

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. MARUTHUPANDIYAN K	Department:	Aeronautical Engineering		
Regulation:	IARE - R18	Batch:	2019-2023		
Course Name:	FLUID DYNAMICS LABORATORY	Course Code:	AAEB05		
Semester:	111	Target Value:	60% (1.8)		

Attainment of COs:

Course Outcome		Direct attaiment	Indirect attaiment	Overall attaiment	Observation
(01	Interpret the concept of calibrating orifice and venturi meter for reducing the uncertainty in the discharge coefficient.	0.90	0.00	0.9	Not Attained
CO2	Make use of pipe friction test apparatus to measure the friction factor under a range of flow rates and flow regimes for calculating major loses in closed pipes	0.90	0.00	0.9	Not Attained
CO3	Demonstrate the verification of Bernoulli's theorem for incompressible steady continuous flow , for regulating pipe flow across cross section and datum	0.90	0.00	0.9	Not Attained
CO-I	Identify the critical Reynolds number using Reynolds apparatus for illustrating the transition of laminal flow into turbulent flow.	0.90	0.00	0.9	Not Attained
CO5	Make use of jet impact apparatus for investigating the reaction forces produced by the change in momentum.	0.90	0.00	0.9	Not Attained
COG	Distinguise the performance characteristics of turbo machinery to various operating conditions for calculating eficacy of turbines under specific applications	0.90	0.00	0.9	Not Attained

CO1: Digital content and videos are given in classes for a better understanding of concept.

CO2: Digital content and videos are given in classes for a better understanding of concept.

CO3: Digital content and videos are given in classes for a better understanding of concept.

CO4: Digital content and videos are given in classes for a better understanding of concept.

CO5: Digital content and videos are given in classes for a better understanding of concept.

CO6: Digital content and videos are given in classes for a better understanding of concept.

Head of the Department