

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty	Mr. S DEVARAJ	Department:	Aeronautical Engineering				
Regulation:	IARE - R18	Batch:	2019-2023				
Course Name:	Finite Element Analysis	Course Code:	AAEB19				
Semester:	VI	Target Value:	60% (1.8)				

Attainment of COs:

Course Outcome		Direct attaiment	Indirect attaiment	Overall attaiment	Observation
CO1	Explain the discretization concepts and shape functions of structural members for computing displacements and stresses.	0.60	2.30	0.9	Not Attained
CO2	Make use of shape functions of truss and beam elements for obtaining stiffness matrix and load vector to compute nodal displacement, stresses.	0.30	2.40	0.7	Not Attained
CO3	Apply the discreet models of CST element for estimating displacement and stress.	0.90	2.30	1.2	Not Attained
CO4	Make use of axi-symmetric modelling concepts to solids of revolution for stress approximation	0.90	2.30	1.2	Not Attained
CO5	Apply numerical techniques to heat transfer problems to compute the temperature gradients under various thermal boundary conditions	0.90	2.30	1.2	Not Attained
CO6	Develop the governing equations for the dynamic systems to estimate circular frequency and mode shapes, in correlation with modern tools	0.60	2.30	0.9	Not Attained

Action Taken:

CO1: Digital content and videos are given in classes for a better understanding of concept.

CO2: Additional reading materials are provided

CO3: Extra inputs are liven to enhance the knowledge

CO4: Additional Assignments are given

CO5: Digital content is given to enhance the knowledge

CO6: Extra inputs are given to enhance the knowledge

Course Coordinator

Mentor

Head of the Department

Werenautise and provide a second

Duriet jet, Hyterradai - 500 6-3