

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COURSE DESCRIPTOR

Branch	Compute	Computer Science and Engineering						
Course Title	Mathema	Iathematical Foundations of Computer Science						
Course Code	BCSC01	3CSC01						
Program	M. Tech	M. Tech						
Semester	CSE	CSE I						
Course Type	Core	Core						
Regulation	PG21							
		The	eory		Prac	tical		
Course Structure	Lec	tures	Tutorials	Credits	Laboratory	Credits		
		3	-	3	-	-		
Course Faculty	Dr. K Suv	varchala				•		

I. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AHSB12	II	Probability and Statistics
UG	ACSB04	III	Discrete Mathematical Structures

II. COURSE OVERVIEW:

The course covers the concepts Probability theory, Sampling Techniques, Statistical Interface, Graph Theory and various applications of Mathematical and statistical concepts in different branches of Computer Science. This course helps the students in gaining the knowledge and apply the mathematical logics to many modern techniques of information technology like machine learning, programming language design etc.

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Mathematical Foundations of Computer Science	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	PPT	\checkmark	Chalk & Talk	\checkmark	Assignments	\checkmark	MOOC
\checkmark	Seminars	\checkmark	Others				

V. EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
30 %	To test the analytical skill of the concept.
20 %	To test the application skill of the concept.

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course. CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment /AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty. CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/Alternative Assessment Tool (AAT).

Component		Total Marks			
Type of Assessment	CIE Exam	Assignment	AAT		
CIA Marks	25	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz/Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. COURSE OBJECTIVES:

The students will try to learn:

Ι	Enrich the knowledge of random variables and probability distributions.
Π	Apply the concept of correlation and regression to classification problems.
III	Analyse the given data through appropriate test of hypothesis.
IV	Apply the mathematical, statistical techniques to various areas in information technology

VII. COURSE OUTCOMES (COs):

After successful completion of the course, students should be able to:

CO 1	Make use of probability theory and distributions for depicting the expected outcome of possible values in the data generating process/experiment.	Apply
CO 2	Apply statistical models based on random sampling data for getting unbiased estimates in performing data analysis.	Apply
CO 3	Select regression and multivariate statistical models for solving classification and curve fitting problems in data analysis.	Apply
CO 4	Infer appropriate techniques of graphs and combinatorial theory for finding solutions to shortest path and enumeration problems.	Analyse
CO 5	Identify appropriate mathematical and statistical techniques for solving applications in emerging areas of Information Technology.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII. PROGRAM OUTCOMES:

	Program Outcomes					
PO 1	Independently carry out research/investigation and development work to solve practical problems.					
PO 2	Write and present a substantial technical report/document.					
	Demonstrate a degree of mastery in computer science and engineering					
PO 3	emerging areas such as data science, cyber security, and application					
	development.					
	Apply advanced-level knowledge, techniques, skills, and modern tools in the field of computer					
104	science and engineering and its allied areas.					
	Function effectively as a member or leader in diverse teams to carry out development work, and					
PO 5	produce solutions that meet the specified needs with frontier technologies in multidisciplinary					
	environments.					
PO 6	Engage in life-long learning for continuing education in doctoral-level studies and professional					
100	development.					

IX. MAPPING OF EACH CO WITH PO(s):

COURSE		PROGRAM OUTCOMES							
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	\checkmark	-	-	\checkmark	\checkmark	\checkmark			
CO 2	\checkmark	-	-	\checkmark	\checkmark	-			
CO 3	\checkmark	-	-	\checkmark	\checkmark	-			
CO 4	\checkmark	-	-	\checkmark	\checkmark	\checkmark			
CO 5	\checkmark	-	-	\checkmark	\checkmark	\checkmark			

X. COURSE ARTICULATION MATRIX (PO - PSO MAPPING):

CO's and PO's and CO's and PSO's on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

COURSE	PROGRAM OUTCOMES							
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	2	0	0	1	1	1		
CO 2	2	0	0	1	1	0		
CO 3	2	0	0	1	1	0		
CO 4	2	0	0	1	1	1		
CO 5	2	0	0	1	1	1		
TOTAL	10	0	0	5	5	3		
AVERAGE	2	0	0	1	1	1		

XI. ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminar and term paper	\checkmark
Laboratory Practices	-	Student Viva	-	Mini Project	-

XII. ASSESSMENT METHODOLOGY INDIRECT:

✓ End Semester OBE Feed Back

XIII. SYLLABUS:

MODULE I	INTRODUCTION – PROBABILITY THEORY
	Probability mass, density, and cumulative distribution functions, Parametric families of
	distributions, Expected value, variance, conditional expectation, Applications of the
	univariate and multivariate Central Limit Theorem, Probabilistic inequalities, Markov
	chains.
MODULE II	RANDOM SAMPLES
	Random samples, sampling distributions of estimators, Methods of Moments and
	Maximum Likelihood
MODULE III	STATISTICAL INFERENCE
	Statistical inference, Introduction to multivariate statistical models: regression and
	classification problems, principal components analysis, The problem of over fitting model
	assessment.
MODULE IV	GRAPH THEORY
	Graph Theory: Isomorphism, Planar graphs, graph coloring, Hamilton circuits and Euler
	cycles. Permutations and Combinations with and without repetition. Specialized
	techniques to solve combinatorial enumeration problems
MODULE V	COMPUTER SCIENCE AND ENGINEERING APPLICATIONS
	Data mining, Network protocols, analysis of Web traffic, Computer security, Software
	engineering, Computer architecture, operating systems, distributed systems,
	Bioinformatics, Machine learning. Analysis: Analysis of opportunistic routing (Markov
	Chain) Advanced topics in wireless sensor networks.

TEXT BOOKS

1. John Vince, "Foundation Mathematics for Computer Science", Springer

REFERENCES BOOKS

- 1. K Trivedi. "Probability and Statistics with Reliability, Queuing, and Computer Science Applications". Wiley.
- 2. M. Mitzenmacher and E. Upfal." Probability and Computing: Randomized Algorithms and Probabilistic Analysis". Wiley
- 3. Alan Tucker, "Applied Combinatorics", Wiley

WEB REFERENCES

- 1. https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
- 2. https://www.cs.bris.ac.uk/~flach/mlbook/.
- 3. http://mylovelibrabry.com/emylibraryus/free.php?asin=1466583282.

COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

S. No	Topics to be covered	CO's	Reference			
	OBE DISCUSSION					
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-				
	CONTENT DELIVERY (THEORY)					
1	Probability mass	CO 1	T1:1.1, 1.2			
2	Density, Cumulative distribution functions	CO 1	T1:1.1, 1.2			

S. No	Topics to be covered	CO's	Reference		
OBE DISCUSSION					
3	Parametric families of distributions	CO 1	T1:2.1, 2.2		
4	Expected value, variance	CO 1	T1:2.1, 2.2		
5	Conditional expectation Applications of the univariate Central Limit Theorem	CO 1	T1:3.1, 3.2, 4.1, 4.2		
6	Probabilistic inequalities	CO 1	T1:4		
7	Markov chains	CO 1	T1:7,8		
8	Random samples	CO 2	T1:2,3		
9	Sampling distributions of estimators	CO 2	T1: 5,T3:3		
10	Methods of Moments	CO 2	T1:10		
11	Maximum Likelihood	CO 2	T1:11, T1:2, T1:4		
12	Statistical inference	CO 3	T1:1,2		
13	Multivariate statistical models	CO 3	T1:5,6		
14	Regression and classification problems	CO 3	R1, R2		
15	Principal components analysis	CO 3	R2, R3		
16	Problem of over fitting model assessment	CO 3	R1: 3.3.7		
17	Graph Theory: Isomorphism, Planar graphs	CO 4	R1:6.1,6.2		
18-19	Graph coloring, Hamilton circuits and Euler cycles	CO 4	R1:6.1,6.2		
20-21	Permutations with and without repetition	CO 4	T1:11.6		
22-23	Combinations with and without repetition	CO 4	T1:11.7		
24-25	Specialized techniques to solve combinatorial enumeration problems	CO 4	R1:8.1		
26	Data mining, Network protocols	CO 5	T1: 9.1		
27	Analysis of Web traffic	CO 5	T1: 1.3		
28	Computer security	CO 5	T1: 1.5, R2: 3.4		
29	Software engineering	CO 5	R3: 4.3		
30	Computer architecture	CO 5	R3: 4.4		
31	Operating systems	CO 5	R3: 4.5		
32	Distributed systems	CO 5	R2:9.2		
33	Bioinformatics	CO 5	R2:9.2		
34	Machine learning.	CO 5	R2:9.3		
35	Analysis of opportunistic routing (Markov Chain)	CO 5	R1:8.5		
36	Advanced topics in wireless sensor networks.	CO 5	R1:8.5		
	DISCUSSION OF QUESTION BANK				
1	Module – I	CO 1	T1		
2	Module – II	CO 2	T1		
3	Module – III	CO 3	R1, R2		
4	Module – IV	CO 4	R3		
5	Module – V	CO 5	R1, R2		

Prepared By:

Dr. K Suvarchala, Associate Professor

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Course Title	ADVANCED	ADVANCED DATA STRUCTURES				
Course Code	BCSC02	BCSC02				
Program	M.Tech	M.Tech				
Semester	Ι	I CSE				
Course Type	Core	Core				
Regulation	IARE - PG21	ARE - PG21				
		Theory		Practi	cal	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	Y	2	
Course Coordinator	Dr. J Sireesha Devi, Professor					

I COURSE OVERVIEW:

This course introduces the fundamental concept of data structures and emphasize the importance of data structures in developing and implementing efficient algorithms. Advanced Data Structures are used to store and manage data in an efficient and organized way for faster and easy access and modification of Data. It is designed to provide in-depth critique on the problems of dictionaries, hashtables. Different Hierarchical Data Structures likeTrees and graphs are studied and their use in various networking, information storage, retrieval are explained. Different Algorithms for pattern matching and text compression are also introduced

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSC03	III	DATA STRUCTURES

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
ADVANCED DATA STRUCTURES	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	PPT		Chalk & Talk		Assignments	x	MOOC
\checkmark		\checkmark		\checkmark	_		
x	Open Ended	\checkmark	Seminars	x	Mini Project	✓	Videos
	Experiments						
x	Others						

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

The emphasis on the questions is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course. CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment /AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty. CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam Assign- AAT			10tal Marks
		ment		
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz/Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI COURSE OBJECTIVES:

The students will try to learn:

ies
d

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Compare space and time complexity for determining the	Analyze
	performance of an algorithm on varying inputs.	
CO 2	Make use of linear data structures for insertion, deletion,	Apply
	searching an element in a list, dequeue etc.	
CO 3	Demonstrate the working of dictionary on a group of objects	Under-
	for updating, retrieval, deletion of elements.	stand
CO 4	Build hash table and use collision resolution techniquesforfile	Under-
	systems using open addressing, separate chaining etc.	stand
CO 5	Examine the concept of non-linear data structures	Analyze
	usingTrees, graphs and their applications.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO I	Apply Analyze a problem, identify and define	-	CIE /
	computing requirements, design and implement		Technical
	appropriate solutions		Seminar and
			Term Paper
PO 2	Solve complex heterogeneous data intensive	2	CIE /
	analytical based problems of real time scenario		Technical
	using state of the art hardware/software tools		Seminar and
			Term Paper
PO 3	Demonstrate a degree of mastery in computer	2	-
	science and engineering emerging areas such as		
	data science, cyber security and application		
	development		
PO 4	Write and present a substantial technical	2	Technical
	report/document		Seminar and
			Term Paper
PO 5	Independently carry out research/investigation	-	-
	and development work to solve practical		
	problems		
PO 6	Function effectively on teams to establish goals,	-	-
	plan tasks, meet deadlines, manage risk and		
	produce deliverables		

PO 12	Engage in life-long learning and professional	-	-
	development through self-study, continuing		
	education, professional and doctoral level		
	studies.		

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Profi- ciency
			Assessed
			by
PSO 1	Understand, design and analyse computer	2	Group dis-
	programs in the areas related to Algorithms,		cussion/
	System Software, Web design, Bigdata, Artificial		Short term
	Intelligence, Machine Learning and Networking.		courses
PSO 2	Focus on improving software reliability, network	2	Industry
	security and information retrieval systems.		exposure
PSO 3	Make use of modern computer tools for creating	2	Group dis-
	innovative career paths, to be an entrepreneur		cussion/
	and desire for higher studies.		Short term
			courses

3 = High; 2 = Medium; 1 = Low

X MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Out- comes	Program Outcomes						
	1	2	3	4	5	6	7
CO 1	3						
CO 2	3	2					
CO 3	3						
CO 4	3	2					
CO 5	3	2					
TOTAL	27	6			3		6

CIE Exams	PO 1,PO	SEE Exams	PO 1,PO	Seminars	-
	2, PO 3,		2, PO 3,		
	PO 4		PO 4		
Laboratory	-	Student Viva	-	Certification	-
Practices					
Term Paper	-	5 Minutes Video	PO 4	Open Ended	-
				Experiments	
Assignments	PO 1, PO				
	2, PO 3,				
	PO 4				

XI ASSESSMENT METHODOLOGY DIRECT:

XII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\mathbf{X}	Assessment of Mini Projects by Ex	perts	

XIII SYLLABUS:

MODULE I	OVER VIEW OF DATA STRUCTURES
	Algorithm analysis: Algorithms; Performance analysis: Time complexity and space complexity, asymptoticnotation: Big Oh, omega and thetanotations, complexity analysis examples; Data structures: Linear andnon linear data structures, ADT concept, linear list ADT, stack and queue ADTs, array and linked list representations; Circular queue: Insertion and deletion, dequeue ADT, priority queue ADT, implementation using heaps, insertion in to a max heap, deletion from amax heap, singly linked lists, doubly linked lists, circular linked list.
MODULE II	DICTIONARIES, HASH TABLES
	Linear list representation, operations insertion, deletion and searching, hash table representation, hash functions, collision resolution, separate chaining, open addressing, linear probing ,quadratic probing, double hashing, rehashing, extendible hashing.
MODULE III	TREES AND GRAPHS
	Trees: Ordinary and binary trees terminology, properties of binary trees, binary tree ADT, representations, recursive and nonrecursive traversals, threaded binary trees. Graphs: Graphsterminology, graphADT, representations, graph traversals; Search methods: DFS and BFS; Applications of Graphs: Minimum cost spanning tree using Kruskal s algorithm, Dijkstra s algorithm for single sources hortest pathproblem

MODULE IV	SEARCH TREES I
	Binary search tree: Binary search tree ADT, insertion, deletion and searching operations, finding the parentof a given node, attaining a reference to a node, finding the smallest and largest values in the binary searchtree; Balanced search trees: AVL trees, definition, height of an AVL tree; Operations : Insertion, deletion and searching.
MODULE V	SEARCH TREES II
	Red-Black and Splay Trees; B trees: Definition, operations and applications; R trees: Nearest neighbor query, join and range queries; Comparison of search trees; Text compression: Huffman coding and decoding; Pattern matching: KMP algorithm.

TEXTBOOKS

- 1. EllisHorowitz, SartajSahni, Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", Universities Press Private Limited, India, 2nd Edition, 2008.
- 2. G.A.V.Pai, "Data Structures and Algorithms", Tata Mc Graw Hill, New Delhi,1st Edition, 2008.
- 3. M.A.Weiss, Addison Wesley, "Data Structures and Algorithm Analysis in Java", Pearson Education, 2nd Edition, 2005.

REFERENCE BOOKS:

- 1. D.Samanta, "Classic Data Structures", Prentice Hall of India Private Limited, 2nd Edition, 2003.
- 2. Aho, Hopcraft, Ullman, "Design and Analysis of Computer Algorithms", Pearson Education India, 1st Edition, 1998.
- 3. Goodman, Hedetniemi, "Introduction to the Design and Analysis of Algorithms", Tata McGraw Hill, New Delhi, India, 1st Edition, 2002.

WEB REFERENCES:

- $1.\ http://www.tutorialspoint.com/data_structures_algorithms/data_structures_basics.htm$
- 2. http://www.geeksforgeeks.org/b-tree-set-1-introduction-2/

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered		Refer-
			ence
1	Algorithms; Performance analysis: Time complexity	CO 1	TB1:1.1-
	and space complexity,		1.3
2	Asymptotic notation: Big Oh, omega and theta	CO 1	TB1: 1.3
	notations, complexity analysis examples		TB2:2.3-
			2.4

3	Data structures: Linear and non linear data structures, ADT concept	CO 1	TB3: 3.1
4	Linear list ADT, array representations;	CO 1	TB3: 4.2
5	Linear list linked list representations;	CO 1	TB3: 4.2
6	Stack	CO 1	TB1: 2.1 TB2 4.2
7	Queue adts	CO 1	TB3: 4.2
8	Circular queue: Insertion and deletion	CO 2	TB2-5.3
9	Dequeue ADT	CO 2	TB3: 4.4
10	Priority queue ADT	CO 2	TB1: 2.4
11	Implementation using heaps, insertion into a max heap, deletion from a max heap	CO 2	TB2: 3.6
12	Singly linked lists,	CO 2	TB2: 5.2
13	Doubly linked lists,	CO 2	TB2: 5.3
14	Circular linked list.	CO 2	TB2: 5.4
15	Dictionaries: Linear list representation, operations insertion, deletion and searching	CO 3	TB3: 5.1
16	Hash table representation, hash functions,	CO 3	TB3: 5.2
17	Collision resolution, separate chaining,	CO 3	TB3: 5.3
18	Open addressing, linear probing	CO 3	TB3: 5.4
19	Quadratic probing, double hashing	CO 3	TB3: 5.4
20	Rehashing, extendible hashing	CO 3	TB3: 5.5
21	Trees: Ordinary and binary trees terminology,	CO 4	TB2-8.2
	properties of binary trees, binary tree ADT		RB5: 6.2
22	Recursive traversals	CO 4	TB2-8.6 RB5: 6.2
23	Non recursive traversals	CO 4	RB5: 6.2
24	Threaded binary trees.	CO 4	TB2-8.7
25	Graphs: Graphs terminology, graph ADT, representations	CO 4	TB2-9.2
26	Graph traversals	CO 4	TB2-9.3 TB3: 9.1
27	Search methods: DFS	CO 4	TB2-9.4
28	Search methods BFS;	CO 4	TB2-9.4
29	Applications of Graphs: Minimum cost spanning tree using Kruskal s algorithm	CO 4	TB2-9.5 TB3: 9.5
30	Dijkstra s algorithm for single source shortest path problem.	CO 4	TB3: 9.3
31	Binary search tree: Binary search tree ADT,	CO 4	TB3: 4.3
32	Insertion, deletion and searching operations	CO 4	TB3: 4.3
33	Finding the parent of a given node, , attaining a reference to a node	CO 4	TB3: 4.3

34	Finding the smallest and largest values in the binary	CO 4	TB3: 4.3
	search tree;		
35	Balanced search trees: AVL trees, definition, height of an AVL tree	CO 5	TB3: 4.4
36	AVL trees Operations : Insertion, deletion and searching.	CO 5	TB3: 4.4
37	Red-Black Definition, operations and applications	CO 5	TB2-12.1
38	Splay Trees: Definition, operations and application	CO 5	TB3: 4.5
39	B trees: Definition, operations	CO 5	TB3: 4.7
40	B trees: application	CO 5	TB2- 11.3
41	R trees: Nearest neighbor query,		TB3: 9.3
42	R trees : join and range queries;		TB3: 9.4
43	Comparison of search trees		TB3: 4.9
44	Text compression: Huffman coding and decoding;		TB3:5.3
45	Pattern matching: KMP algorithm.	CO 5	TB35.4
	Discussion on Various Topics		
1	Module 1	CO 1	TB1,RF1
2	Module 2	CO 2	TB1,RF1
3	Module 3	CO 3	TB1,RF1
4	Module 4	CO 4	TB1,RF1
5	Module 5	CO 5	TB1,RF1

Signature of Course Coordinator Dr. J Sireesha Devi, Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Branch	COMPUTER SCIENCE AND ENGINEERING						
Course Title	WIRELESS SENSOR NETWORKS						
Course Code	BCSC04	BCSC04					
Program	M.Tech						
Semester	1						
Course Type	Elective-I						
Regulation	PG 21						
		Theory		Prac	tical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	-	3	-	-		
Course Coordinator	Dr Y Mohana roopa Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG			Computer Networks
UG			Information Security

II COURSE OVERVIEW:

This course helps the students in gaining the knowledge on Wireless Sensor Networks , Architectures,Network Simulators,protocols for WS using communication Architecture security and Routing Protocols for WSN. It will also helps in real time applications applications such as temperatures,sounds,pollution levels,humidity and wind.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Wireless Sensor Networks	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

1	PPT	1	Chalk & Talk	1	Assignments	1	MOOC
1	Seminars	х	O thers				

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). **Semester End Examination (SEE):** The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

The emphasis on the questions is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty/teacher handling the course as given in Table 4. CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for technical seminar and term Paper.

Table 2: Assessment pattern for Theory Courses

Component		Total Marks	
Type of Assessment	CIE Exam Technical Seminar and		
		Term paper	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI COURSE OBJECTIVES:

The students will try to learn:

I	The Strategies of wireless sensor networks and network simulator tool.
II	The statistical WSN network simulator tool for understanding and visualization of different network algorithm
- 111	The various hypotheses and data into actionable predictions.
IV	Routing algorithms along with their strengths and weaknesses used in advanced topics of wireless sensor networks.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize wireless sensor network architetures and its related hardware platforms.	Understand
CO 2	Demonstrate the network simulator-3 for simulation experiments of wireless sensor networks.	Apply
CO 3	Analyze the performance of Medium Access Control protocols in terms of power consumption, fairness, channel utilization and control packet overhead.	Analyze
CO 4	Identify possible attacks and their counter measures for providing security in wireless sensor networks	Apply
CO 5	Categorize various routing protocols for improving the performance of the wireless sensor networks.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Independently carry out research /investigation and development work to solve practical problems.
PO 2	Write and present a substantial technical report/document
PO 3	Demonstrate a degree of mastery in computer science and engineering emerging areas such as data science, cyber security and application development
PO 4	Identify, formulate, analyze and Design complex engineering problems, and design system components or processes by applying appropriate advanced principles of engineering activities and using modern tools.
PO 5	Engage in life-long learning and professional development through self-study and continuing education in understanding the engineering solutions in global and management principles to manage projects in multidisciplinary environments

	Program Outcomes
PO 6	Function effectively as a member or leader in diverse teams to carry out development work, produce solutions that meet the specified needs with frontier technologies and communicate effectively on complex engineering activities.

IX MAPPING OF EACH CO WITH PO(s):

COURSE		PROGRAM OUTCOMES						
OUTCOMES	PO 1	PO 1 PO 2 PO 3 PO 4 PO 5 PO 6						
CO 1	1	1	1	✓	1	1		
CO 2	1	1	1	1	1	-		
CO 3	-	-	1	✓	1	-		
CO 4	1	1	1	✓	1	1		
CO 5	-	-	1	✓	1	-		

X COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

COURSE		PROGRAM OUTCOMES				
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	-	2	2	2	2
CO 2	2	-	2	3	2	2
CO 3	2	-	2	3	2	2
CO 4	2	-	2	3	2	-
CO 5	2	-	2	2	-	-
TOTAL	12	0	13	10	08	1
AVERAGE	6	0	2.5	2.16	1.6	1

XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	1	SEE Exams	1	Seminar and term	1
				paper	
Laboratory Practices	-	Student Viva	-	Mini Project	-

XII ASSESSMENT METHODOLOGY INDIRECT:

✓	End Semester OBE Feed Back
---	----------------------------

XIII SYLLABUS:

MODULEI	INTRODUCTION TO WIRELESS SENSOR NETWORKS
	Introduction to Wireless Sensor Networks: Motivations, Applications, Performance metrics, History and Design factors Network Architecture: Traditional layered stack, Cross-layer designs, Sensor Network Architecture Hardware Platforms: Motes, Hardware parameters
MODULE II	INTRODUCTION TO NS-3
	Introduction to Network Simulator 3 (ns-3), Description of the ns-3 core module and simulation example
MODULE III	MEDIUM ACCESS CONTROL PROTOCOL DESIGN
	Fixed Access, Random Access, WSN protocols: synchronized, duty-cycled Introduction to Markov Chain: Discrete time Markov Chain definition, properties, classification and analysis MAC Protocol Analysis: Asynchronous duty-cycled. X-MAC Analysis (Markov Chain).
MODULE IV	SECURITY
	Possible attacks, countermeasures, SPINS, Static and dynamic key distribution
MODULE V	ROUTING PROTOCOLS
	Routing protocols: Introduction, MANET protocols Routing protocols for WSN: Resource-aware routing, Data-centric, Geographic Routing, Broadcast, Multicast Opportunistic Routing Analysis: Analysis of opportunistic routing (Markov Chain) Advanced topics in wireless sensor networks.

TEXTBOOKS

- 1. W. Dargie and C. Poellabauer, "Fundamentals of Wireless Sensor Networks Theory and Practice", Wiley 2010
- 2. KazemSohraby, Daniel Minoli and TaiebZnati, "wireless sensor networks -Technology, Protocols, and Applications", Wiley Interscience 2007
- 3. Takahiro Hara, Vladimir I. Zadorozhny, and Erik Buchmann, "Wireless Sensor Network Technologies for the Information Explosion Era", springer 2010

REFERENCE BOOKS:

- 1. Kamilo Feher, "Wireless Digital Communications", PHI, 1st Edition, 1999.
- 2. Kaveh Pah Laven, P. Krishna Murthy, "Principles of Wireless Networks", Prentice Hall PTR, 1st Edition, 2002.

WEB REFERENCES:

1. https://en.wikipedia.org/wiki/wireless sensor networks

COURSE WEB PAGE:

1. https://www.udemy.com/course/wireless-sensor-networks-telecommunicationf/

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference

OBE DISCUSSION				
1	Course Description on Outcome Based Education (OBE):	-		
	Course Objectives, Course Outcomes (CO), Program			
	Outcomes (PO) and CO-PO Mapping			
	CONTENT DELIVERY (THEORY)			
1	Understand wireless sensor networks and applications	CO 1	TB1 1.1	
2	Applications of WSN	CO 1	TB1 1.3	
3	Performance of WSN	CO 1	TB1 2.1	
4	History and design, Network architecture and Layer designs	CO 2	TB1 5.2, 5.5	
5	Sensor network, Motes, Hardware parameters	CO 2	TB1 5.5, 5.8	
6	Network Simulator	CO 2	TB1 6.1, 6.2	
7	Medium Access	CO 3	TB1 6.3	
8	Control protocol, WSN protocols.	CO 3	TB1 7.5	
9	Synchronized, Duty-cycled	CO 3	TB1 9.1	
10	Markov chain, Discrete time Markov Chain definition	CO 4	TB1 12.1	
11	Classification of Markov chain	CO 4	TB1 13.1	
12	MAC Protocol Analysis	CO 4	TB1 14.1	
13	Security, SPINS, Static and dynamic key distribution	CO 4	TB1 21.1	
14	Routing Protocols, MANET protocols	CO 4	TB2 2.5	
15	Routing protocols for WSN, Data-centric, Geographic Routing	CO 4	TB2 7.1	
16	Analysis of opportunistic routing (Markov Chain)	CO 4	TB2 6.1	
17	Advanced topics in wireless sensor networks	CO 5	TB2 6.2	
18	Applications	CO 5	-TB2 6.4	
19	Games	CO 5	TB2 6.5	
20	Mobile Information Architecture, Mobile 2.0,	CO 5	TB2 TB2 8.1	
21	Mobile Design: Elements of Mobile Design, Tools	CO 5	TB2 10.1	
22	Designing Web Interfaces – Drag and Drop	CO 5	TB 3 3.1	
23	Direct Selection, Contextual Tools	CO 5	TB3 4.2	
24	Overlays, Inlays and Virtual Pages	CO 5	TB3 4.3	
25	Process Flow. Case Studies.	CO 5	TB3 4.6	
	MODULE WISE DISCUSSION ON VARIOUS	TOPICS	5	
1	Module 1	CO 1	TB1,RF1 .RF2_CWP	
2	Module 2	CO 2	TB1,RF1	
3	Module 3	CO3	TB1,RF1 ,RF2,CWP	

4	Module 4	CO4	TB1,TB2 RF1,RF2, CWP
5	Module 5	CO 5	TB2,TB3, RF1,RF2, CWP

Signature of Course Coordinator Dr Y Mohana roopa Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Branch	Comp	Computer Science and Engineering					
Course Title	DATA	SCIENC	Œ				
Course Code	BCSC	07					
Programme	M.Tec	h					
Semester	Ι	CSE					
Course Type	Elective-I						
Regulation	IARE	-PG21					
	Theory Practical					tical	
Course Structure	Le	ctures	Tutorials	Credits	Laboratory	Credits	
		3	-	3	4	2	
Course Faculty	Dr. R.	M Nooru	ıllah, Professor				

I. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	-	-	- Probability and Statistics	
UG	-	-	Database Management Systems	-

II. COURSE OVERVIEW:

Data Science encompasses the use of mathematics, statistics, and computer science for studying and evaluating data. This course focuses on extraction of valuable information for strategic decision making, trend analysis and forecasting. It includes the processes derived from data engineering, statistics, programming, social engineering, data warehousing, machine learning and natural language processing

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Data Science	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	РРТ	~	Chalk & Talk	~	Assignments	~	MOOCs
~	Seminars	×	Others				

V. EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses shall be divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern shall be defined below. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course.CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). **Two CIE Tests are Compulsory** and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment /AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty.

Component		Total Marks		
Type of	CIE	Assignment	AAT	
Assessment	Exam			
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered. The valuation and verification of answer scripts of CIE exams shall be completed within a week after the conduct of the Examination.

Assignment:

To improve the writing skills in the course an assignment will be evaluated for 05 marks. One assignment has to submit at the end of the CIE2 for the questions provided by each course coordinator in that semester. Assignments to be handed in as loose paper collection stapled together at the top left corner. The assignment should be presented as a professional report. It must consist of a cover sheet, content page, and should have an introduction, a body, a conclusion or recommendation, and a reference page.

Alternative Assessment Tool (AAT):

The AAT may includes, concept videos, course related term paper, technical seminar, term paper, paper presentations conducted by reputed organizations relevant to the course etc.

VI. COURSE OBJECTIVES:

The students will try to learn:

Ι	The fundamental concepts of data science process and R programming.
II	The programs using R language for understanding and visualization of data with the help of
	statistical and visualization functions.
III	The various hypotheses for data into actionable predictions.
IV	Various machine learning algorithms along with their strengths and weaknesses.

VII. COURSE OUTCOMES (COs):

After Successful completion of the course, students should be able to:

COs	Description	Bloom's level
CO 1	Make use of various data description functions in R programming to exhibit various	Apply
	stages of data science process.	
CO 2	Identify interfacing packages for handling SQL and NOSQL databases for performing	Apply
	correlation and regression analysis.	
CO3	Evaluate data models for clustering analysis.	Evaluate
CO 4	Solve various real time problems on various hypothesis conditions by using artificial	Apply
	neural networks.	
CO5	Illustrate delivering results through documentation and plots.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII. PROGRAM OUTCOMES:

	Program Outcomes (POs)				
PO1	Independently carry out research/investigation and development work to solve practical				
	problems.				
PO2	Write and present a substantial technical report/document.				
PO3	Demonstrate a degree of mastery over the area as per the specialization of the program.				
	The mastery should be at a level higher than the requirements in the appropriate bachelor				
	program.				
PO4	Apply advanced-level knowledge, techniques, skills, and modern tools in the field of computer				
	science and engineering and its allied areas.				

PO5 Function effectively as a member or leader in diverse teams to carry out development work, and produce solutions that meet the specified needs with frontier technologies in multidisciplinary environments.

PO6 Engage in life-long learning for continuing education in doctoral-level studies and professional development.

Course						
Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO6
CO 1	\checkmark	 ✓ 	\checkmark	 ✓ 	 ✓ 	✓
CO 2	\checkmark	✓	\checkmark	 ✓ 	 ✓ 	 ✓
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	 ✓ 	✓
CO 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

IX. MAPING OF EACH CO WITH POs:

X. COURSE ARTICULATION MATRIX (CO - PO MAPPING):

COs and POs are corelated based on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

Course		-	Program O	utcomes (PO)	1	
Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO6
CO 1	2	2	2	3	3	2
CO 2	2	3	2	3	3	3
CO 3	3	3	2	3	3	3
CO 4	3	3	3	3	3	3
CO 5	2	2	2	3	3	0
TOTAL	12	13	11	15	15	11
AVERAGE	2.4	2.6	2.2	3	3	2.2

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	\checkmark	SEE Exams	~	Seminar and Term Paper	\checkmark
Laboratory Practices	\checkmark	Student Viva	-	Mini Project	-

XII. ASSESSMENT METHODOLOGIES -INDIRECT

✓ End Semester OBE Feedback

XIII. SYLLABUS

MODULE I	INTRODUCTION					
Data science process, roles, stages in data science project, working with data from files, working with relational databases, exploring data, managing data, cleaning and sampling for modeling; Introduction to R: Introduction to various data types, numeric, character, date, data frame, array, matrix etc., reading and writing datasets, working with different file types .txt, .csv, outliers, R functions and loops; Summary statistics: Summary, str, aggregate, subset, head, tail; Probability distribution.						
MODULE II	SQL, NOSQL AND DATA ANALYSIS					
SQL using R, excel and R, introduction to NoSQL, connecting R to NoSQL databases, R with XML, JSON; Correlation analysis; Covariance analysis, ANOVA, forecasting, heteroscedasticity, autocorrelation; Regression analysis; Regression modeling, multiple regression.						
MODULE III	DATA MODELS					
Choosing and evaluvalidating models. Cluster analysis: K-	uating models, mapping problems to machine learning, evaluating clustering models, means algorithm, Naive Bayes memorization methods, unsupervised methods					
MODULE IV	ARTIFICIAL NEURAL NETWORKS					
Artificial neural networks: Introduction, neural network representation, appropriate problems for neural network learning, perceptions, multilayer networks and the back propagation algorithm, remarks on the back propagation algorithm; Evaluation hypotheses: Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithms.						
MODULE V	DELIVERING RESULTS					
Documentation and plot() function, disp using graphics param	d deployment, producing effective presentations, introduction to graphical analysis, playing multivariate data, matrix plots, multiple plots in one window, exporting graph, meters, case studies.					

Text Books:

- 1. Nina Zumel, John Mount, "Practical Data Science with R", Manning Publications, 1stEdition, 2014.
- 2. William N. Venables, David M. Smith, "An Introduction to R", Network Theory Limited, 2nd Edition, 2009.
- 3. Stephen Marsland, "Machine Learning: An Algorithmic Perspective", Taylor & Francis CRC Press, 2nd Edition, 2011.

Reference Books:

- 1. G. Jay Kerns, "Introduction to Probability and Statistics Using R", Youngstown State University, USA, 1 st Edition, 2011.
- 2. William W Hsieh, "Machine Learning Methods in the Environmental Sciences", Neural Networks, Cambridge University Press, 1 st Edition, 2009.
- 3. Chris Bishop, "Neural Networks for Pattern Recognition", Oxford University Press, 1 st Edition, 1995.

Web References:

- 1. http://www.tutorialspoint.com/r/
- 2. https://en.wikipedia.org/wiki/R_programming_language.
- 3. http://www.r-bloggers.com/how-to-learn-r-2/#h.obx6jyuc9j7t.

Course Web Page:

1. https://staragile.com/in/data-science/

XIV. COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Outcomes (COs)	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Eduction(OBE): Course Objectives, Course Outcomes (CO), Program Outcomes(PO) and CO-PO Mapping:	_	
	CONTENT DELIVERY (THEOR)	Y)	
1	Introduction to Data Science, roles and projects, stages in data science project	CO 1	T1:1.1, 1.2
2	Working with data from files, working with relational databases	CO 1	T1:2.1, 2.2
3	Exploring data, managing data, cleaning and sampling for modeling	CO 1	T1:3.1, 3.2, 4.1, 4.2
4	Importance of R and R programming, Summary statistics, probability distribution	CO 1	T2: 1.1, 1.3
5	Introduction to R, data types and functions	CO 1	T2:1.1, 1.7
6	Data scientist, terminologies, Reporting and analysis,	CO 1	T2:1.8- 1.10
7	Types NoSQL, SQL, R, ANOVA	CO 2	T2:11.2-11.4
8	XML, JSON	CO 2	T2:11.6
9	Correlation analysis, regression analysis	CO 2	T2:11.7
10	Regression modeling, multiple regression	CO 2	T3:1.4.1
11	Data Models, Choosing and evaluating models, mapping problems to machine learning	CO 3	T1:6.1,6.2
12	Evaluating and validating	CO 3	T3: 3.3.7
13	Cluster analysis, K-means algorithm, Naive Bayes memorization methods, unsupervised methods	CO 3	T1:8.1, T3: 9.1
14	Introduction to Artificial Neural Networks, neural network representation	CO 4	T3:9.2
15	Appropriate problems for neural network learning	CO 4	Т3: 9.3
16	Perceptions, multilayer networks	CO 4	Τ3·93
17	Problems and algorithms, propagation algorithm, remarks on the back propagation algorithm	CO4	T3:3.1, 3.2
18	Remarks on the back propagation algorithm	CO4	T3:3.2
19	Motivation, estimation hypothesis accuracy	CO4	T3:18.3.4, 18.3
20	Basics of sampling theory, a general approach for deriving confidence intervals	CO 4	T3:4.1
21	Evaluation hypothesis, Learning algorithms	CO 4	T3:18.1
22	Documentation and deployment, producing effective presentations,	CO 5	T3: 15.1
23	Introduction to graphical analysis	CO 5	T3:15.1`
24	Plots, matrix plots, multiple plots in one window	CO 5	T2:5.1, 5.8
25	Exporting graph, using graphics parameters, case studies	CO 5	T2:12.5, 12.7
	DISCUSSION ON VARIOUS TO	PICS	

1	Module I	CO1	T1, T2, RB1, CWP
2	Module II	CO2	T2, T3, RB1, CWP
3	Module III	CO3	T1, T3, RB1, CWP
4	Module IV	CO4	T3, RB2, RB3, CWP
5	Module V	CO5	T2, T3, RB2, RB3, CWP

Prepared by: Dr. R. M Noorullah HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Branch	COMPUTER SCIENCE AND ENGINEERING						
Course Title	ENGLISH FOR RESEARCH PAPER WRITING						
Course Code	BHSC01						
Program	M.Tech						
Semester	CSE I						
Course Type	Audit						
Regulation	IARE - PG2	1					
Course Structure	Theory	Prac	tical				
	Lecture	Tutorials	Credits	Laboratory	Credits		
	2 - 0						
Course Faculty	Mr. P Sunil	Solomon, Assis	tant.Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AHS001	Ι	English for Communication
UG	ACSB39	VII	Project Work
UG	ACSB40	VIII	Project Work

II COURSE OVERVIEW:

To accomplish this goal, each student will write during the term a 15-20 page research paper. From the development of a thesis statement to the editing of the final draft, the student will compose this research paper under the direction of the course instructor and in consultation with other students in the class. Depending on the topic under development, the student may also work with a faculty advisor in the pertinent discipline—from Umbra or from his/her home institution. Students pursuing honors theses or independent research projects may develop more extended papers to fulfill individual requirements. The course is also available to creative writing students working on projects requiring extended research.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
English For Research Paper Writing	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	PPT	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Seminars	\checkmark	Others				

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept		
30 %	To test the analytical skill of the concept		
20 %	To test the application skill of the concept		

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course. CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment /AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty. CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	10tai Maiks		
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz/Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI COURSE OBJECTIVES: The students will try to learn:

Ι	How to improve the writing skills and level of readability.
II	The methodology that what to write in each section.
III	The skills needed when writing a Title Ensure the good quality of paper at very first-time submission.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarise the key concepts of planning and preparation of the	Apply
CO 2	Outline the key considerations while preparing the abstract of the research topic in specific to findings, headings, criticizing, paraphrasing, and plagiarism.	Apply
CO 3	Identify related literature for formulating the problem, methodology, results, and conclusions in research paper.	Analyze
CO 4	Summarize the skills required for writing methods, results, discussions and conclusions in research paper.	Apply
CO 5	Identify important phrases of research article writing	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes				
PO 1:	Independently carry out research/investigation and development work to				
	solve practical problems.				
PO 2:	Write and present a substantial technical report/document.				
PO 3:	D emonstrate a degree of mastery in emerging areas of CSE/IT like IoT, AI,				
	Data Analytics, Machine Learning, cyber security, etc.				
PO 4:	Apply advanced-level knowledge, techniques, skills, and modern tools in the				
	field of computer science and engineering and its allied areas.				
PO 5:	F unction effectively as a member or leader in diverse teams to carry out				
	development work, and produce solutions that meet the specified needs with				
	frontier technologies in multidisciplinary environments.				
PO 6:	Engage in life-long learning for continuing education in doctoral-level studies				
	and professional development.				

IX MAPPING OF EACH CO WITH PO(s):

COURSE		PROGRAM OUTCOMES							
OUTCOMES	PO 1	PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 P							
CO 1	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-		
CO 2	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-		
CO 3	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-		
CO 4	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	-		
CO 5	\checkmark	\checkmark	-	-	\checkmark	-	-		

X COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

COURSE		PROGRAM OUTCOMES						
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
CO 1	2	3	-	2	2	-	-	
CO 2	2	3	-	2	2	-	-	
CO 3	3	3	-	3	2	-	-	
CO 4	3	3	-	3	1	1	-	
CO 5	3	3	-	-	1	-	-	
TOTAL	13	14	-	10	08	1	-	
AVERAGE	2.6	3	-	2.5	1.6	1	-	

XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminar and term	\checkmark
				paper	
Laboratory	-	Student Viva	-	Mini Project	-
Practices					

XII ASSESSMENT METHODOLOGY INDIRECT:

 \checkmark End Semester OBE Feed Back

XIII SYLLABUS:

MODULE I	PLANNING AND PREPARATION
	Planning and Preparation, Word Order, Breaking up long sentences,
	Redundancy, Avoiding Ambiguity and Vagueness
MODULE II	ABSTRACT
	Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction
MODULE III	DISCUSSION AND CONCLUSIONS
	Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature.
MODULE IV	DISCUSSION AND CONCLUSIONS
	Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions.
MODULE V	QUALITY AND TIME MAINTENANCE
	Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

TEXTBOOKS

- 1. Goldbort R, "Writing for Science", Yale University Press. 2011.
- 2. Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011.

REFERENCE BOOKS:

1. Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM Highman's Book.

WEB REFERENCES:

1. http://saba.kntu.ac.ir/eecd/ecourses/Seminar90/2011apers.pdf

E-TEXT BOOKS:

1. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press.

XIV COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference				
	OBE DISCUSSION						
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	_					
	CONTENT DELIVERY (THEORY)						
1	Planning and Preparation	CO1	T1:1.1, 1.2				
2	word Order, Breaking up long sentences	CO1	T1:2.1, 2.2				
3	Structuring Pragraphs and Sentences	CO1	T1:3.1, 3.2, 4.1, 4.2				
4	Being Concise	CO1	T1:3.1, 3.2, 4.1, 4.2				
5	Removing Redundency	CO2	T1: 1.1, 1.3				
6	Avoiding Ambiguity and Vagueness	CO2	T1:1.1, 1.7				
7	Clarifying Who Did What	CO2	T1:1.1, 1.7				
8	Highlighting Your Findings	CO2	T1:1.8- 1.10				
9	Hedging and Critising	CO2	T1:1.8- 1.10				
10	Paraphrasing	CO2	T1:11.2- 11.4				
11	Paraphrasing And Plagarism	CO2	T1:11.2- 11.4				
12	Sections of a Paper	CO3	T1:11.6				
13	Abstracts, Introduction	CO3	T1:11.7				
14	Review of the Literature	CO4	T3:1.4.1				
15	Methods, Imlementation	CO4	R1:6.1,6.2				
16	Results, Discussions, Conclussions,	CO4	R1: 3.3.7				
17	The Final Check of the Research Paper.	CO4	R1:8.1, T3: 9.1				
18	Key Skills are needed whwn writing a Title, Abstraction and Introduction	CO4	R1:8.1, T3: 9.1				
19	Key Skills are needed whwn writing a Review of the Literature.	CO5	R2:9.2				
20	Skills are needed when writing the Methods, Results, Discussion and Conclussion	CO5	R2:9.2				
21	Useful Phrases and how to ensure paper is as good as it could possibly be the first time submission.	CO5	R2:9.3				

DISCUSSION ON VARIOUS TOPICS						
1	MODULE I	CO1	TB1			
2	MODULE II	CO2	TB1			
3	MODULE III	CO3	TB1			
4	MODULE IV	CO4	TB2			
5	MODULE V	CO5	TB2			

Signature of Course Coordinator Mr. P Sunil Solomon, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING						
Course Title	ADVANCED DATA STRUCTURES LABORATORY						
Course Code	BCSC11	BCSC11					
Program	M.Tech	M.Tech					
Semester	I CSE						
Course Type	Core	Core					
Regulation	IARE - PG21						
	Г	Theory		P	ractical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	4	2		
Course Coordinator	Dr J Sirisha Devi, Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

II COURSE OVERVIEW:

It covers the design and analysis of fundamental data structures and engages learners to use advanced data structures as tools to algorithmically design efficient computer programs that will cope with the complexity of actual applications. This course is essential for image viewer software, music players, multiplayer game using data structures.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Advanced Data Structures	70 Marks	30 Marks	100
Laboratory			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

-	Demo Video	\checkmark	Lab	\checkmark	Viva Questions	 Probing further
			Worksheets			Questions
V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based	
20 %	Objective	Purpose	
20 %	Analysis	Algorithm	
20 %	Design	Programme	
20 %	Conclusion	Conclusion	
20 %	Viva	Viva	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The linear and nonlinear data structures and their implementations.
II	Algorithms based on their time and space complexity.
III	Appropriate data structure and algorithm design method for a specific application.
IV	The graph traversals algorithms to solve real-world challenges such as finding shortest paths on huge maps and assembling genomes from millions of pieces.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Design and analyze a divide and conquer algorithm using data	Understand
	structures and ADT/libraries.	
CO 2	Use stack operations for evaluating mathematical expressions	Apply
CO 3	Demonstrate collision resolution with hashing technique.	Understand
CO 4	Implement graph procedures using disjoint sets.	Apply
CO 5	Make Use of tree traversal algorithms for solving graph applications	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

PO 1	Independently carry out research/investigation and development work to solve practical problems.
PO 2	Write and present a substantial technical report/document.

PO 3	Demonstrate a degree of mastery in computer science and engineering emerging areas such as data science, cyber security, and application development.
PO 4	Apply advanced-level knowledge, techniques, skills, and modern tools in the field of computer science and engineering and its allied areas for solving real-time problems.
PO 5	Function effectively in multidisciplinary environments with the knowledge of frontier technologies by working cooperatively, creatively, and responsively as a member or leader in diverse teams.
PO 6	Engage in life-long learning for continuing education in doctoral-level studies and professional development.

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcome	Strength	Proficiency
			Assessed by
PO 1	 Independently carry out research/investigation and development work to solve practical problems 1. Independence and Self-direction in solving practical problems 2. Scope definition and deliverables by referring to related literature 3. Work breakdown structure including resource identification, schedule, and implementation Demonstrate the solution to the stakeholders 	4	Lab Exercises, CIE, SEE
PO 2	Write and present a substantial technical report/document1. Clarity, Grammar/Punctuation, References. (Writing) Presentation Style and Clarity in Subject Content. (Presentation)	2	Lab Exercises, CIE, SEE.
PO 3	 Demonstrate a degree of mastery in computer science and engineering emerging areas such as data science, cyber security, and application development 1. Apply mathematical/statistical models to analyze critically various applications related to Data Science and Cybersecurity. 2. Leverage Machine Learning and Soft computing techniques for the problem-solving in emerging areas such as data science, cyber security. 	3	Lab Exercises.
PO 4	 Apply advanced-level knowledge, techniques, skills, and modern tools in the field of computer science and engineering and its allied areas for solving real-time problems.Identify, design, and develop solutions to real-time problems by using Problem (domain) understanding and system definition Advanced data structures, protocols, and techniques/algorithms Solution/prototype development/implementation with programming constructs/tools Information/data visualization and processing techniques Identification/assessment of vulnerabilities of the 	5	Lab Exercises, CIE, SEE.

	system/network using security techniques/algorithms		
PO 5	 Function effectively in multidisciplinary environments with the knowledge of frontier technologies by working cooperatively, creatively, and responsively as a member or leader in diverse teams. During the classroom periods, in the hands-on labs, and in the design and implementation of projects Knowledge of advanced techniques. Plan tasks and resources, manage risk, and produce deliverables. Meeting deadlines and producing solutions. Work with all levels of people. Interpretation of results in related domains. 	5	Lab Exercises, CIE, SEE.
PO 6	 Engage in life-long learning for continuing education in doctoral-level studies and professional development. 1. Project management and professional certifications. 2. Start working on higher educational Qualifications. 3. Personal continuing education efforts with keeping current trends in CSE. 4.Sustain with technological, innovation, and industry trends 	4	Lab Exercises, CIE, SEE

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO–PO MAPPING -DIRECT:

COURSE OUTCOMES	PO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Identify suitable divide and conquer algorithm for modeling independence and Self-direction solutions to practical problems of stakeholder.	2
	PO 3	Create divide and conquer algorithms for problem- solving in emerging areas such as data science, cyber security.	1
	PO 4	Make use of appropriate divide and conquer algorithm to problem domain for information processing and visualization.	3
	PO 5	Demonstrate the knowledge of divide and conquer algorithms and techniques for interpretation of results in related domains.	2

	PO 6	Apply knowledge of divide and conquer algorithms to start working on higher educational Qualifications and Personal continuing education efforts with keeping current trends in CSE.	2
CO 2	PO 1	Understand stack operations for mathematical abstractions and independence, Self-direction solutions of practical problems in order to demonstrate solutions to stakeholder.	2
	PO 2	Describe stack operations for references as implementation to provide solution in user domains.	1
	PO 3	Create stack data structure for problem-solving in emerging areas such as data science, cyber security.	1
	PO 4	Make use of stack data structures to problem domain for information processing and visualization.	3
	PO 5	Demonstrate the knowledge of stack operations for interpretation of results in related domains.	2
CO 3	PO 1	Define the hashing techniques for independence and Self- direction in solving practical problems to demonstrate solutions to stakeholder and to identify the work break down structure, resources for implementation.	3
	PO 2	Build strong foundation on collusion resolution for career building by communicating effectively with engineering community.	2
	PO 3	Create hash tables and mapping procedure for problem- solving in emerging areas such as data science, cyber security.	1
	PO 4	Utilize advanced mapping techniques of hash table for problem domain to apply algorithm for information processing and visualization.	3
	PO 5	Illustrate the knowledge of hashing techniques for interpretation of results in related domains.	2
	PO 6	Make use of knowledge of hashing techniques to start working on higher educational Qualifications and Personal continuing education efforts with keeping current trends in CSE.	2
CO 4	PO 1	Utilize performance analysis of algorithms on graph data structure for identifying solutions to problems of stake holders.	1
	PO 3	Apply graph procedures of disjoin sets algorithms to analyze critically various applications related to Data Science and Cybersecurity.	1
	PO 5	Use disjoins set operations and union operations for interpretation of results in related domains and visualization.	2
CO 5	PO 1	Recognize appropriate tree traversal technique for Independence and Self-direction in solving practical problems to demonstrate solutions to stakeholder.	2
	PO 3	Make Use of tree traversal techniques to problem domain and algorithm for information processing and visualization.	3

PO 4	Apply tree traversal techniques to problem domain for information processing and visualization.	3
PO 5	Illustrate knowledge of tree traversal techniques of hashing for interpretation of results in related domains.	1

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUTCOMES						
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
CO 1	2	-	1	3	2	2	
CO 2	2	1	1	3	2	-	
CO 3	3	2	1	3	2	2	
CO 4	1	-	1	-	2	-	
CO 5	2	-	-	3	1	-	

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams		SEE Exams		Seminars	-
	\checkmark		\checkmark		
Laboratory		Student Viva		Certification	-
Practices	\checkmark		\checkmark		
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

X	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XIV SYLLABUS:

	LIST OF EXPERIMENTS						
Week-1	DIVIDE AND CONQUER - 1						
a. Impl stude perfo b. Impl stude perfo	 a. Implement Quick Sort on 1D array of Student structure (contains student name, student_roll_no,total_marks), with key as student_roll_no and count the number of swap performed. b. Implement Merge Sort on 1D array of Student structure (contains student_name, student_roll_no,total_marks), with key as student_roll_no and count the number of swap performed. 						
Week-2	DIVIDE AND CONQUER - 2						
a. Des sum arra	ign and analyze a divide and conquer algorithm for following maximum sub-array n problem: given an array of integer's find a sub-array [a contagious portion of the ay] which gives the maximum sum.						

b. Design a binary search on 1D array of Employee structure (contains employee_name,

emp_no, emp_salary), with key as emp_no and count the number of comparison happened.						
Week-3 IMPLEMENTATION OF STACK AND QUEUE						
 a. Implement 3-stacks of size 'm' in an array of size 'n' with all the basic operations such as Is Empty(i),Push(i), Pop(i), IsFull(i) where 'i' denotes the stack number (1,2,3), Stacks are not overlapping each other. b. Design and implement Oueue and its operations using Arrays 						
Week-4 HASHING TECHNIQUES						
 Write a program to store k keys into an array of size n at the location computed using a hash function, loc =key % n, where k<=n and k takes values from [1 to m], m>n. To handle the collisions use the following collision resolution techniques a. Linear probing b. Quadratic probing c. Random probing d. Double hashing/rehashing 						
Week-5 APPLICATIONS OF STACK						
Write C programs for the following:a. Uses Stack operations to convert infix expression into post fix expression.b. Uses Stack operations for evaluating the post fix expression.						
Week-6 BINARY SEARCH TREE						
Write a program for Binary Search Tree to implement following operations: a. Insertion b. Deletion						
i. Delete node with only child ji. Delete node with both children						
c. Finding an element						
d. Finding Min element e. Finding Max element						
f. Left child of the given node						
g. Right child of the given node h. Finding the number of nodes, leaves nodes, full nodes, ancestors, descendants.						
Week-7 DISJOINT SET OPERATIONS						
 a. Write a program to implement Make_Set, Find_Set and Union functions for Disjoint Set Data Structure for a given undirected graph G(V,E) using the linked list representation with simple implementation of Union operation. b. Write a program to implement Make_Set, Find_Set and Union functions for Disjoint Set Data Structure for a given undirected graph G(V,E) using the linked list representation with weighted-union heuristic approach 						
Week-8 GRAPH TRAVERSAL TECHNIQUES						

XV TEXT BOOKS:

1. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", Universities Press Private Limited, India, 2nd Edition, 2008.

2. G.A.V.Pai, "Data Structures and Algorithms", Tata McGraw Hill, NewDelhi,1stEdition,2008.

3. M. A. Weiss, Addison Wesley, "Data Structures and Algorithm Analysis in Java", Pearson Education, 2 nd Edition, 2005.

XVI REFERENCE BOOKS:

1. Kernighan Brian W, Dennis M. Ritchie, "The C Programming Language", Prentice Hall of India, RePrint, 2008.

2. Balagurusamy E, "Programming in ANSIC", Tata McGraw Hill, 6th Edition, 2008.

3. Gottfried Byron, "Schaum's Outline of Programming with C", Tata McGraw Hill, 1st Edition, 2010.

4. Lipschutz Seymour, "Data Structures Schaum's Outlines Series", Tata McGraw Hill, 3rdEdition, 2014.
5. HorowitzEllis, SatrajSahni,SusanAnderson,Freed, "FundamentalsofDataStructuresinC",W.H.
Freeman Company, 2nd Edition, 2011

XVII COURSE PLAN:

S.No	Topics to be covered	CO's	Refer- ence
1	Introduction of data structures.	CO 1	T1:1
2	Design and analyze a divide and conquer algorithm	CO 1	T1:4.9,4.11
3	Implementation stack and queue and its operations using arrays	CO 2	T1:3
4	Understand collision resolution techniques	CO 3	T1:6.6
5	Evaluate postfix expression using stack	CO 2	T1:4.4, T2:10
6	Implement traversals on binary search tree	CO 4	T1:4.6, T2:10
7	Implement Disjoint Set Operations	CO 4	T2:15
8	Implement graph traversal techniques like DFS and BFS	CO 4	T2:18
9	Design a shortest paths algorithm using Dijkstra's algorithm	CO 5	T2: 5.2
10	Minimum Cost Spanning Tree using Kruskal's algorithm	CO 4	T2:18
11	Implement Tree Traversals	CO 5	T2:10
12	All-Pairs Shortest Paths Problem using Floyd's algorithm.	CO 5	T1:2, T2:1

The course plan is meant as a guideline. Probably there may be changes.

XVIII EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	DFS for a n-ary tree (acyclic graph) represented as adjacency list.
2	AVL tree with duplicate keys.

Signature of Course Coordinator

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Branch	COMPUTER SCIENCE AND ENGINEERING							
Course Title	DEEP LEARNING							
Course Code	BCSC05							
Program	M.Tech							
Semester	I CSE							
Course Type	Core							
Regulation	IARE - PG21							
Theory Practical					tical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
$3 \qquad 0 \qquad 3$								
Course Coordinator	Dr. Y Mohana Roopa, Professor							

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	ACIC08	VI	DATA MINING AND KNOWLEDGE DISCOVERY LABORATORY

II COURSE OVERVIEW:

This course will discuss fundamental concepts in deep learning with emphasis on their applications to computer science. Topics include various search algorithms conventional neural networks, applications of deep learning to computer vision, applications of deep learning to NLP and analogy reasoning.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
DEEP LEARNING	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	PPT	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Seminars	\checkmark	Others				

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course. CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment /AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty. CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	Assign-	AAT	10tal Marks
		ment		
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz/Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Understand complexity of Deep Learning algorithms and their limitations
II	Capable of performing experiments in Deep Learning using real-world data

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Implement deep learning algorithms, understand neural networks and traverse the layers ofdat	Apply
CO 2	Learn topics such as convolutional neural networks, recurrent neural networks training deepnetworks and high-level interfaces	Apply
CO 3	Understand applications of Deep Learning to o Computer Vision.	Under- stand
CO 4	Understand and analyze Applications of Deep Learning to NLP	Under- stand
CO 5	Analyze and implement deep learning networks in real time applications.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes				
PO 1	Independently carry out research/investigation and development work to				
	solve practical problems.				
PO 2	Write and present a substantial technical report/document.				
PO 3	Demonstrate a degree of mastery in computer science and engineering				
	emerging areas such as data science, cyber security and application				
	development				
PO 4	Apply advanced-level knowledge, techniques, skills, and modern tools in the				
	field of computer science and engineering and its allied areas.				
PO 5	Function effectively as a member or leader in diverse teams to carry out				
	development work, and produce solutions that meet the specified needs with				
	frontier technologies in multidisciplinary environments.				
PO 6	Engage in life-long learning for continuing education in doctoral-level studies				
	and professional development.				

IX MAPPING OF EACH CO WITH PO(s):

COURSE		PROGRAM OUTCOMES				
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	\checkmark	-	-	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	-	-	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	-	-	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	-	-	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	-	-	\checkmark	\checkmark	\checkmark

X COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	-	-	2	3	3
CO 2	3	-	-	2	3	3
CO 3	3	-	-	2	3	3
CO 4	3	-	-	2	3	3
CO 5	3	-	-	2	3	3
TOTAL	15	-	-	10	15	15
AVERAGE	3	-	-	2	3	3

XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminar and term	\checkmark
				paper	
Laboratory	-	Student Viva	-	Mini Project	-
Practices					

XII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	End Semester OBE Feed Back	
v	End Schicster ODE Feed Dack	

XIII SYLLABUS:

MODULE I	INTRODUCTION
	Feed forward Neural networks, Gradient descent and the back propagation algorithm, Unit saturation, the vanishing gradient problem, and ways to mitigate it. RelU Heuristics for avoiding bad local minima, Heuristics for faster training, Nestors accelerated gradient descent, Regularization, Dropout.
MODULE II	CONVOLUTIONAL NEURAL NETWORKS
	Architectures, convolution/pooling layers, Recurrent Neural Networks: LSTM, GRU, Encoder Decoder architectures. Deep Unsupervised Learning: Auto encoders, Variational Auto-encoders, Adversarial Generative Networks, Autoencoder and DBM Attention and memory models, Dynamic Memory Models
MODULE III	APPLICATIONS OF DEEP LEARNING TO COMPUTER VISION
	Image segmentation, object detection, automatic image captioning, Image generation with Generative adversarial networks, video to text withLSTM models, Attention Models for computer vision tasks
MODULE IV	APPLICATIONS OF DEEP LEARNING TO NLP
	Introduction to NLP and Vector Space Model of Semantics, Word Vector Representations: Continuous Skip-Gram Model, Continuous Bag-of-Wordsmodel (CBOW), Glove, Evaluations and Applications in word similarity.
MODULE V	ANALOGY REASONING
	Named Entity Recognition, Opinion Mining using Recurrent Neural Networks: Parsing and Sentiment Analysis using Recursive Neural Networks: Sentence Classification using Convolutional Neural Networks, Dialogue Generation with LSTMs.

TEXTBOOKS

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.

3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCE BOOKS:

- 1. Bishop, C, M., Pattern Recognition and Machine Learning, Springer, 2006
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009..
- 3. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004

WEB REFERENCES:

- 1. Deep Learning Book, https://www.deeplearningbook.org.
- 2. https://hastie.su.domains/Papers/ESLII.pdf
- 3. https://mitpress.mit.edu/9780262013192/probabilistic-graphical-models

COURSE WEB PAGE:

 $1.\ https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf$

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered		Refer-
			ence
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	_	
	CONTENT DELIVERY (THEORY)		
1	Feed forward Neural networks	CO 1	T1:1.1,1.2
2	Gradient descent and the back propagation algorithm, Unit saturation	CO 1	T1:2.1,2.2
3	the vanishing gradient problem, and ways to mitigate it	CO 1	T1:3.1, 3.2, 4.1, 4.2
4	RelU Heuristics for avoiding bad local minima	CO 1	T2:1.1,1.3
5	Heuristics for faster training	CO 1	T2:1.1,1.7
6	, Nestors accelerated gradient descent	CO 1	T2:1.8- 1.10
7	Regularization, Dropout	CO 2	T2:11.2- 11.4
8	Architectures, convolution/pooling layers	CO 2	T2:11.6
9	Recurrent Neural Networks: LSTM	CO 2	T2:11.7
10	GRU, Encoder Decoder architectures	CO 2	T3:1.4.1
11	Deep Unsupervised Learning	CO2	T1:6.1,6.2
12	Auto encoders, Variational Auto-encoders	CO2	T3: 3.3.7

13	Adversarial Generative Networks	CO2	T1:8.1,
			T3: 9.1
14	Autoencoder and DBM Attention and memory models	CO3	T3:9.2
15	Dynamic Memory Models	CO 2	T3: 9.3
16	Image segmentation	CO 3	T3: 9.3
17	object detection	CO 3	T3:3.1, 3.2
18	automatic image captioning	CO 3	T3:3.2
19	Image generation with Generative adversarial networks	CO 3	T3:18.3.4, 18.3
20	video to text withLSTM models	CO 3	T3:4.1
21	Attention Models for computer vision tasks	CO 3	T3:18.1
22	Introduction to NLP and Vector Space Model of Semantics	CO 4	T3:15.1
23	Word Vector Representations: Continuous Skip-Gram Model	CO 4	T3:15.1
24	, Continuous Bag-of-Wordsmodel (CBOW)	CO 4	T2:5.1, 5.8
25	Glove, Evaluations and Applications in word similarity	CO 4	T2:12.5,12.7
26	Named Entity Recognition	CO 5	T2:12.5, 12.8
27	Opinion Mining using Recurrent Neural Networks	CO 5	T2:12.5, 12.9
27	Parsing and Sentiment Analysis using Recursive Neural Networks	CO 5	T2:12.5, 12.10
28	Sentence Classification using Convolutional Neural Networks	CO 5	T2:12.5, 12.10
29	Dialogue Generation with LSTMs	CO 5	T2:12.5, 12.10
	DISCUSSION ON VARIOUS TOPICS	5	1
1	Module1	CO 1	T1:R1, W1
2	Module2	CO 2	T1:R1, W1
3	Module3	CO 3	T2:R1, W2
4	Module4	CO 4	T2:R1, W2
5	Module5	CO 5	T3:R1, W3

INSTITUTEOFAERONAUTICALENGINEERING

(Autonomous) Dundigal, Hyderabad-500043 COURSEDESCRIPTION

Branch **Computer Science and Engineering Course Title** Mining Massive Datasets **Course Code** BCSC09 Program M.Tech Semester CSE I Course Type Elective IARE-PG21 Regulation Theory Practical **Course Structure** Tutorials Credits Laboratory Credits Lecture 3 3 _ _ **Course Faculty** Dr. R. M. Noorullah, Assistant Professor

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
PG	BCSC01	I	MATHEMATICAL
			FOUNDATIONS OF
			COMPUTER SCIENCE

II COURSEOVERVIEW:

This course is based on text mining of massive data sets and their applications. Topics include map reduce and the new software stack, applications of similarity search, implementation of stream data, link analysis, handling large data set's, clustering, issues in online advertising, recommendation systems and mining social network graphs

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Mining Massive Dataset	70Marks	30Marks	100

IV DELIVERY/INSTRUCTIONAL METHODOLOGIES:

1	PPT	1	Chalk &Talk	1	Assignments	х	MOOC
х	Seminars	1	Others				

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). **Semester End Examination (SEE):** The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or" choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three subdivisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50%	To test the objectiveness of the concept
30%	To test the analytical skill of the concept
20%	To test the application skill of the concept

Continuous Internal Assessment(CIA):

ForeachtheorycoursetheCIAshallbeconductedbythefaculty/teacherhandlingthecourse.CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination(CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment/AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty.CIA is conducted for a total of 30marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/Alternative Assessment Tool(AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	Assignment	AAT	
CIA Marks	20	05	05	30

Continuous Internal Examination(CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5marks.Marksareawarded by taking average of marks scored in two CIE exams.

Quiz/Alternative Assessment Tool(AAT):

Two Quiz exams shall be online examination consisting of 25multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four).Marks shall be awarded considering the average of two quizzes for every course.The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI COURSEOBJECTIVES:

The students will try to learn:

I	This course will cover practical algorithms for solving key problems in mining of
	massive datasets
П	This course focuses on parallel algorithmic techniques that are used for large datasets
111	This course will cover stream processing algorithms for data streams that arrive constantly, page ranking algorithms for web search, and online advertisement systems that are studied in detail.

VII COURSEOUTCOMES:

After successful completion of the course, student should be able to:

CO1	Handle massive data using Map Reduce.	Understand
CO2	Develop and implement algorithms for massive data sets and methodologies in the context ofdata mining	Apply
CO3	Understand the algorithms for extracting models and information from large datasets	Understand
CO4	Develop recommendation systems	Apply
CO5	Gain experience in matching various algorithms for particular classes of problems.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO1:	Independently carry out research/investigation and development work to solve practical problems.
PO2:	Write and present a substantial technical report/document.
PO3:	D emonstrateadegreeofmasteryincomputerscienceandengineeringemergi ngareassuchasdatascience, cyber security, and application development.
PO4:	Apply advanced-level knowledge, techniques, skills ,and modern tools in the field of computer science and engineering and its allied areas.
PO5:	F unction effectively as a member or leader in diverse teams to carry out development work, and produce solutions that meet the specified needs with frontier technologies in multi disciplinary environments.
PO6:	Engageinlife-longlearningforcontinuingeducationindoctoral- levelstudiesandprofessionaldevelopment.

IX MAPPING OF EACH CO WITHPO(s):

COURSE		PRO	OGRAMO	DUTCOM	IES	
OUTCOMES	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	-	1	1	-
CO2	1	-	-	1	✓	-
CO3	1	-	-	1	1	-
CO4	1	-	-	1	1	-
CO5	✓	-	-	1	1	-

X COURSE ARTICULATION MATRIX(PO-PSOMAPPING):

CO'SandPO'SandCO'SandPSO'Sonthescaleof0to3,0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

COURSE	PROGRAMOUTCOMES						
OUTCOMES	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	-	-	2	1	-	
CO2	2	-	-	2	1	-	
CO3	2	-	-	2	1	-	
CO4	2	-	-	2	1	-	
CO5	2	-	-	2	1	-	
TOTAL	10	-	-	10	5	-	
AVERAGE	2	-	-	2	1	-	

XI ASSESSMENT METHODOLOGY DIRECT:

CIEExams	1	SEE Exams	1	Seminarandtermpap er	1
LaboratoryPrac tices	-	StudentViva	-	MiniProject	-

XII ASSESSMENTMETHODOLOGY INDIRECT:

1	End Semester OBE Feed Back

XIII SYLLABUS:

MODULEI	DATA MINING:
	Introduction-Definition of Data Mining-Statistical Limits on Data Mining. Map Reduce and the New Software Stack-Distributed File Systems, Map Reduce, Algorithms Using Map Reduce
MODULEII	SIMILARITY SEARCH:
	Finding Similar Items-Applications of Near-Neighbor Search, Shingling of Documents, Similarity Preserving Summaries of Sets, Distance Measures. Streaming Data: Mining Data Streams-The Stream Data Model, Sampling Data in a Stream, Filtering Streams
MODULEIII	LINK ANALYSIS:
	Page Rank, Efficient Computation of Page Rank, Link Spam. Frequent Item sets- Handling Larger Datasets in Main Memory, Limited-Pass Algorithms, Counting Frequent Items in a Stream. Clustering-The CURE Algorithm, Clustering in Non- Euclidean Spaces, Clustering for Streams and Parallelism.
MODULEIV	ADVERTISING ON THE WEB:
	Issues in On-Line Advertising, On-Line Algorithms, The Matching Problem, The Adwords Problem, Adwords Implementation. Recommendation Systems-A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering, Dimensionality Reduction, The NetFlix Challenge
MODULEV	MINING SOCIAL-NETWORK GRAPHS:
	Mining Social-Network Graphs - Social Networks as Graphs, Clustering of Social- Network Graphs, Partitioning of Graphs, Simrank, Counting Triangles.

ΤΕΧΤΒΟΟΚS

1. Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets, 3 rd Edition.

REFERENCEBOOKS:

- 1. Jiawei Han & Micheline Kamber, Data Mining Concepts and Techniques 3rd Edition Elsevier.
- 2. Margaret H Dunham, Data Mining Introductory and Advanced topics, PEA.
- 3. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan

Kaufmann

WEBREFERENCES:

1. <u>http://i.stanford.edu/~ullman/mining/mining.html</u>

COURSE WEB PAGE:

1. http://www.mmds.org

XIV COURSEPLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topicstobecovered	CO's	Reference			
	OBEDISCUSSION					
1	CourseDescriptiononOutcomeBasedEducation(OBE):Cour seObjectives,CourseOutcomes(CO),ProgramOutcomes(P O)andCO-POMapping	-				
	CONTENTDELIVERY(THEORY)					
1	Definition of Data Mining	CO1	TB1:1.1			
2	Statistical Limits on Data Mining	CO1	TB1:1.2			
3	Map Reduce and the New Software Stack	CO1	TB1:2.0			
4	Distributed File Systems	CO1	TB1:2.1			
5	Map Reduce	CO1	TB1:2.2			
6	Algorithms Using Map Reduce	CO1	TB1:2.3			
7	Finding Similar Items	CO2	TB1:3.0			
8	Applications of Near-Neighbor Search	CO2	TB1:3.1			
9	Shingling of Documents	CO2	TB1:3.2			
10	Similarity Preserving Summaries of Sets	CO2	TB1:3.3			
11	Distance Measures	CO2	TB1:3.5			
12	Mining Data Streams	CO2	TB1:4.0			
13	The Stream Data Model	CO2	TB1:4.1			
14	Sampling Data in a Stream	CO2	TB1:4.2			
15	Filtering Streams	CO2	TB1:4.3			
16	Page Rank	CO3	TB1:5.1			
17	Efficient Computation of Page Rank,	CO3	TB1:5.2			
18	Link Spam	CO3	TB1:5.4			
19	Handling Larger Datasets in Main Memory	CO3	TB1:6.3			
20	Limited-Pass Algorithms	CO3	TB1:6.4			
21	Counting Frequent Items in a Stream	CO3	TB1:6.5			

22	The CURE Algorithm	CO3	TB1:7.4
23	Clustering in Non-Euclidean Spaces	CO3	TB1:7.5
24	Clustering for Streams and Parallelism.	CO3	TB1:7.6
25	Issues in On-Line Advertising	CO4	TB1:8.1
26	On-Line Algorithms	CO4	TB1:8.2
27	The Matching Problem	CO4	TB1:8.3
28	The Adwords Problem	CO4	TB1:8.4
28	Adwords Implementation	CO4	TB1:8.5
29	A Model for Recommendation Systems	CO4	TB1:9.1
30	Content-Based Recommendations	CO4	TB1:9.2
31	Collaborative Filtering	CO4	TB1:9.3
32	Dimensionality Reduction	CO4	TB1:9.4
33	The NetFlix Challenge.	CO4	TB1:9.5
34	Social Networks as Graphs	CO5	TB1:101
35	Clustering of Social-Network Graphs	CO5	TB1:10.2
36	Partitioning of Graphs	CO5	TB1:10.4
37	Sim rank	CO5	TB1:10.6
38	Counting Triangles	CO5	TB1:10.7
МО	DULE WISE DISCUSSION ON VARIOUS TOPICS		
1	MODULE – 1	CO1	T1, R1,CSW1
2	MODULE – II	CO2	T1,R2,CSW1
3	MODULE – III	CO3	T1,R2,CSW1
4	MODULE – IV	CO4	T1,R3,CSW1
5	MODULE - V	CO5	T1,R3,CSW1

Signature of Course Coordinator

HOD CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Branch	COMPUTER SCIENCE AND ENGINEERING				
Course Title	CYBER SE	CURITY			
Course Code	BCSC13				
Program	M.Tech				
Semester	II	CSE			
Course Type	Core				
Regulation	IARE- PG21				
		Theory		Prac	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3		3
Course Coordinator	Dr. C Madhusudhana Rao, Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	-	-	Computer Networks
UG	-	-	Information Security

II COURSE OVERVIEW:

This course focuses on the planning and execution of security measures to shield an organization's computer systems, networks, and network devices from infiltration and cyber-attacks. It covers topics such as overview of cybercrimes, computer security, cryptography algorithms, internet hacking and cracking, web hacking, cybercrime investigation, digital forensics and certificates, securing databases, laws and acts. This helps to build career opportunities as Cyber Security Analyst, Cyber Security Practitioner, Cyber Defense Analyst and Information Security Engineer in leading IT and Governmental Organizations.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Cyber Security	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	PPT	\checkmark	Chalk & Talk	\checkmark	Assignments	✓	MOOC
x	Seminars	\checkmark	Others	Χ			

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course. CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment /AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty. CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Theory		Total Marks
Type of Assessment	pe of Assessment CIE Exam Assignment		AAT	10tai Maiks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz/Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI COURSE OBJECTIVES: The students will try to learn:

Ι	Preventing, monitoring, and responding to data breaches and cyber-attacks
II	The security assurance principles of information.
III	The key components of cyber security network architecture.
IV	The cyber security architecture principles.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize web security concepts to overcome cyber crimes	Understand
CO 2	Make use of cryptography techniques for protecting systems	Apply
	from unauthorized access and information security.	
CO 3	Demonstrate web hacking and cybercrime investigation tools	Apply
	for detecting and recovering in the web domain	
CO 4	Identify digital forensics procedures and policies to manage	Understand
	organizational security risks.	
CO 5	Recognize database security concepts and cyber laws for data	Create
	protection in digital space.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes		
PO 1	Independently carry out research/investigation and development work to		
	solve practical problems.		
PO 2	Write and present a substantial technical report/document.		
PO 3	Demonstrate a degree of mastery over the area as per the specialization of		
	the program. The mastery should be at a level higher than the requirements		
	in the appropriate bachelor program.		
PO 4	Apply advanced-level knowledge, techniques, skills, and modern tools in the		
	field of computer science and engineering and its allied areas.		
PO 5	Function effectively as a member or leader in diverse teams to carry out		
	development work, and produce solutions that meet the specified needs with		
	frontier technologies in multidisciplinary environments.		
PO 6	Engage in life-long learning for continuing education in doctoral-level studies		
	and professional development.		

IX MAPPING OF EACH CO WITH PO(s):

COURSE		PROGRAM OUTCOMES						
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	\checkmark	-	-	\checkmark	\checkmark	\checkmark		
CO 2	\checkmark	-	-	\checkmark	\checkmark	\checkmark		
CO 3	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark		
CO 4	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark		
CO 5	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark		

X COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

COURSE	PROGRAM OUTCOMES						
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
CO 1	2	-	-	3	1	2	
CO 2	2	-	-	3	1	2	
CO 3	2	-	3	3	1	2	
CO 4	2	-	3	3	1	2	
CO 5	2	-	3	3	1	2	
TOTAL	10	-	9	15	5	10	
AVERAGE	2	-	3	3	1	2	

XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminar and term	\checkmark
				paper	
Laboratory	-	Student Viva	-	Mini Project	-
Practices					

XII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	End Semester OBE Feed Back

XIII SYLLABUS:

MODULE I	INTRODUCTION
	A web security forensic lesson, web languages, introduction to different web attacks, overview of n-tier web applications; Web servers: Apache, IIS, database servers, introduction and overview of cybercrime, nature and scope of cybercrime, types of cybercrime: social engineering, categories of cybercrime, property cybercrime.
MODULE II	REVIEW OF COMPUTER SECURITY AND CYBER CRIME ISSUES
	Public key cryptography, RSA, online shopping, payment gateways, unauthorized access to computers, computer intrusions, white collar crimes, viruses and malicious code, internet hacking and cracking, virus attacks, pornography, software piracy, intellectual property, mail bombs, exploitation, stalking and obscenity in internet, digital laws and legislation, law enforcement roles and responses.
MODULE III	WEB HACKING BASICS AND INVESTIGATION
	Web hacking basics HTTP and HTTPS URL, web under the cover overview of java security reading the HTML source, applet security, servlets security, symmetric and asymmetric encryptions, network security basics, firewalls and IDS. Investigation: Introduction to cybercrime investigation, investigation tools, e-discovery, digital evidence collection, evidence preservation, e-mail investigation, e-mail tracking, IP tracking, e-mail recovery, hands on case studies; Encryption and Decryption methods, search and seizure of computers, recovering deleted evidences, password cracking
MODULE IV	DIGITAL CERTIFICATES AND DIGITAL FORENSICS
	Digital certificates, hashing, message digest, and digital signatures; Digital forensics: Introduction to digital forensics, forensic software and hardware, analysis and advanced tools, forensic technology and practices, forensic ballistics and photography, face, iris and fingerprint recognition, audio video analysis, windows system forensics, Linux system forensics, network forensics.
MODULE V	SECURING DATABASES, LAWS AND ACTS

	Basics, secure JDBC, securing large applications, cyber graffiti; Laws and
	acts: Laws and ethics, digital evidence controls, evidence handling
	procedures, basics of Indian Evidence Act IPC and CrPC, electronic
	communication privacy act, legal policies.

TEXTBOOKS

- 1. Mc Clure, Stuart, Saumil Shah, Shreeraj Shah, —Web Hacking: Attacks and Defense ||, AddisonWesley Professional, Illustrated Edition, 2003.
- 2. Garms, Jess, Daniel Somerfield, —Professional Java Security ||, WroxPress, Illustrated Edition, 2001.
- 3. Jon Erickson -Hacking: The Art Of Exploitation, which was published in 2003

REFERENCE BOOKS:

- 1. Pfleeger, Charles P. and Shari L. Pfleeger. Security in Computing, 4th Edition. Upper Saddle River, NJ: Prentice Hall, 2008
- 2. Rice, David. Geekonomics: The Real Cost of Insecure Software. Upper Saddle River, NJ: Pearson Education, 2008.
- 3. Cyber Security Essentials, James Graham, Ryan Olson, Rick Howard, CRC Press
- 4. Peter Flach, "Machine Learning", Cambridge University Press, 1 st Edition, 2012

WEB REFERENCES:

- 1. Nelson Phillips, EnfingerSteuart, —Computer Forensics and Investigations ||, Cengage Learning, New Delhi,2009.
- 2. https://www.marwadiuniversity.ac.in/wp-content/uploads/2017/06/01cy102-advancenetworksecurity.pdf
- 3. https://www.simplilearn.com/tutorials/cyber-security-tutorial/cyber-security-books

COURSE WEB PAGE:

1. https://www.futurelearn.com/courses/introduction-to-cyber-security

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	
	CONTENT DELIVERY (THEORY)		
1	A web security forensic lesson	CO 1	T1:1.1,1.2
2	web languages, introduction to different web attacks	CO 1	T1:2.1,2.2

3	overview of n-tier web applications	CO 1	T1:3.1,
			3.2, 4.1,
			4.2
4	Web servers: Apache, IIS, database servers, introduction	CO 1	T2:1.1,1.3
	and overview of cybercrime		
5	nature and scope of cybercrime	CO 1	T2:1.1,1.7
6	types of cybercrime: social engineering, categories of	CO 1	T2:1.8-
	cybercrime, property cybercrime	COA	1.10
(Public key cryptography, RSA, online shopping		12:11.2-
8	navment gateways unauthorized access to computers	CO_2	T2·11.4
0	computer intrusions, white collar crimes	CO 2	12.11.0 T2.11.7
9	computer intrusions, white conar crimes	CO_2	T2.11.7
10	viruses and mancious code, internet nacking and cracking	CO 2	15:1.4.1 T1 C 1 C 0
	virus attacks, pornography, software piracy, intellectual property	CO2	11:6.1,6.2
12	mail bombs, exploitation, stalking and obscenity in	CO2	T3: 3.3.7
	internet		
13	digital laws and legislation, law enforcement roles and	CO2	T1:8.1,
	responses	GOA	13: 9.1
14	Web hacking basics HT [*] TP and HT [*] TPS URL	CO3	T3:9.2
15	web under the cover overview of java security reading the	CO 3	13: 9.3
	symmetric and asymmetric encryptions network security		
	basics, firewalls and IDS		
16	Investigation: Introduction to cybercrime investigation,	CO 3	T3: 9.3
	investigation tools, e-discovery, digital evidence collection,		
	evidence preservation		
17	e-mail investigation, e-mail tracking, IP tracking, e-mail	CO 3	T3:3.1, 3.2
	recovery, hands on case studies		
18	Encryption and Decryption methods	CO 3	T3:3.2
19	search and seizure of computers, recovering deleted	CO 3	T3:18.3.4,
- 20	evidences, password cracking	CO 1	18.3
20	Digital certificates, hashing, message digest, and digital	CO 4	13:4.1
21	Digital foronsics: Introduction to digital foronsics foronsic	CO 4	T3·18 1
21	software and hardware, analysis and advanced tools		13.10.1
22	forensic technology and practices, forensic ballistics and photography, face	CO 4	T3:15.1
23	iris and fingerprint recognition, audio video analysis.	CO 4	T3:15.1
	windows system forensics		
24	Linux system forensics, network forensics	CO 4	T2:5.1, 5.8
25	Basics, secure JDBC, securing large applications, cyber	CO 5	T2:12.5,12.7
	gramtı		

26	Laws and acts: Laws and ethics, digital evidence controls, evidence handling procedures	CO 5	T2:12.5, 12.8			
27	basics of Indian Evidence Act IPC and CrPC	CO 5	T2:12.5, 12.9			
27	Electronic communication privacy act, legal policies.	CO 5	T2:12.5, 12.10			
	DISCUSSION ON VARIOUS TOPICS					
1	Module I	CO 1	TB1			
2	Module II	CO 2	TB1, TB3			
3	Module III	CO 3	TB1, TB3			
4	Module IV	CO 4	TB3			
5	Module V	CO 5	TB2			

Signature of Course Coordinator Dr. C Madhusudhana Rao, Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Branch	COMPUTER SCIENCE AND ENGINEERING							
Course Title	Soft Compu	Soft Computing						
Course Code	BCSB14							
Program	M.Tech	M.Tech						
Semester	II	II CSE						
Course Type	Core							
Regulation	IARE- PG21							
		Theory		Prac	tical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	3	-	3		3			
Course Coordinator	Mr. N. Rajasekhar, Assistant Professor							

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
PG	-	-	Probability and Statistics
PG	-	-	Design and Analysis of Algorithms

II COURSE OVERVIEW:

Soft computing course provides students with fundamental theory and applications of heuristics, meta heuristics and evolutionary computations. It is used for approximate calculations to provide imprecise but useable solutions to complex problems. This includes intelligence systems, artificial neural network models, fuzzy logic and its inference system, and neuro-fuzzy system. The applications of Soft Computing across different industries such as kinematics, automobile, image processing and data compression, Decision Support System, Power System Analysis and investment and trading.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Soft Computing	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	PPT	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Seminars	\checkmark	Others				

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course. CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment /AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty. CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks			
Type of Assessment	CIE Exam	Assign-	AAT	100ar Marks	
		ment			
CIA Marks	20	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz/Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI COURSE OBJECTIVES: The students will try to learn:

Ι	The basics of intelligence techniques and methodologies of soft computing that differs from conventional artificial computations.
II	The design and analysis of problem solving using concepts of neural networks, neuro-modeling, several neural networks paradigms and its applications.
III	The concepts of fuzzy logic and inference systems, neuro-fuzzy system, and applications to handle uncertainity in engineering problems
IV	The soft computing techniques used in different applications for optimization.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Recognize the importance of knowledge representation and processing in intelligent system.	Apply
CO 2	Describe the characteristics and constitutes of soft computing for decision making systems.	Analyze
CO 3	Demonstrate the models of artificial neural systems or classification problems.	Apply
CO 4	Apply the learning rules and its working principle for computer vision and image processing applications.	Apply
CO 5	Comparee the importance of auto and hetero associative memories for distinct cases of neural network systems.	Create

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes				
PO 1	Independently carry out research/investigation and development work to			
	solve practical problems.			
PO 2	Write and present a substantial technical report/document.			
PO 3	Demonstrate a degree of mastery over the area as per the specialization of			
	the program. The mastery should be at a level higher than the requirements			
	in the appropriate bachelor program.			
PO 4	Apply advanced-level knowledge, techniques, skills, and modern tools in the			
	field of computer science and engineering and its allied areas.			
PO 5	Function effectively as a member or leader in diverse teams to carry out			
	development work, and produce solutions that meet the specified needs with			
	frontier technologies in multidisciplinary environments.			
PO 6	Engage in life-long learning for continuing education in doctoral-level studies			
	and professional development.			

IX MAPPING OF EACH CO WITH PO(s):

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	\checkmark	-	-	\checkmark	\checkmark	-
CO 2	\checkmark	-	-	\checkmark	\checkmark	-
CO 3	\checkmark	-	-	\checkmark	\checkmark	-
CO 4	\checkmark	-	-	\checkmark	\checkmark	-
CO 5	\checkmark	-	-	\checkmark	\checkmark	-

X COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

COURSE	PROGRAM OUTCOMES						
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	
CO 1	2	-	-	1	1	-	
CO 1	2	-	-	1	1	-	
CO 1	2	-	-	1	1	-	
CO 1	2	-	-	1	1	-	
CO 1	2	-	-	1	1	-	
TOTAL	10	-	-	5	5	-	
AVERAGE	2	-	-	1	1	-	
XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminar and term	\checkmark
				paper	
Laboratory Practices	-	Student Viva	-	Mini Project	-

XII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	End Semester O	BE Feed Back
--------------	----------------	--------------

XIII SYLLABUS:

MODULE I	INTRODUCTION to NEURAL NETWORKS
	Introduction: Fundamental concept, evolution of neural networks, models of artificial neural networks, important technologies, applications, McCulloch, Pitts Neuron, linear separability, Hebb network; Supervised learning network: Perception networks, adaptive linear neuron, multiple adaptive linear neurons, back propagation network, radial basis function network.
MODULE II	ASSOCIATIVE MEMORY AND UNSUPERVISED LEARNING NETWORKS
	Associative memory networks: Training algorithms for pattern association, auto associative memory network, hetero associative memory network, bidirectional associative memory, Hopfield networks, iterative auto associative memory network, temporal associative memory network; Unsupervised learning networks: Kohonenself-organizing feature maps, learning vector quantization, counter propagation networks, adaptive resonance theory network.
MODULE III	FUZZY LOGIC
	Fuzzy logic: Introduction to classical/crisp sets and fuzzy sets, classical/crisp relations and fuzzy relations, tolerance and equivalence relations, non-iterative fuzzysets. Membership functions: Fuzzification, methods of membership value assignments, defuzzification, and Lambda cuts for fuzzy sets and fuzzy relations, defuzzification methods
MODULE IV	FUZZY ARITHMETIC
	Fuzzy arithmetic and fuzzy measures: Fuzzy rule base and approximate reasoning, truth values and tables in fuzzy logic, fuzzy propositions, formation of rules, decomposition and aggregation of rules, fuzzy reasoning, fuzzy inference systems, fuzzy decision making, fuzzy logic control systems, fuzzy expert systems
MODULE V	GENETIC ALGORITHMS

Genetic algorithm and search space, general genetic algorithm, operators, generational cycle, stopping condition, constraints, classification, genetic programming, multilevel optimization; Applications: A fusion approach of multispectral images with SAR image for flood area analysis, optimization of travelling salesman problem using genetic algorithm approach, and genetic algorithm based internet search technique, soft computing based hybrid fuzzycontrollers.

TEXTBOOKS

- 1. J. S. R. Jang, C. T. Sun, E. Mizutani, Neuro, "Fuzzy and Soft Computing", PHI, Pearson Education, 1 st Edition, 2004.
- 2. 2. S. N. Sivanandan, S. N. Deepa, "Principles of Soft Computing", Wiley India, 2nd Edition, 2007.

REFERENCE BOOKS:

- 1. S. Rajasekaran, G.A. V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 1 st Edition, 2003
- 2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", Mc Graw Hill, 3rd Edition, 1997.
- 3. Stamatios V.Kartalopoulos "Understanding Neural Networks and Fuzzy Logic Basic Concepts and Applications", IEEE Press, PHI, New Delhi, 2004.

WEB REFERENCES:

- 1. http://www.sctie.iitkgp.ernet.in/
- 2. http://www.rkala.in/softcomputingvideos.php
- 3. http://www.sharbani.org/home2/soft-computing-1
- 4. http://www.myreaders.info/html/soft-computing.html

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer-				
			ence				
	OBE DISCUSSION						
1	Course Description on Outcome Based Education (OBE):	-					
	Course Objectives, Course Outcomes (CO), Program						
	Outcomes (PO) and CO-PO Mapping						
	CONTENT DELIVERY (THEORY)						
1	Fundamental concept, evolution of neural networks,	CO 1	T1:1.1,1.2				
	models of artificial neural networks						
2	important technologies, applications, McCulloch, Pitts	CO 1	T1:2.1,2.2				
	Neuron, linear separability,						

3	Hebb network; Supervised learning network: Perception	CO 1	T1:3.1,
	networks,		3.2, 4.1, 4.2
4	adaptive linear neuron, multiple adaptive linear neurons,	CO 1	T2:1.1,1.3
5	back propagation network, radial basis function network	CO 1	T2:1.1,1.7
6	tAssociative memory networks: Training algorithms for pattern association, auto associative memory network,	CO 1	T2:1.8- 1.10
7	hetero associative memory network, bidirectional associative memory, Hopfield networks, iterative auto associative memory network, tempora	CO 2	T2:11.2- 11.4
8	associative memory network; Unsupervised learning networks:	CO 2	T2:11.6
9	Kohonenself-organizing feature maps, learning vector quantization, counter propagation networks, adaptive resonance theory network.	CO 2	T2:11.7
10	Fuzzy logic: Introduction to classical/crisp sets and fuzzy sets,	CO 2	T3:1.4.1
11	lassical/crisp relations and fuzzy relations, tolerance and equivalence relations, non-iterative fuzzysets.	CO2	T1:6.1,6.2
12	Membership functions: Fuzzification, methods of membership value assignments,	CO2	T3: 3.3.7
13	defuzzification, and Lambda cuts for fuzzy sets and fuzzy relations,	CO2	T1:8.1, T3: 9.1
14	defuzzification methods	CO3	T3:9.2
15	Fuzzy arithmetic and fuzzy measures:	CO 3	T3: 9.3
16	Fuzzy rule base and approximate reasoning, truth values and tables in fuzzy logic, fuzzy propositions,	CO 3	T3: 9.3
17	formation of rules, decomposition and aggregation of rules, fuzzy reasoning, fuzzy inference systems,	CO 3	T3:3.1, 3.2
18	fuzzy decision making, fuzzy logic control systems,	CO 3	T3:3.2
19	fuzzy expert systems.	CO 3	T3:18.3.4, 18.3
20	Genetic algorithm and search space,	CO 4	T3:4.1
21	general genetic algorithm, operators, generational cycle, stopping condition, constraints, classification	CO 4	T3:18.1
22	genetic programming, multilevel optimization;	CO 4	T3:15.1
23	optimization of travelling salesman problem using genetic algorithm approach,	CO 4	T3:15.1
24	genetic algorithm based internet search technique	CO 4	T2:5.1, 5.8
25	soft computing based hybrid fuzzycontrollers.	CO 5	T2:12.5,12.7
	DISCUSSION ON VARIOUS TOPICS		
1	MODULE 1	CO 1	-
2	MODULE 2	CO 2	-
3	MODULE 3	CO 3	-

4	MODULE 4	CO 4	-
5	MODULE 5	CO 5	-

Signature of Course Coordinator Mr. N. Rajasekhar, Assistant Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Branch	Computer Science and Engineering					
Course Title						
Course Code	BCSC15					
Program	M.Tech					
Semester	CSE	II				
Course Type	Elective					
Regulation	IARE - PG2	1				
		Theory		Prac	tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Faculty	Dr. J Sirisha Devi					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
PG	BCSC01	Ι	Mathematical Foundations of Computer Science

II COURSE OVERVIEW:

In business intelligence, Data gathering, preparation, analysis, and visualizations are inevitable steps in exploratory analysis. This course includes data gathering and transforming to a standard format, data cleaning, statistical methods, and techniques to perform exploratory analysis. In business environments, it is frequently required to transfer data from databases, perform statistical analysis, and establish business communication with effective visualizations.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Data Preparation and Analysis	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	PPT	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Seminars	\checkmark	Others				

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course. CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment /AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty. CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	10tai maiks		
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz/Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI COURSE OBJECTIVES: The students will try to learn:

Ι	The strategies for data gathering and dealing with imperfect real-world data
II	The statistical methods and techniques for exploratory analysis.
III	The various data visualization techniques on complex data in business communication.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Select appropriate data preparation techniquesto transform raw data into a standard format.	Apply
CO 2	Apply data cleaning methods on real-time data for usage of data in analytics	Apply
CO 3	Make use of statistical methods for performing exploratory analysis.	Apply
CO 4	Infer complex data models with respect to time series and geographical data mining.	Analyze
CO 5	Identify the effective visualization techniques for data communication	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes				
PO 1:	Independently carry out research/investigation and development work to				
	solve practical problems.				
PO 2:	Write and present a substantial technical report/document.				
PO 3:	Demonstrate a degree of mastery in computer science and engineering				
	emerging areas such as data science, cyber security, and application				
	development.				
PO 4:	Apply advanced-level knowledge, techniques, skills, and modern tools in the				
	field of computer science and engineering and its allied areas.				
PO 5:	F unction effectively as a member or leader in diverse teams to carry out				
	development work, and produce solutions that meet the specified needs with				
	frontier technologies in multidisciplinary environments.				
PO 6:	Engage in life-long learning for continuing education in doctoral-level studies				
	and professional development.				

IX MAPPING OF EACH CO WITH PO(s):

COURSE	PROGRAM OUTCOMES						
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	\checkmark	-	-	\checkmark	\checkmark	-	-
CO 2	\checkmark	-	-	\checkmark	\checkmark	-	-
CO 3	\checkmark	-	-	\checkmark	\checkmark	-	-
CO 4	\checkmark	-	-	\checkmark	\checkmark	-	-
CO 5	\checkmark	-	-	\checkmark	\checkmark	-	-

X COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	-	-	1	2	-
CO 2	2	-	-	1	2	-
CO 3	2	-	-	1	2	-
CO 4	2	-	-	1	2	-
CO 5	2	-	-	1	2	-
TOTAL	10	-	-	5	10	-
AVERAGE	2	-	-	1	2	-

XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminar and term	\checkmark
				paper	
Laboratory	-	Student Viva	-	Mini Project	-
Practices					

XII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	End Semester OBE Feed Back

XIII SYLLABUS:

MODULE I	DATA GATHERING
	Data formats, Parsing and transformation, Scalability, and real-time issues
MODULE II	DATA PREPARATION
	Consistency checking, Heterogeneous, and missing data, Data
	Transformation, and segmentation
MODULE III	EXPLORATORY ANALYSIS
	Descriptive and Comparative statistics, Clustering and association,
	Hypothesis generation
MODULE IV	VISUALIZATION-1
	Designing Visualizations, Timeseries, Geolocated data, Correlations, and
	connections.
MODULE V	VISUALIZATION-2
	Hierarchies and networks, interactivity.

TEXTBOOKS

1. Glenn J. Myatt, Making sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining||, Wiley publishers, 2007.

REFERENCE BOOKS:

- 1. D. Pyle, Data Preparation for Data Mining. Morgan Kaufmann, 1999.
- 2. Ian H. Witten, Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques (Second Edition) Morgan Kaufmann, 2005.

WEB REFERENCES:

- 1. https://www.techtarget.com/searchbusinessanalytics/definition/data-preparation
- 2. https://aws.amazon.com/what-is/data-preparation/
- 3. https://www.talend.com/resources/what-is-data-preparation/

COURSE WEB PAGE:

1.

XIV COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference				
	OBE DISCUSSION						
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-					
	CONTENT DELIVERY (THEORY)						
1	Data formats	CO1	T1:1.1, 1.2				
2	Parsing and Transformation	CO1	T1:2.1, 2.2				
3	Scalability	CO1	T1:3.1,				
			3.2, 4.1, 4.2				
4	real-time issues	CO1	T1:3.1,				
			3.2, 4.1, 4.2				
5	Consistency Checking	CO2	T1: 1.1,				
			1.3				
6	Heterogeneous	CO2	T1:1.1, 1.7				
7	missing data	CO2	T1:1.1, 1.7				
8	Data Transformation	CO2	T1:1.8- 1.10				
9	segmentation	CO2	T1:1.8-				
			1.10				
10	Descriptive statistics	CO2	T1:11.2-				
			11.4				
11	comparative statistics	CO2	11:11.2-				
12	Clustering and association	CO3	T1:11.6				
13	Hypothesis Generation	CO3	T1:11.7				
14	Designing Visualizations	CO4	T3:1.4.1				
15	Time series	CO4	R1:6.1,6.2				
16	Geolocated data	CO4	R1: 3.3.7				
17	Correlations	CO4	R1:8.1,				
			T3: 9.1				
18	Connections	CO4	R1:8.1,				
			T3: 9.1				
19	Hierarchies	CO5	R2:9.2				
20	Networks	CO5	R2:9.2				
21	Interactivity	CO5	R2:9.3				
	DISCUSSION ON OVERVIEW						
1	Data gathering and preparation	-	-				
2	Data Cleaning	-	-				

3	Exploratory Analysis	-	-
4	Visualization-1	-	-
5	Visualization-2	-	-

Signature of Course Faculty Dr. J Sirisha Devi, Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Branch	Computer Science and Engineering				
Course Title	Internet of things and Applications				
Course Code	BCSC19				
Program	M.Tech				
Semester	CSE II				
Course Type	Course Type Elective				
Regulation	IARE - PG21				
	Theory Practical			tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Faculty Dr.Y.Mohana Roopa					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
PG	BCSC04	I	Wireless Sensor Networks

II COURSE OVERVIEW:

The Internet of things allows every device to connect the world for exchange of information among the associated devices. It focuses on the concepts of data communication, network protocols, cloud computing and network security fundamental techniques, customs and terms including the basic components of hardware and software. The applications of IoT include home automation, smart parking, smart lighting, and smart phone detection.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Internet of things and Applications	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

1	PPT	1	Chalk & Talk	1	Assignments	х	MOOC
х	Seminars	>	Others				

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). **Semester End Examination (SEE):** The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

The emphasis on the questions is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course. CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment /AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty. CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component	Theory			Total Marks
Type of Assessment	CIE Exam	Assignment	AAT	
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz/Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI COURSE OBJECTIVES:

The students will try to learn:

I	The principle and operation of software defined networking and network function virtualization.
П	The knowledge of IoT enabled technologies, security protocols and architectures
111	Python programming skills to move into specific areas – deep learning (DL), data science, machine learning (ML), artificial intelligence (AI) etc.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize the characteristics and appropriate levels of IoT or reusing of deployed IoT resources across application domains.	Understand
CO 2	Identify the necessity of communication models, protocols and API's for accessing data from sensors and actuators tto overcome issues like failure of any connected devices.	Analyze
CO 3	Compare Machine to Machine with IoT and identifying the role of SDN,NFV, NETCONFG-YANG for data exchange between devices and management on network.	Apply
CO 4	Illustrate architectural reference models and state of the art methodologies in IoT application domains for managing access control of IoT devices.	Understand
CO 5	Analyze tdifferent cloud storage models and protocols that are scalable	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes					
PO 1:	Independently carry out research/investigation and development work to					
	solve practical problems.					
PO 2:	Write and present a substantial technical report/document.					
PO 3:	Demonstrate a degree of mastery in computer science and engineering					
	emerging areas such as data science, cyber security, and application					
	development.					
PO 4:	Apply advanced-level knowledge, techniques, skills, and modern tools in the					
	field of computer science and engineering and its allied areas.					
PO 5:	Function effectively as a member or leader in diverse teams to carry out					
	development work, and produce solutions that meet the specified needs with					
	frontier technologies in multidisciplinary environments.					
PO 6:	Engage in life-long learning for continuing education in doctoral-level studies					
	and professional development.					

IX MAPPING OF EACH CO WITH PO(s):

COURSE		PRO	OGRAM	OUTCON	ЛES	
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	1	-	-	1	1	-
CO 2	1	-	-	✓	✓	-
CO 3	1	-	-	1	1	-
CO 4	1	-	-	1	1	-
CO 5	1	-	-	1	1	-

X COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

COURSE		PROGRAM OUTCOMES				
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	2	-	-	2	1	-
CO 2	2	-	-	2	1	-
CO 3	2	-	-	2	1	-
CO 4	2	-	-	2	1	-
CO 5	2	-	-	2	1	-
TOTAL	10	-	-	10	5	-
AVERAGE	2	-	-	2	1	-

XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	1	SEE Exams 🗸		Seminar and term	1
				paper	
Laboratory	-	Student Viva	-	Mini Project	-
Practices					

XII ASSESSMENT METHODOLOGY INDIRECT:

1	End Semester OBE Feed Back

XIII SYLLABUS:

MODULEI	INTRODUCTION
	Definition and characteristics of IoT, physical design of IoT, logical design of IoT, IoT enabling technologies, IoT levels and deployment, domain specific IoTs.
MODULE II	IOT AND M2M
	Introduction, M2M, difference between IoT and M2M, software defined networking (SDN) and network Function virtualization (NFV) for IoT, basics of IoT system management with NETCONF-YANG.
MODULE III	IOT ARCHITECTURE AND TOOLS
	IoT Architecture: State of the art introduction, state of the art; Architecture reference model: Introduction, reference model and architecture, IoT reference model. IoT Reference model-IoT ecosystem and Business models- Introduction to Protocols of IoT: D2D, D2S, S2S, Introduction to simulation tools.
MODULE IV	MODELLING TECHNIQUES
	Introduction to Raspberry Pi interfaces (Serial, SPI, I2C), programming Raspberry PI with Python, other IoT devices.
MODULE V	IOT PHYSICAL SERVERS AND CLOUD OFFERINGS
	Introduction to cloud storage models and communication APIs; WAMP: AutoBahn for IoT, Xively cloud For IoT; Case studies illustrating IoT design: Home automation, smart cities, smart environment.

TEXTBOOKS

- 1. 1. ArshdeepBahga, Vijay Madisetti, "Internet of Things: A Hands-on-Approach", VPT, 1st Edition, 2014.
- 2. 2. Matt Richard son, Shawn Wallace, "Getting Started with RaspberryPi", OReilly (SPD), 3rd Edition, 2014.

REFERENCE BOOKS:

1. Derek Molloy, "Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux" Wiley publishers, 1st Edition, 2020.

WEB REFERENCES:

- 1. https://www.upf.edu/pra/en/3376/22580.
- 2. https://www.coursera.org/learn/iot.

COURSE WEB PAGE:

1. https://www.upf.edu/pra/en/3376/22580.

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference			
	OBE DISCUSSION					
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-				
	CONTENT DELIVERY (THEORY)					
1	Definition and characteristics of IoT	CO1	T1:1.1,1.2			
2	physical design of IoT	CO1	T1:2.1,2.2			
3	logical design of IoT	CO1	T1:3.1,3.2			
4	IoT enabling technologies	CO1	T1:3.1,3.2			
5	IoT levels and deployment	CO1	T1:1.1,1.3			
6	domain specific IoTs	CO1	T1:1.1, 1.7			
7	Introduction	CO2	T1:1.1, 1.7			
8	M2M	CO2	T1:1.8- 1.10			
9	difference between IoT and M2M	CO2	T1:1.8- 1.10			
10	software defined networking (SDN) and network Function	CO2	T1:11.2-			
	virtualization(NFV) for IoT		11.4			
11	basics of IoT system management with NETCONF-YANG	CO2	T1:11.2- 11.4			
12	IoT Architecture: State of the art introduction	CO3	T1:11.6			
13	state of the art	CO3	T1:11.7			
14	Architecture reference model: Introduction	CO3	T3:1.4.1			
15	reference model and architecture	CO3	R1:6.1,6.2			
16	IoT reference model	CO3	R1: 3.3.7			
17	IoT Reference model-IoT ecosystem and Business models-	CO3	R1:8.1, T3: 9.1			
18	Introduction to Protocols of IoT: D2D	CO3	R1:8.1, T3: 9.1			
19	D2S, S2S	CO2	R2:9.2			
20	Introduction to simulation tools	CO3	R2:9.2			
21	Introduction to Raspberry Pi interfaces (Serial, SPI, I2C)	CO4	R2:9.3			

22	programming Raspberry PI with Python	CO4	T3:9.1	
23	other IoT devices	CO4	T3:9.1	
24	Introduction to cloud storage models and communication APIs	CO5	T3:9.1	
25	WAMP: AutoBahn for IoT	CO5	T3:9.1	
26	Xively cloud For IoT	CO5	T3:9.1	
27	Case studies illustrating IoT design	CO5	T3:9.1	
28	Home automation	CO6	T3:9.1	
28	smart cities	CO6	T3:9.1	
29	smart environment CO6 T3:9.1			
	DISCUSSION ON VARIOUS TOPICS			
1	Module 1	CO1	TB1,RF1,CWP	
2	Module 2	CO2	TB1,RF1,CWP	
3	Module 3	CO3	TB1,RF1,CWP	
4	Module 4	CO4	TB1,RF1,CWP	
5	Module 5	CO5	TB1,RF1,CWP	

Signature of Course Coordinator Dr. Y. Mohana Roopa, Professor

HOD CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE ENGINEERING COURSE DESCRIPTION

Course Title	SOFT C	COMPUTING	LABORATO	DRY		
Course Code	BCSC23					
Program	M.Tech					
Semester	II					
Course Type	Laboratory					
Regulation	PG-21					
		Theory		Pract	tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	2	
Course Coordinator Mr. N. Rajasekhar, Assistant Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	-	-	Basic Programming Concepts

II COURSE OVERVIEW:

This course covers advanced techniques for writing exploits and patching vulnerabilities, taught through an intense, hands-on security laboratory. It deals about the cyber attackers, their tactics, social engineering, and high-profile case studies. This course covers a variety of topics including reverse engineering, exploitation, binary analysis, and web.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Soft Computing Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab	\checkmark	Viva Questions	\checkmark	Probing further
			Worksheets				Questions

V EVALUATION METHODOLOGY:

Each lab will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment. The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being a internal examiner and another is external examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

All the drawing related courses are evaluated in line with lab courses. The distribution shall be 30 marks for internal evaluation (20 marks for day–to–day work, and 10 marks for internal tests) and 70 marks for semester end lab examination. There shall be ONE internal test for 10 marks each in a semester.

The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20~%	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Labo	ratory	Total Marks
Type of	Day to day	Final internal lab	
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

Ι	The implement of cryptographic algorithms.
II	How to identify, analyze, and remediate computer security breaches.
III	The key cyber security vendors in the marketplace.
IV	The importance of digital signatures algorithms.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Develop an ANN model with or without backpropagation.	Create	
CO 2	Show fuzzy relations on fuzzy relations to handle uncertainty and solve		
	engineering problems		
CO 3	Apply genetic algorithms to optimization problems	Apply	
CO 4	Use the ANOVA model for analyzing the covariance of data.	Create	
CO 5	Solve real problems using a soft computing approach.	Create	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes				
PO 1	Independently carry out research/investigation and development work to solve practical			
	problems.			
PO 2	Write and present a substantial technical report/document.			

	Program Outcomes					
PO 3	Demonstrate a degree of mastery in computer science and engineering emerging areas					
	such as data science, cyber security, and application development					
PO 4	Identify, formulate and solve real-time problems with advanced-level knowledge,					
	techniques, skills, and modern tools in computer science thrust areas.					
PO 5	Function effectively in multidisciplinary environments with the knowledge of frontier					
	technologies by working cooperatively, creatively, and responsively as a member or leader					
	in diverse teams.					
PO 6	Engage in life-long learning for continuing education in doctoral-level studies and					
	professional development.					

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO1	Analyze a problem, identify and define computing	2	Laboratory
	requirements, design and implement appropriate		practices,
	solution		student viva
PO2	Solve complex heterogeneous data intensive	1	Laboratory
	analytical based problems of real time scenario		Practices,
	using state of the art hardware/software tools		student viva
PO 5	Independently carry out research/investigation and	2	Laboratory
	development work to solve practical problems		Practices,
			student viva
PO 6	To engage in life-long learning and professional	3	Laboratory
	development through self-study, continuing		Practices,
	education, professional and doctoral level studies.		Mini-Project

3 = High; 2 = Medium; 1 = Low

X MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRA					
OUTCOMES	PO 1	PO 2	PO 3	PO4	PO 5	PO 6
CO 1	3	3	3	1	3	2
CO 2	3	3	3	1	3	2
CO 3	3	3	3	1	3	2
CO 4	3	3	3	1	3	2
CO 5	3	3	3	3	3	2

XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory	\checkmark	Student Viva	\checkmark	Certification	-
Practices					

XII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	✓	End Semester OBE Feedback	
X	Assessment of Mini Projects by Experts			

XIII SYLLABUS:

WEEK I	PERCEPTRON
	Create a perceptron with appropriate number of inputs and outputs. Train it using fixed increment learning algorithm until no change in weights is required. Output the final weights .
WEEK II	ARTIFICIAL NEAURAL NETWORKS
	Write a program to implement artificial neural network without back propagation. Write a program to implement artificial neural network with back propagation.
WEEK III	FUZZY SETS
	Implement Union, Intersection, Complement and Difference operations on fuzzy sets. Also create fuzzy relation by Cartesian product of any two fuzzy sets and perform max-min composition on any two fuzzy relations.
WEEK IV	GENETIC ALGORITHMS
	Implement travelling sales person problem (TSP) using genetic algorithms.
WEEK V	COVARIANCE
	Plot the correlation plot on dataset and visualize giving an overview of relationships among data on soya bins data. Analysis of covariance: variance (ANOVA), if data have categorical variables on iris data
WEEK VI	DATA FITTING BY REGRESSION
	Implement linear regression and multi-regression for a set of data points.
WEEK VII	CRISP MODEL
	Implement crisp partitions for real-life iris dataset.
WEEK VIII	PERCEPTRON RULE
	Write a program to implement Hebb's rule Write a program to implement Delta rule.
WEEK IX	LOGIC GATES
	Write a program to implement logic gates.
WEEK X	CLASSIFICATION
	Implement SVM classification by Fuzzy concepts.

TEXTBOOKS

- 1. J. S. R. Jang, C. T. Sun, E. Mizutani, Neuro, "Fuzzy and Soft Computing", PHI, Pearson Education, 1st Edition, 2004.
- 2. S. N. Sivanandan, S. N. Deepa, "Principles of Soft Computing", Wiley India, 2nd Edition, 2007.

REFERENCE BOOKS: 1. D.K Prathikar, "Soft Computing", Narosa Publishing House, New Delhi, 2008.

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer-
			ence
1	Learning Algorithms and finding final weights .	CO 1	T1:1.1,1.2
2	implement artificial neural network without back propagation.	CO 1	T1:1.1,1.3
3	implement artificial neural network with back propagation.	CO 1	T1:9,1.4
4	Implement Union, Intersection, Complement and Difference operations on fuzzy sets.	CO 1	T1:10.1,1.3
5	plot the Correlation	CO 1	T1:11.1,1.5
6	Implement travelling sales person problem (TSP) using genetic algorithms.	CO 1	T1:10.1,1.3
7	plot on dataset and visualize	CO 2	T2:11.2- 11.4
8	Analysis of covariance: .	CO 3	T2:9.1,1.6
9	Implement linear regression and multi-regression for a set of data points.	CO 2	T2:10.2- 11.4
10	Implement crisp partitions for real-life iris dataset.	CO 3	T2:9.2- 11.4
11	implement Hebb's rule	CO 3	T1:12,1.9
12	implement Delta rule.	CO 4	T2:1.1,1.5
13	implement logic gates.L	CO 4	T2:8.2- 11.4
14	Implement SVM classification by Fuzzy concepts.	CO 4	T2:13.2- 11.4

XV EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Artificial Neural Network
2	Fuzzy sets
3	Covariance
4	LOgic Gates
5	Classification

Signature of Course Coordinator Mr. N. Rajasekhar, Assistant Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE ENGINEERING COURSE DESCRIPTION

Course Title	CYBER SECURITY LABORATORY				
Course Code	BCSC24				
Program	M.Tech				
Semester	II				
Course Type	Course Type Laboratory				
Regulation	PG-21				
	Theory Practical			tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	-	-	-	3	2
Course Coordinator	ourse Coordinator Ms. V Divyavani, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	-	-	Basic Programming Concepts

II COURSE OVERVIEW:

This course covers advanced techniques for writing exploits and patching vulnerabilities, taught through an intense, hands-on security laboratory. It deals about the cyber attackers, their tactics, social engineering, and high-profile case studies. This course covers a variety of topics including reverse engineering, exploitation, binary analysis, and web.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Cyber Security Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab	\checkmark	Viva Questions	\checkmark	Probing further
			Worksheets				Questions

V EVALUATION METHODOLOGY:

Each lab will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment. The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being a internal examiner and another is external examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

All the drawing related courses are evaluated in line with lab courses. The distribution shall be 30 marks for internal evaluation (20 marks for day–to–day work, and 10 marks for internal tests) and 70 marks for semester end lab examination. There shall be ONE internal test for 10 marks each in a semester.

The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based	
20 %	Objective	Purpose	
20 %	Analysis	Algorithm	
20 %	Design	Programme	
20~%	Conclusion	Conclusion	
20 %	Viva	Viva	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Labo	Total Marks	
Type of	Day to day Final internal lab		
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The s	students	will	\mathbf{try}	\mathbf{to}	learn:	
-------	----------	------	----------------	---------------	--------	--

Ι	The implement of cryptographic algorithms.
II	How to identify, analyze, and remediate computer security breaches.
III	The key cyber security vendors in the marketplace.
IV	The importance of digital signatures algorithms.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Implement encryption and decryption techniques for providing	Apply
	informations security.	
CO 2	Analyze the impact of public key cryptosystems for secure exchange of	Analyze
	information	
CO 3	Construct a signature scheme using Digital standard.	Apply
CO 4	Use hashing and authentication for implementing data integrity.	Apply
CO 5	Develop firewall for detecting malicious activity over the network.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

Program Outcomes					
PO 1	PO 1 Independently carry out research/investigation and development work to solve practical				
	problems.				
PO 2	PO 2 Write and present a substantial technical report/document.				

	Program Outcomes				
PO 3	Demonstrate a degree of mastery in computer science and engineering emerging areas				
	such as data science, cyber security, and application development				
PO 4	Identify, formulate and solve real-time problems with advanced-level knowledge,				
	techniques, skills, and modern tools in computer science thrust areas.				
PO 5	Function effectively in multidisciplinary environments with the knowledge of frontier				
	technologies by working cooperatively, creatively, and responsively as a member or leader				
	in diverse teams.				
PO 6	Engage in life-long learning for continuing education in doctoral-level studies and				
	professional development.				

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO1	Analyze a problem, identify and define computing	2	Laboratory
	requirements, design and implement appropriate		practices,
	solution		student viva
PO2	Solve complex heterogeneous data intensive	1	Laboratory
	analytical based problems of real time scenario		Practices,
	using state of the art hardware/software tools		student viva
PO 5	Independently carry out research/investigation and	2	Laboratory
	development work to solve practical problems		Practices,
			student viva
PO 6	To engage in life-long learning and professional	3	Laboratory
	development through self-study, continuing		Practices,
	education, professional and doctoral level studies.		Mini-Project

3 = High; 2 = Medium; 1 = Low

X MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRA					
OUTCOMES	PO 1	PO 2	PO 3	PO4	PO 5	PO 6
CO 1	3	2	2	2	5	2
CO 2	3	2	2	2	5	2
CO 3	3	2	2	2	5	2
CO 4	3	2	2	2	5	2
CO 5	3	2	2	2	5	2

XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory	\checkmark	Student Viva	\checkmark	Certification	-
Practices					

XII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XIII SYLLABUS:

WEEK I	CIPHER ALGORITHM
	Implementation of symmetric cipher algorithm (AES and RC4) .
WEEK II	RANDOM NUMBER GENERATION
	Random number generation using a subset of digits and alphabets.
WEEK III	RSA ALGORITHM
	Implementation of RSA based signature system
WEEK IV	RANDOM NUMBER GENERATION
	Implementation of Subset sum of numbers
WEEK V	WEB TRANSACTIONS
	Implementation of a trusted secure web transaction.
WEEK VI	HASH ALGORITHM
	Authenticating the given signature using MD5 hash algorithm
WEEK VII	DIFFIE-HELLMAN ALGORITHM
	Implementation of Diffie-Hellman algorithm.
WEEK VIII	CRYPTOSYSTEM
V 111	Implementation EIGAMAL cryptosystem
WEEK IX	PUBLIC KEY SYSTEM
	Implementation of Goldwasser-Micali probabilistic public key system
WEEK X	CRYPTOSYSTEM
	Implementation of Rabin Cryptosystem
WEEK XI	KERBEROS
	Implementation of Kerberos cryptosystem
WEEK XII	FIREWALL IMPLEMENTATION
	Firewall implementation and testing.

TEXTBOOKS

- 1. Hacking: A Beginners' Guide to Computer Hacking, Basic Security, And Penetration Testing Author: John Slavio
- 2. Penetration Testing: A Hands-On Introduction to Hacking Author: Georgia Weidman

REFERENCE BOOKS:

- 1. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.
- 2. Principles of Information Security, Whitman, Thomson.

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer-
			ence
1	Understand ciper asymmetric techniques .	CO 1	T1:1.1,1.2
2	Understand AES and RC4 algorithm	CO 1	T1:1.1,1.3
3	Implement Random number	CO 1	T1:9,1.4
4	Implement random number using subset of digits	CO 1	T1:10.1,1.3
5	Implementation of RSA algorithm	CO 1	T1:11.1,1.5
6	Understand RSA algorithm based on signature system .	CO 1	T1:10.1,1.3
7	Understand the implementation of random number generation	CO 2	T2:11.2-
			11.4
8	Understand web transactions .	CO 3	T2:9.1,1.6
9	Implementation of trusted secure web transaction.	CO 2	T2:10.2-
			11.4
10	Implementation of hash algorithm	CO 3	T2:9.2-
			11.4
11	Implementation of signature using MD5	CO 3	T1:12,1.9
12	Implement Diffie hellman algorithm	CO 4	T2:1.1,1.5
13	Implement of EIGAMEL	CO 4	T2:8.2-
			11.4
14	Implement Rabin Cryptosystem	CO 4	T2:13.2-
			11.4

XV EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Cipher Algorithm
2	RSA Algorithm
3	Random Number Generation
4	Cryptosystem .
5	Firewall Implementation

Signature of Course Coordinator Ms. V Divyavani, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE ENGINEERING COURSE DESCRIPTION

Course Title	CYBER SECURITY LABORATORY							
Course Code	BCSC24							
Program	M.Tech	M.Tech						
Semester	II							
Course Type	Laboratory							
Regulation	PG-21							
	Theory Practical							
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	-	-	-	3	2			
Course Coordinator	Dr. C.Madhusudhana Rao, Professor							

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	-	-	Basic Programming Concepts

II COURSE OVERVIEW:

This course covers advanced techniques for writing exploits and patching vulnerabilities, taught through an intense, hands-on security laboratory. It deals about the cyber attackers, their tactics, social engineering, and high-profile case studies. This course covers a variety of topics including reverse engineering, exploitation, binary analysis, and web.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Cyber Security Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab	\checkmark	Viva Questions	\checkmark	Probing further
			Worksheets				Questions

V EVALUATION METHODOLOGY:

Each lab will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment. The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being a internal examiner and another is external examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

All the drawing related courses are evaluated in line with lab courses. The distribution shall be 30 marks for internal evaluation (20 marks for day–to–day work, and 10 marks for internal tests) and 70 marks for semester end lab examination. There shall be ONE internal test for 10 marks each in a semester.

The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Labo	Total Marks	
Type of	Day to day	Day to day Final internal lab	
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The	stude	\mathbf{nts}	will	\mathbf{try}	\mathbf{to}	learn:	

Ι	The implement of cryptographic algorithms.
II	How to identify, analyze, and remediate computer security breaches.
III	The key cyber security vendors in the marketplace.
IV	The importance of digital signatures algorithms.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Implement encryption and decryption techniques for providing	Apply
	informations security.	
CO 2	Analyze the impact of public key cryptosystems for secure exchange of	Analyze
	information	
CO 3	Construct a signature scheme using Digital standard.	Apply
CO 4	Use hashing and authentication for implementing data integrity.	Apply
CO 5	Develop firewall for detecting malicious activity over the network.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

Program Outcomes				
PO 1	Independently carry out research/investigation and development work to solve practical			
	problems.			
PO 2	Write and present a substantial technical report/document.			

	Program Outcomes				
PO 3	Demonstrate a degree of mastery over the area as per the specialization of the program.				
	The mastery should be at a level higher than the requirements in the appropriate				
	bachelor program.				
PO 4	Identify, formulate and solve real-time problems with advanced-level knowledge,				
	techniques, skills, and modern tools in computer science thrust areas.				
PO 5	Function effectively in multidisciplinary environments with the knowledge of frontier				
	technologies by working cooperatively, creatively, and responsively as a member or leader				
	in diverse teams.				
PO 6	Engage in life-long learning for continuing education in doctoral-level studies and				
	professional development.				

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO1	Analyze a problem, identify and define computing requirements, design and implement appropriate	2	Laboratory practices,
	solution		student viva
PO2	Solve complex heterogeneous data intensive	1	Laboratory
	analytical based problems of real time scenario		Practices,
	using state of the art hardware/software tools		student viva
PO 5	Independently carry out research/investigation and	2	Laboratory
	development work to solve practical problems		Practices,
			student viva
PO 6	To engage in life-long learning and professional	3	Laboratory
	development through self-study, continuing		Practices,
	education, professional and doctoral level studies.		Mini-Project

3 = High; 2 = Medium; 1 = Low

X MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRA	PROGRAM OUTCOMES				
OUTCOMES	PO 1	PO 2	PO 3	PO4	PO 5	PO 6
CO 1	3	2	2	2	5	2
CO 2	3	2	2	2	5	2
CO 3	3	2	2	2	5	2
CO 4	3	2	2	2	5	2
CO 5	3	2	2	2	5	2

XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory	\checkmark	Student Viva	\checkmark	Certification	-
Practices					

XII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XIII SYLLABUS:

WEEK I	CIPHER ALGORITHM
	Implementation of symmetric cipher algorithm (AES and RC4) .
WEEK II	RANDOM NUMBER GENERATION
	Random number generation using a subset of digits and alphabets.
WEEK III	RSA ALGORITHM
	Implementation of RSA based signature system
WEEK IV	RANDOM NUMBER GENERATION
	Implementation of Subset sum of numbers
WEEK V	WEB TRANSACTIONS
	Implementation of a trusted secure web transaction.
WEEK VI	HASH ALGORITHM
	Authenticating the given signature using MD5 hash algorithm
WEEK VII	DIFFIE-HELLMAN ALGORITHM
	Implementation of Diffie-Hellman algorithm.
WEEK	CRYPTOSYSTEM
V 111	Implementation FIGAMAL cryptosystem
WFFK IX	DIBLIC KEV SVSTEM
	Implementation of Coldwasser Micali probabilistic public key system
WEEK Y	CPVDTOSVSTEM
WEEKA	Implementation of Pakin Countequation
WEEK VI	
WEEK AI	KERDERUS
	Implementation of Kerberos cryptosystem
WEEK XII	FIREWALL IMPLEMENTATION
	Firewall implementation and testing.

TEXTBOOKS

- 1. Hacking: A Beginners' Guide to Computer Hacking, Basic Security, And Penetration Testing Author: John Slavio
- 2. Penetration Testing: A Hands-On Introduction to Hacking Author: Georgia Weidman

REFERENCE BOOKS:

- 1. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.
- 2. Principles of Information Security, Whitman, Thomson.

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Understand ciper asymmetric techniques .	CO 1	T1:1.1,1.2
2	Understand AES and RC4 algorithm	CO 1	T1:1.1,1.3
3	Implement Random number	CO 1	T1:9,1.4
4	Implement random number using subset of digits	CO 1	T1:10.1,1.3
5	Implementation of RSA algorithm	CO 1	T1:11.1,1.5
6	Understand RSA algorithm based on signature system .	CO 1	T1:10.1,1.3
7	Understand the implementation of random number generation	CO 2	T2:11.2- 11.4
8	Understand web transactions .	CO 3	T2:9.1,1.6
9	Implementation of trusted secure web transaction.	CO 2	T2:10.2- 11.4
10	Implementation of hash algorithm	CO 3	T2:9.2- 11.4
11	Implementation of signature using MD5	CO 3	T1:12,1.9
12	Implement Diffie hellman algorithm	CO 4	T2:1.1,1.5
13	Implement of EIGAMEL	CO 4	T2:8.2-
			11.4
14	Implement Rabin Cryptosystem	CO 4	T2:13.2-
			11.4

XV EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Cipher Algorithm
2	RSA Algorithm
3	Random Number Generation
4	Cryptosystem .
5	Firewall Implementation

Signature of Course Coordinator Dr. C.Madhusudhana Rao, Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Branch	COMPUTER SCIENCE AND ENGINEERING							
Course Title	CYBER SE	CYBER SECURITY						
Course Code	BCSC13	BCSC13						
Program	M.Tech	M.Tech						
Semester	II CSE							
Course Type	Core							
Regulation	IARE- PG21							
		Theory		Prac	tical			
Course Structure	Lecture Tutorials Credits Laboratory Credits							
	3 - 3 3							
Course Coordinator	Ms. V Divya	vani, Assistant	Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	-	-	Computer Networks
UG	-	-	Information Security

II COURSE OVERVIEW:

This course focuses on the planning and execution of security measures to shield an organization's computer systems, networks, and network devices from infiltration and cyber-attacks. It covers topics such as overview of cybercrimes, computer security, cryptography algorithms, internet hacking and cracking, web hacking, cybercrime investigation, digital forensics and certificates, securing databases, laws and acts. This helps to build career opportunities as Cyber Security Analyst, Cyber Security Practitioner, Cyber Defense Analyst and Information Security Engineer in leading IT and Governmental Organizations.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Cyber Security	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	PPT	\checkmark	Chalk & Talk	\checkmark	Assignments	✓	MOOC
x	Seminars	\checkmark	Others	x			

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course. CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Assignment and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two tests, along with the scores obtained in the assignment / AAT shall be considered for computing the final CIA of a student in a given course.

The CIE Tests/Assignment /AAT shall be conducted by the course faculty with due approval from the HOD. Advance notification for the conduction of Assignment/AAT is mandatory and the responsibility lies with the concerned course faculty. CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks			
Type of Assessment	CIE Exam Assignment AAT			10tal Marks	
CIA Marks	20	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz/Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI COURSE OBJECTIVES: The students will try to learn:

Ι	Preventing, monitoring, and responding to data breaches and cyber-attacks
II	The security assurance principles of information.
III	The key components of cyber security network architecture.
IV	The cyber security architecture principles.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize web security concepts to overcome cyber crimes	Understand
CO 2	Make use of cryptography techniques for protecting systems	Apply
	from unauthorized access and information security.	
CO 3	Demonstrate web hacking and cybercrime investigation tools	Apply
	for detecting and recovering in the web domain	
CO 4	Identify digital forensics procedures and policies to manage	Understand
	organizational security risks.	
CO 5	Recognize database security concepts and cyber laws for data	Create
	protection in digital space.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Independently carry out research/investigation and development work to
	solve practical problems.
PO 2	Write and present a substantial technical report/document.
PO 3	Demonstrate a degree of mastery over the area as per the specialization of
	the program. The mastery should be at a level higher than the requirements
	in the appropriate bachelor program.
PO 4	Apply advanced-level knowledge, techniques, skills, and modern tools in the
	field of computer science and engineering and its allied areas.
PO 5	Function effectively as a member or leader in diverse teams to carry out
	development work, and produce solutions that meet the specified needs with
	frontier technologies in multidisciplinary environments.
PO 6	Engage in life-long learning for continuing education in doctoral-level studies
	and professional development.

IX MAPPING OF EACH CO WITH PO(s):

COURSE		PROGRAM OUTCOMES						
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	\checkmark	-	-	\checkmark	\checkmark	\checkmark		
CO 2	\checkmark	-	-	\checkmark	\checkmark	\checkmark		
CO 3	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark		
CO 4	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark		
CO 5	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark		

X COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

COURSE		PROGRAM OUTCOMES						
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO 1	2	-	-	3	1	2		
CO 2	2	-	-	3	1	2		
CO 3	2	-	3	3	1	2		
CO 4	2	-	3	3	1	2		
CO 5	2	-	3	3	1	2		
TOTAL	10	-	9	15	5	10		
AVERAGE	2	-	3	3	1	2		

XI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminar and term	\checkmark
				paper	
Laboratory	-	Student Viva	-	Mini Project	-
Practices					

XII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	End Semester OBE Feed Back

XIII SYLLABUS:

MODULE I	INTRODUCTION
	A web security forensic lesson, web languages, introduction to different web attacks, overview of n-tier web applications; Web servers: Apache, IIS, database servers, introduction and overview of cybercrime, nature and scope of cybercrime, types of cybercrime: social engineering, categories of cybercrime, property cybercrime.
MODULE II	REVIEW OF COMPUTER SECURITY AND CYBER CRIME ISSUES
	Public key cryptography, RSA, online shopping, payment gateways, unauthorized access to computers, computer intrusions, white collar crimes, viruses and malicious code, internet hacking and cracking, virus attacks, pornography, software piracy, intellectual property, mail bombs, exploitation, stalking and obscenity in internet, digital laws and legislation, law enforcement roles and responses.
MODULE III	WEB HACKING BASICS AND INVESTIGATION
	Web hacking basics HTTP and HTTPS URL, web under the cover overview of java security reading the HTML source, applet security, servlets security, symmetric and asymmetric encryptions, network security basics, firewalls and IDS. Investigation: Introduction to cybercrime investigation, investigation tools, e-discovery, digital evidence collection, evidence preservation, e-mail investigation, e-mail tracking, IP tracking, e-mail recovery, hands on case studies; Encryption and Decryption methods, search and seizure of computers, recovering deleted evidences, password cracking
MODULE IV	DIGITAL CERTIFICATES AND DIGITAL FORENSICS
	Digital certificates, hashing, message digest, and digital signatures; Digital forensics: Introduction to digital forensics, forensic software and hardware, analysis and advanced tools, forensic technology and practices, forensic ballistics and photography, face, iris and fingerprint recognition, audio video analysis, windows system forensics, Linux system forensics, network forensics.
MODULE V	SECURING DATABASES, LAWS AND ACTS

	Basics, secure JDBC, securing large applications, cyber graffiti; Laws and
	acts: Laws and ethics, digital evidence controls, evidence handling
	procedures, basics of Indian Evidence Act IPC and CrPC, electronic
	communication privacy act, legal policies.

TEXTBOOKS

- 1. Mc Clure, Stuart, Saumil Shah, Shreeraj Shah, —Web Hacking: Attacks and Defense ||, AddisonWesley Professional, Illustrated Edition, 2003.
- 2. Garms, Jess, Daniel Somerfield, —Professional Java Security ||, WroxPress, Illustrated Edition, 2001.
- 3. Jon Erickson -Hacking: The Art Of Exploitation, which was published in 2003

REFERENCE BOOKS:

- 1. Pfleeger, Charles P. and Shari L. Pfleeger. Security in Computing, 4th Edition. Upper Saddle River, NJ: Prentice Hall, 2008
- 2. Rice, David. Geekonomics: The Real Cost of Insecure Software. Upper Saddle River, NJ: Pearson Education, 2008.
- 3. Cyber Security Essentials, James Graham, Ryan Olson, Rick Howard, CRC Press
- 4. Peter Flach, "Machine Learning", Cambridge University Press, 1 st Edition, 2012

WEB REFERENCES:

- 1. Nelson Phillips, EnfingerSteuart, —Computer Forensics and Investigations ||, Cengage Learning, New Delhi,2009.
- 2. https://www.marwadiuniversity.ac.in/wp-content/uploads/2017/06/01cy102-advancenetworksecurity.pdf
- 3. https://www.simplilearn.com/tutorials/cyber-security-tutorial/cyber-security-books

COURSE WEB PAGE:

1. https://www.futurelearn.com/courses/introduction-to-cyber-security

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference			
	OBE DISCUSSION					
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-				
	CONTENT DELIVERY (THEORY)					
1	A web security forensic lesson	CO 1	T1:1.1,1.2			
2	web languages, introduction to different web attacks	CO 1	T1:2.1,2.2			

3	overview of n-tier web applications	CO 1	T1:3.1,
			3.2, 4.1,
			4.2
4	Web servers: Apache, IIS, database servers, introduction	CO 1	T2:1.1,1.3
	and overview of cybercrime		
5	nature and scope of cybercrime	CO 1	T2:1.1,1.7
6	types of cybercrime: social engineering, categories of	CO 1	T2:1.8-
	cybercrime, property cybercrime	COA	1.10
(Public key cryptography, RSA, online shopping		12:11.2-
8	navment gateways unauthorized access to computers	CO_2	T2·11.4
0	computer intrusions, white collar crimes	CO 2	12.11.0 T2.11.7
9	computer intrusions, white conar crimes	CO_2	T2.11.7
10	viruses and mancious code, internet nacking and cracking	CO 2	15:1.4.1 T1 C 1 C 0
	virus attacks, pornography, software piracy, intellectual property	CO2	11:6.1,6.2
12	mail bombs, exploitation, stalking and obscenity in	CO2	T3: 3.3.7
	internet		
13	digital laws and legislation, law enforcement roles and	CO2	T1:8.1,
	responses	GOA	13: 9.1
14	Web hacking basics HT [*] TP and HT [*] TPS URL	CO3	T3:9.2
15	web under the cover overview of java security reading the	CO 3	13: 9.3
	symmetric and asymmetric encryptions network security		
	basics, firewalls and IDS		
16	Investigation: Introduction to cybercrime investigation,	CO 3	T3: 9.3
	investigation tools, e-discovery, digital evidence collection,		
	evidence preservation		
17	e-mail investigation, e-mail tracking, IP tracking, e-mail	CO 3	T3:3.1, 3.2
	recovery, hands on case studies		
18	Encryption and Decryption methods	CO 3	T3:3.2
19	search and seizure of computers, recovering deleted	CO 3	T3:18.3.4,
- 20	evidences, password cracking	CO 1	18.3
20	Digital certificates, hashing, message digest, and digital	CO 4	13:4.1
21	Digital foronsics: Introduction to digital foronsics foronsic	CO 4	T3·18 1
21	software and hardware, analysis and advanced tools		13.10.1
22	forensic technology and practices, forensic ballistics and photography, face	CO 4	T3:15.1
23	iris and fingerprint recognition, audio video analysis.	CO 4	T3:15.1
	windows system forensics		
24	Linux system forensics, network forensics	CO 4	T2:5.1, 5.8
25	Basics, secure JDBC, securing large applications, cyber	CO 5	T2:12.5,12.7
	gramtı		

26	Laws and acts: Laws and ethics, digital evidence controls, evidence handling procedures	CO 5	T2:12.5, 12.8			
27	basics of Indian Evidence Act IPC and CrPC	CO 5	T2:12.5, 12.9			
27	Electronic communication privacy act, legal policies.	CO 5	T2:12.5, 12.10			
	DISCUSSION OF VARIOUS TOPICS					
1	Module I	CO 1	TB1			
2	Module II	CO 2	TB1,TB3			
3	Module III	CO 3	TB1,TB3			
4	Module IV	CO 4	TB3			
5	Module V	CO 5	TB2			

Signature of Course Coordinator Ms. V Divyavanii, Assistant Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Branch	Computer Science and Engineering					
Course Title	Research Me	ethodology an	d IPR			
Course Code	BHSC11					
Program	M.Tech					
Semester	III					
Course Type	Core					
Regulation	IARE - PG21					
	Theory			Practica	ıl	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	2	-	2	-	-	
Course Coordinator	Dr. Ch Srinivasulu, Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
M.Tech	-	-	-

II COURSE OVERVIEW:

This course provides the basic concepts on research methodology and intellectual property rights. This course emphasis on sampling techniques, data collection, writing Reports, Projects, Dissertations, thesis and articles for publication in academic journals, avail the intellectual property rights of the inventors or owners for their assets like patents on innovative design, copy rights on literary and artistic works, trademark on goods & services and geographical indications on products famous for specific geographical areas. This course makes use of the potential future economic benefits to the intellectual property owner or authorized user.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Research Methodology	70 Marks	30 Marks	100
and IPR			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	\checkmark	Videos
x	Others						

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE).Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could

be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

50%	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty/teacher handling the course as given in below table. CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Technical Seminar and Term Paper.

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Technical Seminar	
		and Term Paper	
CIA Marks	25	5	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper

Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The knowledge on sources of research problem, data collection, analysis, and interpretation.
II	The importance of effective technical writing and analysis plagiarism.
III	The new developments in the law of intellectual property rights in order to bring progressive changes towards a free market society.

VII COURSE OUTCOMES:

After successful completion of the course, students will be able to:

CO 1	Interpret the technique of determining a research problem for a	Understand
	crucial part of the research study	
CO 2	Examine the way of methods for avoiding plagiarism in research	Analyze
CO 3	Apply the feasibility and practicality of research methodology	Apply
	for a proposed project	
CO 4	Make use of the legal procedure and document for claiming	Apply
	patent of invention.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Independently carry out research / investigation and development work to
	solve practical problems.
PO 2	Write and present a substantial technical report / document.
PO 3	Demonstrate a degree of mastery over the area as per the specialization of
	the program. The mastery should be at a level of higher than the
	requirements in the appropriate bachelor program.
PO 4	Identify, formulate, analyze and Design complex engineering problems, and
	design system components or processes by applying appropriate advanced
	principles of engineering activities and using modern tools.
PO 5	Engage in life-long learning and professional development through self-study
	and continuing education in understanding the engineering solutions in global
	and management principles to manage projects in multidisciplinary
	environments.
PO 6	Function effectively as a member or leader in diverse teams to carry out
	development work, produce solutions that meet the specified needs with
	frontier technologies and communicate effectively on complex engineering
	activities.

IX MAPPING OF EACH CO WITH PO(s):

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	\checkmark	\checkmark	-	-	-	\checkmark
CO 2	\checkmark	-	-	-	-	\checkmark
CO 3	\checkmark	\checkmark	-		-	-
CO 4	\checkmark	\checkmark	-		-	-
CO 5	\checkmark	-	-	-		 ✓

X JUSTIFICATIONS FOR CO – PO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Describe the steps involved in problem identification for the research process with quality of work and demonstrate the solutions	4
	PO 2	Demonstrate and communicate effectively in writing the research problem with clarity and subject the knowledge while preparing report	4
	PO 6	Describe the importance of continuing education efforts through literature, personal development, meeting deadlines and producing solutions in research study	4
CO 2	PO 1	Explain the methods for avoiding plagiarism in research work for improving the quality of work , self driven and Independence in research process	3
	PO 6	Describe the methods for avoiding plagiarism in research work by continuing education efforts through literature, manage risk, meeting deadlines and producing solutions	3
CO 3	PO 1	Describe the steps of problem identification and implementation in development of independence , quality of work by using research methodology	3
	PO 2	Demonstrate and communicate effectively in writing a proposed project with clarity and avoid the mistakes in terms of grammar (writing) to subject knowledge while preparing report	4
CO 4	PO 1	Demonstrate the solutions and self driven, independence in work for copyright and quality of work in document	4
	PO 2	Demonstrate and communicate effectively in Process of applying presenting Patent with clarity and subject knowledge of intellectual property management for claiming patent of invention	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 5	PO 1	Demonstrate the solutions to attain the right of ownership and independence and self driven for scope of protection	3
	PO 6	Continuing education efforts through literature, demonstrated ability to work well with a team, meeting deadlines and producing solutions for licensing and transfer of technology in patent rights	4

XI TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO MAPPING:

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
	6	6	9	10	7	8
CO 1	4	4	-	-	-	4
CO 2	3	-	-	-	-	3
CO 3	3	4	-	-	-	-
CO 4	4	3	-	-	-	-
CO 5	3	-	-	-	-	4

XII PERCENTAGE OF KEY COMPETENCIES FOR CO – PO

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
	6	6	9	10	7	8
CO 1	66.6	66.6	-	-	-	50
CO 2	50	-	-	-	-	37.5
CO 3	50	66.6	-	-	-	-
CO 4	66.6	50	-	-	-	-
CO 5	50	-	-	-	-	50

XIII COURSE ARTICULATION MATRIX (PO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

- 1 -5 <C \leq 40% Low/ Slight
- $\pmb{2}$ 40 % < C < 60% Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	-	-	-	2
CO 2	2	-	-	-	-	1

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 3	2	3	-	-	-	-
CO 4	3	2	-	-	-	-
CO 5	2	-	-	-	-	2
Total	12	8	-	-	-	5
Average	2.4	1.6	-	-	-	1

XIV ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	~	5 Minutes Video	-	Open Ended Experiments	-
Assignments	-				

XV ASSESSMENT METHODOLOGY-INDIRECT:

 ✓ 	Early Semester Feedback	\checkmark	End Semester OBE Feedback
 ✓ 	Assessment of mini projects by experts		

XVI SYLLABUS:

MODULE I	INTRODUCTION
	Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations
MODULE II	RESEARCH ETHICS
	Effective literature studies approaches, analysis Plagiarism, Research ethics.
MODULE III	RESEARCH PROPOSAL
	Effective technical writing, how to write report, Paper Developing a Research Proposal. Format of research proposal, a presentation and assessment by a review committee
MODULE IV	PATENTING
	Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT
MODULE V	PATENT RIGHTS
	Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs

TEXTBOOKS

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science and engineering students".
- 2. C R Kothari, "Research Methodology: Methods and techniques", New age international limited publishers, 1990 .
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"

REFERENCE BOOKS:

- 1. Halbert, "Resisting Intellectual Property", Taylor and Francis Ltd , 2007.
- 2. Mayall , "Industrial Design", McGraw Hill, 1992.
- 3. Niebel, "Product Design", McGraw Hill, 1974.

WEB REFERENCES:

- 1. Robert P. Merges, Peter S. Menell, Mark A. Lemley Age", 2016 , "Intellectual Property in New Technological Age", 2016
- 2. T. Ramappa, "Intellectual Property Rights Under WTO" S. Chand 2008
- 3. Peter-Tobias stoll, Jan busche, Katrianarend- WTO- Trade –related aspects of IPR-Library of Congress

COURSE WEB PAGE: https://lms.iare.ac.in/index?route=course/details&course_id=367

XVII COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference		
	OBE DISCUSSION				
0	Course Description on Outcome Based Education (OBE): Course	rse Objectiv	ves, Course		
0	Outcomes (CO), Program Outcomes (PO) and CO-PO Mapp	oing			
	CONTENT DELIVERY (THEORY)				
1	Introduction, Definition, types of research	CO 1	T1:2.1		
2	Meaning of research problem	CO 1	T1:2.1		
3	Sources of research problem	CO 1	T1:2.3		
4	Criteria characteristics of good research problem	CO 1	T1:2.3.1		
5	Research process	CO 1	T1:7.2		
6	Research design	CO 1	T1:7.3		
7	Errors in selecting a research problem	CO 1	T1:7.4		
8	Scope and objectives of research problem	CO 1	T1:2.3		
9	Approaches of investigation of solutions for research problem	CO 1	T1:7.4		
10	Data collection	CO 1	T1:8.1		
11	Analysis and interpretation of data	CO 1	T1:8.1.1		
12	Necessary instrumentation's	CO 1	T1:8.1.1		

13	Effective literature studies approaches	CO 2	T1:8.2
14	Literature	CO 2	T1:8.2
15	Literature review	CO 2	T1:8.2
16	Literature review techniques	CO 2	T1:8.2
17	Literature studies	CO 2	T1:8.2
18	Introduction to ethics, Importance of ethics	CO 2	T1:8.2
19	Ethical issues in conducting research	CO 2	T1:8.3
20	Principles of research ethics	CO 2	T1:8.4
21	Analysis	CO 2	T1:8.5
22	Plagiarism- types of plagiarism	CO 2	T1:8.6
23	Tips to avoid plagiarism	CO 2	T1:9.1
24	Other ethical issues	CO 2	T1:9.2, 9.3
25	Interpretation, Interpretation Techniques and precautions	CO 2	T2:9.3.4
26	Writing of report and steps involved	CO 3	T2:7.1
27	Layout of research report	CO 3	T2:7.2
28	Types of reports	CO 3	T2:7.3
29	Paper developing a research proposal	CO 3	T2:7.4
30	Format of research proposal	CO 4	T2:8.3
31	Presentation of report	CO 4	T2:8.4
32	Summary of findings	CO 4	T3:8.5
33	Assessment by review committee	CO 4	T3:8.6
34	Technical appendixes	CO 4	T3:8.6
35	Logical analysis of the subject matter	CO 4	T3:8.6
36	Statement of findings and recommendations	CO 4	T3:8.6
37	Introduction, Nature of Intellectual Property	CO 5	T3:10.1- 10.6
38	Types of intellectual Property rights	CO 5	T3:10.1- 10.6
39	Patents	CO 5	T3:11.10
40	Designs	CO 5	T3:11.10
41	Trademarks and copyrights: Definition, classification of trademarks	CO 5	T3:11.10
42	Process of Patenting and Development	CO 5	T3:11.14
43	Technical research, innovation, patenting	CO 5	T3:11.15
44	Developments in patenting	CO 5	T3:11.17
45	Patent Trademark Organization	CO 5	T3:11.17
46	International Organization, Agencies and Treaties	CO 5	T3:11.17
47	International scenario, international cooperation on Intellectual property	CO 5	T3:11.19
48	Procedure for grant of patents	CO 5	T3:11.21
49	procedure of copyright	CO 5	T1:8.1- 8.3; R2: 7.4-7.5

50	Patenting under PCT, Provisional patent application	CO 5	T1-8.1- 8.1.7
51	Patent protection for the invention	CO 5	T1-8.1- 8.1.7
52	Patent Rights	CO 5	T3:12.1
53	Scope of Patent Rights	CO 5	T3:12.1
54	Licensing and transfer of technology	CO 5	T3:12.1
55	Patent information and databases	CO 5	T3:12.4
56	Geographical Indications	CO 5	T3:12.4
57	New Developments in IPR: Administration of Patent System	CO 5	T3:12.7
58	New developments in IPR, IPR of Biological Systems and Computer Software etc	CO 5	T3:12.10
59	Traditional knowledge Case Studies	CO 5	T3:12.13
60	IPR and IITs.	CO 5	T3:12.15
	DISCUSSION ON VARIOUS TOPICS		
61	Module – I	CO 1	T1:2.1- 2.3
62	Module – II	CO 2	T1:8.2
63	Module – IIIl	CO 3, CO 4	T3:8.3; R2: 7.4-7.5
64	Module – IV	CO 5	T3:10.1- 10.6
65	Module – V	CO 5	T3:12.1- 12.15

Signature of Course Coordinator Dr. Ch Srinivasulu, Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING				
Course Title	MOBIL	E APPLICAT	TIONS AND	SERVICES	
Course Code	BCSB22				
Program	M.Tech				
Semester	III				
Course Type	Core				
Regulation	PG-21				
		Theory		Pract	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	0	3	-	-
Course Coordinator	Mr. N Rajasekar, Assitant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	-	-	-

II COURSE OVERVIEW:

The Mobile Applications and Services course focuses on the development and design of mobile applications for various platforms, such as iOS and Android. This course provides an overview of the technologies, tools, and best practices used in mobile app development.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Moblie Application and Service	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
\checkmark	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						·

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

Continuous Internal Assessment (CIA):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

	Component		Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
СТА	Continuous Internal Examination – 2 (Mid-term)	10	30
CIA	AAT-1	5	50
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Understand the three main mobile platforms and their ecosystems, namely Android, iOS, and Phone Gap / Web OS and designing and develop mobile applications using a chosen application development framework
II	Explores emerging technologies and tools used to design and implement.
III	Explore the techniques for deploying and testing mobile applications, and for enhancing their performance and scalability account of communications via network by wireless connectivity.
IV	Prepare mobile application for multimedia and learn about additional issue like security, hacking etc.,

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize Select suitable software tools and APIs for the	Apply
	development of a particular mobile application	
CO 2	Make use of Use Intents to dial a number or to send SMS Broadcast	Apply
	Receivers	
CO 3	Choose Create a file and reading data from files using Persistent	Apply
	Storage	
CO 4	Summarize Use a content provider for inserting, deleting, retrieving	Understand
	and updating data using SQlite	
CO 5	and updating data using SQliteConstruct Choose an appropriate application development to design,	Apply
CO 5	and updating data using SQliteConstruct Choose an appropriate application development to design,write and test small interactive programs for mobile devices.	Apply
CO 5 CO 6	and updating data using SQliteConstruct Choose an appropriate application development to design, write and test small interactive programs for mobile devices.Compare various networking models (OSI, TCP/IP) in terms of	Apply Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes					
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.				
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.				
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations				
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.				
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations				
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.				
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.				

IX MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-	-	-		-	-	-
CO 2	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-	-	-		-	-	-
CO 5	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-

X COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

	PROGRAM OUTCOMES									PSO'S					
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	2	3	-	-	-	-	-	-	-	-	-	-
CO 2	3	-	-	2	3	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	2	3	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	2	3	-	-	-	-	-	-	-	-	-	-
CO 5	3	-	-	2	3	-	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	2	3	-	-	-	-	-	-	-	-	-	-
TOTAL	15	-	-	10	15	-	-	-	-	-	-	-	-	-	-
AVERAGE	3	-	-	2	3	-	-	-	-	-	-	-	-	-	-

XI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	_	Student Viva	_	Certification	-
Term Paper	_	5 Minutes Video	\checkmark	Open Ended Experiments	~
Assignments	\checkmark				

XII ASSESSMENT METHODOLOGY-INDIRECT:

Х	Early Semester Feedback	\checkmark	End Semester OBE Feedback
Х	Assessment of Mini Projects by Experts		

XIII SYLLABUS:

MODULE I	INTRODUCTION TO MOBILE COMPUTING
	Introduction: Introduction to Mobile Computing, Introduction to Android Development Environment, Factors in Developing Mobile Applications, Mobile Software Engineering, Frameworks and Tools, Generic UI Development Android User.

MODULE II	MOBILE COMPUTING -MORE ON UIS
	More on UIs: VUIs and Mobile Apps, Text-to-Speech Techniques, Designing the Right UI, Multichannel and Multimodal UIs, . Storing and Retrieving Data, Synchronization and Replication of Mobile Data, Getting the Model Right, Android Storing and Retrieving Data, Working with a Content Provider
MODULE III	NETWORK AND THE WEB:STATE MACHINE
	Communications via Network and the Web: State Machine, Correct Communications Model, Android Networking and Web, Telephony Deciding Scope of an App, Wireless Connectivity and Mobile Apps, Android Telephony Notifications and Alarms: Performance, Performance and Memory Management, Android Notifications and Alarms, Graphics, Performance and Multithreading, Graphics and UI Performance, Android Graphics
MODULE IV	PUTTING IT ALL TOGETHER AND MULTIMEDIA
	Putting It All Together : Packaging and Deploying, Performance Best Practices, Android Field Service App, Location Mobility and Location Based Services Android Multimedia: Mobile Agents and Peer-to-Peer Architecture, Android Multimedia.
MODULE V	PLATFORMS AND ADDITIONAL ISSUES ,SECURITY AND HACKING
	Platforms and Additional Issues: Development Process, Architecture, Design, Technology Selection, Mobile App Development Hurdles, Testing, Security and Hacking, Active Transactions, More on Security, Hacking Android.

TEXTBOOKS

1. 1 Wei-Meng Lee, "Beginning Android"4 Application Development", 2012 by John Wiley Sons

REFERENCE BOOKS:

- 1. http://www.sctie.iitkgp.ernet.in/
- 2. http://www.rkala.in/softcomputingvideos.php
- 3. http://www.sharbani.org/home2/soft-computing-1
- 4. http://www.myreaders.info/html/soft-computing.html

WEB REFERENCES:

1. https://www.futurelearn.com/courses/introduction-to-cyber-security

COURSE WEB PAGE:

XIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		

1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program	-	-
	Outcomes (PO) and CO - PO Mapping		
	CONTENT DELIVERY (THEORY)		
1	Introduction to Mobile Computing, Introduction to Android Development Environment,	CO1	T1: 1.1
2	Factors in Developing Mobile Applications,	CO1	T1:1.2
3	Generic UI Development Android User	CO1	T1: 1.3
4	More on UIs: VUIs and Mobile Apps	CO1	T1:1.4
5	Text-to-Speech Techniques, Designing the Right UI,	CO1	T1: 1.5
6	Multichannel and Multimodal UIs Storing and Retrieving Data,	CO1	T1:7.1
7	Synchronization and Replication of Mobile Data, Getting the Model Right, Android Storing and Retrieving Data,	CO1	T1: 2.14
8	Communications via Network and the Web: State Machine, Correct Communications Model,	CO1	T1: 8.1
9	Android Networking and Web	CO1	T1: 8.2
10	Telephony Deciding Scope of an App, Wireless Connectivity and Mobile Apps,	CO2	T1: 10.0
11	Android Telephony Notifications and Alarms: Performance, Performance and Memory Management,	CO2	T1: 10.1
12	Android Notifications and Alarms,	CO2	T1: 10.1
13	Graphics, Performance and Multithreading	CO2	T1: 10.2
14	Graphics and UI Performance, Android Graphics	CO2	T1: 10.2
15	Putting It All Together : Packaging and Deploying	CO2	T1: 11.1
16	Performance Best Practices	CO2	T1: 11.2
17	Android Field Service App,	CO2	T1: 11.3
18	Multimedia: Mobile Agents and Peer-to-Peer Architecture,	CO2	T1:15.3
19	Android Multimedia	CO3	T1:19.1
20	Platforms and Additional Issues: Development Process,	CO3	T1: T1:19.1
21	Architecture	CO3	T1:19.1
22	Design, Technology Selection	CO3	T1:19.1
23	Mobile App Development Hurdles	CO3	T1:19.1
24	Testing,	CO3	T1:19.2
25	Security and Hacking ,	CO3	T1:19.2
26	Active Transactions,	CO4	T1:19.1
27	More on Security	CO4	T1:23.0
28	Hacking Android.	CO4	T1:23.1
29	Security and Hacking , More on Security	CO4	T1:23.1
30	Development Process, Platforms and Additional Issues	CO4	T1:23.2
	DISCUSSION ON VARIOUS TOPICS		·
1	MODULE -I	CO 1	T2:2.1
2	MODULE -II	CO 2	TB1,RF1,0
3	MODULE -III	CO 3	TB1,RF1,0

4	MODULE -IV	CO 4	TB1,RF1,CWP
5	MODULE -V	CO 5	TB1,RF1,CWP

Signature of Course Coordinator Mr N Rajasekar, Assitant Professor HOD,CSE