(Autonomous) Dundigal, Hyderabad - 500 043 ## **AERONAUTICAL ENGINEERING** ## ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT | Name of Faculty: | Dr. Yagya Dutta Dwivedi | Department: | Aerospace Engineering | |------------------|-------------------------|---------------|-----------------------| | Regulation: | R-18 | Batch: | 2020-2022 | | Course Name: | Flight Dynamics And | Course Code: | BAEB11 | | | Control | | | | Semester: | IInd Semester | Target Value: | 1.8 | | Course Outcome | | Direct
attainment | Indirect
attainment | Overall attainment | Observation | |----------------|---|----------------------|------------------------|--------------------|-----------------| | CO 1 | Make use of the principles of flight and governing aerodynamics laws for the control of aircraft motions forgetting the desired aircraft attitude characteristics. | 0.90 | 2.40 | 1.2 | Not
Attained | | CO 2 | Model the range, endurance and stability of equilibrium under different types of motions for calculating the aerodynamic performance of an airplane. | 0.90 | 3.00 | 1.3 | Not
Attained | | CO 3 | Analyse the concept of aircraft dynamics, equations of motion in linear and nonlinear motion for optimal flight conditions. | 0.90 | 2.10 | 1.1 | Not
Attained | | CO 4 | Determine the linear equations off motion
and derivatives for the coupled and
decoupled motion in terms of stability axis
system by using small perturbation theory
for obtaining the state of dynamic stability. | 0.90 | 1.50 | 1 | Not
Attained | | CO 5 | Develop the mathematical model for the dynamic and static stability and its derivatives by using computational numerical simulation for the different types of aircrafts. | 0.90 | 3.00 | 1.3 | Not
Attained | | CO 6 | Examine the flight control system by using control theories and modern computational tools system for the conventional and automatic flight of the aircraft. | 2.30 | 2.40 | 2.3 | Attained | ## Action taken report (To be filled by the concerned faculty/ course coordinator): CO 1: Additional inputs are given on the principles of flight and aircraft control motions CO 2: Extra materials are provided for the performance of an airplane CO 3: Digital content and assignments are provided CO 4: Digital content and videos are provided for a better understanding of concepts CO 5: Real application-oriented problems are provided for better attainment **Course Coordinator** Montor Head of the Department Aeronautical Engineering INSTITUTE OF AERONAUTICAL E.M. JERING Dundigal, Hyderabad - 500 043