

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. K CHINA APPARAO	Department:	Department: Aeronautical Engineering	
Regulation:	IARE - R20	Batch:	2020-2024	
Course Name:	Heat and Mass Transfer	Course Code:	AAEC17	
Semester:	V	Target Value:	60% (1.8)	

Attainment of COs:

	Course Outcome	Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Recall the basic concepts of heat transfer mechanisms and general heat conduction equation in Cartesian, Cylindrical and Spherical Coordinate System for various measures of heat transfer rate.	0.90	2.40	1.2 Not Attain	Not Attained
CO2	Solve problems involving steady state heat conduction with and without heat generation in simple geometries.	0.90	2.40	1.2	Not Attained
CO3	Make use of the concept of Boundary layer theory for the derivation of empirical relations related to the characteristics of Boundary layer	0.90	2.40	1.2	Not Attained
CO4	Utilize the principles associated with convective heat transfer to formulate and solve the heat transfer coefficients for various cross section areas	0.90	2.40	1.2	Not Attained
CO5	Explain the physical mechanisms involved in radiation heat transfer, boiling and condensation to give various correlations applied to heat exchangers, boilers, heat engines, etc.	0.90	2.40	1.2	Not Attained
CO6	Analyze LMTD and NTU techniques for tackling real time problems with thermal analysis, simulation (mathematical model) and cost optimization of heat exchangers	0.90	2.40	1.2	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator) CO1: Digital content and videos are given in class for better understanding of concept

CO2: More industry oriented problems need to be discussed

CO3: Digital content and videos are given in class for better understanding of concept

CO4: Additional reading materials are to be provided.

CO5: Extra inputs are given to enhance the knowledge on radiation heat transfer

CO6: Additional material as provided on NTU techniques and Thermal analysis

Head of the Department

Dundigal, hymnesad - 500 043