INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of Faculty:	Dr. Aravind Rajan Ayagara	Department:	Aerospace Engineering
Regulation:	R-18	Batch:	2020-2022
Course Name:	Engineering Analysis Of Flight Vechicles	Course Code:	BAEB12
Semester:	IInd Semester	Target Value:	1.8

Course Outcome		Direct attainment	Indirect attainment	Overall attainment	Observation
CO 1	Identify the factors affecting vehicles configuration for determining its effect on flight characteristics	3.00	3.00	3	Attained
CO 2	Develop the equation of motion for operation of vehicle relative to the ground and flight for rigid flight vehicles using Newton's laws.	0.30	2.10	0.7	Not Attained
CO 3	Construct the equation of motion of launch vehicle and spacecraft for static performance, impact of stability and control for the rotating planet.	0.90	2.40	1.2	Not Attained
CO 4	Demonstrate the perturbed longitudinal equation of motion for static and dynamic stability of rigid flight vehicles.	0.90	0.90	0.9	Not Attained
CO 5	Inspect the impact of stability and design of longitudinal control of flight vehicles using numerical integration method.	0.90	2.70	1.3	Not Attained
CO 6	Examine the gliding re-entry vehicle with respect to a rotating planet using equations of motion of launch vehicles for dynamic performance	1.60	2.40	1.8	Attained

Action taken report (To be filled by the concerned faculty/ course coordinator):

CO 2: Digital content and videos are given in classes to understand concepts better.

CO 3: Application-oriented problems may be given

CO 4: Additional inputs are given related to static and dynamic stability

CO 5: Extra materials are provided stability and design of longitudinal control

Course Coordinator

Mentor

Head of the Department Aeronautical Engineering INSTITUTE OF AERONAUTICAL FOR ERRING Dundigal, Hyderabad - 500 043