



(Autonomous) Dundigal, Hyderabad - 500043, Telangana

## AERONAUTICAL ENGINEERING

## ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

| Name of the faculty: | Dr. D GOVARDHAN        | Department:   | partment: Aeronautical Engineering |  |
|----------------------|------------------------|---------------|------------------------------------|--|
| Regulation:          | IARE - UG20            | Batch:        | 2022-2026                          |  |
| Course Name:         | Heat and Mass Transfer | Course Code:  | AAEC17                             |  |
| Semester:            | V                      | Target Value: | 60% (1.8)                          |  |

## Attainment of COs:

| Course Outcome |                                                                                                                                                                               | Direct<br>Attainment | Indirect<br>Attainment | Overall<br>Attainment | Observation  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|-----------------------|--------------|
| CO1            | Make use of the basic concepts of Steady, unsteady and periodic heat transfer mechanisms and boundary conditions for solving the problems with and without extended surfaces. | 1.30                 | 2.00                   | 1.4                   | Not Attained |
| CO2            | Utilize concepts of free and forced convection and the boundary layer for solving the problems having internal or external flows.                                             | 0.30                 | 2.00                   | 0.6                   | Not Attained |
| CO3            | Explain the concept of phase change heat transfer to classify the problems involving boiling and condensation phenomena.                                                      | 0.90                 | 2.00                   | 1.1                   | Not Attained |
| CO4            | Solve the problems on heat exchangers by understanding the concepts of LMTD and NTU methods.                                                                                  | 1.60                 | 2.00                   | 1.7                   | Not Attained |
| CO5            | Apply the laws of radiation heat transfer for solving the problems on radiation networks.                                                                                     | 0.90                 | 2.00                   | 1.1                   | Not Attained |
| CO6            | Summarize the concepts and laws of mass transfer to classify the mass transfer problems.                                                                                      | 0.90                 | 2.00                   | 1.1                   | Not Attained |

## Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: Periodic heat transfer concepts with boundary conditions and applications to problems with and without extended surfaces are taught.

CO2: students learned about free and forced convection, boundary layers, and practiced solving simple problems on heat transfer in internal and external flows.

CO3: Additional materials and digital content and videos are provided

CO4: students practiced solving heat exchanger problems using the concepts of Log Mean Temperature Difference (LMTD) and Number of Transfer Units (NTU) methods.

CO5: Learned to apply the laws of radiation heat transfer to solve problems involving radiation networks between surfaces.

CO6: Additional materials and digital content and videos are provided

Course Coordinator

B3.

Head of the Peral trient ment Aeronautical Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043