

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Aeronautical Engineering Department: Ms. D ANITHA Name of the faculty: 2019-2023 IARE - R18 Batch: Regulation: Course Code: AAEB15 High Speed Aerodynamics Course Name: 60% (1.8) Target Value: Semester:

Attainment of COs:

	Course Outcome	Direct attaiment	Indirect attaiment	Overall attaiment	Observation
COI	Recall the basic concepts in aero-thermodynamic and fluid mechanics for describing various flow phenomenon	1.30	2.30	1.5	Not Attained
CO2	Explain the basic concepts of gas dynamics for determining how compressibility affects the global and local nature of flow	2.00	2.30	2.1	Attained
CO3	Demonstrate the wave formation in the supersonic flow field for determining the nature of shock and expansion wave	0.60	2.30	0.9	Not Attained
CO4	Construct the equations of change in pressure, density and temperature for determining the nature of compression and expansion waves.	0.90	2.30	1.2	Not Attained
CO5	Illustrate the wave formation on wedge shaped and concave corners for solving complex problems in supersonic vehicles.	1.60	2.20	1.7	Not Attained
CO6	Develop the fundamental equation for one-dimensional and quasi one-dimensional flow of compressible ideal gas.	2.30	2.30	2.3	Attained

Action Taken:

CO1: Digital content and videos are given in classes for a better understanding of concept.

CO3: Digital content and videos are given in classes for a better understanding of concept

CO4: Additional Assignments are given on construction of equations.

CO5: Digital content is given to enhance the knowledge

Head of the Department