

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. MARUTHUPANDIYAN K	Department:	Aeronautical Engineering		
Regulation:	IARE - R18	Batch:	2019-2023		
Course Name:	AERODYNAMICS	Course Code:	AAEB10		
Semester:	IV	Target Value:	60% (1.8)		

Attainment of COs:

	Course Outcome	Direct attaiment	Indirect attaiment	Overall attaiment	Observation
COI	Develop the mathematical model of non-lifting, lifting flow over circular cylinder for identifying relation between lift and circulation	0.90	2.20	1.2	Not Attained
CO2	Solve the lift characteristics of wing of infinite aspect ratio from classical thin airfoil for selecting suitable airfoil	0.90	2.20	1.2	Not Attained
CO3	Examine the flow over finite wing using the concept of Prandtl's lifting line theory for determining the effect of span wise flow on the lift distribution	0.90	2.20	1.2	Not Attained
CO4	Identify the effect of wing twist, wing taper and wing sweep for perceiving the aerodynamic characteristics of finite wing.	0.90	2.20	1.2	Not Attained
CO5	Demonstrate the effect of propeller slipstream flow on the wing and tail unit for identifying its effect on their aerodynamic characteristics.	0.90	2.10	1.1	Not Attained
CO6	Interpret the regimes and separation of boundary layer over external fluid flow systems for identifying the effect of viscosity on the drag force	0.70	2.20	1	Not Attained

Action Taken:

CO1: Additional Assignments are given.

CO2: Extra inputs are given to enhance the knowledge.

CO3: Additional Assignments are given.

CO4: Additional Assignments are given.

CO5: Digital content is given to enhance the knowledge

CO6: Additional Assignments are given.

Course Coordinator

British

Head of the Department