

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Mr. K ARUN KUMAR	Department:	Aeronautical Engineering
Regulation:	IARE - UG20	Batch:	2021-2025
Course Name:	Aerospace Structural Dynamics	Course Code:	AAEC35
Semester:	VII	Target Value:	60% (1.8)

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Apply principles of mechanical vibrations such as Newton's second law, and the principle of conservation of energy to the mathematical models for obtaining their governing equations of motion.	0.90	0.90 2.10	1.1	Not Attained
CO2	Analyze the mathematical modeling of the two degrees of freedom systems for determining the frequency of the spring-mass system.	0.60	2.10	0.9	Not Attained
CO3	Solve the natural frequencies and mode shapes of a multi degree of freedom system for the numerical solution of distributed parameter systems	0.90	2.10	1.1	Not Attained
CO4	Apply theoretical and numerical procedures for predicting the dynamic response of continuous structural systems under the most diverse loading conditions.	0.90	2.10	1.1	Not Attained
CO5	Formulate the static aeroelasticity problems such as typical section and wing divergence problems; for their selection in real world applications.	0.90	2.10	1.1	Not Attained
CO6	Construct the mass, stiffness and damping matrices of a MDOF system	0.90	2.10	1.1	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: Additional materials and digital content are provided

CO2: Guided in class to model a two degrees of freedom spring-mass system and helped them analyze through step-by-step mathematical calculations.

CO3: Helped students solve using numerical methods to understand the behavior of distributed parameter systems

CO4: Guided to and predict the dynamic response of continuous structural systems under various loading conditions.

CO5: Additional materials are provided

CO6: Guided students the basic principles as part of dynamic system analysis in the classroom.

Head of the Department Aeronautical Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043