

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500043, Telangana

CIVIL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Mr. P. VENKATA MAHESH	Department:	Civil Engineering		
Regulation:	IARE - R20	Batch:	2021-2025		
Course Name:	Engineering Mechanics	Course Code:	AMEC01		
Semester:	П	Target Value:	60% (1.8)		

Attainment of COs:

	Course Outcome	Direct attaiment	Indirect attaiment	Overall attaiment	Observation
CO1	Identify the resultant and unknown forces by free body diagram to a given equilibrium force system through mechanics laws and derived laws	0.60	2.10	0.9	Not Attained
CO2	Interpret the static and dynamic friction laws for the equilibrium state of a wedge, ladder and screw jack.	0.90	2.10	1.1	Not Attained
CO3	Identify the centroid and centre of gravity for the simple and composite plane sections from the first principles.	0.60	2.10	0.9	Not Attained
CO4	Calculate moment of inertia and mass moment of inertia of a circular plate, cylinder, cone, sphere other composite sections from the first principles.	0.30	2.20	0.7	Not Attained
CO5	Apply D'Alembert's principle and work energy equations to a dynamic equilibrium system by introducing the inertia force for knowing the acceleration and forces involved in the system.	0.00	2.10	0.4	Not Attained
CO6	Develop the governing equation for momentum and vibratational phenomena of mechanical system by using energy principles for obtaining coefficient of restitution and circular frequency	0.00	2.10	0.4	Not Attained

Action Taken:

CO1: Need to provide more problems and assignments free body by Identifying the resultant and unknown forces by free body diagram to a given equilibrium force system.

CO2: Need to provide more problems on static and dynamic friction laws for the equilibrium state of a wedge, ladder and screw jack.

CO3: Need to provide more assignments on centroid and centre of gravity for composite and simple sections.

CO4: Need to provide more problems on Calculation of moment of inertia and mass moment of inertia of a circular plate, cylinder, cone, sphere other composite sections from the first principles.

CO5: Need to provide more problems and assignments on D'Alembert's principle and work energy equations to adynamic equilibrium system

CO6: Need to provide more problems on energy principles for obtaining coefficient of restitution and circular frequency

Course Coordinator

Head of the Department

Head of the Department Civil Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043