

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of Faculty:	Dr. Yagya Dutta Dwivedi	Department:	Aerospace Engineering
Regulation:	R-18	Batch:	2019-2021
Course Name:	Flight Dynamics And Control	Course Code:	BAEB11
Semester:	II Semester	Target Value:	1.8

Course Outcome		Direct	Indirect	Overall	Observation
		attainment	attainment		
CO 1	Make use of the principles of flight and governing aerodynamics laws for the control of aircraft motions forgetting the desired aircraft attitude characteristics.	0.9	2.0	1.1	Not Attained
CO 2	Model the range, endurance and stability of equilibrium under different types of motions for calculating the aerodynamic performance of an airplane.	0.3	1.9	0.6	Not Attained
CO 3	Analyse the concept of aircraft dynamics, equations of motion in linear and nonlinear motion for optimal flight conditions.	3	2.0	2.8	Attained
CO 4	Determine the linear equations off motion and derivatives for the coupled and decoupled motion in terms of stability axis system by using small perturbation theory for obtaining the state of dynamic stability.	2.1	2.0	2.1	Attained
CO 5	Develop the mathematical model for the dynamic and static stability and its derivatives by using computational numerical simulation for the different types of aircrafts.	2.1	2.1	2.1	Attained
CO 6	Examine the flight control system by using control theories and modern computational tools system for the conventional and automatic flight of the aircraft.	2.1	2.2	2.1	Attained

Action taken report (To be filled by the concerned faculty/ course coordinator):

CO 1: Digital content and assignments have to be increased.

CO 2: Additional materials will be provided in performance of airplane

Course Coordinator

Mentor

, HOD

Flead of the Department
Aeronautical Engineering
INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043