code	Category	Но	ours / W	eek	Credits	Maxi	mum M	larks
BI	PE001	Core	L	Т	Р	С	CIA	SEE	Total
	12001	Core	3	-	-	3	30	70	100
Contact	Classes: 45	Tutorial Clas	ses: Nil	Prac	tical Cla	sses: Nil	Tota	l Classe	es: 45
 OBJECTIVES: This course should enable the students to: Illustrate the operation of single phase controlled rectifier fed DC motor. II. Analyze the characteristics of three phase controlled rectifier fed DC motor and chopper controlled DC motor drives. III. Analyze the design of current and speed controllers for specific applications. IV. Simulate DC motor drives 									
UNIT-I	SINGLE PHA	SE CONTROL	LED RE	CTIFIE	RS FED	DC MOT	OR	Class	es: 09
semi conve		Separately excite phase full conve							-
UNIT-II	THREE PHA	SE CONTROLI	LED RE	CTIFIE	RS FED	DC MOT	OR	Class	es: 10
converter f freewheelir impedance,	or continuous an ng diode, three pl resistive load a	ctifiers fed DC nd discontinuous hase double conv and ideal supply t capacitor compo	s modes verter, thr , highly	of operative of op	tions, po controll e load a	ower and p ed bridge ro nd ideal s	ower fac ectifier w upply for	tor, add ith passi r load si	ition of ve load ide and
UNIT-III	PHASE, CUR	RENT AND SP	EED CO	NTROI	LLED D	C DRIVE		Class	es: 08
Phase current and speed controlled DC drive: Three phase controlled converter, control circuit, control modeling of three phase converter, steady state analysis of three phase converter, control of DC motor drive, two quadrant, three phase converter controlled DC motor drive, DC motor and load.									
Current and speed controllers, current and speed feedback, design of controllers, current and speed controllers, motor equations, filter in the speed feedback loop, speed controller current reference generator, current controller and flow chart for simulation, harmonics and associated problems, sixth harmonics torque.									
UNIT-IV	UNIT-IV CHOPPER CONTROLLED DC MOTOR DRIVES Classes: 09							es: 09	
Chopper controlled DC motor drives: Principle of operation of the chopper, four quadrant chopper circuit, chopper for inversion, chopper with other power devices, model of the chopper, input to the chopper, steady state analysis of chopper controlled DC motor drives, rating of the devices, pulsating torque, closed loop operation, speed controlled drive system, current control loop, pulse width modulated current controller, hysteresis current controller, modeling of current controller, design of current controller.									

UNIT-V	SIMULATION OF DC MOTOR DRIVES	Classes: 09						
	Simulation of DC motor drives: Dynamic simulations of the speed controlled DC motor drives, feedback speed controller, command current generator, current controller.							
Text Book	5:							
 R. Moo M. D. 	2. R. Moorthi, "Power Electronics Devices", Oxford University Press, 4 th Edition, 2005.							
Reference	Books:							
Edition 2. MH Ra	Edition, 1985. . MH Rashid, "Power Electronics circuits, Devices and Applications", PHI, 1 st Edition, 1995.							
Web Refe	ences:							
2. Lecture	Electronic Web Course by NPTEL, IIT Kharagpur, www.nptel.iitm.ac.in e notes from iare website http://www.iare.ac.in pon.com/en/introduction-to-power-electronics-ebook/							
E-Text Bo	oks:							
-	www.freebookcentre.net www.amazon.in/POWER-ELECTRONICS-HANDBOOK							

3. https://www.circuitstoday.com

AC TO DC CONVERTERS

Cour	se Code	Category	Ho	urs / W	eek	Credits	Maxi	Maximum Marl		
DI		C	L	Т	Р	С	CIA	SEE	Tota	
BI	PE002	Core	3	-	-	3	30	70	100	
Contact	Classes: 45	Tutorial Class	ses: Nil	Prac	tical Cl	asses: Nil	Total Classes: 4		es: 45	
I. Demon II. Illustra	e should enable strate single pha te various power	the students to: ase and three phase r converter circuits s of various power				vices.				
UNIT-I	MODERN PO	OWER SEMICON	NDUCTO	OR DEV	ICES			Clas	ses: 09	
integrated g		ctor devices: M d thyristor, MOS o res.		•						
UNIT-II	NIT-II THREE PHASE SEMI CONVERTER							Clas	Classes: 10	
phase contributive lo	rolled bridge re bad and ideal su controlled bridg	rer factor, addition ctifier with passiv upply for load side ge rectifier invertes	e load in and sup r.	npedanc ply side	e, resis quantit	tive load ar ies, shunt c	nd ideal apacitor	supply, comper	highly	
UNIT-III	THREE PHA CONVERTE	ASE AC VOLT RS	CAGE C	CONTRO	OLLER	RS AND	CYCLC	Clas	ses: 08	
AC voltage	e controllers wi	ontrollers: Resistiv th PWM Control, perical problems.								
resistive in Single phase to three ph	ductive loads, effective to single phase	controllers: Analy fects of source and e cycloconverters: ters, analysis of n blems.	load indu Analysis	ctances of midp	, applica oint and	ations and nu l bridge con	umerical figuratio	problem	ns. e phase	
UNIT-IV	SINGLE PHA	ASE AND THREE	E PHASE	CONV	ERTE	RS		Clas	ses :09	
and harmon		alf controlled and f inuous and discon	tinuous l	oad curr	ent, sin	igle phase of	dual con	verters,	powe	

UNIT-V DC TO DC CONVERTERS

Classes: 09

Choppers:Analysis of step down and step up DC to DC converters with resistive and resistive, inductive loads, switched mode regulators, analysis of buck regulators, boost regulators, buck and boost regulators, cuk regulators, condition for continuous inductor current and capacitor voltage, comparison of regulators, multi output boost converters, advantages applications, numerical problems.

Text Books:

- 1. Mohammed H. Rashid, "Power Electronics", Pearson Education, 3rd Edition, 2004.
- 2. Ned Mohan, Tore M. Undeland20, William P. Robbins, "Power Electronics", John Wiley and Sons, 2nd Edition, 1990.
- 3. R. Moorthi, "Power Electronics Devices, Circuits and Industrial applications", Oxford University Press, 1st Edition, 2005.

Reference Books:

- 1. Dr. P. S. Bimbhra, "Power Electronics", Khanna Pubishers.
- 2. Philip T. Krein, "Elements of Power Electronics", Oxford University Press.
- 3. M. S. JamilAsghar, "Power Electronics", PHI Private Limited.
- 4. John G. Kassakian ,"Principles of Power Electronics", Martin F. Schlect, Geroge C.

Web References:

- 1. Power Electronic Web Course by NPTEL, IIT Kharagpur, www.nptel.iitm.ac.in
- 2. Lecture notes from iare website http://www.iare.ac.in
- 3. Bookboon.com/en/introduction-to-power-electronics-ebook

E-Text Books:

- 1. https://www.freebookcentre.net
- 2. https://www.amazon.in/POWER-ELECTRONICS-HANDBOOK
- 3. https://www.circuitstoday.com

SPECIAL MACHINES AND THEIR CONTROLLERS

	Category	H	ours / W	eek	Credits	Μ	Maximum M	
BPE003	Core	L	Т	Р	С	CIA	SEE	Total
BI E005	Core	3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Clas	ses: Nil	Pract	ical Cla	sses: Nil	Tot	al Classe	es: 45
OBJECTIVES: This course should en I. Understand variou II. Describe character III. Understand DC to	s special machines	used in P achines.				nachines		
UNIT-I SYNCH	RONOUS RELU	CTANCE	MOTO	RS			Clas	ses: 09
Constructional feature diagram characteristics		radial ai	r gap m	otors op	perating pri	nciple re	luctance	phasor
UNIT-II STEPPI	NG MOTORS						Clas	ses: 09
stack configurations th drive systems and circu UNIT-III SWITCH		ontrol & c	losed loo					sucs
Constructional features				ion now	er controlle	rs nonlin		
Microprocessor based	control speed torqu	e characte	eristics co	omputer	control.	,		
	NENT MAGNET							ses: 09
Difference between m permanent magnet bru	shless motor drive	s, torque a	und emf e	quation,	torque - sp	eed chara		
permanent magnet bru		ENT MAGNET SYNCHRONOUS MOTORS Cla						00
permanent magnet bru UNIT-V PERMA	NENT MAGNET	SYNCH	KUNUU	SMOT	UND		0140	ses: 09
UNIT-V PERMA Principle of operation volt ampere requirem	emf and torque e	quations	reactance	phasor	diagram po		trollers c	onverter
UNIT-VPERMAPrinciple of operation volt ampere requirem applications.Text Books:	emf and torque e ents 36 torque sp	equations eed chara	reactance	e phasor , self co	diagram po ontrol, micr	oprocess	trollers controllers controlle	onverter control
	emf and torque e ents 36 torque sp	equations eed chara	reactance	e phasor , self co	diagram po ontrol, micr	oprocess	trollers controllers controlle	onverter control
UNIT-V PERMA Principle of operation volt ampere requirem applications. Text Books: 1. Miller, T.J.E. "Bru	emf and torque e ents 36 torque sp ushless permanent	equations eed chara magnet an	reactance cteristics	e phasor , self co	diagram po ontrol, micr	oprocess Clarendo	n Press, C	onverter control
UNIT-V PERMA Principle of operation volt ampere requirem applications. Text Books: 1. Miller, T.J.E. "Bru 1 st Edition, 1989.	emf and torque e ents 36 torque sp ushless permanent ng motors and their	equations eed chara magnet an	reactance cteristics d relucta cessor cc	e phasor , self co nce moto ontrol ", o	diagram po ontrol, micr or drives ", Clarendon H	oprocesso Clarendo Press, Ox	n Press, C	Onverter control Oxford,

applications, CRC press.

4. P.P. Aearnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Peter Perengrinus, London, 1982.

Web References:

- 1. http://www.academia.edu/9885014/SPECIAL_ELECTRICAL_MACHINES_NPTEL_NOTES
- 2. http://een.iust.ac.ir/profs/Arabkhabouri/Electrical%20Drives/Books/
- 3. https://ktu.edu.in/eu/att/attachments.htm?download=file&id=156232

E-Text Books:

- 1. http://www.mlbd.com/BookDecription.aspx?id=13779
- 2. http://www.leeson.com/documents/PMAC_Whitepaper.pdf

POWER CONVERTERS AND ELECTRIC DRIVES LABORATORY

Course Code	Category	Hours / Week			Credits	Maximum Marks			
BPE101	Core	L	Т	Р	С	CIA	SEE	Total	
DI LIUI	Core	-	-	3	2	30	70	100	
Contact Classes: 33	Tutorial Class	ses: Nil	Prac	tical Cla	asses: Nil	Tot	al Class	es: 33	
OBJECTIVES : This course should enable I. Apply power electronics		control of	electric	drives.					
	LIST	OF EXP	ERIME	NTS					
Week 1 PMDC MOTO	OR								
Speed Measurement and c	losed loop control	using PM	DC mot	or.					
Week 2 PMDC									
Thyristorised drive for PM	IDC motor with spe	eed measu	ırement	and clos	ed loop con	trol.			
Week 3 4 QUADRAN	T CHOPPER DR	IVE							
IGBT used single 4 quadra control.	ant chopper drive for	or PMDC	motor v	with spee	ed measuren	nent and	closed 1	oop	
Week 4 1HP DC MOT	TOR								
Thyristorised drive for 1H	P DC motor with c	losed loop	o contro	1.					
Week5 3HP DC MO	TOR								
3 Phase input, thyristorise	d drive 3 Hp DC n	notor with	closed	loop.					
Week 6 43 PHASE IN	PUT IGBT								
3 phase input IGBT, 4 qua	drant chopper drive	e for DC	motor w	rith close	d loop cont	rol equip	oment.		
Week 7 CYCLO CON	VERTER								
Cyclo converter based AC	induction motor co	ontrol equ	ipment.						
Week 8 INDUCTION	MOTOR								
Speed control of 3 phase w	ound rotor inducti	on motor.							
Week 9 SINGLE PHA	SE FULL CONT	ROLLE	R						
Single phase fully controll	ed converter with i	nductive	load.						
Week10 SINGLE PHA	SE HALF CONT	ROLLE	R						
Single phase half wave con	ntrolled converter v	with induc	tive loa	d.					
Week11 V/F CONTRO)L								

Text Books:

- 1. Dr. P. S. Bimbhra, "Power Electronics", Khanna Pubishers.
- 2. Philip T. Krein, "Elements of Power Electronics", Oxford University Press.

Reference Books:

- 1. M. S. JamilAsghar, "Power Electronics", PHI Private Limited.
- 2. John G. Kassakian,"Principles of Power Electronics", Martin F. Schlect, Geroge C.

Web References:

- 1. https://www.ni.com/newsletter/51141/en/http://www.csun.edu/~rd436460/Labview/Lecture-Overview.pdf
- 2. https://www.labviewmakerhub.com/
- 3. https://www.home.hit.no/~hansha/documents/labview.

E-Text Books:

- 1. https://www.freebookcentre.net
- 2. https://www.amazon.in/POWER-ELECTRONICS-HANDBOOK
- 3. https://www.circuitstoday.com

LIST OF EQUIPMENT REQUIRED FOR A BATCH OF 24 STUDENTS

S. No	Name of the Equipment	Range
1.	Four quadrant chopper unit	
2.	DC motor with speed sensor	12V
3.	Cathode Ray Oscilloscope	(0-30) MHz
4.	Thyristorised converter unit	
5.	PMDC motorset	
6.	Chopper PMDC motor control module	
7.	DC power supply	30V/1A
8.	Thyristorised converter unit	
9.	DC motor set	1HP
10.	isolation transformer	415V input 185V output
11.	controlled rectifier module	
12.	firing unit	
13.	DC shunt motor	
14.	Chopper power module, chopper firing unit	
15.	three phase auto transformer	
16.	Cyclo converter	
17.	power circuit with firingcircuit	
18.	Loading rheostat	100 Ohm/2A
19.	AC Induction motor	2HP
20.	controlled rectifier module	
21.	firing unit	
22.	rheostat 230 Ohm/3A	230 Ohm/3A

POWER ELECTRONIC CONTROL OF AC DRIVES

Cours	se Code	Category	Ho	Hours / Week		Credits	Maximum Marks			
RP	E004	Core	L	Т	Р	С	CIA	SEE	Total	
			3	-	-	3	30	70	100	
Contact	Classes: 45	Tutorial Classes:	Nil	Prace	tical Cl	asses: Nil	Tot	Fotal Classes: 45		
I. UndersII. DistingIII. Unders	e should enable stand various of guish the speed stand the speed	le the students to: converters used in AC du d control of induction mo d control of synchronous e of reluctance motor dri	otors wi motors						5.	
UNIT-I	INDUCTIO	N MOTOR DRIVES						Clas	sses: 09	
Introduction to induction motor drives: Torque production, equivalent circuit analysis, speed, torque characteristics with variable voltage operation variable frequency operation constant v/f operation, variable stator current operation, induction motor characteristics in constant torque and field weakening regions.										
UNIT-II	STATOR S	IDE CONTROL OF I	NDUC	FION M	IOTOF	DRIVES		Cla	sses:10	
speed cont inverter con	rol with torq ntrol, indepen	fed inverter control, op- ue and flux control, cu dent current and frequen of current fed inverter dr	irrent c ncy con	ontrolle trol, spe	d volta ed and	ge fed inve flux contro	erter dri ol in curi	ive, cur	rent fed	
UNIT-III	ROTOR SI	DE CONTROL OF IN	DUCTI	ION MO	DTOR	DRIVES		Clas	sses: 08	
	ve, static Sche ntrol of induc f vector contr	es: Static Kramer Drive ribus drive modes of op tion motor drives: Prin	eration.	of vecto	r contr	ol, vector o	control	methods		
methods of	nodel reference	ol, indirect methods of ing control.								
methods of			6 MOT		IVES			Clas		
methods of regulator m UNIT-IV Synchronor factor cont speed, dire indirect flu	CONTROL us motor and rol, constant ect flux weak	ing control.	rol strat ntrol. C ant torc	OR DR egies, co Controlle jue moc	onstant ers, flux le cont	k weakenin roller, flux	g opera weake	ol, unity tion, ma ning con	tuning sses: 09 power aximum ntroller,	
methods of regulator m UNIT-IV Synchronor factor cont speed, dire indirect flu	CONTROL us motor and rol, constant ect flux weak ix weakening coller design.	ing control. OF SYNCHRONOUS its characteristics: Contr mutual flux linkage co ening algorithm, consta	rol strat ntrol. C ant torc torque.	OR DRI egies, co Controlle jue moo , speed	onstant ers, flux le cont	k weakenin roller, flux	g opera weake	ol, unity tion, ma ning con ntation	tuning sses: 09 power aximum ntroller,	

M H Rashid, "Power Electronic circuits Devices and Applications", PHI, 1st Edition 1995. G. K. Dubey, "Fundamentals of Electrical Drives", Narora publications, 1st Edition 1995. BK Bose, "Power Electronics and Variable frequency drives", IEEE Press, Standard publications, 1st Edition 2002. Bimal Bose, "Power Electronics and Motor Drives Advances and Trends", Elesevier 1st Edition Reference Books: R. Krishnan, "Electric Motor Drives Pearson Modeling, Analysis and control", PHI Publications, 1st Edition, 2002.

- 2. B K Bose, "Modern Power Electronics and AC Drives", Pearson Publications, 1st Edition, 2005.
- 3. MD Murthy, FG Turn Bull, "Power Electronics and Control of AC Motors", Pergman Press, 1st Edition.
- 4. BK Bose, "Power Electronics and AC Drives", Prentice Hall Eagle wood 1st Edition.

Web References:

Text Books:

- 1. https://nptel.ac.in/courses/108108077/
- 2. https://en.wikipedia.org/wiki/Variable-frequency_drive
- 3. https://www.ti.com.cn/cn/lit/wp/slyy078/slyy078.pdf

E-Text Books:

- 1. https://www4.hcmut.edu.vn/~nntu/files/Modern_Power_Electronics_and_AC_Drives.pdf
- https://een.iust.ac.ir/profs/Arabkhabouri/Electrical%20Drives/Books/Bimal%20K.%20Bose Power%20Electronics%20And%20Motor%20Drives_%20Advances%20and%20Trends%20(2006).p df
- 3. https://www.ene.ttu.ee/elektriajamid/oppeinfo/materjal/AAV0050/ELECTRONIC_SYSTEMS_OF_ MOTOR_DRIVE.pdf

DC TO AC CONVERTERS

Course	Code	Category	H	ours / W	eek	Credits	Μ	aximum Mark		
BPE	005	Core	L	Т	Р	С	CIA	SEE	Total	
DIE	005	Core	3	-	-	3	30	100		
Contact C	lasses: 45	Tutorial Clas	ses: Nil	Prac	ctical Cla	sses: Nil	Tot	al Class	es: 45	
I. Analyze II. Analyze III. Classify IV. Explain V. Analyze	should enable e single phase e the frequery multilevel DC powers e AC power	ble the students se and three phas ncy response of 1 inverters and the supplies and the	se PWM i resonant p r applica r applicat ir applica	pulse inve ations. tions. ations.	erters and			Class		
UNIT-I		VERTERS (SIN				() () () () () () () () () ()			ses: 09	
analysis of harmonic P reductions,	120 degree WM, 60 de current sou	80 degree condit e conduction, v gree PWM, spac rce inverter, van lications and num	oltage co ce vector riable DC	ontrol of modulat	three pl ion, com	nase inverter parison of P	rs, sinusc WM tech	oidal PW	M, thire harmoni	
UNIT-II	RESONA	NT PULSE INV	ERTER	S				Class	ses: 10	
Resonant pulse inverters: Series resonant inverters, series resonant inverters with unidirectional switches, series resonant inverters with bidirectional switches, analysis of half bridge resonant inverter, evaluation of currents and voltages of a simple resonant inverter, analysis of half bridge and full bridge resonant inverter with bidirectional switches, frequency response of series resonant inverters, for series loaded inverter, for parallel loaded inverter, for series and parallel loaded inverters parallel resonant inverters, voltage control of resonant inverters, class E inverter and class E rectifier, numerical problems. resonant converters: Resonant converters, zero current switching resonant converters, L type ZCS resonant converter, M type ZCS resonant converter, zero voltage switching resonant converters, resonant DC link inverters, evaluation of L and C for a zero current switching inverter and numerical problems.										
UNIT-III	MULTILI	EVEL INVERT	TERS					Class	ses: 08	
operation,	main featur	ssification of me es, improved di ciple of operation	iode clan	nped inv	erter, pri	-		-	-	
reactive por	wer compen	nverter: Principl sation, back to ltage balancing	back iner	rtia syster	m, adjust	able drives,	switching	g device	currents	

converters.

UNI	T-IV	DC POWER SUPPLIES	Classes: 09					
conv	verter, j	supplies: Classification, switched mode DC power supplies, fly back convoush pull converter, half bridge converter, full bridge converter, resonant DC al power supplies and applications.						
UNI	[T-V	AC POWER SUPPLIES	Classes: 09					
bidir	rectiona	supplies: Classification, switched mode ac power supplies, resonant AC pe al ac power supplies, multistage conversions, control circuits, applications, po s, power conditioners, uninterruptible power supplies and applications.						
Text	t Books	:						
2. 1								
Refe	erence	Books:						
]	Edition	hnan, "Electric Motor Drives Modeling, Analysis and Control", Pearson Publica , 2002. sse, Modern Power Electronics and AC Drives", Pearson Publications, 1 st Edition						
Web	o Refer	ences:						
E-T	ext Boo	oks:						
2. 1 3. 1 4. 1	https:// https://e https://v	www.yildiz.edu.tr/~fbakan/GE/GE1.pdf books.mcgraw-hill.com/engineering/PDFs/Beaty_Sec22.pdf encon.fke.utm.my/notes/inverter-2002.pdf www.wpi.edu/Pubs/E-project/Available/E-project-042507- /unrestricted/MQP_D_1_2.pdf						

FLEXIBLE AC TRANSMISSION SYSTEMS (FACTS)

Course Code	Category	Ho	urs / W	eek	Credits	Μ	Maximum Mar			
BPE006	Core	L	Т	Р	С	CIA	SEE	Total		
DI E000	Core	3	-	-	3	30	70	70 100		
Contact Classes: 45	Tutorial Cla	asses: Nil	Prac	tical Cla	asses: Nil	То	tal Classes: 45			
This course should enab I. Interpret the concept II. Analyze Voltage sou III. Describe static shunt IV. Classify reactive pow V. Apply static series co	of Flexible AC rce converters a compensation a ver compensatio	Transmissi and Current and static V on and trans	Source AR gen ient stat	converte erators. pility enl						
UNIT-I FACTS CO	DNCEPTS						Clas	sses: 09		
dynamic stability considered controllers, benefits fromUNIT-IIVOLTAGEVoltage source converter connections for 12 pulse modulation converter, b converters with voltage s	E SOURCE CO ers: Single pha e 24 and 48 pu asic concept o	DILETS. DNVERTE use and the ulse operation of current set	CRS aree pha	use full be level	voltage sou	ge conve	Class rters tran verter, pul	sses:10 sformer se widtl		
	HUNT COMP		N				Clas	sses: 08		
Static shunt compensation instability prevention, im Methods of controllable	provement of tr	ansient stal	bility, po	ower osc	villation dan	nping.		C		
converter type VAR gene				•		U				
UNIT-IV SVC AND	STATCOM						Clas	sses: 09		
SVC and STATCOM: F STATCOM, transient sta summary of compensator	bility enhancer									
UNIT-V STATIC S	ERIES COMP	ENSATO	RS				Clas	sses: 09		

Text Books:
 N.G. Hingorani, L. Guygi, "Understanding FACTS Devices", IEEE Press Publications, 1st Edition, 2000.
Reference Books:
 R. Krishnan, "Electric Motor Drives Modeling, Analysis and Control", Pearson Publications, 1st Edition, 2002.
2. B K Bose, Modern Power Electronics and AC Drives", Pearson Publications, 1 st Edition, 2002.
3. MD Murthy, FG Turn Bull, "Power Electronics and Control of AC Motors", Pergman Press, 1 st
Edition.
4. BK Bose, "Power Electronics and AC Drives", Prentice Hall Eagle wood 1 st Edition.
Web References:
1. Power Electronic Web Course by NPTEL, IIT Kharagpur, www.nptel.iitm.ac.in
2. https://www.Bookboon.com/en/introduction-to-power-electronics-ebook/
E-Text Books:
1. http://www.chettinadtech.ac.in/g_articlen/10-10-12/10-10-12-08-46-17-bresnav.pdf
2. http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1208&context=ecetr
3. https://docs.google.com/a/iare.ac.in/file/d/1QAmwi0gy0kOQKiIgpAfxu10N7Bk82TU3avy8wisTBEjt IGuKclHMSwH3-SPH/edit

ELECTRICAL DRIVES SIMULATION LABORATORY

II Semester:						,					
Course C	ode	Category	He	ours / W	eek	Credits	Max	imum Ma	arks		
BPE10	2	Core	L	Т	Р	С	CIA	SEE	Total		
-			-	-	3	2	30	70	100		
Contact Clas	sses: 36	Tutorial Clas	ses: Nil	es: Nil Practical Classes: Nil				Total Classes: 36			
I. Design an	hould ena d simulat	able the students e three phase power and AC motor of	ver electr					ol.			
			List of	f Experi	ments						
WEEK-1	THREE	PHASE PMSM	I DRIVE								
Three phase p	ermanent	t magnet synchro	nous mot	or drive	simulatio	on using MA	TLAB.				
WEEK-2	VOLTA	GE SOURCE (CONVER	TER							
Three phase	voltage so	ource converter w	vith fixed	low side	bias sim	ulation usin	g MATL	AB.			
WEEK-3	VOLTA	GE SOURCE O	CONVER	RTER							
Three phase v	oltage so	urce converter w	ith space	vector P	WM sim	ulation using	g MATLA	B.			
WEEK-4	BUCK	CONVERTER									
Simulation of	f buck con	nverter simulation	n using M	IATLAE	3.						
WEEK-5	SIX PU	LSE CYCLOCO	NVER T	ER							
Simulation of	six pulse	cycloconverter s	imulation	n using N	IATLAE	3.					
WEEK-6	SPEED	CONTROL OF	DC MO	TOR							
Speed control	of DC m	otor using BJT H	I-Bridge s	simulatio	on using l	MATLAB.					
WEEK-7	THREE	PHASE THYR	ISTOR (CONVE	RTER						
Simulation of	three pha	use thyristor conv	erter sim	ulation u	ising MA	TLAB.					
WEEK-8	THREE	PHASE 48 PU	LSE GTO	O CONV	ERTER	Ł					
Simulation of	three pha	ase 48 pulse GTC	converte	er simula	tion usin	g MATLAB	•				
WEEK-9	THREE	PHASE THRE	E LEVE	L PWM		ERTER					
Simulation of	three pha	se three level PW	/M conve	erter sim	ulation u	sing MATL	4 В.				
WEEK-10	THRE	EE PHASE SVP	WM CO	NVERT	'ER						
Three phase s	pace vect	or PWM convert	ersimulat	ion using	g MATL	AB.					

WEEK-11	THREE PHASE THREE LEVEL PWM CONVERTER								
Simulation of	three phase three level PWM converter simulation using MATLAB.								
WEEK-12	CHOPPER FED DC MOTOR DRIVE								
Simulation of	chopper fed DC motor Drive simulation using MATLAB.								
Reference Bo	ooks:								
1. R. Krishnan, "Electric Motor Drives Pearson Modeling Analysis and Control", Pearson Publications, 1 st Edition, 2002									
2. B K Bose 3. Ned I	1 st Edition, 2002.								
Web Referen	nces:								
2. hppt//ww 3. https://bo	ectronic Web Course by NPTEL, IIT Kharagpur, http://www.nptel.iitm.ac.in w.Bookboon.com/en/introduction-to-power-electronics-ebook/ oks.google.co.in/books? id=mjQskFwGUF8C&pg=PA396&lpg=PA396&dq=power+electro hit+simulation+matlab								
SOFTWARI	E AND HARDWARE REQUIREMENTS FOR A BATCH OF 18 STUDENTS								
SOFTWARI	E: Microsoft Windows 7 and MATLAB R2015a								
HARDWAR	E: 18 numbers of Intel Desktop Computers with 2 GB RAM								

CONTROL SYSTEM DESIGN

Course Code	Category	He	ours / W	eek	Credits	Maximum Ma			
BPE201	Elective	L	Т	Р	С	CIA	SEE	Total	
DF E201	Liecuve	3	0	0	3	30	70	100	
Contact Classes: 45	Tutorial Cla	sses: Nil	Prac	tical Cla	sses: Nil	Tot	Fotal Classes: 45		
OBJECTIVES: The course should en I. Design controllers II. Design controllers III. Formulate optima IV. Apply discrete me V. Apply state estima UNIT-I CONVE	s using convention s using discrete me l control problems ethods to optimal c	al methods ethods. control prob ontrol syste	olems. ems desig	'n.			Cla	sses: 09	
Design specifications design examples.				Root loc	us based des	sign, bod			
UNIT-II DESIGN	N IN DISCRETE	DOMAIN	I				Cla	sses: 09	
Sample and hold, d discretisation, effect o								ods of	
UNIT-III OPTIM	AL CONTROL						Cla	sses: 10	
Formation of optimal of optimal constraints of optimal constraints of problems, design examined and the second sec	ontrol problems, ev								
UNIT-IV DISCRI	ETE STATE VAI	RIABLE I	DESIGN				Cla	sses: 08	
Discrete pole placem dynamic programming		L	ck, estim	ated stat	e feedback o	liscrete,	optimal	control,	
UNIT-V STATE	ESTIMATION						Cla	sses: 09	
State estimation prob			•			cteristics	, Kalmai	n, Bucy	
filter, separation theor Text Books:									

Reference Books:

- 1. G. F. Franklin, J. D. Powell, M Workman, "Digital Control of Dynamic Systems", PHI (Pearson), 1st Edition, 2002.
- 2. B.D.O. Anderson and J.B. Moore., "Optimal Filtering", prentice hall Inc, 1st Edition, 1979.
- 3. Loan D. Landau, GianlucaZito, "Digital Control Systems, Design, Identification and Implementation", Springer, 2006.

Web References:

- 1. https://www.nptel.ac.in/courses/108101037/
- 2. https://www.princeton.edu/~stengel/MAE345Lecture8.pdfhttp://
- 3. https:// www.en.wikipedia.org/wiki/Hamiltonian_(control_theory)
- 4. https://www.nptel.ac.in/courses/108103008/

- 1. https://www.ece.mcmaster.ca/~ibruce/courses/EE4CL4_lecture31.pdf
- 2. https://www3.nd.edu/~pantsakl/Publications/348A-EEHandbook05.pdf
- 3. https://www.uodiyala.edu.iq/uploads/PDF%20ELIBRARY%20UODIYALA/EL43/Control%20Syste m%20Design.pdf
- 4. https://www.calpoly.edu/~fowen/AutoMech2012/SampleBook.pdf

OPTIMISATION TECHNIQUES IN POWER ELECTRONICS

Course Code		Category	Ho	ours / W	eek	Credits	Maximum Marks		
BPE2	202	Elective	L	Т	Р	С	CIA	SEE	Total
	202	Licenve	3	0	0	3	30	70	100
Contact Cl	asses: 45	Tutorial Class	ses: Nil	Prac	tical Cla	asses: Nil	Tot	al Class	es: 45
I. Explain r II. Understa III. Apply va IV. Impleme V. Apply op UNIT-I Introduction constrained of	should enable regarding op nd various e rious advan nt multi obje otimization t INTROD to fitness e optimizatior	ble the students to obtimization problem evolutionary compl ced hybrid approad ective optimization echnique applied t UCTION valuation, definition n, optimality condi- programming, mi	ns involvin utational a ches to opt a algorithm to power el on, classif itions, clas	lgorithn imizations. lectronic	ns. on. cs applic of optimizati	ization prob on techniqu	es (linea	constrai	on linea
UNIT-II	EVOLUT	TIONARY COMP	PUTATIO	N TEC	HNIQU	ES		Cla	sses: 09
evolutionary	programmi	onary algorithms, j ng, direction based am implementation	principle o d search, g	of simple	e genetic	algorithm,		nary strat	tegy and
evolutionary issues in gen UNIT-III	programmi etic algorith	onary algorithms, j ng, direction based am implementation CED OPTIMIZA	principle c d search, g n. FION ME	f simple genetic o	e genetic operators	algorithm, os, selection,	cross ov	nary strat ver and n	tegy and nutation
evolutionary issues in gen UNIT-III Fundamental (hybrid of ge particle swar Optimizer si	programmi etic algorith ADVAN(principle, v enetic algor m optimizat	onary algorithms, j ng, direction based im implementation	principle c d search, g n. FION MF advanced swarm op particle sy nization: 1	of simple genetic of CTHOD operator timization varm op Fundame	e genetic operators S rs, hybri on, hybri timizatic ental pri	algorithm, o s, selection, d approache id of evolut on.	cross ov	Cla Cla mentatio rogramm	tegy and nutation sses: 10 n issues ning and fferentia
evolutionary issues in gen UNIT-III Fundamental (hybrid of ge particle swar Optimizer si evolution tec tracking.	programmi etic algorith ADVANC principle, v enetic algor m optimizat implification chniques, b	onary algorithms, j ng, direction based am implementation CED OPTIMIZA velocity updating, ithm and particle st tion). Simplifying n and meta optin	principle c d search, g n. TION MH advanced swarm op particle sv nization: 1 bees col	of simple genetic of CTHOD operator timization varm op Fundame ony alg	e genetic operators S rs, hybri on, hybri timizatic ental pri	algorithm, o s, selection, d approache id of evolut on.	cross ov	nary strat ver and n Cla mentatio rogramm n of dif um pow	tegy and nutatior sses: 10 n issues ning and fferentia
evolutionary issues in gen UNIT-III Fundamental (hybrid of ge particle swar Optimizer si evolution tea tracking. UNIT-IV Concept of p genetic algor objective pa	programmi etic algorith ADVANC principle, v enetic algor m optimizat implification chniques, b MULTI (pare to optim rithm fitnes urticle swar	onary algorithms, j ng, direction based im implementation CED OPTIMIZA velocity updating, ithm and particle tion). Simplifying n and meta optin pacterial foraging,	principle c d search, g n. TION MF advanced swarm op particle sv nization: 1 bees col FIMIZAT al approach ring funct	timization conversion of the second s	s s s, hybri on, hybri timizatic ental pri orithm, multi ob domina	algorithm, o s, selection, d approache id of evolut on. inciple, clas concept of jective optin ted sorting	cross ov s imple- ionary p ssification maxim mization genetic	nary strat ver and n Cla mentatio rogramm on of dif um pow Cla , multi o algorithm	tegy and nutation sses: 10 n issues ning and er poir sses: 08 bjective m, mult

Text Books:

- Singiresu S. Rao, "Engineering Optimization Theory and Practice" by John Wiley & Sons, Inc., New Jersey, 1st Edition, 2009.
- 2. Kothari D.P. and Dillon J.S., "Power system optimization", PHI, 2004.
- 3. Thomas Back, David B Fogel, ZbigniewMichalewicz, "Evolutionary Computation 2 Advanced Algorithms and Operators", Institute of Physics Publishing, UK, 2000.
- 4. Kalyanmoy Deb, "Muti-objective Optimization using Evolutionary Algorithms", John Wiley & Sons 2001.

Reference Books:

- Charles L. Phillips, Troy Nagle, AranyaChakrabortty, "Digital Control System Analysis and Design", Pearson, 4th Edition, 2015.
- 2. Conference on Renewable Energies and Power Quality (ICREPQ'10), Granada (Spain), 23rd to 25th March, 2010.

Web References:

- 1. https://www.en.wikipedia.org/wiki/Power_electronics
- 2. http:// www.bookboon.com/en/electrical-electronic-engineering-ebooks
- 3. https://www.en.wikipedia.org/wiki/Power_optimization_(EDA)

- 1. https://www.utwente.nl/ewi/te/projects/past/mope/https:
- 2. https://www.pes.ee.ethz.ch/uploads/tx_ethpublications/ecpe_bayerninnovativ_VirtualPrototyping Optimization_FINAL.pdf
- 3. http://www.faculty.ece.vt.edu/lindner/Ref_PE-O-J3.pdf
- 4. http://www.nptel.ac.in/courses/108105066/PDF/L-1(SSG)(PE)%20((EE)NPTEL).pdf

PROGRAMMABLE LOGIC CONTROLLERS AND THEIR APPLICATIONS

Course Code	Category	Но	urs / We	eek	Credits	Maximum Ma		larks
BPE203	Elective	L	Т	Р	С	CIA	SEE	Total
DI 1205	Elective	3	0	0	3	30	70	100
Contact Classes: 45	Tutorial Clas	sses: Nil	Prac	tical Cla	sses: Nil	Total Classes: 45		
OBJECTIVES: The course should en I. Illustrate program II. Understand the ard III. Learn programmin IV. Understand plc prov. V. Create ladder diag	mable logic contr chitecture of PLC ng methods and fu ograms.	roller (PLC 	f PLC.	ns.				
UNIT-I INTROD	UCTION TO PI	LC					C	lasses: 0
Introduction to PLC: advantages of PLCs. I	• • •	-	•	•		vs. other	types of	f control
UNIT-II PLC ARC	CHITECTURE						C	lasses: 0
PLC architecture: Ge systems, discrete I / O								
PLC manufacturers.								
UNIT-III PLC PR	OGRAMMING:							
Programming Method charts, instruction list, PLC functions: Data tr	ds: Ladder diagra , structured text. ransfer, data man	ams (detai	program	control,	arithmetic, s	special fur	uential f	lasses: 10
UNIT-IIIPLC PRProgramming Method charts, instruction list,PLC functions: Data to UNITE IVIEC 113	ds: Ladder diagra	ams (detai	program	control,	arithmetic, s	special fur	uential f	
UNIT-IIIPLC PRProgramming Method charts, instruction list,PLC functions: Data to UNITE INIEC 113	ds: Ladder diagra , structured text. ransfer, data man 1 STANDARD, 1S (BRIEF COV code, PLC sy ss (brief coverage	ipulation, PROGRA (ERAGE) ystem and); Simple	program MMIN DESIG 1 safety	control, G LAN(N ASPE , emerg	arithmetic, s GUAGES, s CTS ency stop,	special fur SOFTWA	uential f nctions.	unctiona lasses: 0 process,
UNIT-IIIPLC PRProgramming Method charts, instruction list,PLC functions: Data thUNIT-IVIEC 113 SYSTENFlow charts, pseudo documentation proces up, code conversion, a	ds: Ladder diagra , structured text. ransfer, data man 1 STANDARD, 1S (BRIEF COV code, PLC sy ss (brief coverage	ipulation, PROGRA (ERAGE) ystem and); Simple	program MMIN DESIG 1 safety	control, G LAN(N ASPE , emerg	arithmetic, s GUAGES, s CTS ency stop,	special fur SOFTWA	uential f nctions. RE C sioning oggle act	unctiona lasses: 0 process,
UNIT-IIIPLC PROPROMProgramming Method charts, instruction list,PLC functions: Data the UNIT-IVIEC 113 SYSTEMFlow charts, pseudo documentation process up, code conversion, aUNIT-VCASE S	ds: Ladder diagra , structured text. ransfer, data man 1 STANDARD, 1S (BRIEF COV code, PLC sy as (brief coverage alarm annunciator	ams (detai ipulation, j PROGRA (ERAGE) ystem and); Simple etc.	program MMIN DESIG d safety program	control, G LANG N ASPE , emerg s: On / o	arithmetic, s GUAGES, s CTS ency stop, ff control, o	special fur SOFTWA commis ne shot, to	uential f nctions. ARE C sioning oggle act	lasses: 0 process, ion, latcl
UNIT-IIIPLC PRProgramming Method charts, instruction list,PLC functions: Data thUNIT-IVIEC 113 SYSTENFlow charts, pseudo documentation proces up, code conversion, a	ds: Ladder diagra , structured text. ransfer, data man 1 STANDARD, 1S (BRIEF COV code, PLC sy as (brief coverage alarm annunciator	ams (detai ipulation, j PROGRA (ERAGE) ystem and); Simple etc.	program MMIN DESIG d safety program	control, G LANG N ASPE , emerg s: On / o	arithmetic, s GUAGES, s CTS ency stop, ff control, o	special fur SOFTWA commis ne shot, to	uential f nctions. ARE C sioning oggle act	lasses: 0 process, ion, latcl

Reference Books:

- 1. W. Bolton, "Programmable Logic Controllers', Elsevier, 4th Edition, 2006.
- 2. E. A. Parr, "Programmable Controllers: An Engineers Guide", Newness, 3rd Edition, 2003.

Web References:

- 1. https://www.igniteengineers.com
- 2. https://www.ocw.nthu.edu.tw
- 3. https://www.uotechnology.edu.iq
- 4. https://www.iare.ac.in

- 1. https://www.etf.unssa.rs.ba/~slubura/Procesni%20racunari/Programmable%20Logic%20Controllers% 204th%20Edition%20(W%20Bolton).pdf
- 2. https://www.idc-online.com/technical_references/pdfs/instrumentation/IntrotoPLCs.pdf
- 3. https://mycourses.ntua.gr/courses/ECE1254/document/Programmable_Controllers_-Theory_and_Implementation-.pdf
- 4. https://www.file:///C:/Users/iare10074/Downloads/pet10882OLCSampleChapterconstrained72.pdf

Group I: PEED Course Code Category Hours / Week Credits **Maximum Marks** L Р Т С CIA SEE Total **BPE204** Elective 3 _ 3 30 70 _ 100 **Practical Classes: Nil Total Classes: 45 Contact Classes: 45 Tutorial Classes: Nil OBJECTIVES:** The course should enable the students to: Implement PID Controllers and their tuning methods. I. II. Understand state space design methods. III. Analyse non linear control systems. IV. Illustrate the optimal control methods. V. Apply the principles of optimization to digital control systems. CLASSICAL CONTROLLER DESIGN UNIT-I Classes: 09 Tuning of PID controller: Proportional (P), Integral (I), Derivative (D), P, PD, PID controllers, characteristics, design, controller tuning, Ziegler, Nichol's method and Cohen Coon method, damped oscillation method. UNIT-II STATE SPACE DESCRIPTION & DESIGN Classes: 09 Modern control system design: Review of state model for systems state transition matrix, controllability, observability, Kalman decomposition state feedback, output feedback, design methods, pole placement controller, full order and reduced order observers, dead beat control. UNIT-III NON LINEAR SYSTEMS Classes: 10 Analysis of non linear system: Types of non linearity, typical examples, describing function method, phase plane analysis, stability analysis of non linear systems. Lyapunov function, construction of Lyapunov function, Lyapunov's direct method, Lyapunov's indirect method. UNIT-IV Classes: 08 **OPTIMAL CONTROL** Statement of optimal control problem: Problem formulation and forms of optimal control, performance measures for optimal control, selection of performance measure, various methods of optimization, necessary conditions for optimal control, linear quadratic regulator problem, algebraic Riccati equation, solving algebraic Riccati equation using eigen vector method. UNIT-V **DIGITAL CONTROL SYSTEMS** Classes: 09 Pulse transfer function, state equation, solutions, realization, controllability, observability, stability, Jury's test, digital controller design, direct design method, pole placement controller, dead beat control, discrete, linear quadratic regulator.

ADVANCED CONTROL SYSTEMS

Text Books:

- 1. J.Nagrath and M.Gopal "Control System Engineering", new age international publishers, 2003.
- 2. M.Gopal "Modern Control System Theory", New Age International Ltd., 1st Edition, 2002.

Reference Books:

- 1. Donald P. Eckman, "Automatic Process Control", Wiley Eastern Ltd., New Delhi, 1993.
- 2. Benjamine C. Kuo, "Digital Control Systems", Oxford University Press, 1992.
- 3. B. Sarkar, "Control system design-The Optimal Approach", Wheeler Publishing, New Delhi, 1997.

Web References:

- 1. https://www.acspower.com/
- 2. https://www.advancedcontrol.com/
- 3. https://www.youtube.com/playlist?list=PLbMVogVj5nJTNkhtkCEKQHhPOr2bpS3za
- 4. https://www.en.wikipedia.org/wiki/Advanced_process_control

- 1. https://www.bput.ac.in/lecture_notes/advanced_contol_systems.pdf
- 2. https:// www.textofvideo.nptel.iitm.ac.in/108103007/lec1.pdf
- 3. https://www.nptel.ac.in/courses/101108047/module1/Lecture%201.pdf
- 4. https://www.nt.ntnu.no/users/skoge/presentation/plantwide-course-brasil-july2011/Hovd-Kompendium-2010.pdf

COMPUTER AIDED DESIGN OF POWER ELECTRONIC CIRCUITS

Course Code		Category	Ho	ours / W	eek	Credits	Max	kimum M	arks	
BDI	2205	Elective	L	Т	Р	С	CIA	SEE	Tota	
BPE205		Liecuve	3	-	-	3	30	70	100	
Contact C	Classes: 45	Tutorial Classes: NilPractical Classes: NilTotal						tal Classe	Classes: 45	
I. Unders II. Apply III. Implen IV. Simula	e should ena stand introdu advanced tec nentation of	able the students ction of computer chniques in simula modeling of powe es.	aided deation.	C	•	electronic ci	rcuits.			
UNIT-I	INTROD	UCTION						Clas	ses: 09	
		ion, general purp er electronic devi			sis, metł	nods of anal	ysis of ₁	power ele	ctronic	
UNIT-II	ADVANC	ED TECHNIQU	ES IN S	IMULA	TION			Clas	Classes: 09	
algorithms simulation UNIT-III	for computi MODELI	ctronic systems in ng steady state so NG OF POWER p and DC sweep	lution in p	power el	ectronic DEVICE	systems, fut	ure trends	s in comp	uter ses: 09	
and harmo	nic compone	• •	•							
UNIT-IV	SIMULA	FION OF CIRC	UITS					Clas	ses: 09	
	on, schematic lo analysis, s	capture and libra					el integra	tion and a	nalysis,	
		sensitivity / suess								
	CASE ST							Clas	ses: 09	
Monte Car UNIT-V Simulation	of converte							ers feeding	<u>, R, RL,</u>	
Monte Car UNIT-V Simulation and RLE lo Text Book	of converte bads, comput	UDIES rs, choppers, inve ation of performa	nce paran	neters: ha	armonics	s, power fact	or, angle	ers feeding	<u>, R, RL,</u>	
Monte Car UNIT-V Simulation and RLE lo Text Book 1. Rashid	of converte bads, comput	UDIES rs, choppers, inve	nce paran	neters: ha	armonics using PS	s, power fact	or, angle	of overlag	g R, RL, o.	
Monte Car UNIT-V Simulation and RLE lo Text Book 1. Rashid 2. Raja ge	s: M., "Simula Opalan, "Cor	UDIES rs, choppers, inve ation of performa	nce paran	neters: ha	armonics using PS	s, power fact	or, angle	of overlag	g R, RL 5.	

W	Teb References:
1.	https://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp %2Fstamp.jsp%3Ftp%3D%26arnumber%3D4643960%26userType%3Dinst&denyReason=-
	133&arnumber=4643960&productsMatched=null&userType=inst
2.	https://cordis.europa.eu/project/rcn/8960_en.html
3.	https://www.researchgate.net/publication/3549822_Magnetics_modeling_for_computer-
	aided_design_of_power_electronics_circuits
4.	https://books.google.co.in/books/about/Design_of_Electronic_Circuits_and_Comput.html? id=NwF
	kDi-XPHcC
E-	Text Books:
1.	https://www.pwrx.com/pwrx/app/HighPwr.pdf

- 2. https:// www.injapan.no/energy2015-day1/files/2015/06/ESW-Iwamuro-SES.pdf
- 3. https://www.ijcsit.com/docs/Volume%203/vol3Issue4/ijcsit2012030403.pdf
- 4. https:// www.digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1043&context=elecengtheses

ADVANCED POWER SEMICONDUCTOR DEVICES

Course	e Code	Category	Ho	ours / W	'eek	Credits	Max	imum N	Aarks
BPE	204	Elective	L	Т	Р	С	CIA	SEE	Total
	200	Liective	3	-	-	3	30	70	100
Contact C	lasses: 45	Tutorial Classes	s: Nil Practical Classes: Nil T				Tot	al Class	es: 45
I. Importa systems II. Unders III. Analyse IV. Apply V. Implem UNIT-I Power switt	ance of simu s review of p tand the intr e current cor voltage cont nentation of p INTROD ching device	es overview, attributes	s and circ ower sem cuits. s of an	i conduc	vitch, a	ices.	require	Cla ments,	sses: 09
	switching,	ng capability, (SOA); power diodes, types, for T CONTROLLED DE	rward and					charact	
secondary b mode, two inverter gra	breakdown; transistor and transistor and other	tic characteristics, switc Power darlington, thyris alogy, concept of latchi r types, series and parall BJT & thyristor.	stors, phy	vsical and and swit	d electr tching c	ical princip characteristi	le under	rlying o _l verter gr	perating ade and
UNIT-III	VOLTAG	E CONTROLLED DE	EVICES					Cla	sses: 09
switching c	haracteristic	IGBTs, principle of v s, steady state and dynam FCT, RCT and IGCT.						pes, sta	tic and
UNIT-IV	FIRING A	ND PROTECTING C	CIRCUIT	ſS				Cla	sses: 09
		pulse transformer, opto BJT, over voltage, over							Ts and
	THERMA	L PROTECTION						Cla	sses: 0
UNIT-V									5565. 0.

Te	xt Books:
1. 2.	B.W Williams, "Power Electronics Circuit Devices and Applications", Wiley, 1 st Edition, 1987. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, 3 rd Edition, New Delhi, 2004.
Re	ference Books:
1. 2.	MD Singh, K.B Khanchandani, "Power Electronics", Tata McGraw Hill, 2001. Mohan, Undcland, Robins, "Power Electronics – Concepts, applications and Design", John Wiley and Sons, Singapore, 2000.
W	eb References:
1. 2. 3.	http://www.inderscience.com/info/ingeneral/cfp.php?id=905 http:// www.documents.mx/documents/10-advanced-power-semiconductor-devices-and- protection.html https://www.books.google.co.in/books/about/Advanced_Power_Semiconductor_Devices.html?id= Q34eAQAAIAAJ&redir_esc=y
4.	http://www.nist.gov/pml/div683/grp06/power.cfm
E -	Text Books:
1. 2. 3. 4.	https:// www.theses.lib.vt.edu/theses/available/etd-12042003- 161511/unrestricted/ETD_Xu_12_03.pdf http://www.pdfdrive.net/25-advanced-power-semiconductor-devices-apsd-e456994.html http://catalogue.pearsoned.co.uk/samplechapter/0130167436.pdf http://www.electronics.dit.ie/staff/ypanarin/Lecture%20Notes/K235- 1/1%20Power%20Switches.pdf

POWER ELECTRONICS IN RENEWABLE ENERGY SYSTEMS

Course Code		Category	Но	urs / We	ek	Credits	Maxi	i <mark>mum</mark> M	arks
BI	PE207	Elective	L	Т	Р	С	CIA	SEE	Total
		Liective	3	-	-	3	30	70	100
Contact	Classes: 45	Tutorial Clas	sses: Nil	Pract	ical Cl	asses: Nil	Tota	al Classe	es: 45
I. Unders II. Apply S III. Implem IV. Evaluat	e should enable stand introduction solar energy corr mentation of win te fuel cell powe	e the students to: on of power electrony oversion. Id energy systems er electronics for able energy system	onics in re distributed			•			
UNIT-I	INTRODUC	TION						Class	ses: 09
modeling o	of renewable en mulink environr	rid renewable er ergy sources, PV nent CRGY CONVER	array, wi					, in MA'	
photovoltai photovoltai commutate	ic system com ic power syste id inverters, sy and simulation v	version: working aponents, factor ems, DC Powe ynchronized oper various power cor	influencin r condition ration with	ng outp oning c th grid	ut, sys onverte supply	tem design ers, AC po , harmonic	, power ower con problen	electror ditioner 1, appli	nics fo s, line cations
	WIND ENER	RGY CONVERS	SION					Clas	
UNIT-III	1					•		1 . 1	ses: 09
Wind energin India, po	ower in the win	vstems: Basic prin d, components o SCIG-PMSG, cla	f a wind e	energy co	onversio				survey
Wind energy in India, po generators Power elect power wind conversion	ower in the win for WECS, IG-S tronics converte d turbines, futur	d, components of	f a wind e ssification eed wind ng of powe	energy co of WEC turbines, er genera	onversio CS. , matrix ators lik	on system, p , multilevel & IG –SCIC	converte G-PMSG	nce of in ers for ve for wind	survey ductior ery high
Wind energy in India, po generators Power elect power wind conversion	bower in the win for WECS, IG-S stronics converte d turbines, futur system(WECS ary topologies.	d, components of SCIG-PMSG, classer er for variable sp re trends, modelin), modeling and	f a wind e ssification eed wind ng of powe simulation	energy co of WEC turbines, er genera n of pov	cs. , matrix ators lik ver con	on system, p , multilevel te IG –SCIC verters, mul	converte G-PMSG	nce of in ers for ve for wind natrix ar	survey duction ery high

UNIT-V	HYBRID RENEWABLE ENERGY SYSTEMS	Classes: 09
UNIT-V	HYBRID RENEWABLE ENERGY SYSTEMS	Classes: 09

Need for hybrid systems, types of hybrid system, optimization of system components in hybrid power system, various power quality issues, hybrid renewable power system, modeling and simulation of hybrid renewable power system in MATLAB/PSCAD, simulation and study of various power quality problems in hybrid /renewable energy power system.

Text Books:

- 1. B.W Williams 'Power Electronics Circuit Devices and Applications'.
- 2. Rashid M.H., "Power Electronics Circuits, Devices and Applications ", Prentice Hall India, Third Edition, New Delhi, 2004.

Reference Books:

- 1. MD Singh, K.B Khanchandani, "Power Electronics", Tata McGraw Hill, 2001.
- 2. Mohan, Undeland and Robins, "Power Electronics Concepts, applications and Design, John Wiley and Sons, Singapore, 2000.

Web References:

- 1. https://www.as.wiley.com/WileyCDA/WileyTitle/productCd-1118634039.html.
- https://www.academia.edu/3409546/Power_Electronics_Application_in_Renewable_Energy_System.
- 3. https://www.springer.com/us/book/9788132221180.
- 4. https://www.springer.com/us/book/9781447151036.

- 1. https://www.ijtra.com/view/role-of-power-electronics-in-non-renewable-and-renewable-energysystems.pdf.
- 2. https://www.nitgoa.ac.in/News_files/STC.pdf.
- 3. https://www.jee.ro/covers/art.php?issue=WN1438788776W55c22ca867606.
- 4. https://www.magnelab.com/wp-content/uploads/2015/01/Role-of-power-electronics-in-renewable-energy-systems.pdf.

Group II: PEED Course Code Category Hours / Week Credits **Maximum Marks** L Т Р С CIA SEE Total **BPE208 Elective** 3 _ _ 3 30 70 100 **Contact Classes: 45 Tutorial Classes: Nil** Practical Classes: Nil **Total Classes: 45 OBJECTIVES:** The course should enable the students to: Understand concepts of Multilevel Inverters and be able to apply it in the field. I. II. Learn different multilevel inverter topologies and PWM techniques. III. Describe power converters. **UNIT-I INTRODUCTION** Classes: 09 Introduction, Conventional two level inverters for single and three phase applications. Gate drive circuits for devices. Ratings and device stress. Harmonics. UNIT-II MULTILEVEL INVERTERS Classes: 09 Concept of multilevel inverters: Its effect on switch stress and harmonics and EMC, topologies and waveforms, effect of multilevel inverters on AC motors. SPWM and SVPWM techniques. UNIT-**TYPES OF MULTILEVEL INVERTERS** Classes: 09 Ш Neutral point clamped (NPC) inverters: 3 level, and 5 level, features, advantages and disadvantages. cascaded H bridge inverter. Higher levels attained using asymmetrical DC sources, and employing capacitors instead of DC sources. Requirements of number of devices, cost and reliability aspects for different configurations. UNIT-**TOPOLOGY OF MULTILEVEL INVERTERS** Classes: 09 IV Generalized multilevel inverter topology with self voltage balancing, multilevel inverters with flying capacitor topology, cascading two level inverters, higher level inverter by using an open end induction machine with multilevel inverters on each side. UNIT-V **CAPACITOR VOLTAGE BALANCING** Classes: 09 Issues of capacitor balancing and common mode voltage elimination, 12 and 18 sided polygonal voltage space vector generation, hybrid inverters and recent trends in multilevel inverters. **Text Books:** Bin Wu, "High Power Converters and AC drives", IEEE press. John Wiley and Sons, Inc. 2006 1. Keith Corzine, "Operation and Design of Multilevel Inverters", Developed for the office of Naval 2. Research, Dec 2003, Revised June 2005

MULTI LEVEL INVERTERS

Reference Books:

- 1. J. Rodriguez, J. S. Lai and F. Z. Peng, "Multilevel Inverters: Survey of Topologies, Controls, and Applications," IEEE Transactions on Industry Applications, vol. 49, no. 4, Aug. 2002, pp. 724-738.
- F. Z. Peng, "A generalized multilevel inverter topology with self voltage balancing," IEEE Trans. Ind. Applications. vol. 37, pp. 611–618, Mar./Apr. 2001.A. Nabae, I. Takahashi, and H. Akagi, "A New Neutral-point Clamped PWM inverter," IEEE Trans. Ind. Applications., vol. IA-17, pp. 518-523, Sept./Oct. 1981.

Web References:

- 1. https://www.elprocus.com/multilevel-inverter-types-advantages/
- 2. https://www.theengineeringprojects.com/2014/12/introduction-multilevel-inverters.html
- 3. https:// www.theengineeringprojects engineering.electrical-equipment.org/electrical-distribution/introduction-to-multilevel-inverter.html
- 4. https:// www.theengineeringprojects engineering.electrical-equipment.org/electrical-distribution/cascaded-h-bridge-multilevel-inverters.html

- 1. https://www.theengineeringprojects/web.eecs.utk.edu/~tolbert/publications/multilevel_book_chapter.p df
- 2. https://www.theengineeringprojectsethesis.nitrkl.ac.in/4289/1/Study_and_Analysis_of_Three_Phase_ Multilevel_Inverter_06.pdf
- 3. https:// www.theengineeringprojects theses.lib.vt.edu/theses/available/etd-100899 000251/ unrestricted/Chapter2.pdf
- 4. https://www.motorlab.com/Motor%20Lab%20Web%20Site_files/04%2020Code!_files/Operation%2 0and%20Design%20of%20Multilevel%20Inverters.pdf

Group III: PEED Course Code Category Credits Hours / Week **Maximum Marks** L Т Р С SEE Total CIA **BPE209** Elective 3 3 30 70 100 _ **Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45 OBJECTIVES:** This course should enable the students to: Explain the concept of artificial intelligence. I. II. Understand various mathematical models of various neural networks. III. Implement the fuzzy logic based systems. IV. Illustrate the steps in genetic algorithm implementation. V. Apply concepts of soft computing in other areas. UNIT-I **INTRODUCTION** Classes: 09 Approaches to intelligent control: Architecture for intelligent control, symbolic reasoning system, rule, based systems, the AI approach, knowledge representation, expert systems. **UNIT-II ARTIFICIAL NEURAL NETWORKS** Classes:10 Concept of Artificial Neural Networks and its basic mathematical model, Mc Culloch, Pitts neuron model, simple perceptron, adaline and madaline, feed, forward multilayer perceptron, learning and training the neural network, data processing: scaling, fourier transformation, principal component analysis and wavelet transformations; Hopfield network, self, organizing network and recurrent network; neural network based controller. UNIT-III **FUZZY LOGIC SYSTEM** Classes:08 Introduction to crisp sets and fuzzy sets: basic fuzzy set operation and approximate reasoning, introduction to fuzzy logic modeling and control, fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases: Fuzzy modeling and control schemes for nonlinear systems self organizing fuzzy logic control, fuzzy logic control for nonlinear time, delay system. UNIT-IV **GENETIC ALGORITHM** Classes: 09 Basic concept of genetic algorithm and detail algorithmic steps, adjustment of free parameters; solution of typical control problems using genetic algorithm, concept on some other search techniques like tabu search and and colony search techniques for solving optimization problems. **UNIT-V APPLICATIONS** Classes: 09 GA application to power system optimization problem; Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab, neural network toolbox, stability analysis of neural, network interconnection systems, implementation of fuzzy logic controller using Matlab fuzzy, logic toolbox, stability analysis of fuzzy control systems.

SOFT COMPUTING TECHNIQUES

Text Books:

- 1. Jacek. M. Zurada, "Introduction to Artificial Neural Systems", Jaico Publishing House, 1999.
- 2. B. KOSKO, "Neural Networks And Fuzzy Systems", Prentice-Hall of India Pvt. Ltd., 1994.
- 3. KLIR G.J. & FOLGER T.A. "Fuzzy sets, uncertainty and Information", Prentice- Hall of India Pvt. Ltd., 1993

Reference Books:

- 1. Zimmerman H.J., "Fuzzy set theory-and its Applications", Kluwer Academic Publishers, 1994.
- 2. Driankov, Hellendroon, "Introduction to Fuzzy Control", Narosa Publishers, 1st Edition, 1995.

Web References:

- 1. https:// www.en.wikipedia.org/wiki/ neural networks
- 2. https://www.jaicobooks.com/j/PDF%20HED/J-878%20Artificial%20Neural%20Systems.pdf
- 3. https://www.abebooks.co.uk/book-search/title/an-introduction-to-fuzzy-control/system.pdf

- 1. https://www.books.google.com/Computers/Software Development & Engineering.pdf
- 2. https://www.springer.com/us/book/9783319046921.pdf
- 3. https://www.bookboon.com/en/introduction-to-soft-computing-ebook.pdf

POWER QUALITY

Group III:	PEED								
Cours	e Code	Category	H	ours / W	'eek	Credits	Μ	aximum	Marks
RPI	E 210	Elective	L	Т	Р	С	CIA	SEE	Total
	2210	Elective	3	-	-	3	30	70	100
Contact C	Classes: 45	Tutorial Class	ses: Nil	Prac	tical Cl	asses: Nil	Tot	al Class	es: 45
I. Classify II. Unders III. Apply t IV. Implem	e should enaby y power qualitand the nature ime domain a pent various to	ble the students to ty problems. re of non linear loa and frequency don echniques to mitig r electronics based	nds. nain meth ate power	r quality	problem	s.	nd transie	ent error.	
UNIT-I	INTRODU								ses: 09
voltage var variation, p	riations, volu ower accepta loads, DC o	zation of electric tage imbalance, ability curves; Po offset in loads, no	waveforn wer quali	n distor ity probl	ion, vo ems: Po	ltage fluctu or load pow	ations, p ver factor	power fi r, non li	requency near and
UNIT-II	NONLINE	AR LOADS						Clas	ses: 10
		e phase static an gers, arc furnaces, :							
UNIT-III	MEASURE	EMENT AND AN	ALYSIS	METH	ODS			Clas	ses: 08
	0	current, power a ers, Measurement.		gy meas	urement	s, power fa	ctor me	asureme	nts and
		in the periodic ste Iartley transform, t						omain me	ethods:
UNIT-IV	ANALYSIS	S AND CONVEN	TIONAI		GATION	METHOD	S	Clas	ses: 09
instantaneo Online ext Analysis of (VSLEI), a	us symmetric raction of fu f voltage sag nalysis of vo problem: Ope	ages, analysis of cal components, i indamental seque g: Detorit Edison bltage flicker, redu n loop balancing,	nstantane nce com sag score uced dura	ous real ponents e, voltag ation and	and reat from m the sag en custom	active power leasured sar hergy, voltag ler impact o	rs;Analy nples, ha ge sag lo f outage	sis of di armonic ost energ s; Classi	stortion: indices; gy index ical load
UNIT-V	POWER Q	UALITY IMPRO	OVEME	NT				Clas	ses: 09
		nent: Utility, cust evices: Network r							

voltage regulation using DSTATCOM, protecting sensitive loads using DVR, UPQC;Control strategies: P-Q theory, synchronous detection method, custom power park, status of application of custom power devices.

Text Books:

- 1. ArindamGhosh "Power Quality Enhancement Using Custom Power Devices", Kluwer Academic Publishers, 1st Edition, 2002.
- 2. G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 2nd Edition, 1994.
- 3. Jos Arrillaga, Neville R. Watson, "Power system harmonics", Wiley, 2nd Edition, 2003.

Reference Books:

- 1. R.C. Duggan, Mark F. McGranaghan, "Electrical Power Systems Quality", Wiley, 3rd Edition, 2012.
- 2. Derek A. Paice, "Power electronic converter harmonics", Wiley, 1st Edition, 1999.

Web References:

- 1. https://www.en.wikipedia.org/wiki/Power_quality
- 2. https://www.energycentral.com/reference/directories/publications/690/Power-Quality-Assurance
- 3. https://www.cpccorp.com/pq.htm
- 4. https://www.adfpowertuning.com/technology/power-quality.html

- 1. https://www.gcebargur.ac.in/sites/gcebargur.ac.in/files/lectures_desk/electrical_power_systems_quality.pdf
- 2. https://www.prof.usb.ve/bueno/Libros/power_quality-0849310407.pdf
- 3. https://www.fer.unizg.hr/_download/repository/Power_Quality_Primer_-_Barry_W._Kennedy.pdf
- 4. https://www.pqmonitoring.com/papers/Power%20Quality%20Standards/overview.PDF

Cours	e Code	Category	He	ours / W	eek	Credits	Μ	aximum	Marks
DDI	7011	Elective	L	Т	Р	С	CIA	SEE	Total
BPI	E211	Elective	3	-	-	3	30	70	100
Contact (Classes: 45	Tutorial Class	ses: Nil	Pract	tical Cla	sses: Nil	То	tal Class	es: 45
I. Unders II. Analyz III. Evalua IV. Apply V. Apply	e should enal tand the singl e three phase te various app nultilevel inv various types	ble the students to e phase inverter ap voltage source inv plications of current verters in power ele of resonant invert	oplication verter. nt source ectronic c ers.	inverters.		ation.			
UNIT-I		HASE INVERTH							asses: 09
bridge inve	rters, perform	nmutated switches nance parameters, nonic elimination t	voltage c	ontrol of	single p	hase inverte	ers using	various	
UNIT-II	THREE PI	HASE VOLTAG	E SOUR	CE INVI	ERTER	S		Cla	asses: 10
delta conne		rce inverter: 180 c ltage control of th							
UNIT-III	CURRENT	SOURCE INVE	ERTERS					Cla	asses: 08
commutate Auto seque	d inverters, w ntial current	s: Operation of a vaveforms. source inverter (A nd voltage source	SCI), pri	nciple of			-		
UNIT-IV	MULTILE	VEL INVERTE	RS					Cla	asses: 09
		de clamped, flyin lication of multile			de type	multilevel	inverter	s, compa	rison of
UNIT-V	RESONAN	T INVERTERS						Cla	asses: 09
		es and parallel reso sonant DC link inv		erters, vo	ltage co	ntrol of reso	onant inv	verters, cl	ass E
Text Books	5:								
	MIL "Dow	er Electronics Cir	cuite De	vicas an	d Appli	pations " F	Prentice	Hall Indi	a Third

ANALYSIS OF INVERTERS

Wiley and sons.Inc,Newyork,1995.

4. Philip T. krein, "Elements of Power Electronics" Oxford University Press -1998

Reference Books:

- P.C. Sen, "Modern Power Electronics", Wheeler Publishing Co., 1st Edition, New Delhi, 1998. P.S.Bimbra, "Power Electronics", Khanna Publishers, 11th Edition, 2003. 1.
- 2.

Web References:

- https:// www.en.wikipedia.org/wiki/Power_inverter 1.
- https://www.energy.ca.gov/electricity_analysis/rule21/ 2.
- https://www.nptel.ac.in/syllabus/108108035/ 3.

- https://www.ethesis.nitrkl.ac.in/3464/1/Final025.pdf 1.
- https://www.smps.us/power-inverter.html 2.
- 3. https:// www.ethesis.nitrkl.ac.in/1873/1/piyush.pdf
- 4. https:// www.ecee.colorado.edu/copec/book/slides/Ch6slide.pdf

SMART GRID DESIGN AND ANALYSIS

Group III	PEED								
Cours	e Code	Category	Но	urs / W	eek	Credits	Ma	aximum I	Marks
RDI	E212	Elective	L	Т	Р	С	CIA	SEE	Total
		Liecuve	3	-	-	3	30	70	100
Contact (Classes: 45	Tutorial Class	ses: Nil	Prac	tical Cl	asses: Nil	Т	otal Class	ses: 45
I. Unders II. Illustra III. Apply IV. Analyz	e should enal stand the role ate smart grid performance te stability of	ble the students of of smart grid in p communications, analysis tools for smart grid. e energy options for	ower sys GIS and smart gr	wide are id desigr		urement tec	hnology.		
UNIT-I	SMART G	RID ARCHITE	CTURA	L DESI	GNS			C	lasses: 09
standards; representat smart vehic UNIT-II	General view ive architectu cles in smart g SMART G TECHNOI	RID COMMUN	rid Mar smart gri ICATIC	ket Driv id compo	ers: Sta onents, DMEA	keholder ro wholesale o SUREME	oles and energy m	function, harket in t	measures, smart grid,
	-	AMS), advanced n							5.
UNIT-III		IANCE ANALY							lasses: 08
load flow n	nethods. state of the ar	ow Studies: Chall t: Classical, exter udies for smart gr	nded forr			-			-
UNIT-IV	STABILIT	Y ANALYSIS T	OOLS I	FOR SM	ART C	GRID		C	lasses: 09
stability in	dexing, applie	Voltage stability cation and implen , approach of sma	nentatior	n plan of	voltage	e stability in	n smart g	grid, angle	e stability
UNIT-V	RENEWAI	BLE ENERGY A	AND ST	ORAGE	C			С	lasses: 09
issues asso in hybrids,	ciated with su	ources: Sustainabl ustainable energy ology, environme es.	technol	ogy, den	hand res	sponse issue	es, electri	ic vehicle	s and plug

Text Books:

- 1. James Momoh, "Smart Grid: Fundamentals of design and analysis", John Wiley & sons Inc, 1st Edition, 2012.
- 2. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", John Wiley & sons inc, 1st Edition, 2012.
- 3. Fereidoon P. Sioshansi, "Smart Grid: Integrating Renewable, Distributed & Efficient Energy", Academic Press,1st Edition, 2012.
- 4. Clark W.Gellings, "The smart grid: Enabling energy efficiency and demand response", Fairmont Press Inc, 1st Edition, 2009.

Reference Books:

- 1. Fereidoon P. Sioshansi, "Smart Grid: Integrating Renewable,
- 2. Distributed & Efficient Energy", Academic Press, 2012.
- 3. Clark W. Gellings, "The smart grid: Enabling energy efficiency and
- 4. demand response", Fairmont Press Inc, 2009.

Web References:

- 1. http://www.smartgridnews.com/story/understanding-and-designing-smart-grid/2012-02-07
- 2. http://w3.usa.siemens.com/smartgrid/us/en/transmission-grid/products/grid-analysis-tools/pages/grid-analysis-tools.aspx
- 3. http://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=1021&context=electricaleng-facpubs
- 4. http://energy.sandia.gov/energy/ssrei/gridmod/renewable-energy-integration/smart-grid-tools-and-technology/

- 1. http:// www.s1.downloadmienphi.net/file/downloadfile6/192/1385280.pdf
- 2. http://www.gbv.de/dms/tib-ub-hannover/664445780.pdf
- 3. http://www.ieee-pes.org/presentations/gm2014/PESGM2014P-001876.pdf

COMPUTER AIDED DESIGN OF INSTRUMENTATION SYSTEMS

Course Code	Category	Ho	urs / V	Veek	Credits	Ma	ximum N	Iarks
BPE213	Elective	L	Т	Р	С	CIA	SEE	Total
DF E213	Elective	3	-	-	3	30	70	100
Contact Classes: 4	5 Tutorial Class	es: Nil	Pra	ctical C	Classes: Nil	Τ	otal Class	es: 45
I. Understand variII. Design softwareIII. Analyze and test	enable the students to ous instrument autom e utilizing virtual instru- t power spectrum. on of physical systems	ation system ation system						
UNIT-I DATA	ACQUISITION AN	ID INST	RUM	ENT IN	TERFACE		Cla	asses: 09
and output port con	imulation of building figuration with instru- timing, interrupts, J JSB protocols.	ment bus	proto	cols, AI	DC, DAC, D	IO, coun	ters and t	imers, PO
UNIT-II VIRT	UAL INSTRUMENT	ΓΑΤΙΟΝ	PRO	GRAM	MING TEC	HNIQUI	ES Cla	sses: 10
with conventional p	architecture of a virtua rogramming, VIs and formula nodes, local	sub VIs,	loops	and cha	rts, arrays, cl	lusters an		
UNIT-III DESI	GN TEST AND ANA	LYSIS					Cla	asses: 08
	using Fourier Transf ling, data parity and er	ror codir	ng chec	ks, sync	chronization t	testing.	stability	analysis
Watch dog timer, D	MA method, real time	clocking	, 110150	, Oaussi	an, white an	ary 515.		
	MA method, real time			Caussi		iary 515.	Cla	asses: 09
Introduction, evolut	ASED INSTRUMEN ion of signal standar ontrol system interfac	TATION rd, HAR	N T con	nmunica	tion protoco	ol, comm	unication	modes,
UNIT-IV PC BA Introduction, evolut HART networks, co HART and the OSI	ASED INSTRUMEN ion of signal standar ontrol system interfac	TATION rd, HAR re, HAR	N T con Γ com	nmunica mands, 1	tion protoco	ol, comm	unication er implen	modes,
UNIT-IVPC BAIntroduction, evolutHART networks, coHART and the OSIUNIT-VSIMUSimulation of linea	ASED INSTRUMEN ion of signal standar ontrol system interfac model.	TATION rd, HAR re, HAR ICAL SY	Ν Τ com Γ com	nmunica mands, 1 <mark>AS</mark>	tion protoco HART field	l, comm controlle	nunication er implen	modes, nentation
UNIT-IVPC BAIntroduction, evolutHART networks, cHART and the OSIUNIT-VSIMUSimulation of lineaspecial software.	ASED INSTRUMEN ion of signal standar ontrol system interfac model. LATION OF PHYS	TATION rd, HAR re, HAR ICAL SY	Ν Τ com Γ com	nmunica mands, 1 <mark>AS</mark>	tion protoco HART field	l, comm controlle	nunication er implen	modes, nentation
UNIT-IVPC BAIntroduction, evolutHART networks, coHART and the OSIUNIT-VSIMUSimulation of lineaspecial software.Text Books:1.K. Ogatta, "Mod	ASED INSTRUMEN ion of signal standar ontrol system interfac model. LATION OF PHYS	TATION rd, HAR re, HAR ICAL SY els of sy	N T com Γ com (STEN stems,	nmunica mands, 1 AS hardwa	tion protoco HART field re, simulation , 4 th Edition,	n of phys	cla cla sical syste	modes, nentation
UNIT-IVPC BAIntroduction, evolutHART networks, coHART and the OSIUNIT-VSIMUSimulation of lineaspecial software.Text Books:1.K. Ogatta, "Mod	ASED INSTRUMEN ion of signal standar ontrol system interfac model. LATION OF PHYSI r and Non linear mod	TATION rd, HAR re, HAR ICAL SY els of sy	N T com Γ com (STEN stems,	nmunica mands, 1 AS hardwa	tion protoco HART field re, simulation , 4 th Edition,	n of phys	cla cla sical syste	modes nentation

Francis Group.

- 2. MATHCAD/VIS SIM user manual.
- 3. LABVIEW simulation user manual.

Web References:

- 1. https://www.sites.google.com/site/vrpsundar/Home/lecture.
- 2. https://www.Bookboon.com/en/introduction-to-power-electronics-ebook/
- 3. https://www.en.wikipedia.org/wiki/Virtual_instrumentation

- 1. https://www.dsp-book.narod.ru/302.pdf
- 2. https://www.amazon.in/CAD-CAM-Computer-Aided-Design-Manufacturingebook/dp/B001JNJDGY
- 3. https://www.eolss.net/sample-chapters/c05/e6-39a-04-08.pdf

Group IV: PEED Course Code Category Hours / Week Credits Maximum Marks L Т Р С CIA SEE Total **BPE214** Elective 3 30 70 100 3 _ **Contact Classes: 45 Tutorial Classes: Nil Total Classes: 45 Practical Classes: Nil OBJECTIVES:** This course should enable the students to: I. Explain biological and artificial neurons. II. Understand models and control schemes in an. III. Demonstrate fuzzy logic and controllers. IV. Understand generic algorithms. V. Understand pc based instrumentation. UNIT-I NEURAL NETWORKS Classes: 09 Neural networks, biological neurons, artificial neurons, activation function, learning rules, feed forward networks, supervised and unsupervised learning, perceptron network, linear separability, back propagation networks algorithms, radial basis function networks. UNIT-II MODELS AND CONTROL SCHEMES IN ANN Classes:10 Auto and hetero associative memory, bidirectional associative memory, self organizing feature maps, Hopfield networks, neural networks for non linear system, schemes of neuro control, system identification, forward model and inverse model, case studies. UNIT-III FUZZY LOGIC AND ITS CONTROLLERS Classes:08 Fuzzy set, Crisp set, vagueness, uncertainty and imprecision, fuzzy set, fuzzy operation, properties, crisp versus fuzzy relations, fuzzy relations, fuzzy cartesian product and composition, composition of fuzzy relations, fuzzy to crisp conversion. Structure of fuzzy logic controller, database, rule base inference engine. **GENETIC ALGORITHMS** UNIT-IV Classes:09 Genetic Algorithms: Working principles, terminology, importance of mutation, comparison with traditional methods, constraints and penalty function, GA operators, real coded GA. **UNIT-V APPLICATIONS** Classes:09 Applications of neural network, fuzzy system and genetic algorithms for power systems and power electronics systems, designing of controllers using simulation software, NN tool box and fuzzy Logic toolbox. **Text Books:** 1. Zimmerman H.J. "Fuzzy set theory and its applications", Kluwer Academic Publishers, 1st Edition, 1994.

INTELLIGENT CONTROLLERS

- 2. Simon Haykin, "Neural Networks A comprehensive foundation", Pearson Education Asia, 1st Edition, 2002.
- 3. Kalyanmoy Deb, "Optimization for engineering design", Prentice Hall India, 1st Edition, 1988.
- 4. David E.Goldberg, "Genetic Algorithms in search, optimization and machine learning", Pearson Education , 1st Edition, 1989.

Reference Books:

- 1. Lawrence Fausatt, "Fundamentals of neural networks", Prentice Hall India, New Delhi, 1994.
- 2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill International Edition, USA,
- 3. 1997.
- 4. Bart kosko, "Neural Networks and Fuzzy Systems", Prentice Hall of India, New Delhi, 1994.
- 5. Jack M.Zurada, "Introduction to Artificial Neural Systems", Jaico publishing house 2006.

Web References:

- 1. https:// www.en.wikipedia.org/wiki/ neural networks
- 2. https://www.jaicobooks.com/j/PDF%20HED/J-878%20Artificial%20Neural%20Systems.pdf.
- 3. https://www.abebooks.co.uk/book-search/title/an-introduction-to-fuzzy-control/system.pdf

- 1. https://www.engr.mun.ca/~baxter/Publications/ClassicalvsIntelligentControl.pdf
- 2. https://www.werbos.com/HICChapter3.pdf
- 3. https://www.engr.mun.ca/~baxter/Publications/ClassicalvsIntelligentControl.pdf

SOFTWARE TOOL FOR POWER ELECTRONIC APPLICATIONS

	se Code	Category	Но	urs / W	eek	Credits	Μ	aximum	Marks
BP	E215	Elective	L	Т	Р	С	CIA	SEE	Total
			3	-	-	3	30	70	100
Contact	Classes: 45	Tutorial Classe	es: Nil	Prac	tical C	asses: Nil	To	tal Classe	es: 45
I. Explain II. Apply III. Program IV. Design	e should enable n Computer A of various driv m using Magn of motors usi ate motor with	e the students to: ided Design softwa we conventional desi et software. ng Motor solve soft various controllers	igns in si tware.		C			using PSI	М
UNIT-I	INTRODU	CTION						Cla	sses: 09
potential, e principle o UNIT-II Differentia variational	MATHEM 1 / Integral e method, disc naterial proper	e and limitation, de or / scalar potential, ersion, design of C or ATICAL MODEL equation, finite differentiation shape function ties, post procession	stored en core and AND E ference nction; 1	nergy in cylinde LEME method Element	field, pr or shield NTS OI I, finite s of CA	roblems, end using CAD F CAD SYS element r AD system:	ergy funct software TEM nethod,	etional and e. Cla energy m	d sses:10 nethod,
	imulation usin		g, model	ling and	l mesh a	analysis of v			
	imulation usin	ig cad software.		ling and	l mesh a	analysis of v		lrive conv	rentiona
design in st UNIT-III Introductio creating sur Positioning	MAGNET on to magnet, rface, creating g the construct		modeling ting edge	g flowc es surfac	hart, ge ces and c on and :	cometric m components finite element	odeling,	lrive conv Cla drawing	ventiona sses:08 edges,
design in st UNIT-III Introductio creating sur Positioning	MAGNET on to magnet, rface, creating g the construct	model building, n components, select ion slice material, b pulation of SRM mo	modeling ting edge	g flowc es surfac	hart, ge ces and c on and :	cometric m components finite element	odeling,	Irive conv Cla drawing solving th	ventiona sses:08 edges, ne
design in st UNIT-III Introductio creating su Positioning model, mod UNIT-IV Introductio modificatio	MAGNET on to magnet, rface, creating g the construct deling and sim MOTORS(on to Motor sc on and optimiz	model building, n components, select ion slice material, b pulation of SRM mo	modeling ting edge poundary otor with eter and g nalysis, c	g flowc es surfac conditi 6:4 slot geometr cogging	hart, ge ces and o on and a s using	cometric m components finite element Magnet soft eling, variou	odeling,	Irive conv Cla drawing solving th Cla n in moto	r solve,
design in st UNIT-III Introductio creating su Positioning model, mod UNIT-IV Introductio modificatio	MAGNET on to magnet, rface, creating g the construct deling and sim MOTORS(on to Motor sc on and optimiz	model building, n components, select ion slice material, b pulation of SRM mo DLVE plve, design parame zation, result and an	modeling ting edge poundary otor with eter and g nalysis, c	g flowc es surfac conditi 6:4 slot geometr cogging	hart, ge ces and o on and a s using	cometric m components finite element Magnet soft eling, variou	odeling,	Irive conv Cla drawing solving th cla n in moto fficiency,	r solve,

Text books:

- Silvester, Ferrari, "Finite elements for electrical engineers," Cambridge university press, 1st Edition, 1983.
- 2. S.R.H. Hoole, "Computer Aided, Analysis and Design of Electromagnetic Devices", Elsevier, Newyork, A, 1st Edition, 1989.
- 3. D. A. Lowther, P. P. Silvester, "Computer Aided Design in Magnetics", Springer verlag, New york, 1956.

Reference books:

- S. J. Salon, "Finite Element Analysis of Electrical Machines", Kluwer academic publishers, London, 1st Edition, 1995.
- 2. C. W. Trowbridge, "An Introduction to Computer Aided Electromagnetic Analysis", Vector field ltd.

Web references:

- 1. https:// www.engineering.purdue.edu/people/steven.d.pekarek.1/papers/powerelectroniclab.pdf
- 2. https://www.en.wikipedia.org/wiki/Computer-aided_design
- 3. https:// www.citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.558.1317&rep=rep1&type=pdf
- 4. https://www.calvin.edu/~pribeiro/misc/papers%20published/guidelines%20modeling%20power%20e lectronics.pdf

E-text books:

- 1. https://www.schaffner.com/fileadmin/media/content/jobs/schaffnerdeutschland_softwareengineer.pdf
- 2. https://www.maklab.org/core/wp-content/uploads/2016/02/abb.pdf
- 3. https://www.google.co.in/search?q=software+tool+for+power+electronic+applications&client=firefox-b&biw=1366&bih=657&ei=wr6hv5jxc4lfvgtp1ziqba&start=20&sa=n

DIGITAL CONTROLLERS FOR POWER ELECTRONIC APPLICATIONS

Group IV: PEED								
Course Code	Category	Но	urs / We	eek	Credits	Max	kimum N	Iarks
		L	Т	Р	С	CIA	SEE	Total
BPE216	Elective	3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Class	es: Nil	Prac	tical Cl	asses: Nil	Tot	al Class	es: 45
			•					

OBJECTIVES:

This course should enable the students to:

- I. Understand principles of Digital Signal Processing and apply this for the speed control of induction motor drives.
- II. Illustrate Field Programmable Gate Arrays.
- III. Understand the concepts of data acquisition.
- IV. Illustrate the concepts of signal conditioning.

UNIT-I DIGITAL SIGNAL PROCESSORS

Introduction to the DSP core and code generation, the components of the DSP core, mapping external devices to the core, peripherals and peripheral interface, system configuration registers, memory, types of physical memory, memory addressing modes, assembly programming using DSP, instruction set; Software Tools: Pin Multiplexing (MUX) and General Purpose I / O Overview, multiplexing and general purpose I / O control registers, introduction to interrupts, interrupt hierarchy, interrupt control registers, initializing and servicing interrupts in software, review of power electronic converters for drive control, VSI fed IM Drive, drive configuration, commutation at different speed, control structure, DSP based scalar control of induction motor drives.

UNIT-II FIELD PROGRAMMABLE GATE ARRAYS

Classes: 10

Classes: 09

RTL Design, simulation and synthesis, Combinational logic, types, operators, packages, sequential circuit, subprograms, test benches (Examples: adders, counters, flip flops, FSM, Multiplexers / Demultiplexers), overview of Field Programmable Gate Arrays, CPLD Vs FPGA, types of FPGA, Xilinx XC3000 series, configurable logic Blocks (CLB), input / output Block (IOB), overview of Spartan 3E and Virtex III pro FPGA boards, case study, controlled rectifier, switched mode power converters, PWM Inverters, DC motor control, induction motor control using Virtex III pro FPGA boards.

UNIT-III VIRTUAL INSTRUMENTATION

Classes: 08

Classes: 09

Introduction of Lab VIEW, virtual instrumentation, definition, flexibility, block diagram and architecture of virtual instruments, virtual instruments versus traditional instruments.

Review of software in virtual instrumentation, VI programming techniques, sub, loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, string and file input and output.

UNIT-IV DATA ACQUISITION SYSTEM

Basic structures, the GUI, controls and indicators, debugging, XY graphs using pre written VIs software as virtual instrument object, front panel controls, indicators, block diagram arithmetic and logic functions, data acquisition system, elements of data acquisition systems, block diagram and details of computerized data acquisition systems, control of electric drive using Lab VIEW, 4 quadrant operation of DC motor, design of current controller and speed controller for VSI fed induction motor drives.

UNIT-VSIGNAL CONDITIONINGClasses: 09

Signal conditioning: Necessity, instrumentation amplifiers, chopper stabilized amplifiers, impedance converters, noise problems, shielding and grounding, concept of filters, dynamic compensation, linearization, concept of A / D and D / A converters (voltage to frequency and frequency to voltage converter), sample hold amplifiers, microprocessor applications in signal conditioning.

Text Books:

- 1. Hamid.A.Toliyat, Steven G.Campbell, "DSP Based Electro Mechanical Motion Control", CRC Press New York,1 st Edition ,2004.
- 2. Wayne Wolf, "FPGA Based System Design", Prentice hall, 1st Edition, 2004.
- 3. Robert H. Bishop, "Learning with Lab VIEW", National Instruments, 1st Edition, 1999.
- 4. TMS320C240, "User's Guide Preliminary", Texas Instruments, 1996.

Reference Books:

- 1. Farzad Nekoogar, Genemoriarty, "Digital control using DSP", Prentice Hall Pvt.Ltd, 1999.
- 2. Douglas Perry, "VHDL Programming by example", Tata McGraw Hill, 1st Edition, 2005
- 3. Eugene D.Fabricius, "Introduction to VLSI Design", Tata McGraw Hill, 1st Edition, 2015
- 4. Texas Instruments, "Digital Signal Processing Solution for AC Induction Motor", Application Note BPRA043.
- 5. Rick Bitter, TaqiMohiuddin and Matt Nawrocki, "Labview AdvancedProgramming Techniques", CRC Press, 2nd Edition, 2007.

Web References:

- https://www.iea.lth.se/publications/MS Theses/Full%20document/5230_DSP%20Controller%20for%20Power%20Electronic%20Converter. pdf
- 2. https://shodhganga.inflibnet.ac.in/bitstream/10603/16546/7/07_chapter2.pdf
- 3. https://www.dsce.fee.unicamp.br/~antenor/pdffiles/Lesson1.pdf

- 1. https://www.calvin.edu/~pribeiro/misc/Papers%20Published/guidelines%20modeling%20power%20e lectronics.pdf
- 2. https://www.srmuniv.ac.in/sites/default/files/downloads/april_2016_curriculum_syllabus_ped_m.tech _2015_16.pdf
- 3. https://electronics.etfbl.net/journal/Vol17No2/xPaper_07.pdf
- 4. books.google.com > Technology & Engineering > Electronics > Semiconductors

DISASTER MANAGEMENT

	e Code	Category	Ho	urs / V	Veek	Credits	Ma	aximum	Marks
рст	701	Elective	L	Т	Р	С	CIA	SEE	Total
BST	/01	Elective	3	-	-	3	30	70	100
Contact C	lasses: 45	Tutorial Classe	s: Nil	Pra	actical	Classes: Nil	То	tal Clas	ses: 45
I. Exposu II. Unders III. Explor IV. Enhand V. Develo	nt should en ure to disast stand the rel e on Disaste ce awarenes op rudiment	nable the students ers, their significar ationship between er Risk Reduction s of institutional p eary a bil it y to re- y live, with due sen	nce and vulnera (DRR) rocesses spond t	ability, approa s in the o their	ches. countr	у.			
UNIT-I	INTROD DISASTE	UCTION TO NA' ERS	TURAI	AND	MAN	MADE	(Classes:	09
causes , Ir UNIT-II	· ·	uding social, econo CR, DIFFERENT	•						-
psychosoci trends in d	al etc. Diffe isasters, urb	s, Impacts including rential Impacts in t an disasters, pande	erms of mics, co	caste, complex	class, g emerg	ender, age, loc encies, climate	imental, h ation, dis change.	ability G	ilobal
psychosoci trends in d Tropical cy	al etc. Diffe isasters, urb yclones & L	s, Impacts including rential Impacts in t	erms of mics, co uction b	[°] caste, omplex y tropi	class, g emerg cal cyc	ender, age, loc encies, climate lones and local	mental, h ation, dis change. storms, (nealth, ability G Cumulati	lobal
psychosoci trends in d Tropical cy atmospheri	al etc. Diffe isasters, urb yclones & L ic hazards/	s, Impacts including rential Impacts in t an disasters, pande ocal storms, Destru	erms of mics, co action b ves, He	caste, omplex y tropi at way	class, g emerg cal cycl ves, Cau	ender, age, loc encies, climate lones and local uses of floods,	mental, h ation, dis change. storms, (Rood haz	nealth, ability G Cumulati	ilobal ive india.
psychosoci trends in d Tropical cy atmospheri UNIT-III Disaster cy	al etc. Diffe isasters, urb yclones & L ic hazards/ APPROA	s, Impacts including rential Impacts in t an disasters, pande ocal storms, Destru disasters, Cold wa CHES TO DISAS	erms of mics, co iction b ves, He STER I	caste, omplex y tropi at way	class, g emerg cal cycl ves, Cau	ender, age, loc encies, climate lones and local uses of floods, CTION	imental, h ation, dis change. storms, (Rood haz	nealth, ability G Cumulati zards in I Classes: (ilobal ive india.
psychosoci trends in d Tropical cy atmospheri UNIT-III Disaster cy based Disa Structural,	al etc. Diffe isasters, urb yclones & L ic hazards/ APPROA rcle, its analy ster risk red nonstructura	s, Impacts including rential Impacts in t an disasters, pande ocal storms, Destru disasters, Cold wa CHES TO DISAS	erms of mics, co action b ves, He STER I e of safe d respon	caste, omplex y tropi at way RISK ety, pre	class, g emerg cal cyc. ves, Cau REDU vention	ender, age, loc encies, climate lones and local uses of floods, CTION a, mitigation an	imental, h ation, dis change. storms, (Rood haz	nealth, ability G Cumulati zards in I Classes: 0 dness co	ilobal ive india. 09 mmunity
psychosoci trends in d Tropical cy atmospheri UNIT-III Disaster cy based Disa Structural,	al etc. Diffe isasters, urb yclones & L ic hazards/ APPROA ycle, its analy ster risk rea nonstructura l bodies, sta	s, Impacts including rential Impacts in t an disasters, pande ocal storms, Destru disasters, Cold wa CHES TO DISA ysis, phases, culture duction. al sources, roles an tes, centre and othe RELATIONSHIP	erms of mics, co action b ves, He STER 1 e of safe d respon er stake	caste, omplex y tropi at way RISK ety, pre nsibilit holder	class, g emerg cal cycl ves, Cau REDU vention ies of co s.	ender, age, loc encies, climate lones and local uses of floods, CTION a, mitigation an ommunity, Par	imental, h ation, dis change. storms, (Rood haz d prepare	nealth, ability G Cumulati zards in I Classes: 0 dness co	lobal ive india. 09 mmunity tions,
psychosoci trends in d Tropical cy atmospheri UNIT-III Disaster cy based Disa Structural, Urban loca UNIT-IV Factors aff embankme	al etc. Diffe isasters, urb yclones & L ic hazards/ APPROA cle, its analy ster risk red nonstructura l bodies, sta INTER-R DEVELC ecting vulne nts, changes	s, Impacts including rential Impacts in t an disasters, pande ocal storms, Destru disasters, Cold wa CHES TO DISA ysis, phases, culture duction. al sources, roles an tes, centre and othe RELATIONSHIP	erms of mics, co action b ves, He STER I e of safe d respon er stake BETWI	caste, omplex y tropi at way RISK ety, pre nsibilit holder EEN D acts, in Chang	class, g emerg cal cyci ves, Cau REDU vention ies of co s. DISAST ppact of ge Adap	ender, age, loc encies, climate lones and local uses of floods, CTION a, mitigation an ommunity, Par CERS AND	imental, h ation, dis change. storms, (Rood haz d prepare ichayati r	ealth, ability G Cumulati zards in I Classes: (dness co aj Institu Classes: (uch as da	ilobal ive india. 09 mmunity tions, 09

OM Act and Policy, other related policies, plans, programmes and legislation). Field work and case Studies to understand vulnerabilities and to work on reducing disaster risks and to build a culture of safety. Projects must be conceived creatively based on the geographic location and hazard profile of the region where the institute is located.

Text Books:

- 1. Nick, "Disaster Management: A Disaster Manager's Handbook", Asian Development Bank, Manila Philippines, 1991.
- 2. Kapur, et al., "Disasters in India: Studies of Grim Reality", Rawat Publishers, Jaipur, 2005.
- 3. Pelling Mark, "The Vulnerability of Cities: Natural Disaster and Social Resilience", Earthscan Publishers, London, 2003.

Reference Books:

- 1. Sharma, V. K. (1999), "Disaster Management", National Centre for Disaster Management, IIPE, Delhi, 1999.
- 2. Anil, K. Gupta and Sreeja, S. Nair (2011), "Environmental Knowledge for Disaster Risk Management", NIDM, New Delhi, 2011.

Web References:

- 1. http://humanityroad.org/
- 2. http://www.wcpt.org/disaster-management/what-is-disaster-management
- 3. http://www.ndmindia.nic.in/
- 4. http://nidm.gov.in/default.asp
- 5. http://www.unisdr.org/2005/mdgs-drr/national-reports/India-report.pdf

Web References:

- 1. http://www.ekalavvya.com/disaster-management-in-india-volume-i-free-ebook/
- 2. http://cbse.nic.in/natural%20hazards%20&%20disaster%20management.pdf
- 3. http://www.undp.org/content/dam/india/docs/disaster_management_in_india.pdf
- 4. http://www.digitalbookindex.org/_search/search010emergencydisastera.asp

RENEWABLE ENERGY SYSTEMS

Course	Code	Category	Ho	ours / W	eek	Credits	Ma	aximum	Marks
BPE	701	Elective	L	Т	Р	С	CIA	SEE	Tota
DIE	/01	Elective	3	-	-	3	30	70	100
Contact C	lasses: 45	Tutorial Classe	es: Nil	Prace	tical C	lasses: Nil	Tota	al Classe	es: 45
I. Illustra II. Discuss III. Explain IV. Design	e should ena te the conce s the Magne n tidal and w energy conv	able the students to: pt of photo voltaic po to hydrodynamic (Mi vave energy. version systems with hnology of fuel cells.	wer genera HD) and w	ind ener			on systen	ns.	
UNIT-I	РНОТОУ	OLTAIC POWER	GENERA	TION S	YSTE	MS		Clas	ses: 09
commercial	l photo volta	olar cell, photo curren iic systems, test specia equipment systems.							ing
UNIT-II Principles of	MHD WI GENERA of MHD pow	ND ENERGY CON TION wer generation, ideal l	MHD gene	erator per	rforma	nce, practica		generator	·,
UNIT-II Principles of MHD techn turbines, op	MHD WI GENERA of MHD pov nology; Win perating char	ND ENERGY CON TION wer generation, ideal l id Energy conversion: racteristics.	MHD gene Power fro	erator per m wind,	rforma proper	nce, practica		generator types of	, wind
UNIT-II Principles of MHD techn turbines, op UNIT-III Tides and t	MHD WI GENERA of MHD pov nology; Win perating chan TIDAL A	ND ENERGY CON TION wer generation, ideal l ad Energy conversion:	MHD gene Power fro	erator per m wind, ERSION	rforma proper	nce, practica ties of air ar	nd wind,	generator types of	wind
UNIT-II Principles of MHD techri turbines, op UNIT-III Tides and t tidal power Wave energ	MHD WI GENERA of MHD pow nology; Win berating chan TIDAL A idal power s generation. gy conversio	ND ENERGY CON ATION wer generation, ideal l id Energy conversion: racteristics. ND WAVE ENERG	MHD gene Power fro Y CONV eration, tida	erator per om wind, ERSION al project	rformar proper N t examp	nce, practica ties of air ar ples, turbine motion of w	nd wind, s and ger aves, dev	generator types of Cla nerators	, wind sses:08 for
UNIT-II Principles of MHD techn turbines, op UNIT-III Tides and t tidal power Wave energ applications	MHD WI GENERA of MHD pow nology; Win berating char TIDAL A idal power s generation. gy conversion s, types of o	ND ENERGY CON TION wer generation, ideal 1 id Energy conversion: racteristics. ND WAVE ENERG stations, modes of ope on: Properties of wave cean thermal energy of CONVERSION SY	MHD gene Power fro Y CONV eration, tida es, power conversion	erator per m wind, ERSION al project content, v systems	rformar proper V t examp vertex n applic.	nce, practica ties of air ar ples, turbine motion of w ation of OTI	nd wind, s and ger aves, dev EC syste	generator types of Cla nerators vice ms exam	, wind sses:08 for ples.
UNIT-II Principles of MHD techn turbines, op UNIT-III Tides and t tidal power Wave energ applications UNIT-IV Miscellaneo geothermal energy stor	MHD WI GENERA of MHD power nology; Win berating chan TIDAL A idal power s generation. gy conversion s, types of o ENERGY EFFECTS ous energy c energy, then age, combin	ND ENERGY CON TION wer generation, ideal 1 id Energy conversion: racteristics. ND WAVE ENERG stations, modes of ope on: Properties of wave cean thermal energy of CONVERSION SY	MHD gene Power fro Y CONV eration, tida es, power conversion STEMS A oal gasification, on, energy s	erator per m wind, ERSION al project content, v systems AND EN ation and principle	rformai proper N t examp vertex n applic. VIRO I liquef es of El	nce, practica ties of air ar oles, turbine motion of w ation of OTI NMENTAI action, biom MF generation	s and ger aves, dev EC syste	clas vice ms exam version, eneration	wind sses:08 for ples. sses:09 and

Ashok Desai V, Non-Conventional Energy, Wiley Eastern Ltd, 1990. 1. Rakosh das Begamudre, "Energy conversion systems", New age International publishers, New Delhi 2. - 2000. 3. Freris L.L. Prentice Hall1, "Wind energy Conversion Systems", 1990. Spera D.A., "Wind Turbine Technology: Fundamental concepts of wind turbine technology", 4. ASME Press, NY, 1994. **Reference Books:** Mittal K.M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, 1997. 1. Ramesh R, Kurnar K.U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2. 1997. 3. John Twidell, Tony Weir "Renewable Energy Resources", 2nd edition. 4. Kreith, Kreider, "Solar Energy Handbook", McGrawHill

Web References:

Text Books:

- 1. http://www.nrel.gov/docs/fy13osti/54909.pdf
- 2. http://www.gisday.com/resources/ebooks/renewable-energy.pdf
- 3. http://www.geni.org/globalenergy/library/energytrends/currentusage/renewable/Renewable-Energy-Potential-for-India.pdf
- 4. http://www.cerien.upc.edu/jornades/jiie2005/ponencies/power%20converters%20and%20control%20 of%20renewable%20energy%20systems%20paper.pdf
- 5. https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-SOLAR_PV.pdf

E-Text Books:

- 1. http://maxwell.sze.hu/~marcsa/MegujuloEnergiaforrasok/Books/renewable%20energy%20resources. pdf
- 2. http://lab.fs.uni-

lj.si/kes/erasmus/Renewable% 20 Energy% 20 Conversion,% 20 Transmission,% 20 and% 20 Storage.pdf

3. http://www.landartgenerator.org/LAGI-FieldGuideRenewableEnergy-ed1.pdf

AUTOMOTIVE DESIGN

	Code	Category	Ho	urs / W	/eek	Credits	I	Maximum	Marks
DCC	-01		L	Т	Р	С	CIA	SEE	Total
BCC	/01	Elective	3	-	-	3	30	70	100
Contact Cl	asses: 45	Tutorial Classe	s: Nil	Prac	ctical C	lasses: Nil	Тс	otal Classe	es: 45
I. Unders II. Ana III. Des	e should en tand and Sj alyze autor sign autom	able the students pecify automotive notive exterior des otive exteriors usir odels of automotive	styling a ign tren 1g manu	ds. al and	digital r	•	tomotive e	exteriors.	
UNIT-I		IOTIVE DESIGN ASED ON BODY			LOGY ,	, CLASSIFI	CATION	OF C	Classes: 09
automotive sub types, s	design, de edan and i y vehicles,	e design terminolog velopment and hist ts sub-types, coupe multi utility vehicl ORM TECHNOL IOTIVE PACKA	ory beh and its les.	ind dif varian	ferent b ts, conv	ody styles, r vertible and i	nicro cars ts variants	, hatchbacl s, station w	
platform, be chassis, con chassis, alu definition a (engine con	enefits of p nposite con minium mo nd differen npartment)	ypes of chassis, an latform sharing an nstruction, unibody onocoque construc t layout sectors in , rear end (luggage requirements.	d down constru tion, cai packagi	side of action, bon fil ng, Inte	platforn tubular ore morn erior din	m technolog space frame nocoque cons mensions, ex	y; History , glass-fib struction, terior dim	of automo ore monoco ULSAB ty eensions, fr	otive oque pe, ront end
	AUTOM	10TIVE FRONT	- REAF	R END	DESIC	GN		(Classes: 09
UNIT-III		ront end design, fro on for bumper desi		design	for bett	er air coolin	g, latest de	esign trend	s, bumper
Factors affe	, 0			brand	image,	hood design	and new t	rends in ex	
Factors affe design them Evolution o	f grille des	ign, grille design a ler, bumper design			esign fo				xterior
Factors affe design them Evolution o	f grille des lamp, spoi		, overall	rear d	0	or aerodynam	nics.	ES C	cterior

UNIT-V AUTOMOTIVE EXTERIOR DESIGN, PAINTING, SURFACE PROTECTION

Design methodology, image boards: lifestyle board, mood board, theme board, design trends, design movements, application of design principles, product aesthetics, different types of corrosion on automotive bodies, corrosion protection methods, automotive body painting procedure, paint components and latest trends in automotive body colors.

Text Books:

- 1. J.Fenton, "Handbook of Automotive Body and System Design", Professional Engineering Publishing, 1st Edition, 2000.
- 2. Erik Eckermann, "World History of the Automobile", SAE International, 1st Edition, 2002.

Reference Books:

- 1. Stephen Newbury, "Car Design Year Book 1 to 5", Marrell, 1stEdition, London, 2007.
- 2. Tony Lewin, "How to Design Car Like A Pro", Motorbooks International, 1st Edition, 2003

Web References:

1. www.carbodydesign.com 2. www.style4cars.com 3. www.cardesignnews.com

E-Text Books:

1. http://www.sciencedirect.com/science/book/9780750656924

2.http://books.sae.org/r-312/

EMBEDDED C

	Category	He	ours / We	eek	Credits	Ma	ximum N	Aarks
BES001	Core	L	Т	Р	C	CIA	SEE	Tota
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Clas	ses: Nil	Pract	ical Cla	sses: Nil	Tot	al Class	es: 45
II. Apply technique III. Apply object ori IV. Use timers to ge	edded C and use it t as for data transfer b ented programming	for program between I/C g for design	D ports an ning emb	nd memo edded sy	ory.		Cla	sses: 09
Introduction, what is language should you software, conclusions requirements, clock fi interface, power cons	use, which operatin ; Introduction, what requency and perform	g system s t's in a nar rmance, m	hould yo ne, the ex	u use, h kternal i	ow do you d nterface of th	evelop er he standa	nbedded rd 8051,	reset
UNIT-II SWITCH	HES						Clas	ses: 09
Introduction, basic teo Reading and writing b for pull-up resistors, l counting goats, conclu	bits (simple version Dealing with switch), Example	e: Readin	g and w	riting bits (g	generic ve	ersion), T	he need
UNIT-III ADDING	G STRUCTURE T	O THE C	ODE				Clas	00
								ses: 09
Introduction, object o (PORT.H); Example: Restructurin	ng the 'Hello Embe	dded Worl						
Introduction, object o (PORT.H); Example: Restructurin example, further exam	ng the 'Hello Embe	dded Worl	d' examp				he goat-c	ounting
Introduction, object o (PORT.H); Example: Restructurin example, further exam	ng the 'Hello Embe nples and conclusion NG REAL-TIME hardware delays us ing a portable hardware loop timeouts and	dded Worl ons. CONSTR sing Timer ware delay example: 7	AINTS 0 and Ti , Why no Festing Ic	mer 1, e opt use Tin op time	mple: Restru xample: Ger mer 2? The puts, exampl	nerating a need for the A more	he goat-c Clas precise imeout e reliable	ounting ses: 09 50 ms

Text Books:

1. Michael J. Pont, "Embedded C", Pearson Education, 2nd Edition, 2008.

Reference Books:

1. Nigel Gardner, "The Microchip PIC in CCS C", Ccs Inc, 2nd Revision Edition, 2002.

Web References:

- 1. http://www.keil.com/forum/5973/
- 2. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Embedded%20systems /New_index1.html
- 3. http://nptel.iitg.ernet.in/courses/Elec_Engg/IIT%20Delhi/Embedded%20Systems%20(Video).htm
- 4. http://freevideolectures.com/Course/2999/Embedded-Systems-I/5

- 1. http://teachers.teicm.gr/kalomiros/Mtptx/e-books/eBook%20-%20PIC%20Programming%20with %20C.pdf
- 2. http://www.ecpe.nu.ac.th/ponpisut/22323006-Embedded-c-Tutorial-8051.pdf
- 3. http://dsp-book.narod.ru/CPES.pdf
- 4. http://staff.ustc.edu.cn/~shizhu/WinCE/winCE6%20Fundamentals.pdf
- 5. http://read.pudn.com/downloads167/ebook/769402/Wrox.Professional.Microsoft.Windows.Embedd
- 6. ed.CE.6.0.Nov.2008.eBook-DDU.pdf
- 7. https://syhpullpdf.files.wordpress.com/2015/05/embedded-systems-textbook-pdf.pdf

ADVANCED JAVA PROGRAMMING AND WEB SERVICES

-		(CAD/CAM) / I			· . l.	Course de la co	M		N /1
Course	Code	Category		lours / W		Credits		ximum]	
BCS	701	Elective	L	Т	Р	С	CIA	SEE	Tota
			3	-	-	3	30	70	100
Contact Cl	asses: 45	Tutorial Class	es: Nil	Prac	tical Clas	ses: Nil	То	tal Clas	ses: 45
I. Underst II. Implem	should ena and OOPS ent databas	able the students Concepts Describe e connections. to design user inte	e client s		-				
UNIT-I	INTROD	OUCTION TO O	OPs					Clas	sses: 09
Machine, Ja	va Environ	s: Java History, Ja ment, Program, D s, Exception Hanc	ata types						cts,
UNIT-II	APPLET	S AND SWINGS	5					Clas	sses: 09
JTextField,	JMenu, JM		JFrame, J	Pannel, J	Buttons, J	checkboxes	and JRa		
UNIT-III	HTML A	ND XML						Clas	sses: 09
scripts, obje	cts in java s	ist, tables, images script, dynamic H	TML wit	h java scr	ipt.	•		U	
processors:	¥ 1	lefinition, XML so SAX.	chemas, c	locument	object mo	dei, presenti		L, using .	AML
UNIT-IV	WEB SE	RVERS,SERVL	ETS AN	D JSP				Clas	sses: 09
JSDK, serve parameters; session track	elet API, jav servlets: ja king, securi	erver installation a vax. Servlet packa vax, servelet HTT ty issues, JSP: pro MVC architectur	age, readi TP packag oblem wi	ing servel ge, handli th servele	et parame ng http re	ters, reading quest and res	initializ ponses,	ation using co	okies
UNIT-V	JDBC A	ND ODBC						Clas	sses: 09
architecture	for data ac	and JDBC , JDBC cess ,three-tier arc ce, JDBC program	chitecture						

Text Books:

- 1. WILEY Dreamtech Chris Bates, "Web Programming, building internet applications", 2^{na} edition.
- 2. Patrick Naughton and Herbert Schildt, "The complete Reference Java 2", TMH, 5th Edition.
- 3. Hans Bergsten, "Java Server Pages", SPD O"Reilly.

Reference Books:

- 1. Sebesta, "Programming world wide web", Pearson Core,8th Edition 2008.
- 2. Marty Hall, Larry Brown, "Servlets and Javaserver Pages", Volume 1: Core Technologies, Pearson 2nd Edition 1998.

Web References:

- 1. http://engineeringppt.blogspot.in/2010/01/advance-java-web-technology.html
- 2. http://www.scoopworld.in/2015/02/ajwt-ppt-lab-materials-cse.html
- $3. \ http://jntuh.ac.in/new/bulletin_board/WEB_TECHNOLOGIES.pdf$

- 1. http://www.freetechbooks.com/advanced-programming-for-the-java-2-platform-t36.html
- 2. https://www.mkyong.com/featured/top-5-free-java-ebooks/
- 3. http://www.e-booksdirectory.com/listing.php?category=226

INTRODUCTION TO AEROSPACE ENGINEERING

Open Elec Course		D/CAM) / CSE / ES		PEED / S		Credits	Mar	imum N	faml-a
Course	eCode	Category			1			1	
BAE	2701	Elective	L 3	Т	P	C 2		SEE 70	Total
	47			-	-	3	30	70	100
Contact C	lasses: 45	Tutorial Classes:	NII	Pract	ical Clas	sses: Nil	lotal	Classes:	: 45
I. Outlin II. Descridimen III. Appris	e should ena le different <i>a</i> liption of flo lisional flow se about bou	able the students to: aspects of flight vehic w behavior of one-d and finite wing. indary layer effects, a performance, stability	cles and imension aerodyna	nal incon mic forc	npressibl	le and comp	ressible f		
UNIT-I	INTRO	DUCTION TO AF	RONA	UTICS A	AND AS	TRONAUT	ICS	Class	ses: 08
vehicle, aer and experir altitude.	odynamic fo nent, wind t	of aeronautics and ast orces; Parameters aff unnels; Atmosphere: ENSIONAL FLOW	Properti	erodynan es of U.S	nic force S. standa ESSIBL	s: Dimensior rd atmospher E AND	nal analys re, defini	sis; Theo tions of	
UNIT-II	COMPRE FINITE W	SSIBLE FLUIDS, 7 /ING	rwo di	MENSI	ONAL I	FLOW AND	I	Class	ses: 10
wind tunne equations in channels ar equations; ' Simulating and energy	ls, one dime n a variable- nd wind tunr Theory of li the wing wi , Slope of fi	ernoulli's equation; A ensional compressible area stream tube, ap hels; Two dimensiona ft: circulation, Airfoi ith a vortex Line, dow nite wing lift curve, y for reduced induced	e flow co oplication al flow an l pressur vnwash, verificati	oncepts, s n to airs nd finite re distrib elliptic l	speed of peed mo wing: Li ution, Ho ift distrib	sound, comp easurement, mitations of e elmholtz vort oution; Lift as	oressible application one dime ex theor nd drag:	flow ons to ensional t ems, Moment	flow um
UNIT-III		S EFFECTS, DRA AND HIGH-LIFT			TION,	AIRFOILS,		Clas	sses: 10
boundary separation;	layers: skin Total Inco	dary layer on bluff friction, nature of ompressible drag: P Prediction of drag div	Reynol arasite	ds num drag, dra	ber, effe ag due	ect of turbul to lift, impo	lent bou ortance o	ndary la of aspec	ayer on
supersonic airfoil pitcl wing desig	aircraft, air hing momer n; High-lift	ck waves and M rfoils; Wings: early nts, effects of swee Devices: Airfoil m eep stall, effect of Re	airfoil epback aximum	develop on lift, lift coe	ment, n airfoil c fficient,	nodern airfo haracteristics leading and	ils, sup s, airfoil	ersonic selecti	airfoils, on and

UNIT-IV AIRPLANE PERFORMANCE, STABILITY AND CONTROL, AEROSPACE PROPULSION Class

Classes: 09

Level flight performance, climb performance, range, endurance, energy-state approach to airplane performance, takeoff performance, landing performance; Static longitudinal stability; Dynamic longitudinal stability; Dynamic lateral stability; Control and maneuverability: Turning performance, control systems, active controls; Aerospace propulsion: Piston engines, gas turbines; Speed limitations of gas turbines: Ramjets, propellers, overall propulsion efficiency, rocket engines, rocket motor performance, propulsion-airframe integration.

	AIRCRAFT STRUCTURES, HYPERSONIC FLOWS, ROCKET	Classes:
UNIT-V	TRAJECTORIES AND ORBITS	08

Aircraft structures: Importance of structural weight and integrity, development of aircraft structures, importance of fatigue, materials, loads, weight estimation; Hypersonic flows: temperature effects, Newtonian theory; rocket trajectories, multistage rockets, escape velocity, circular orbital or satellite velocity, elliptical orbits, orbital maneuvers.

Text Books :

- 1. Richard S. Shevell, Fundamentals of Flight, Pearson Education Publication, 2nd Edition, 1988.
- 2. Anderson J. D, "Introduction to Flight", McGraw-Hill, 5th Edition, 1989.
- 3. Newman D, "Interactive Aerospace Engineering and Design", McGraw-Hill, 1st Edition, 2002.
- 4. Barnard R.H and Philpot. D.R, "Aircraft Flight", Pearson, 3rd Edition, 2004.

Reference Books:

- 1. Introduction to Flight, John D. Anderson, Jr., Tata McGraw-Hill Publishing Company, Fifth Edition, Fifth Edition, 2007.
- 2. Kermode, A. C, "Flight without Formulae", McGraw Hill, 4th Edition, 1997.
- 3. Swatton P. J, "Flight Planning", Blackwell Publisher, 6th Edition, 2002.

Web References:

- 1. https://fas.org/irp/doddir/army/fm3-04-203.pdf
- 2. http://www.aerospaceengineering.es/book/
- 3. http://www.ne.nasa.gov/education/
- 4. http://nptel.ac.in

E-Text Books:

1. http://www.e-booksdirectory.com/

2.http://www.adl.gatech.edu/extrovert/Ebooks/ebook_Intro.pdf

3. http://www.academia.edu/7950378/Introduction_to_Flight_-_Anderson_5th_Ed._

GEOSPATIAL TECHNIQUES

Course	Code	Category	Per	iods /	' Week	Credit	N	/ laximur	n Marks
BST	702	Elective	L	Т	Р	С	CIA	SEE	Total
D51	/02	Liecuve	3	-	-	3	30	70	100
Contact Cl	lasses: 45	Tutorial Classes: Nil	P	ractio	al Class	es: Nil	Тс	otal Clas	ses: 45
I. Provide social d II. Learn th	should ena technical sl evelopment he art of ima	able the students to: kills to use geo-reference age interpretation and ma ons of geospatial technolo	pping.		e purposo	e of econor	nic, edu	cational,	and
UNIT-I	INTROD	UCTION TO GEOSPA	ATIAL	DAT	`A			C	asses: 09
infrastructur	re, three imp	study geospatial data, in portant geospatial techno agnetic radiation.	.		0 1		0		nate
UNIT-II	РНОТО	GRAMMETRY AND R	EMO	TE SI	ENSING			Cl	asses: 10
acquisition,	Remote se	history of photogramme nsing data analysis met aic, ground control point	hods, a	advant	ages and	l limitation	ns, hard	ware and	l softwar
UNIT-III	MAPPIN	G AND CARTOGRAP	HY					C	asses: 10
systems, vis Introductior	ual interpre	nportance, map scale an tation of satellite images lata analysis, cartographi purpose of a map, cartogr	, and in c symb	nterpre polizat	etation of tion, clas	terrain eva sification o	aluation. of symbo	ols, colou	ırs in
	GEOGR	APHIC INFORMATIO	N SYS	STEM	I			Cl	asses:10
UNIT-IV	to GIS, d	lefinition and terminolo							
Introduction operations overview, p	of GIS, the rocessing of on of spatia	eoretical framework for f spatial data, data Input l feature and data structu	or outp	out, ve	ector data				geometri
Introduction operations overview, p representation	of GIS, the rocessing of on of spatia nt etc.,	eoretical framework for f spatial data, data Input	or outj ire. Spa	out, ve atial d	ector data ata and n	nodeling, T		M, overl	geometri

Text Books :

- 1. John D. Bossler, "Manual of Geospatial Science and Technology" Taylor & Francis.
- 2. M. Anji Reddy, "Textbook of Remote Sensing and Geographical Information Systems", BS Publications.

Reference Books:

- 1. C. P. Lo Albert, K.W. Yonng, "Concepts and Techniques of GIS", Prentice Hall (India) Publications.
- 2. Peter A Burragh and Rachael A. Mc Donnell, "Principles of Geo- Physical Information Systems", Oxford Publishers, 2004.
- 3. M. Anji Reddy, "Geo-informatics for Environmental Management" BS Publications.

Web References:

- 1. https://www.aaas.org/content/what-are-geospatial-technologies
- 2. http://www.istl.org/10-spring/internet2.htmls

- 1. http://www.springer.com/us/book/9781441900494
- 2. https://www.amazon.com/Introduction-Geospatial-Technologies-Bradley-Shellito/dp/146413345X
- 3. http://www.springer.com/us/book/9784431555186
- 4. http://gep.frec.vt.edu/VCCS/materials/2011/Day1/Handouts/1.2-Ch.1_GIS_Intro.pdf
- 5. http://www.slideshare.net/CuteGirl11/introduction-to-geospatial-technologies-pdf

SOLAR PHOTOVOLTAIC ENERGY CONVERSION

	se Code	Category	Но	urs / We	eek	Credits	Ν	laximum N	Marks
RP	PE702	Elective	L	Т	Р	С	CIA	SEE	Tota
DI	E702	Liecuve	3	-	-	3	30	70	100
Contact	Classes: 45	Tutorial Clas	sses: Nil	Pract	tical Cla	asses: Nil	To	otal Classe	s: 45
I. Illustr II. Analy III. Design IV. Under UNIT-I	se should enable ate the operation ze the character n energy conver- stand the technology INTRODUC	ble the students on of Photo volta eristics of solar p ersion systems w hology of fuel ce CTION an atomic descri	tic power hotovolta ith low in lls.	ic power	genera environ	iment.	silicon t		ses: 09
	e function of th	e barrier, the po	tential bar	rier in a	ction the	e electric cu		-	ses: 09
of electron degradatio	hole pairs, din n at non optim	cell efficiency: R rect recombination al temperatures, CRYSTAL SILI	on indirec high temp	t recomb perature	oination losses, l	, resistance, low temper	self shad ature loss	ling, perfor ses.	
UNIT-III		-1	abrication	nedge d	lefined t	film fed are	wth (den	dritic web	growth
Single Cry Ribbon to mirrors (M componen	ICM). Schottk t technology	our cells: New I owth innovative by barrier cells, i highlights, PV ing components	cell desig nversion buildin	gns back layer cei g block	surface lls, cells s, boo	fields (BS for concer sting volta	F) and ot ntrated sunge and	n light adv	y carrie
Ribbon to mirrors (M componen requiremen Arrays: A production sun, contro	ribbon (rtr) gr ICM). Schottk t technology nts for connect rray support, the rmo elec- olling intensity ntrols, optimiz	owth innovative barrier cells, i highlights, PV	cell designversion v buildin the physics, module nterceptin , mirrors,	gns back layer ce g block ical conr e coolin ng sunlig lenses t	surface lls, cells s, boo nection. g, hybr ght, arra racking	fields (BS for concer- sting volta placing the id designs, ys with rela- devices, st	F) and ot ntrated su ge and cells; , Brayton ectors, an eering me	n light adv amperage n cycle, e rays that fo echanisms,	y carrie vances in design lectricity blow the tracking
Single Cry Ribbon to mirrors (M componen requiremen Arrays: A production sun, contro device cor	ribbon (rtr) gr ICM). Schottk t technology nts for connect array support, a, the rmo elec- olling intensity ntrols, optimiz or.	white innovative by barrier cells, i highlights, PV ing components, module covers tric generators, i , imaging optics	cell desig nversion / buildin , the physics, module interceptin , mirrors, le spectrum	gns back layer ce g block ical conr e coolin ng sunlig lenses t m, splitt	surface lls, cells s, boo nection. g, hybr ght, arra racking	fields (BS for concer- sting volta placing the id designs, ys with rela- devices, st	F) and ot ntrated su ge and cells; , Brayton ectors, an eering me	n light adv amperage n cycle, e rays that fo echanisms, g the spect	y carrie vances i desig lectricit blow the tracking

UNIT-V PV SUPPORT EQUIPMENT

PV support equipment: PV vs conventional electricity, storing PV's electricity, batteries, fuel cells, power conditioning equipment the inverter regulators other devices; system analysis, design procedure, design constraints, other considerations.

Text Books:

- 1. CS Solanki, "Solar photovoltaic's fundamentals, Technologies and Applications", PHI Learning Pvt. Ltd., 2011.
- 2. Rai. G.D, "Solar energy utilization", Khanna publishes, 1993.
- 3. Rai,G.D., "Non- conventional resources of energy", Khanna publishers, Fourth edition, 2010.

Reference Books:

- 1. Rai. G.D, "Solar energy utilization", Khanna publishes, 1993.
- 2. Pai, B. R. and Ram Prasad, "Power Generation through Renewable Sources of Energy", Tata McGraw Hill, New Delhi, 1991.
- 3. Bansal, Kleeman and Meliss, "Renewable Energy Sources and Conversion Techniques", Tata Mc Graw Hill, 1990.
- 4. Godfrey Boyl, "Renewable Energy: Power sustainable future", Oxford University Press, Third edition, 2012.
- 5. B.H.Khan, "Non-Conventional Energy Resources", The McGraw Hills, Second edition, 2009.
- 6. John W Twidell and Anthony D Weir, "Renewable Energy Resources", Taylor and Francis, 2006.

Web References:

- 1. http://www.tue.nl/fileadmin/content/faculteiten/tn/PMP/White_papers/Delft2012_-_ALD4PV.pdf
- 2. http://www.en.wikipedia.org/wiki/Photovoltaics
- 3. http://www.desware.net/Sample-Chapters/D06/D10-014.pdf
- 4. http://www.southampton.ac.uk/~solar/files/Strasbourg.pdf
- 5. http:// www.science.nasa.gov/science-news/science-at-nasa/2002/solarcells/

- 1. http://www.nrel.gov/docs/legosti/old/1448.pdf
- http://www.irena.org/DocumentDownloads/Publications/IRENAETSAP%20Tech%20Brief%20E11 %20Solar%20PV.pd
- 3. http://www.opalrt.com/sites/default/files/technical_papers/SOLAR%20PHOTOVOLTAIC%20ENER GY%20GENERATION%20AND%20CONVERSION.pdf

COMPUTER GRAPHICS

	Code	Category	Ho	ours / V	Veek	Credits	N	laximum	Marks
-			L	Т	Р	С	CIA	SEE	Tota
BCC	2702	Elective	3	-	-	3	30	70	100
Contact C	lasses: 45	Tutorial Classe	s: Nil	Pra	ctical Cl	asses: Nil	Tot	al Classe	s: 45
I. Under II. Apply	e should en rstand the b y the geome	able the students to asics of Computer C trical modeling for c ures in computer gr	Braphics : computer			D/ CAM appl	lications.		
UNIT-I	INTROD	UCTION TO COM	IPUTE	R GRA	PHICS			Clas	sses: 09
		computer graphics ir ser interfaces, custor						ations, me	enu
UNIT-II		FRIC TRANSFOR IENTALS OF 2D		· · · · · · · · · · · · · · · · · · ·)	Clas	sses: 09
	ng, various 1	oppment of 2D a oppment of projections.					anslation		scaling,
parametric Surfaces: N	equations.	har and space curves bi-parametric freed echniques.	•						
UNIT-IV	GEOMI		ELING					Clas	
		ENTRICAL MODI						Citta	ses: 09
Geometric		Geometric modeling re based, parametric	g techniqu				lid mode		
Geometric hybrid moc	lelers, featu	Geometric modeling	technique and vari	ation n	nodeling		lid mode	ling: B Re	
Geometric hybrid moc UNIT-V Data Struct	lelers, featu DATA ST	Geometric modeling re based, parametric TRUCTURES IN C puter Graphics: Intr	g technique and vari	ation n	nodeling RAPHI	CS		ling: B Re	ep CSG, sses: 09
Geometric hybrid moc UNIT-V Data Struct base integr	delers, featu DATA SI ture in Com ation for CI	Geometric modeling re based, parametric TRUCTURES IN C puter Graphics: Intr	g technique and vari	ation n	nodeling RAPHI	CS		ling: B Re	ep CSG, sses: 09
Geometric hybrid moc UNIT-V Data Struct base integr Text Book 1. D. F. Ro	DATA ST DATA ST ture in Com ation for Cl s:	Geometric modeling re based, parametric TRUCTURES IN C puter Graphics: Intr	technique and vari	TER G	nodeling RAPHI duct data	CS 1 standards as	nd data si	ling: B Re Clas	ep CSG, sses: 09 data-
Geometric hybrid moc UNIT-V Data Struct base integr Text Book 1. D. F. Ro 1989. 2. I. D. Fau	DATA ST ture in Com ation for Cl s: ogers, J. A. A	Geometric modeling re based, parametric TRUCTURES IN C puter Graphics: Intr M.	technique and varies COMPUT oduction	TER G to prod	RAPHI duct data	CS standards at ter Graphics'	nd data si ", Tata M	Clast ructures,	ep CSG, sses: 09 data- 11.
Geometric hybrid moc UNIT-V Data Struct base integr Text Book 1. D. F. Ro 1989. 2. I. D. Fau 1979. 3. Mortens 4. Ibrahim	DATA ST ture in Com ation for Cl s: ogers, J. A. A ux, M. J. Pra on, M. E., " Zeid, "CAI	Geometric modeling re based, parametric TRUCTURES IN C puter Graphics: Intr M. Adams, "Mathemati	techniques and varies and varies compution oduction cal Elemon Geometr g", 3rd E Practice	rents for y for D cd., Ind ", Tata	RAPHI duct data Comput Design an ustrial Pr McGrav	CS standards at ter Graphics' d Manufactu ress. 2006 v Hill, 1998.	nd data si ", Tata M ıre", Ellis	Clast ructures,	ep CSG sses: 09 data- 11.

Reference Books:

1. C. Pozrikidis, "Introduction to Theoretical and Computational Fluid Dynamics", Oxford University Press, 2nd Edition, 2013.

2.V. Patankar, Hema shava Suhas, "Numerical heat transfer and fluid flow", Tata McGraw Hill

Web References:

1. http://nptel.ac.in/courses/106106090/

2. http://nptel.ac.in/courses/112102101/

E-Text Books:

1. http://www.freebookcentre.net/CompuScience/Free-Computer-Graphics-Books-Download.html 2.https://docs.google.com/file/d/0B_YZ665nBRhlYmNiOTU5ZDItMmU2OC00YTVmLThiNmMtMjg 3 Y2E3ZTgwZDYw/edit?hl=en_US&pref=2&pli=1

MICROCONTROLLERS FOR EMBEDDED SYSTEM DESIGN

	e Code	Category	He	ours / W	eek	Credits	Ma	ximum N	Aarks
BES	3702	Elective	L	Т	Р	С	CIA	SEE	Tota
DLS	0702	Liecuve	3	-	-	3	30	70	100
Contact C	lasses: 45	Tutorial Classe	s: Nil	Pract	tical Cla	sses: Nil	Total	Classes:	45
I. Unders II. Use ar system	e should en stand hardw chitectures us. ze interrupt	able the students are units and devi- of embedded RIS latency, context s	ces for des C processo	ors and s	ystem oi	n chip proce		-	
UNIT-I	INTROD	UCTION TO EN	IBEDDE	D SYSTI	EMS			Cla	sses: 09
devices in formalizati UNIT-II 8051 archit	system, eml ion of system MICRO(tecture, input processor a	d systems, process bedded software, c m design, classific CONTROLLERS it/output ports and 8051, PIC, memor	complex sy ation of en	stem des nbedded xternal n	ign, desi systems.	gn process in	n embedd	led syster Cla PIC contr	n, sses: 09 ollers;
	EMBEDI	DED RISC PROC	CESSORS					Cla	sses: 09
UNIT-III						. 1 1			
programm		on chip architector programming of F		nuous tim	er block	s, switched	capacitor	blocks, I	/O
programm blocks, dig Embedded	ital blocks,	programming of F	PSOC;				•		
programm blocks, dig Embedded	ital blocks, RISC proce ew of Instru	programming of F	PSOC; ARM proc	essor arc			•	s of opera	ition
programm blocks, dig Embedded and overvit UNIT-IV Exceptions interrupt la	ital blocks, RISC proce ew of Instru INTERR s and Interru tency; Devi	programming of F essor architecture, actions.	PSOC; ARM proc ICE DRIV nes, Conte terrupt serv	vessor arc vers vers xt and pe	hitecture	e, registers s	et, modes	s of opera	ntion sses: 09 nd
programm blocks, dig Embedded and overvit UNIT-IV Exceptions interrupt la	ital blocks, RISC proce ew of Instru INTERR s and Interru tency; Devi l programm	programming of F essor architecture, actions. UPTS AND DEV opt handling Scher ce driver using int	PSOC; ARM proc ICE DRIV nes, Conte terrupt serv es.	vessor arc vers vers xt and pe	hitecture	e, registers s	et, modes	s of opera Cla eadline a nd device	ntion sses: 09 nd
programm blocks, dig Embedded and overvio UNIT-IV Exceptions interrupt la for internat	ital blocks, RISC proce ew of Instru INTERR s and Interru tency; Devi programm NETWO	programming of F essor architecture, actions. UPTS AND DEV upt handling Scher ce driver using int able timing device	PSOC; ARM proc ICE DRIV nes, Conte terrupt serv es.	vessor arc vers vers xt and pe vice routi	hitecture riods for ne, seria	e, registers s context swi l port device	et, modes	s of opera Cla eadline a nd device Cla	ntion sses: 09 nd drivers sses: 09

Systems", Pearson Education, 1st Edition, 2008.

3. Robert Ashpy, "Designers Guide to the Cypress PSOC", Elsevier, 1st Edition, 2005.

Reference Books:

- 1. Jonathan W. Valvano Brookes / Cole, "Embedded Microcomputer Systems, Real Time Interfacing", Thomas Learning, 1st Edition, 1998.
- 2. Andrew N. Sloss, Dominic Symes, Chris Wright, "ARM Systems Developers Guides, Design & Optimizing System Software", Elsevier, 1st Edition, 2004.
- 3. John B. Peatman, "Designing with PIC Microcontrollers", PH Inc, 1st Edition, 1998.

Web References:

- 1. http://nptel.ac.in/syllabus/108102045/
- 2. http://nptel.ac.in/courses/Webcoursecontents/IIT,KANPUR/microcontrollers/micro/ui/Course_home1_1.Htm

- 1. http://microcontrollershop.com/default.php?cPath=239
- 2. http://www.sciencedirect.com/science/book/9780750667555
- 3. https://books.google.co.in/books/about/Embedded_Systems_Design_with_8051_Microc.html? id= YiTa,HChn0UC&redir_esc=y
- 4. https://books.google.co.in/books/about/Microcontroller_And_Embedded_Systems.html? id=4GrXJeC6 HFkC

LINUX PROGRAMMING

Course	Code	Category	H	lours / We	ek	Credits	Max	ximum N	Iarks
BCS7	02	Elective	L	Т	Р	С	CIA	SEE	Tota
			3	-	-	3	30	70	100
Contact Cla	isses: 45	Total Tutor	ials: Nil	Total Pr	actical	Classes: Nil	Tot	al Class	es: 45
I. Understan II. Explore of III. Develop t	hould enaled and basic Li on implement the skills not	ble the student nux utilities and entation of linu ecessary for sys kills required to	d Shell sci x utilities stems prog	using syste gramming	em calls.			s.	
UNIT-I	LINUX	UTILITIES						Class	ses: 09
commands, F Commands, a	ilters, Text wk-Execut	ecurity by file p processing util tion, Fields and ematical function	ities and Records,	Backup uti Scripts, O	lities; Se peration	ed-Scripts, O , Patterns, Ad	peration, ctions, A	Address	
UNIT-II	SHELL	PROGRAM	MING					Class	ses: 09
shell as a prog substitution, s	gramming l shell comm	nsibilities, pipe language, shell nands, the envir les, interrupt pr	meta char onment, q	acters, file	name su t comma	ubstitution, sl and, control s	nell varia	bles, cor	nmand
UNIT-III	FILES	AND DIRECT	ORIES					Class	ses: 09
I/O operation record locking File permission Directories: C	s: open, cre g: fcntl fun ons - chmoo creating, re	stem Structure, eate, read, write ction. d, fchmod, file moving and cha ming Directorie	, close, ls ownershij anging Di	eek, dup2, p, links: sot rectories, o	file statu ft and ha btaining	us informatio ard links: syn g current worl	n: stat fa nlink, lin king dire	mily, file k, unlink	e and
UNIT-IV	INTER	PROCESS CO)MMUN	ICATION	AND M	IESSAGE Q	UEUES	Class	ses: 09
		between proce reation, IPC be							

UNIT-V SHARED MEMORY AND SOCKETS

Shared Memory: Kernel support for shared memory, APIs for shared memory, shared memory example, Sockets: Introduction to Berkeley Sockets, IPC over a network, Client-Server model, Socket address structures (unix domain and Internet domain), Socket system calls for connection oriented protocol and connectionless protocol.

Text Books:

- 1. T. Chan, "Unix System Programming using C++", PHI, 2nd Edition, 2005.
- 2. Sumitabha Das, "Unix Concepts and Applications", 4th Edition, TMH, 2011.
- 3. W. R. Stevens, "Unix Network Programming", PHI, 2nd Edition, 1999.

Reference Books:

- 1. Mathew, R. Stones, Wrox, "Beginning Linux Programming", Wiley India Edition, 4th Edition, 2008.
- 2. Graham Glass, King Ables, "Unix for programmers and users", 3rd Edition, Pearson, 2006.
- 3. Hoover, "SystemProgramming with C and Unix", Pearson, 2nd Edition ,2009.
- 4. K. A. Robbins, "Unix System Programming, Communication, Concurrency and Threads", Pearson Education, 6th Edition, 2007.

Web References:

- 1. http://www.fuky.org/abicko/beginning-linux-programming.pdf
- 2. https://www.pdc.kth.se/about/links/linux-programming-for-beginners
- 3. http://www.tutorialspoint.com/unix/unix_tutorial.pdf
- 4. http://www.rpi.edu/dept/arc/training/shell/slides.pdf

- 1. http://onlinevideolecture.com/ebooks/?subject=Linux
- 2. http://www.onlineprogrammingbooks.com/linux-succinctly/
- 3. http://ebook-dl.com/item/beginning_linux_programming_4th_edition_neil_matthew_richard_stones/

Open Elective II: (CAD / CAM) / SE / CSE / ES / PEED / AE / ST **Course Code** Hours / Week Credits **Maximum Marks** Category L Т Р С CIA SEE Total **BCS703** Elective 3 3 30 70 100 _ **Tutorial Classes: Contact Classes: 45 Practical Classes: Nil Total Classes: 45** Nil **OBJECTIVES:** The course should enable the students to: I. Identify an appropriate research problem in their interesting domain. Organize and conduct research project. II. III. Prepare a research project thesis report. IV. Understand the law of patent and copyrights. V. Adequate knowledge on process for filing Patent. UNIT-I **INTRODUCTION** Classes: 09 Definition, types of research, research approaches, research process, validity and reliability in research, features of good design, types of research design, and basic principles of experimental design. UNIT-II **MEASUREMENT AND SCALING TECHNIQUES** Classes: 09 Errors in measurement, tests of sound measurement, scaling and scale construction techniques, forecasting techniques, time series analysis, interpolation and extrapolation. UNIT-III **METHODS OF DATA COLLECTION** Classes: 09 Primary data, questionnaire and interviews, collection of secondary data, cases and schedules. Professional attitude and goals, concept of excellence, ethics in science and engineering, some famous frauds in science, case studies. **UNIT-IV INTERPRETATION OF DATA AND REPORT WRITING** Classes: 09 Layout of a research paper, techniques of interpretation, making scientific presentation at conferences and popular lectures to semi technical audience, participating in public debates on scientific issues. **UNIT-V INTRODUCTION TO INTELLECTUAL PROPERTY** Classes: 09 Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights; Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law; Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer.

RESEARCH METHODOLOGY

Text Books:

- 1. C. R. Kothari, "Research Methodology: Methods and Techniques", New Age International Publishers, 2nd Edition, 2004.
- 2. P. Gupta, "Statistical Methods", Sultan Chand and Sons, New Delhi, 1st Edition, 2005.
- 3. Richard W. Stim, "Intellectual Property: Patents, Trademarks, and Copyrights", Cengage learning, 2nd Edition, 2001.

Reference Books:

- 1. P. Narayana Reddy, G. V. R. K. Acharyulu, "Research Methodology and Statistical Tools", Excel Books, New Delhi, 1st Edition, 2008.
- 2. Prabuddha Ganguli, "Intellectual Property Right, Unleashing the Knowledge Economy", Tata Mc Graw Hill Publishing Company Ltd, 1st Edition, 2001.

Web References:

- 1. http://nptel.ac.in/courses/109103024/40
- 2. http://study.com/academy/topic/introduction-to-research-methods.html
- 3. https://www.vutube.edu.pk/vu-lectures/viewcategory/240/research-methods-sta630

- 1. http://www.metastudio.org/Science%20and%20Ethics/file/readDoc/535a76367d9d331598f49e2d/34_ Hb_on_IPR.pdf
- 2. http://www.bits-pilani.ac.in/uploads/Patent_ManualOct_25th_07.pdf
- 3. http://euacademic.org/BookUpload/9.pdf

INDUSTRIAL AERODYNAMICS AND WIND ENERGY

Course	e Code	Category	Ho	urs / W	'eek	Credits	Maxii	num Ma	arks
BAE	702	Elective	L	Т	Р	С	CIE	SEE	Tota
Ditt		Licente	3	-	-	3	30	70	100
Contact C	lasses: 45	Tutorial Classes	: Nil	Prac	ctical Cla	asses: Nil	Total	Classes	: 45
II. Descril III. Familia	be the wind e arize with no	ospheric boundary lay energy and its application-aeronautical uses of aduced vibrations.	ion in turbi	nes.	ch as roa	ad vehicle, b	uilding aer	odynami	ics and
mountain v laws, effec tunnel mod	wind thermal vinds, therma ts of terrain o	HERIC WINDS ANI drive, Coriolis effect, ls, cause of turbulence on atmospheric bounda on-dimensional groups	pressure g e at ground ary Layer;	radient level; A Wind tu	effect, G Atmosphe innels ba	eotropic win eric boundar sic features	ds; Land a y layer, vel and compo	nd sea brocity pro nents; W	reeze, ofile 'ind
Causes of v mountain v laws, effec tunnel mod	wind thermal vinds, therma ts of terrain o	drive, Coriolis effect, ls, cause of turbulence on atmospheric bounda on-dimensional groups	pressure g e at ground ary Layer;	radient level; A Wind tu	effect, G Atmosphe innels ba	eotropic win eric boundar sic features	ds; Land a y layer, vel and compo	nd sea brocity pro nents; W w in a wi	ofile 'ind
Causes of v mountain v laws, effect tunnel mod tunnel. UNIT-II Ship propu History, fin Horizontal coefficient explanation vertical ax	wind thermal winds, thermal vinds, therma ts of terrain c lels, role of n WIND EN ulsion, sails, rst example c axis wind and torque c n, by introdu is wind turb	drive, Coriolis effect, ls, cause of turbulence on atmospheric bounda on-dimensional groups	pressure g e at ground ary Layer; ' s; Creation ors, moder control for actuator d turbines; t theory, c	n yacht Workir	effect, G Atmosphe innels ba ospheric l s; Horiz 16 th cer eory, Be ng princi onal hor	eotropic win eric boundar sic features boundary lay ontal and ventury English etz coefficie ple, power c izontal axis	eds; Land and y layer, vel and compor- ver type flow ertical axis n windmills ent; Defini coefficients.	nd sea brocity pro- nents; W w in a wi Class wind tu s, classif tion of , tip spee pine, sav	reeze, ofile /ind ind sees: 10 rbines: ication powe ed ratio voniou

Relative importance of rolling resistance and aerodynamics resistance, power requirements and drag coefficients of automobiles, notch front and notch rear wind screens versus streamlined shape, causes of vortex formation and drag, attached transverse vortex, trailing vortex, trailing vortex drag, effect of floor height on lift, effects of cut bank angle; Rear end taper.

Side panels and bottom, effects of chamfering of edges and cambering of roof and side panels; Racing cars: Traction and steering strip and use of aerofoils, high cornering seed; Commercial transport vehicles: Drag reduction on buses and tucks, driver cabin and trailer combinations.

Classes: 09

Use of light weight components in modern buildings, pressure distribution on low-rise buildings, wind forces on buildings-aerodynamics of flat plate and circular cylinder, critical Reynold's no, sub -, super- & ultra critical Reynold's No. Role of wind tunnel requirements in determining shape factors (Drag coefficients) of building/structure shapes such as circular cylinder (chimneys & towers), rectangle, I- shape, L-shape, H-shape etc. vortex shedding & transverse oscillating loads. Slenderness ratio & correction factor. Special problems of tall buildings, interference effect of building.

UNIT-V FLOW INDUCED VIBATIONS

Classes: 08

Classification: Vortex induced vibration and flow induced instability such as galloping and stall flutter; Effects of Reynolds number on wake formation of bluff shapes; Vortex induced vibration: Experimental determination of strouhal numbers for different shapes such as circular cylinder, square, rectangle, L-shape ect, universal strouhal number, unsteady Bernoulli equation, concept of added mass, resonance; Fluid-structure interaction: Effect of transverse cylinder motion on flow and wake, lock-in vortex shedding near resonant frequency, experimental evidence of cylindrical motion influencing flow and thereby reducing strength of shed vortices; Methods of suppression of vortex induced vibration; Galloping & Stall flutter: Motion of one degree-of-freedom, quasi steady flow assumption, aerodynamic damping; Galloping: Force in the direction of plunging (transverse motion) and positive force coefficient, critical speed, galloping of transmission wire with winter ice, stall flutter of airfoils.

Text Books :

- 1. Siraj Ahmed, "Wind Energy theory and practice", PHI learning Pvt Ltd., 3rd Edition, 2015.
- 2. R. D. Blevins, "Flow Induced Vibrations", Van Nostard, 2nd Edition, 1990.
- 3. P. Sachs, "Wind Forces in Engineering", Pergamon press, 2nd Edition, 1988.
- 4. N. G. Calvert, "Wind Power Principles", Charles Griffin & co. London, 1st Edition, 1979.

Reference Books:

- 1. R. S. Scorer, "Environmental Aerodynamics", Ellis Harword Ltd, England, 1st Edition, 1978.
- 2. M. Sorvan, "Aerodynamics Drag Mechanisms of Bluff Bodies and Road vehicles", plenum press, 2nd Edition, 1978.

Web References:

- 1. http://www.mech.canterbury.ac.nz/research/fluid%20mechanics.shtml
- 2. http://www.journals.elsevier.com/journal-of-wind-engineering-and-industrial-aerodynamics

- 1. http://www.sciencedirect.com/science/journal/01676105
- 2. https://www.scribd.com/doc/42602999/Flow-Induced-Vibration-by-Robert-D-Blevins-2nd-Ed
- 3. http://store.elsevier.com/Wind-Forces-in-Engineering/Peter-Sachs/isbn-9781483148359/

VISION AND MISSION OF THE INSTITUTE

VISION

To bring forth professionally competent and socially sensitive engineers, capable of working across cultures meeting the global standards ethically.

MISSION

To provide students with an extensive and exceptional education that prepares them to excel in their profession, guided by dynamic intellectual community and be able to face the technically complex world with creative leadership qualities.

Further, be instrumental in emanating new knowledge through innovative research that emboldens entrepreneurship and economic development for the benefit of wide spread community.

M. Tech (PEED) - PROGRAM OUTCOMES (PO's)

Upon completion of M.Tech Power electronics and Electrical Drives , the students will be able to:

- **PO1:** Identify, formulate and solve power system related problems using advanced level computing techniques.
- **PO2:** Explore ideas to carry out research / investigation independently to solve practical problems through continuing education.
- **PO3:** Demonstrate knowledge and execute projects on contemporary issues in multidisciplinary environment.
- **PO4:** Ability to write and present a substantial technical report / document.
- **PO5:** Inculcate ethics, professionalism, multidisciplinary approach, entrepreneurial thinking and effective communication skills.
- **PO6:** Function effectively as an individual or a leader in a team to propagate ideas and promote teamwork.
- **PO7:** Develop confidence for self-study and to engage in lifelong learning.

FREQUENTLY ASKED QUESTIONS AND ANSWERS ABOUT AUTONOMY

1. Who grants Autonomy? UGC, Govt., AICTE or University

In case of Colleges affiliated to a university and where statutes for grant of autonomy are ready, it is the respective University that finally grants autonomy but only after concurrence from the respective state Government as well as UGC. The State Government has its own powers to grant autonomy directly to Govt. and Govt. aided Colleges.

2. Shall IARE award its own Degrees?

No. Degree will be awarded by Jawaharlal Nehru Technological University, Hyderabad with a mention of the name IARE on the Degree Certificate.

3. What is the difference between a Deemed University and an Autonomy College?

A Deemed University is fully autonomous to the extent of awarding its own Degree. A Deemed University is usually a Non-Affiliating version of a University and has similar responsibilities like any University. An Autonomous College enjoys Academic Autonomy alone. The University to which an autonomous college is affiliated will have checks on the performance of the autonomous college.

4. How will the Foreign Universities or other stake – holders know that we are an Autonomous College?

Autonomous status, once declared, shall be accepted by all the stake holders. The Govt. of Telangana mentions autonomous status during the First Year admission procedure. Foreign Universities and Indian Industries will know our status through our website.

5. What is the change of Status for Students and Teachers if we become Autonomous?

An autonomous college carries a prestigious image. Autonomy is actually earned out of our continued past efforts on academic performances, our capability of self- governance and the kind of quality education we offer.

6. Who will check whether the academic standard is maintained / improved after Autonomy? How will it be checked?

There is a built in mechanism in the autonomous working for this purpose. An Internal Committee called Academic Programme Evaluation Committee, which will keep a watch on the academics and keep its reports and recommendations every year. In addition the highest academic council also supervises the academic matters. The standards of our question papers, the regularity of academic calendar, attendance of students, speed and transparency of result declaration and such other parameters are involved in this process.

7. Will the students of IARE as an Autonomous College qualify for University Medals and Prizes for academic excellence?

No. IARE has instituted its own awards, medals, etc. for the academic performance of the students. However for all other events like sports, cultural on co-curricular organized by the University the students shall qualify.

8. Can IARE have its own Convocation?

No. Since the University awards the Degree the Convocation will be that of the University, but there will be Graduation Day at IARE.

9. Can IARE give a provisional degree certificate?

Since the examinations are conducted by IARE and the results are also declared by IARE, the college sends a list of successful candidates with their final Grades and Grade Point Averages including CGPA to the University. Therefore with the prior permission of the University the college will be entitled to give the provisional certificate.

10. Will Academic Autonomy make a positive impact on the Placements or Employability?

Certainly. The number of students qualifying for placement interviews is expected to improve, due to rigorous and repetitive classroom teaching and continuous assessment. Also the autonomous status is more responsive to the needs of the industry. As a result therefore, there will be a lot of scope for industry oriented skill development built-in into the system. The graduates from an autonomous college will therefore represent better employability.

11. What is the proportion of Internal and External Assessment as an Autonomous College? Presently, it is 70 % external and 30% internal. As the autonomy matures the internal assessment component shall be increased at the cost of external assessment.

12. Is it possible to have complete Internal Assessment for Theory or Practicals?

Yes indeed. We define our own system. We have the freedom to keep the proportion of external and internal assessment component to choose.

13. Why Credit based Grade System?

The credit based grade system is an accepted standard of academic performance the world over in all Universities. The acceptability of our graduates in the world market shall improve.

14. What exactly is a Credit based Grade System?

The credit based grade system defines a much better statistical way of judging the academic performance. One Lecture Hour per week of Teaching Learning process is assigned One Credit. One hour of laboratory work is assigned half credit. Letter Grades like A, B,C,D, etc. are assigned for a Range of Marks. (e.g. 91% and above is A+, 80 to 90% could be A etc.) in Absolute Grading System while grades are awarded by statistical analysis in relative grading system. We thus dispense with sharp numerical boundaries. Secondly, the grades are associated with defined Grade Points in the scale of 1 to 10. Weighted Average of Grade Points is also defined Grade Points are weighted by Credits and averaged over total credits in a Semester. This process is repeated for all Semesters and a CGPA defines the Final Academic Performance

15. What are the norms for the number of Credits per Semester and total number of Credits for UG/PG programme?

These norms are usually defined by UGC or AICTE. Usually around 25 Credits per semester is the accepted norm.

16. What is a Semester Grade Point Average (SGPA)?

The performance of a student in a semester is indicated by a number called SGPA. The SGPA is the weighted average of the grade points obtained in all the courses registered by the student during the semester.

$$SGPA = \sum_{i=1}^{n} (C_i G_i) / \sum_{i=1}^{n} C_i$$

Where, C_i is the number of credits of the i^{th} course and G_i is the grade point scored by the student in the i^{th} course and i represent the number of courses in which a student registered in the concerned semester. SGPA is rounded to two decimal places.

17. What is a Cumulative Grade Point Average (CGPA)?

An up-to-date assessment of overall performance of a student from the time of his first registration is obtained by calculating a number called CGPA, which is weighted average of the grade points obtained in all the courses registered by the students since he entered the Institute.

$$CGPA = \sum_{j=1}^{n} (C_i S_i) / \sum_{j=1}^{n} C_i$$

Where, S_i is the SGPA of the i^{th} semester and C_i is the total number of credits in that semester and j represent the number of courses in which a student's is registered upto the semester. CGPA is rounded to two decimal places.

18. Is there any Software available for calculating Grade point averages and converting the same into Grades?

Yes, The institute has its own MIS software for calculation of SGPA, CGPA, etc.

19. Will the teacher be required to do the job of calculating SGPAs etc. and convert the same into Grades?

No. The teacher has to give marks obtained out of whatever maximum marks as it is. Rest is all done by the computer.

20. Will there be any Revaluation or Re-Examination System?

No. There will double valuation of answer scripts. There will be a make up Examination after a reasonable preparation time after the End Semester Examination for specific cases mentioned in the Rules and Regulations. In addition to this, there shall be a 'summer term' (compressed term) followed by the End Semester Exam, to save the precious time of students.

21. How fast Syllabi can be and should be changed?

Autonomy allows us the freedom to change the syllabi as often as we need.

22. Will the Degree be awarded on the basis of only final year performance?

No. The CGPA will reflect the average performance of all the semester taken together.

23. What are Statutory Academic Bodies?

Governing Body, Academic Council, Examination Committee and Board of Studies are the different statutory bodies. The participation of external members in everybody is compulsory. The institute has nominated professors from IIT, NIT, University (the officers of the rank of Pro-vice Chancellor, Deans and Controller of Examinations) and also the reputed industrialist and industry experts on these bodies.

24. Who takes Decisions on Academic matters?

The Governing Body of institute is the top academic body and is responsible for all the academic decisions. Many decisions are also taken at the lower level like Boards of Studies. Decisions taken at the Board of Studies level are to be ratified at the Academic Council and Governing Body.

25. What is the role of Examination committee?

The Examinations Committee is responsible for the smooth conduct of internal, End Semester and make up Examinations. All matters involving the conduct of examinations, spot valuations, tabulations and preparation of Grade Cards etc fall within the duties of the Examination Committee.

26. Is there any mechanism for Grievance Redressal?

The institute has grievance redressal committee, headed by Dean - Student affairs and Dean - IQAC.

27. How many attempts are permitted for obtaining a Degree? All such matters are defined in Rules & Regulation

28. Who declares the result?

The result declaration process is also defined. After tabulation work wherein the SGPA, CGPA and final Grades are ready, the entire result is reviewed by the Moderation Committee. Any unusual deviations or gross level discrepancies are deliberated and removed. The entire result is discussed in the Examinations and Result Committee for its approval. The result is then declared on the institute notice boards as well put on the web site and Students Corner. It is eventually sent to the University.

29. Who will keep the Student Academic Records, University or IARE?

It is the responsibility of the Dean, Academics of the Autonomous College to keep and preserve all the records.

30. What is our relationship with the JNT University?

We remain an affiliated college of the JNT University. The University has the right to nominate its members on the academic bodies of the college.

31. Shall we require University approval if we want to start any New Courses?

Yes, It is expected that approvals or such other matters from an autonomous college will receive priority.

32. Shall we get autonomy for PG and Doctoral Programmes also?

Yes, presently our PG programs also enjoying autonomous status.

MALPRACTICES RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

S. No	Nature of Malpractices/Improper conduct	Punishment
	If the candidate:	
1. (a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the Controller of Examinations.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate, who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) alreadyappeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.

4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6.	Refuses to obey the orders of the Controller of Examinations /Additional Controller of Examinations/any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the COE or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the COE or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the Institute premises or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the condidate is
8.	Possess any lethal weapon or firearm in the	continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. Expulsion from the examination hall and

		· · · · · · · · · · · · · · · · · · ·
	examination hall.	cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	

EUCPION FOR LIBER

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

UNDERTAKING BY STUDENT / PARENT

"To make the students attend the classes regularly from the first day of starting of classes and be aware of the College regulations, the following Undertaking Form is introduced which should be signed by both student and parent. The same should be submitted to the Dean, Academic".

I, Mr./Ms.______joining I Semester for the academic year 2016-2017 in Institute of Aeronautical Engineering, Hyderabad, do hereby undertake and abide by the following terms, and I will bring the ACKNOWLEDGEMENT duly signed by me and my parent and submit it to the Dean, Academic.

- 1. I will attend all the classes as per the timetable from the starting day of the semester specified in the institute Academic Calendar. In case, I do not turn up even after two weeks of starting of classes, I shall be ineligible to continue for the current academic year.
- 2. I will be regular and punctual to all the classes (theory/practical/drawing) and secure attendance of not less than 80% in every course as stipulated by Institute. I am fully aware that an attendance of less than 70% in more than three courses will make me lose one year.
- 3. I will compulsorily follow the dress code prescribed by the college.
- 4. I will conduct myself in a highly disciplined and decent manner both inside the classroom and on campus, failing which suitable action may be taken against me as per the rules and regulations of the institute.
- 5. I will concentrate on my studies without wasting time in the Campus/Hostel/Residence and attend all the tests to secure more than the minimum prescribed Class/Sessional Marks in each course. I will submit the assignments given in time to improve my performance.
- 6. I will not use Mobile Phone in the institute premises and also, I will not involve in any form of ragging inside or outside the campus. I am fully aware that using mobile phone to the institute premises is not permissible and involving in Ragging is an offence and punishable as per JNTUH/UGC rules and the law.
- 7. I declare that I shall not indulge in ragging, eve-teasing, smoking, consuming alcohol drug abuse or any other anti-social activity in the college premises, hostel, on educational tours, industrial visits or elsewhere.
- 8. I will pay tuition fees, examination fees and any other dues within the stipulated time as required by the Institution / authorities, failing which I will not be permitted to attend the classes.
- 9. I will not cause or involve in any sort of violence or disturbance both within and outside the college campus.
- 10. If I absent myself continuously for 3 days, my parents will have to meet the HOD concerned/ Principal.
- 11. I hereby acknowledge that I have received a copy of IARE R16 Academic Rules and Regulations, Syllabus copy and hence, I shall abide by all the rules specified in it.

ACKNOWLEDGEMENT

I have carefully gone through the terms of the undertaking mentioned above and I understand that following these are for my/his/her own benefit and improvement. I also understand that if I/he/she fail to comply with these terms, shall be liable for suitable action as per Institute/JNTUH/AICTE/UGC rules and the law. I undertake that I/he/she will strictly follow the above terms.

Signature of Student with Date

Signature of Parent with Date Name & Address with Phone Number