

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:

Ms. D ANITHA

Department:

Aeronautical Engineering

Regulation:

IARE - UG20

Batch:

2022-2026

Course Name:

High Speed Aerodynamics

Course Code:

AAEC16

Semester:

1770

Target Value:

60% (1.8)

Attainment of COs:

	Course Outcome	Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Utilize the basic concepts of gas dynamics for determining how compressibility affects the global and local nature of flow.	0.30	2.10	0.7	Not Attained
CO2	Construct the equations of change in pressure, density and temperature for determining the nature of compression and expansion waves.	0.30	2.10	0.7	Not Attained
CO3	Develop the fundamental equation for one-dimensional and quasi one- dimensional flow of compressible ideal gas.	0.00	2.10	0.4	Not Attained
CO4	Examine the steady isentropic flow, flow with friction and flow with heat transfer for solving problems in flow through one-dimensional passage.	0.30	2.10	0.7	Not Attained
CO5	Analyze the airfoils at subsonic, transonic and supersonic flight conditions using the perturbed flow theory assumption for solving compressible flow over finite wing.	0.30	2.10	0.7	Not Attained
C06	Apply the various optical flow visualization techniques used for capturing compressible flow fields.	0.00	2.10	0.4	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: Taught the basic concepts of gas dynamics, enabling them to determine how compressibility influences the global and local nature of flow.

CO2: helped students construct equations to determine the nature of compression and expansion waves.

CO3: Guided in developing tione-dimensional and quasi one-dimensional flow of compressible ideal gases.

CO4: Additional materials are provided in flow through one-dimensional passage.

CO5: Digital content and videos are presented for better understanding of concepts

CO6: Additional materials are provided

Course Coordinator

Smulls

Head of the Department

Head of the Department
Aeronautical Engineering
INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043