

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. ARAVIND RAJAN AYAGARA	Department:	Aeronautical Engineering
Regulation:	IARE - R20	Batch:	2020-2024
Course Name:	Aerospace Structures	Course Code:	AAEC06
Semester:	IV	Target Value:	60% (1.8)

Attainment of COs:

	Course Outcome	Direct attaiment	Indirect attaiment	Overall attaiment	Observation
CO1	Utilize the energy principles to aircraft structural components for interpreting minimal stress loading conditions	0.90	2.40	1.2	Not Attained
CO2	Choose the minimum energy principles and Fourier series solutions to thin rectangular plates subject to a given boundary conditions for predicting the stresses and strains	0.90	2.40	1.2	Not Attained
CO3	Inspect the deflection and twist produced in thin walled open and closed section beams under torsion loads for designing beams with minimum stresses.	0.90	2.40	1.2	Not Attained
CO4	Develop the elementary beam bending theory to thin walled open and closed section beams for predicting warping and torsion of aircraft structural components	0.00	2.40	0.5	Not Attained
CO5	Illustrate the concepts in structural idealization in transforming complex structural geometries to simple structural geometries used for interpreting the stress distribution on aircraft structures	1.60	2.40 .	1.8	Attained
COG	Make use of maximum stress theories to aircraft structural components for determining failure stremes under various loading conditions.	0.90	2.40	1.2	Not Attained

Action Taken:

CO1: Additional reading materials are provided on energy principles.

CO2: Additional reading materials are provided on predicting stress an strains.

CC3: Digital content a liver to enhance the knowledge of design of beams with minimum stress.

 ${\sf CO4: Digital \ content\ and\ videos\ are\ given\ in\ classes\ for\ a\ better\ understanding\ of\ concept.}$

CO6: Digital content and videos are given in classes for a better understanding of concept.

Head of the Department Aeronautical Engineering
INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043