

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Ms. D ANITHA	Department:	Aeronautical Engineering	
Regulation:	IARE - R18	Batch:	2019-2023	
Course Name:	Computational Aerodynamics	Course Code:	AAEB20	
Semester:	VI	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct attaiment	Indirect attaiment	Overall attaiment	Observation
CO1	Summarize the concepts of computational fluid dynamics and its applications in industries as a tool for fluid analysis	1.30	2.10	1.5	Not Attained
CO2	Choose the type of flow from the finite control volume and infinitesimal small fluid element for the fluid flow analysis.	0.30	2.10	0.7	Not Attained
CO3	Select the quasi linear partial differential equation for estimating the behavior in computational fluid dynamics	1.60	2.10	1.7	Not Attained
CO4	Identify CFD techniques for relevant partial differential equations for getting analytical solutions for fluid flow problems.	0.90	2.10	1.1	Not Attained
CO5	Make use of finite difference approach for numerical formulations based on fluid mechanics and heat transfer concepts for getting the solutions of fluid flow problems.	0.90	2.10	1.1	Not Attained
CO6	Utilize the grid generation and transformation techniques in implementation of finite difference and finite volume methods in solving complex fluid and aerodynamic problems.	0.90	2.10	1.1	Not Attained

Action Taken

CO1: Extra inputs are given to enhance the knowledge in CFD.

CO2: Digital content is given to enhance the knowledge.

CO3: Digital content is given to enhance the knowledge

CO4: Additional Assignments are given

CO5: Additional Assignments are given

CO6: Digital content and videos are given in classes for a better understanding of concept.

Course Coordinator

0.119

Head of the Department

FTUTE OF MENON