

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Mr. S DEVARAJ	Department:	Aeronautical Engineering	
Regulation:	IARE - R20	Batch:	2021-2025	
Course Name:	Engineering Mechanics	Course Code:	AMEC01	
Semester:	11	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct attaiment	Indirect attaiment	Overall attaiment	Observation
COI	Identify the resultant and unknown forces by free body diagram to a given equilibrium force system through mechanics laws and derived laws	1.60	2.20	1.7	Not Attained
CO2	Interpret the static and dynamic friction laws for the equilibrium state of a wedge, ladder and screw jack.	0.90	2.10	1.1	Not Attained
CO3	Identify the centroid and centre of gravity for the simple and composite plane sections from the first principles.	0.90	2.10	1.1	Not Attained
CO4	Calculate moment of inertia and mass moment of inertia of a circular plate, cylinder, cone, sphere other composite sections from the first principles.	0.90	2.10	1.1	Not Attained
COS	Apply D'Alembert's principle and work energy equations to a dynamic equilibrium system by introducing the inertia force for knowing the acceleration and forces involved in the system.	0.60	2.10	0.9	Not Attained
CO6	Develop the governing equation for momentum and vibratational phenomena of mechanical system by using energy principles for obtaining coefficient of restitution and circular frequency	0.60	2.10	0.9	Not Attained

Action Taken:

CO1: Digital content and videos are given in classes for a better understanding of concept

CO2: Digital content and videos are given in classes for a better understanding of concept

CO3: Additional Assignments are given on identifying centroid and Centre of Gravity.

CO4: Additional Assignments are given on moment of inertia.

CO5: Additional Assignments are given on work energy equations.

CO6: Digital content is given to enhance the knowledge in developing Governing equation.

Head of the Department
Head of the Department
Aeronautical Engineering
PRETITULE OF AERONAUTICALE FOR EBRING