

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

ATTAINMENT OF COURSE OUTCOME- ACTION TAKEN REPORT

Name of the Faculty:	Dr. SHANKARAIAH NADDI	Department:	CSIT	
Regulation:	UG20	Batch:	2021-2025	
Course Name:	Applied Physics	Course Code:	AHSC09 60% (1.8 on 3 scale)	
Semester:	II	Target Value:		

Attainment of Cos:

	Course Outcome	Direct Attainment	Indirect Attainment	Overall Attainment	Observations
CO1	Apply the concepts of dual nature of matter and Schrodinger wave equation for particle enclosed in simple systems.	2.3	2.5	2.3	Target Attained
CO2	Demonstrate the classification of solids and important aspects of semiconductors in terms of carrier concentration and Fermi level.	0.6	2.4	1	Target not Attained
CO3	Make use of the key concepts of semiconductors to explain the basic working mechanism of optoelectronic device characteristics of light-emitting diodes, photodetectors and solar cells.	2.3	2.5	2.3	Target Attained
CO4	Illustrate the properties of dielectric and magnetic materials suitable for engineering applications.	1.6	2.4	1.8	Target Attained
CO5	Compare the concepts of LASER and normal light in terms of mechanism and working principles for applications in different fields and scientific practice.	2.3	2.5	2.3	Target Attained
CO6	Explain functionality of components in optical fiber communication system by using the basics of signal propagation, attenuation and dispersion.	2.3	2.4	2.3	Target Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

In this Course CO2 requires additional attention and it is improved by

CO 2: Conducting tutorials classes and giving more inputs on topics like types of semiconductors, energy bands and classification of solids.

M. Sledans Course Coordinator N-S) olc \
Mentor

HOD HOD