

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of Faculty:	Dr. Yagya Dutta Dwivedi	Department:	Aerospace Engineering
Regulation:	R-18	Batch:	2020-2022
Course Name:	Flight Dynamics And	Course Code:	BAEB11
	Control		
Semester:	IInd Semester	Target Value:	1.8

Course Outcome		Direct attainment	Indirect attainment	Overall attainment	Observation
CO 1	Make use of the principles of flight and governing aerodynamics laws for the control of aircraft motions forgetting the desired aircraft attitude characteristics.	0.90	2.40	1.2	Not Attained
CO 2	Model the range, endurance and stability of equilibrium under different types of motions for calculating the aerodynamic performance of an airplane.	0.90	3.00	1.3	Not Attained
CO 3	Analyse the concept of aircraft dynamics, equations of motion in linear and nonlinear motion for optimal flight conditions.	0.90	2.10	1.1	Not Attained
CO 4	Determine the linear equations off motion and derivatives for the coupled and decoupled motion in terms of stability axis system by using small perturbation theory for obtaining the state of dynamic stability.	0.90	1.50	1	Not Attained
CO 5	Develop the mathematical model for the dynamic and static stability and its derivatives by using computational numerical simulation for the different types of aircrafts.	0.90	3.00	1.3	Not Attained
CO 6	Examine the flight control system by using control theories and modern computational tools system for the conventional and automatic flight of the aircraft.	2.30	2.40	2.3	Attained

Action taken report (To be filled by the concerned faculty/ course coordinator):

CO 1: Additional inputs are given on the principles of flight and aircraft control motions

CO 2: Extra materials are provided for the performance of an airplane

CO 3: Digital content and assignments are provided

CO 4: Digital content and videos are provided for a better understanding of concepts

CO 5: Real application-oriented problems are provided for better attainment

Course Coordinator

Montor

Head of the Department
Aeronautical Engineering
INSTITUTE OF AERONAUTICAL E.M. JERING

Dundigal, Hyderabad - 500 043