

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Dr. MARUTHUPANDIYAN K Department: Aeronautical Engineering Name of the faculty: Regulation: IARE - R20 Batch: 2020-2024 AAEC08 Course Name: Aerodynamics Course Code: Target Value: 60% (1.8) IV Semester:

Attainment of COs:

	Course Outcome	Direct attaiment	Indirect attaiment	Overall attaiment	Observation
CO1	Develop the mathematical model of non-lifting, lifting flow over circular cylinder for identifying relation between lift and circulatio	0.70	2.40	1	Not Attained
CO2	Solve the lift characteristics of wing of infinite aspect ratio from classical thin airfoil for selecting suitable airfoil	0.00	2.40	0.5	Not Attained
CO3	Examine the flow over finite wing using the concept of Prandtl's lifting line theory for determining the effect of span wise flow on the lift distribution	0.60	2.40	1	Not Attained
CO-I	Identify the effect of wing twist, wing taper and wing sweep for perceiving the aerodynamic characteristics of finite wing	2.00	2.40	2.1	Attained
CO5	Make use of the Kutta-Joukowski transformation for mathematically modeling the flow over airfoil	0.30	2,40	0.7	Not Attained
C05	Distinguis he regimes and separation of boundary layer over external fluid flow systems for finding the effect of viscosity on the drag force	0.00	2.40	0.5	Not Attained

Action Taken:

CO1: Digital content and videos are given in classes for a better understanding of concept

CO2: Extra inputs are given to enhance the knowledge of airfoil selection.

CO3: Digital content and videos are given in classes for a better understanding of concept

CO5: Extra inputs are given to enhance the knowledge of flow over airfoil.

CO6: Additional reading materials are provided on boundary layer separation.

Course Coordinator

M

Head of the Department
Head of the Department
Aeronautical Engineering
INSTITUTE OF AERONAUTICAL FOR AERONAUTICAL FOR

Dundigal, Hyderabad - 550 043