

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

AEROSPACE ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. PRASANTA KUMAR MOHANTA	Department:	Aerospace Engineering	
Regulation:	IARE - R21	Batch:	2022-2024 BAEC01 60% (1.8)	
Course Name:	Space Propulsion	Course Code:		
Semester:		Target Value:		

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Estimate launch dynamics parameters using orbital transfer and trajectorial pertubation for calculating orbit placement propulsion weight.	3.00	2.30	2.9	Attained
CO2	Make use of rocket equation and fundamental principles for designing static test bed of rockets	2.40	2.40	2.4	Attained
CO3	Design solid rocket motor propellant grain for optimizing proper burn rate requirement as per mission profile	0.90	2.30	1.2	Not Attained
CO4	Classify solid rocket motor burn pattern for solving combustion instability in erosive burning	2.30	2.50	2.3	Attained
CO5	Distinguish liquid, cryogenic and hybrid rocket systems for selecting optimal rocket propulsion system in deep space missions	3.00	2.40	2.9	Attained
CO6	Illustrate advanced propulsion techniques for explaining fuel utility mitigation in long overhaul mission involving select board refuelling.	3.00	2.40	2.9	Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator) CO3: Digital content on design of solid rocket motor are to be given.

Course Coordinator

Mentor

Head of the Department
Head of the Department
Aeronautical Engineering
INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043