

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Course Title	COMPUTER PROGRAMMING						
Course Code	ACS001						
Program	B.Tech						
Semester	Ι	AE ME					
Jemester	II	CSE IT E	CE EEE				
Course Type	Foundationl						
Regulation	IARE - R16						
		Theory		Practi	cal		
Course Structure	Lecture Tutorials Credits Laboratory C			Credits			
	3 0 3 4 2						
Course Coordinator	Mr.P Ravinder , Assistant Professor						
Course Faculty	Dr J Sirisha Devi, Associate Professor, CSE Dept						

I COURSE PRE-REQUISITES:

Leve	Course Code	Semester	Prerequisites	Credits
UG	ACSS001	Ι	Basic Programming	-
			Concepts	

II COURSE OVERVIEW:

The course emphasis on the problem-solving aspects in using C programming. It is the fundamental course and is interdisciplinary in nature for all engineering applications. The students will understand programming language, programming, concepts of loops, reading a set of data, step wise refinements, functions, control structures, arrays, dynamic memory allocations, enumerated data types, structures, unions, and file handling. This course provides adequate knowledge to solve problems in their respective domains.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
PPSC	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	PPT		Chalk & Talk		Assignments		MOOC
\checkmark		\checkmark		\checkmark		\checkmark	
x	Open Ended Experiments	√	Seminars	1	Mini Project	1	Videos
✓	Others: Quiz						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level	
16.66%	Remember	
25 %	Understand	
58.33 %	Apply	
0 %	Analyze	
0 %	Evaluate	
0 %	Create	

Continuous Internal Assessment (CIA):

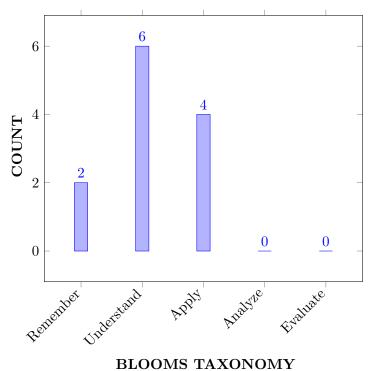
Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	Learn adequate knowledge by problem solving techniques.
II	Understand programming skills using the fundamentals and basics of C Language.
III	Improve problem solving skills using arrays, strings, and functions
IV	Understand the dynamics of memory by pointers.
V	Study files creation process with access permissions.

VII COURSE OUTCOMES:

After successful	completion	of the	course.	students	should	be able to:
ritter successia	comprovion	01 0110	course,	Statution	onound	

CO 1	Illustrate problem solving steps in terms of algorithms, pseudocode, flowcharts and programs with basic data types and operations for Mathematical and Engineering problems.	Understand
CO 2	Implement derived data types, operators in C program statements.	Apply
CO 3	Construct programs involving decision structures, loops, arrays and	Apply
	strings.	
CO 4	Make use of various types of functions, parameters, and return values	Apply
	for complex problem solving.	
CO 5	Illustrate the static and dynamic memory management with the help of	Understand
	structures, unios and pointers.	
CO 6	Extend file input and output operations in implementation of real time	Understand
	applications.	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES ARE ASSESSED:

	Program				
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering				
	fundamentals, and an engineering specialization to the solution of complex				
	engineering problems				

PO 2	Problem analysis: Identify, formulate, review research literature, and analyze
	complex engineering problems reaching substantiated conclusions using first principles
	of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering
	problems and design system components or processes that meet the specified needs
	with appropriate consideration for the public health and safety, and the cultural,
	societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge
	and research methods including design of experiments, analysis and interpretation of
	data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources,
	and modern Engineering and IT tools including prediction and modelling to complex
	Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge
	to assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: : Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: : Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with
	the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make effective
	presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of
	the engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary
	environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability
	to engage in independent and life-long learning in the broadest context of
	technological change

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program		Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Assignments
	mathematics, science, engineering fundamentals,		
	and an engineering specialization to the solution of		
	complex engineering problems.		

PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Assignments
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	Seminars, Viva
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	1	5 minutes video

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.	2	Projects
PSO 2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.	3	Lectures, Assign- ments
PSO 3	Successful Career and Entrepreneurship: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.	3	Lectures, Assign- ments

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	✓	-	-	-	-	✓	-	\checkmark	-	-	-
CO 2	\checkmark	✓	\checkmark	-	1	-	-	-	-	✓	-	\checkmark	✓	-	-
CO 3	\checkmark	\checkmark	-	-	✓	-	-	-	-	\checkmark	-	 ✓ 	\checkmark	-	\checkmark

CO 4	\checkmark	\checkmark	\checkmark	-	\checkmark	_	-	-	-	\checkmark	-	\checkmark	-	-	\checkmark
CO 5	\checkmark	-	-	-	\checkmark	-	-	-	-	✓	-	✓	-	-	-
CO 6	\checkmark	-	-	-	\checkmark	-	-	-	-	\checkmark	-	 ✓ 	\checkmark	-	-

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Understand the basics of computers; Fundamentals of Computer System and memory organization, and identify the components of the computer system.	3
CO 2	PO 1	Developing algorithms and draw flowcharts for solving mathematical and engineering problems related to areas of computer science.	3
	PO 2	Understand the various symbols to draw a flowchart, identify the appropriate symbols to solve a problem, then formulate the solution, and interpret the result for the improvement of the solution.	5
	PO3	Recognize an appropriate control structure to design and develop a solution for a real-time scenario, and communicating effectively with engineering community.	3
	PO5	Describe the operators, their precedence, and associativity while evaluating expressions in software program .	1
	PSO1	Understand the features of procedural programming for designing and analysing computer programs for problem-solving .	3
CO 3	PO 1	Apply the knowledge of mathematics , C language fundamentals to design, develop, and debug programs to solve engineering problems	3
	PO 2	Understand the problem statement , identify the data requirements , design , and develop a system for an engineering problem, validate and interpret the results.	5
	PSO 1	Understand automatic type conversion rules to determine the magnitude and precision of a mixed datatype expression in the areas of software development.	4
CO 4	PO 1	Describe the fundamental programming constructs, and articulate how they are used to develop a program with a desired runtime execution flow.	3
	PO 2	Identify the appropriate datatypes to formulate, develop and analyze the solution to achieve engineering objectives.	5

	PO 3	Recognize right data representation formats based on the requirements for developing programs in real-time scenarios by managing the design process , and communicating effectively with engineering community.	7
	PO 5	Describe the operators, their precedence, and associativity while evaluating expressions in software program .	1
CO 5	PO 1	Understand branching statements, loop statements, and apply the fundamentals of mathematics , science and engineering.	3
	PO 2	Understand the problem statement , control the flow of data, design the solution and analyse the same to validate the results in a program to solve complex engineering problems.	5
	PO 3	Recognize an appropriate control structure to design and develop a solution for a real-time scenario, and communicating effectively with engineering community.	6
CO 6	PO 1	Make use of engineering techniques to design and develop solutions for real-time computational problems.	3
	PSO 1	Identify tasks in which the numerical techniques are applicable, develop programs, and hence use computers effectively to solve real-time applications.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE	Pro	Program Outcomes/ No. of Key Competencies Matcheo								ched	PSO'S				
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	1	-	-	-	-	2	-	4	-	-	-
CO 2	3	5	3	-	1	-	-	-	-	2	-	3	3	-	-
CO 3	3	5	-	-	1	-	-	-	-	2	-	3	4	1	1
CO 4	3	5	7	-	1	-	-	-	-	2	-	3	-	1	1
CO 5	3	5	6	-	1	-	-	-	-	2	-	3	-	-	-
CO 6	3	-	-	-	1	-	-	-	-	2	-	3	2	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES]	PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	-	-	-	100	-	-	-	-	40	-	50	-	-	-

CO 2	100	50	30	-	100	-	-	-	-	40	_	50	50	-	-
CO 3	100	50	-	-	100	-	-	-	-	40	-	50	67	50	50
CO 4	100	50	70	-	100	-	-	-	-	40	-	50	-	50	50
CO 5	100	50	60	-	100	-	-	-	-	40	-	50	-	-	-
CO 6	100	-	-	-	100	-	_	-	-	40	-	50	34	-	-

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ 0 \leq C \leq 5% – No correlation
- $\pmb{2}$ 40 % <C < 60% –Moderate

 $1-5 < C \le 40\% - Low/$ Slight

 $3 - 60\% \le C < 100\%$ – Substantial /High

COURSE				PR	OGR	AM	OUT	CON	IES]	PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	-	-	-	3	-	-	-	-	2	-	2	-	-	-	
CO 2	3	2	1	-	3	-	-	-	-	2	-	2	2	-	-	
CO 3	3	2	-	-	3	-	-	-	-	2	-	2	3	-	2	
CO 4	3	2	3	-	3	-	-	-	-	2	-	2	-	-	2	
CO 5	3	2	3	-	3	-	-	-	-	2	-	2	-	-	-	
CO 6	3	-	-	-	3	-	-	-	-	2	-	2	1	-	-	
TOTAL	18	8	7	-	18	-	-	-	-	10	-	10	6	-	4	
AVERAGE	3	2	2	-	3	-	-	-	-	1.67	-	1.67	2	-	2	

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1,PO 2,	SEE Exams	PO 1, PO	Seminars	PO 3
	PO 3, PO 4		2, PO 3,		
			PO 4		
Laboratory Practices	PO 1	Student Viva	PO3	Certification	-
Term Paper	_	5 Minutes Video	-	Open Ended Experiments	-
Assignments	PO 2	_	-	_	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

X	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	Introduction to computers: Computer systems, computing environments, computer languages, creating and running programs, algorithms, flowcharts; Introduction to C language: History of C, basic structure of C programs, process of compiling and running a C program, C tokens, keywords, identifiers, constants, strings, special symbols, variables, data types; Operators and expressions: Operators, arithmetic, relational and logical, assignment operators, increment and decrement operators, bitwise and conditional operators, special operators, operator precedence and associativity, evaluation of expressions, type conversions in expressions, formatted input and output.
MODULE II	CONTROL STRUCTRES
	Control structures: Decision statements; if and switch statement; Loop control statements: while, for and do while loops, jump statements, break, continue, goto statements; Arrays: Concepts, one dimensional arrays, declaration and initialization of one dimensional arrays, two dimensional arrays, initialization and accessing, multi dimensional arrays; Strings concepts: String handling functions, array of strings.
MODULE III	ARRAYS AND FUNCTIONS
	Functions: Need for user defined functions, function declaration, function prototype, category of functions, inter function communication, function calls, parameter passing mechanisms, recursion, passing arrays to functions, passing strings to functions, storage classes, preprocessor directives. Pointers: Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, pointers and arrays, pointers as functions arguments, functions returning pointers.
MODULE IV	POINTERS AND STRUCTURES
	Structures and unions: Structure definition, initialization, accessing structures, nested structures, arrays of structures, structures and functions, passing structures through pointers, self referential structures, unions, bit fields, typedef, enumerations; Dynamic memory allocation: Basic concepts, library functions.
MODULE V	FILE HANDLING AND APPLICATIONS IN C
	Files: Streams, basic file operations, file types, file opening modes, file input and output functions, file status functions, file positioning functions, command line arguments.

TEXT BOOKS

- 1. Byron Gottfried, —Programming with C, Schaum's Outlines Series, McGraw Hill Education, 3rd Edition, 2017.
- 2. Reema Thareja Programming in C, Oxford university press, 2nd Edition, 2016.

REFERENCE BOOKS: 1. W. Kernighan Brian, Dennis M. Ritchie — The C Programming Language, PHI Learning, Second Edition, 1988.

- 2. YashavantKanetkar Exploring C, BPB Publishers, Second Edition, 2003..
- 3. Schildt Herbert —C: The Complete Reference, Tata McGraw Hill Education, Fourth Edition, 2014.

Web References:

- 1. https://www.bfoit.org/itp/Programming.html
- 2. https://www.khanacademy.org/computing/computer-programming
- 3. https://www.edx.org/course/programming-basics-iitbombayx-cs101-1x-0
- 4. https://www.edx.org/course/introduction-computer-science-harvardx-cs50x

E-Text Books:

- $1.\ http://www.freebookcentre.net/Language/Free-C-Programming-Books-Download.htm$
- 2. http://www.imada.sdu.dk/ svalle/courses/dm14-2005/mirror/c/
- 3. http://www.enggnotebook.weebly.com/uploads/2/2/7/1/22718186/ge6151-notes.pdf

MOOC Course:

- 1. https://www.alison.com/courses/Introduction-to-Programming-in-c
- 2. http://www.ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-s096-effective-programming-in-c- and-c-january-iap-2014/index.htm

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
1-2	Introduction to Computers: computer systems, computing environments, Computer languages, creating and running programs	CO 1	T2: 1.1-1.2
3-4	Algorithms, flowcharts; Introduction to C language: Computer languages, History of C, basic structure of C programs, process of compiling and running a C program	CO 2	T2: 2.1-2.2
5-6	C tokens, keywords, identifiers, constants, strings	CO 2	T2: 1.4-1.5
7-8	Special symbols, variables, data types	CO 3	T2:2.1-2.2
9-10	Operators and expressions	CO 3	T2: 2.3-2.6,7
11-12	Simple if, if-else, else if ladder, Nested if and Case Statement-switch statement	CO 3	T2:3.1-3.5
13-14	While, for and do while loops	CO 5	T2: 5.2-5.3
15-16	Jump statements, break, continue, goto statements	CO 7	T2: 6.1-6.6

17–18	Concepts, one dimensional arrays, declaration and initialization of one-dimensional arrays	CO 9 4	T2: 6.7
19–20	Two dimensional arrays, initialization and accessing	CO 13	T2: 8.1- 8.3
21-22	Multi-dimensional arrays; Strings: Arrays of characters	CO 13	T2: 11.1-11.5
23-24	Variable length character strings, inputting character strings, character library functions, string handling functions	CO 15	T2: 4.1-4.5
25	Need for user defined functions, function declaration, function prototype	CO 15	T1:7 T2: 6.9
26	Category of functions, inter function communication, function calls	CO 11	T1:10T2:10
27	Parameter passing mechanisms, recursion, passing arrays to functions, passing strings to functions,	CO 16	T2:10.3- 10.5
28	Storage classes, preprocessor directives	CO 16	T1:8.9
29	Structure definition, initialization, accessing structures, nested structures	CO 16	T2: 12.3- 12.4
30	Unions, C programming examples, BitFields, typedef, enumerations	CO 16	T2:12.4
31-32	Arrays of structures, structures and functions, passing structures through pointers, self-referential structures	CO 17	T2:2.1-2.2
33-34	Unions, bit fields, typedef, enumerations	CO 17	T2: 2.3- 2.6,7
35–36	Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, pointers and arrays	CO 19	T2: 5.2-5.3
37	Pointers as functions arguments, functions returning pointers	CO 19	T2: 5.2-5.3
38	Dynamic memory allocation: Basic concepts, library functions	CO 20	T2: 6.1-6.6
39	Streams, basic file operations, file types, file opening modes, input and output operations with files	CO 20	T2:10.4
40-41	Special functions for working with files, file positioning functions	CO 21	R3:12.1- 12.3
42	Command line arguments. Searching	CO 22	R3:12.4
43	Sorting algorithms bubble, insertion, selection	CO 23	T2:11.4 R7:13.1
44-45	Algorithm complexity through example programs	CO 23	T2:11.4 R7:13.1
44-45	Algorithms and Flowcharts	CO 1	T2:2.1-2.2, R4:1.4
	Operators, Precedence and Associativity of Operators, Expression Evaluation	CO2	T2:2.3-2.6,
46-46	Simple if, if-else, else if ladder, Nested if and Case Statement-switch statement	CO 2	T2:3.1-3.5

47-48	While, for and do while loops, Jump statements, break, continue, goto statements	CO 3	T2:5.2- 5.3,T2:6.1- 6.6
48-49	One dimensional arrays	CO 3	T2: 8.1-8.2, R4:15.1
50-51	Strings and its operations	CO 3	T2: 8.3, R4: 15.1
51-52	User defined Functions, Parameter passing mechanisms, passing arrays to functions, passing strings to functions,	CO 4	T1:10, T2:10.1 10.2, T2:10.3- 10.4, R4:8.3-8.5
52 - 53	Recursion	CO 4	T2:10.5
54-55	Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, pointers and arrays Pointers as functions arguments, functions returning pointers, Dynamic Memory Allocation	CO 4	T2:3.1,R4:11
56-57	Storage classes, pre-processor directives	CO 5	T2:6.1-6.6
58-59	Structure definition, initialization, accessing structures	CO 5	T1:8.9,T2:2.3 2.5
60-61	Unions, bit fields, typedef, enumerations, command line arguments	CO 5	T2: 12.3- 12.4,R4:13.4
61-62	File Handling	CO 6	T2:10.4,R4
62-63	Introduction	CO 1,2	T2:1.1- 1.5,T2:2.1
63-64	Control Structures	CO 3	T2: 3.1 -3.5, T2:5.2 - 5.3
65-66	Arrays and Functions	CO 4	$\begin{array}{c} {\rm T2:} \ 8.1 \\ -8.3, \\ {\rm R4:} 15.1 \end{array}$
67-68	Pointer and Structures	CO 5	T2: 12.3– 12.4,R4: 13.2– 13.4,T1: 8.9
69-70	File Handling and Applications In C	CO 6	T2: 10.4,T2: 14.1-14.4
71-72	Module I	CO 1,2	T2:1.1- 1.5,T2:2.1- 2.6

73-74	Module II	CO 3	T2: 3.1
			-3.5,
			T2:5.2 -
			5.3
75-76	Module III	CO 4	T2: 8.1
			-8.3,
			R4:15.1
77-78	Module IV	CO 5	T2: 12.3–
			12.4, R4:
			13.2-
			13.4, T1:
			8.9
79-80	Module V	CO 6	T2:
			10.4, T2:
			14.1 - 14.4

Signature of Course Coordinator Mr. P Ravinder Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCEINCE AND ENGINEERING						
Course Title	COMPU	COMPUTATIONAL MATHEMATICS AND INTEGRAL CALCULUS						
Course Code	AHS003	AHS003						
Program	B. Tech							
Semester	Ι							
Course Type	Foundati	on						
Regulation	R-16							
		Theory			Practical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	3	1	4	-	-			
Course	Ms. V Subbalaxmi, Assistant Professor							
Coordinator								

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10 + 2	-	Ι	Basic Principles of complex functions

II COURSE OVERVIEW:

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes Types of Interpolation, Curve fitting, Numerical solutions of Ordinary Differential Equations, Multiple Integrals, Vector Calculus and Special functions. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Computational Mathematics And	70 Marks	30 Marks	100
Integral Calculus			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	\checkmark	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
36 %	Understand
64 %	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component	Theory			Total Marks
Type of Assessment	CIE Exam	Quiz	AAT	
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

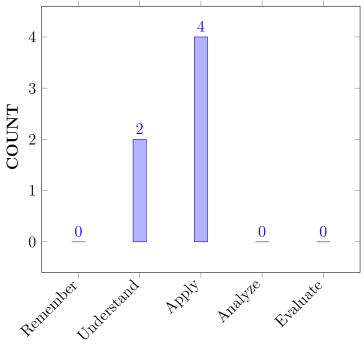
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	Enrich the knowledge of solving algebraic, transcendental and differential equation by numerical methods.
II	Apply multiple integration to evaluate mass, area and volume of the plane
III	Apply gradient, divergence and curl to evaluate the integration over a vector field
IV	Apply the Bessel's equation to solve them under special conditions with the help of
	series solutions.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Apply numerical methods for solving algebric ,transcendental equations and interpolating the data	Apply
CO 2	Make use of least squares methods for fitting straight lines, the second degree, exponential and power curves .	Apply
CO 3	Utilize numerical methods for solving linear diffrential equations with initial conditions	Apply
CO 4	Identify the limits of definite integrals for calculating the area of solids.	Understand
CO 5	Extend vector operations and theorems for finding line, surface and volume integrals .	Apply
CO 6	Determine characteristics of special functions for solving proper and improper integrals	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	CIE/Quiz/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	_	Seminar/ Confer- ences/ Research Papers
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	-	-
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	-	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	<	\checkmark	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	\checkmark	-	-		-	-	-	-	-	-		-	-	-
CO 5	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-		-	-	-	-	-	-	-	-	-	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Apply the basic properties of numerical methods for solving algebric ,transcendental equations and interpolating the data algebra and applicability in solving (complex) majority of functions by applying Mathematical principles.	2
	PO 2	Apply the of numerical methods as a formulation of mathematical function in complex engineering problems which transformations a algibric and transcendental equations using principle of mathematics to attain conclusion by the interpretation of results .	4
CO 2	PO 1	Make use of the basic properties of least squares methods for solving fitting straight lines, the second degree, exponential and power curves by using Mathematical principle.	2
CO3	PO 1	Utilize the basic properties of numerical methods for solving linear diffrential equations with initial conditions by applying Mathematical principles .	2
	PO 2	Apply the of numerical methods as a formulation of mathematical function in complex engineering problems linear diffrential equations with initial conditions using principle of mathematics to attain conclusion by the interpretation of results .	4
CO4	PO 1	Identify the basic properties of the limits of definite integrals for calculating the area of solids by applying Mathematical principles .	2
	PO 2	Identify the integrals for calculating the area as a formulation of mathematical function in complex engineering problems which multiple integral using principle of mathematics to attain conclusion by the interpretation of results	4
CO5	PO1	Extend the vector operations and theorems for finding line, surface and volume integrals by using priniciples of Mathematics .	2
CO6	PO1	Identify the Formulation of improper integrals and their classification for applicability in solving special functions by applying the principles of mathematics .	2
	PO 2	Solve the of improper integrals as a formulation of mathematical function in complex engineering problems which transformatimations of equations using principle of mathematics to attain conclusion by the interpretation of results.	4

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	РО	PO	РО	PO	PO	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	4	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	4	-	-		-	-	-	-	-	-		-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	2	4	-	-	-	-	-	-	-	-	-		-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	PO	РО	РО	PO	PO	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	40	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	66.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	66.7	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	66.7	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	66.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	66.7	40	-	-		-	-	-	-	-	-		-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 -5 < C \le 40\% Low/ Slight$
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

				PRO)GR.	$\mathbf{A}\mathbf{M}$	OUT	CON	MES					PSO'S	
COURSE	РО	РО	РО	РО	PO	РО	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	18	8	-	-	-	-	-	-	-	-	-	-	-	-	-
AVERAGE	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	~	5 Minutes Video	~	Open Ended Experiments	-
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

\checkmark	Early Semester OBE Feedback	\checkmark	End Semester OBE Feedback
--------------	-----------------------------	--------------	---------------------------

XVIII SYLLABUS:

MODULE I	ROOT FINDING TECHNIQUES AND INTERPOLATION
	Solving algebraic and transcendental equations by bisection method, method of false position Newton-Raphson method; Interpolation: Finite differences, forward differences, backward differences and central differences; Symbolic relations; Newton's forward interpolation, Newton's backward interpolation; Gauss forward central difference formula, Gauss backward central difference formula; Interpolation of unequal intervals: Lagrange's interpolation, Newton's divided difference interpolation.
MODULE II	CURVE FITTING AND NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
	Fitting a straight line; Second degree curves; Exponential curve, power curve by method of least squares. Taylor's series method; Step by step methods: Euler's, modified Euler's and Runge-Kutta method.
MODULE III	MULTIPLE INTEGRALS
	Double and triple integrals; Change of order of integration. Change of variables: Polar, cylindrical and spherical; Finding the area of a region using double integration and volume of a region using triple integration.
MODULE IV	VECTOR CALCULUS
	Scalar and vector point functions; Gradient, divergence, curl and their related properties; Solenoidal and irrotational vector point functions; Scalar potential function; Laplacian operator; Line integral, surface integral and volume integral; Vector integral theorems: Green's theorem in a plane, Stoke's theorem and Gauss divergence theorem without proofs.
MODULE V	SPECIAL FUNCTIONS
	Gamma function, properties of gamma function; Ordinary point and regular singular point of differential equations; Series solutions to differential equations around zero, Frobenius method about zero; Bessel's differential equation: Bessel functions properties, recurrence relations, orthogonality, generating function, trigonometric expansions involving Bessel functions.

TEXTBOOKS

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 10th Edition,2010
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2015

REFERENCE BOOKS:

- 1. T.K.V Iyengar, B.Krishna Gandhi, "Engineering Mathematics III", S. Chand & Co., 12th Edition, 2015..
- 2. Churchill, R.V. and Brown, J.W, "Complex Variables and Applications", Tata Mc Graw-Hill, 8th Edition, 2012.

WEB REFERENCES:

- $1. \ http://www.efunda.com/math/math_home/math.cfm$
- 2. http://www.ocw.mit.edu/resourcs/#Mathematics
- 3. http://www.sosmath.com
- 4. http://www.mathworld.wolfram.com

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1					
	OBE DISCUSSION	I						
1	1 Introduction to outcome based education							
	CONTENT DELIVERY (THEORY)							
2	Define Algebraic and Transcendental equations	CO 1	T1:12.1,R1:					
3	Apply Bisection method to find the root	CO 1	T1:12.3, R1:4.4					
4	Apply False Position method to find the root	CO 1	T1:12.3, R1:4.6					
5	Apply Newton-Raphson method to find roots	CO 1	T1:12.3, R1:4.7					
6	Define what interpolation is	CO 1	T1:12.4, R1:4.13					
7	Explain the relation between symbols	CO 1	T1:12.4, R1:4.15					
8	Solve the problems by Newton's forward method	CO 1	T1:12.4, R1:4.20					
9	Solve the problems by Newton's backward method	CO 1	T1:22.9 R1:5.8					
10	Solve the problems by Gauss forward method	CO 1	T1:13.1, R1:5.3					
11	Solve the problems by Gauss backward method	CO 1	T1:13.2, R1:5.5					
12	Solve the problems by lagrange's and Newtons dividend difference	CO 1	T1:13.3, R1:5.9					
13	Define Algebraic and Transcendental equations	CO 1	T1:13.4, R1:5.10					

14	Apply Bisection method to find the root	CO 1	T1:14.1,
1 5		CO 1	R1:6.1
15	Solve the problems by lagrange's and Newtons dividend difference	CO 1	T1:14.2 , R1:6.1
16	Solve a straight line	CO 2	T1:14.4,
1.77		<u> </u>	R1:6.2
17	Solve a second degree parabola	CO 2	T1:15.2 , R1:6.6
18	Solve an exponential curve	CO 2	T1:15.1, R1:7.4,
19	Solve the ODE by Taylor's series method	CO 3	T1:15.1,
			R1:6.5
20	Solve the ODE by Euler's Method- Euler's modified method	CO 3	T1:15.3, R1:7.9
21	Explain the ODE by Taylor's series method	CO 3	T2: 7.14,
			R1:1.6
22	Explain the ODE Euler's modified method	CO 3	T2: 7.15, R1:1.63
23	Solve the ODE by Runge-Kutta Methods	CO 3	T2: 7.15,
			R1:1.65
24	Calculate double and triple integrations	CO 4	T2: 16.5,
			R1:7.32
25	Use the Change of order for multiple integrals	CO 4	T2: 16.6, R1:7.36
26	Use the Change of variables in multiple integrals	CO 4	T2: 16.7, R1:7.36
27	Apply double integration for finding the area	CO 4	T2: 16.8,
			R1:7.41
28	Apply triple integration for finding the volume	CO 4	T2: 16.9, R1:7.42
29	Define vector calculus and vector fields and their properties	CO 5	T2: 16.9,
			R1:7.42
30	Determine Gradient, divergent and curl of vector fields	CO 5	T2: 7.14, R1:1.6
31	Calculate line integral along smooth path and find work done	CO 5	T2: 7.15 ,
	careatate inte integral along shioten path and inte work done		R1:1.65
32	Calculate the surface area of field	CO 5	T2: 7.15,
			R1:1.65
33	Calculate volume of field	CO 5	T2: 7.15, R1:1.65
34	Use Green's theorem to evaluate line integrals along simple	CO 5	T2: 16.5,
25	closed contours on the plane		R1:7.32
35	Use Stokes' theorem to give a physical interpretation of the curl of a vector field	CO 5	T2: 16.6, R1:7.36
36	Use the divergence theorem to give a physical interpretation	CO 5	T2: 16.7,
	of the divergence of a vector field		R1:7.36
37	Apply gamma function for improper integrals	CO 6	T2: 16.7,
			R1:7.36

38	Motivation for series solution Ordinary and regular point of a differential equation	CO 6	T2: 16.8 R1:7.41
39	Transformation of non-zero singular point to zero singular point series solutions of differential equations around zero	CO 6	T2: 16.8 R1:7.41
40	Frobenius Method about zero	CO 6	T2: 16.9 R1:7.42
41	Explain the Bessel functions	CO 6	T2: 16.5 R1:7.32
42	Determine the solution of ordinary differential equations in series form	CO 6	T1:12.3, R1:4.4
43	Apply the Frobenius method to obtain a series solution for the given linear ODE	CO 6	T1:12.3, R1:4.7
44	Demonstrate Bessel's Differential equation	CO 6	T1:12.4, R1:4.13
	PROBLEM SOLVING/ CASE STUDIES		
45	Solving problems on bisection, false position method	CO 1	T1:17.1- 17.2 R1:16.1- 16.2
46	Solving problems on Newton Raphson method	CO 1	T1:17.5- 17.6 R1:16.3.1
47	Solving problems on interpolation methods	CO 1	T1:17.1- 17.2 R1:16.1- 16.2
48	Solving problems on straightlines ,second degree .exponential curves least squares method	CO 2	T1:17.5- 17.6 R1:16.3.1
49	Solving problems on Taylor's series method	CO 3	T1:17.1- 17.2 R1:16.1- 16.2
50	Solving problems onStep by step methods: Euler's, modified Euler's	CO 3	T1:23.10 R1:8.1
51	Solving problems on Runge-Kutta method	CO 3	T1:23.1 R1:9.2
52	Solving problems on Double and triple integrals	CO 4	T1:23.1 R1:9.4
53	Solving problems on Vector integral theorems	CO 5	T1:23.1 R1:9.9
54	Solving problems on properties of gamma function	CO 6	T1:23.10 R1:8.1
55	Solving problems on properties of Bessel function, Recurrence relations of Bessel function, Generating function and orthogonality of Bessel function	CO 6	T1:17.1- 17.2 R1:16.1- 16.2

		<u> </u>	
56	Solving problems on Trigonometric expansions involving	CO 6	T1:17.1-
	Bessel function.		17.2
			R1:16.1-
			16.2
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
57	Definitions and terminology of Module I on Root finding	CO 1	T1:23.10
	techniques and interpolation		R1:6.8
58	Definitions and terminology of Module II on Curve fitting	CO 2,	T1:23.10
	and numerical solution of ordinary differential equations	CO 3	R1:7.5
59	Definitions and terminology of Module III on Multiple	CO 4	T1:23.10
	integrals		R1:8.1
60	Definitions and terminology of Module IV on Vector calculus	CO 6	T2:27.12
			R1:11.10
61	Definitions and terminology of Module V on Special	CO 6	T1:17.1-
	functions		17.2
			R1:16.1-
			16.2
	DISCUSSION OF QUESTION BANK		
62	Discussion of Question Bank of Module I on Root Finding	CO 1	T1:23.10
	Techniques and Interpolation		R1:8.1
63	Discussion of Question Bank of Module II on Curve Fitting	CO 2,	T1:23.10
	and Numerical Solution of Ordinary Differential Equations	CO 3	R1:6.8
64	Discussion of Question Bank of Module III on Multiple	CO 4	T1:23.10
	Integrals		R1:7.5
65	Discussion of Question Bank of Module IV on Vector	CO 5	T2:27.12
	calculus		R1:11.10
66	Discussion of Question Bank of Module V on Special	CO 6	T1:17.1-
	Functions		17.2
			R1:16.1-
			16.2

Course Coordinator: Ms V Subbalaxmi , Assistant Professor HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING						
Course Title	ENGIN	ENGINEERING CHEMISTRY					
Course Code	AHS005						
Program	B.Tech						
Semester	Ι						
Course Type	FOUNDATION						
Regulation	IARE - I	R16					
		Theory		Prac	tical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	1	3	3	3		
Course Coordinator	Dr V Anitha Rani, Associate Professor						

I COURSE OVERVIEW:

The primary objective of an Engineering Chemistry course is to introduce the students to the concepts and applications of chemistry in engineering. It should cultivate in them an ability to identify chemistry in each piece of finely engineered products used in households and industry. It aims to strengthen the fundamental concepts of chemistry and then builds an interface with their industrial applications. It deals with applied and industrially useful topics, such as water technology, engineering materials, electrode potential and cells, fuels, polymers and corrosion. This course will involve minimum lecturing, content will be delivered through assigned reading and reinforced with large and small group discussions, as well as assigned in class (and occasional out of class) group activities. Water and its treatment for various purposes, engineering materials such as plastics, composites, ceramic, abrasives, their preparation, properties and applications, conventional and non-conventional energy sources, nuclear, solar, various batteries, combustion calculations, corrosion and control of metallic materials.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10 + 2	-	-	Basic Principles of chemistry

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks		
Engineering chemistry	70 Marks	30 Marks	100		
IV DELIVERY / INSTRUCTIONAL METHODOLOCIES.					

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	PPT		Chalk & Talk		Assignments	x	MOOCs
\checkmark		\checkmark		 ✓ 			
x	Open Ended		Seminars	x	Mini Project		Videos
	Experiments	 ✓ 				\checkmark	
x	Others	•		•		•	

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table below.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50%	Understand
50%	Apply
0%	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 25 marks for Continuous Internal Examination and (CIE), 05 marks for Quiz.

Component	Theory		
Type of Assessment	CIE Exam	Quiz	Total Marks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

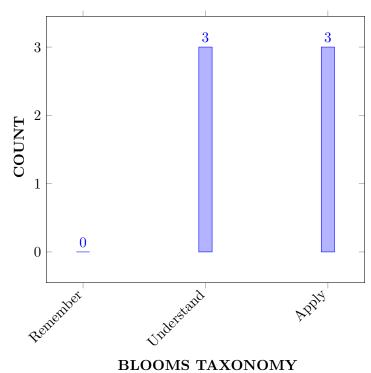
Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz –Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The concepts of electrochemical principles and causes of corrosion in the new development and breakthroughs efficiently in engineering and technology.
II	The different parameters to remove causes of hardness of water and their reactions towards the complexometric method.
III	The polymerization reactions with respect to mechanisms and its significance in industrial applications.
IV	The properties, separation techniques of natural gas and crude oil along with potential applications in major chemical reactions.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the operation of electrochemical systems for the production of electric energy, i.e. batteries.	Understand
CO 2	Utilize electrochemical cell parameters, electrochemical active surface area, current and over potential under given condition for calculating the electromotive force and electrode potential.	Apply
CO 3	Illustrate the electrochemical theory of corrosion process in metals for protection of different metals from corrosion.	Understand
CO 4	identify the Hardness of water by different treatment methods for finding the hardness causing salts in water	Apply
CO 5	Explain the importance of different types of materials for understanding their composition and applications.	Understand
CO 6	Choose different types of solid, liquid and gaseous fuels in terms of calorific value for utilizing in industries and automobiles.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	SEE/CIE /Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	1	SEE/CIE /Quiz/AAT
PO 7	Environment and sustainability: understand the impact of the professional engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development	3	SEE/CIE /Quiz/AAT

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	PROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the	-	-
	areas related to Algorithms, System Software, Web design,		
	Big data, Artificial Intelligence, Machine Learning and		
	Networking.		
PSO 2	Focus on improving software reliability, network security or	-	-
	information retrieval systems.		
PSO 3	Make use of modern computer tools for creating innovative	-	-
	career paths, to be an entrepreneur and desire for higher		
	studies.		

3 = High; 2 = Medium; 1 = Low

X MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE				PR	OGR	AM	OUT	CON	IES]	PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	\checkmark	✓	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-

XI JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

Course Outcomes (COs)	POs / PSOs	Justification for mapping (Students will be able to)	No. of key com- petencies
CO 1	PO 1	Apply the electrochemical properties for producing electrical energy (understand) by using principles of science for solving engineering problems.	2
CO 2	PO 1	Choose different electrodes for finding pH of unknown solutions by applying mathematical expressions of cell potential by using principles of science and mathematics for solving engineering problems	3
	PO 2	Identify the problem formulation and abstraction for calculating electrode potential under non standard conditions by applying Nernst equation from the provided information .	2
CO 3	PO 1	Explain the corrosion processes in metals by exposing to acidic and alkaline environment, corrosion control methods like metallic coatings, cathodic protection to prevent corrosion in different metals by using principles of science engineering problems by applying the principles of science	2
CO 4	PO 1	Explain the Hardness of water by different treatment methods for finding the hardness causing salts in water mathematical expressions for solving engineering problems.	3
	PO 2	Identify the problem and formulate for finding the hardness of water in terms of CaCO3 equivalents with given information and data by applying principles of science.	2
CO 5	PO 1	Relate the importance of different types of materials such as polymers, lubricants, cement and refractories for understanding their composition and applications by using mathematical expressions for finding the principles of science and mathematics for solving engineering problems.	2
CO 6	PO 1	Choose different types of solid, liquid and gaseous fuels with their characteristics and calorific value by applying mathematical expressions for finding calorific value using principles of science for solving engineering problems by applying the principles of science .	2

PO 2	Identify the problem and formulate for finding the hardness of water in terms of CaCO3 equivalents with given information and data by applying principles of science.	2
PO 7	Make use of gaseous fuels like LPG, CNG to reduce the pollutants in atmosphere and know the impact in socio economic and environmental contexts for sustainable development.	2

XII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE	Pro	gram	o Out	come	es/ N	o. of	Key	Con	pete	ncies	Mat	ched]	PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	2	-	-	-	-	2	-	-	-	-	-	-	-	-

XIII PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	100	20	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	66.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	66.6	20	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	66.6	20	-	-	-	-	66.6	-	-	-	-	-	-	-	-

XIV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1-5 < C \le 40\% Low/Slight$
- ${\it 2}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ 60% \leq C < 100% Substantial /High

COURSE				PRO	OGR.	AM (OUT	COM	IES]	PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	1	-	-	-		3	-	-	-	-	-	-	-	-
TOTAL	18	3	-	-	-	-	3	-	-	-	-	-	-	-	-
AVERAGE	3	1	-	-	-	-	3	-	-	-	-	-	-	-	-

XV ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO1,PO2,PO7	SEE Exams	PO1,PO2,PO7	Seminars	PO1,PO2,PO7
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	PO1,PO2,PO7	5 Minutes Video	PO1,PO2,PO7	Open Ended Experiments	PO1,PO2,PO7
Assignments	PO1,PO2,PO7				

XVI ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XVII SYLLABUS:

MODULE I	ELECTROCHEMISTRY AND BATTERIES
	Electrochemistry: Basic concepts of electrochemistry; Conductance: Specific, equivalent and molar conductance and effect of dilution on conductance; Electrochemical cells: Galvanic cell (daniel cell); Electrode potential; Electrochemical series and its applications; Nernst equation; Types of electrodes: Calomel electrode, quinhydrone electrode; Batteries: Classification of batteries, primary cells (dry cells) and secondary cells (lead-acid battery, Ni-Cd cell), applications of batteries, numerical problems.
MODULE II	CORROSION AND ITS CONTROL
	Corrosion: Introduction, causes and effects of corrosion; Theories of corrosion: Chemical and electrochemical corrosion with mechanism; Factors affecting the rate of corrosion: Nature of the metal and nature of the environment; Types of corrosion: Waterline and crevice corrosion; Corrosion control methods: Cathodic protection- sacrificial anodic protection and impressed current cathodic protection; Surface coatings: Metallic coatings, methods of application of metallic coatings-hot dipping(galvanizing, tinning), electroplating(copper plating); Organic coatings: Paints, its constituents and their functions
MODULE III	WATER TECHNOLOGY

	Water: Sources and impurities of water, hardness of water, expression of hardness-units; Types of hardness: Temporary hardness, permanent hardness and numerical problems; Estimation of temporary and permanent hardness of water by EDTA method; Determination of dissolved oxygen by Winkler's method; Boiler troubles: Priming, foaming, scales, sludges and caustic embrittlement. Treatment of water: Internal treatment of boiler feed water- carbonate, calgon and phosphate conditioning, softening of water by Zeolite process and Ion exchange process; Potable water-its specifications, steps involved in the treatment of potable water, sterilization of potable water by chlorination and ozonization, purification of water by reverse osmosis process.
MODULE IV	MATERIALS CHEMISTRY
	Materials chemistry: Polymers-classification with examples, polymerization-addition, condensation and co-polymerization; Plastics: Thermoplastics and thermosetting plastics; Compounding of plastics; Preparation, properties and applications of polyvinyl chloride, Teflon, Bakelite and Nylon-6, 6; Rubbers: Natural rubber its process and vulcanization; Elastomers: Buna-s and Thiokol rubber; Fibers: Characteristics of fibers, preparation properties and applications of Dacron; Characteristics of fiber reinforced plastics; Cement: Composition of Portland cement, setting and hardening of Portland cement; Lubricants: Classification with examples; Properties: Viscosity, flash, fire, cloud and pour point; Refractories: Characteristics and classification with examples
MODULE V	FUELS AND COMBUSTION
	Fuel: Definition, classification of fuels and characteristics of a good fuels; Solid fuels: Coal; Analysis of coal: Proximate and ultimate analysis; Liquid fuels: Petroleum and its refining; Cracking: Fixed bed catalytic cracking; Knocking: Octane and cetane numbers; Gaseous fuels: Composition, characteristics and applications of natural gas, LPG and CNG; Combustion: Calorific value: Gross Calorific Value(GCV) and Net Calorific Value(NCV), calculation of air quantity required for complete combustion of fuel, numerical problems.

TEXTBOOKS

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company, 16th Edition, 2017.
- 2. Shashi Chawla, "Engineering Chemistry", Dhanat Rai and Company, 2011, 1st Edition.
- 3. Prashanth rath, B.Rama Devi, Ch.Venkata Ramana Reddy, Subhendu Chakroborty, Cengage Learning Publishers, 1st Edition, 2018
- 4. Anubha Kaushik, C.P.Kaushik, "Environmental Studies" New Age International publishers, 4th Edition, 2015.
- 5. Dr B.N.Srinivas, P.Kishore, K.Subba Rao "Engineering Chemistry" University Science Press,2015,1st Edition.

- **REFERENCE BOOKS:** 1. Dr.Bharathi Kumari, "A text book of Engineering Chemistry", VGS Book Links, 8th Edition,2016.
 - 2. B. Siva Shankar, "Engineering Chemistry", Tata McGraw Hill Publishing Limited, 3rd Edition, 2015.

3. S. S. Dara, Mukkanti, "Text of Engineering Chemistry", S. Chand & Co, New Delhi, 12thEdition, 2006.

XVIII COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course outcomes	Text (T) book / Reference (R) book
1	Understands the concept of electrochemistry. Differentiate the electronic conductors and electrolytes	CO 1	T1:6.1 R1: 2.6
2	Define the terms specific, equivalence and molar conductance. Explain the dilution effect on these conductance	CO 1	T1:6.1 R1: 2.6
3	Understands the concept of specific, equivalence and molar conductance. Define the EMF of the cell.Demonstrate the Daniel cell.	CO 1	T1:6.2 R1: 2.9
4	Describe the construction and chemical reactions of different electrodes.the Calomel electrode	CO 1	T1:6.5 R1: 2.6.3
5	Quinhydrone electrodes in calculation of potential of the single electrode.	CO 1	T1: 6.7 R1:2.12
6	Derive the relation between cell reaction and emf of the single electrodes.	CO 1	T1:6.12 R1: 2.12
7	Use the standard potential values of elements from electrochemical series	CO 2	T1:7.1 R1:2.14
8	Corrosion: Introduction, causes and effects of corrosion	CO 2	T1:7.2 R1:2.17
9	Theories of corrosion: Chemical and electrochemical corrosion with mechanism.	CO 2	T1:7.14 R1:2.20
10	Factors affecting the rate of corrosion: Nature of the metal and nature of the environment	CO 2	T1:7.14 R1: 2.22
11	Define the battery; differentiate the primary and secondary batteries. Demonstrate the construction of the dry cell	CO 3	T1:1.3 R1: 1.4
12	Identify the anode, cathode and electrolyte in different types of secondary batteries	CO 2	T1:1.3,1.5 R1:1.6.1,1.6.3
13	Employ the applications of different types of batteries.	CO 2	T1:1.5 R1: 1.6.2

14	Define corrosion and its disadvantages	CO 2	T1:1.14 R1: 1.6.4
15	Explain the mechanism of oxidation corrosion when dry gases attack on metal	CO 2	T1:1.12 R1: 1.6.5
16	Explain the mechanism of hydrogen evolution type and oxygen absorption type corrosion.	CO 2	T1:1.11 R1:1.8.1
17	Distinguish the types of corrosion.	CO 2	T1:1.13 R1:1.10
18	Analyze the effect of different factors on rate of corrosion.	CO 2	T1:1.4 R1: 3.1.4
19	Explain the process of cathodic protection with examples.	CO 2	T1:1.4 R1: 3.1.4
20	Use the methods of application of metallic coatings and Relate the galvanization and tinning	CO 2	T1: 3.12 R1: 3.2.2
21	Explain the process of electroplating. Apply the organic coatings for control of corrosion	CO 2	T1: 3.12 R1: 3.2.2
22	List the various sources of water, Differentiate the temporary and permanent hardness and give its units.	CO 3	T1:3.14 R1: 3.2.3
23	Calculate the total, permanent and temporary hardness of sample hard water by using EDTA	CO 3	T1: 3.15 R1:3.2.3
24	Calculate the dissolved oxygen in water by Winkler's method	CO 3	T1: 3.22 R1:3,3.4
25	Recognize the boiler troubles.	CO 3	T1: 3.24 R1: 3.5
26	Discuss the internal treatment methods of boiler feed water. Name the different chemicals used in internal treatment	CO 3	T1: 3.25 R1: 3.7
27	Explain the process of zeolite and analyze the advantages and disadvantages.	CO 3	T5:6.8 T2:1.1
28	Explain ion-exchange process. Demonstrate the treatment of potable water.	CO 3	T5: 6.8.3 T2: 8.1
29	Purification of potable water. Describe the process of reverse osmosis	CO 3	T5: 6.8.3 T2:9.2
30	Define monomer and polymer Explain the mechanism of different types of Chain and step growth polymerization	CO 4	T1:4.2 R1:6.2.1
31	Distinguish the thermoplastic and thermo set plasitcs.Illustrate the compounding of plastics.	CO 4	T1:4.4.1 R1:7.1

32	Identify the preparation, properties and applications of different thermo and thermo set plastics	CO 4	T1:4.5.2 R1:15.2
33	Identify the preparation, properties and applications of thermo set plastics. Explain about natural rubber	CO 4	T1:4.6 R1:9.2
34	Explain the preparation, properties and applications of synthetic rubbers.	CO 4	T1:4.8 R1:5.2
35	Explain the preparation, properties and applications of fibers. Generalize the process of setting and hardening reactions of cement	CO 4	T4:2.1
36	Define the term lubricant and it's classification.	CO 5	T4:2.2
37	Compare the different types of lubricants based on their properties	CO 5	T4:2.3
38	Name the different types of refractories. Discuss the characteristics and applications of refractories	CO 5	T4:2.5,5.2
39	Define the fuel with examples. Categorize the different types of fuels	CO 6	T4: 4.2
40	Analyze the different types of coals. Explain the significance of proximate analysis of coal. Explain the significance of Ultimate analysis of coal	CO 6	T4: 4.6
41	Identify the chemical constituents of petroleum. Describe the refining of petroleum. Define the term cracking. Distinguish the fixed bed and catalytic cracking	CO 6	T4:4.12
42	Evaluate the octane and cetane rating of the petrol and diesel	CO 6	T1:6.2 R1: 2.9
43	Identify the chemical constituents of the gaseous fuel. Discuss the characteristics of natural gas. Compare the LPG and CNG	CO 6	T1:6.5 R1: 2.6.3
44	Explain the combustion process of different chemical constituents present in the fuel. Differentiate the HCV and LCV.	CO 6	T1:6.2 R1: 2.9
45	Evaluate the air quantity required for complete combustion of fuel	CO 6	T1:6.5 R1: 2.6.3

Course Coordinator: Dr V Anitha Rani, Associate Professor HOD, EEE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMP	COMPUTER SCIENCE AND ENGINEERING			
Course Title	ENGIN	ENGINEERING PHYSICS			
Course Code	AHS006				
Program	B.Tech				
Semester	Ι	Ι			
Course Type	Foundati	Foundation			
Regulation	IARE - I	IARE - R16			
		Theory		Pract	ical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	3 1 4 3 2			
Course Coordinator	Mr. K. S	Mr. K. Saibaba, Assistant Professor			

I COURSE PRE-REQUISITES:

Level	Course Code	Prerequisites
10+2	-	Basic Principles of Physics

II COURSE OVERVIEW:

This course develops abstract and critical reasoning by studying mathematical and logical proofs and assumptions as applied in basic physics and to make connections between physics and other branches of sciences and technology. The topics covered include nano materials, LASER, dielectric and magnetic properties, principles of quantum mechanics and semiconductors physics. The course helps students to gain knowledge of basic principles and appreciate the diverse applications in technological fields in respective branches and also in their lives.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Engineering Physics	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): he SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
0 %	Remember
60 %	Understand
40 %	Apply
0 %	Analyze

Table 1: The expected percentage of cognitive level of questions in SEE

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/Alternative Assessment Tool.

Component	Theo	Total Marks	
Type of Assessment	CIE Exam	Quiz AAT	100al Marks
CIA Marks	25	05	30

 Table 2: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

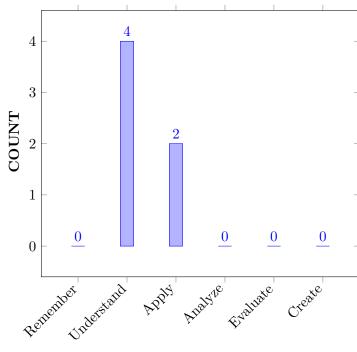
This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Assignment	Seminar	Term Paper
40%	40%	20%

 Table 3: Assessment Pattern

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	Develop strong fundamentals of nanomaterials.
II	Meliorate the knowledge of theoretical and technological aspects of LASER.
III	Correlate principles with applications of the quantum mechanics, dielectric and mag- netic materials.
IV	Enrich knowledge in modern engineering materials like semiconductors.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate the properties of dielectric and magnetic materials suitable	Understand
	for engineering applications.	
CO 2	Compare the concepts of LASER and normal light in terms of mecha-	Understand
	nism and working principles for applications in various fields and scien-	
	tific practices.	
CO 3	Illustrate basic principle, properties and production techniques of	Understand
	nanomaterials.	
CO 4	Make use of knowledge of nanomaterials to different applications in	Apply
	day to day life.	
CO 5	Apply the concepts of dual nature of matter and Schrodinger wave	Apply
	equation to a particle enclosed in simple systems.	
CO 6	Demonstrate the classification of solids and important aspects of semi-	Understand
	conductors in terms of carrier concentration and Fermi level.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

	Program Outcomes									
PO 8	Ethics: Apply ethical principles and commit to professional ethics and									
	responsibilities and norms of the engineering practice.									
PO 9	Individual and team work: Function effectively as an individual, and as a									
	member or leader in diverse teams, and in multidisciplinary settings.									
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective									
	presentations, and give and receive clear instructions.									
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.									
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change									

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	$\rm SEE/CIE/Quiz/$
	mathematics, science, engineering fundamentals, and an		AAT
	engineering specialization to the solution of complex en-		
	gineering problems		
PO 2	Problem analysis: Identify, formulate, review research	2	SEE/CIE/Quiz/
	literature, and analyze complex engineering problems		AAT
	reaching substantiated conclusions using first principles		
	of mathematics, natural sciences, and engineering sci-		
	ences.		
PO 4	Conduct Investigations of Complex Problems: Use	1	$\rm SEE/CIE/Quiz/$
	research-based knowledge and research methods includ-		AAT
	ing design of experiments, analysis and interpretation of		
	data, and synthesis of the information to provide valid		
	conclusions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	-	-
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	_	-
PSO3	Make use of modern computer tools for creating inno- vative career paths, to be an entrepreneur and desire for higher studies.	1	ААТ

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH POS, PSOs:

				PR	OGR	AM	OUT	CON	IES					PSOs	
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-		-	-	\checkmark
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	✓	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	✓	\checkmark	-	✓	-	-	-	-	-	-	-		-	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	POs PSOs	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Relate principles of different types of polarization mech- anism and expression for polarizability to the properties of functional materials and for solving engineering problems by applying these principles of science.	3
	PO 2	Explain the given problem statement and formulate polarization versus applied electric field related to ferroelectric materials from the provided information and data by the interpretation of hysteresis loop .	4
	PO 1	Utilize spin and orbital motion of electrons in determining magnetic moment of materials in terms of Bohr magneton materials having specific engineering applications .	3

Course Outcomes	POs PSOs	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 4	Identify the use of magnetic materials and their magnetiza- tion values for the research based knowledge and tech- nological development.	2
	PSO 3	Make use of Make use of modern computer tools to de- termine remnant magnetization and coercivity values from B-H curve and gain knowledge helpful for higher studies.	1
CO 2	PO 1	Compare the concepts of LASER and normal light in terms of mechanism, explain types of lasers and working principle for applications in different fields and scientific practices.	3
CO 3	PO 1	Explain the basic principles, properties and applications of nano materials by using surface to volume ratio and quantum confinement effect.	3
CO 4	PO 1	Develop the knowledge about different techniques of pro- ducing nano materials by using basic principles of nano ma- terials	3
	PO 2	Explain the given problem statement and formulate procedure for fabrication of nano materials from the information and data by the interpretation of properties of bulk materials .	4
	PO 4	Identify the use of nano materials for the research based knowledge and technological development.	2
CO 5	PO 1	Outline drawbacks of classical mechanics, basic principles dual nature of matter wave, derive mathematical wave equation of matter waves and come to conclusion of quan- tization of energy used in quantum dots.	3
	PO 2	Explain the given problem statement and formulate quantum confinement problems related to particle enclosed in small dimension from the provided information and data in reaching substantial conclusions by the interpretation of results .	4
CO 6	PO 1	Illustrate the charge transport mechanism in intrinsic and extrinsic semiconductors using energy level diagrams, calcu- late their charge carrier concentration and use those expres- sions to integrate with other engineering disciplines .	3
	PO 4	Identify the use of these semiconductors under study and their conduction mechanism for the research based knowledge and technological development .	2
	PO 2	Explain the given problem statement and formulate mo- bility and conductivity aspects of a material from the pro- vided information and data in reaching substantial con- clusions by the interpretation of Hall coefficient value .	4

Note: For Key Attributes refer Annexure-1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/PSO MAP-PING:

				PR	OGR	$\mathbf{A}\mathbf{M}$	OUT	COM	1ES				PSOs		
COURSE	PO	РО	PO	РО	PO	PO	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	4	-	2	-	-	-	-	-	-	-		-	-	1
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	4	-	2	-	-	-	-	-	-	-		-	-	-
CO 5	3	4	-	-	-	-	_	_	-	-	-	-	-	-	-
CO 6	3	4	-	2	-	-	-	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/PSO:

				PR	OGR	AM	OUT	CON	1ES				PSOs		
COURSE	РО	РО	PO	РО	PO	РО	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	40	-	18	-	-	-	-	-	-	-		-	-	30
CO 2	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	100	40	-	18	-	-	-	-	-	-	-		-	-	-
CO 5	100	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	100	40	-	18	-	-	-	-	-	-	-		-	-	-

XV COURSE ARTICULATION MATRIX (CO-PO/PSO MAPPING):

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ $0{\leq}$ C ${\leq}$ 5% – No correlation
- $1-5 < C \le 40\% Low/$ Slight

 $\pmb{2}$ - 40 % <C < 60% – Moderate

 $3 - 60\% \le C < 100\%$ – Substantial /High

				\mathbf{PR}	OGR	AM	OUT	COM	1ES				PSOs		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	1	-	-	-	-	-	-	-		-	-	1
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	1	-	-	-	-	-	-	-		-	-	-
CO 5	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	2	-	1	-	-	-	_	-	-	-		-	-	-

		PROGRAM OUTCOMES											PSOs		
COURSE	РО	PO	PO	PO	РО	PO	PO	РО	PO	PO	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
TOTAL	18	8	-	3	-		-	-	-	-	-	-	-	-	1
AVERAGE	3	2	-	1	-		-	-	-	-	-	-	-	-	1

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	_	Student Viva	-	Certification	-
Term Paper	\checkmark	5 Minutes Video	\checkmark	Open Ended Experiments	-
Assignments	\checkmark				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

x	Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback
x	Assessment of activities / Modeling and Experimental Tools in Engineering by Experts	-	-

XVIII SYLLABUS:

UNIT I	DIELECTRIC AND MAGNETIC PROPERTIES
	Dielectric properties: Basic definitions, electronic, ionic and orientation polarizations-qualitative; Internal field in solids; Magnetic properties: Basic defi- nitions, origin of magnetic moment, Bohr magneton, classification of dia, para and ferro magnetic materials on the basis of magnetic moment, domain theory of ferro magnetism on the basis of hysteresis curve.
UNIT II	LASERS
	Lasers: Characteristics of lasers, spontaneous and stimulated emission of radiation, metastable state, population inversion, lasing action, Einstein's coefficients, ruby laser, He-Ne laser, semiconductor diode laser and applications of lasers.
UNIT III	NANOMATERIAL
	Nanomaterial: Origin of nanomaterial, nano scale, surface to volume ratio, quan- tum confinement; Properties of nanomaterials: Physical, chemical, electrical, opti- cal, magnetic and mechanical. Bottom-up fabrication: Sol-gel; Top-down fabrica- tion: Chemical vapour deposition; Applications of nanomaterials, characterization by XRD, TEM.

UNIT IV	QUANTUM MECHANICS
	Introduction to quantum physics, Black body radiation, Planck's law, Photoelec- tric effect, Compton effect, De-Broglie's hypothesis, Wave-particle duality, Davisson and Germer experiment, Time-independent Schrödinger equation for wave function, Born interpretation of the wave function, Schrödinger equation for one dimensional problems-particle in a box.
UNIT V	SEMICONDUCTOR PHYSICS
	Semiconductor physics: Fermi level in intrinsic and extrinsic semiconductors, calcu- lation of carrier concentration in intrinsic and extrinsic semiconductors, energy gap, direct and indirect band gap semiconductors, Hall effect.

TEXTBOOKS

- 1. Dr. K Vijay Kumar and Dr. S Chandralingam Modern Engineering Physics || Chand & Co.NewDelhi,1st Edition, 2010.
- 2. P. K. Palanisamy Engineering Physics J. Scitech Publishers, 4th Edition, 2014.

REFERENCE BOOKS:

- 1. V. Rajendran—Engineering Physics ||, Tata McGraw Hill Book Publishers, 1st Edition, 2010.
- 2. R. K. Gaur, S. L. Gupta, -Engineering Physics ||, DhanpatRai Publications, 8th Edition, 2001.
- 3. A. J. Dekker-Solid State Physics Macmillan India ltd, 1st Edition, 2000.
- 4. Hitendra K. Malik, A. K. Singh-Engineering Physics McGraw Hill Education, 1st Edition, 2009.

WEB REFERENCES

- 1. http://link.springer.com/book
- $2. \ http://www.thpys.physics.ox.ac.uk$
- 3. http://sciencedirect.com/science
- 4. http://www.e-booksdirectory.com

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be some changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping		
CONTENT THEORY(DELIVERY)			
2	Acquire knowledge of basic terms related to dielectric materials.	CO 1	T1:13.5 R1:1.3
3	Discuss different polarization mechanisms in dielectrics	CO 1	T1:13.5 R1:1.3
4	Derive expression for total electric field at a given point inside dielectrics.	CO 1	T1:13.5 R1:1.3

			1
5	Acquire knowledge of basic terms related to magnetic materials.	CO 1	T1:14.7 R1:3.4
6	Describe magnetic moment in an atom in terms of Bohr Mag- neton	CO 1	T1:15.7 R1:4.10
7	Classify different magnetic materials based on electron theory.	CO 1	T1:16.8 R1:4.15
8	Examine the spontaneous magnetization in ferro-magnets based on orientation of domains.	CO 1	T1:16.9 R1:5.4
9	Explain the principle involved in Lasers	CO 2	T1:17.9 R1:5.8
10	Review basic phenomena's of laser	CO 2	T1:18.10 R1:6.8
11	Discuss functioning of laser system	CO 2	T1:19.9 R1:7.5
12	Derive relation between Einstein's Coefficients	CO 2	T1:23.10 R1:7.5
13	Explain the principle and working of Ruby laser	CO 2	T1:23.10 R1:8.1
14	Explain the principle and working of Helium-Neon laser	CO 2	T1:23.1 R1:9.2
15	Explain the principle and working of semiconductor diode laser	CO 2	T1:23.1 R1:9.4
16	Explain the principle and working of Helium-Neon laser	CO 2	T1:23.1 R1:9.9
17	Explain the principle and working of semiconductor diode laser	CO 2	T1:23.1 R1:9.10
18	Discuss the uses of lasers	CO 2	T2:27.5 R1:10.2
19	Identify the principle of nano technology	CO 3	T2:27.7 R1:11.3
20	Recall origin of nanomaterials	CO 5	T2:27.8 R1:11.6
21	Acquire knowledge of basic principle of nanomaterials.	CO 3	T2:27.12 R1:11.7
22	Analyze nano material with their properties	CO 3	T2:27.12 R1:11.8
23	Develop nanomaterials in sol gel method	CO 4	T2:27.12 R1:11.9
24	Develop nanomaterials chemical method	CO 4	T2:27.12 R1:11.10
25	Discuss applications of nanomaterials	CO 4	T2:27.14 R1:12.3
26	Analyze nanomaterials by XRD	CO 4	T2:27.1 R1:12.7
27	Analyze nanomaterials by TEM	CO 4	T2:27.17 R1:12.15

			1
28	Understand dual nature of radiation	CO 5	T2:27.18 R1:12.19
29	Correlate dual nature to material particle	CO 5	T2:27.19 R2:14.4
30	Analyze matter wave concept mathematically	CO 5	T2:27.20 R2:14.5
31	Describe matter waves and Heisenberg's Uncertainty Principle	CO 5	T2:30.19 R2:14.5
32	Identify existence of matter wave experimentally	CO 5	T2:30.20 R2:15.5
33	Derive wave equation of matter wave	CO 5	T2:32.19 R2:16.5
34	Correlate wave function to probability density.	CO 5	T2:32.20 R2:16.5
35	Derive the solution of wave equation in terms of Potential box	CO 5	T2:33.1 R2:16.6
36	Apply to three dimensions	CO 5	T2:34.1 R2:17.1
37	Explain basic concepts of semiconductors	CO 6	T2:35.2 R2:17.2
38	Derive carrier concentration in intrinsic Semiconductors	CO 6	T2:36.1 R2:18.1
39	Identify Fermi level in semiconductors	CO 6	T2:39.19 R2:16.5
40	Determine energy gap mathematically	CO 6	T2:40.19 R2:16.5
41	Compare Direct &Indirect Band Gap semiconductors, Hall Effect	CO 6	T2:41.19 R2:16.5
	PROBLEM SOLVING		<u> </u>
1	Dielectric constant, capacitance, permittivity	CO 1	T2:16.5; R3:8.10
2	Electric susceptibility, Polarization vector	CO 1	T2:16.5; R3:8.10
3	Polarizability	CO 1	T1:3.3.1; R3:3.2
4	Magnetic moment, Magnetic induction, Permeability	CO 1	T2:16.5; R3:8.10
5	Intensity of magnetization, Magnetic susceptibility	CO 1	T2:16.5; R3:8.10
6	Wavelength and Energy bandgap	CO 2	T2:16.5; R3:8.10
7	Divergence	CO 2	T2:16.5; R3:8.10
8	Relative population of two states	CO 2	T1:3.3.1; R3:3.2

9	Number of photons emitted	CO 2	T1:3.3.1; R3:3.2
10	De-broglie wavelength	CO 5	T1:3.3.1; R3:3.2
11	Energies associated with one dimensional potential box	CO 5	T2:16.5; R3:8.10
12	Intrinsic carrier concentration, Fermi level in semiconductors	CO 6	T2:16.5; R3:8.10
13	Carrier concentration based on Hall coefficient	CO 6	T1:3.3.1; R3:3.2
14	Mobility and conductivity based on Hall coefficient	CO 6	T2:16.5; R3:8.10
15	Diffusion and drift	CO 6	T2:16.5; R3:8.10
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	Dielectric And Magnetic Properties	CO 1	T2:16.5; R3:8.10
2	LASER	CO 2	T1:3.3.1; R3:3.2
3	Nanomaterial	CO 3, CO 4	T2:16.5; R3:8.10
4	Quantum Mechanics	CO 5	T2:16.5; R3:8.10
5	Semiconductor Physics	CO 6	T2:16.5; R3:8.10
	DISCUSSION OF QUESTION BANK		
1	Dielectric And Magnetic Properties	CO 1	T2:16.5; R3:8.10
2	LASER	CO 2	T1:3.3.1; R3:3.2
3	Nanomaterial	CO 3, CO 4	T2:16.5; R3:8.10
4	Quantum Mechanics	CO 5	T2:16.5; R3:8.10
5	Semiconductor Physics	CO 6	T2:16.5; R3:8.10

Signature of Course Coordinator

HOD

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10

	 Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal Manage the design process and evaluate outcomes. Knowledge and understanding of commercial and economic context of engineering processes Knowledge of management techniques which may be used to achieve engineering objectives within that context Understanding of the requirement for engineering activities to promote sustainable development Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	
PO 4	 Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems. 	11
PO 5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.	1

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

[I	1
	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan	12

PO 12	Recognize the need for and have the preparation and ability to engage in	8
	independent and life-long learning in the broadest context of technological	
	change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING					
Course Name	LINEAR ALGEBRA & ORDINARY					
	DIFFER	DIFFERENTIAL EQUATIONS				
Course Code	AHS002					
Program	B.Tech	B.Tech				
Semester	1					
Course Type	Foundation					
Regulation	IARE -R	16				
	Theory Practical					
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Coordinator	Ms. L Indira, Associate Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	10+2	-	

II COURSE OVERVIEW:

The Linear algebra is a sub-field of mathematics concerned with vectors, matrices, and linear transforms. Calculus is the branch of mathematics which majorly deals with derivatives and integrals. Linear algebra is a key foundation to the field of machine learning. The course includes types of Matrices, Rank, methods of finding rank, Eigen values and Eigen vectors, maxima and minima of functions of several variables, solutions of higher order ordinary differential equations and Fourier series. Matrices are used in computer animations, color image processing. Eigen values are used by engineers to discover new and better designs for the future. The laws of physics are generally written down as differential equations. So, differential equations have wide applications in various engineering and science disciplines. This course enables the students to gain basic knowledge on the mathematics which is used in modeling the real time engineering problems very often.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Liner algebra and calculus	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	х	MOOC
>	Copen Ended Experiments	х	Seminars	х	Mini Project	х	Videos
>	d Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level	
10%	Remember	
30 %	Understand	
60 %	Apply	
0 %	Analyze	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam	Quiz \AAT	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awardedby taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the averageof two quiz examinations for every course.

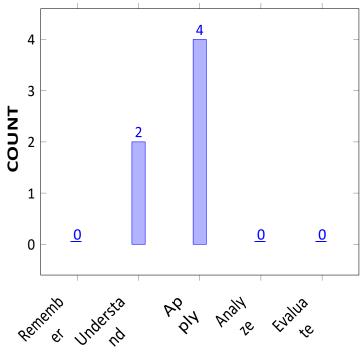
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving	
40%	40%	20%	

VI COURSE OBJECTIVES:

The students will try to learn:


I	The principles of Eigen value analysis and linear transformations, Matrix rank finding methods.
II	The analytical methods for solving higher order differential equations with constant coefficients.
111	The calculus of functions of several variables and the concept of maxima-minima for a three-dimensional surface

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Calculate the rank and inverse of real and complex matrices with elementary transformation methods.	Apply
CO 2	Compute the diagonally equivalent matrix and Cayley Hamiltonion equation of the given matrix by using Eigen values and Eigen vectors.	Apply
CO 3	Interpret the properties of differential equation of first order and first degree and orthogonal trajectories byusing integration factor method	Understand
CO 4	Solve the Second and higher order linear homogeneous and non homogeneous differential equations with constant coefficients by using substitution method.	Apply
CO 5	Interpret the extreme values for functions of several variables by using parial derivatives .	Understand
CO 6	Apply mean-value theorems in establishing some mathematical inequalities	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution		
	of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations		
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations		
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		

	Program Outcomes			
PO 9	Individual and team work: Function effectively as an individual, and as a			
	member or leader in diverse teams, and in multidisciplinary settings.			
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.			
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.			
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change			

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	PROGRAM SPECIFIC OUTCOMES		Proficiency Assessed by
PSO 1	Synthesize and analyze aircraft structures, propulsion, production technologies and computer aided engineering	-	-
	in aeronautical systems including air traffic controls standards.		
PSO	Focus on broad knowledge of aeronautical engineering in	-	-
2	innovative, dynamic and challenging environment for		
	design and development of new products.		
PSO	Make use of design, computational and experimental tools	-	-
3	for research and innovation in aerospace technologies and		
	allied streams, to become successful professional,		
	entrepreneurs and desire higher studies.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES											PSO'S			
COURSE	COURSE PO									PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	<	-	-	-	-	-	-	-	-	-	-		-		-
CO 2	<	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	<	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	<	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 6	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain the role of rank and inverse of real and complex matrices in solving complex engineering problems by using elementary transformation methods (principles of mathematics and scientific methodology).	2
CO 2	PO 1	Determine the diagonally equivalent matrix of given matrix involved in the complex engineering problems modeled by matrices with help of Eigen values and Eigen vectors (principles of mathematics and scientific methodology)).	2
	PO 2	Understand the statement and formulation of a complex engineering problem modeled by matrices with help of Eigen values and Eigen vectors and diagonalization to develop the solution and reaching substantiated conclusions by the interpretation of results	5
CO 3	PO 1	Identify whether the given differential equation of first order and first degree is exact or not by using integration factor method (principles of mathematics and scientific methodology)	2
CO 4	PO 1	Solve the complex engineering problems modeled by Second and higher order linear homogeneous differential equations (principles of mathematics) with constant coefficients by using substitution method (principles of mathematics and scientific methodology)	2
	PO 2	Understand the statement and formulation of a complex engineering problem Modeled by linear differential equations and solve them using substitution method along with basic principles of mathematics to develop the solution and reaching substantiated conclusions by the interpretation of results .	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 5	PO 1	Explain the mean-value theorems for the single variable functions and apply them in the complex engineering problems modeled by functions of single variables with their geometrical interpretation (principles of mathematics and scientific methodology).	2
CO 6	PO 1	Interpret the extreme values for functions of several variables and apply them in the complex engineering problems modeled by functions of several variableswith the help of partial derivatives (principles of mathematics and scientific methodology).	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

	PROGRAM OUTCOMES										PSO'S				
COURSE	РО	РО	РО	РО	PO	РО	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

	PROGRAM OUTCOMES										PSO'S				
COURSE	РО	PO	PO	PO	РО	РО	PO	PO	РО	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	67	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	67	50	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	67	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	67	50	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	67	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	67	-	-	-	-	-	-	-	-	-	-	-	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** 0 \leq C \leq 5% No correlation
- 1 -5 <C \leq 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- $\boldsymbol{3}$ 60% \leq C $\,<\,$ 100% Substantial /High

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	РО	PO	PO	РО	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	18	4	-	-	-	-	-	-	-	-	-	-	-	-	-
AVERAGE	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	PO1,PO2	SEE Exams	PO1,PO2	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5Tech-talk	PO1,PO2	Open Ended Experiments	-
Assignments		concept video		mini project	

XVII ASSESSMENT METHODOLOGY-INDIRECT:

	Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback	
--	--	--------------	---------------------------	--

XVIII SYLLABUS:

MODULE I	THEORY OF MATRICES
	Real matrices: Symmetric, skew-symmetric and orthogonal matrices; Complex matrices: Hermitian, Skew- Hermitian and unitary matrices; Elementary row and column transformations, elementary matrix, finding rank of a matrix by reducing to Echelon form and normal form; Finding the inverse of a matrix using elementary row/column transformations: Gauss-Jordan method; Solving of linear system of equations by LU decomposition method.
MODULE II	LINEAR TRANSFORMATIONS
	Cayley-Hamilton theorem: Statement, verification, finding inverse and powers of a matrix; Linear dependence and independence of vectors; Linear transformation; Eigen values and Eigen vectors of a matrix; Properties of Eigen values and Eigen vectors of real and complex matrices; Diagonalization of matrix.
MODULE III	DIFFERENTIAL EQUATIONS OF FIRST ORDER AND THEIR APPLICATIONS
	Solution of first order linear differential equations by exact, non exact, linear equations; Bernoulli equation. Applications of first order differential equations: Orthogonal trajectories; Newton's law of cooling; Law of natural growth and decay.

MODULE IV	HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS
	Linear differential equations of second and higher order with constant coefficients, non-homogeneous term of the $f(x)=e^{ax}$, sinax, cosaxand $f(x) = x^n$, $e^{ax}v(x)$, $x^nv(x)$; Method of variation of parameter; Application to electrical circuits and Simple Harmonic Motion
MODULE V	FUNCTIONS OF SINGLE AND SEVERAL VARIABLES
	Mean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem- without proof; Functions of several variables: Partial differentiation, chain rule, total derivative, Euler's theorem, functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers

TEXTBOOKS

- 1. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9th Edition, 2014.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012.

REFERENCE BOOKS:

- 1. RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition, 2016
- 2. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata McGraw Hill Education, 1st Edition, 2009..
- 3. Srimanthapa & SubothC.Bhunia, "EngineeringMathematics", Oxford Publishers, 3rd Edition ,2015

WEB REFERENCES:

1. https://nptel.ac.in/courses/111/108/111108157

COURSE WEB PAGE:

1. lms.iare.ac.in

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference								
	OBE DISCUSSION										
1	1 Introduction to outcome based education										
	CONTENT DELIVERY (THEORY)										
2	Theory of matrices: types of real matrices	CO1	T2:32.1R1:4.1 1								
3	Real matrices:symmetric, skew-symmetric matrices	CO1	T2:32.1 R1:4.2								
4	Real Matrices: orthogonal matrices	CO1	T2:32.1 R1:4.3								
5	Complex matrices: Hermitian, Skew- Hermitian	CO1	T2:32.1 R1:4.3								
6	Complex matrices: unitary matrices	CO1	T2:32.5 R1:4.6								
7	Elementary row and column transformations	CO1	T2:32.5 R1:4.6								
8	Rank of a matrix by echelon form	CO1	T2:32.4 R1:4.5								

1		Γ	
9	Rank of a matrix by normal form	CO1	T2:32.7 R1:4.8
10	Inverse of a matrix by Gauss-Jordan method	CO1	T2-7.1 R1:7.4
11	Eigen values of a matrix	CO2	T2-7.1 R1:7.4
12	Eigen vectors of a matrix	CO2	T2-7.1 R1:7.4
13	Diagonalization of matrix by linear transformation.	CO 2	T2:7.1 R1:7.4
14	Cayley-Hamilton theorem- statement, verifications	CO 2	T2:7.1 R1:7.4
15	Applications of Cayley – Hamilton theorem	CO 2	T3-2.9 R1:2.1
16	Linear dependence and independence of vectors	CO 2	T3-2.5 R1:2.8
17	First order linear differential equations	CO3	T3-2.5 R1:2.8
18	Bernoulli's differential equations	CO3	T3-2.5 R1:2.8
19	Exact differential equations	CO3	T3-2.5 R1:2.8
20	Non exact differential equations	CO3	T3-2.5 R1:2.8
21	Equations reducible to exact form	CO3	T3-2.61 R1:2.10
22	Orthogonal trajectories	CO3	T1-7.1 R2:7.5
23	Newton's law of cooling	CO3	T3-2.61 R1:2.10
24	Law of natural growth and decay	CO3	T1-7.1 R2:7.6
25	Application method of Lagrange multipliers	CO3	T1-7.1 R2:7.7
26	Method of Lagrange multipliers	CO3	T3-2.5 R1:2.8
27	higher order Linear differential equations	CO4	T3-2.5 R1:2.8
28	Linear differential equations of second and higher order with polynomial coefficients	CO4	T3-2.5 R1:2.8
29	Non-homogeneous term of the type f (x) $=e^{ax}$	CO4	T3-2.5 R1:2.8
30	Q(x) is of the type $f(x) = sinax$ or cosax	CO4	T2-7.1 R1:7.4
31	Non-homogeneous term of the type f (x) = X^n	CO4	T2:7.1 R1:7.4
32	Non-homogeneous term of the type $f(x) = e^{ax}V(x)$	CO4	T2:7.1 R1:7.4
33	Method of variation of parameters	CO4	T3-2.9 R1:2.1
34	Mean value theorems:1. Rolle's theorem	CO5,CO 6	T3-2.5 R1:2.8
35	Mean value theorems:2. Lagrange's theorem	CO5,CO 6	T3-2.5 R1:2.8
36	Mean value theorems:3. Cauchy's theorem	CO5,CO 6	T2:7.1 R1:7.4
37	Functions of several variables: Partial differentiation	CO5,CO 6	T3-2.9 R1:2.1
38	Jacobian transformations	CO5,CO 6	T3-2.5 R1:2.8
39	Functional dependence	CO5,CO 6	T2:7.1R1:7.4
40	Maxima and minima of functions with two variables	CO5,CO 6	T3-2.9 R1:2.1
41	Maxima and minima of functions with three variables	CO5,CO 6	T3-2.5R1:2.8
	PROBLEM SOLVING/ CASE STU	JDIES	
42	Rank of the matrix by Echelon and normal form	CO1	T2:32.1 R1:4.2
43	Solving system of linear non homogeneous equations	CO1	T2:32.1 R1:4.3
		<u> </u>	

Eigen values and eigen vectors of the matrix	CO2	T2:32.1 R1:4.3
Finding spectral matrix by linear transformation.	CO2	T2-7.1 R1:7.4
Verification of Caley- Hamilton theorem	CO2	T2-7.1 R1:7.4
Finding powers of the matrix by Caley -Hamilton theorem	CO2	T2:7.1 R1:7.4
Solving first order differential equations	CO3	T2:7.1 R1:7.4
Solving Non-Homogeneous Differential Equations.	CO3	T3-2.5 R1:2.8
Solving linear and exact differential equations	CO3	T3-2.5 R1:2.8
Finding C.F and P.I. of higher order differential equations	CO9	T3-2.5 R1:2.8
Solving Second Order Non-homogeneous differential equations by method of variation of parameters	CO4	T3-2.5 R1:2.8
Solving higher differential equations of different types	CO4	T3-2.61 R1:2.10
Jacobian transformation in Cartesian and Polar Forms	CO 5,CO 6	T2:7.1 R1:7.4
Finding functional relationship.	CO 5,CO 6	T3-2.9 R1:2.1
Finding max.and min. of functions of two variables	CO 5,CO 6	T3-2.5 R1:2.8
DISCUSSION OF DEFINITION AND TEF	RMINOLO	GY
Real, complex matrices and rank of a matrix	CO1	T3-2.5 R1:2.8
Eigen values and eigen vectors, diagonalization	CO2	T3-2.5 R1:2.8
First order linear, exact and non-exact D.Es.	CO3	T3-2.5 R1:2.8
Higher order differential equations	CO4	T3-2.5 R1:2.8
Mean value theorems, Jacobian transformations, functionally dependent and independent	CO5	T3-2.61 R1:2.10
DISCUSSION OF QUESTION B	ANK	
Theory of matrices	CO1	T2:7.1R1:7.4
Linear transformations	CO2	T3-2.9R1:2.1
First order and degree differential equations	CO3	T3-2.5R1:2.8
Higher order differential equations	CO4	T2:32.1R1:4.3
Functions of several variables	CO5, CO	T2-7.1R1:7.4
	Finding spectral matrix by linear transformation. Verification of Caley- Hamilton theorem Finding powers of the matrix by Caley -Hamilton theorem Solving first order differential equations Solving Non-Homogeneous Differential Equations. Solving linear and exact differential equations Finding C.F and P.I. of higher order differential equations Solving Second Order Non-homogeneous differential equations by method of variation of parameters Solving higher differential equations of different types Jacobian transformation in Cartesian and Polar Forms Finding functional relationship. Finding max.and min. of functions of two variables DISCUSSION OF DEFINITION AND TEF Real, complex matrices and rank of a matrix Eigen values and eigen vectors, diagonalization First order linear, exact and non-exact D.Es. Higher order differential equations Mean value theorems, Jacobian transformations, functionally dependent and independent DISCUSSION OF QUESTION B . Theory of matrices Linear transformations First order and degree differential equations Higher order differential equations Higher order differential equations	Finding spectral matrix by linear transformation.CO2Verification of Caley- Hamilton theoremCO2Finding powers of the matrix by Caley -Hamilton theoremCO3Solving first order differential equationsCO3Solving Non-Homogeneous Differential Equations.CO3Solving Inear and exact differential equationsCO3Finding C.F and P.I. of higher order differential equationsCO4Solving bigecond Order Non-homogeneous differential equations by method of variation of parametersCO4Solving functional relationship.CO 5,CO66Finding functional relationship.CO 5,CO66DISCUSSION OF DEFINITION AND TERMINOLOReal, complex matrices and rank of a matrixCO1Eigen values and eigen vectors, diagonalizationCO2First order linear, exact and non-exact D.Es.CO3Higher order differential equationsCO4Mean value theorems, Jacobian transformations, functionally dependent and independentCO4Higher order differential equationsCO4DISCUSSION OF QUESTION BANKCO5Theory of matricesCO1Linear transformationsCO2First order and degree differential equationsCO3Higher order differential equationsCO3Higher order differential equationsCO3Higher order differential equationsCO4Solving functionally dependent and independentCO4DISCUSSION OF QUESTION BANKCO1Linear transformationsCO2First order

Signature of Course Coordinator

HOD,AE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	COMPUTATIONAL MATHEMATICS LABORATORY						
Course Code	AHS102	AHS102					
Program	B.Tech						
Semester	I	CSE					
Course Type	Foundation						
Regulation	IARE- R16						
		Theory		Pr	actical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	3	1.5		
Course Coordinator	Ms. B Praveena, Assistant Professor						

I COURSE OVERVIEW:

II. The aim of this course is to know about the basic principles of Engineering Mathematics and itsapplication in MATLAB by means of software. Nowadays the principles of MATLAB find widerange of applications in many situations such as signal processing and communications, imageandvideoprocessing,controlsystems,testandmeasurement,computationalfinance,andcomputational biology. Using MATLAB, one can analyze data, develop algorithms, and createmodelsandapplications.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10 + 2	-	-	Basic Principles of Algebra and
			Calculus

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Computational Mathematics	70 Marks	30 Marks	100
Laboratory			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab Worksheets	\checkmark	Viva Questions	\checkmark	Probing further Questions
--------------	------------	--------------	----------------	--------------	----------------	--------------	------------------------------

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks of assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner,

both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

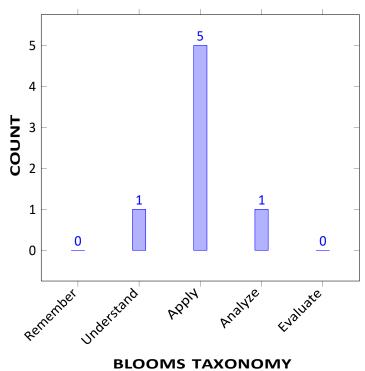
2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

I	Demonstrate the basic principles of MATLAB.
П	Analyze the applications of Algebraand Calculus using MATLAB software.
111	Estimate the roots of Algebraic and Transcendental equations
IV	Evaluate the characteristics of given curves bymeans of plottingagraph.


VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Solve the algebraic and transcendental equations with in given	Apply
	range rangeusing MAT LAB programs	

CO 2	Utilize MAT LAB programs for verifying properties of limits, derivatives of a function.	Apply
CO 3	Interpret rank, eigen values and vectors with matrix transformations.	Understand
CO 4	Utilize MAT LAB programs for solving differential equations and multiple integrals.	Apply
CO 5	Make use of of MAT LAB programs for interpolating values of differential equations numerically.	Apply
CO 6	Use MAT LAB programs for vector operations on vector field.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Lab Exercises
PO 2	Problem analysis: Problem analysis: Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	CIA

PO 4	Conduct investigations of complex	2	Lab Exercises
	problems: Use research-based knowledge and		
	research methods including design of experiments,		
	analysis and interpretation of data, and synthesis of		
	the information to provide valid conclusions.		

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	1	Presentation on real-world problems

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Utilize the concept of calibration to a considerable extent appreciate (understanding) their importance and applicability (apply) in solving (complex) fluid flow engineering problems by applying the principles of Mathematics and Engineering	3
	PO 2	Identify (given problem statement)MAT LAB commands for synthesizing and analyzing the given data (provided information and data) by principles of Mathematics.	4
	PO 4	Apply (given problem statement)MAT LAB commands for analyzing the given data information and data) by using various algebraic functions numerically.	2
	PSO 1	Apply (knowledge) properties, various types and patterns of fluid flow configurations (apply) for solving design problems by applying the in various engineering streams following mathematical rules and conditons.	1
CO 2	PO 1	Identify (understanding) the appropriate MAT LAB programs for verifying limitsand derivatives of the givenfunctions and Understand the major role of these functions which exists as solutions for integrals and differential equations of elementary functions by applying the principles of mathematics.	3

	PO 2	Identify (given problem statement) the given problem and formulate MAT LAB program for solving and make use of mathematical method information to facilitate physical interpretation of the results obtained.	4
	PO 4	Apply (given problem statement) the given problem and formulate MAT LAB program for solving and make use of mathematical method MAT LABcommands for synthesizing and analyzing the given data information in various engineering streams following mathematical rules and conditons.	2
	PSO 1	Apply (knowledge) MAT LAB commands for synthesizing and analyzing the given data in various engineering streams following mathematical rules and conditons.	1
CO 3	PO 1	Interpret (knowledge) the rank and inverse of real and complex matrices using MAT LAB programs.	3
	PO 2	Apply problem statement MAT LAB program for decomposing the given matrix for (complex) solving complex engineering problems following principles ofmathematics. results .	4
	PO4	Apply (knowledge) MAT LAB programfor finding Eigen values and Eigen vectors along with basic principles of mathematics to develop the solution.	2
	PSO 1	Apply (knowledge)MAT LAB commands for synthesizing and analyzing the given data in various engineering streams following mathematical rules and conditons.	1
CO 4	PO 1	Identify (knowledge) appropriate MAT LAB programsforfinding length of the curves and area of the surfacefor with respect to the fundamental operations of arithmetic(knowledge) for majority of functions by principlesofMathematics.	3
	PO 2	Interpret problem statement and formulate the suitable MAT LAB program for solving double and triple integral in the given region.	2
	PSO 1	Apply (knowledge) MAT LAB commands for synthesizing and analyzing the given data in various engineering streams	1
CO 5	PO 1	Apply the knowledge of Mathematics and Engineering fundamentals the knowledge of MAT LAB programs. toSolve the algebraic and transcendental equations numerically with in given range.	3
	PSO 1	Apply problem statement MAT LAB commands for synthesizing and analyzing the given data in various engineering streams following mathematical rules and conditons.	1

CO 6	PO 1	Develop Mathematics and Engineering fundamentals the formulation of differential calculus of complex engineering problems which transforms vector functions, gradient, Divergence and curl using principle of mathematics to the realworld engineering problems by using MAT LAB programs.	3
	PO 2	Apply principles of Sciences and Engineering fundamentals the formulation of integral transformations to complex engineering problems related to surface and volume, line and surface of different geometrical models using principle of mathematics in the domain of engineering to reach conclusions by interpretation of results.	2
	PSO 1	Apply understand the innovative and dynamic challenges MAT LAB commands for synthesizing and analyzing the given data in various engineering streams following mathematical rules and conditons.	1

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM	1 OUTCON	PSO'S	
OUTCOMES	PO 1	PO 1 PO 2 PO 4		PSO 1
CO 1	3	2	1	1
CO 2	3	2	1	1
CO 3	3	2	1	1
CO 4	3	1	-	1
CO 5	3	-	-	1
CO 6	3	1	-	1

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1, PO 3, PSO 3	SEE Exams	PO 1,PO 3, PO 5, PSO 3	Seminars	-
Laboratory Practices	PO 1,PO 3, PO 5, PSO 3	Student Viva	PO 1, PO 5	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XIV SYLLABUS:

WEEK I	BASIC FEATURES
	To Know the history and features of MATLAB, To Know the loca lenvironment of MATLAB
WEEK II	ALGEBRA
	Solving basic algebraic equations, Solving system of equations, Two dimensional plots.
WEEK III	CALCULUS
	Calculating limits, Solving differential equations, Finding definite integral.
WEEK IV	MATRICES
	Addition, subtraction and multiplication of matrices, Transpose of a matrix, Inverse of a matrix.
WEEK V	SYSTEMOF LINEAREQUATIONS
	Rank of a matrix, Gauss Jordan method, LU decomposition method.
WEEK VI	LINEARTRANSFORMATION
	Characteristic equation, Eigen values, Eigen vectors.
WEEK VII	DIFFERENTIATIONANDINTEGRATION
	a. Higher order differential equations, Double integrals, Triple integrals.
WEEK VIII	INTERPOLATION AND CURVEFITTING
	Lagrange polynomial, Straight linefit, Polynomial curve fit.
WEEK IX	ROOT FINDING TECHNIQUES
	Bisection method, Regulafalsemethod, NewtonRaphsonmethod.
WEEK X	NUMERICAL DIFFERENTION AND INTEGRATION
	Trapezoidal, Simpson'smethod, Eulermethod, RungeKuttamethod.
WEEK XI	3D PLOTTING
	Line plotting, Surfaceplotting Volumeplotting.
WEEK XII	VECTORCALCULUS
	Gradient, Divergent, Curl.

TEXTBOOKS

1. 1. Dean G.Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press, Taylorand Francis Group, 6thEdition, NewDelhi, 2015.

REFERENCE BOOKS:

1. 1. Cleve Moler, Numerical Computing with MATLAB, SIAM, Philadelphia, 2nd Edition, 2008.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Understanding thebasic featuresof MATLAB.	CO 1	T1:1.1
			R1:2.21

2	Determination of roots of agiven polynomial.	CO 1	T1:15.1 R1:2.25
3	Verification of basic properties of limits.	CO 2	T1:2.1 R1:2.21
4	Determination ofrank, inverse, transpose and obtaining the solution to linear system of equations of amatrix.	CO 3	T1-15.6 R1:2.32
5	Interpret the Eigen values and Eigenvectors of a matrix.	CO 3	T1:15.5 R1:2
6	Determination of derivatives and integration toa Given function.	CO 4	T1:2.1 R1:2.8
7	Determination of bestfit curve to the given data	CO 6	T1:3.0 R1:2.9
8	Calculation of areaenclosed bounded bya region.	CO 4	T1:14.5 R1:5.1
9	Solving the higher order differential equations.	CO 4	T1:3.1 R1:5.21
10	Plotting agiven surface bounded in a region.	CO 4	T1:14.3- 14.8 R1:5.1
11	Determination of gradient, divergence and cur of avector	CO 5	T1:14.2 R1:2.2
12	Determination of roots to algebraic and transcendental equations by bisection method, Method of false position and Newton-Raphson method	CO 6	T1:2.2 R1:2.25

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Algebraic equations: Apply MAT LAB programs to algebraic equations
2	Differentiation: Apply MAT LAB programs differential equations and matrices .
3	Matrices: Apply MAT LAB programs to eigen values and eigen vectors.
4	Numerical methods Apply MAT LAB programs to numerical methods
5	Vector calculus: Apply MAT LAB programs to vector calculus

Signature of Course Coordinator Ms. B Praveena, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Course Title	PROGRA	PROGRAMMING FOR PROBLEM SOLVING LABORATORY						
Course Code	ACS101	ACS101						
Program	B.Tech							
Semester	I	CSE IT	ECE EEF	E MECH AE	RO			
Course Type	Foundation							
Regulation	IARE - R16							
		Theory			Practical			
Cime2:6Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	-	-	-	3	1.5			
Course Coordinator	Mr,Ravinder,	Mr,Ravinder, Assistant Professor						

I COURSE OVERVIEW:

The course covers the basics of programming and demonstrates fundamental programming techniques, customs and terms including the most common library functions and the usage of the preprocessor. This course helps the students in gaining the knowledge to write simple C language applications, mathematical and engineering problems. This course helps to undertake future courses that assume this programming language as a background in computer programming. Topics include variables, data types, functions, control structures, pointers, strings, arrays and dynamic allocation principles. This course in reached to student by power point presentations, lecture notes, and lab involve the problem solving in mathematical and engineering areas..

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB02	II	-

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Computer Programming Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Demo Video	✓	Lab Worksheets	~	Viva Questions	1	Probing further Questions
---	------------	---	-------------------	---	-------------------	---	---------------------------------

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end laberamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of	Day to day performance	Final internal lab	10tai Marks
Assessment		assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

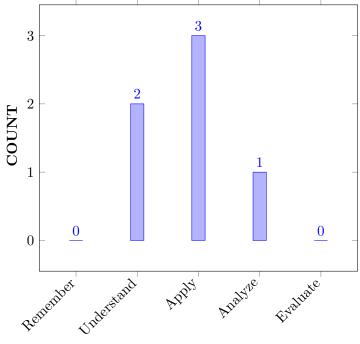
2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The hands on experience in design, develop, implementation and evaluation by
	using Asymptotic notation.


IIIThe practical implementation and usage of non linear data structures for solvi problems of different domain.IVThe knowledge of more sophisticated data structures to solve problems involvi	g
IV The knowledge of more sophisticated data structures to solve problems involvi	0
balanced binary search trees, AVL Trees, B-trees and B+ trees, hashing.	g
V The graph traversals algorithms to solve real-world challenges such as finding shortest paths on huge maps and assembling genomes from millions of pieces	

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate problem solving steps in terms of algorithms, pseudocode and flowcharts for Mathematical and Engineering problems	Understand
CO 2	Make use the concept of operators, precedence of operators, conditional statements and looping statements to solve real time applications.	Apply
CO 3	Demonstrate the concept of pointers, arrays and perform pointer arithmetic, and use the pre-processor.m.	Understand
CO 4	Analyze the complexity of problems, modularize the problems into small modules and then convert them into programs.	Apply
CO 5	Implement the programs with concept of file handling functions and pointer with real time applications of C.	Apply
CO 6	Explore the concepts of searching and sorting methods with real time applications using c	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Viva- voce/Laboratory Practices
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Viva- voce/Laboratory Practices
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Viva- voce/Laboratory Practices
PO 5	Modern Tool Usage:Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	2	Viva- voce/Laboratory Practices
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	Viva- voce/Laboratory Practices
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Viva- voce/Laboratory Practices

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.	2	Viva-voce Laboratory Practices

PSO 2	Software Engineering Practices: The ability to apply standard practices and strategies in software service management using open-ended programming environments with agility to deliver a quality service for business success.	2	Viva-voce Laboratory Practices
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	2	Viva-voce Laboratory Practices

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Understand (knowledge) the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insight into reasonable directions of search for efficient algorithms by applying the principles of mathematics and science	3
	PO 5	Understand the (given knowledge) appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	3
CO 2	PO 1	Understand (knowledge)the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insight into reasonable directions of search for efficient algorithms by applying the principles of mathematics and science .	3
	PO 5	Understand the (knowledge) appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	2
CO 3	PO 1	Understand (knowledge) the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insight into reasonable directions of search for efficient algorithms by applying the principles of mathematics and science .	3
	PO 5	Understand the (knowledge) appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	3

CO 4	PO 1	Describe (knowledge) the use sorting techniques as a basic building block in algorithm design and problem solving using principles of mathematics, science, and engineering fundamentals.	3
	PO 5	Understand the knowledge appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	2
	PO 10	Apply (knowledge) concept of dimensional analysis and similarity parameters for predicting physical parameters (understanding) for the fluid flow analysis used in designing prototypes devices (apply) solving design problems by applying the communicating effectively with engineering community.	3
CO 5	PO 1	Outline the importance of searching algorithms to retrieve an element from any data structure where it is stored by understanding and applying the fundamentals of mathematics, science and engineering.	3
	PO 10	Understand the use of searching techniques that retrieve information stored within some data structure by communicating effectively with engineering community.	2
CO 6	PO 1	Outline the importance of searching algorithms to retrieve an element from any data structure where it is stored by understanding and applying the fundamentals of mathematics, science and engineering	2
	PO 10	Understand the use of searching techniques that retrieve information stored within some data structure by communicating effectively with engineering communit.	3
CO 7	PO 1	Make use of linear data structures to organize the data in a particular way so to use them in the most effective way by applying the basic knowledge of mathematics , science, engineering fundamentals	2
	PO 2	Build strong foundation of data Structures which tells the program how to store data in memory and forming some relations among the data and use them in design and development of new products.	2
	PO 3	Recognize the need of linear data structures such as linked list, array, stack and queue by designing solutions for complex Engineering problems in real-time.	1
	PSO 1	Acquire sufficient knowledge to develop real-time applications by making use of linear data structures in (career building and higher studies.	3
CO 8	PO 1	Describe (knowledge) the usage of data structures in organizing, managing, and storing different data formats that enables efficient access and modification by applying the fundamentals of mathematics, science, and engineering.	3

	PO 5	(Modern Tool Usage:)Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	
	PO 3	Understand the applications of basic data structures such as stacks, queues, linked lists in (designing and developing solutions of complex engineering applications.	4
	PSO 1	Make use of modern computer tools for applying the basic data structure concepts in building real-time applications for a successful career.	
CO 9	PO 1	Apply the sophisticated hierarchical data structures to organize keys in form of a tree to use in many real-life applications by using the principles of mathematics and engineering fundamentals.	3
	PO 2	Make use of non-linear data structures such as balanced trees in by identifying , formulating and analyzing complex engineering problems such as databases, syntax tree in compilers and domain name servers etc. with the help of basic mathematics and engineering sciences .	3
	PO 3	Extend the concept of tree data structures to design and develop solutions for complex engineering problems .	3
	PSO 1	Make use of modern computer tools in implementing non-linear data structures for various applications to become a successful professional in the domain.	3
CO 10	PO 1	Demonstrate different tree structures in Python to implement real-time problems by applying basic knowledge of science and engineering fundamentals.	3
	PO 2	Illustrate the importance of tree data structures used for various applications by identifying, formulating and analyzing complex engineering problems such as operating systems and compiler design.	3
	PO 3	Make use of tree data structures to design and develop solutions for complex engineering problems and which is the key organizing factor in software design. Data structures can be used to organize the storage and retrieval of information stored in both main memory and secondary memory.	3
	PSO 1	Acquire sufficient knowledge in field of data structures and its applications by using modern computer tools so that new product development can take place, which leads to become successful entrepreneur and or to obtain higher education.	3

CO 11	PO 1	Understand (knowledge) the benefits of dynamic and static	3
00 11		data structures implementations and choose appropriate	0
		data structure for specified problem domain using	
		knowledge of mathematics, science and engineering	
		fundamentals.	
	PO 2	Recognize the need of dynamic and static data structures	3
		in identifying, formulating and analyzing complex	
		engineering problems.	
	PO 3	Describe (knowledge) the usage of static and dynamic data	3
		structures in designing solutions for complex Engineering	
		problems.	
	PSO 1	Build sufficient knowledge of dynamic data structures by	3
		using modern tools so that new product can be developed,	
		which leads to become successful entrepreneur in the	
		present market.	
CO 12	PO 1	Build strong foundation of quickly determining the	3
		efficiency of an algorithm or data structure for solving	
		computing problems with respect to performance by using	
		knowledge of mathematics, science and engineering	
		fundamentals.	
	PO 2	Recognize the importance of suitable data structures in	3
		checking the efficiency of algorithms used for complex	
		engineering problems.	
	PO 3	Make use of broad usage of data structures in designing	3
		and developing of complex engineering applications.	
	PSO 1	Extend the concept of data structures in solving complex	3
		engineering problems using modern engineering tools to	
		become a successful professional in the domain.	

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM	PROGRAM OUTCOMES						
OUTROOMES	PO 2	PO 3	PO 5	PO 10	PSO 1			
CO 1	3			2				
CO 2	3			2				
CO 3	3			2	3			
CO 4	3			2	2			
CO 5	2				2			
CO 6	3				2			
CO 7	3	2	2		2			
CO 8	3		3	2	2			
CO 9	2	2	3		2			
CO 10	2	3	2		2			

CO 11	3	2	2	2
CO 12	2	2	3	3

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1, ,PO 2,	SEE Exams	PO 1,PO 3,	Seminars	-
	PO 3, PSO 1		PO 5, PSO 1		
Laboratory	PO 1,PO 2,	Student Viva	PO 1, PO 5	Certification	-
Practices	PO 3, PO				
	5,PO 10,				
	PSO 1				
Assignments	_				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	√	End Semester OBE Feedback
X Assessment of Mini Projects by Exp		erts	

XIV SYLLABUS:

WEEK I	SEARCHING TECHNIQUES
	Write python program for implementing the following searching techniques.a. Linear search. b. Binary search. c. Fibonacci search.
WEEK II	SORTING TECHNIQUES
	Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order. a. Bubble sort. b. Insertion sort.c. Selection sort.
WEEK III	SORTING TECHNIQUES
	Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order. a. Quick sort. b. Merge sort.
WEEK IV	IMPLEMENTATION OF STACK AND QUEUE
	Write Python programs to a. Design and implement Stack and its operations using Lists. b. Design and implement Queue and its operations using Lists
WEEK V	APPLICATIONS OF STACK
	Write Python programs for the following: a. Uses Stack operations to convert infix expression into postfix expression. b. Uses Stack operations for evaluating the postfix expression
WEEK VI	IMPLEMENTATION OF SINGLE LINKED LIST

	Write Python programs for the following: a. Uses functions to perform the following operations on single linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal b. To store a polynomial expression in memory using linked list
WEEK VII	IMPLEMENTATION OF CIRCULAR SINGLE LINKED LIST
	Write Python programs for the following: Uses functions to perform the following operations on Circular linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal .
WEEK VIII	IMPLEMENTATION OF DOUBLE LINKED LIST
	Write Python programs for the following: Uses functions to perform the following operations on double linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways .
WEEK IX	IMPLEMENTATION OF STACK USING LINKED LIST
	Write Python programs to implement stack using linked list.
WEEK X	MPLEMENTATION OF QUEUE USING LINKED LIST
	Write Python programs to implement queue using linked list
WEEK XI	GRAPH TRAVERSAL TECHNIQUES
	Write Python programs to implement the following graph traversal algorithms: a. Depth first search. b. Breadth first search.
WEEK XII	IMPLEMENTATION OF BINARY SEARCH TREE
	Write a Python program that uses functions to perform the following: a. Create a binary search tree. b. Traverse the above binary search tree recursively in pre-order, post-order and in-order. Count the number of nodes in the binary search tree.

TEXTBOOKS

- 1. Sutton, G.P., et al., —Rocket Propulsion Elements, John Wiley Sons Inc., New York, 1993
- 2. Martin J.L Turner, Rocket Space Craft Propulsion, Springers oraxis publishing, 2001

REFERENCE BOOKS:

- 1. Mathur, M., and Sharma, R.P., —Gas Turbines and Jet and Rocket Propulsion, Standard Publishers, New Delhi 1998
- 2. Cornelisse, J.W., Rocket Propulsion and Space Dynamics, J.W., Freeman & Co. Ltd., London, 1982.
- 3. Parker, E.R., Materials for Missiles and Spacecraft, McGraw-Hill Book Co. Inc., 1982.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Calibration of Venturimeter and Orifice meter.	CO 1	R1: 1.2
2	Determination of pipe flow losses in rectangular and circular pipes.	CO 2	R2: 3.5
3	Verification of Bernoulli's theorem	CO 3	R1: 3.4
4	Determination of Reynolds Number of fluid flow	CO 4	R1: 2.2

5	Determine the reaction forces produced by the change in momentum.	CO 5	R1: 2.4
6	Determine the efficiency and draw the performance curves of centrifugal pump.	CO 6	R3: 4.5
7	Determine the efficiency and draw the performance curves of reciprocating pump.	CO 6	R3: 4.6
8	Determine the performance characteristics of pelton wheel under constant head.	CO 6	R2: 5.1
9	Determine the performance characteristics of Francis turbine.	CO 6	R2: 5.2
10	Determine the rate of flow through weir.	CO 7	R1: 7.1
11	Determine the rate of flow through Nothches.	CO 7	R1:7.2
12	Determine the rate of flow through a Orifice meter	CO 7	R1:7.3

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Twin vortex formation: Demonstration of twin vortex formation and calculation of vortex size for different geometries.
2	Open channel: Demonstration of streamline at different angle of attack and calculation of separation point for different Reynolds number.
3	Capillary action: By modeling capillary action using two cups of water and a paper towel, you'll gain a better understanding of the importance of this process in trees.
4	Buoyancy Calculation of meta center and displacement volume for various geometries and materials.
5	Flow through pipes: Encourage students to design and analyze flow through pipes using ANSYS

Signature of Course Coordinator Mr. P Ravinder, Assistant Professor HOD,AE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Course Title	COMPUT	COMPUTER AIDED ENGINEERING DRAWING						
Course Code	AMEC03	AMEC03						
Program	B.Tech							
Semester	I	CSE						
Course Type	CORE	CORE						
Regulation	UG20							
		Theory		Prac	tical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	1	-	-	2	1.5			
Course Coordinator	Mr. C Labesh Kumar, Assistant Professor							

I COURSE OVERVIEW:

Engineering Drawing is the accurate technique that develops the ability to visualize any object with all physical and dimensional configurations. The computer aided engineering drawing assists in preparation of 3D and 2D drawings to carry out sophisticated design. During the process of design, the designer may have to carry out a large amount of computations to generate optimum design and develop engineering drawings for manufacturing a product using interactive computer graphics. This Laboratory course forms the foundation for the development of computer graphics and CAD/CAM technologies in the era of digital manufacturing.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AHSC02	I	Linear Algebra and Calculus

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Computer Aided Engineering Drawing	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Probing Further		Demo Video		Lab		Viva Questions
\checkmark	Experiments (last)	\checkmark		\checkmark	Worksheets	\checkmark	

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day-to-day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
-	-	_	-	-	-

VI HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program outcomes	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Lab Exer- cises/CIA/SEE

PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Lab Exer- cises/CIA/SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	2	Lab Exer- cises/CIA/SEE

3 = High; 2 = Medium; 1 = Low

VII HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

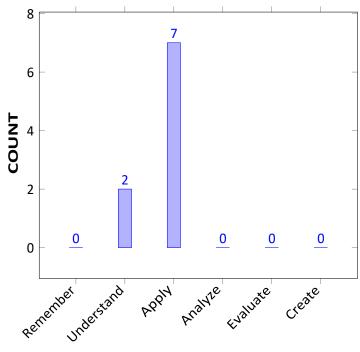
	Program	Strength	Proficiency Assessed by
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	Lab Exercises

3 = High; 2 = Medium; 1 = Low

VIII COURSE OBJECTIVES:

The students will try to learn:

1	About engineering drawing as a communicative language of engineers in ideation.
II	The ability to visualize, create and edit any object with all the physical and dimensional configurations using computer aided drawing tool.
111	Application of AutoCAD software to draw various conic sections, engineering curves and projections of object in different plane of projection.
IV	The ability of designing 3D objects with isometric principles by using computer aided sketches, conversion of Orthographic views to isometric views and vice versa.


IX COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate bureau of Indian standards, conventions of engineering drawing with basic concepts, ideas and methodology for different geometries and their execution.	Understand
CO 2	Apply AutoCAD software for development of multi-aspect sketches, additional and sectional view.	Apply
CO 3	Construct parabolic, Hyperbolic and elliptical curves for profiles likes buildings and bridges.	Apply
CO 4	Construct Cycloidal and involutes profiles for developing new products like gears and other engineering applications.	Apply

CO 5	Explain various types of scales for engineering applications like maps, buildings, bridges.	Understand
CO 6	Solve specific geometrical problems for plane geometry involving points and lines.	Apply
CO 7	Solve projection in planes located in various quadrants to use in manufacturing processes.	Apply
CO 8	Construct projection of solids inclined to both the planes for interpretation of different views.	Apply
CO 9	Draw the orthographic projections for solid modeling to use in conversation of isometric and Vice-versa.	Apply

COURSE COURSE KNOWLEDGE COMPETENCY LEVEL:

BLOOMS TAXONOMY LEVEL

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	Justification for mapping (Students will be able to)		No. of Key Competencies
CO 1	PO 1	Recall the basic commands of AutoCAD for various curves and scales using scientific principles and engineering fundamentals.	2
	PO 5	Understand Scales and Curves with different methods conceptually and apply them in modeling a complex engineering activity	1

	PSO 3	Make use of computational and experimental task	2
	F3U 3	Make use of computational and experimental tools for building career paths towards innovative startups to be an entrepreneur.	2
CO 2	PO 1	Recall the commands of AutoCAD and draw engineering curves using mathematics, scientific principles and engineering fundamentals.	3
	PO 3	Understand the given problem statement related to question formatted for engineering drawings and based upon type use different AutoCAD commands.	1
CO 3	PO 1	Develop expression for eccentricity and Identify the appropriate type of curve for problem solving using engineering sciences.	2
	PO 3	Use research based knowledge for different methods of drawing engineering curves and draw with modern tools.	1
CO 4	PO 1	Apply the engineering knowledge to classify Cycloidal and involutes profiles in user Coordinate System to draw engineering problems.	1
	PO 3	Build practical experience in building the real time products, using industry standard and collaboration technique in the field of curves.	2
CO 5	PO 5	Recall various types of scales and use principles of BIS, and engineering fundamentals for engineering applications like maps, buildings, bridges.	2
CO 6	PO 1	Make a use of an appropriate plane to draw different position of points and lines to solve engineering problems for solution enhancement	2
	PO 5	Recall various positions in coordinate system for points and lines the use principles of views, and engineering fundamentals completing the drawing	2
CO 7	PO 1	Recall theory of projection in planes located in various quadrants to draw using scientific principles and engineering fundamentals	2
	PO 5	Understand various positions in coordinate system for Planes use principles of views, and engineering fundamentals completing the drawing.	2
CO 8	PO 1	Recognize the representation concept of projection of solids inclined to both the planes for interpretation of different views for problem solving.	1
	PO 5	Understand the principle of solids inclined to both the planes principles of views, and engineering fundamentals for completing the drawing.	2
CO 9	PO 1	Identify the concept of orthographic projections and isometric projections use principles of views, and engineering fundamentals for completing the drawing	2
	PSO 3	Make use of computational and modeling experimental tools for building career paths towards innovative startups to be an entrepreneur.	2

3 = High; 2 = Medium; 1 = Low

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

PROGRAM	PSO'S		
PO 1	PO 2	PO 5	PSO 3
2		1	2
3	1		
2	1		
1	2		
		2	
2		2	
2		2	
1			
2			2
	PO 1 2 3 2 1 2 2 2 1	2 3 1 2 1 2 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	PO 1 PO 2 PO 5 2 1 1 3 1

3 = High; 2 = Medium; 1 = Low

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1, PO 3, PO5, PSO3	SEE Exams	PO 1, PO 3, PO5, PSO3	Seminars	-
Laboratory Practices	PO 1, PO 3, PO5, PSO3	Student Viva	PO 1, PO 3, PO5, PSO3	Certification	-
Assignments	-	Mini projects	-		

XIII ASSESSMENT METHODOLOGY INDIRECT:

,	\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
2	X Assessment of Mini Projects by Experts			

XIV SYLLABUS:

MODULE – I	Introduction to Engineering Drawing and Overview of Computer Graphics
	Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering. Listing the computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software
MODULE – II	Conic Sections and Scales

	Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales-Plain, Diagonal and Vernier Scales.
MODULE – III	Projection of Points and Lines
	Principles of Orthographic Projections-Conventions-Projections of Points and lines inclined to both planes. Projections of planes, Planes inclined to both the planes.
MODULE – IV	Projection of Regular Solids
	Draw the orthographic views of geometrical solids of Prism, Pyramid, Cylinder and Cone
MODULE – V	Isometric and Orthographic Projections
	Principles of Isometric projection–Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa.

TEXTBOOKS

- 1. N. D. Bhatt, "Engineering Drawing", Charotar Publications, New Delhi, 49th Edition, 2010.
- 2. C.M. Agarwal, Basant Agarwal, "Engineering Drawing", Tata McGraw Hill, 2nd Edition, 2013.

REFERENCE BOOKS:

- 1. K. Venugopal, "Engineering Drawing and Graphics". New Age Publications, 2nd Edition, 2010.
- 2. Dhananjay. A. Johle, "Engineering Drawing", Tata McGraw Hill, 1st Edition, 2008.
- 3. S.Trymbaka Murthy, "Computer Aided Engineering Drawing", I.K. International Publishers, 3rd Edition, 2011.
- 4. A.K.Sarkar, A.P Rastogi, "Engineering graphics with Auto CAD", PHI Learning, 1stEdition, 2010.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Principles of engineering drawing – Geometrical construction	CO1	T1:2.1.5 T2:2.3
2	Principles of dimensions and their execution. Introduction to auto-cad	CO1,CO 2	T2:2.1.5 R1:2.6
3	Familiarization of auto-cad commands. Draw and modify commands, dimensions, line properties, status bar, etc,	CO 2,	T1:2.6 R3:3.6.5
4	Construction of Ellipse – General method	CO 3	T2:2.7 R2:2.18
5	Construction of parabola curves. – General method	CO 3	T2:2.22 R3:3.1.1
6	Construction of hyperbola curves- General method	CO 3	T1:2.5.1 T2:2.25

7	Construction of various curves cycloid, epicycloids, hypocycloid and involutes	CO 4	T2:2.26 R3:2.55
8	Construction of various scales for engineering use- plain, diagonal, and vernier	CO 5	T2:2.3 R3:2.6
9	Projection of points and lines inclined to single plane and both the planes	CO 6	T2:2.3 R1:2.6
10	Projection of planes- inclined to single plane and both the planes	CO 7	T1:2.6
11	Projection of solids inclined to single plane and both the planes	CO 8	T2:2.7 R1:2.18
12	Draw the basic isometric views. Convert the pictorial views to orthographic views and vice versa	CO 9	T2:2.22

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Construction of Parabola curves rectangle method, and parallelogram methods.
2	Construction of hyperbolic curvesrectangle method, and parallelogram methods.
3	Draw the development of lateral surfaces of cube.
4	Draw the development of lateral surfaces of prism.
5	Development of surfaces for tin smithy models in engineering workshop .
6	Draw the development of lateral surfaces of cylinder

Prepared by:

Mr. C Labesh Kumar, Assistant Professor.

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	ENGINEERING PHYSICS CHEMISTRY LABORATORY						
Course Code	AHS104						
Program	B.Te	ch					
Semester	Ι	CSE					
Course Type	Foun	Foundation					
Regulation	IARE – R16						
	Theory			Practical			
Course Structure	Le	ectures	Tutorials	Credits	Laboratory	Credits	
		3	1	4	3	2	
Course Coordinator Mr.G Mahesh Kumar							

I. COURSE OVERVIEW:

2000

This lab provides hands on experience in a number of experimental techniques and develops competence in the instrumentation typically used in physics. This laboratory includes experiments involving basic principles of interference diffraction, optoelectronic devices, magnetism. Engineering Chemistry laboratory is to develop the analytical ability of the students by better understanding the concepts experimental chemistry. The experiments carried out like conductometry, potentiometry, physical properties of liquids. After completing this course, students will be well prepared for the advanced laboratory.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10 + 2	-	-	Basic Principles of Physics and Chemistry

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIAExamination	Total Marks
Engineering Physics and Chemistry Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	✗ Quiz ✗ Seminars		×	× Assignments		MOOCs	
V	LCD / PPT	×	× Seminars		Mini Project	~	Videos	
~	Open Ended Experiments							

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the questions is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

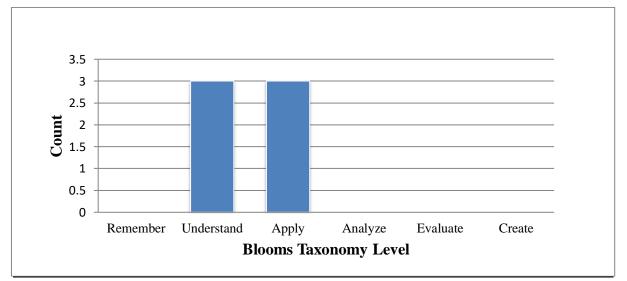
Table 1: Assessment	pattern for CIA
---------------------	-----------------

Component	The		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance		Results and Error Analysis	Viva	Total
2	2	2	2	2	10


VI. COURSE OBJECTIVES :

The stud	The students will try to learn:								
Ι	Develop skills to impart measurement technology, usage of new instruments								
	and real time applications of physics in engineering studies.								
II	Understand principle, working and application of theoretical concepts by comparison of results with experimental calculations.								
III	The basic principles involved in instrumentation, preparations and measurement of physical properties.								
IV	The need and importance of quality of water for industrial and domestic use.								

VII. COURSE OUTCOMES:

After su	After successful completion of the course, students will be able to:								
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)							
CO 1	Illustrate the functioning of optoelectronic devices like LED and solar cellfrom Voltage/Light vs. current characteristics.	Understand							
CO 2	Apply practical knowledge of RC circuit, semiconductor physics and optical fiber communication in real time application	Apply							
CO 3	Explore magnetic induction in a current loop with the help of Tangent's law.	Understand							
CO 4	Identify the total hardness, dissolved oxygen in waterbyvolumetric analysis for finding the hardness causing salts in water.	Apply							
CO 5	Make use of conductometric and potentiometric titrations for finding the concentration of unknown solutions.	Apply							
CO 6	Explain the importance of different types of materials for understanding their composition and applications.	Understand							

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	SEE/CIE
	mathematics, science, engineeringfundamentals, and an		
	engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	1.5	SEE/CIE
	literature, and analyze complexengineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences		
PO 4	Conduct investigations of complex problems: Use	1	SEE/CIE
	research-based knowledge and research methods including		
	design of experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		

3 = High; 2 = Medium; 1 = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO 1	Understand, design and analyze computer programs in	1	Laboratory
	the areas related to Algorithms, System Software, Web		experiments
	design, Big data, Artificial Intelligence, Machine		
	Learning and Networking.		
PSO 2	Focus on improving software reliability, network	1	Laboratory
	security or information retrieval systems.		experiments
PSO 3	Make use of modern computer tools for creating	-	-
	innovative career paths, to be an entrepreneur and		
	desire for higher studies.		

3 = **High; 2** = **Medium; 1** = Low

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes	s Program Outcomes							Program Specific Outcomes							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1		\checkmark	-	-	_	-	-	-	-	-	-	-	\checkmark	-	-
CO 2		\checkmark	-	٧	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 3		-	-	٧	-	-	-	-	-	-	-	-	_	-	-
CO 4	\checkmark		-	-	-	-	-	-	-	-	-	-	_	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-

XI. JUSTIFICATIONS FOR CO – PO/PSO MAPPING –DIRECT

C			N Classe
Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Explain the V-I characteristics of light emitting diode with	3
		different colors of LEDs for different threshold voltage values.	
	PO 2	Understand the phenomenon of recombination of electron-hole	4
		pair and determine the value of threshold voltage of a given	
		LED	
	PSO 1	Make use of the knowledge of intrinsic and extrinsic	1
		semiconductors in the design and development ofelectrical	
		systems.	
CO 2	PO 1	Explain functionality of components in optical	3
		fibercommunication system by using the basics of	
		signalpropagation, attenuation and dispersion.	
	PO 2	Understand the given problem and formulate expressions for	4
		acceptance angle and numerical aperturewith the given	
		information and data by applyingprinciples of information	
		propagation through opticalwave guides.	
	PO 4	Identify the use of optical fibers in modern communication	2
		system for the research-based knowledge and technological	
		development.	
	PSO 1	Make use of the knowledge of optical fiber communication	1
		system in the development of modern communication systems.	
CO 3	PO 1	Explain the variation of magnetic field at various points along	2
		the axis of current carrying coil and make use of mathematical	
		expression of Tangent's law using Stewart Gee's apparatus.	
	PO 4	Understand the given problem statement of current loop and	4
		formulate magnetic field induction at various points along the	
		axis of current loop from experimental collection of	
		information and data in reaching substantial conclusions by the	
<u> </u>	DO 1	interpretation of results.	2
CO 4	PO 1	Demonstrate the total hardness, dissolved oxygen in water by	3
		volumetric analysis for finding the hardness causing salts in waterby applying mathematical expressionsby using	
		principles of science for solving engineering problems.	
	PO 2	Identify the problem and formulate for finding the hardness	2
	PO 2	of water in terms of CaCO3 equivalents with given	2
		information and data by applying principles of science.	
CO 5	PO 1	Choose different electrodes for finding pH of unknown	3
	101	solutions by applying mathematical expressions of cell	5
		potential by using principles of science for solving	
		engineering problems.	
	PO 2	Identify the problem formulation and abstraction for	2
		calculating the concentration of unknown solutions by	_
		applying normality of standard solution from the provided	
		information.	
CO 6	PO 1	Explain the mechanism of chemical reactions for synthesizing	3
		drug molecules, synthetic rubbers, composition of	
		materialsand different types of liquids for finding the surface	
		tension and viscosity of lubricantsby applyingmathematical	
		expressions by using principles of science for	
		solving engineering problems.	

Course	Program Outcomes / No. of Key Competencies Matched											PSOs/ No. of key competencies			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	3	4	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 2	3	4	-	2	-	-	-	-	-	-	-	-	1	-	-
CO 3	3	-	-	2	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/PSO MAPPING

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO/PSO):

Course		Program Outcomes / No. of key competencies											PSOs / No. of key competencies		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	1	2
CO 1	100	40	-	-	-	-	-	-	-	-	-	-	30	-	-
CO 2	100	40	-	18	-	-	-	-	-	-	-	-	30	-	-
CO 3	100	-	-	18	-	-	-	-	-	-	-	-	-	-	-
CO 4	100	20.0	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	100	20.0	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-

XIV. COURSE ARTICULATION MATRIX (PO - PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being **no correlation**, 1 being the **Low correlation**, 2 being **medium correlation** and 3 being **high correlation**.

 $0 - 0 \le C \le 5\%$ -Nocorrelation

- 2 40 % < C < 60% -Moderate
- $1-5 < C \le 40\%$ -Low/Slight
- $3-60\% \leq C < 100\% Substantial / High$

Course Outcomes		Program Outcomes											Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 2	3	2	-	1	-	-	-	-	-	-	-	-	1	-	-
CO 3	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	18	6	-	-	-	-	-	-	-	-	-	-	-	-	-
AVERAGE	3	1.5	-	1	-	-	-	-	_	-	-	-	1	-	-

XV. ASSESSMENT METHODOLOGY - DIRECT

CIE Exams	~	SEE Exams	✓	Assignments	-	Seminars	-
Laboratory Practices	~	Student Viva	>	Mini Project	-	Certification	-
Term Paper							

XVI. ASSESSMENT METHODOLOGY - INDIRECT

X	Early Semester Feedback	~	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

	LIST OF EXPERIMENTS								
Week-I INTRODUCTION TO PHYSICS/CHEMISTRY LABORATORY									
Introduction to physics/chemistry laboratory. Do's and Don'ts in physics/chemistry laboratory.									
Week-2	Week-2 PHY: DISPERSIVE POWER - SPECTROMETER, CHE: VOLUMETRIC ANALYSIS								
	Batch I: Dispersive power of material of prism. Batch II: Estimation of hardness of water by EDTA method.								

Week-3	CHE: VOLUMETRIC ANALYSIS, PHY: DISPERSIVE POWER - SPECTROMETER					
	imation of hardness of water by EDTA method. spersive power of material of prism.					
Week-4	PHY: STEWART GEE'S METHOD, CHE:VOLUMETRIC ANALYSIS					
	gnetic field along the axis of current carrying coil-Stewart and Gee's method. timation of dissolved oxygen in water by Winkler's method.					
Week-5	CHE:VOLUMETRIC ANALYSIS, PHY: STEWART GEE'S METHOD					
	imation of dissolved oxygen in water by Winkler's method. agnetic field along the axis of current carrying coil-Stewart and Gee's method.					
Week-6 PHY: LASER - DIFFRACTION GRATING, CHE: INSTRUMENTATION						
	termination of wavelength of a given laser light using diffraction grating. Inductometric titration of strong acid vs strong base.					
Week-7	CHE: INSTRUMENTATION, PHY: LASER - DIFFRACTION GRATING					
Batch I: Co	onductometric titration of strong acid vs strong base.					
Batch II: D	etermination of wavelength of a given laser light using diffraction grating.					
Week-8	PHY: OPTICAL FIBER, CHE: INSTRUMENTATION					
	valuation of numerical aperture of given fiber. otentiometric titration of strong acid vs strong base.					
Week-9	CHE: INSTRUMENTATION, PHY: OPTICAL FIBER					
Batch I:. Po	ptentiometric titration of strong acid vs strong base.					
Batch II: Ev	valuation of numerical aperture of given fiber.					
Week-10	PHY: NEWTON'S RINGS, CHE: PHYSICAL PROPERTIES					
	ewton's rings-Radius of curvature of plano convex lens. etermination of surface tension and viscosity of lubricants					
Week-11	CHE: PHYSICAL PROPERTIES, PHY: NEWTON'S RINGS					
	etermination of surface tension and viscosity of lubricants ewton's rings-Radius of curvature of plano convex lens.					
Week-12	PHY: PLANCK'S CONSTANT, CHE: PREPARATION OF ORGANIC COMPOUNDS					
	eparation of Planck's constantusing LED.					

Week-13	CHE: PREPARATION OF ORGANIC COMPOUNDS, PHY: PLANCK'S CONSTANT						
Batch I: Preparation of Aspirin and Thiokol rubber. Batch II: Determination of Planck's constantusing LED.							
Week-14	REVISION						
Revision.							
References							
	ora, "Practical Physics", S. Chand & Co., New Delhi, 3 rd Edition, 2012. mar, Dr. T. Radhakrishna, "Practical Physics for Engineering Students", S M Enterprises, on, 2014.						
3. Vogel's,	"Quantitative Chemical Analaysis", Prentice Hall, 6 th Edition, 2000. Christian, "Analytical Chemistry", Wiley Publications, 6 th Edition, 2007.						
Web Refer	ence:						
1.44.0.1/							

http://www.iare.ac.in

XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No	Topics to be covered	Course Outcomes	Text (T) book / Reference (R) book
1	Introduction to physics/chemistry laboratory. Do's and Don'ts in physics/chemistry laboratory.	CO 1, CO 4	R3,R4
2	Estimation of hardness of water by EDTA method	CO 4	R3,R4
3	Estimation of hardness of water by EDTA method.	CO 4	R3,R4
4	Estimation of dissolved oxygen in water by Winkler's method.	CO 4	R3,R4
5	Estimation of dissolved oxygen in water by Winkler's method.	CO 4	R3,R4
6	Conductometric titration of strong acid vs strong base.	CO 5	R3,R4
7	Conductometric titration of strong acid vs strong base.	CO 5	R3,R4
8	Potentiometric titration of strong acid vs strong base.	CO 5	R3,R4
9	Potentiometric titration of strong acid vs strong base.	CO 5	R3,R4
10	Determination of surface tension and viscosity of lubricants	CO 6	R3,R4
11	Determination of surface tension and viscosity of lubricants	CO 6	R3,R4
12	Preparation of Aspirin and Thiokol rubber.	CO 6	R3,R4
13	Preparation of Aspirin and Thiokol rubber.	CO 6	R3,R4
14	Revision of all the experiments	CO 1, CO 6	R3,R4

Prepared by Mr.G Mahesh Kumar

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMP	COMPUER SCIENCE AND ENGINEERING					
Course Title	PROBA	BILITY AN) STATISTIC	CS			
Course Code	AHS010						
Program	B.Tech	B.Tech					
Semester	II	II CSE					
Course Type	Foundati	Foundation					
Regulation	R-16						
		Theory		Pract	ical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
3 1 4							
Course Coordinator Mr. J Suresh Goud, Assistant Professor							

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10+2	-	-	Basic principles of statistics

II COURSE OVERVIEW:

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes probability, random variables, probability distributions, correlation, regression, sampling distribution, testing of hypothesis and analysis of variance. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

III MARKS DISTRIBUTION:

$\mathbf{Subject}$	SEE Examination	CIE Examination	Total Marks
Fluid Dynamics	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
30 %	Understand
60%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	Quiz AAT	10tai Waiks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

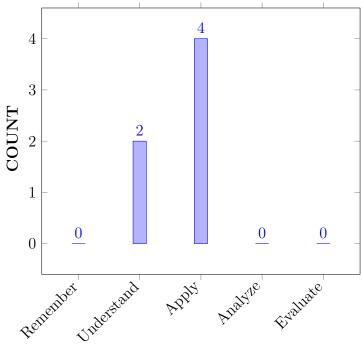
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	Enrich the knowledge of probability on single random variables and probability distributions.
II	Apply the concept of correlation and regression to find covariance.
III	Analyze the given data for appropriate test of hypothesis.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the parameters of random variate Probability distributions	Understand
	including Binomial, Poisson and Normal distribution by using their	
	probability functions, expectation and variance.	
CO 2	Interpret the concepts of discrete and continuous probability	Understand
	distribution, CLT problems, correlations and Regression Analysis for	
	statistical forecasting.	
CO 3	Make use of the concept of sampling distribution of statistical data	Apply
	by using behavior of the sample mean.	
CO 4	Apply the concept of estimation in real-world problems of signal	Apply
	processing and testing of hypothesis to predict the significance	
	difference, types of errors in the sample means.	
CO 5	Calculate the role of statistical hypotheses, confidence intervals, the	Apply
	tests of hypotheses for large samples in making decisions over	
	statistical claims in hypothesis testing	
CO 6	Identify the tests of hypothesis for small samples and comparing three	Apply
	variables of ANOVA in making decisions over statistical claims in	
	hypothesis testing	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	Presentation
	knowledge of mathematics, science, engineering		on real-world
	fundamentals, and an engineering specialization		problems
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	Seminar
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 4	Conduct Investigations of Complex	1	Term Paper
	Problems: Use research-based knowledge and		
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer	-	-
	programs in the areas related to Algorithms,		
	System Software, Web design, Big data, Artificial		
	Intelligence, Machine Learning and Networking.		
PSO 2	Focus on improving software reliability, network	-	-
	security or information retrieval systems.		
PSO 3	Make use of modern computer tools for creating	-	-
	innovative career paths, to be an entrepreneur		
	and desire for higher studies.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-
CO 5	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-		-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain (understanding) the concept of random variables and their role in solving complex engineering problems involving random events and uncertainty by using Mathematical functions (principles of mathematics).	2
	PO 4	The expected values, variances for the given discrete random variables will be quantitatively measured by using statistical computer software (R-software).	1
CO 2	PO 1	Interpret the Probability distributions such as Binomial, Poisson and Normal distribution (Understanding) with the support of evaluation of integrals (principles of mathematics) and appreciate their importance and applicability (Apply) in solving complex engineering problems involving uncertainty.	2
	PO 2	Understand the statement and formulation of a complex engineering problem which involves the events of uncertainty, Model it with suitable probability distribution and Apply the concepts of discrete or continuous distributions along with basic principles of mathematics to develop the solution and reaching substantiated conclusions by the interpretation of results	5
CO 3	PO 1	Interpret (Understand) the results of Bivariate and Correlation Analysis by using ratios, square roots, straight lines and planes (principles of mathematics) for statistical forecasting (Apply)in complex engineering problems involving bivariate or multivariate data.	2
CO 4	PO 1	Select appropriate statistical methods (understand) for solving some real-time complex engineering problems governed by correlation with the knowledge of fundamental principles of mathematics.	2
	PO 4	Interpret the results of Bivariate and Multivariate Regression and quantifying the degree of closeness between two or more variables by using statistical computer software (R-software, SPSS-software).	1
CO 5	PO 1	Apply tests of hypotheses which involves the role of mathematical tools like statements, sets, ratios and percentages (principles of mathematics) for both large samples and small samples (knowledge) in making decisions over statistical claims that arise in complex engineering problems which requires sampling inspections.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Understand the statement and formulation of a complex engineering problem which needs verification of truth values of numerical or statistical hypothesis, collect the necessary information and data through sampling techniques, apply tests of hypotheses (both large and small samples) along with basic principles of mathematics to develop the solution and reaching substantiated conclusions by the interpretation of results	5
	PO 4	Make Use of R software package in computing confidence intervals, statistical averages and hypothesis testing. (Computer software relevance)	1
CO 6	PO 1	Identify the role of types of statistical hypotheses, types of errors, sampling distributions of means and confidence intervals with the aid of statements and sets, percentages (principles of mathematics) in hypothesis testing of complex engineering problems which requires sampling inspections.	2
	PO 4	Test for the assessment of goodness of fit of the given probability distribution model by using statistical quantitative methods and statistical computer software (R-software).	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	PO	РО	PO	PO	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 2	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	-	-	1	-	-	-	-	-	-	-		-	-	-
CO 5	2	5	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 6	2	-	-	1	-	-	-	-	-	-	-		-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	РО	РО	РО	PO	РО	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	-	-	9.0	-	-	-	-	-	-	-		-	-	-
CO 2	66.7	50.0	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	66.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	66.7	-	-	9.0	-	-	-	-	-	-	-	-	-	-	-
CO 5	66.7	50.0	-	9.0	-	-	-	-	-	-	-	-	-	-	-
CO 6	66.7	-	-	9.0	-	-	-	-	-	-	-		-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- **1** $-5 < C \le 40\% Low/$ Slight
- $\pmb{2}$ 40 % <C < 60% –Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	2	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	1	-	-	-	-	-	-	-		-	-	-
TOTAL	18	4	-	4	-	-	-	-	-	-	-	-	_	-	-
AVERAGE	3	2	-	1	-	-	-	-	-	-	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	PO 4	Open Ended Experiments	-
Assignments	 ✓ 				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

X Assessment of mini project	s by experts \checkmark	End Semester OBE Feedback
------------------------------	---------------------------	---------------------------

XVIII SYLLABUS:

MODULE I	SINGLE RANDOM VARIABLES AND PROBABILITY DISTRIBUTION
	Random variables: Basic definitions, discrete and continuous random variables; Probability distribution: Probability mass function and probability density functions; Mathematical expectation; Binomial distribution, Poisson distribution and normal distribution.
MODULE II	MULTIPLE RANDOM VARIABLES
	Joint probability distributions, joint probability mass, density function, marginal probability mass, density functions; Correlation: Coefficient of correlation, the rank correlation; Regression: Regression coefficient, the lines of regression, multiple correlation and regression.
MODULE III	SAMPLING DISTRIBUTION AND TESTING OF HYPOTHESIS

	 Sampling: Definitions of population, sampling, statistic, parameter; Types of sampling, expected values of sample mean and variance, sampling distribution, standard error, sampling distribution of means and sampling distribution of variance. Estimation: Point estimation, interval estimations; Testing of hypothesis: Null hypothesis, alternate hypothesis, type I and type II errors, critical region, confidence interval, level of significance. One sided test, two sided test.
MODULE IV	LARGE SAMPLE TESTS
	Test of hypothesis for single mean and significance difference between two sample means, Tests of significance difference between sample proportion and population proportion and difference between two sample proportions.
MODULE V	SMALL SAMPLE TESTS AND ANOVA
	Small sample tests: Student t-distribution, its properties: Test of significance difference between sample mean and population mean; difference between means of two small samples. Snedecor's F-distribution and its properties; Test of equality of two population variances Chi-square distribution and it's properties; Test of equality of two population variances Chi-square distribution, it's properties, Chi-square test of goodness of fit; ANOVA: Analysis of variance, one way classification, two way classification.

TEXTBOOKS

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons Publishers, 9th Edition, 2014.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2012.

REFERENCE BOOKS:

- 1. T.K.V Iyengar, B.Krishna Gandhi, "Probability and Statistics", S. Chand & Co., 6th Edition, 2014.
- 2. G.C.Beri, "Business Statistics", Tata McGraw-Hill Publications, 2nd Edition, 2005.
- 3. Richard Arnold Johnson, Irwin Miller and John E. Freund, "Probability and Statistics for Engineers", Prentice Hall, 8th Edition, 2013.

WEB REFERENCES:

- $1. \ http://e4uhu.com/down/Applied/9th$
- 2. https://toaz.info/32fa2f50-8490-42cf-9e6a-f50cb7ea9a5b
- 3. http://www.mathworld.wolfram.com

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	Course outcomes	Reference
	OBE DISCUSSION		
1	Identify the types of sampling (random, stratified, systematic, cluster). Identify the misuses of statistics. Student will use appropriate statistical methods to collect, organize, display, and analyze relevant data. Probability & Statistics introduces students to the basic concepts and logic of statistical reasoning and gives the students introductory-level practical ability to choose, generate, and properly interpret appropriate descriptive and inferential methods. Identify the types of data (qualitative, quantitative, discrete, and continuous).		
	CONTENT DELIVERY (THEOR	/	1
2	Introduction on probability, conditional probability	CO 1	T2:26.3
3	Mathematical mean, Discrete Random variables	CO 1	R2:21.48
4	Mean and variance, probability distribution of discrete Random variables.	CO 1	T2:26.6 R2:21.50
5	Continuous Random variables	CO 1	T2:26.7 R2:21.51
6	Mean and variance, probability distribution of continuous Random variables.	CO 1	T2:26.8
7	Properties of random variables	CO 1	T2:26.10
8	Binomial distribution	CO 1	T2:26.14 R2:21.55
9	Poisson distribution	CO 1	T2:26.15 R2:21.58
10	Normal distribution.	CO 1	T2:26.16 R2:21.61
11	Joint probability distributions	CO 2	T2:25.12 R2:21.24
12	joint probability mass, density function	CO 2	T2:25.16 R2:21.29
13	marginal probability mass, density functions	CO 2	T2:25.14 R2:21.31
14	Correlation	CO 2	T2:25.14 R2:21.33
15	Karl Pearson's Coefficient of correlation	CO 2	R2:21.33
16	Rank correlation and Properties of correlation	CO 2	T2:27.2 R2:21.64
17	The linear model to a bivariate data	CO 2	T2:27.2

18	Regression coefficients	CO 2	T2:27.2
10			R2:21.67
19	Properties of Regression coefficients	CO 2	T2:27.2
20	Angle between two lines of regression	CO 2	T2:27.3 R2:21.71
21	Lines of regression and the multiple correlation of bivariate data	CO 2	T2:27.4 R2:21.68
22	Sampling: Definitions	CO 3	T2:27.7 R2:21.74
23	Types of sampling	CO 3	T2:27.12 R2:21.75
24	Parameter vs. statistics, standard error	CO 3	T2:27.8 R2:21.72
25	Type I and type II errors,	CO 3	T2:27.8 R2:21.73
26	Estimation	CO 4	T2:27.14 R2:21.78
27	Point estimation	CO 4	T2:27.19 R2:21.814
28	interval estimations	CO 4	T2:27.12 R2:21.82
29	Critical region, confidence interval, level of significance. One sided test, two-sided test.	CO 5	T2:27.18 R2:21.82
30	Tests of significance of single mean	CO 5	T2:26.15 R2:21.58
31	Test of difference between means	CO 5	T2:26.16 R2:21.61
32	Tests of significance of single proportion	CO 5	T2:25.14 R2:21.33
33	Test of difference between proportions	CO 5	R2:21.33
34	Small sample tests Test of equality of two population variances	CO 6	T2:27.2 R2:21.64
35	Student t-distribution, its properties. Test of significance difference between sample mean and population mean.	CO 6	T2:27.2
36	difference between means of two small samples	CO 6	T2:26.16 R2:21.61
37	Snedecor's F-distribution properties.	CO 6	T2:25.12 R2:21.24
38	Chi-square distribution and it's properties	CO 6	T2:25.16 R2:21.29
39	Applications of chi square –Distribution	CO 6	T2:27.14 R2:21.78
40	Definition of Analysis of variance	CO 6	T2:27.19 R2:21.814
41	One way classification, two way classification	CO 6	T2:27.12 R2:21.82

	PROBLEM SOLVING/ CASE STU	DIES	
42	Problem solving session on discrete random variable	CO 1	T2:26.3
43	Problem solving session on continuous random variables	CO 1	R2:21.48
44	Problem solving session on Binomial distribution	CO 1	T2:26.6 R2:21.50
45	Problem solving session on Poisson distribution	CO 1	T2:26.7 R2:21.51
46	Problem solving session on Normal distribution	CO 1	T2:26.8
47	Problem solving session on Joint probability distributions	CO 1	T2:26.10
48	Problem solving session on Karl Pearson's correlation	CO 2	T2:26.14 R2:21.55
49	Problem solving session on Spearman's rank correlation, linear regression	CO 2	T2:26.15 R2:21.58
50	Problem solving session on sampling distribution of means	CO 3	T2:26.16 R2:21.61
51	Problem solving session on Estimation	CO 4	T2:25.12 R2:21.24
52	Problem solving session on point and internal estimation	CO 4	T2:25.16 R2:21.29
53	Problem solving session on large sample tests	CO 5	T2:25.14 R2:21.31
54	Problem solving session on t-test	CO 6	T2:25.14 R2:21.33
55	Problem solving session on F-test and chi square – test	CO 6	R2:21.33
56	Problem solving session on One way classification, two way classification	CO 6	T2:27.2 R2:21.64
	DISCUSSION OF DEFINITION AND TER	MINOLOGY	
57	Definitions & terminology discussion on probability and random variables	CO 1	T2:26.6 R2:21.50
58	Definitions & terminology discussion on joint probability distributions, correlation and regression	CO 2	T2:26.7 R2:21.51
59	Definitions & terminology discussion on sampling distribution and Estimation.	CO 3, CO 4	T2:25.14 R2:21.33
60	Definitions & terminology discussion on Tests of Hypothesis.	CO 5	R2:21.33
61	Definitions & terminology discussion on Tests of significance and ANOVA.	CO 6	R2:21.33

	DISCUSSION OF QUESTION BANK					
62	Question bank discussion on probability and random variables.	CO 1	T2:26.6 R2:21.50			
63	Question bank discussion on joint probability distributions and correlation, regression.	CO 2	T2:26.7 R2:21.51			
64	Question bank discussion on sampling distribution and Estimation.	CO 3,CO 4	T2:25.14 R2:21.33			
65	Question bank discussion on Tests of Hypothesis.	CO 5	R2:21.33			
66	Question bank discussion on Tests of significance and ANOVA.	CO 6	R2:21.33			

Course Coordinator: Mr. J Suresh Goud HOD CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMF	COMPUTER SCIENCE AND ENGINEERING					
Course Title	ENVIR	ENVIRONMENTAL STUDIES					
Course Code	AHS009						
Program	B.Tech						
Semester	П	11					
Course Type	FOUNDATION						
Regulation	R-16						
		Theory		Pract	ical		
Course Structure	Lecture Tutorials Credits Laboratory Credits						
	3 - 3						
Course Coordinator	Dr V Anitha Rani, Associate Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credit
10+2	-	-	Basic Principles of Science	-

II COURSE OVERVIEW:

Environmental study is interconnected interrelated and interdependent subject. Hence, it is multidisciplinary in nature. The present course is framed by expert committee of UGC under the direction of honorable supreme court to be as a core module syllabus for all branches of higher education and to be implemented in all universities over India. The course is designed to create environmental awareness and consciousness among the present generation to become environmental responsible citizens. The course description is multidisciplinary nature of environmental studies, natural resources Renewable and non-renewable resources Ecosystems Biodiversity and its conservation Environmental pollution Social issues and the environment Human population and the environment Pollution control acts and field work. The course is divided into five chapters for convenience of academic teaching followed by field visits.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Environmental Studies	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

х	Chalk & Talk	\checkmark	Quiz	\checkmark	Assignments	х	MOOC's
\checkmark	LCD / PPT	\checkmark	Seminars	х	Mini Project	\checkmark	Videos
\checkmark	Open Ended Experiments						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

Percentage of Cognitive LevelBlooms Taxonomy Level0%Remember50%Understand50%Apply0 %Analyze0%Evaluate0%Create

The emphasis on the questions is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component	The	Total Marks	
Type of Assessment	CIE Exam	Quiz/AAT	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

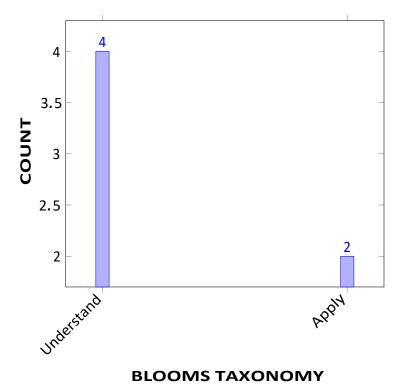
This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

The AAT chosen for this course is given in section XI.

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The interrelationship between living organism and environment.
П	The importance of environment by assessing its impact on the human world
	The knowledge on themes of biodiversity, natural resources, pollution control and waste management.
IV	The constitutional protection given for the safety of environment.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the basic concept of environment, earths major cycle and its function related food chain, food web, and ecological pyramid for the importance of ecosystem and flow of energy in ecosystem	Understand
CO 2	Classify natural resource and necessity of natural resource conservation for sustainable use and proper use.	Understand
CO 3	Utilize renewable and non-renewable energy resource for future growing energy needs.	Apply
CO 4	Explain the value of biodiversity hotspots, endangered and endemic species, in- situ and ex situ conservation methods for protecting the biodiversity.	Apply
CO 5	Relate the cause and effects of pollution related to Air, Water, Soil and Noise their control and treatment technologies.	Understand
CO 6	Summarize the concepts of Environmental Impact Assessment, global environmental problem, international summits, to minimize the problems towards sustainable future.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	CIE/Quiz/AAT
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	CIE/Quiz/AAT
PO 7	Environment and sustainability: understand the impact of the professional engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	3	CIE/Quiz/AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	_	-
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	-	-
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	-	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	
CO 2	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	
CO 3	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	
CO 4	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	
CO 5	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	
CO 6	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	-	-	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	-	-	\checkmark	-	-	-	-	-	-	-		

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain the basic concept of environment, earths major cycle and its function related food chain, food web, and ecological pyramid for the importance of ecosystem and flow of energy in ecosystem by using principles of science for solving engineering problems.	2
	PO 7	Summarize about the toxicity of heavy metals on the biotic and abiotic components in in socio economic Environmental and politics contexts for Sustainable development.	3
CO 2	PO 1	Classify about different types of natural resources and their applicability and illustrate the utility of renewable resources efficiency by using principles of science for solving engineering problems.	2
	PO 7	Identify renewable and non renewable resources, Alternate energy resources and understand the impact in socio economic Environmental and politics contexts for Sustainable development.	3
CO3	PO 1	Explain the renewable and non renewable energy resource by using principles of science for solving engineering problems.	2
	PO 7	Utilize renewable and non renewable resources, Alternate energy resources and understand the impact in socio economic, politics and Environmental contexts for Sustainable development.	3
CO4	PO 1	Explain the fundamentals of Biodiversity and biotic resources, importance of biodiversity, the ecological values, India is mega diversity nation, the threats to biodiversity and importance of conservation of biodiversity by applying the principle of science for solving engineering problems.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 7	Demonstrate a comprehensive understanding of the world's biodiversity and the importance of its conservation, impact of biodiversity loss and National biodiversity act with the in socio economic, politics and Environmental contexts for Sustainable development.	3
CO5	PO 1	Relate the effect of pollutants on air, water and soil that causes the environmental pollution for solving engineering problems by applying the principles of science.	2
	PO 7	Explain the causes and effects of air pollution, water pollution, soil pollution and noise pollution and understand the impact in socio economic, politics and environmental contexts for sustainable development.	3
CO 6	PO 1	Explain the concepts of environmental impact assessment, global environmental problems, international summits, to minimize the problems towards sustainable future for solving engineering problems by applying the principles of science.	2
	PO 4	Recognize the methods and process of primary, secondary and tertiary treatment of waste water and understand the technology behind the pollution control devices.	2
	PO 7	Identify the environmental laws, population and its explosion green buildings in the context in socio economic, politics and Environmental contexts for Sustainable development.	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	3	-	-	-	-		-	-	-
CO 2	2	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO 3	2	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO 4	2	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO 5	2	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO 6	2	-	-	2	-	-	3	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	PO	РО	РО	РО	PO	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.6	-	-	-	-	-	100	-	-	-	-	-	-	-	-
CO 2	66.6	-	-	-	-	-	100	-	-	-	-	-	-	-	-

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 3	66.6	-	-	-	-	-	100	-	-	-	-	-	-	-	-
CO 4	66.6	-	-	-	-	-	100	-	-	-	-	-	-	-	-
CO 5	66.6	-	-	-	-	-	100	-	-	-	-	-	-	-	-
CO 6	66.6	-	-	18	-	I	100	I	-	-	I	-	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** $0 \le C \le 5\%$ No correlation
- **1** -5 <C≤ 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- **3** 60% \leq C < 100% Substantial /High

				PRC)GR/	٩M	ουτ	COL	VIES				PSO'S		
COURSE	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	3	-	-	-	I	-	-	-	
CO 2	3	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO 4	3	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO 5	3	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO 6	3	-	-	1	-	-	3	-	-	-	-	-	-	-	-
TOTAL	18	-	-	1	-	-	18	-	-	-	-	-	-	-	-
AVERAGE	3	-	-	1	-	-	3	-	-	-	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	~	SEE Exams	~	Assignmei	ts 🗸	Seminars	~
Concept Video	-	Mini Project	-	Student Viva	-	Mini Project	-

XVII ASSESSMENT METHODOLOGY-INDIRECT:

	\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
ſ	х	Assessment of Mini Projects by Experts		

XVIII SYLLABUS:

MODULE I	ENVIRONMENT AND ECOSYSTEMS
	Environment: Definition, scope and importance of environment, need for public awareness; Ecosystem: Definition, scope and importance of ecosystem, classification, structure and function of an ecosystem, food chains, food web and ecological pyramids, flow of energy; Biogeochemical cycles Hydrological cycle, Phosphorous cycle, Nitrogen cycle. Biomagnifications.
MODULE II	NATURAL RESOURCES
	INatural resources: Classification of resources, living and nonliving resources; Water resources: Use and over utilization of surface and ground water, floods and droughts, dams, benefits and problems; Mineral resources: Use and exploitation; Land resources; Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.
MODULE III	BIODIVERSITY AND BIOTIC RESOURCES
	Biodiversity and biotic resources: Introduction, definition, genetic, species and ecosystem diversity; Value of biodiversity: Consumptive use, productive use, social, ethical, aesthetic and optional values; India as a mega diversity nation; Endangered and Endemic species, Hot spots of biodiversity.Threats to biodiversity: Habitat loss, poaching of wildlife, human-wildlife conflicts; Conservation of biodiversity: In situ and ex situ conservation; National biodiversity act.
MODULE IV	ENVIRONMENTAL POLLUTION, POLLUTION CONTROL TECHNOLOGIES AND GLOBAL ENVIRONMENTAL PROBLEMS
	Environmental pollution: Definition, causes and effects of air pollution, water pollution, soil pollution, noise pollution; Solid waste: Municipal solid waste management, composition and characteristics of e-waste and its management; Pollution control technologies: Waste water treatment methods, primary, secondary and tertiary; Concepts of bioremediation; Global environmental problems and global efforts: Global Warming, Climate change, Sea level rise, ozone depletion, ozone depleting substances, deforestation and desertification; International conventions / protocols: Earth summit, Kyoto protocol and Montreal protocol.
MODULE V	ENVIRONMENTAL LEGISLATIONS AND SUSTAINABLE DEVELOPMENT
	Environmental legislations: Environmental protection act, air act1981, water act, forest act. municipal solid waste management and handling rules, biomedical waste management and handling rules2016, hazardous waste management and handling rules, Environmental impact assessment(EIA); Towards sustainable future: Concept of sustainable development, population and its explosion, crazy consumerism, environmental education, urban sprawl, concept of green building.

TEXTBOOKS

- 1. Benny Joseph, "Environmental Studies", Tata Mc Graw Hill Publishing Co. Ltd, New Delhi, 1st Edition, 2006.
- 2. Erach Bharucha, "Textbook of Environmental Studies for Under Graduate Courses", Orient Black Swan, 2nd Edition, 2013.
- 3. Dr. P. D Sharma, "Ecology and Environment", Rastogi Publications, New Delhi, 12th Edition, 2015.

REFERENCE BOOKS:

- 1. Tyler Miller, Scott Spoolman, "Environmental Science", Cengage Learning, 14th Edition, 2012.
- 2. Anubha Kaushik, "Perspectives in Environmental Science", New Age International, New Delhi.4th Edition, 2006.
- 3. Gilbert M. Masters, Wendell P. Ela, "Introduction to Environmental Engineering and Science, Pearson, 3rd Edition, 2007

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference			
	OBE DISCUSSION					
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping					
	CONTENT DELIVERY (THEORY)					
1	Explain the scope and importance of Environment and need for Public Awareness	CO 1	T1:1.1.3 R1:2.1			
2	Identify scope and importance of ecosystem	CO1	T1:1.1.4 R1:2.7.1			
3	Explain Structure and function of ecosystem	CO1	T1:1.1.6 R1:2.7.4			
4	Relate the Food chain food web and pyramids	CO1	T1:1.7.2 R1:2.15			
5	Realate the Flow of energy	CO1	T1:1.7.2 R1:2.16			
6	Explain the Biogeochemical cycles.	CO1	T1:1.7.6 R1:2.17			
7	Interpret the Biomagnifications.	CO1	T1:1.7.3 R1:2.19			
8	Classify the Living and non living resources	CO 2	T1:2.1 R1:2.21			
9	Explain the Water resources: use and over utilization of surface and ground water	CO 2	T1:2.2.2 R1:2.3			
10	Explain the Floods and Drought	CO 2	T1:2.2.4 R1:4.1			

11	Relate dams: befit and problems	CO 2	T1:2.3.1 R1:4.3
12	Explain the Mineral resources: use and exploitation of	CO 2	T1:2.4
	minerals		R1:4.8
13	Relate the Energy resources and introduction and	CO 3	T1:2.5.2
	applications		R1:4.6
14	Explain the Wind energy and its application	CO 3	T1:2.5.3
			R1:4.6
15	Explain Land resources	CO 2	T1:2.4
			R1:4.8
16	Identify renewable and non renewable resources	CO 3	T1:2.5.3
			R1:4.6
17	Recall the Biodiversity and Biotic introduction and	CO 4	T1:3.1
	definition.		R1:4.5
18	Relate the Classification of biodiversity	CO 4	T1:3.2.2
			R1:4.8
19	Explain the Values of biodiversity	CO 4	T1:3.3.1
15	Explain the values of bloarversity	00 4	R1:4.7
20	Identify India is mega diversity nation	CO 4	T1:3.4
20		0 4	R1:4.9
21	Deservice list spats of highly spity	<u> </u>	T1: 3.4
21	Recognize Hot spots of biodiversity	CO 4	R1:4.10
22	ne state de referencie de la tratta actu	<u> </u>	
22	Explain the Threats to biodiversity	CO 4	T1: 3.5
			R1:1.10
23	Explain the Man wild life conflict	CO 4	T1:3.5.2
			R1:1.10
24	Relate the Conservation of Biodiversity	CO 4	T1:3.7
			R1:1.16
25	Recall National biodiversity act	CO 4	T1: 3.9
			R1:1.16
26	Recall the Environmental pollution : Introduction and	CO 5	T1: 4.1
	classification		R1:1.16
27	Explain the Air pollution: primary and secondary	CO 5	T1: 4.2
	pollutants, effects and its control		R1:1.11
28	Explain the Water pollution: types effects and control of	CO 5	T1:4.6
	water pollution		R1:5.2
29	Explain the Soil pollution: sources effects and control of soil	CO 5	T1: 4.8
	pollution		R1:5.2
30	Explain the Noise pollution: sources effects and control of	CO 5	T1: 4.13
	noise pollution		R1:5.10
31	Explain the Municipal waste management	CO 5	T1: 4.16
			R1:5.2.3
32	Explain the solid waste management	CO 5	T1:4.16.3
52	and the solid waste multigement		R1:5.2.4
33	Identify the E-waste: characteristics and its management	CO 5	T1: 5.5
55	Therein y the L-waste. Characteristics and its management		R1:5.4
24	Evolution the Clobal environmental problems, elimete change		
34	Explain the Global environmental problems: climate change	CO 5	T1: 5.6
	and impact on human		R1:5.5

25	Descention the Orang depletion and espectuares	со г	Т1. Г 10
35	Recognize the Ozone depletion and consequences	CO 5	T1: 5.10 R1:5.6
36	Summarize the International protocols	CO 5	T1: 4.1
			R1:1.16
37	Relate the Environmental protection act.	CO 6	T1:7.3
38	Relate the air act, water act	CO 6	T1:7.3
39	Relate forest act, wild life act	CO 6	T1:7.3
40	Relate the Hazardous waste management and handling rules 2016	CO 6	T1:7.10
41	Illustrate the EIA structure and concept of sustainable development	CO 6	T1: 8.1
42	Identify towards sustainable features: concepts of sustainable development	CO 6	T1: 8.2
43	Relate the Consequences of population and its explosion	CO 6	T2: 8.2.3 T3:2
44	Explain the Crazy consumerism urban sprawl	CO 6	T2:8.2.3,
			T3:7
45	Explain the Environmental education	CO 6	T2:8.4, T3:7
46	Explain the Environmental ethics and concepts of green buildings	CO 6	T2:8.12, T3:15,21
	PROBLEM SOLVING		
1	Food chain and pyramids	CO 1	T1:3.3.1; R3:3.2
2	Probelms on utilization of water	CO 1	T2:16.5; R3:8.10
3	Biodiversity	CO 2	T2:16.5; R3:8.10
4	kyto protocol	CO 3	T1:3.3.1; R3:3.2
5	Deforestation	CO 3	T2:16.5; R3:8.10
6	population	CO 4	T2:16.5; R3:8.10
	DISCUSSION OF DEFINITION AND TERMIN		113.0.10
1	Environment and Ecosystems	CO 1	T2:16.5;
_ -			R3:8.10
2	Natural Resources	CO 2	T1:3.3.1;
			R3:3.2
3	Biodiversity and Biotic Resouces	CO 3	T2:16.5;
			R3:8.10
4	Enivironment pollution	CO 4	T2:16.5;
5	Environmental Logistration and sustainable development	CO 6	R3:8.10
5	Environmental Legistration and sustainable development		T2:16.5; R3:8.10

	DISCUSSION OF QUESTION BANK		
1	Environment and Ecosystems	CO 1	T2:16.5; R3:8.10
2	Natural Resources	CO 2	T1:3.3.1; R3:3.2
3	Biodiversity and Biotic Resouces	CO 3	T2:16.5; R3:8.10
4	Enivironment pollution	CO 4	T2:16.5; R3:8.10
5	Environmental Legistration and sustainable development	CO 6	T2:16.5; R3:8.10

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTE	COMPUTER SCIENCE AND ENGINEERING			
Course Title	DATA STR	DATA STRUCTURES			
Course Code	ACS002				
Program	B.Tech				
Semester	II	II			
Course Type	Core	Core			
Regulation	R-16				
		Theory		Prac	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	1	4	3	1.5
Course Coordinator	Dr V.Sithara	Dr V.Sitharamulu, Associate Professor			

I COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics covered include managing complexity, analysis, static data structures, dynamic data structures and hashing mechanisms. The main objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter in real life. This course reaches to student by power point presentations, lecture notes, and lab which involve the problem solving in mathematical and engineering areas.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS001	Ι	Computer Programming

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Data Structures	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
	Presentations						
1	Open Ended Experiments	x	Seminars	x	Mini Project	1	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20	Remember
40	Understand
25	Apply
15	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Quiz AAT	100ai Maiks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

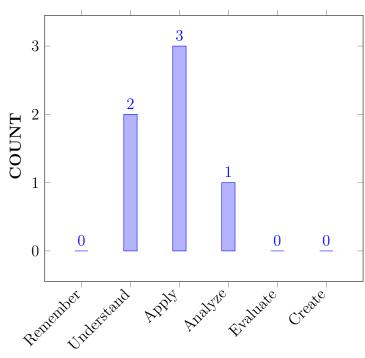
Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The skills needed to understand and analyze performance trade-offs of different algorithms implementations and asymptotic analysis of their running time and memory usage.
II	The knowledge of basic abstract data types (ADT) and associated algorithms: stacks, queues, lists, tree, graphs, hashing and sorting, selection and searching.
III	The fundamentals of Non-linear Data structure to store, retrieve, and process data efficiently.
IV	The implementing these data structures and algorithms and Understand essential for future programming and software engineering courses.
V	Analyze and choose appropriate data structure to solve problems in real world.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Interpret the complexity of algorithm using the asymptotic notations.	Understand
CO 2	Select appropriate searching and sorting technique for a given problem.	Apply
CO 3	Construct programs on performing operations on linear and nonlinear data structures for organization of a data	Apply
CO 4	Make use of linear data structures and nonlinear data structures solving real time applications.	Apply
CO 5	Describe hashing techniques and collision resolution methods for efficiently accessing data with respect to performance.	Understand
CO 6	Compare various types of data structures ; in terms of implementation, operations and performance.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

	Program Outcomes
PO 8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering
	activities with the engineering community and with society at large, such as,
	being able to comprehend and write effective reports and design
	documentation, make effective presentations, and give and receive clear
	instructions.
PO 11	Project management and finance: Demonstrate knowledge and
	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects
	and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation
	and ability to engage in independent and life-long learning in the broadest
	context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	CIA/SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIA/SEE
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1	CIA/SEE
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	CIA/SEE

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIA/SEE/Open ended Experiments
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	Tech Talk/Concept Videos/Open ended Experiments
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	1	Tech Talk/Concept Videos/Open ended Experiments

3 =High; 2 =Medium; 1 =Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed
			by
PSO 1	Understand design and analyze computer	3	CIA/ SEE/
	programs in the areas related to Algorithms,		Tech Talk/
	System Software, Web design, Big data, Artificial		Concept
	Intelligence, Machine Learning and Networking.		Videos
PSO 2	Focus on improving software reliability,	2	CIA/ SEE/
	network security information retrieval systems.		Tech Talk/
			Concept
			Videos
PSO 3	Make use of modern computer tools for	2	CIA/ SEE/
	creating innovative career paths, to be an		Tech Talk/
	entrepreneur and desire for higher studies.		Concept
			Videos

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	-	\checkmark	\checkmark	\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO1	PO 1	Understand (knowledge) the concept of conventional digital communication system and (understand) various types of pulse analog modulation techniques for signals analysis by applying the principles of mathematics, science, and engineering fundamentals.	3
	PO 2	Problem Analysis on different types of algorithms to analyze space and time complexities.	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	Design the Solutions for finding space and time complexities of a complex algorithm and representing it by asymptotic notations	2
	PO 10	Subject matter and speaking style assessed in explanation of various algorithms, algorithm complexity.	2
	PSO1	Design and analyze complex algorithms and specify its space and time complexities and representing it by asymptotic notations for faster processing of data.	3
	PSO3	Make use of modern computer tools for finding space and time complexities of a complex algorithm	1
CO 2	PO 1	Make use of broad knowledge of searching and sorting techniques for an efficient search from a data structure and optimize the efficiency of other algorithms by applying the knowledge of mathematics, science, Engineering fundamentals.	1
	PO 2	Problem Analysis on different types of search sort algorithms to analyze space and time complexities.	5
	PO 3	Design/Development of Solutions using appropriate searching and sorting techniques for designing a solution for complex Engineering problems.	2
	PO 5	Implementation of different sorting and searching techniques for given problem with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of searching and sorting along with efficiency of searching and sorting techniques in terms of space and time complexity	2
	PO 12	Keeping current in CSE and advanced engineering concepts of various searching, sorting and respective time and space complexity by tech talk, concept videos and open ended experiments.	3
	PSO1	Understand complex problems and analyzing it and apply appropriate sorting and searching techniques for data processing.	4
	PSO2	Applying various selecting and sorting techniques while designing and developing information retrieval systems and its applications	2
	PSO3	Make use of various selecting and sorting techniques and extend the knowledge for advance frame works and platforms which are necessary for engineering practices and higher studies or become an entrepreneur.	1
CO 3	PO 1	Make use of linear and nonlinear data structures to organize the data in a particular way so to use them in the most effective way by applying the basic knowledge of mathematics, science, engineering fundamentals	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Problem analysis: Organizing the given data in particular way by performing the operations on linear and nonlinear data structures to use the data in the most effective way.	7
	PO 3	Recognize the need of linear and nonlinear data structures such as linked list, array, stack and queue by Designing solutions for complex Engineering.	5
	PO 4	Conduct Investigations Conduct Investigations of Complex Problems: Ability to apply operations on linear and nonlinear data structures in order to organize the given data in a particular way	4
	PO 5	Implementation of Implementation of different operations on linear and nonlinear data structures for given problem with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of linear and nonlinear data structures like linked lists, stacks and queues	2
	PO 12	Keeping current in CSE and advanced engineering concepts of linear and nonlinear data structures like linked lists, stacks and queues by tech talk, concept videos and open-ended experiments	3
	PSO1	Understand complex problems and analyzing it and apply appropriate operations on linear or nonlinear data structures for Developing the solution.	5
	PSO2	Applying various linear or nonlinear data structures while designing and developing information retrieval systems and its applications	2
	PSO3	Make use of various linear or nonlinear data structures and extend the knowledge for advance frame works and platforms which are necessary for engineering practices and higher studies or become an entrepreneur.	1
CO 4	PO 1	Make use of linear and nonlinear data structures for solving real time applications by applying the basic knowledge of mathematics, science, engineering fundamentals	3
	PO 2	Problem analysis: Solving real time applications by performing the operations on linear or nonlinear data structures.	7
	PO 3	Recognize the need of linear and nonlinear data structures such as linked list, array, stack and queue for Designing real time applications.	2
	PO 4	Conduct Investigations of Complex Problems: Ability to apply operations on linear or nonlinear data structures in order to solve real time applications.	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.		
	PO 5	Implementation of different operations on linear and nonlinear data structures for solving real time applications with the help of computer software	1		
	PO 10	Subject matter and speaking style assessed in explanation of linear and nonlinear data structures like linked lists, stacks, queues, trees and graphs	2		
	PO 12 Keeping current in CSE and advanced engineering concepts of linear and nonlinear data structures like linked lists, stacks, queues, trees and graphs by tech talk, concept videos and open-ended experiments for solving real time applications.				
	PSO1	Understand complex problems and analyzing it and apply appropriate operations on linear or nonlinear data structures for solving real time applications.	5		
	PSO2	Applying various linear or nonlinear data structures while designing and developing information retrieval systems and its applications	1		
	PSO3	Make use of various linear or nonlinear data structures and extend the knowledge for advance frame works and platforms which are necessary for engineering practices and higher studies or become an entrepreneur.	1		
CO 5	PO 1	Understand the knowledge of hashing techniques and collision resolution methods and implementing for specified problem domain using knowledge of mathematics, science and engineering fundamentals	1		
	PO 3	Design the Solution for efficiently accessing data with respect to performance by using hashing techniques and collision resolution methods	2		
	PO 5	Implementation of hashing techniques and collision resolution methods for efficiently accessing data with respect to performance with the help of computer software	1		
	PO 10	Subject matter and speaking style assessed in explanation of Hashing, Collision techniques	2		
	PSO1	Understand complex problems and analyzing it and apply appropriate hashing techniques and collision resolution methods for efficiently accessing data with respect to performance.	4		
	PSO2	Applying various hashing techniques and collision resolution methods while designing and developing information retrieval systems and its applications	1		
	PSO3	Build sufficient knowledge hashing techniques and collision resolution methods so that new product can be developed, which leads to become successful entrepreneur in the present market.	1		

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 6	PO 1	Understand various types of data structures in terms of implementations and choose appropriate data structure for specified problem domain using knowledge of mathematics, science and engineering fundamentals	3
	PO 2	Problem Analysis: Recognize the importance of suitable data structures in checking the efficiency of algorithms used for complex engineering problems.	7
	PO 3	Design the Solution complex problems or efficiently accessing data with respect to performance by using hashing techniques and collision resolution methods	5
	PO 4	Conduct Investigations of Complex Problems: Ability to apply operations on linear or nonlinear data structures in order to solve real time applications.	4
	PO 5	Understand the Implementation of various types of data structures with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of Implementation of various types of data structures.	2
	PO 12	Keeping current in CSE and advanced engineering concepts of Implementation of various types of data structures by tech talk, concept videos and open ended experiments	3
	PSO 1	Understand complex problems and analyzing it and apply Implementation of various types of data structures.	5
	PSO 2	Applying Implementation of various types of data structures while designing and developing information retrieval systems and its applications	1
	PSO 3	Build sufficient knowledge Implementation of various types of data structures so that new product can be developed, which leads to become successful entrepreneur in the present market.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	PO	PO	РО	РО	PO	РО	PO	РО	PO	РО	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2
CO 1	1	4	2	-	-	-	-	-	-	2	-	-	3	-	1
CO 2	1	5	2	-	1	-	-	-	-	2	-	3	4	2	1
CO 3	2	7	5	4	1	-	-	-	-	2	-	3	5	2	1
CO 4	3	7	2	4	1	-	-	-	-	2	-	3	5	1	1
CO 5	1	-	2	-	1	-	-	-	-	2	-	-	4	1	1
CO 6	3	7	5	4	1	-	-	-	-	2	-	3	5	1	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES								PSO'S					
OUTCOMES	РО	PO	РО	PO	РО	РО	РО	РО	PO	РО	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	33.3	40	20	-	-	-	-	-	-	40	-	-	50	-	50
CO 2	33.3	50	20	-	100	-	-	-	-	40	-	25	66.6	100	50
CO 3	66.6	70	50	36.3	100	-	-	-	-	40	-	25	83.3	100	50
CO 4	100	70	20	36.3	100	-	-	-	-	40	-	-	66.6	50	50
CO 5	33.3	-	20	-	100	-	-	-	-	40	-	-	66.6	50	50
CO 6	100	70	50	36.3	100	-	-	-	-	40	-	25	83.3	50	50

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

1 -5 <C \leq 40% – Low/ Slight

 $\pmb{\mathcal{2}}$ - 40 % < C < 60% – Moderate

 $\boldsymbol{3}$ - 60% \leq C < 100% – Substantial /High

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	PO	PO	PO	РО	PO	РО	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	1	1	-	-	-	-	-	-	1	-	-	2	-	2
CO 2	1	2	1	-	3	-	-	-	-	1	-	1	3	3	2
CO 3	3	3	2	1	3	-	-	-	-	1	-	1	3	3	2
CO 4	3	3	1	1	3	-	-	-	-	1	-	1	3	2	2
CO 5	1	-	1	-	3	-	-	-	-	1	-	-	3	2	2
CO 6	3	3	2	1	3	-	-	-	-	1	-	1	3	2	2
TOTAL	12	12	8	3	15	-	-	-	-	6	-	4	17	12	12
AVERAGE	2.0	2.4	1.3	1.0	3.0	-	-	-	-	1	-	1	2.8	2.4	2.0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	✓	Assignments	~
Seminars	_	Student Viva	-	Certification	-
Laboratory	-	5 Minutes Video	-	Open Ended	-
Practices				Experiments	
Term Paper	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback		
X	Assessment of Mini Projects by Experts				

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING
	Basic concepts: Introduction to data structures, classification of data structures, operations on data structures; Algorithms Specification ,Recursive algorithms ,Data Abstraction, Performance analysis-time complexity and space complexity, Asymptotic Notation-Big O ,Omega and Theta notations. Introduction to Linear and Non Linear data structures, Searching techniques: Linear search, Binary search; Sorting techniques: Bubble, Selection, Insertion, Quick and Merge Sort and comparison of sorting algorithms
MODULE II	LINEAR DATA STRUCTURES
	Stacks: Primitive operations, implementation of stacks using Arrays, applications of stacks arithmetic expression conversion and evaluation; Queues: Primitive operations; Implementation of queues using Array, applications of linear queue, circular queue and double ended queue (deque).
MODULE III	LINKED LISTS
	Linked lists: Introduction, singly linked list, representation of a linked list in memory, operations on a single linked list; Applications of linked lists: Polynomial representation and sparse matrix manipulation. Types of linked lists: Circular linked lists, doubly linked lists; Linked list representation and operations of Stack, linked list representation and operations of queue
MODULE IV	NON LINEAR DATA STRUCTURES
	Trees: Basic concept, binary tree, binary tree representation, array and linked representations, binary tree traversal, binary search tree, tree variants, application of trees; Graphs: Basic concept, graph terminology, graph implementation, graph traversals, Application of graphs, Priority Queue.
MODULE V	BINARY TREES AND HASHING
	Binary search trees: Binary search trees, properties and operations; Balanced search trees: AVL trees; Introduction to M-Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash functions, collisions, applications of hashing.

TEXTBOOKS

- 1. Mark A. Weiss, —Data Structures and Algorithm Analysis in C, Pearson, 2nd Edition, 1996.
- 2. Ellis Horowitz, Satraj Sahni, Susan Anderson Freed, —Fundamentals of Data Structures in C||, Universities Press, 2nd Edition, 2008.

REFERENCE BOOKS:

- 1. Reema Thareja, —Data Structures using C, Oxford University Press, 2nd Edition, 2014
- 2. S. Lipschutz, —Data Structures , Tata McGraw Hill Education, 1st Edition, 2008.
- 3. D. Samanta, —Classic Data Structures, PHI Learning, 2nd Edition, 2004.
- 4. Tanenbaum, Langsam, Augenstein, —Data Structures Using C
 $\|,$ Pearson, 1st Edition, 2003.

WEB REFERENCES:

- 1. http://www.tutorialspoint.com/data-structures-algorithms
- 2. https://www.geeksforgeeks.org/data-structures/
- 3. https://www.studytonight.com/data-structures/
- 4. https://www.coursera.org/specializations/data-structures-algorithms

COURSE WEB PAGE:

1. https://www.iare.ac.in/?q=courses/computer-science-and-engineeringautonomous/datastructures

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference					
	OBE DISCUSSION							
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	<pre>https://lms. iare.ac.in/ index?route= course/ details& course_id= 188</pre>					
	CONTENT DELIVERY (THE	ORY)						
1	Basic concepts: Introduction to Data Structures	CO 3	T1:1.1.3 R2 : 1.2					
2	Classification of data structures	CO 3	T1:1.1.3 R2 : 1.4					
3	Operations on data Structures	CO 3	T1:1.2					
4	Recursive algorithm, Performance Analysis	CO1	T1:1.2 T1:5.1					
5	Searching techniques: Linear search and binary search	CO 2, CO 6	T1:5.1					

6	Searching techniques: Fibonacci search and companding	CO 2, CO 6	T1:5.1
8	Sorting techniques: Bubble sort, selection sort and companding	CO 2	R1:14.5
9	Sorting techniques: Insertion sort, Quick sort	CO 2,	T1:5.2 R2 : 10.2
10	Merge sort ,comparison of sorting algorithms	CO 2, CO 6	T1:5.2 R2 : 10.2
13	Stacks: Primitive operations, implementation of stacks using Arrays	CO3,	T1:7.1
14	Applications of stacks arithmetic expression conversion and evaluation	CO 3, CO 4	T1:7.2
16	Queues: Primitive operations; Implementation of queues using Array	CO 3,	T1:8.1
17	Applications of linear queue, circular queue	CO 3, CO 4	T1:8.4
18	Double ended queue (deque)l	CO 3	R2: 5.4
19	Linked lists: Introduction, singly linked list, representation of a linked list in memory	CO 3,	T1:9.1
20	Operations on a single linked list :creation, insertion and deletion	CO3,	T1:9.2
21	Applications of linked lists	CO 3, CO 4	T1:9.3
22	Operations on a double linked lists :creation, insertion and deletion	CO 3,	T1:9.4
23	Operations on a double linked lists : deletion ,traversal.	CO 3,	T1:9.4
24	single linked list :polynomial expression	CO 3	T1:9.3
25	single linked list :Sparse matrix manipulation.	CO3,	T1:9.3
26	Operations on a Circular linked lists: creation, insertion and deletion	CO 3,	T1:9
30	Operations on a Circular linked lists: deletion, traversal	$\begin{array}{c} \text{CO3, CO} \\ 4 \end{array}$	T1:9
31	Linked list representation and operations of Stack	CO3,	T1:9.7
32	Linked list representation and operations of queue	CO 4,	T1:9.8
37	Trees: Basic concept, Tree terminology	CO 3,	T1:13.1

	CONTENT DELIVERY (THE	ORY)	
38	Binary tree :Binary Tree properties	CO 3,	T1:13.1
39	Binary tree representation using array	CO 3,	T1:13.2
40	Binary tree representation using linked list	CO 4,	T1:13.2
41	Binary tree traversal, binary tree variants	CO4,	T1:13.2
42	Application of trees	CO 4	T1:13.2.3
44	Graphs: Basic concept, graph terminology	CO 3	R2:8.2
45	Types of graphs, Representation of graph	CO 3	R2:8.2
46	Graph traversals :DFS and BFS, Application of graphs	CO 4	T2:6.2
48	Minimum Spanning Trees-Prims and Kruskal algorithms	CO 4	T1:6.1 T2:5.6
50	Binary search trees, properties	CO 3	T1:13.2.3
51	Binary search trees operations	CO 4	T1:13.2.3
52	AVL trees	CO 3	T1:14.3
53	M- Way search trees, B trees	CO 4	T1:14.3
54	Hashing, Collision	CO 5	R2: 6.4
7	Problems on linear search, binary search and Fibonacci search.	CO 4	T1:5.1
11	Problems on bubble sort, selection and insertion	CO 4,	T1:5.2 R2 :
	sort	CO 6	10.2
12	Problems on quick and merge sort	CO 4,	T1:5.2 R2:
		CO 6	10.2
15	Problems on Arithmetic expression conversion and evaluation	CO 4,	T1:7.2
27	Problems on single linked list to add, delete element	CO 4,	T1:9.8
28	Problems on double linked list to add, delete element	CO 4,	T1:9.8
33	Problems on circular linked list to add, delete element	CO 4,	T1:9.4
34	Problems on double linked list to add, delete element	CO 4,	T1:9.3
35	Problems on stack using linked list	CO 4,	T1:9.7
36	Problems on queue using linked list	CO 4,	T1:9.8
43	Problems on Binary tree :creation ,insertion and deletion of a node	CO 4,	T1:13.2
47	Problems on Graph Traversal: DFS and BFS	CO 4,	T2:6.2

49	Problems on MST: Prim's and Kruskal's	CO 4,	T1:6.1 T2:5.6
55	Problems on Binary search tree	CO 4	T1:14.3
56	Problems oh hashing	CO 5	R2: 6.4
	DISCUSSION ON DEFINITION AND T	ERMINOL	OGY
57	Definitions on Data Structures, searching and sorting	CO2	T1:1 R1:14
58	Definitions on Linear Data Structures	CO 3	T1:7,.T1:8
59	Definitions on Linked Lists	CO 3	T1:9
60	Definitions on Non Linear data Structures	CO 3	T1:7.5
61	Definitions on Binary Trees and Hashing	CO 3,CO	T1:14
		5	
	DISCUSSION ON QUESTION	BANK	
62	Module I	CO 1, CO2,CO6	T1:1 R1:14
63	Module I I	CO 3,CO 4,CO 6	T1:9
64	Module III	CO 3,CO 4,CO 6	T1:2.5
65	Module IV	CO 3,CO 4,CO 6	T1: 4.1
66	Module V	CO 3,CO 5,CO 6	T1: 5.1

Course Coordinator Dr V.Sitharamulu HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING				
Course Title	ENGLIS	SH FOR COM	IMUNICATI	ON	
Course Code	AHS001				
Program	B. Tech				
Semester	11				
Course Type	Foundation				
Regulation	R-16				
	Theory			Pract	ical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	2	-	2	-	-
Course Coordinator	Dr. Jetty Wilson, Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

II COURSE OVERVIEW:

The principle aim of the course is that the students will have awareness about the importance of English language in the contemporary times and also it emphasizes the students to learn this language as a skill (listening skill, speaking skill, reading skill and writing skill). Moreover, the course benefits the students how to solve their day-to-day problems in speaking English language. Besides, it assists the students to reduce the mother tongue influence and acquire the knowledge of neutral accent. The course provides theoretical and practical knowledge of English language and it enables students to participate in debates about informative, persuasive, didactic, and commercial purposes.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks	
English	70 Marks	30 Marks	100	

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	LCD / PPT	х	Chalk & Talk	х	Assignments	х	MOOC
\checkmark	Open Ended Experiments	\checkmark	Seminars	х	Mini Project	\checkmark	Videos
х	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
37%	Remember
63 %	Understand
-	Apply
-	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component Marks			
	Continuous Internal Examination – 1 (Mid-term)	10		
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30	
CIA	AAT-1	5		
	AAT-2	5		
SEE Semester End Examination (SEE)		70	70	
	100			

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

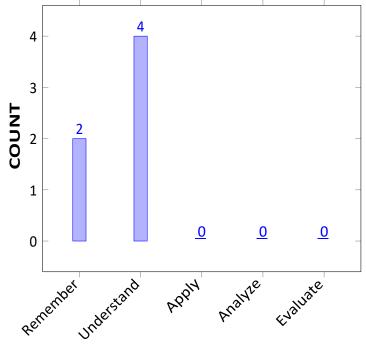
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video		Tech-talk	Complex Problem Solving	
	40%	40%	20%	

VI COURSE OBJECTIVES:

The students will try to learn:


I	Communicate in an intelligible English pronunciation to meet the global standards.
II	Effectively use of four language skills (listening skill, speaking skill, reading skill and writing skill) in day-to-day affairs.
111	A critical aspect of speaking and reading for interpreting in-depth meaning between the sentences.
IV	Develop the art of writing in English keeping the standards of reader's understanding levels.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Describe that Listening skills are essential to leadership which is useful in the real-world situations.	Remember
CO 2	Illustrate appropriate speaking strategies such as keeping the discussion going, turn-taking, asking for clarification or confirmation, paraphrasing, keeping the discussion on topic, and trying to reach a consensus.	Understand
CO 3	Define the value of English as a Lingua-Franca and recall the knowledge in soft skills for the perfect language usage.	Understand
CO 4	Explain the effective usage of functional English grammar and lexical items at academic and non-academic platforms.	Remember
CO 5	Understand the importance of critical reading to catch on the in-depth meaning of a written text at various levels of professional career.	Understand
CO 6	Demonstrate the role of written communication as a key aspect to meet the academic and professional challenges.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 10	Communication : Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally." 1. Clarity (Writing); 2. Grammar/Punctuation (Writing);	5	Seminar/ Conferences/ Research Papers IE/AAT / Discussion
	3. References (Writing); 4. Speaking Style (Oral); 5. Subject Matter (Oral).		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

F	PROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, analyze, design and supervise sub-structures and superstructures for residential and public buildings, industrial structures, irrigation structures, powerhouses, highways, railways, airways, docks and harbors.	-	_
PSO 2	Focus on broad knowledge of aeronautical engineering in innovative, dynamic challenging environment for design and development of new products.	-	-
PSO 3	Make use of advanced software for creating modern avenues to succeed as an entrepreneur or to pursue higher studies.	-	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	-	-	-	-	-	-	-	-	-	✓-	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Discuss the heeds of functional grammar and punctuation tools in speaking and writing by generating the clarity of an audio text.	5
CO 2	PO 10	Illustrate essential aspects of grammar as well as punctuation marks for speaking or writing towards a discussion on a topic to give the clarity.	5
CO3	PO 10	Choose suitable grammatical structures and punctuation marks at speaking and writing areas maintaining clarity at professional platform.	5
CO4	PO 10	Interpret the grammatical knowledge and punctuation marks systematically towards providing the clarity in speaking and writing.	5
CO5	PO 10	Demonstrate the role of grammar and punctuation marks understanding the meaning between the sentences as well as paragraphs in speaking or writing for a clarity.	5
CO6	PO 10	Describe the clarity of grammatical usage and the obligation of punctuation marks in speaking and writing.	5

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

				PRC)GR/	٩M	ουτ	COL	MES				PSO'S		
COURSE	РО	PO	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 2	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 4	-	-	-	-		-	-	-	-	5	-		-	-	-
CO 5	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	5	-		_	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	-	-	-	-	-	-	-	100	-		-	-	-
CO 2	-	-	-	-	-	-	-	-	-	100	-	-	-	-	-
CO 3	-		-	-	-	-	-	-	-	100	-	-	-	-	-
CO 4	-	-	-	-		-	-	-	-	100	-	-	-	-	-
CO 5	-	-	-	-	-	-	-	-	-	100	-	-		-	-
CO 6	-	-	-	-		-	-	-	-	100	-		-	-	

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** $0 \le C \le 5\%$ No correlation
- **1** -5 <C≤ 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- **3** 60% \leq C < 100% Substantial /High

				PRC)GR/	٩M	ουτ	COL	VIES				PSO'S		
COURSE	РО	PO	PO	PO	PO	PO	PO	РО	PO	РО	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	-	-	-	-	-	-	-	3	-	-	-	-	
CO 2	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 4	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 5	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
TOTAL	-	-	-	-	-	-	-	-	-	18	-	-	-	-	-
AVERAGE	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	\checkmark	Open Ended Experiments	
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

	Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback
--	--	--------------	---------------------------

XVIII SYLLABUS:

MODULE I	GENERAL INTRODUCTION AND LISTENING SKILL
	Introduction to communication skills; Communication process; Elements of communication; Soft skills vs. hard skills; Importance of soft skills for engineers; Listening skills; Significance; Stages of listening; Barriers and effectiveness of listening; Listening comprehension.
MODULE II	SPEAKING SKILL
	Significance; Essentials; Barriers and effectiveness of speaking; Verbal and non-verbal communication. Generating talks based on visual prompts; Public speaking; Exposure to structured talks; Addressing a small group or a large formal gathering; Oral presentation; Power point presentation.

MODULE III	VOCABULARY AND GRAMMAR
	The concept of Word Formation; Root words from foreign languages and their use in English; Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives; Synonyms; Antonyms; Standard abbreviations; Idioms and phrases; One-word substitutes Sentence structure; Uses of phrases and clauses; Punctuation; Subject verb agreement; Modifiers; Articles; Prepositions.
MODULE IV	READING SKILL
	Significance, Techniques of reading, Skimming-Reading for the gist of a text, Scanning - Reading for specific information, Intensive, Extensive reading, Reading comprehension, Reading for information transfer, Text to diagram, Diagram to text.
MODULE V	WRITING SKILL
	Significance; Effectiveness of writing; Organizing principles of Paragraphs in documents; Writing Introduction and conclusion; Techniques for writing precisely, Letter writing; Formal and Informal letter writing, E-mail writing, Report Writing.

TEXTBOOKS

1. Handbook of English (Prepared by the faculty of English, IARE).

REFERENCE BOOKS:

- 1. 1. Norman Whitby, Business Benchmark: Pre-Intermediate to Intermediate BEC Preliminary, Cambridge University Press, 2nd Edition,2008.
- 2. Devaki Reddy, Shreesh Chaudhary, Technical English, Macmillan, 1st Edition, 2009.
- 3. Rutherford, Andrea J, Basic Communication Skills for Technology, Pearson Education, 2nd Edition, 2010.
- 4. Raymond Murphy, Essential English Grammar with Answers, Cambridge University Press, 2nd Edition, 2010.
- 5. Dr. N V Sudershan, President Kalam's Call to the Nation, Bala Bharathi Publications, Secunderabad, 1st Edition,2003

XIX COURSE PLAN:

S.No	Topics to be covered	CO's	Reference T1: 4.1					
	OBE DISCUSSION							
1 Discussion on mapping COs with POs. (OBE)								
	CONTENT DELIVERY (THEORY)							
2	Introduction to communication skills.	CO 1	T1:06.06					
3	Communication process.	CO 1	T1:06.09					
4	Soft skills vs hard skills.	CO 3	T1:09.10					
5	Significance of LSRW skills.	CO 1	T1:10.11					
6	Significance of listening skill.	CO 1	TI:12.16					
7	Different stages of listening.	CO 1	T1:16.18					
8	Barriers of listening skill.	CO 1	TI:18.21					
9	Different types of listeners.	CO 1	TI:21.22					
10	Effectiveness of listening skill.	CO 1	T1:22.24					
11	Phonetics: Listening to the sounds of English language.	CO 1	T1:24.29					
12	Introduction to speaking skills.	CO 2	T1:30.32					
13	Effectiveness of speaking skills.	CO 2	T1:33.34					
14	Verbal and non-verbal communication.	CO 2	T1:34.35					
15	Generating talks based on visual or written prompts.	CO 2	T1:36.37					
16	Developing public speaking skills.	CO 2	T1:38.39					
17	Oral presentation with power-point.	CO 3	TI:39.42					
18	The concept of word formation.	CO 4	T1:43.100					
19	Antonyms and synonyms.	CO 4	TI:49.56					
20	Idioms and phrases.	CO 4	TI:57.60					
21	One-word substitutes.	CO 4	TI:60.62					
22	Root words from foreign languages and their usage in English.	CO 4	TI:60.62					
23	Sentence structure.	CO 4	T1:58.62					
24	Punctuation tools and their role in a language.	CO 4	TI:63.66					
25	Subject-verb agreement.	CO 4	TI:66.69					
26	Usage of Adjectives.	CO 4	TI:70.73					
27	Significance of articles and their usage	CO 4	TI:74.75					
28	The usage of prepositions.	CO 4	T1:76.77					
29	Significance of reading skill.	CO 5	T1:78.79					
30	Different techniques of reading skill.	CO 6	T1:80.82					
31	How to Read Your Textbook More Efficiently.	CO 6	TI:83.85					
32	Different types of reading comprehension.	CO 6	TI:85.86					
33	Reading for information transfer.	CO 6	TI:85.96					
34	Significance and effectiveness of writing skill.	CO 6	TI:96.98					

35	Organizing principles of a paragraph in documents and types of paragraphs.	CO 5	T1:101.103
36	Writing introduction and conclusion.	CO 5	T1:103.103
37	Techniques for writing precis.	CO 8	T1:103.103
38	Introduction to informal letters.	CO 7	TI:105.108
39	Introduction to formal letters.	CO 7	TI:109.110
40	Introduction of email writing and formal and informal emails.	CO 7	TI:111.112
41	Significance of Report Writing.	CO 8	TI: 113. 114
	PROBLEM SOLVING/ CASE STUDIES		
42	The aspects to improve listening comprehension Discuss in detail.	CO 1	TI:10,11
43	Different types of listeners with examples	CO 1	TI: 19,21
44	The sounds of English language	CO 1	TI:23,27
45	verbal communication or written communication.	CO 2	TI: 27,30
46	Various difficulties in public speaking.	CO 2	TI: 32,33
47	Different ways of greeting people in formal and informal situation and discuss how do they matter in communication?	CO 2	TI: 35,37
48	'Oral presentation requires a good planning'.	CO 2	TI:36,38
49	Power point presentation and the ways to make Power point presentation.	CO 2	TI: 37,38
50	Methods that are used to establish the process of building vocabulary with examples from the most used words in spoken English.	CO 4	TI:39,41
51	The usage of idioms and phrases in spoken English.	CO 4	TI: 47,50
52	'Structure proposition-evaluation' -Reading technique.	CO 5	TI:56,58
53	Active reading, detailed reading, and speed-reading techniques used in different situations.	CO 5	TI: 79,81
54	The elements of paragraph writing in detail.	CO 8	TI:100,102
55	Logical bridges and Verbal bridges in writing.	CO 8	TI:102,104
56	Soft skills and Interpersonal Communication.	CO 8	TI:102,104
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
57	Soft skills and Interpersonal Communication.	CO 1	TI 8,9
58	Language acquisition is a process.	CO 1	TI: 11,12
59	Communication.	CO 1	TI: 14,16
60	Time management.	CO 3	TI:9,10
61	Stress management.	CO 3	TI:9,10
	DISCUSSION OF QUESTION BANK		<u>.</u>
62	Soft Skills for difficult situations in terms of reassurance and reliability.	CO 3	TI:9,10
63	Verbal and non-verbal communication.	CO 2	TI: 34,35

64	Honesty, Respect, Self-Control and Accountability their role in building long lasting interpersonal skills?	CO 3	TI: 9,10
65	Etiquette and manners. Its importance in social, personal and professional communication.	CO 23	TI: 9,10
66	Problem solving and decision making.	CO 3	TI: 9,10

Signature of Course Coordinator

HOD

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	DATA STRUCTURES LABORATORY				
Course Code	ACS102				
Program	B.Tech				
Semester	II CSE				
Course Type	Core				
Regulation	IARE - R16				
		Theory		Practio	cal
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	-	-	-	3	2
Course Coordinator	Dr. V Sitha Ramulu, Assistant Professor,CSE				

I COURSE OVERVIEW:

A data structure is a particular way of organizing data in a computer so that it can be used effectively. It covers the design and analysis of fundamental data structures and engages learners to use data structures as tools to algorithmically design efficient computer programs that will cope with the complexity of actual applications. A Data Structure is a particular way of storing and organizing data in a computer so that it can be stored, retrieved, or updated efficiently. Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory, specified by an address. This course is essential for image viewer software, in this images are linked with each other so, images uses a linked list to view the previous and the next images using the previous and next buttons. Web pages can be accessed using the previous and the next URL links which are linked using linked list. The music players also use the same technique to switch between music. To keep the track of turns in a multi player game, a circular linked list is used.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS002	П	Data Structures
B.Tech	ACS101	I	Computer Programming Laboratory

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Data Structures Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab		Viva		Probing further
\checkmark		\checkmark	Worksheets	\checkmark	Questions	\checkmark	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective Purpose	
20 %	Analysis Algorith	
20 %	Design Programme	
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

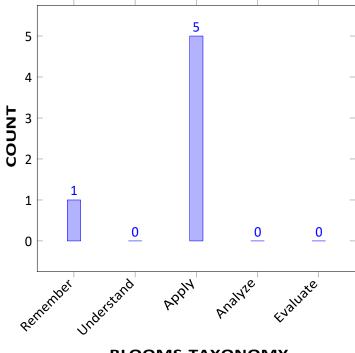
1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:


The students will try to learn:

I	Implement linear and non linear data structures.
П	Analyze various algorithms based on their time complexity
111	Choose appropriate data structure and algorithm design method for a specific application.
IV	Identify suitable data structure to solve various computing problems.

VII COURSE OUTCOMES:

CO 1	Identify appropriate searching technique for efficient retrieval of data stored location.	Apply
CO 2	choose sorting technique to represent data in specified format to to optimize data searching.	Apply
CO 3	Make use of stacks and queues representation, operations and their applications to organize specified data	Understand
CO 4	utilize linked lists to implement and perform operations for for organizing specified data	Apply
CO 5	Construct tree to perform different traversal techniques	Apply
CO 6	Select Appropriate graph traversal techniques to visit the vertices of a graph	Remember

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by Lab Exercises	
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3		
PO 2	Problem Analysis: Identify, formulate, reviewresearch literature, and analyse complexEngineering problems reaching substantiatedconclusions using first principles of mathematicsnatural sciences, and Engineering sciences	3	Lab Exercises	
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	Lab Exercises	
PO 4	ConductInvestigationsofComplexProblems:Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions	2	Lab Exercises	
PO 5	Modern Tool Usage:Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	1	Lab Exercises	
PO 6	The Engineer and Society Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice	2	Lab Exercises	
PO 7	Environment and Sustainability Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development	2	Lab Exercises	
PO 8	Ethics Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3	Lab Exercises	
PO 9	Individual and Teamwork Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	3	Lab Exercises	

PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	4	Lab Exercises
PO 12	Life - Long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	3	Lab Exercises

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	2	Lab Exercises
PSO 2	Focus on mobile and web applications development and learn the emerging technologies and frameworks in demand with employers and contemporary challenges	2	Lab Exercises
PSO 3	Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry.	2	Lab Exercises

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Identify appropriate searching technique for efficient retrieval of data stored location by applying the principles of Mathematics and Engineering, Scientific principles and methodology, engineering disciplines to integrate / support study	3
	PO 2	Identify appropriate searching technique for efficient retrieval of data stored location by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3
	PO 3	Identify appropriate searching technique for efficient retrieval of data stored location by applying Design/Development of Solutions	3

Identify apply appropriate searching technique for efficient retrieval of data stored location by applying Conduct Investigations of Complex Problems	2
Identify apply appropriate searching technique for efficient retrieval of data stored location by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search toolsl	1
Identify apply appropriate searching technique for efficient retrieval of data stored location by applying reasoning informed by the contextual knowledge	2
Identify apply appropriate searching technique for efficient retrieval of data stored location by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3
Identify apply appropriate searching technique for efficient retrieval of data stored location by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
Identify apply appropriate searching technique for efficient retrieval of data stored location by Communicate effectively on complex Engineering activities	3
Identifyapplyappropriate searching technique for efficient retrieval of data stored location by Keeping current in CSE and advanced engineering concepts	3
Identify appropriate searching technique for efficient retrieval of data stored location in search engines	2
Identify appropriate searching technique for efficient retrieval of data stored location in mobile and web applications development	2
Identify appropriate searching technique for efficient retrieval of data stored location in shipping real world software, using industry standard tools	3
choose sorting technique to represent data in specified format to optimize data searching by applying the principles of Mathematics and Engineering, Scientific principles and methodology, engineering disciplines to integrate / support study	3
choose sorting technique to represent data in specified format to optimize data searching by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3
Identify choose sorting technique to represent data in specified format to optimize data searching by applying Design/Development of Solutions	3
choose sorting technique to represent data in specified format to optimize data searching by applying Conduct Investigations of Complex Problems	2
	retrieval of data stored location by applying Conduct Investigations of Complex Problems Identifyapplyappropriate searching technique for efficient retrieval of data stored location by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools Identifyapplyappropriate searching technique for efficient retrieval of data stored location by applying reasoning informed by the contextual knowledge Identifyapplyappropriate searching technique for efficient retrieval of data stored location by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice Identifyapplyappropriate searching technique for efficient retrieval of data stored location by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization Identifyapplyappropriate searching technique for efficient retrieval of data stored location by Communicate effectively on complex Engineering activities Identifyapplyappropriate searching technique for efficient retrieval of data stored location by Keeping current in CSE and advanced engineering concepts Identify appropriate searching technique for efficient retrieval of data stored location in search engines Identify appropriate searching technique for efficient retrieval of data stored location in nobile and web applications development Identify appropriate searching technique for efficient retrieval of data stored location in sipping real world software, using industry standard tools choose sorting technique to represent data in specified format to optimize data searching by applying the principles of Mathematics and Engineering , Scientific principles and methodology, engineering disciplines to integrate / support study choose sorting technique to represent data in specified format to optimize data searching by applying Problem Analysis Problem statement and system definition, Information and data collec

	PO 5	choose sorting technique to represent data in specified format to optimize data searching by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search toolsl	1
	PO 6	choose sorting technique to represent data in specified format to optimize data searching by applying reasoning informed by the contextual knowledge	2
	PO 8	 choose sorting technique to represent data in specified format to optimize data searching by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice 	3
	PO 9	choose sorting technique to represent data in specified format to optimize data searching by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
	PO 10	choose Apply sorting technique to represent data in specified format to optimize data searching by Communicate effectively on complex Engineering activities	3
	PO 12	choose sorting technique to represent data in specified format to optimize data searching by Keeping current in CSE and advanced engineering concepts	3
	PSO 1	chooseApply sorting technique to represent data in specified format to optimize data searching in search engines	2
	PSO 2	chooseApply sorting technique to represent data in specified format to optimize data searching in mobile and web applications development	2
	PSO 3	choose Apply sorting technique to represent data in specified format to optimize data searching in shipping real world software, using industry standard tools	3
CO 3	PO 1	Make use of stacks and queues representation, operations and their applications to organize specified data by applying the principles of Mathematics and Engineering , Scientific principles and methodology, engineering disciplines to integrate / support study	3
	PO 2	Make use of stacks and queues representation, operations and their applications to organize specified data by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3
	PO 3	Identify, Make use of stacks and queues representation, operations and their applications to organize specified data by applying Design/Development of Solutions	3

	PO 4	Make use of Apply stacks and queues representation, operations and their applications to organize specified data by applying Conduct Investigations of Complex Problems	2
	PO 5	Make use of stacks and queues representation, operations and their applications to organize specified data by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools	1
	PO 6	Make use of stacks and queues representation, operations and their applications to organize specified data by applying reasoning informed by the contextual knowledge	2
	PO 8	Make use of stacks and queues representation , operations and their applications to organize specified data by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3
	PO 9	Make use of stacks and queues representation, operations and their applications to organize specified data by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
	PO 10	Make use of stacks and queues representation, operations and their applications to organize specified data by Communicate effectively on complex Engineering activities	3
	PO 12	Make use of stacks and queues representation, operations and their applications to organize specified data by Keeping current in CSE and advanced engineering concepts	3
	PSO 1	Make use of stacks and queues representation , operations and their applications to organize specified data in search engines	2
	PSO 2	Make use of stacks and queues representation, operations and their applications to organize specified data mobile and web applications development	2
	PSO 3	Make use of stacks and queues representation, operations and their applications to organize specified data in shipping real world software, using industry standard tools	2
CO 4	PO 1	utilize linked lists to implement and perform operations for organizing specified data by applying the principles of Mathematics and Engineering, Scientific principles and methodology, engineering disciplines to integrate / support study	3

	PO 2	utilize linked lists to implement and perform operations for	3
		organizing specified data by applying Problem Analysis Problem statement and system	
		definition,Information and data collection,Solution development or experimentation / Implementation	
	PO 3	utilizeApply linked lists to implement and perform operations for organizing specified data by applying Design/Development of Solutions	3
	PO 4	utilize linked lists to implement and perform operations for organizing specified data by applying Conduct Investigations of Complex Problems	2
	PO 5	utilize linked lists to implement and perform operations for organizing specified data by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search toolsl	1
	PO 6	utilize linked lists to implement and perform operations for organizing specified data by applying reasoning informed by the contextual knowledge	2
	PO 8	utilize linked lists to implement and perform operations for organizing specified data by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3
	PO 9	utilize Apply linked lists to implement and perform operations for organizing specified data by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
	PO 10	utilize linked lists to implement and perform operations for organizing specified data by Communicate effectively on complex Engineering activities	3
	PO 12	utilizeApply linked lists to implement and perform operations for organizing specified data by Keeping current in CSE and advanced engineering concepts	3
	PSO 1	utilizeApply linked lists to implement and perform operations for organizing specified in search engines	2
	PSO 2	utilizeApply linked lists to implement and perform operations for organizing specified in mobile and web applications development	2
	PSO 3	utilizeApply linked lists to implement and perform operations for organizing specified in shipping real world software, using industry standard tools	2
CO 5	PO 1	Construct tree to perform different traversal techniques by applying the principles of Mathematics and Engineering, Scientific principles and methodology, engineering disciplines to integrate / support study	3

	1		
	PO 2	Construct tree to perform different traversal techniques by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3
	PO 3	Construct Apply tree to perform different traversal techniques by applying Design/Development of Solutions	3
	PO 4	Construct tree to perform different traversal techniques by applying Conduct Investigations of Complex Problems	2
	PO 5	Construct tree to perform different traversal techniques by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools	1
	PO 6	Construct tree to perform different traversal techniquesby applying reasoning informed by the contextual knowledge	2
	PO 8	ConstructApply tree to perform different traversal techniques by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3
	PO 9	Construct tree to perform different traversal techniquesby applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
	PO 10	Construct tree to perform different traversal techniques by Communicate effectively on complex Engineering activities	3
	PO 12	Construct tree to perform different traversal techniques by Keeping current in CSE and advanced engineering concepts	3
	PSO 1	Construct tree to perform different traversal techniques in search engines	2
	PSO 2	Construct tree to perform different traversal techniques in mobile and web applications development	2
	PSO 3	Construct tree to perform different traversal techniques in shipping real world software, using industry standard tools	2
CO 6	PO 1	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying the principles of Mathematics and Engineering, Scientific principles and methodology, engineering disciplines to integrate / support study	3
	PO 2	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3

PO 3	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying Design/Development of Solutions	3
PO 4	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying Conduct Investigations of Complex Problems	2
PO 5	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools	1
PO 6	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying reasoning informed by the contextual knowledge	2
PO 8	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3
PO 9	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
PO 10	Select Appropriate graph traversal techniques to visit the vertices of a graph by Communicate effectively on complex Engineering activities	3
PO 12	Select Appropriate graph traversal techniques to visit the vertices of a graph by Keeping current in CSE and advanced engineering concepts	3
PSO 1	Select Appropriate graph traversal techniques to visit the vertices of a graph in search engines	2
PSO 2	Select Appropriate graph traversal techniques to visit the vertices of a graph in mobile and web applications development	2
PSO 3	Select Appropriate graph traversal techniques to visit the vertices of a graph in shipping real world software, using industry standard tools	2

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	Pro	Program Outcomes/ No. of Key Competencies Matched								PSO'S					
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	2	2	3	1	-	1	2	3	-	2	2	1	1
CO 2	1	2	2	2	3	1	-	2	3	3	-	2	1	1	1
CO 3	1	2	2	1	3	1	-	-	2	3	-	2	2	2	-

CO 4	1	2	1	1	3	1	-	-	2	3	-	2	2	1	1
CO 5	1	1	2	1	3	1	-	2	2	3	-	2	2	1	1
CO 6	1	1	2	1	3	1	-	1	3	3	-	2	2	1	1

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	1	SEE Exams	1	Seminars	-
Laboratory Practices	1	Student Viva	1	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

✓ Early Semester Feedback		\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XIV SYLLABUS:

WEEK I	SEARCHING TECHNIQUES					
	Write C programs for implementing the following searching techniques. a. Linear search. b. Binary search. c. Fibonacci search.					
WEEK II	SORTING TECHNIQUES					
	Write C programs for implementing the following sorting techniques to arrange a list of integers in ascending order. a. Bubble sort. b. Insertion sort. c. Selection sort					
WEEK III	SORTING TECHNIQUES					
	Write C programs for implementing the following sorting techniques to arrange a list of integers in ascending order. a. Quick sort. b. Merge sort					
WEEK IV	IMPLEMENTATION OF STACK AND QUEUE					
	Write C programs to a. Design and implement Stack and its operations using Arrays. b. Design and implement Queue and its operations using Arrays					
WEEK V	APPLICATIONS OF STACK					
	Write C programs for the following: a. Uses Stack operations to convert infix expression into postfix expression. b. Uses Stack operations for evaluating the postfix expression					
WEEK VI	IMPLEMENTATION OF SINGLE LINKED LIST					
	Write C programs for the following: a. Uses functions to perform the following operations on single linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal b. To store a polynomial expression in memory using linked list.					
WEEK VII	IMPLEMENTATION OF CIRCULAR SINGLE LINKED LIST					
	Write C programs for the following: Uses functions to perform the following operations on Circular linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal.					

WEEK VIII	IMPLEMENTATION OF DOUBLE LINKED LIST
	Write C programs for the following: Uses functions to perform the following operations on double linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways.
WEEK IX	IMPLEMENTATION OF STACK USING LINKED LIST
	Write C programs to implement stack using linked list
WEEK X	IMPLEMENTATION OF QUEUE USING LINKED LIST
	Write C programs to implement queue using linked list
WEEK XI	GRAPH TRAVERSAL TECHNIQUES
	Write C programs to implement the following graph traversal algorithms: a. Depth first search. b. Breadth first search.
WEEK XII	IMPLEMENTATION OF BINARY SEARCH TREE
	Write a C program that uses functions to perform the following: a. Create a binary search tree. b. Traverse the above binary search tree recursively in pre-order, post-order and in-order. c. Count the number of nodes in the binary search tree.

TEXTBOOKS

- 1. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley Student Edition.
- 2. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017.

REFERENCE BOOKS:

- 1. S. Lipschutz, "Data Structures", Tata McGraw Hill Education, 1st Edition, 2008.
- 2. Samanta, "Classic Data Structures", PHI Learning, 2nd Edition, 2004.Gottfried Byron,
- 3. "Schaum's Outline of Programming with Python", Tata Mc Graw Hill, 1st Edition, 2010.
- 4. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley, John Wiley and Sons, INC., 2011.
- 5. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishing Ltd., 2017.

WEB REFERENCES:

- 1. https://docs.python.org/3/tutorial/datastructures.html
- 2. http://interactivepython.org/runestone/static/pythonds/index.html
- 3. http://www.tutorialspoint.com/data-structures-algorithms
- 4. http://www.geeksforgeeks.org/data-structures/
- 5. http://www.studytonight.com/data-structures
- 6. http://www.coursera.org/specializations/data-structures-algorithms
- 7. http://cse01-iiith.vlabs.ac.in/

XV COURSE PLAN:

S.No	Topics to be covered	CO's	Reference
1	Searching Techniques.	CO 1	T1
2	Sorting Techniques.	CO 2	T1
3	Sorting Techniques	CO 2	T1,T2
4	Implementation of Stack and Queue	CO 3	T1,T2
5	Applications of Stack.	CO 3	T1, W1
6	Implementation of Single Linked List	CO 4	T1,W2
7	Implementation of Circular Single Linked List.	CO 4	T1,W3
8	Implementation of Double Linked List	CO 4	T2,W3
9	Implementation of Stack Using Linked List.	CO 3,CO 4	T2,W2
10	Implementation of Queue Using Linked List	CO 3,CO 4	T2,W5
11	Graph Traversal Techniques.	CO 6	T2,W2
12	Implementation of Binary Search Tree	CO 5	T1,W5

The course plan is meant as a guideline. Probably there may be changes.

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Twin vortex formation: Design a Data Structure SpecialStack that supports all the stack operations like push(), pop(), isEmpty(), isFull() and an additional operation getMin() which should return minimum element from the SpecialStack. All these operations of SpecialStack must be O(1). To implement SpecialStack, you should only use standard Stack data structure and no other data structure like arrays, list, . etc.
2	Open channel: In class, we studied binary search trees that do not allow us to insert duplicate elements. However, sometimes we do need to store duplicates. For example, a database of student marks might contain one record for every mark by every student; so if you've taken two courses, there will be two records with the same key (your student number) and different data (your two marks). To accomplish this, we might use a data structure called a "BST with duplicates", or BSTD
3	Capillary action: The variable tos in the Stack class is the index of the array element that would be filled the next time push() is called. Modify the code so that tos is the index of the top element actually in use. In other words, tos is to be the index of the top array element occupied by a value that has been "pushed" onto the stack. Write your changes on the code above. Don't forget to fix the comments. You do not need to add preconditions as in part-a.
4	Buoyancy Given an adjacency matrix representation of a graph, describe with pseudo code an algorithm that finds a single path, if one exists, between any two different vertices.

5	Flow through pipes: There is a garage where the access road can accommodate any number of trucks at one time. The garage is building such a way that only the last truck entered can be moved out. Each of the trucks is identified by a positive integer (a truck-id). Write a program to handle truck moves, allowing for the following commands: a) On-road (truck-id); b) Enter-garage (truck- id); c) Exit-garage (truck-id); d) Show-trucks (garage or road); If an attempt is made to get out a truck which is not the closest to the garage entry, the error message Truck x not near garage door
6	Flow through pipes: How many non-null links are there in a binary tree with N nodes?
7	Flow through pipes: How can we remove loops in a linked list? What are the functions of fast and slow pointers?

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	BASIC ELI	BASIC ELECTRICAL AND ELECTRONICS ENGG LAB						
Course Code	AEE103	AEE103						
Program	B.Tech							
Semester	П	II AE/ME/CSE						
Course Type	Foundation							
Regulation	IARE - R16							
		Theory		Practical				
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	-	3 2						
Course Coordinator	Ms. B Navothna, Assistant Professor							

I COURSE OVERVIEW:

The objective of the Basic Electrical Engineering Laboratory lab is to expose the students to the electrical circuits and give them experimental skill. It also aims to get the knowledge of the different electronic devices like diodes, rectifiers, transistors. It provides hands-on experience by examining the electrical characteristics of various AC and DC machines.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHS006	I	Engineering Physics
B.Tech	AHS002	I	Linear Algebra and Ordinary Differential Equations

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Basic Electrical and Electronics Engineering Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Demo Video	V	Lab Worksheets	\checkmark	Viva Questions	\checkmark	Probing further Questions
---	------------	---	-------------------	--------------	----------------	--------------	---------------------------------

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks of assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based Programming based		
20 %	Objective	Purpose	
20 %	Analysis	Algorithm	
20 %	Design	Programme	
20 %	Conclusion	Conclusion	
20 %	Viva	Viva	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks	
Type of Assessment	Day to day performance	Final internal lab assessment		
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

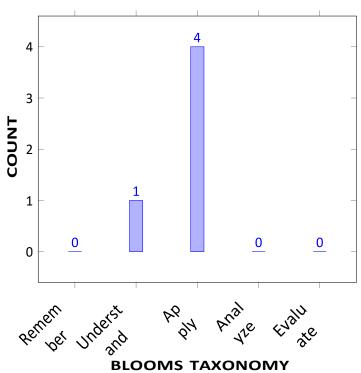
1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:


The students will try to learn:

I	Implement different circuits and verify circuit concepts for DC circuits.
П	Gain knowledge on semiconductor devices like diode and transistor.
111	Interpret different transistor configurations.
IV	The operation and characteristics of AC machines and DC machines.

VII COURSE OUTCOMES:

CO 1	Solve the electrical circuit source resistance, currents, voltage and power by applying various network reduction techniques.	Apply
CO 2	Apply magnetization characteristics of dc shunt generator for calculating the critical resistance and speed control methods and performance characteristics of DC Shunt machine and Transformer for efficiency.	Apply
CO 3	Acquire basic knowledge on the working of PN-junction diode, Zener diode to plot their V-I characteristics.	Understand
CO 4	Identify transostor configuration and their working to deduce its working as switch and amplifier.	Apply
CO 5	Explore the knowledge and skills of employability to succeed in national and international level competitive examinations.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program		Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of	3	Laboratory experiments internal and
	complex engineering problems.		external lab exam

PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	1	Laboratory experiments internal and external lab exam
PO 9	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	3	Laboratory experiments internal and external lab exam
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	Laboratory experiments internal and external lab exam
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3	Laboratory experiments internal and external lab exam

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	1	-

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Recollect the concept of electricity is described through scientific principles, importance Kirchhoff laws in relation with law of conservation of energy and charge circuits are explained using knowledge of mathematics, science and engineering fundamentals. and various source transformation techniques are adopted for solving complex circuits.	3
	PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice in solving the circuits	1

	PO 9	Work effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings in solving the circuits.	3
	PO 10	Communicate effectively on complex engineering activities with the engineering community and with society in solving the circuits .	3
	PO 12	The preparation and ability to engage in independent and life-long learning in the broadest context of technological change in solving the circuits .	3
	PSO 1	Solve complex electrical circuits by applying basic circuit concepts by using computer programs.	1
CO 2	PO 1	Apply (knowledge) magnetization characteristics DC shunt generator and performance characteristics of DC shunt machine by analyzing complex engineering problems using the principles of mathematics, engineering science.	3
	PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice in applying magnetization characteristics DC shunt generator and performance characteristics of DC shunt machine	1
	PO 9	Work effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings in applying magnetization characteristics DC shunt generator and performance characteristics of DC shunt machine	3
	PO 10	Communicate effectively on complex engineering activities with the engineering community and with society in applying magnetization characteristics DC shunt generator and performance characteristics of DC shunt machine	3
	PO 12	The preparation and ability to engage in independent and life-long learning in the broadest context of technological change in applying magnetization characteristics DC shunt generator and performance characteristics of DC shunt machine.	3
CO 3	PO 1	Understand the working of PN-junction diode,Zener diode by using principles of mathematics and engineering science	3
	PO 2	Acquire the knowledge on working of PN-junction diode for its validity.	1
	PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice by understanding the working of PN-junction diode,Zener diode	1
	PO 9	Work effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings by understanding the working of PN-junction diode,Zener diode	3

	PO 10	Communicate effectively on complex engineering activities with the engineering community and with society by understanding the working of PN-junction diode,Zener diode	3
	PO 12	The preparation and ability to engage in independent and life-long learning in the broadest context of technological change by understanding the working of PN-junction diode,Zener diode .	3
CO 4	PO 1	Identify transistor configuration by using principles of mathematics and engineering science	3
	PO 2	Identify the different transistor configuration for its applications for its validity.	1
	PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice by identifying transistor configuration	1
	PO 9	Work effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings by identifying transistor configuration	3
	PO 10	Communicate effectively on complex engineering activities with the engineering community and with society by identifying transistor configuration	3
	PO 12	The preparation and ability to engage in independent and life-long learning in the broadest context of technological change by identifying transistor configuration .	3
CO 5	PO 1	Demonstrate the knowledge of electrical circuits and semiconductor diodes using principles of mathematics, science and engineering fundamentals.	3
	PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice in demonstration of electrical circuits and semiconductor diodes	1
	PO 9	Work effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings in demonstration of electrical circuits and semiconductor diodes	3
	PO 10	Communicate effectively on complex engineering activities with the engineering community and with society in demonstration of electrical circuits and semiconductor diodes	3
	PO 12	The preparation and ability to engage in independent and life-long learning in the broadest context of technological change in demonstration of electrical circuits and semiconductor diodes	3

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE OUTCOMES	PROGR	PROGRAM OUTCOMES					
	PO 1	PO 2	PO 8	PO 9	PO10	PO12	PSO1
CO 1	3		1	3	3	3	
CO 2	3		1	3	3	3	1
CO 3	3	1	1	3	3	3	
CO 4	3	1	1	3	3	3	
CO 5	3		1	3	3	3	

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	,	SEE Exams	,	Seminars	-
	\checkmark		\checkmark		
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback	
X Assessment of Mini Projects by Experts				

XIV SYLLABUS:

WEEK I	KVL AND KCL
	Verification of Verification of Kirchhoff's current law and Voltage law using hardware.
WEEK II	OHM'S LAW
	Verification of Ohm's law.
WEEK III	MAGNETIZATION CHARACTERISTICS
	Magnetization characteristics of DC shunt generator.
WEEK IV	SWINBURNE'S TEST
	Swinburne's test on DC shunt machine
WEEK V	OPEN CIRCUIT AND SHORT CIRCUIT TEST
	Open circuit and short circuit test on single phase transformer.
WEEK VI	BRAKE TEST

	Study the performance characteristics of three phase induction motor by brake test .
WEEK VII	SYNCHRONOUS IMPEDENCE METHOD
	Determine the regulation of alternator using synchronous impedance method .
WEEK VIII	P-N JUNCTION DIODE
	Volt Ampere characteristics of p-n junction diode.
WEEK IX	ZENER DIODE
	Understand the zener diode characteristics.
WEEK X	HALF WAVE RECTIFIER
	Build half wave rectifier circuit.
WEEK XI	RECTIFIERS
	Build full wave rectifier circuit.
WEEK XII	COMMON BASE TRANSISTOR
	Understand transistor common base characteristics.
WEEK XIII	COMMON EMITTER TRANSISTOR
	Understand transistor common emitter characteristics.
WEEK XIV	CRO
	Study of CRO.

TEXTBOOKS

- 1. A Sudhakar, Shyammohan S Palli, "Circuits and Networks", Tata McGraw-Hill, 4th Edition, 20103
- 2. P S Bimbhra, "Electrical Machinery", Khanna Publishers, 1 st Edition, 2011.

REFERENCE BOOKS:

- 1. A Chakrabarti, "Circuit Theory", Dhanpat Rai Publications, 6th Edition, 2006.
- 2. K S Suresh Kumar, "Electric Circuit Analysis", Pearson Education, 1st Edition, 2013.
- 3. Etter, "Introduction to MATLAB 7", Pearson Education, 1st Edition, 2008.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Verification of Verification of Kirchhoff's current law and voltage law.	CO 1	T1:1.1
2	Verification of Ohm's.	CO 1	T1:2.1
3	Magnetization characteristics of DC shunt generator.	CO 2	T1:2.4
4	Swinburne's test on DC shunt machine.	CO 2	T1:6.1
5	Open circuit and short circuit test on single phase transformer.	CO 2	T1:4.6
6	Study the performance characteristics of three phase induction motor by brake test.	CO 2	T1:5.1

7	Determine the regulation of alternator using synchronous impedance method.	CO 2	R3: T1:4.1
8	Volt Ampere characteristics of p-n junction diode.	CO 3	T1:4.7
9	Understand the zener diode characteristics.	CO 2	T2:4.11
10	Build half wave rectifier circuit.	CO 3	T2:4.11
11	Build full wave rectifier circuit.	CO 3	T2:4.12
12	Understand transistor common base characteristics.	CO 4	T2:4.14
13	Understand transistor common emitter characteristics.	CO 4	T2:1.1
14	Study of CRO.	CO 3	T2:5.4

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Include more DC Electrical network theorems.

Signature of Course Coordinator Ms. B Navothna, Assistant Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING					
Course Title	DESIG	DESIGN AND ANALYSIS OF ALGORITHMS					
Course Code	AIT001						
Program	B.Tech	3.Tech					
Semester	III	III					
Course Type	Core	Core					
Regulation	R-16						
		Theory		Pract	ical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	-	3	3	2		
Course Coordinator	Dr.K Suvarchala, Associate Professor, CSE						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester Prerequisites	
B.Tech	ACS001	I Computer Programming	
B.Tech	ACS002	II	Data Structures

II COURSE OVERVIEW:

The primary objective of this course is to introduce the concept of algorithm as a precise mathematical concept, and study how to design algorithms, establish their correctness, study their efficiency and memory needs. The course consists of a strong mathematical component in addition to the design of various algorithms.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks		
Design And Analysis Of Algorithms	70 Marks	30 Marks	100		

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	\checkmark	Seminars	\checkmark	Quiz	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
70%	Understand
10%	Remember
20%	Apply
0%	Analyze
0%	Evaluate
0%	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz.

Component	Theo	ry	Total Marks		
Type of Assessment	CIE Exam	Quiz			
CIA Marks	20	10	30		

Continuous Internal Examination (CIE):

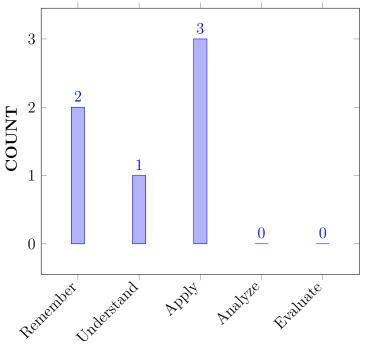
Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	Calculate performance of algorithms with respect to time and space complexity.
II	Illustrate the graph traversals and tree traversals to solve the problems
III	Demonstrate the concepts greedy method and dynamic programming for several applications like knapsack problem, job sequencing with deadlines, and optimal binary search tree, TSP.
IV	Illustrating the methods of backtracking and branch bound techniques to solve the problems like n-queens problem, graph colouring and TSP respectively

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Find the (worst case, randomized, amortized) running time and space	Remember
	complexity of given algorithms using techniques such as recurrences	
	and properties of probability.	
CO 2	Apply divide and conquer algorithms for solving sorting, searching	Apply
	and matrix multiplication.	
CO 3	Make Use of appropriate tree traversal techniques for finding	Apply
	shortest path.	
CO 4	Identify suitable problem solving techniques for a given problem and	Remember
	finding optimized solutions using Greedy and Dynamic Programming	
	techniques	
CO 5	Utilize backtracking and branch and bound techniques to deal with	Apply
	traceable and in-traceable problems.	
CO 6	Describe the classes P, NP, NP-Hard, NP-complete for solving	Under-
	deterministic and non deterministic problems.	stand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1	SEE/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	CIE/SEE/AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1	AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Professional Skills: Design next-generation computer systems, networking devices, searchengines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	2	SEE/AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	РО	PO	PO	PO	РО	PO	PO	РО	РО	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-		\checkmark	-	-	
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	
CO 5	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	
CO 6	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	\checkmark	\checkmark	-	-	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Analyze the running time and space complexity of given algorithms using techniques such as recurrences, potential functions, properties of probability by applying the mathematical principles , engineering principles and scientific principles	3
	PSO1	Understand the basic properties of asymptotic notations, probability analysis for designing algorithms, system software and Networking.	3
CO 2	PO 1	Apply divide and conquer algorithms for solving sorting, searching and matrix multiplication problems to integrate mathematical principles , engineering Principles , and Scientific Principles .	3
	PO 2	Understand the given problem and develop the solution for solving sorting, searching and matrix multiplication problems complex engineering problems and Interpretation of results .	4
	PSO1	Build divide and conquer algorithms for solving sorting, searching, Big data analysis and matrix multiplication problems through system software .	2
CO 3	PO 1	Utilize appropriate tree traversal techniques for solving graph problems to integrate mathematical principles, scientific Methodology, and engineering principles.	3
	PO 2	Understand the given problem traversal techniques to develop the solution for graph problems complex engineering problems and interpretation of results.	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 4	PO 1	Choose (Pick) greedy algorithms for finding solutions of minimization and maximization problems to support study of their own engineering discipline and methodologies.	2
	PO 2	Understand the given problem and develop the solution using greedy methods in reaching substantiated conclusions from the provided problem identification , information , interpret of results , complex engineering problems and Experimental design .	7
	PO 3	Select appropriate technique from the greedy techniques for given problem and apply chosen method for finding the solutions of given problem define problem, Evaluate outcomes, innovative solutions, engineering activities and engineering processes	7
	PO 12	make use of greedy and dynamic programming techniques for beginning works on advances degree, current trends in computer science, efforts for personal continue education , personal development and on going learning.	4
CO 5	PO 1	Identify backtracking and branch and bound techniques to compact with traceable and in -traceable problems by applying the knowledge of mathematics , Engineering fundamentals and to find the solution of complex engineering problems .	3
	PO 4	Understand the given set of problems from the provided information , to identify, classify and describe the performance of systems approach and textbfengineering problems and principles.	6
	PO 12	Utilize branch and bound techniques to learn for solving problems incurrent trends of computer science, on going learning, continuum education, beginning works for advance degree and personal development.	4
CO 6	PO 1	Understanding the concepts of classes P, NP, NP-Hard, NP- complete for solving deterministic and non-deterministic problems in attainment of mathematical principles , engineering methodologies and scientific principles .	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 4	Identify the given complex problem and choose the deterministic algorithms for solving the given decision problems from the provided information in accomplishment of engineering problems , performance of systems , to identify , classify and principles .	6
	PO 12	Describe P,NP,NP-Hard, NP-complete for solving deterministic and non deterministic problems which are useful for personal development , on going learning , continuum education and current trends in computer science.	3
	PSO 1	Understand the basic properties of deterministic algorithms in the areas related to computer programs, Big data, Machine Learning and Networking.	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

	PROGRAM OUTCOMES													PSO'S		
COURSE	PO	РО	PO	РО	PO	PO	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-	
CO 2	3	4	-	-	-	-	-	-	-	-	-	-	2	-	-	
CO 3	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	2	7	7	-		-	-	-	-	-	-	4	-	-	-	
CO 5	3	-	-	6	-	-	-	-	-	-	-	4	-	-	-	
CO 6	3	-	-	6	-	-	-	-	-	-	-	3	3	-	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	РО	РО	PO	РО	РО	РО	PO	PO	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	-	-	-	-	-	-	-	-	-	-		50.0	-	-
CO 2	100	40	-	-	-	-	-	-	-	-	-	-	33.33	- 1	-
CO 3	100	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	100	70	70	-		-	-	-	-	-	-	50.0	100	100	-
CO 5	100	-	-	54.54	-	-	-	-	-	-	-	50.0	-	-	-
CO 6	100	-	-	54.54	-	-	-	-	-	-	-	37.5	50.0	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 5 < C \le 40\% Low/$ Slight
- 2 40 % < C < 60% Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	PO	РО	РО	PO	РО	PO	PO	PO	РО	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 3	3	2	-	-	-	-	-	-	-	-	-	-	_	-	-
CO 4	3	3	3	-	-	-	-	-	-	-	-	2	_	-	-
CO 5	3	-	-	2	-	-	-	-	-	-	-	2	_	-	-
CO 6	3	-	-	2	-	-	-	-	-	-	-	1	2	-	-
TOTAL	18	7	3	4	-	-	-	-	-	-	-	5	5	-	-
AVER- AGE	3.0	2.3	1.0	1.0	-	-	-	-	-	-	-	1.7	1.7	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	PO 1, PO 2,	SEE Exams	PO 1, PO	Seminars	PO 2
	PO 3,PO 4		2, PO		
			3, PO 4		
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	_	5 Minutes Video	PO 4	Open Ended Experiments	-
Assignments	PO1				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

x Assessment of mini projects by experts		End Semester OBE Feedback
---	--	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	Algorithm: Pseudo code for expressing algorithms; Performance analysis: Space complexity, time complexity; Asymptotic notations: Big O notation, omega notation, theta notation and little o notation, amortized complexity; Divide and Conquer: General method, binary search, quick sort, merge sort, Strassen's matrix multiplication.
MODULE II	SEARCHING AND TRAVERSAL TECHNIQUES
	Disjoint set operations, union and find algorithms; Efficient non recursive binary tree traversal algorithms, spanning trees; Graph traversals: Breadth first search, depth first search, connected components, bi-connected components.
MODULE III	GREEDY METHOD AND DYNAMIC PROGRAMMING
	Greedy method: The general method, job sequencing with deadlines, knapsack problem, minimum cost spanning trees, single source shortest paths. Dynamic programming: The general method, matrix chain multiplication optimal binary search trees, 0/1 knapsack problem, single source shortest paths, all pairs shortest paths problem, the travelling salesperson problem.
MODULE IV	BACKTRACKING AND BRANCH AND BOUND
	Backtracking: The general method, the 8 queens problem, sum of subsets problem, graph coloring, Hamiltonian cycles; Branch and bound: The general method, 0/1 knapsack problem, least cost branch and bound solution, first in first out branch and bound solution, travelling salesperson problem.
MODULE V	NP-HARD AND NP-COMPLETE PROBLEM
	Basic concepts: Non-deterministic algorithms, the classes NP - Hard and NP, NP Hard problems, clique decision problem, chromatic number decision problem, Cook's theorem.

TEXTBOOKS

- 1. Ellis Horowitz, Satraj Sahni, Sanguthevar Rajasekharan, Fundamentals of Computer Algorithms, Universities Press, 2nd Edition, 2015.
- 2. Alfred V. Aho, John E. Hopcroft, Jeffrey D, The Design And Analysis Of Computer Algorithms, Pearson India, 1st Edition, 2013.

- **REFERENCE BOOKS:** 1. Levitin A, Introduction to the Design and Analysis of Algorithms, Pearson Education, 3rd Edition, 2012.
 - 2. Goodrich, M. T. R Tamassia, Algorithm Design Foundations Analysis and Internet Examples, John Wileyn and Sons, 1st Edition, 2001.
 - 3. Base Sara Allen Vangelder, Computer Algorithms Introduction to Design and Analysis, Pearson, 3rd Edition, 1999.

WEB REFERENCES:

- 1. https://www.coursera.org/learn/algorithm-design-analysis
- 2. http://openclassroom.stanford.edu/MainFolder/CoursePage.php? course=IntroToAlgorithms
- 3. http://www.facweb.iitkgp.ernet.in/sourav/daa.html

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer- ence T1: 4.1
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	
	CONTENT DELIVERY (THEORY)		
2	Introduction: Algorithm, Pseudo code for expressing algorithms, Performance Analysis- Space complexity, Time complexity.	CO 1	T1:1.1- 1.3.2
3	Asymptotic Notation-Big oh notation, Omega notation, Theta notation and Little oh notation	CO 1	T1:1.3.3
4	Amortized complexity.	CO 1	T2:2.3
5	Divide and conquer: General method.	CO 2	T1:3.1
6	Divide and conquer: Binary search, Quick sort	CO 2	T1:3.2- 3.5
7	Divide and conquer: Merge sort, Strassen'smatrix multiplication.	CO 2	T1:3.4- 3.7
8	Disjoint set operations.,	CO 3	T1:2.5
9	Union and find algorithms.	CO 1	T1:2.5.2
10	Non-recursive binary tree traversal algorithms,	CO 3	T1:6.1
11	Spanning tree.	CO 3	T1:6.3
12	Graph traversals: Breadth first search.	CO 3	T1:6.2.1
13	Graph traversals:Depth first search.	CO 3	T1:62.2
14	Connected components, Bi-connected components.	CO 3	T1:6.3- 6.4
15	Greedy general method.	CO 4	T1:4.1
16	Greedy method: Job sequencing with deadlines.	CO 4	T1:4.4
17	Greedy method: $0/1$ knapsack problem, Minimum cost spanning trees.	CO 4	T1:4.2- 4.5
18	Greedy method: Single source shortest path problem	CO 4	T1:4.8
19	Dynamic Programming: General method.	CO 4	T1:5.1
20	Dynamic Programming: Matrix chain multiplication.	CO 4	T1:5.2
21	aDynamic Programming: Optimal binary search trees.	CO 4	T1:5.5
22	Dynamic Programming:0/1 knapsack problem.	CO 4	T1:5.7
23	Dynamic Programming: All pairs shortest path problem.	CO 4	T1:5.5
24	Dynamic Programming: Single source shortest path problem.	CO 4	T1:5.4
25	Dynamic Programming: Travelling sales person problem.	CO 4	T1:5.9
26	Backtracking: General method.	CO 5	T1:7.1

27	Backtracking: 8-queens problem.	CO 5	T1:7.2
28	Backtracking: Sum of subsets problem.,	CO 5	T1:7.3
29	Backtracking: Graph coloring	CO 5	T1:7.4
30	Backtracking :Hamiltonian cycles	CO 5	T1:7.5
31	Branch and Bound: General method.	CO 5	T1:8.1
32	Branch and Bound $:0/1$ knapsack problem	CO 5	T1:8.2
33	Branch and Bound: Least Cost Branch and Bound.	CO 5	T1:8.2.1
34	Branch and Bound: FIFO Branch and Bound.	CO 5	T1:8.2.2
35	Branch and Bound : Travelling sales person problem	CO 5	T1:8.3
36	NP-Hard and NP-Complete problems: Basic concepts.	CO 6	T1:11.1
37	Non-deterministic algorithms.	CO 6	T1:11.1.1
38	The classes NP -Hard and NP, NP Hard	CO 6	T1:11.1.2
39	Clique decision problem	CO 6	T1:11.3.1
40	Chromatic number decision problem.	CO 6	T1:11.3.3
41	Cook's theorem.	CO 6	T1:11.2
	PROBLEM SOLVING/ CASE STUDIES	5	I
42	Write a program to implement quick sort.	CO 2	T1:3.5
43	Write a program to implement Merge sort	CO 2	T1:3.4
44	Write a program to implement Warshall's algorithm	CO 3	t1:3.5.5
45	Write a program to implement Knapsack Problem	CO 4	T1:4.2
46	Write a program to implement Graph Traversals	CO 4	T1:6.2
47	Write a program to implement Shortest Paths Algorithm	CO 4	T1:5.3
47	Write a program to implement Minimum Cost Spanning Tree	CO 4	T1:4.5
48	Write a program to implement Tree Travesrsals	CO 4	T1:6.1
49	Write a program to implement Sum Of Sub Sets Problem	CO 5	T1:7.3
50	Write a program to implement Travelling Sales Person Problem	CO 5	T1:5.9
51	Write a program to implement Minimum Cost Spanning Tree	CO 5	T1:4.5
52	Write a program to implement All Pairs Shortest Paths	CO 5	T1:5.3
53	Write a program to implement N Queens Problem	CO 5	T1:7.2
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
54	Discuss definitions and terminology on introduction to algorithms, divide and conquer.	CO 1,2	T1:3.0
55	Discuss definitions and terminology on greedy method.	CO 1,2, 3	T:4.0
56	Discuss definitions and terminology on dynamic programming.	CO 4	T:5.0
57	Discuss definitions and terminology on bracktracking, branch and bound.	CO 5	T1:7-8
58	Discuss definitions and terminology on NP-Hard and NP-Complete.	CO 6	T1:11.0
	DISCUSSION OF QUESTION BANK	I	I
59	Discuss questions on introduction to algorithms, divide and conquer.	CO 1,2	T1:3.0
60	Discuss questions on greedy algorithm, dynamic programming.	CO 4	T1:3,4
	L. 0. 0. 0. 0. 0.		

61	Discuss questions on bracktracking, branch and bound and	CO 5,6	T1:7,8,11
	NP-hard and NP-Complete.		

Signature of Course Coordinator Dr. K Suvarchala, Associate Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING								
Course Title	DIGITA	DIGITAL LOGIC DESIGN							
Course Code	AEC020	AEC020							
Program	B.Tech	B.Tech							
Semester	Third	Third							
Course Type	Core	Core							
Regulation	R-16								
		Theory		Pract	cical				
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits				
		3	1	-	4				
Course Coordinator Ms.V.Bindusree,Assistant Professor									

I COURSE PRE-REQUISITES:

Le	evel	Course Code	Semester	Prerequisites
В.7	Fech	-	-	-

II COURSE OVERVIEW:

This course intended to logic gates, various logic families. Design of digital circuits using logic gates, combinational circuits and sequential circuits. Apply op-amp characteristics to design analog to digital converters and digital to analog converters. Classification and characteristics of memories such as Read-only memory, Random access memory and programmable logic devices such as programmable logic array and programmable array logic.

III MARKS DISTRIBUTION:

Subject SEE Examination		CIE Examination	Total Marks
Digital Logic Design	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20%	Remember
40%	Understand
40%	Apply
0%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam	Quiz AAT	10tal Marks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

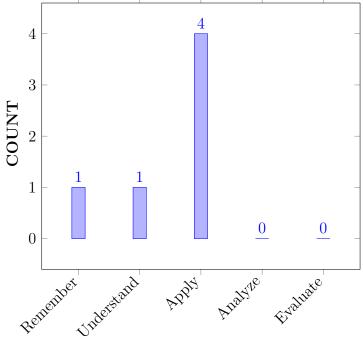
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	Simplification of the logic functions using boolean algebraic theorems and techniques.
II	Implementation of conventional combinational and sequential circuits including conversions of flip-flops
III	The exploration of the logic families and semiconductor memories.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Understand the different forms of number representations and	Understand
	binary codes in digital logic circuits.	
CO 2	Make use of Boolean postulates, theorems and k-map for	Remember
	obtaining minimized Boolean expressions.	
CO 3	Implement the combinational logic circuits using the logic gates.	Apply
CO 4	Utilize the functionality and characteristics of flip-flops and latches	Apply
	for designing sequential circuits	
CO 5	Construct the synchronous and asynchronous modules using	Apply
	flipflops used for memory storing applications.	
CO 6	Extend the knowledge of memories and programmable logic	Apply
	devices for understanding the architectural blocks of FPGA.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	CIE/Quiz/AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	CIE/Quiz/AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	${f Strength}$	Proficiency Assessed by	
PSO 2	Focus on improving software reliability, network	1	Quiz	
	security or information retrieval systems.			

3 = High; 2 = Medium; 1 = Low

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-
CO 6	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	\checkmark	

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Understand the number systems, Boolean operations, code conversion code by applying its own engineering discipline, science principles and methodology.	2
	PO 2	Understand the given problem statement and formulate the design (complex) engineering problems in detecting and correcting errors in the received data in reaching substantiated conclusions by the interpretation of results.	4
	PO 10	Demonstrate the ability to communicate effectively writing design documentation and make effective presentation	1
CO 2	PO 1	Demonstrate the design procedures of half and full Adders, subtractors, serial and parallel adders, BCD Adder for fundamental block realization in any processor complex engineering problems by applying mathematical principles	2
	PO 2	Illustrate the minimization techniques for validation of Boolean expressions apply for basic theorems and properties	1
	PO 10	Demonstrate the ability to communicate effectively writing design documentation and make effective presentation	1
CO 3	PO 1	Demonstrate the design procedures of half and full Adders, subtractors, serial and parallel adders, BCD Adder for fundamental block realization in any processor complex engineering problems by applying mathematical principles	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Identify the importance of SOP and POS canonical forms in the optimization of conventional Boolean formulas in general and digital circuits	1
	PO 3	Understand the customer needs, use creativity and manage design process in realization of combinational circuits using logic gates and evaluate outcomes	2
	PO 4	Design various combinational circuits which are basic requirement of various systems using design of experiments, analysis and interpretation of data	3
	PO 10	Demonstrate the ability to communicate effectively writing design documentation and make effective presentation	1
CO 4	PO 1	Demonstrate the design procedures of various adder circuits with own engineering discipline , science principles and methodology	2
	PO 2	Understand the given problem statement and formulate the design (complex) engineering problems of shift registers, translate the information into hardware circuit programming from provided information and data, develop solutions based on the simulation result, validate the results reaching substantiated conclusions by the interpretation of results.	4
	PO 3	Design of a clocked flip-flop conversion from one type of flip-flop to another, registers and counters mathematics, science and engineering fundamentals	3
	PO 4	Design various combinational circuits which are basic requirement of various systems using design of experiments, analysis and interpretation of data	2
	PO 10	Demonstrate the ability to communicate effectively writing design documentation and make effective presentation	1
CO 5	PO 1	Explain the synchronous counters using procedure of sequential circuit and excitation tables of flip–flops for clock tree based circuits using own engineering discipline , science principles and methodology .	3
	PO 2	Identify and analyze fidelity criteria, shift registers implement using engineering science , design system components from counters and model translation using principal of mathematics .	3
	PO 3	Design of a clocked flip-flop conversion from one type of flip-flop to another, registers and counters mathematics, science and engineering fundamentals	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 4	Use research-based knowledge on design of asynchronous counters analysis and interpretation of data	2
	PO 10	Demonstrate the ability to communicate effectively writing design documentation and make effective presentation	1
	PSO 2	Utilize the software reliability for designing the cpmbinational and sequential circuits	2
CO 6	PO 1	Explore the concept of programmable logic devices for understanding architectural blocks of FPGA using the own engineering discipline , science principles and methodology .	2
	PO 3	Design the different memory techniques of memories.	1
	PO 4	Use research-based knowledge on design of asynchronous counters analysis and interpretation of data	2
	PO 10	Demonstrate the ability to communicate effectively writing design documentation and make effective presentation	1
	PSO 2	Utilize the software reliability for designing the cpmbinational and sequential circuits	2

Note: For Key Attributes refer Annexure - ${\bf I}$

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO / PSO MAPPING:

COURSE]	PRO	GR	AM	OUI	CO	MES	5			PSO'S		
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	2	4	-	-	-	-	-	-	-	1	-		-	-	-
CO 2	2	1	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	2	1	2	3	-	-	-	-	-	1	-	-	-	-	-
CO 4	2	4	3	2	-	-	-	-	-	1	-		-	-	-
CO 5	3	3	-	2	-	-	-	-	-	1	-	-	-	2	-
CO 6	2	-	1	2	-	-	-	-	-	1	-	-	-	2	-

COURSE]	PRO	GRA	AM (TUC	COI	MES				PSO'S		
OUTCOMES	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	66.6	40	-	-	-	-	-	-	-	10	-		-	-	-
CO 2	66.6	10	-	-	-	-	-	-	-	10	-	-	-	-	-
CO 3	66.6	10	66.7	27	-	-	-	-	-	10	-	-	-	-	-
CO 4	66.6	40	100	18		-	-	-	-	10	-	-	-	-	-
CO 5	33.3	30	-	18	-	-	-	-	-	10	-	-	-	100	-
CO 6	100	-	10	18	-	-	-	-	-	10	-	-	-	100	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO / PSO:

XV COURSE ARTICULATION MATRIX PO / PSO MAPPING:

CO'S and PSO'S on the scale of 0 to 3, $\mathbf{0}$ being **no correlation**, $\mathbf{1}$ being the **low correlation**, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - 0< C< 5% – No correlation 1

 $2-40 < C \le 60\%$ – Moderate.

		, •			
-	$5{<}\mathrm{C}{\leq}$	40% -	Low/	Slight	

 $3-60 < C \le 100\%$ –Substantial /High

		/ 6 –										/ 0			
COURSE			Ρ	ROG	RAI	M C	UT	CON	IES				PSO'S		
OUTCOMES	PC	PO PO	PO	PO	PO	PC	PO PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	1	-	-	-	-	-	-	-	1	-	-	-	-	
CO 2	3	1	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	3	1	3	1	-	-	-	-	-	1	-	-	-	-	-
CO 4	3	1	3	1	-	-	-	-	-	1	-	-	-	-	-
CO 5	1	1	-	1	-	-	-	-	-	1	-	-	-	3	-
CO 6	1	-	1	1	-	-	-	-	-	1	-	-	-	3	-
TOTAL	14	5	7	4	-	-	-	-	-	6	-	-	-	6	-
AVERAGE	2.3	1	2.3	1	-	-	-	-	-	1	-	-	-	3	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	_	Open Ended Experiments	-
Assignments	\checkmark				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts \checkmark End Semester OBE Feedback

XVIII SYLLABUS:

MODULE I	NUMBERS SYSTEMS AND CODES
	Review of number systems, number base conversion; Binary arithmetic: Binary weighted and nonweighted codes; Complements: Signed binary numbers; Error detection and correcting codes; Binary logic.
MODULE II	BOOLEAN ALGEBRA AND GATE LEVEL MINIMIZATION
	Postulates and theorems; representation of switching functions; SOP and POS forms; Canonical forms; Digital logic gates; Karnaugh Maps: Minimization using three variable; four variable; five variable KMaps; Don't Care Conditions; NAND and NOR implementation; Other Two-level implementation; Exclusive –OR function.
MODULE III	DESIGN OF COMBINATIONAL CIRCUITS
	Combinational circuits: Analysis and design procedure; Binary adder and subtractors; Carry look-ahead adder; Binary multiplier. Magnitude comparator; BCD adder; Decoders; Encoders; Multiplexers; Demultiplexer.
MODULE IV	DESIGN OF SEQUENTIAL CIRCUITS
	Combinational vs sequential circuits ; Latches, flip flops: RS flip flop, JK flip flop, T flip flop, D flip flop, Master-Slave flip flop, flip flops excitation functions; Conversion of one flip flop to another flip flop; Shift registers; Design of asynchronous and synchronous circuits; State table, state diagram, state reduction and state assignment for mealy and moore machines.
MODULE V	MEMORY
	Random access memory; Types of ROM; Memory decoding; Address and data bus; Sequential memory; Cache memory; Programmable logic arrays; Memory hierarchy in terms of capacity and access time.

TEXTBOOKS

1. P Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.

2. M M Mano, "Digital logic and Computer design", Pearson Education India, 2016.

REFERENCE BOOKS:

1. A Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

COURSE WEB PAGE:

https://lms.iare.ac.in/index?route=course/details&course_id=184

XIX COURSE PLAN:

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https: //lms. iare.ac. in/ index? route= course/ details& course_ id=184
	CONTENT DELIVERY (THEORY)		
1-5	Understand the need for digital systems, review of number systems, number base conversion	CO 1	T2:1.1- 1.8, 2.2
6-7	Complements of numbers, codes-binary codes, BCD code and its Properties.	CO 1	T2:1.10,
8	Unit distance code, alphanumeric codes, and error detecting and correcting codes	CO 1	T2:2.7
9-10	Design and analyze the combinational circuits using TTL/CMOS logic	CO 1	T2:2.8
11-12	Design and analyze the sequential circuits using TTL/CMOS logic.	CO 1	T2:2.8
15-16	SIdentify basic building blocks of digital systems and Minimization using three variables; four variables; five variable K-Maps; Don't Care Conditions.	CO 2	T2:3.1- 3.2
17-18	Design functions using universal gates. NAND and NOR Implementation; Other Two-Level Implementation; Exclusive –OR function	CO 2	T2:3.3- 3.7
19-21	Combinational design, arithmetic circuits- adders, subtractors.	CO 2	T2:4.2,7.1- 7.4
22-25	Design different combinational logic circuits comparators Multiplexers,	CO 2	T2: 7.6 7.7, 8.9-8.10
26-27	Demultiplexer, Decoder	CO 3	T3:1.1 R3:1.1- 1.4
28-30	Understand the elementary ALU design	CO 3	T3:1.1- 1.2 R3:1.5- 1.7
31-32	popular MSI chips	CO 4	T3:1.3 R3:1.7,7.4

The course plan is meant as a guideline. Probably there may be changes.

33-35	Combinational and sequential circuits, the binary cell, the Fundamentals of sequential machine operation.	CO 4	T3:3.1- 3.4 R3:2.1- 2.4
36-37	Flip-flop	CO 5	T3:3.3- 3.5 R3:2.6
38-39	D-Latch Flip-flop.	CO 5	T3:5.1- 5.3 R3:2.8,3.7- 3.8
40-43	Clocked T Flip-flop.	CO 5	T4:5.1 5.10 R3:3.6
44-45	Clocked JK Flip-flop.	CO 6	T3:4.4- 4.6 T4: 5.11 R3:3.10
46-47	Shift Registers	CO 6	T4:6.1,6.4 R3:4.1- 4.5
48-49	Synchronous, Asynchronous Counters	CO 7	T4:6.2- 6.3,6.7 R3:4.8,4.11
50-51	Excitation tables of Flip-flops	CO 7	T4:6.3,6.10 R3:4.9- 4.10
52-54	Discuss the classifications of data converters	CO 8	R2:7.5
55	Discuss and Analyze DAC techniques and characteristics.	CO 9	T4:7.1 R3:5.2- 5.3
56-58	Discuss and Analyze ADC techniques and characteristics	CO 9	T4:7.2- 7.6 R3:5.4- 5.5
59-60	classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory (RAM),	CO 10	T4:7.7- 7.10 R3:5.5
61	Discuss and analyze PLA, PAL, PLD	CO 11	T4:8.1- 8.3 R3:6.1- 6.2 R3:5.5
62	FPGA	CO 12	T4:8.4- 8.7 R3:6.3- 6.5

	PROBLEM SOLVING/ CASE STUDIES	5								
9	Problems on number conversions	CO 1	T1: 1.1							
10	Problems on Hamming code	CO 1	R3: 1.7							
18	Derive the Boolean theorems and properties.	CO 1	T1: 2.1-2.6							
19	Problems on 3 and 4 variable k-maps.	CO 2	T1: 6.1-6.6							
30	Design the Decoder,Encoder.	CO 2	T1: 2.7-2.12							
31	Design the multplexer and demultiplexer.	CO 2	T1: 2.7-2.12							
32	Construct the registers using flipflops	CO 3	T1: 3.7-3.12							
42	Design and construct the counters using flipflops.	CO 4	T1: 7.7-7.12							
43	Design the analog to digital and digital analog converter	CO 5	T3: 1.7							
44	Derive the specifications of analog to digital.	CO 5	T3: 1.7							
51	Design the programmable logic devices using memories	CO 6	R4: 4.2							
	DISCUSSION OF DEFINITION AND TERMINOLOGY									
56	Hamming code	CO 1	T1:4.1							
57	Multiplexer and demultiplexer	CO 2	T2:4.1							
58	Twisted ring counter	CO 3	T3:2.1							
59	Analog to digital converter specifications.	CO 4	R4: 4.2							
60	Programmable logic devices.	CO 5	T2:6.1							
	DISCUSSION OF QUESTION BANK		1							
61	Solve the given 8bit data word 01011011, generate the 12-bit composite word for the hamming code that corrects and detects single errors.	CO 1	T1:4.1							
62	implify the following 3 variable expression using Boolean algebra $Y = M(3, 5, 7)$	CO 2	T2:4.1							
63	Explain the working of 2 to 4 decoder and also implement a 2 to 4 decoder using 1 to 2 decoders.	CO 3	T3:2.1							
64	Design a synchronous counter using JKFF to count the following sequence 0, 2, 5, 6 undesired states 1,3,4,7must go to 0 on the next clock pulse.	CO 5	R4: 4.2							
65	Compare logic families of CMOS,TTL and ECL with their specifications.	CO 6	T2:6.1							

Signature of Course Coordinator Ms.V.Bindusree,Assistant Professor

HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Computer S	Science and I	Engineering					
Course Title	Object Orie	ented Progra	mming Thro	ough Java				
Course Code	ACS003	ACS003						
Program	B.Tech	B.Tech						
Semester	III	III						
Course Type	Core	Core						
Regulation	R-16							
		Theory		Prac	tical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
3 1 4								
Course Coordinator	Dr.D.Durga Bhavani, Associate Professor							

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS001	Ι	Computer Programming

II COURSE OVERVIEW:

This course presents the principles of object oriented programming using the Java language, one of the most increasingly preferred languages for programming today. The knowledge gained in this course can be applied later to other languages such as python, C++. This course uses Net beans IDE to afford a more interactive experience. This course helps to develop different applications in various domains like GUI Applications, BigData, Web-based Applications, etc..

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Object Oriented Programming Through JAVA	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point	\checkmark	Chalk & Talk	1	Assignments	x	MOOC
	Presentations						
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10	Remember
45	Understand
18	Apply
27	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	Quiz AAT	10tal Marks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

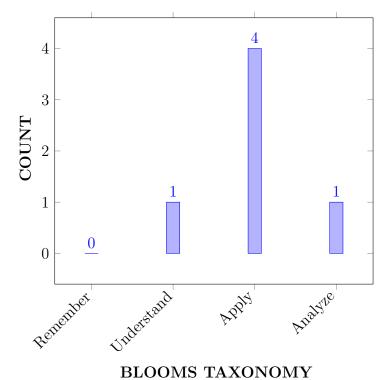
Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The basic concepts and principles of object oriented programming.
II	The object oriented features to develop the robust applications and database connectivity.
III	The Graphical User Interface (GUI) with multithreading concepts to develop real world applications on different platforms.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate object oriented programming concepts that helps	Understand
	to organize complex problems solving.	
CO 2	Make use of the programming constructs like control	Apply
	Structures, arrays, parameter passing techniques and	
	constructors to solve the real time problems.	
CO 3	Utilize the abstraction, encapsulation and polymorphism	Apply
	Techniques to solve different complex problems.	
CO 4	Experiment all threading and thread synchronization	Apply
	problems in soft real time systems.	
CO 5	Make use of inheritance, interfaces, packages and files to	Analyze
	implement reusability in soft real time systems.	
CO 6	Construct GUI based applications along with Exception	Apply
	handling using AWT, Swingand Applets with JDBC	
	connectivity.	

COURSE KNOWLEDGE COMPETENCY LEVEL

Page 3

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	SEE /Quiz/CIE / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	SEE /Quiz/ CIE / AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	SEE /Quiz/ CIE / AAT
PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	2	Discussion onInnovations /Presentation
PO 12	Life-LongLearning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadcast context of technological change.	1	Short term courses

3 =High; 2 =Medium; 1 =Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2	Quiz
PSO 3	Make use of high frequency structure simulator for modeling and evaluating the patch and smart antennas for wired and wireless communication applications.	3	Quiz

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-
CO 3	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	\checkmark	-	-
CO 4	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	\checkmark	-	\checkmark
CO 3	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	\checkmark	-	-
CO 6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Recall (Understand) the importance of programming language such as object oriented programming language applying engineering fundamentals and provide solutions to engineering problems	2
CO 2	PO 1	Understand the significance of object oriented programming to solve real world problems using mathematical principles ,fundamental of Computer engineering specialization and scientific principles.	3
	PO 4	Understanding use of technical literature and other information sources like constructors to solve the industry standards problems	4

	PO 5	Understanding of the limitations of Modern Tool Usage	1
	PO 12	Build Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts.	3
CO 3	PO 1	Understand the importance of abstraction by applying the knowledge of computer engineering fundamentals and mathematical principles.	2
	PO 3	Understand the problem statement and and choose appropriate techniques by analyzing the importance of data hiding interpretation of results.	4
	PO 4	Describe use of technical literature and other information sources and inheritance , polymorphism techniques to solve the industry standards problems .	4
	PO 4	Understanding of the limitations of Modern Tool Usage	1
	PO 4	Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts.	3
	PSO 3	Describe the importance of Encapsulation for effective use of available resources, to solve complex Engineering problems and successful program execution. complex Engineering problems and successful program execution.	6
CO 4	PO 1	Describe threads works independently and provides the maximum utilization of the CPU, thus enhancing the CPU performance overwhelming network issues	2
	PO 2	Explain and demonstrate the mechanics associated with interprocess and intraprocess communication.	4
	PO 4	Understanding use of technical literature and other information sourcesand threading and thread synchronization problems to solve the industry standards problems .	4
	PO 5	Understanding of the limitations of Modern Tool Usage	1
	PO 12	Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts.	3
	PSO 1	Understand the concepts of multithread, elements of parallel program execution and importance of CPU utilization	3
	PSO 3	Describe the well utilization of resources for the better performance of the system.	1

CO 5	PO 1	Describe the relationship between parent class and child class, their behavior, properties and characterization by understanding mathematical principles and scientific principles.	2
	PO 2	Describe the file handling methods and analyze the various classes based on these file handling in javaprogramming.	4
	PO 4	Understanding use of technical literature and other information sourcesinheritance, interfaces to solve the industry standards problems .	4
	PO 5	Understanding of the limitations of Modern Tool Usage	1
	PO 12	Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts	3
	PSO 1	Design and Analyze the operations and features of file handling in the areas related to data storage, retrieval and update	2
CO 6	PO 1	Understand the applet programming and Swing Programming to develop graphical user interfaces by applying the knowledge of computer engineering fundamentals, mathematical principles, and scientific principles scientific principles	3
	PO 2	Analyze the process of compile time and runtime exception handling	4
	PO 3	Understand the concepts of Exceptions for innovative solutions; evaluate the solution of the complex issues.	3
	PO 4	Understanding use of technical literature and other information sources inheritance, interfaces to solve the industry standards problems	4
	PO 5	Understanding of the limitations of Modern Tool Usage	1
	PO 10	Build strong foundation of programming Schemes for career building by communicating effectively with engineering community	4
	PO 12	Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts	3
	PSO 1	Classify the exceptions for robust program	1
	PSO 3	Make use of computational and experimental tools for creating innovative paths for AWT, Swings and JDBC connectivity	2

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	-	-	4	1	-	-	-	-	-	-	3	-	-	-
CO 3	2	4	-	4	1	-	-	-	-	-	-	3	6	-	-
CO 4	2	4	-	4	1	-	-	-	-	-	-	3	3	-	1
CO 5	2	4	-	4	1	-	-	-	-	-	-	3	2	-	-
CO 6	3	4	3	4	1	-	-	-	-	4	-	3	1	-	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	67	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	100	-	-	36	100	-	-	-	-	-	-	25	-	-	-
CO 3	67	40	-	36	100	-	-	-	-	-	-	25	100	-	-
CO 4	67	40	-	36	100	-	-	-	-	-	-	25	50	-	50
CO 5	67	40	-	36	100	-	-	-	-	-	-	25	33	-	-
CO 6	100	40	30	36	100	-	-	-	-	80	-	25	16	-	100

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

1 -5 <C \leq 40% - Low/ Slight

 $\pmb{2}$ - 40 % <C < 60% – Moderate

 $3 - 60\% \leq C < 100\%$ – Substantial /High

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	-	-	1	3	-	-	-	-	-	-	1	-	-	-
CO 3	3	2	-	1	3	-	-	-	-	-	-	1	3	-	-
CO 4	3	2	-	1	3	-	-	-	-	-	-	1	2	-	2
CO 5	3	2	-	1	3	-	-	-	-	-	-	1	2	-	-
CO 6	3	2	-	1	3	-	-	-	-	3	-	1	1	-	3
TOTAL	18	8	1	5	15	-	-	-	-	3	-	5	8	-	5
AVERAGE	3	2	1	1	3	-	-	-	-	1	-	1	2	-	1

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1, PO 2, PO 3, PO 4	SEE Exams	PO 1, PO 2, PO 3, PO 4	Assignments	PO 1, PO 2 ,P0 3, PO 4
Seminars	_	Student Viva	_	Certification	-
Laboratory Practices	-	5 Minutes Video	PO 4	Open Ended Experiments	-
Term Paper	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Ex	perts	

XVIII SYLLABUS:

MODULE I	OOP CONCEPTS AND JAVA PROGRAMMING
	OOP concepts: Classes and objects, data abstraction, encapsulation, inheritance, benefits of inheritance, polymorphism, procedural and object oriented programming paradigm; Java programming: History of java, comments data types, variables, constants, scope and life time of variables, operators, operator hierarchy, expressions, type conversion and casting, enumerated types, control flow statements, jump statements, simple java stand alone programs, arrays, console input and output, formatting output, constructors, methods, parameter passing, static fields and methods, access control, this reference, overloading methods and constructors, recursion, garbage collection, exploring string class.
MODULE II	INHERITANCE, INTERFACES AND PACKAGES
	Inheritance: Inheritance hierarchies, superand subclasses, member access rules, super key word, preventing inheritance: final classes and methods, the object class and its methods; Polymorphism: Dynamic binding, method overriding, abstract classes and methods; Interface: Interfaces vs Abstract classes, defining an interface, implement interfaces, accessing implementations through interface references, extending interface; Packages: Defining, creating and accessing a package, understanding CLASSPATH, importing packages.
MODULE III	EXCEPTION HANDLING AND MULTITHREADING
	Exception Handling: Benefits of exception handling, the classification of exceptions, exception hierarchy, checked and unchecked exceptions, usage of try, catch, throw, throws and finally, re-throwing exceptions, exception specification, built in exceptions, creating own exception subclasses. Multithreading: Differences between multiple processes and multiplethreads, thread states, creating threads, interrupting threads, thread priorities, synchronizing threads, inter thread communication.

MODULE IV	FILES, AND CONNECTING TO DATABASE
	Files: Streams, byte streams, character stream, text input/output, binary input/output, random access file operations, file management using file class; Connecting to Database: Connecting to a database, querying a database and processing the results, updating data with JDBC.
MODULE V	GUI PROGRAMMING AND APPLETS
	GUI programming with Java: The AWT class hierarchy, introduction to swing, swing Vs AWT, hierarchy for swing components, containers, JFrame, JApplet, JDialog, JPanel; Overview of some swing components: JButton, JLabel, JTextField, JTextArea, simple applications; Layout management: Layout manager types: Border, grid and flow; Applets: Inheritance hierarchy for applets, differences between applets andapplications, life cycle of an applet, passing parameters to applets.

TEXTBOOKS

- 1. Herbert Schildt, Dale Skrien, "Java Fundamentals– A Comprehensive Introduction", McGraw- Hill, 1stEdition, 2013.
- 2. Herbert Schildt, "Java the Complete Reference", McGraw Hill, Osborne, $8^{th} {\rm Edition},$ 2011.
- 3. T.Budd, "Understanding Object-Oriented Programming with Java", Pearson Education, Updated Edition(NewJava2Coverage), 1999.

REFERENCE BOOKS:

- 1. P.J.Deitel, H.M.Deitel, "Java: How to Program", Prentice Hall, 6thEdition, 2005.
- 2. P. Radha Krishna, "Object Oriented Programming through Java", Universities Press, CRCPress, 2007.
- 3. Bruce Eckel, "Thinking in Java", Prentice Hall,4th Edition, 2006.
- 4. Sachin Malhotra, Saurabh Chaudhary, "Programming in Java", Oxford University Press, 2^{nd} Edition, 2014.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference			
	OBE DISCUSSION					
1	Course Description on Outcome Based Education(OBE): Course Objectives, Course Outcomes(CO), Program Outcomes(PO) and CO-PO Mapping	_	<pre>https://lms. iare.ac.in/ index?route= course/ details& course_id= 188</pre>			

	CONTENT DELIVERY (THEO	DRY)			
2	Object oriented paradigm - Basic concepts of Object Oriented Programming- Benefits of OOP -Applications of OOP	CO 1	T1:3-7		
3-4	Java Evolution: Java Features-How Java differs from C and C++	CO 1	T1:3-7		
5-6	OOP concepts: Classes and objects, data abstraction, encapsulation, inheritance, benefits of inheritance, polymorphism	CO 1	T1:9-13		
7-8	Java programming: History of java, Comments, data types, variables, constants, scope and life time of variables, operators, operator hierarchy	CO 1	T1:17-39		
9	Find Lattices, Hasse diagram, and inverse function composition of functions, recursive functions, Lattices as partially ordered sets; Definition and examples, properties of lattices, lattices as algebraic systems, sub lattices, direct product and homomorphism, some special lattices.		T1-5.14 to 5.15		
9-10	Expressions, type conversion and casting, enumerated types, control flow statements, jump statements	CO 1	T1:73-151		
11	Simple java stand-alone programs, arrays.	CO 2	T1-5.16 to 5.16		
12	Console input and output, formatting output, constructors, and methods.	CO2	T1:73-151		
13	Parameter passing, static fields and methods	CO 2	T1:73-151		
14	Access control, this reference, example	CO 2	T1:73-151		
15	Overloading methods and constructors	CO 4	T1:155-178		
16	Recursion, garbage collection	CO 3	T1:155-178		
17	Exploring string class.	CO 3	T1:155-178		
18-19	Overloading methods and constructors-Access Control-Static members	CO 3	T1:156-188		
20	Inheritance: Forms of inheritance – specialization, specification, construction, extension, limitation	CO 5	T1:189		
21-22	Combination, benefits and costs of inheritance.CO 5T1:190-23Super uses- final - polymorphism, method overriding-dynamic method dispatchCO 5T1:190-23				
23	Abstract classes and example	CO3	T1:190-216		
24	Defining and accessing a package CO5 T1:22				
25	User defined package and example	CO5	T1:223-232		
26	Understanding CLASSPATH, access protection importing packages	CO 5	T1:223-232		
27-28	Interfaces-Defining and implementing an interface and extended interfaces	CO 5	T1:235–246		
29	Exception Handling introduction	CO6	T1:249-263		

30-31	Java Built in Exceptions and creating own exception subclasses.	CO4	T1:265-267
32	Java Thread life cycle model–Thread creation–Thread Exceptions–Thread Priority	CO 4	T1:273–275
33-34	Synchronization – Messaging – Runnable Interface–Inter thread Communication-	CO 4	T1:276-296
35-37	Suspending, Resuming and stopping thread, I/O Streams: File–Streams	CO 4,CO 5	T1:11.12 R2:7.1,7.2.3
38	Advantages–The stream classes–Byte streams	CO5	T1:11.10 R2:7.6
39	Character streams and example	CO 5	T1:11.10 R2:7.6
40	Connecting to Database: Connecting to a database, querying a database	CO6	T1:627-636
41	Example on JDBC connectivity	CO 6	T1:627-636
42	Processing the results, updating data with JDBC.	CO 6	T1:627-636
40	How Applets differ from Applications-Applet Life Cycle-	CO6	T1:627-636
43	Creating an Applet-Running the Applet	CO6	T1:627-636
44-45	Designing a Webpage-Applet Tag-Adding Applet to HTML file	CO 6	R2:9.4
46-47	Applet Tag Passing parameters to Applets	CO6	R2:9.4
48	Aligning the display and example	CO6	R2:9.4
50	Event handling: basics of event handling	CO 6	T1:735-748
51	Event classes, Event Listeners	CO 6	T1:735-748
52	Delegation event model, handling mouse	CO 6	T1:735-748
53	Keyboard events, adapter classes	CO 6	T1:735-748
54	The AWT class hierarchy, introduction to swing	CO 6	T1:735-748
55	Swing Vs AWT, hierarchy for swing components	CO 6	T1:735-748
56	AWT Class hierarchy, AWT Controls	CO 6	T1:735-748
57	Layout Managers and example	CO 6	T1:735-748
58	Menus, limitations of AWT	CO 6	T1:735-748
59	Write a java program to demonstrate a basic calculator using applet	CO 6	T1:735-748
60	Design and implement an applet that accepts two integer numbers and display the sum and difference of two numbers	CO 6	T1:735-748

	PROBLEM SOLVING/ CASE ST	TUDIES	
1	Describe the primitive data types supported in java and write a java program to print first 100 Fibonacci numbers	CO 1	T1:73-151
8	Write a do-while loop that asks the user to enter two numbers. The numbers should be added and the sum displayed. The loop should ask the user whether he or she wishes to perform the operation again. If so, the loop should repeat; otherwise it should terminate	CO1	T1:73-151
3	Write a program in Java which enters five numbers in an array using command line arguments and print sum and average of the numbers.	CO2	T1:73-151
4	Write a java program to create an abstract class named shape that contains two integers and an empty method named printarea(). Provide three classes named rectangle, triangle and circle such that each one of the classes extends the classshape. Each one of the classes contains only the method printarea () that prints the area of the given shape	CO 3	T1:189-246
5	Write a java program to handle the abnormal termination caused by an arithmetic expression having Division by zero	CO6	T1:249-296
6	Write a java program for the following scenario, Animal and Dog both classes have a common property color. If we print color property, it will print the color of current class by default. To access the parent property, we need to use super key word.	CO5	T1:627-636
7	Write a program to copy the content of one text file into another. The program accepts the name of the source file and the destination file from comm. And line. For example, to copy a file called FIRST.TXT to a file called SECOND.TXT.	CO 5	T1:627-636
8	Write a program that creates with reads. Fist thread prints the numbers from 1 to 100 and the other thread prints the numbers from 100 to 1	CO4	T1:249-296
9	Write a java program to handle abnormal termination caused be the following expression Int $a[5]$; // array size is5 $a[6]=20/0$;	CO 6	T1:249-296
10	Write a java program to handle abnormal termination caused by the expression	CO6	T1:249-296
11	Write a Java program to merge two files and display the merged file content	CO5	T1:11.12 R2:7.1,7.2.3

12	Write a java to implement method overloading and constructor overloading	CO3	T1:156-188	
13	Write a java to implement method overriding and recursion	CO 3	T1:156-188	
14	Write java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the Arithmetic operations. Add a text field to display the result. Handle any possible exception like divided by zero.	CO 6	T1:735-748	
15	Describe events for handling a button click? Write a program for handling a button clicks?	CO6	T1:735-748	
	DISCUSSION ON DEFINITION AND T	ERMINOL	OGY	
1	Procedural language and OOP's	CO 1	T1:3-150	
2	Inheritance, interfaces and packages	CO5	T1:189-246	
3	Differentiate between multiprocessing and multithreading, methods of thread class.	CO4	T1:249-296	
4	The steps to connect to the database in java	CO6	T1:735-748	
5	Applet, swings and AWT components	CO6	R2:9.4	
	DISCUSSION ON QUESTION	BANK		
1	OOP CONCEPTS AND JAVA PROGRAMMING	CO1 CO 2 CO3	T1:3-150	
2	INHERITANCE, INTERFACES ANDCO5T1:13PACKAGES			
3	EXCEPTION HANDLING AND MULTITHREADING	CO4, CO6	T1:249-296	
4	FILES,ANDCONNECTINGTODATABASE	CO5, CO6	T1-13.1 to 13.3	
5	GUI PROGRAMMING AND APPLETS	CO 6	T1:735-748	

Course Coordinator Dr.D.Durga Bhavani, Associate Professor

HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	COMPUTE	COMPUTER SCIENCE AND ENGINEERING (AI & ML)			
Course Title	COMPUTE	COMPUTER ORGANIZATION AND ARCHITECTURE			
Course Code	ACS004				
Program	B.Tech				
Semester	III	III			
Course Type	Core	Core			
Regulation	R16	R16			
		Theory		Prac	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	1	4	-	-
Course Coordinator	Dr. P Cahano	Dr. P Cahandana, Associate Professor			

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSOO4	II	PROGRAMING FOR PROBLEM
			SOLVING

II COURSE OVERVIEW:

This course introduces the principles of basic computer organization, CPU organization, and the basic architecture concepts. The course emphasizes performance and cost analysis, instruction set design, register transfer languages, arithmetic, logic and shift micro-operations, pipelining, memory technology, memory hierarchy, virtual memory management, and I/O organization of computer, parallel processing and inter process communication and synchronization.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Computer Organization and Architecture	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
	Presentations						
X	Open Ended Experiments	 	Seminars	X	Mini Project	~	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
45 %	Understand
18 %	Apply
27 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks					
	Continuous Internal Examination – 1 (Mid-term)	10						
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30					
	AAT-1 5							
	AAT-2	5						
SEE	Semester End Examination (SEE)	70	70					
	Total Marks							

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

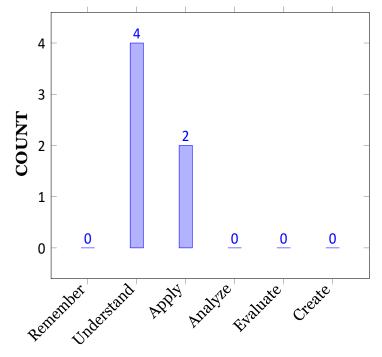
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	Understand the organization and architecture of computer systems and electronic computers.
II	Study the assembly language program execution, instruction format and instruction cycle.
III	Design a simple computer using hardwired and micro-programmed control methods.
IV	Study the basic components of computer systems besides the computer arithmetic .
V	Understand input-output organization, memory organization and management, and pipelining.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate interaction of components in a computer system with functional units and levels of programming languages.	Understand
CO 2	Demonstrate the implementation of micro-operations with the help of register transfer language and electronic circuits.	Understand
CO 3	Identify appropriate addressing modes for specifying the location of an operand.	Apply
CO 4	Make use of number system for data representation and binary arithmetic in digital computers.	Apply
CO 5	Interpret the design of hardwired and micro-programmed control unit for execution of micro programs.	Understand
CO 6	Summarize the concepts of pipelining and interprocess communication for advanced processor design.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	SEE / CIE / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	1	SEE / CIE / AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	SEE / CIE / AAT
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	SEE / CIE / AAT
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineeringactivities with an understanding of the limitations.	3	SEE / CIE / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	SEE / CIE / AAT
PO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. 3 = High: 2 = Medium: 1 = Low	2	SEE / CIE / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Build skills to develop software applications in specialized areas of Computer Science and Engineering such as Artificial Intelligence, Machine Learning, Data Science, Web Development, Gaming, Augmented Reality / Virtual Reality (AR/VR).	3	CIE/Quiz/ AAT
PSO 2	Focus on exploring supervised, unsupervised and reinforcement learning and apply them to a range of AI problems.	2	CIE/Quiz/ AAT
PSO 3	Make use of AI and ML techniques for industrial applications in the areas of Autonomous Systems, IOT, Cloud Computing, Robotics, Natural Language Processing and emerging areas.	3	CIE/Quiz /AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-		\checkmark	\checkmark	-
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark	\checkmark	-
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 4	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-
CO 5	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark
CO 6	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.				
CO 1	PO 1	Explain the various functional units of Computer with computer science principles.	1				
	PO 2	Explore the types of programming languages for problem identification and to formulate computer science and Engineering Problems.	2				
	PO 3	Evaluate the instruction set architecture based on the cost drivers, integration, manage design process and understand customer needs	4				
	PSO 1 Understand levels of programming languages related Software.						
	PSO 2	Develop micro programs using instruction set architecture with a major focus on improving software reliability and information retrieval systems.	1				

CO 2	PO1	Explore taxonomy of microoperations and RTL for micro program development by using the mathematical and computer science principles.	2
	PSO 1	Understand the notations of RTL related to Software.	4
	PSO 2	Develop assembly language programs with a major focus on improving software reliability and information retrieval systems.	3
CO 3	PO 1	Select appropriate addressing mode for finding effective address of operand using mathematical and computer science principles	2
	PO 2	Choose appropriate addressing mode for information and data collected from various sources memory locations or registers and perform microoperations and validation the results for interpretation	1
	PO 3	Classify the addressing modes in terms of defining various problems and understanding appropriate codes of practice.	3
	PO 4	Utilize Instruction set architecture of processors for designing assembly language programs through laboratory skills and technical literature.	2
	PO 10	Make use of variety of addressing modes to fetch operands for the development of assembly language program with clarity and semantics or grammar of the assembly language.	2
	PSO 1	Develop applications for specific problems by including huge volume of data and related to Software.	1
CO 4	PO 1	Explain the concept of data representation by applying mathematical and computer science principles.	3
	PO 2	Understand the data representation and computer arithmetic for understanding of appropriate codes to formulate, solve problem, document and interpretation of results.	6
	PO 3	Identify the appropriate representation of data suitable for customer needs, investigation of a problem, identify and manage architecture design process.	4
	PO 4	Communicate effectively in orally and written by comprehend and write effective reports and design documentation with the engineering community by having major focus on clarity on content, Grammar/Punctuation, appropriate References, good Speaking style and depth in subject matter.	2
	PO 10	Recognize the need for advanced concepts in binary arithmetic and algorithms for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change	3
	PSO 1	Explain the technologies used to represent data and computer arithmetic related to Algorithms and architecture.	1

CO 5	PO 1	Design control unit by considering various issues and types risk assessment and analysis activity to identify and analyze root causes using computer science principles.	1
	PO 2	Design and develop hardwired and micro programmed control units with knowledge and uncertainty of commercial engineering process and management.	2
	PO 3	Design a control memory of system by investigating and defining various problems, understanding user needs.	3
	PO 4	Utilize micro instructions for designing assembly language programs through laboratory skills, technical literature, technical uncertainty and quality issues.	3
	PO 5	Experiment the design of control unit with Computer software or simulation packages.	2
	PO 10	Recognize the need for advanced concepts of control memory design and micro instructions based on micro architecture for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change.	4
	PSO 1	Explain the design issues of control memory and micro instruction format used to develop micro program related to Algorithms and architecture.	1
	PSO 3	Develop micro programs and support design of control memory by using modern computer software and simulation tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1
CO 6	PO 1	Understand the concept of pipelining to improve performance of the system by applying mathematical principles and computer science methodologies.	2
	PO 10	Communicate in written form by comprehending and writing effective reports and design documentation advanced micro architectures with the engineering community by having major focus on clarity on content, Grammar/Punctuation, good Speaking style	2
	PO 12	Recognize the need for advanced concepts for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change.	4
	PSO 1	Develop MIMD architecture for optimizing the performance related to Algorithms, Software and Networking.	1
	PSO 3	Recognize importance of pipelining, inter process communication of advanced micro processors for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

	PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	2	4	-	-	-	-	-	-	-	-	-	1	1	-
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	1	2	-
CO 3	2	2	1	3	-	-	-	-	-	2	-	2	1	-	-
CO 4	3	6	-	4	-	-	-	-	-	2	-	3	1	-	-
CO 5	1	2	3	3	-	-	-	-	-	2	-	4	1	-	1
CO 6	2	-	-	-	-	-	-	-	-	2	-	4	1	-	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	33.4	20	40	-	-	-	-	-	-	-	-	-	16.6	50	-
CO 2	66.6	-	-	-	-	-	-	-	-	-	-	-	16.6	100	-
CO 3	66.6	20	10	27.3	-	-	-	-	-	20	-	16.6	16.6	-	-
CO 4	100.	60	-	36.4	-	-	-	-	-	20	-	25	16.6	-	-
CO 5	33.4	20	30	27.3	-	-	-	-	-	20	-	33.4	16.6	-	50
CO 6	66.	-	-	-	-	-	-	-	-	20	-	33.4	66.7	-	50
	6														

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being **no correlation**, 1 being the **low correlation**, 2 being **medium correlation** and 3 being **high correlation**.

0 - $0 \le C \le 5\%$ – No correlation

- 1 -5 <C \leq 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- **3** 60% \leq C < 100% Substantial /High

		PROGRAM OUTCOMES									PSO'S	5			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	1	2	-	-	-	-	-	-	-	-		1	-	3
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	1	-	3
CO 3	3	1	1	1	-	-	-	-	-	1	-	1	1	-	-
CO 4	3	3	-	1	-	-	-	-	-	1	-	1	3	-	-
CO 5	1	1	1	1	-	-	-	-	-	1	-	1	1	-	3
CO 6	3	-	-	-	-	-	-	-	-	1	-	1	1	-	3
TOTAL	14	6	4	3	-	-	-	-	-	4	-	4	8	-	12
AVER- AGE	2.3	1.5	2.6	1	-	-	-	-	-	1	-	1	1.33	-	3

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	\checkmark
Seminars	\checkmark	Student Viva	-	Certification	-
Laboratory Practices	-	Student viva	-	Mini projects	-
Term Paper	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Ex	xperts	

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO COMPUTER ORGANIZATION
	Basic computer organization, CPU organization, memory subsystem organization and interfacing, input or output subsystem organization and interfacing, a simple computer levels of programming languages, assembly language instructions, instruction set architecture design, a simple instruction set
MODULE II	ORGANIZATION OF A COMPUTER
	Register transfer: Register transfer language, register transfer, bus and memory transfers, arithmetic micro operations, logic micro-operations, shift micro-operations; Control unit: Control memory, address sequencing, micro program example, and design of control unit.
MODULE III	CPU AND COMPUTER ARITHMETIC
	CPU design: Instruction cycle, data representation, memory reference instructions, input-output, and interrupt, addressing modes, data transfer and manipulation, program control. Computer arithmetic: Addition and subtraction, floating point arithmetic operations, decimal arithmetic unit.
MODULE IV	INPUT-OUTPUT ORGANIZATION AND MEMORY ORGANIZATION
	Memory organization: Memory hierarchy, main memory, auxiliary memory, associative memory, cache memory, virtual memory; Input or output organization: Input or output Interface, asynchronous data transfer, modes of transfer, priority interrupt, direct memory access.
MODULE V	MULTIPROCESSORS
	Pipeline: Parallel processing, pipelining-arithmetic pipeline, instruction pipeline; Multiprocessors: Characteristics of multiprocessors, inter connection structures, inter processor arbitration, inter processor communication and synchronization.

TEXTBOOKS

- 1. 1. M. Morris Mano, "Computer Systems Architecture", Pearson, 3 rd Edition, 2015.
- 2. 2.John D. Carpinelli, "Computer Systems Organization and Architecture", Pearson, 1 st Edition, 2001.
- 3. 3. Patterson, Hennessy, "Computer Organization and Design: The Hardware/Software Interface", Morgan Kaufmann, 5 th Edition, 2013.

REFERENCE BOOKS:

- 1. 1. John. P. Hayes, "Computer System Architecture", McGraw-Hill, 3 rd Edition, 1998.
- 2. 2. Carl Hamacher, Zvonko G Vranesic, Safwat G Zaky, "Computer Organization", McGraw-Hill, 5 th Edition, 2002.
- 3. 3. William Stallings, "Computer Organization and Architecture", Pearson Edition, 8 th Edition, 2010

WEB REFERENCES:

1. http://www.web.stanford.edu/class/cs103x

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details & course_id=528

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference						
	OBE DISCUS	SION							
1	In Outcome-Based Education (OBE), we disc	ussed about cou	irse delivery assessment that						
	are planned to achieve stated objectives and o	outcomes. We w	vill focuses on measuring						
	student performance i.e. outcomes at different levels. Course outcomes(CO),Program								
	Outcomes(PO)and Program Specific Outcomes(PSO) and also mapping of CO's to PO's								
	PSO's and their attainments are discussed.								
	CONTENT DELIVER	Y (THEORY)						
1-2	Outline the basic computer organization	CO1	T1: 4.1-4.2,T1: 4.1						
2-3	Understand the CPU organization, memory subsystem organization and interfacing	CO 1	T1: 4.3-4.4						
4-5	Analyze the input or output subsystem organization and interfacing	CO 1,CO6	T1: 3.1-3.2						
5-6	Understand a simple computer levels of programming languages	CO 1	T2: 2.5-2.6,						
7-8	Explain assembly language instructions	CO 2, CO 3	T1:1.5, 1.4.2,1.4.3						
9	Determine the simple instruction set architecture	CO 2	T2: 7.4						
10-11	Understand the register transfer language, register transfer.	CO 2	T2: 5.6-5.7						
12	Analyze bus and memory transfers	CO 2	T1: 6.7-6.8						
13-15	Explain the arithmetic micro-operations, logic micro-operations, shift micro-operations	CO 2	T2: 8.5-8.7						
16	Understand the control memory	CO 5	T2: 8.6						
17-18	Explain the instruction cycle	CO 2	T2: 10.1-10.5						
19-20	Outline the data representation, memory reference instructions	CO 3	T2: 12.1						
20-21	Analyze input-output, and interrupt, addressing modes	CO 3	T2: 11.2						

22	Discuss the data transfer and manipulation, program control	CO 3	T2: 11.3-11.4		
23-25	Determine the Addition and subtraction, floating point arithmetic operations, decimal arithmetic unit	CO 4	T2: 11.5		
26	Need of Input or output organization	CO5	R1: .3.1		
27-29	Discuss the Input or output Interface	CO5	R1: 3.3-9.5		
30-31	Understand the asynchronous data transfer, modes of transfer	CO5	T2: 9.4		
32-33	Analyze the priority interrupt, direct memory access	CO5	T2:13.1		
34	Understand the memory organization	CO5	T2:13.2		
35-36	Discuss Memory hierarchy, main memory, auxiliary memory, associative memory, cache memory, virtual memory	CO 5	T2: 13.3		
37-38	Understand the Pipeline: Parallel processing, Instruction pipeline	CO6	T2: 13.		
39	Characteristics of multiprocessors	CO6	T2: 13.1		
40	Inter connection structures	CO6	T2: 13.2		
41	Inter processor arbitration	CO 3,CO6	T2: 13.3		
42	Inter processor communication and synchronization	CO 6	T2: 13.4		
	PROBLEM SOLVING/	CASE STUD	IES		
1	Problems on BCD conversions	CO1	T2:2.1		
2	Problems on BCD conversions	CO1	T2:2.3		
3	Problems on Addition and substraction	CO3	T2:2.3.1		
4	Problems on Multiplication	CO3	T2:7.2,7.3		
5	Problems on Booths multiplication	CO3	T2:10.3.1		
6	Problems on Booths Algorithm	CO3	T2:13.3.2, 13.4.1		
7	Problems on Division	CO3	T2:17.1.1, 17.1.3		
8	Problems on Data presentation	CO3	T2:18.3.4, 18.3.4.1		
9	Problems on Data presentation	CO3	T2:22.12, 19.1.2		
10	Problems on Data presentation	CO3	T2:18.4, 18.4.3		
11	Problems on floating point arithmetic operations	CO3	T2:19.2, 18.4.4		
12	Problems on Decimal arithmatic unit	CO3	T2:23.1.1, 23.1.3		
	DISCUSSION ON DEFINITION	I AND TERM	IINOLOGY		
1	Define register transfer language,fixed point number,instruction format,data Processing instruction,data Processing instruction	CO 1	T2:18.3.4, 18.3.4.1		
2	Define miscellaneous Instructions, addressing mode,micro operation.	CO 2	T2:22.12, 19.1.2		
3	Define arithmetic micro operations,arithmetic micro operations,logical shift operation	CO 3	T2:18.4, 18.4.3		

4	Define data bus,metropolitan area network,network topology,star topology,bus tropology define vecto,pipeline cycle time, arithmetic	CO4, CO 5 CO 6	T2:19.2, 18.4.4 T2:23.1.1, 23.1.3
	pipeline,optimal number of pipeline stages		
	DISCUSSION ON QUI	ESTION BAN	IK
1	Illustrate the input and output operations with a neat diagram.	CO 1	T2:18.3.4, 18.3.4.1
2	List the various instruction formats and illustrate with an example.	CO 2	T2:22.12, 19.1.2
3	Identify micro programexample and build a computer hardware configuration	CO3,CO4	T2:18.4, 18.4.3
4	Illustrate the belowaddressing modes withexamples a. Implied Modeb. Immediate Mode c. Autoincrement and Auto,decrement Mode d. Direct and Indirect Address Mode.	CO5	T2:19.2, 18.4.4
5	Define parallel processing and explain the flynn's classification of computer with suitable diagram	CO 6	T2:23.1.1, 23.1.3

Course Coordinator Dr. P Cahandana, Associate Professor

HOD,CSE (AI & ML)

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING						
Course Title	DISCRI	DISCRETE MATHEMATICAL STRUCTURES						
Course Code	AHS013	AHS013						
Program	B.Tech							
Semester	III	III						
Course Type	Core							
Regulation	R16							
		Theory		Pract	ical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	3 1 4							
Course Coordinator	nator Mrs .V Divyavani, Assistant Professor							

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHS010	II	Probability and statistics

II COURSE OVERVIEW:

The purpose of this course is to provide a clear understanding of the concepts that underlying fundamentals with emphasis on their applications to computer science. It highlights mathematical definitions and proofs as well as applicable methods. The contents include formal logic notation, proof methods; induction, well- ordering; sets, relations; growth of functions; permutations and combinations, counting principles, recurrence equations, trees and more general graphs.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Discrete Mathematical Structures	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others		·		·		·

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
40 %	Understand
50 %	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks			
Type of Assessment	CIE Exam	Quiz AAT			
CIA Marks	25	05	30		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

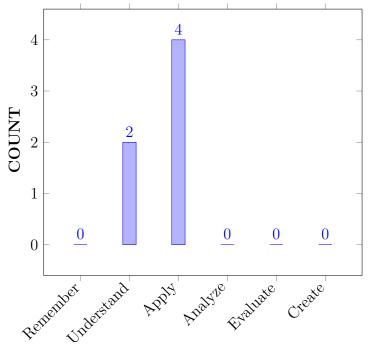
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving			
40%	40%	20%			

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The fundamental knowledge of statement notations and logical connectives which are used to convert English sentences into logical expressions.
II	The effective use of combinatory principles for calculating probabilities and solving counting problems.
III	The characteristics of generating functions for finding the solution of linear homogeneous recurrence relations.
IV	The effective use of graph theory in subsequent fields of study such as computer networks, and algorithms for solving real world engineering problems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of mathematical definitions and its notations for	Apply
	reformulating statements in formal logic and validating normal forms.	
CO 2	Demonstrate operations on discrete mathematical structures like sets,	Understand
	functions, lattices for representing the relations among them.	
CO 3	Illustrate rings, integral domains, and field structures with binary	Understand
	operations defined on them.	
CO 4	Apply addition rule and substitution rule for solving the problems of	Apply
	combinatorics.	
CO 5	Develop solutions for recurrence relations and generating functions	Apply
	to obtain terms of equation.	
CO 6	Identify appropriate algorithms of graphs and trees for finding	Apply
	shortest path.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	SEE / CIE / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	SEE / CIE / AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	SEE / CIE / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Understand, design and analyze computer	3	SEE/AAT
	programs in the areas related to Algorithms,		
	System Software, Web design, Big data, Artificial		
	Intelligence, Machine Learning and Networking.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-		\checkmark	-	-	
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-		-	-	-	
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-		\checkmark	-	-	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Apply the logical statements for the given problem with the help of truth tables and properties of logic by applying the mathematical principles and scientific principles.	2
	PSO 1	Remember the basic of properties of logic for designing algorithms, system software and knowledge discovery tools.	3
CO 2	PO 1	Make use of lattices, its properties and types for representing the finite sets in multidimensional applications by understanding mathematical principles, engineering principles specific to computer science and scientific principles.	3
	PO 2	Understand the given problem and develop the solution using recursive and inverse functions from the provided information and interpret of results.	4
	PSO 1	Make use of computational and experimental tools for creating system software, in data science and desire for higher studies in field of machine Learning and networking concepts	3
CO 3	PO 1	Apply the rules of inference, principle of inclusion and exclusion and automatic theorem for finding the proof of arguments by understanding mathematical principles and scientific principles.	2
	PO 2	Understand the given problem and choose appropriate technique (problem formulation) of lattices for solving the given problem from the provided Information and data in reaching substantiated conclusions by the interpretation of results.	4
	PSO 1	Solve the given problem, use creativity in applying the methods of graph models for innovative solutions and understand the economic context of the model analysis	4
CO 4	PO 1	Make use of lattices, its properties and types for representing the finite sets in multidimensional applications by understanding mathematical principles, engineering principles specific to computer science and scientific principles.	3
	PO 2	Understand the given problem and choose the suitable method of probability (problem formulation) for solving the given problem related to engineering from the provided information and data.	3
CO 5	PO 1	Make use of lattices, its properties and types for representing the finite sets in multidimensional applications by understanding mathematical principles, engineering principles specific to computer science and scientific principles.	3
	PO 2	Understand the given problem and develop the solution using recursive and inverse functions from the provided information and interpret of results.	4

	PO 3	Understand the user needs of given problem, use	5
		creativity in applying the methods of graph models for innovative solutions, evaluate the solution of the model, and understand the economic context of the model analysis.	
	PSO 1	Analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	6
CO 6	PO 1	Make use of lattices, its properties and types for representing the finite sets in multidimensional applications by understanding mathematical principles, engineering principles specific to computer science and scientific principles.	3
	PO 2	Understand the given problem and choose appropriate technique (problem formulation) of lattices for solving the given problem from the provided Information and data in reaching substantiated conclusions by the interpretation of results.	4
	PO 3	Understand the user needs of given problem, use creativity in applying the methods of graph models for innovative solutions, evaluate the solution of the model, and understand the economic context of the model analysis.	5
	PSO 1	solve the given problem, use creativity in applying the methods of graph models for innovative solutions and understand the economic context of the model analysis.	4

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

	PROGRAM OUTCOMES													PSO'S		
COURSE	РО	PO	РО	PO	PO	PO	PO	РО	PO	РО	PO	РО	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	-	-	-	-	-	-	-	-	-	-		3	-	-	
CO 2	3	4	-	-	-	-	-	-	-	-	-	-	3	-	-	
CO 3	2	4	-	-	-	-	-	-	-	-	-	-	4	-	-	
CO 4	3	3	-	-	-	-	-	-	-	-	-		-	-	-	
CO 5	3	4	5	-	-	-	-	-	-	-	-	-	6	-	-	
CO 6	3	4	5	-	-	-	-	-	-	-	-		4	-	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	PO	РО	РО	PO	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	-	-	-	-	-	-	-	-	-	-		50.0	-	-
CO 2	100.0	40.0	-	-	-	-	-	-	-	-	-	-	50.0	-	-
CO 3	66.7	40.0	-	-	-	-	-	-	-	-	-	-	66.7	-	-

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	РО	РО	РО	PO	PO	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 4	100.0	30.0	-	-	-	-	-	-	-	-	-		-	-	-
CO 5	100.0	40.0	50.0	-	-	-	-	-	-	-	-	-	100.0	-	-
CO 6	100.0	40.0	50.0	-	-	-	-	-	-	-	-		66.7	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

- **1** -5 <C \leq 40% Low/ Slight
- $\pmb{2}$ 40 % < C < 60% Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

	PROGRAM OUTCOMES										PSO'S				
COURSE	РО	PO	РО	PO	PO	РО	РО	РО	РО	РО	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-		2	-	-
CO 2	3	2	-	-	-	-	-	-	-	-	_	-	2	-	-
CO 3	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO 4	3	1	-	-	-	-	-	-	-	-	-		-	-	-
CO 5	3	2	2	-	-	-	-	-	-	-	-	-	3	-	-
CO 6	3	2	2	-	-	-	-	-	-	-	-		3	-	-
TOTAL	18	9	4	-	-		-	-	-	-	-	-	13	-	-
AVERAGE	3.0	1.8	2.0	-	-		-	-	-	-	-	-	2.6	-	-
													-		

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	_	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Experiments	-
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\mathbf{X}	Assessment of Mini Projects by Experts		

XVIII SYLLABUS:

MODULE I	MATHEMATICAL LOGIC AND PREDICATES
	Mathematical logic: Statements and notations, connectives, well-formed formulas, truth tables, tautology, equivalence implication; Normal forms: Disjunctive normal forms, conjunctive normal forms, principle disjunctive normal forms, principle conjunctive normal forms; Predicate calculus: Predicative logic, statement functions, variables and quantifiers, free and bound variables, rules of inference, consistency, proof of contradiction, automatic theorem proving.
MODULE II	RELATIONS, FUNCTIONS AND LATTICES
	Relations: Properties of binary relations, equivalence, compatibility and partial ordering relations, lattices, Hasse diagram; Functions: Inverse function, composition of functions, recursive functions; Lattices: Lattices as partially ordered sets; Definition and examples, properties of lattices, sub lattices, some special lattices
MODULE III	ALGEBRAIC STRUCTURES AND COMBINATORICS
	Algebraic structures: Algebraic systems, examples and general properties, semi groups and monoids, groups, sub groups, homomorphism, isomorphism, rings. Combinatory: The fundamental counting principles, permutations, disarrangements, combinations, permutations and combinations with repetitions, the binomial theorem, multinomial theorem, generalized inclusion exclusion principle
MODULE IV	RECURRENCE RELATION
	Recurrence relation: Generating functions, function of sequences calculating coefficient of generating function, recurrence relations, solving recurrence relation by substitution and generating functions, Characteristics roots solution of homogeneous recurrence relation.
MODULE V	GRAPHS AND TREES
	Graphs: Basic concepts of graphs, isomorphic graphs, Euler graphs, Hamiltonian graphs, planar graphs, graph coloring, digraphs, directed acyclic graphs, weighted digraphs, region graph, chromatic numbers; Trees: Trees, spanning trees, minimal spanning trees.

TEXTBOOKS

- 1. J. P. Tremblay, R. Manohar, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill, India, 1st Edition, 1997.
- 2. Joe L. Mott, Abraham Kandel, Theodore P. Baker, "Discrete Mathematics for Computer Scientists and Mathematics", Prentice Hall of India Learning Private Limited, New Delhi, India, 2nd Edition, 2010.

REFERENCE BOOKS:

- 1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", Tata McGraw-Hill, New Delhi, India, 6th Edition, 2012.
- 2. D S Chandrashekaraiah, "Mathematical Foundations of Computer Science (Discrete Structures)", Prism Books Pvt. Ltd., 2nd Reprint, 2007.
- 3. C. L. Liu, D. P. Mohapatra, "Elements of Discrete Mathematics", Tata McGraw-Hill, India, 3rd Edition, 2008.

- 4. Ralph P. Grimaldi, B. V. Ramana, "Discrete and Combinatorial Mathematics An Applied Introduction", Pearson Education, India, 5th Edition, 2011.
- 5. D. S. Malik, M. K. Sen, "Discrete Mathematical Structures: Theory and Applications", Thomson Course Technology, India, 1st Edition, 2004.

WEB REFERENCES:

- 1. http://www.web.stanford.edu/class/cs103x
- 2. http://www.saylor.org/course/cs202/.
- 3. http://www.cse.iitd.ernet.in/ bagchi/courses/discrete-book

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details & course_id=413

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference								
	OBE DISCUSS	SION									
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms.iare.ac.in/index ?route=course/details& course id=413								
	CONTENT DELIVERY (THEORY)										
1-3	Describe the statements and notations, connectives	CO 1	T1:1.1,1.2								
4-6	Explain well-formed formulas, truth tables, tautology	CO 1	T1: 1.2.7, 1.2.8								
7	Explain equivalence implications, DNF, CNF, PDNF, and PCNF.	CO 1	T1:1.2.9, 1.2.11, 1.3								
8 – 14	Illustrate predicative logic, statement functions, variables and quantifiers, free and bound variables, rules of inference, consistency	CO 2, CO 3	T1:1.5, 1.4.2, 1.4.3								
15-20	Demonstrate proof of contradiction, automatic theorem proving, properties of binary relations, equivalence, transitive closure, Compatibility and partial ordering relations.	CO 2	T1:1.4.3, 1.4.4, 2.3.1, 2.3.2,2.3.6, 2.3.7,2.3.8								
21-25	Find Lattices, Hasse diagram, and inverse function composition of functions, recursive functions, Lattices as partially ordered sets; Definition and examples, properties of lattices, lattices as algebraic systems, sub lattices, direct product and homomorphism, some special lattices.	CO 2	R2:4.3 T1:2.4.1, 2.4.2,2.4.3, 4.1								

00.00		CO 2	T 1 2 1 2 2 D 1 C 2 C 0
26-29	Demonstrate Algebraic systems, examples	CO 3	T1:3.1,3.2 R1:6.2-6.8
	and general properties, semi groups and monoids, groups and subgroups,		
	homomorphism, isomorphism, rings.		
30-35	Apply the fundamental counting principles,	CO 4	R1: 7.1-7.6
	permutations, disarrangements,		
	combinations, permutations and		
	combinations with repetitions, the binomial		
	theorem, multinomial theorem, generalized		
	inclusion exclusion principle.		
36-38	Describe generating functions, function of	CO 5	R2:8.1
	sequences calculating coefficient of		
	generating function.		
39-44	Solve recurrence relations, solving	CO 5	R2:8.2, 8.3
	recurrence relation by substitution and		
	generating funds, Characteristics roots solution of homogeneous recurrence relation		
45-48	Explain basic concepts of graphs,	CO 6	R2: 9.1-9.3
40-40	isomorphic graphs.		112. 0.1-0.0
49-54	Describe Euler graphs, Hamiltonian graphs,	CO 6	R2: 9.8, 9.9, 10.1, 10.2
	planar graphs, graph coloring.		
55 - 59	Describe digraphs, directed acyclic graphs,	CO 6	T2:5.5, 5.9, 5.10
	weighted digraphs, region graph, and		
	chromatic numbers.		
60	Explain trees, spanning trees, minimal spanning trees.	CO 6	R2:10.4, 10.6,10.7
	PROBLEM SOLVING/ O	CASE STUDIE	ES
1	Problems on Statements and notations	CO1	T2:2.1
2	Problems on connectives	CO1	T2:2.3
3	Problems on well-formed formulas	CO1	T2:2.3.1
4	Problems on truth tables.	CO1	T2:7.2,7.3
5	Problems on tautology.	CO1	T2:10.3.1
6	Problems on Normal forms.	CO 1	T2:13.3.2, 13.4.1
7	Problems on rules of inference	CO1	T2:17.1.1, 17.1.3
8	Problems on Relations.	CO2	T2:18.3.4, 18.3.4.1
9	Problems on lattices and Hasse diagram.	CO2	T2:22.12, 19.1.2
10	Problems on Functions and Algebraic structures	CO 3,CO4	T2:18.4, 18.4.3
11	Problems on Recurrence relation and Generating functions	CO 5	T2:19.2, 18.4.4
12	Problems on graphs and trees.	CO 6	T2:23.1.1, 23.1.3
	DISCUSSION ON DEFINITION	AND TERMI	NOLOGY
1	Defines about Set, subset, universal set,	CO 1	T2:18.3.4, 18.3.4.1
	Commutative laws, relation, least upper		
	bound, greatest lower bound, lattice and function		

2	Defines about Proposition, connectives, quantifiers, Propositional Logic, Contingency and implication	CO 2	T2:22.12, 19.1.2
3	Defines about Algebraic Structure, Semi Group, closure property, group, Abelian Group or Commutative group, ring isomorphism, ideal algebra, zero divisor of a ring	CO 3, CO 4	T2:18.4, 18.4.3
4	Recurrence relation, characteristic equation	CO 5	T2:19.2, 18.4.4
5	Graph, Vertices, Edges, undirected graphs, Cycles, Loop, Graph Coloring, Digraphs, complete bidirected, tournament, Planarity, Degree of a Vertex	CO 6	T2:23.1.1, 23.1.3
	DISCUSSION ON QUE	STION BANK	
1	Mathematical logic and predicates	CO 1	T2:18.3.4, 18.3.4.1
2	Relations ,Functions and lattices	CO 2	T2:22.12, 19.1.2
3	Algebraic Structures and combinatorics	CO3,CO4	T2:18.4, 18.4.3
4	Recurrence relations and generating functions	CO5	T2:19.2, 18.4.4
5	Graphs and trees	CO 6	T2:23.1.1, 23.1.3

Course Coordinator Mrs V.Divyavani, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Course Title	Object Oriented Programming Through Java Laboratory					
Course Code	ACS103	ACS103				
Program	B.Tech					
Semester	III	CSE				
Course Type	CORE					
Regulation	IARE - R16					
		Theory		Pr	ractical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	2	
Course Coordinator	tor Dr. D.Durga Bhavani, Associate Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSC01	II	Programming for Problem Solving
B.Tech	ACSC08	III	Data Structure

II COURSE OVERVIEW:

This coursepresents the principles of objectoriented programming using the Javalanguage, one of the most increasingly preferred languages for programming today. The knowledge gained in this course can be applied later to other languages such as python, C++. This course uses Net beans IDE to afford a more interactive experience. This course helps to develop different applications in various domains like GUI Applications, BigData, Web-based Applications, etc..

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Object Oriented Programming Through Java	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab		Viva		Probing further Questions
\checkmark		\checkmark	Worksheets	\checkmark	Questions	\checkmark	

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous

lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end laberamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20~%	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	10tai marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

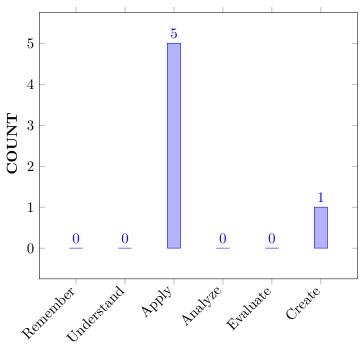
1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:


The students will try to learn:

Ι	Problem-solving strategy to break down a complex problem in to a series of simpler tasks
II	The semantics of exception handling in Java, and use it to write reliable Java code.
III	The event-driven programming principles by developing programs using graphical user interface.

VII COURSE OUTCOMES:

CO 1	Make use of operators, precedence of operators, associatively while evaluating expressions in program statements.	Apply
CO 2	Make use of the concept of class and objects with access control and polymorphism techniques to represent real worldentities.	Apply
CO 3	Demonstrate design principles fincluding information hiding, encapsulation and exceptional handling.	Apply
CO 4	Implement the concepts of Multi-threading and files in soft real time systems.	Apply
CO 5	Apply the concepts of abstract class and inheritance for code reusability and extensibility.	Apply
CO 6	Design event-driven programming principles for developing programs using graphical user interface	Create

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Lab Exercise, CIE,SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complexengineering- problemsreachingsubstantiated conclusions using first principles of mathematics, natural sciences ,and engineering sciences.	2	Lab Exercise, CIE,SEE
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	Lab Exercise, CIE,SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	1	Lab Exercise, CIE,SEE
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	Lab Exercise, CIE,SEE
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	3	Lab Exercise, CIE,SEE

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success	3	Lab Exercises
PSO 2	Focus on improving software reliability, network security or information retrieval systems	3	Lab Exercises

PSO 3	Make use of modern computer tools for creating	3	Lab Exercises
	innovative career paths, to be an entrepreneur and		
	desire for higher studies.		

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Make use of Usage of object oriented programming fundamentals using principles of mathematics, science, and engineering fundamentals.	3
	PO 2	Make use of Usage of object oriented programming fundamentals with Problem statement and system definition, Problem formulation.	2
	PO 5	Understanding of the limitations of Modern Tool Usage.	3
	PO 10	Build strong foundation of programming Schemes for career building by communicating effectively with engineering community.	2
	PO 12	Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts.	2
	PSO 2	Focus on improving software reliability, network security or information retrieval systems	2
	PSO 3	Describe the well utilization of r resources for the better performance of the system.	2
CO 2	PO 1	Describe to use indexing mechanisms for extracting a portion of data in a sequence using principles of mathematics ,and engineering fundamentals.	2
	PO 5	Understanding of the limitations of Modern Tool Usage.	3
	PO 10	Build strong foundation of programming Schemes for career building by communicating effectively with engineering community.	3
	PO 12	Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts.	3
	PSO 1	Under stand the concepts of polymorphism techniques , and apply real world entity.	2
	PSO 2	Demonstrate on writing programs using object and classes concepts for applications such as computational geometry, Big data by understanding and applying the engineering principles	2
	PSO 3	Describe the well utilization of r resources for the better performance of the system.	2

CO 3	PO 1	Demonstrate on information hiding encapsulation with regard to how they will be implemented using the using fundamentals of mathematics ,science, and engineering.	2
	PO 5	Understanding of the limitations of Modern Tool Usage.	3
	PO 10	Build strong foundation of programming Schemes for career building by communicating effectively with engineering community.	3
	PO 12	Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts.	3
	PSO 2	Make use of exceptional handling to design and develop efficient real-time computational problems.	3
CO 4	PO 1	Describe the use of multi threading problem solving using the knowledge of mathematics, science, and engineering fundamentals.	3
	PO 3	Usage of Demonstrate the importance of file structures for developing programs in real-time scenarios by communicating effectively with engineering community.	2
	PO 5	Understanding of the limitations of Modern Tool Usage.	3
	PO 10	Build strong foundation of programming Schemes for career building by communicating effectively with engineering community.	3
	PO 12	Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts.	3
	PSO 1	Understand the concepts of multithread, elements of parallel program execution and importance of CPU utilization.	2
	PSO 3	Describe the well utilization of r resources for the better performance of the system.	2
CO 5	PO 1	Describe the importance of abstract class and inheritance by understanding and applying the fundamentals of mathematics, science and engineering.	3
	PO 3	Usage of Build strong foundation of writing efficient modular programs using parameter passing mechanisms for career building. By communicating effectively with engineering community.	2
	PO 5	Understanding of the limitations of Modern Tool Usage.	3
	PO 10	Build strong foundation of programming Schemes for career building by communicating effectively with engineering community.	3

	PO 12	Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts.	3
	PSO 2	Understand he concepts of abstract class and inheritance for code reusability and extensibility.	3
CO 6	PO 1	Make use of appropriate modules/packages in Java while developing solutions using the knowledge of mathematics, science, and engineering fundamentals.	3
	PO 3	Usage of Demonstrate the usage of modules/packages in designing and developing . solutions of complex engineering applications	2
	PO 5	Understanding of the limitations of Modern Tool Usage.	3
	PO 10	Build strong foundation of programming Schemes for career building by communicating effectively with engineering community.	3
	PO 12	Build strong foundation of programming schemes for career building by communicating effectively with engineering concepts.	3
	PSO 1	Understand the concepts event-driven programming principles for developing programs using graphical user interface.	2
	PSO 2	Usage of Make use of modern computer tools and appropriate modules in building real-time applications for a successful career.	3
	PSO 3	Describe the well utilization of resources for the better performance of the system.	2

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes		Program Outcomes					Progra	m Specif	ic Outcomes
	PO1	PO2	PO3	PO5	PO10	PO12	PSO1	PSO2	PSO3
CO1	1	2		3	2	1	-	2	2
CO2	2			3	3	2	2	2	2
CO3	2			3	3	2	-	2	
CO4	1		2	3	2	4	3		2
CO5	1		2	3	3	-	-	3	
CO6	2	2		3	3	3	2	3	2

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams		SEE Exams		Seminars	-
	\checkmark		\checkmark		
Laboratory		Student Viva		Certification	-
Practices	\checkmark		✓		
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback	
X	Assessment of Mini Projects by Experts			

XIV SYLLABUS:

WEEK I	BASICPROGRAMS
	1.Try debug step by step with small program of about 10 to 15 lines which contains at least one if else condition and a for loop. 2. Write a java program that prints all real solutions to the quadratic equation $ax2 + bx+c=0$. Read in a, b, c and use the quadratic formula. 3. The Fibonacci sequence is defined by the following rule. The first two values in the sequence are 1 and 1. Every subsequent value is the sum of the two values preceding it. Write a java program that uses both recursive and non-recursive functions.
WEEK II	MATRICES, OVERLOADING, OVERRIDING
	1. Write a java program to multiply two given matrices. 2. Write a java program to implement method overloading and constructors overloading. 3. Write a java program to implement method overriding
WEEK III	PALINDROME, ABSTRACT CLASS
	1. Write a java program to check whether a given string is palindrome. 2. Write a java program for sorting a given list of names in ascending order. 3. Write a java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape
WEEK IV	INTERFACE
	Write a program that creates a user interface to perform integer division. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num2 is displayed in the Result field when the Divide button is clicked. If Num1 and Num2 were not integers, the program would throw a Number Format Exception. If Num2 were zero, the program would throw an Arithmetic Exception Display the exception in a message dialog box.
WEEK V	MULTITHREADING

	1. Write a java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number. 2. Write a java program that correct implements of producer consumer program.
WEEK VI	FILES
	1. Write a java program that reads a file name from the user, and then displays information about whether the file exists, whether the file is readable, whether the file is writable, the type of file and the length of the file in bytes. 2. Write a java program that displays the number of characters, lines and words in a text file. 3. Write a java program that reads a file and displays the file on the screen with line number before each line
WEEK VII	FILES
	1. Suppose that table named table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a java program to display the table using labels in grid layout. 2. Write a java program that connects to a database using JDBC and does add, delete, modify and retrieve operations.
WEEK VIII	JAVA PROGRAM WITH DATABASE
	1. Write a java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab $(/t)$. It takes a name or phone number as input and prints the corresponding other value from the hash table. Hint: Use hash tables. 2. Implement the above program with database instead of a text file.
WEEK IX	FILES
	1. Write a java program that takes tab separated data (one record per line) from a text file and insert them into a database. 2. Write a java program that prints the metadata of a given table.
WEEK X	TRAFFIC LIGHT
	1. Write a java program that simulates a traffic light. The program lets the user select one of three lights: Red, Yellow or Green with radio buttons. On selecting a button an appropriate message with —STOP or —READY or GO should appear above the buttons in selected color. Initially, there is no message shown.
WEEK XI	MOUSE EVENTS
	1. Write a java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired. Use adapter classes. 2. Write a java program to demonstrate the key event handlers.
WEEK XII	CALCULATOR
	Write a java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the $+,-,*$, operations. Add a text field to display the result. Handle any possible exception like divided by zero.
WEEK XIII	APPLET
	1. Develop an applet that displays a simple message. 2. Develop an applet that receives an integer in one text field and computes its factorial value and returns it in another text field, when the button named —compute is clicked.

TEXTBOOKS

- 1. HerbertSchildt and DaleSkrien, "JavaFundamentals– A comprehensive Introduction ", McGrawHill, 1stEdition,2013.
- 2. HerbertSchildt, "Java the Complete Reference", McGraw Hill, Osborne, 7thEdition, 2011

REFERENCE BOOKS:

- 1. P. J. Deitel, H. M. Deitel, —Java for Programmers ||, Pearson Education, PHI, 4 th Edition, 2007.
- 2. P. Radha Krishna, —Object Oriented Programming through Java ||, Universities Press, 2 nd Edition, 2007.
- 3. Bruce Eckel, —Thinking in Java^{||}, Pearson Education, 4 th Edition, 2006. 4. Sachin Malhotra, Saurabh Chaudhary, —Programming in Java^{||}, Oxford University Press, 5 th Edition, 2010

WEBREFERENCES:

- 1. www.niecdelhi.ac.in .
- 2. https://www.linkedin.com/in/achin-jain-85061412
- 3. www.rank1infotech.com

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Operators and Expressions	CO 1	T2:4.1-4.8
2	Selection/ConditionalBranchingStatements:if,if- else,nestedif,if-elseif-elsestatement.	CO 1,CO 2	T2:2.1– 2.9
3	Abstract class and interface mplementation.	CO 4	$\begin{array}{c} {\rm T2:2.1-2.9} \\ {\rm T2:10.2} \end{array}$
4	Polymorphism and inheritance implementation.	CO 3,CO 5	T2:8.1-8.7
5	Multithreading programming In java	CO 4	${ m T2:}11.1-\ 11.6$
6	File's handling using java programming.	CO 3,CO 4	T2:13.5-13.6
7	Database connectivity using java programming.	CO 2,CO 6	T2:24.1-24.6
8	Event handling and abstract window.	CO 2,CO 6	T2:24.1-24.6
9	Event handling and layouts.	CO 2, CO 6	$\begin{array}{c} {\rm T2:24.1-}\\ {\rm 24.6}\\ {\rm T2:21.61}\end{array}$
10	Applets.	CO 2, CO 6	${ m T2:}25.4-25.6$
11	Loop Structures/Iterative Statements– While and for loop, Nested loops	CO 2,CO 6	T2:5.1– 5.3 T:21.29
12	Classes and Objects–Defining Classes, Creating Objects.	CO 2	T2:6.1-6.5

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	You are the owner of a big company. You are so rich, that the government has allowed you to print as many notes as you want of any single value that you like. You also have peculiar behavior altra its and you often do things that look weird to a third person. You have N N employees, where the employee has salary Ai Ai. You want to pay them using a denomination that you create. You are also eco friendly and wish to save paper. So, you wish to pay them using as few notes as possible. Find out the minimum number of notes required if you can alter the salary of at most one employee to any positive integer that you like, and choose the positive integer value that each note is worth (called its denomination). Each employee must receive the exact value of his/her salary and no more.
2	You're given a tree with N vertices numbered from 1 to N Your go a list of handle queries. For each query you are given K nodes v1,v2,,vK. Find if there exists a simple path in the tree covering the give n vertices.

Signature of Course Coordinator Dr. D.Durga Bhavani, Associate Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	DESIGN A	DESIGN AND ANALYSIS OF ALGORITHMS LABORATORY					
Course Code	AITB07	AITB07					
Program	B.Tech						
Semester	III	CSE					
Course Type	CORE						
Regulation	IARE - R18						
		Theory			Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	3	1.5		
Course Coordinator	Dr. K. Suvar	chala, Assoc	ciate Profe	essor, CSE			

I COURSE OVERVIEW:

Design and analysis of algorithm lab provides hands on experience in implementing different algorithmic paradigms and develops competence in choosing appropriate data structure to improve efficiency of technique used. This laboratory implements sorting techniques using divide and conquer strategy, shortest distance algorithms based on Greedy, Dynamic programming techniques, Minimum spanning tree construction and applications of Back tracking , Branch and Bound. This is essential for developing software in areas Information storage and retrieval, Transportation through networks, Graph theory and Optimization problems.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	ACSB01	II	Programming for problem
			solving
UG	ACSB03	III	Data Structures

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Design And Analysis Of	70 Marks	30 Marks	100
Algorithms Laboratory			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video	Lab Worksheets		Viva	_	Probing further
С	C		С	Questions	С	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

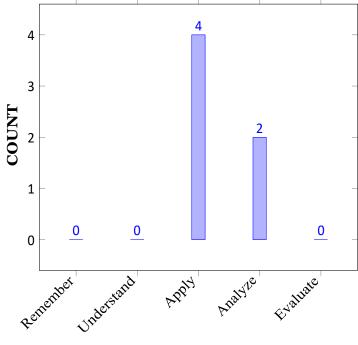
Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

2. Programming Based

Objectiv	ve Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The selection of Algorithmic technique and Data structures required for efficient development of technical and engineering applications.
II	The algorithmic design paradigms and methods for identifying solutions of optimization problems.
III	Implementation of different algorithms for the similar problems to compare their performance.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Apply Divide and conquer strategy to organize the data in ascending or descending order.	Apply
CO 2	Make use of Algorithmic Design paradigms to determine shortest distance and transitive closure of Directed or Undirected Graphs	Apply
CO 3	Utilize Greedy Technique for generating minimum cost spanning tree of a Graph.	Analyze
CO 4	Analyze Principle of optimality in finding solutions to optimization problems.	Analyze
CO 5	Compare the efficiencies of traversal problems using different Tree and Graph traversal algorithms.	Apply
CO 6	Utilize Backtracking method for solving Puzzles involving building solutions incrementally.	Analyze
CO 7	Examine Branch and Bound Approach for solving Combinatorial optimization problems.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by	
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab Exercise / CIE/SEE	
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	Lab Exercise / CIE/SEE	
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	Lab Exercise / CIE/SEE	
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	Lab Exercise / CIE/SEE	
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Lab Exercise / CIE/SEE	

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Profi- ciency Assessed by
PSO 2	Focus on mobile and web applications development and learn the emerging technologies and frameworks in demand with employers and contemporary challenges.	3	Lab Exercise

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 2	Demonstrate the use of divide and conquer strategy for arranging data in sorted order with the Problem statement and system definition , Problem formulation and abstraction , Information and data collection , Model translation and interpret the results .	5
	PO 3	Demonstrate the use of sorting techniques and analyze time and space complexities with the help of Investigate and define a problem and identify constraints Manage the design process and evaluate outcomes and use in engineering application.	5
	PO 5	Translate the algorithm into python code by using its Libraries and modules.	1
	PSO 2	Make use of Popular algorithmic strategies systematically to get solution into by using its Libraries and modules.	2
CO 2	PO 2	Make Use of Dynamic programming for solving shortest distance problems with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation and solution development.	5
	PO 3	Make Use of Dynamic Programming for shortest distance problems and substructure generation with the help of Investigate and define a problem and identify constraints, Manage the design process and evaluate outcomes and find innovative solutions	5
	PO 5	Make Use of DP for implementing Shortest distance algorithms and optimal substructure identifications by Understanding of contexts in which engineering knowledge can be applied, understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.	1
	PO 10	Build strong foundation on Dynamic Programming for career building by communicating effectively with engineering community about optimal solutions.	2
	PSO 2	Demonstrate algorithmic strategies systematically to get solution into by using its Libraries and modules of Python	2

CO 3	PO 2	Make Use of Greedy technique for solving shortest distance and MST problems with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation and solution development.	5
	PO 3	Make Use of Greedy technique for solving shortest distance and MST problems with Investigate and define a problem and identify constraints, Manage the design process and evaluate outcomes and find innovative solutions.	5
	PO 5	Make Use of Greedy technique for implementing MST and Graph problems by identifications by Understanding of contexts in which engineering knowledge can be applied, understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.	1
	PSO 2	Demonstrate algorithmic strategies systematically to get solution into by using its Libraries and modules of Python.	2
CO 4	PO 2	(Apply) principle of Optimality for solving Optimization problems with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation and solution development.	5
	PO 3	Apply principle of Optimality for solving Optimization problems and substructure generation with the help of Investigate and define a problem and identify constraints, Manage the design process and evaluate outcomes and find innovative solutions	5
	PO 5	Demonstrate Principle of Optimality for implementing Shortest distance algorithms and optimal substructure identifications by Understanding of contexts in which engineering knowledge can be applied, understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.	1
	PO 10	Build strong foundation on Principle of Optimality for career building by communicating effectively with engineering community about optimal solutions.	2
	PSO 2	Demonstrate Principle of Optimality systematically to get solution into by using its Libraries and modules of Python	2
CO 5	PO 2	Make Use of recursive and non recursive algorithms for comparing traversal techniques of graph and tree with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation and solution development.	5

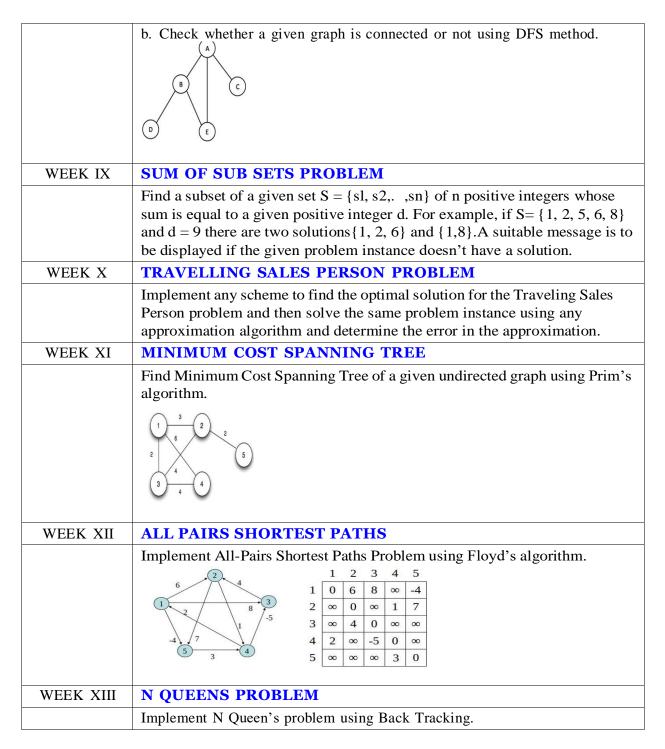
	PO 3	Make Use of recursive and non recursive algorithms for comparing traversal techniques of graph and tree with with the help of Investigate and define a problem and identify constraints, Manage the design process and evaluate outcomes and find innovative solutions.	5
CO 6	PO 2	Apply Back Tracking for developing solutions to puzzles with the Problem statement and system definition , Problem formulation and abstraction , Information and data collection , Model translation and solution development .	5
	PO 2	Apply Back Tracking for developing solutions to puzzles with the help of Investigate and define a problem and identify constraints, Manage the design process and evaluate outcomes and find innovative solutions	5
	PO 5	Apply Back Tracking for developing solutions to puzzles with the help of by Understanding of contexts in which engineering knowledge can be applied , understanding use of technical literature , Understanding of appropriate codes of practice and industry standards .	1
	PO 10	Build strong foundation on Back tracking for by communicating effectively with engineering community about games development.	2
	PO 12	Build strong foundation on Back tracking for career building in software development for games and puzzles	3
CO 7	PO 2	Make use of Branch and Bound for solving Optimal problems with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation and solution development.	5
	PO 3	Make use of Branch and Bound for solving Optimal problems with the help of Investigate and define a problem and identify constraints, Manage the design process and evaluate outcomes and find innovative solutions	5
	PO 5	Make use of Branch and Bound for solving Optimal problems by Understanding of contexts in which engineering knowledge can be applied, understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.	1
	PO 10	Build strong foundation on Branch and bound for career building by communicating effectively with engineering community about optimal solutions related to state space.	2
	PO 12	Build strong foundation on on Back tracking for career building in software development for games and puzzles and optimal solutions	3

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Table 10:						
Course Outcomes	Progra		am Outcomes			1c Program Specific Outcomes
	PO2	PO3	PO5	P10	PO12	PSO2
CO1	5	5	1			2
CO2	5	5	1	2		2
CO3	5	5	1			2
CO4	5	5	1	2		2
CO5	5	5				
CO6	5	5	1	2	3	
C07	5	5	1	2	3	

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO2, PO3,PO5	SEE Exams	PO2, PO3,PO5,PO1	Seminars 0.PO12	-
Laboratory Practices	PO2, PO3,PO5	Student Viva	PO2, PO3,PO10	Certification	-
Assignments	-				


XIII ASSESSMENT METHODOLOGY INDIRECT:

С	Early Semester Feedback	С	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XIV SYLLABUS:

WEEK I	QUICK SORT
	Sort a given set of elements using the quick sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the 1st to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
WEEK II	SYSTEM SPECIFICATIONS
	Implement merge sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.

WEEK III	WARSHALL'S ALGORITHM
WEEK III	
	a. Obtain the Topological ordering of vertices in a given digraph.
	3
WEEK IV	KNAPSACK PROBLEM
	Implement 0/1 Knapsack problem using Dynamic Programming.
WEEK V	SHORTEST PATHS ALGORITHM
	From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. 4999739971999719997199971999719997199971
WEEK VI	MINIMUM COST SPANNING TREE
	Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.
WEEK VII	TREE TRAVESRSALS
	Perform various tree traversal algorithms for a given tree.
WEEK VIII	GRAPH TRAVERSALS
	a. Print all the nodes reachable from a given starting node in a digraph using BFS method.

TEXTBOOKS

- 1. 1. Ellis Horowitz, Satraj Sahni, Sanguthevar Rajasekharan, Fundamentals of Computer Algorithms, Universities Press, 2nd Edition, 2015.
- 2. 2. Alfred V. Aho, John E. Hopcroft, Jeffrey D, The Design And Analysis Of Computer Algorithms, Pearson India, 1st Edition, 2013.

REFERENCE BOOKS:

- 1. 1. Levitin A, Introduction to the Design and Analysis of Algorithms^{II}, Pearson Education, 3rd Edition, 2012.
- 2. 2. Goodrich, M. T. R Tamassia, Algorithm Design Foundations Analysis and Internet Examples^{||}, John Wileyn and Sons, 1st Edition, 2001.

3. 3. Base Sara Allen Vangelder, Computer Algorithms Introduction to Design and Analysis^{||}, Pearson, 3rd Edition, 1999.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer- ence
1	Quick Sort	CO 1	T1:4.1, T2:1.1
2	Merge Sort	CO 1	T1:4.9,4.11, T2:7
3	Warshalls Algorithm	CO 2	T1:3, T2:8
4	Knap Sack Problems	CO 4	T1:6.6, T2:12
5	Shortest distance using Dijkstra's algorithm	CO3	T1:4.4, T2:10
6	Minimum spanning tree using Kruskal's algorithm	CO3	T1:4.6, T2:10
7	Tree Traversal Techniques using Non recursive techniques	CO 5	T2:15
8	Graph Traversal Techniques	CO 5	T2:18
9	Sum of Subsets using DP	CO 4	T2:18
10	Travelling salesman Problem	CO4	T2:18
11	Minimum spanning tree using Prims algorithm	CO3	T2:10
12	All Pairs Shortest Paths – Floyd Algorithms	CO7	T1:2, T2:1
13	N Queen Problem	CO6	T1:2, T2:1

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Implementation of Optimization problems using Branch and Bound.
2	Practical Implementation of Games and Puzzles using Back Tracking

Signature of Course Coordinator Dr K Suvarchala, Associate Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING				
Course Title	COMPU	COMPUTER NETWORKS				
Course Code	AIT003	AIT003				
Program	B.Tech	B.Tech				
Semester	IV	IV				
Course Type	Core	Core				
Regulation	R16					
		Theory		Pract	ical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Mr. V Muniraj Naidu, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB07	III	Computer Organization and Architecture

II COURSE OVERVIEW:

The main emphasis of this course is on the organization and management of local area networks (LANs) wide area networks (WANs). The course includes learning about computer network organization and implementation, obtaining a theoretical understanding of data communication and computer networks. Topics include layered network architectures, addressing, naming, forwarding, routing, communication reliability, the client-server model, and web and email protocols. The applications of this course are to design, implement and maintain a basic computer networks.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Computer Networks	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
50 %	Understand
30 %	Analyze
20 %	Evaluate

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Quiz AAT	10tai Maiks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

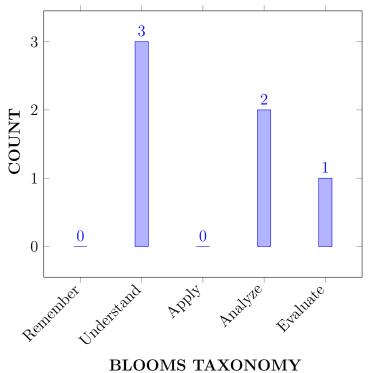
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	How computer network hardware and software operate
II	Investigate the fundamental issues driving network design
III	The data transmission through protocols across the network in wired and wireless using routing algorithms.

COURSE OUTCOMES: VII

After successful completion of the course, students should be able to:

CO 1	Describe the functions of each layer in OSI and TCP/IP model use	Understand
	to communicate over a network.	
CO 2	Make use of all various Techniques of Data-link layer for	Understand
	implementation of point-to-point flow and error control mechanism.	
CO 3	Identify the various network layer techniques for designing subnets	Understand
	and supernets and analyse packet flow on basis of routing algorithms.	
CO 4	Discuss Internetworking principles and Internet protocols (IP, IPv6	Analyze
	and OSPF) for connecting computers to form a computer network	
CO 5	Make use of common transport layer metrics used to measure network	Analyze
	performanceinclude latency, bandwidth, and throughput	
CO 6	Select client-server programming model and various application layer	Evaluate
	protocols (HTTP, SMTP, FTP and DNS) (OSI, TCP/IP) in terms of	
	design parameters and communication modes.for communicate with	
	servers and other applications.	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering	3	CIE/Quiz/AAT
	fundamentals, and an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	CIE/Quiz/AAT
PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering .community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	2	Discussion on Innovations / Presentation
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1	Short term courses

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	PROGRAM SPECIFIC OUTCOMES		Proficiency Assessed by
PSO 1	Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	2	Research papers / Group discussion / Short term courses

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 3	Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry.	1	Research papers / Industry exposure

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	-	-
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 4	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-		\checkmark	-	\checkmark
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	\checkmark	\checkmark	-	\checkmark
CO 6	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-		-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Understand the importance of network types, suitable transmission medium, devices and the Internet in supporting business communications and everyday activities by understanding fundamentals of Computer engineering specialization and scientific principles.	1
CO 2	PO 1	Understand the importance of network types, suitable transmission medium, devices and the Internet in supporting business communications and everyday activities by understanding fundamentals of Computer engineering specialization and scientific principles.	2
	PO 2	Understand the problem statement and choose appropriate techniques by analyzing the importance of data hiding interpretation of results .	4
	PO 10	Recognize the importance of error detection and correction techniques for optimizing the efficiency of the networks by communicating effectively with engineering community.	2
	PO 12	Build strong foundation of the performance of a single link, logical process-to-process (end-to-end) channel, and a network as a whole (latency, bandwidth, and throughput) for career building by communicating effectively with engineering community .	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.			
CO 3	PO 1	Explain the concept of Hamming distance, and the significance of the minimum Hamming Distance and its relationship to errors by understanding mathematical principles and scientific principles .	3			
	PO 2	Understand the problem statement and choose appropriate techniques by analyzing the importance of data hiding interpretation of results .	4			
	PO 3	Understand the concepts E-mail, telnet, secure shell for innovative solutions, evaluate the solution of the complex issues.	3			
	PO 10	Recognize the importance of error detection and correction techniques for optimizing the efficiency of the networks by communicating effectively with engineering community.	2			
	PSO 1	Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	6			
CO 4	PO 1	Describe the relationship between data and signals, their types, behavior, properties, characterization and transmission through the physical layer by understanding mathematical principles and scientific principles.	2			
	PO 3	Understand the concepts E-mail, telnet, secure shell for innovative solutions, evaluate the solution of the complex issues.	3			
	PO 4	Evaluate the performance of a single link, logical process-to-process (end-to-end) channel, a and a network as a whole (latency, bandwidth, and throughput).	2			
	PO 10	Recognize the importance of error detection and correction techniques for optimizing the efficiency of the networks by communicating effectively with engineering community.	2			
	PSO 1	Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	6			
	PSO 3	Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry.	3			
CO 5	CO 5 PO 1 Understand the basic design problems of data communications including the checksum, flow control, error control, reliability by apply the knowledge of computer engineering fundamentals and mathematical principles.					

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Understand the problem statement and choose appropriate techniques by analyzing analyzing the importance of data hiding interpretation of results .	3
	PO 3	Understand the concepts E-mail, telnet, secure shell for innovative solutions, evaluate the solution of the complex issues.	3
	PO 12	Build strong foundation of the performance of a single link, logical process-to-process (end-to-end) channel, and a network as a whole (latency, bandwidth, and throughput) for career building by communicating effectively with engineering community.	2
	PSO 1	Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	6
	PSO 3	Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry.	3
CO 6	PO 1	Describe the reliable inter-node transmission of chunks and congestion control methods for reliable data transmission across the network by apply theknowledge of computer engineering fundamentals and mathematical principles.	2
	PO 3	Understand the concepts E-mail, telnet, secure shell for innovative solutions, evaluate the solution of the complex issues.	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	PO	РО	РО	PO	PO	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	2	4	-	-	-	-	-	-	-	2	-	4	-	-	-
CO 3	3	4	3	-	-	-	-	-	-	2	-	-	6	-	-
CO 4	2	-	3	2	-	-	-	-	-	2	-	-	6	-	3
CO 5	2	3	3	-	-	-	-	-	-	-	-	2	6	-	3
CO 6	2	-	3	-	-	-	-	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	PO	PO	РО	PO	РО	PO	РО	РО	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	33.3	-	-	-	-	-	-	-	-	-	-		-	-	-

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO	РО	РО	PO	РО	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 2	66.7	40	-	-	-	-	-	-	-	40	-	33.3	-	-	-
CO 3	100	40	30	-	-	-	-	-	-	40	-	-	100	-	-
CO 4	66.7	-	30	18	-	-	-	-	-	40	-	-	100	100	-
CO 5	66.7	30	30	-	-	-	-	-	-	-	-	17	100	100	-
CO 6	66.7	30	-	-	-	I	-	-	-	-	-	-	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

- **1** -5 <C \leq 40% Low/ Slight
- $\pmb{2}$ 40 % < C < 60% Moderate

 $\boldsymbol{3}$ - $60\% \leq C < 100\%$ – Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	PO	РО	PO	РО	РО	РО	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	2	-	1	-	_	-
CO 3	3	2	1	-	-	-	-	-	-	1	-	-	3	-	-
CO 4	3	-	1	1	-	-	-	-	-	1	-	-	3	3	-
CO 5	3	1	1	-	-	-	-	-	-	-	-	1	3	_	3
CO 6	2	-	1	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	15	5	4	1	-	-	-	-	-	4	-	2	9	3	3
AVERAGE	2.5	1.6	1.3	1.0	-	-	-	-	-	1.3	-	1.0	3.0	1.0	1.0

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	PO 1,PO 2, PO 3, PO 10, PO 12	SEE Exams	PO 1,PO 2, PO 3, PO 10, PO	Seminars	PO 2
Laboratory Practices	-	Student Viva	- 12	Certification	-
Term Paper	-	5 Minutes Video	PO8	Open Ended Experiments	PO10
Assignments	PO 1				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Х	Early Semester Feedback	\checkmark	End Semester OBE Feedback
Х	Assessment of Mini Projects by Experts		

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO PHYSICAL LAYER
	Introduction: Networks, network types, internet history, standards and administration; Network models: Protocol layering, TCP/IP protocol suite, the OSI model; Introduction to physical layer: Data and signals, transmission impairment, data rate limits, performance; Transmission media: Introduction, guided media, unguided media; Switching: Introduction, circuit switched networks, packet switching.
MODULE II	INTRODUCTION TO DATA LINK LAYER
	Introduction: Link layer addressing, error detection and correction: Cyclic codes, checksum, forward error correction: Data link control: DLC services, data link layer protocols, HDLC, point to point protocol, media access control: Random access, controlled access, channelization, connecting devices and virtual LAN: Connecting devices, virtual LAN.
MODULE III	THE NETWORK LAYER
	Network layer design issues, routing algorithms, congestion control algorithms, quality of service, and internetworking. The network layer in the internet: IPv4 addresses, IPv6, internet control protocols, OSPF (Open Shortest Path First), BGP (Border Gateway Protocol), IP, (Internet Protocol), ICMP (internet control message protocol.
MODULE IV	TRANSPORT LAYER
	The transport service, elements of transport protocols, congestion control; The internet transport protocols: UDP (User Datagram Protocol), TCP (Transport Control Protocol), performance problems in computer networks, network performance measurement.
MODULE V	APPLICATION LAYER
	Introduction, client server programming, WWW (World Wide Web) and HTTP (Hyper Text Transfer Protocol), FTP (File Transfer Protocol), E-mail, telnet, DNS (Domain Naming System), SNMP (Simple Network Management Protocol).

TEXTBOOKS

- 1. Behrouz A. Forouzan, "Data Communications and Networking", Tata McGraw-Hill, 5th Edition, 2012.
- 2. Andrew S. Tanenbaum, David.j.Wetherall, "Computer Networks", Prentice-Hall, 5th Edition, 2010.

REFERENCE BOOKS:

- 1. Douglas E. Comer, "Internetworking with TCP/IP", Prentice-Hall, 5th Edition, 2011
- 2. Peterson, Davie, Elsevier, "Computer Networks", 5th Edition, 2011
- 3. Comer, "Computer Networks and Internets with Internet Applications", 4th Edition, 2004.
- 4. Chwan-Hwa Wu, Irwin, "Introduction to Computer Networks and Cyber Security", CRC publications, 2014.

WEB REFERENCES:

- 1. https://www.geeksforgeeks.org/computer-network-tutorials/
- 2. http://computer.howstuffworks.com/computer-networking-channel.htm

- 3. http://www.ietf.org
- 4. http://www.rfc-editor.org/

COURSE WEB PAGE:

- $1.\ https://www.mooc-list.com/course/networking-introduction-computer-networking-stanford-university$
- 2. https://lagunita.stanford.edu/courses/Engineering/Networking/Winter2014/about.
- 3. https://technet.microsoft.com/en-us/network/default.aspx

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	-
	CONTENT DELIVERY (THEORY)		
1	Introduction: Networks, network types	CO1	T1: 1.1
2	Internet history	CO1	T1:1.2
3	Standards and administration	CO1	T1: 1.3
4	Network models: Protocol layering	CO1	T1:1.4
5	TCP/IP protocol suite	CO1	T1: 1.5
6	The OSI model Transmission media: guided media, unguided media	CO1	T1:7.1
7	Switching	CO1	T1: 2.14
8	Circuit switched networks	CO1	T1: 8.1
9	Packet switching	CO1	T1: 8.2
10	Link layer addressing	CO2	T1: 10.0
11	Error detection and correction	CO2	T1: 10.1
12	Cyclic codes	CO2	T1: 10.1
13	Checksum	CO2	T1: 10.2
14	Forward error correction	CO2	T1: 10.2
15	Data link control: DLC services	CO2	T1: 11.1
16	Data link layer protocols	CO2	T1: 11.2
17	Media access control: Random access	CO2	T1: 11.3
18	Virtual LAN	CO2	T1:15.3
19	Network layer design issues	CO3	T1:19.1
20	Routing algorithms	CO3	T1: T1:19.1
21	Congestion control algorithms	CO3	T1:19.1
22	Quality of service and Internetworking	CO3	T1:19.1

23			
	The network layer in the internet: IPv4 addresses	CO3	T1:19.1
24	IPv6, internet control protocols	CO3	T1:19.2
25	OSPF (Open Shortest Path First)	CO3	T1:19.2
26	IP (Internet Protocol)	CO4	T1:19.1
27	The transport service	CO4	T1:23.0
28	Elements of transport protocols	CO4	T1:23.1
29	Congestion control	CO4	T1:23.1
30	The internet transport protocols: UDP (User Datagram Protocol)	CO4	T1:23.2
31	TCP (Transport Control Protocol)	CO4	T1:23.3
32	Performance problems in computer networks	CO4	T1:23.3
33	Network performance measurement	CO4	T1:23.3
34	Client server programming	CO5	T1:25.1
35	WWW (World Wide Web)	CO5	T1:25.2
36	HTTP (Hyper Text Transfer Protocol)	CO5	T1:25.3
37	FTP (File Transfer Protocol)	CO5	T1:25.4
38	E-mail, telnet	CO5	T1:25.5
39	DNS (Domain Naming System)	CO5	T1:25.6
40	SNMP (Simple Network Management Protocol)	CO5	T1:25.7
	PROBLEM SOLVING/ CASE STUDIES		
41	With a network with bandwidth of 10 Mbps can pass only an average of 12,000 frames per minute with each frame carrying an average of 10,000 bits. What is the throughput of this network?	CO 1	T2:18.3.4, 18.3, 4.17
42	Demonstrate the Laplace transform of the message delay in FDMA in which every message contains a random number of packets. Compare the expected message delay with that of TDMA	CO 2	T2:24.2,28.
42	FDMA in which every message contains a random number of packets. Compare the expected message delay with that of	CO 2 CO 3	T2:24.2,28. T1: 276-296
	FDMA in which every message contains a random number of packets. Compare the expected message delay with that of TDMAWhy are we running out of IPv4 addresses? How does IPv6		T1:
43	 FDMA in which every message contains a random number of packets. Compare the expected message delay with that of TDMA Why are we running out of IPv4 addresses? How does IPv6 solve this problem? Discuss in detail about the connection establishment and 	CO 3	276-296 T2:24.3.6,
43	 FDMA in which every message contains a random number of packets. Compare the expected message delay with that of TDMA Why are we running out of IPv4 addresses? How does IPv6 solve this problem? Discuss in detail about the connection establishment and release in TCP. Discuss about application layer and client server 	CO 3 CO 4	T1: 276-296 T2:24.3.6, 24.3.9 T2:25.1,
43 44 45	 FDMA in which every message contains a random number of packets. Compare the expected message delay with that of TDMA Why are we running out of IPv4 addresses? How does IPv6 solve this problem? Discuss in detail about the connection establishment and release in TCP. Discuss about application layer and client server programming Interpret the following sequences of characters (In Hexadecimals) received by a TELNET client or server. a. FFFB01 c. FFF4 FFFE01 	CO 3 CO 4 CO 5 CO 5	T1: 276-296 T2:24.3.6, 24.3.9 T2:25.1, 25.1.2 T2:26.1.2, 26.2, 26.3,
43 44 45	 FDMA in which every message contains a random number of packets. Compare the expected message delay with that of TDMA Why are we running out of IPv4 addresses? How does IPv6 solve this problem? Discuss in detail about the connection establishment and release in TCP. Discuss about application layer and client server programming Interpret the following sequences of characters (In Hexadecimals) received by a TELNET client or server. a. FFFB01 c. FFF4 FFFE01 d. FFF9 	CO 3 CO 4 CO 5 CO 5	T1: 276-296 T2:24.3.6, 24.3.9 T2:25.1, 25.1.2 T2:26.1.2, 26.2, 26.3,
43 44 45 46	 FDMA in which every message contains a random number of packets. Compare the expected message delay with that of TDMA Why are we running out of IPv4 addresses? How does IPv6 solve this problem? Discuss in detail about the connection establishment and release in TCP. Discuss about application layer and client server programming Interpret the following sequences of characters (In Hexadecimals) received by a TELNET client or server. a. FFFB01 c. FFF4 FFFE01 d. FFF9 DISCUSSION OF DEFINITION AND TERMINO 	CO 3 CO 4 CO 5 CO 5 OLOGY	$\begin{array}{c} T1:\\ 276-296\\ T2:24.3.6,\\ 24.3.9\\ T2:25.1,\\ 25.1.2\\ T2:26.1.2,\\ 26.2,\\ 26.3,\\ 26.4,26.5\\ \end{array}$
43 44 45 46 1	 FDMA in which every message contains a random number of packets. Compare the expected message delay with that of TDMA Why are we running out of IPv4 addresses? How does IPv6 solve this problem? Discuss in detail about the connection establishment and release in TCP. Discuss about application layer and client server programming Interpret the following sequences of characters (In Hexadecimals) received by a TELNET client or server. a. FFFB01 c. FFF4 FFFE01 d. FFF9 DISCUSSION OF DEFINITION AND TERMINO Discuss in detail about Introduction to Physical Layer 	CO 3 CO 4 CO 5 CO 5 OLOGY CO 1	T1: 276-296 T2:24.3.6, 24.3.9 T2:25.1, 25.1.2 T2:26.1.2, 26.2, 26.3, 26.4,26.5 T2:2.1
43 44 45 46 1 2	 FDMA in which every message contains a random number of packets. Compare the expected message delay with that of TDMA Why are we running out of IPv4 addresses? How does IPv6 solve this problem? Discuss in detail about the connection establishment and release in TCP. Discuss about application layer and client server programming Interpret the following sequences of characters (In Hexadecimals) received by a TELNET client or server. a. FFFB01 c. FFF4 FFFE01 d. FFF9 DISCUSSION OF DEFINITION AND TERMINOPIES DISCUSSION OF DEFINITION AND TERMINOPIES and the concept of introduction to Data Link Layer 	CO 3 CO 4 CO 5 CO 5 OLOGY CO 1 CO 2	T1: 276-296 T2:24.3.6, 24.3.9 T2:25.1, 25.1.2 T2:26.1.2, 26.2, 26.3, 26.4,26.5 T2:2.1 T2:2.3

1	Illustrate the differences between the OSI and TCP/IP Reference Models.	CO 1	T2:2.1
2	Recognize knowledge on previous versions of internet	CO 2	T2:2.3
3	Understands on the various standards and administrations	CO 3	T2:2.3.1
4	Discuss on networks models and understand layering scenarios and protocols	CO 4	T2:7.2,7.3
5	Demonstrate on TCP/IP models	CO 5	T2:10.3.1
6	Demonstrate on Guided and Unguided medium.	CO 5	T2:13.3.2, 13.4.1

Signature of Course Coordinator Mr. S Vinod Kumar , Assistant Professor

HOD,IT

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTE	COMPUTER SCIENCE AND ENGINEERING			
Course Title	DATABAS	DATABASE MANAGEMENT SYSTEMS			
Course Code	ACS005				
Program	B.Tech				
Semester	IV	IV			
Course Type	Core				
Regulation	R16				
		Theory		Prac	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	1	4	3	2
Course Coordinator	Dr K Suvarchala, Associate Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS001	Ι	Computer Programming
B.Tech	ACS002	II	Data Structures

II COURSE OVERVIEW:

Database management system is intended to provide a clear understanding of fundamentals with emphasis on their applications to create and manage large data sets. It emphasizes on technical overview of database software to retrieve data from database. This includes database design principles, normalization, concurrent transaction processing, security, recovery and file organization techniques. This will provide adequate knowledge to understand future evolutions of data technologies.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Database Managment Systems	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	White Board	\checkmark	Assignments	x	MOOC
\checkmark	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
50%	Understand
50%	Apply
0%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Component Theory		Total Marks
Type of Assessment	CIE Exam	Quiz \AAT	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

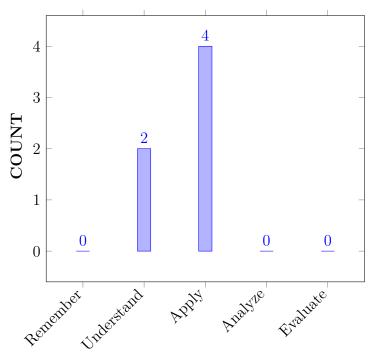
This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course

is given in table.

Five Minutes Video	METE	Complex Problem Solving	
40%	40%	20%	

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	Efficient ways of designing database by encapsulating data requirements for business and organizational scenarios
II	Analysing and developing sophisticated queries in database language SQL for extracting information from large datasets
III	Enhancing skills in developing and managing data efficiently in related engineering problems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Outline the importance of database system, RDBMS and its	Understand
	functionalities for voluminous data storage and management	
CO 2	Model the real world database systems using Entity	Apply
	Relationship Diagrams from the requirement specification.	
CO 3	Construct queries in Relational Algebra, Relational Calculus and	Apply
	SQL to retrieve desired information.	
CO 4	Identify appropriate normalization technique using	Apply
	dependencies for controlling the redundancy of data in database.	
CO 5	Demonstrate ACID properties of Transaction processing,	Understand
	currency control protocols and recovery to preserve the database	
	in a consistent state.	
CO 6	Organize data storage and file organization techniques using tree	Apply
	and hash indices for effective query processing	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering
	activities with the engineering community and with society at large, such as,
	being able to comprehend and write effective reports and design
	documentation, make effective presentations, and give and receive clear
	instructions.
PO 11	Project management and finance: Demonstrate knowledge and
	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects
	and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation
	and ability to engage in independent and life-long learning in the broadest
	context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2.6	SEE / CIE / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2.16	SEE / CIE / AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	SEE / CIE / AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1.5	SEE / CIE / AAT

PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	SEE / CIE / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	SEE / CIE / AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	1	SEE / CIE / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Profi- ciency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	1.33	Quiz/AAT
PSO 2	F ocus on improving software reliability, network security / information retrieval systems.	2.5	Quiz/AAT
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1.6	Quiz/AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES													
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	-	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	\checkmark	\checkmark

XII JUSTIFICATIONS FOR CO – PO / PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Demonstrate basics of databases, functions of database management system and types of users to describe large sets of data with knowledge of mathematics, Science and Engineering Fundamentals.	3
	PO 2	Define the relational data model, constraints and keys to maintain integrity of data with the Problem statement and system definition, Problem formulation and abstraction , Information and data collection, Model translation	3
	PO 10	Understand and Outline fundamental concepts of databases with clarity .	1
CO 2	PO 2	Model the real world database systems using Entity Relationship Diagrams from the requirement specification with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	5
	PO 3	Model the real world database systems using Entity Relationship Diagrams from the requirement specification with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation.	5
	PO 4	Model the real world database systems using Entity Relationship Diagrams from the requirement specification with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation.	6
	PO 10	Develop logical model for real time applications to get clarity on requirements.	1
	PO 12	Choose appropriate techniques to model Database project using advanced concepts of CSE to meet industry trends	3
	PSO 1	Model the real world database systems using Entity Relationship Diagrams from the requirement specification by using sequence of steps.	2
	PSO 2	Design ER model for efficient any data retrieval to develop database projects	2
	PSO 3	Develop a model for real time database application for any Enterprise.	1
CO 3	PO 1	Outline the use of relational algebra, relational calculus and SQL for creation and management of database with knowledge on fundamentals of mathematics such as set theory and engineering basics.	2

	PO 2	Build queries in Relational Algebra , Relational Calculus and SQL to retrieve desired information with detail Problem statement and system definition, Problem formulation and abstraction , Information and data collection, Model translation and validation	5
	PO 3	Illustrate the use of Relational Algebra , Relational Calculus and SQL for database creation and querying with the help of Investigate and define a problem , Identify constraints ,find creative solution , Manage the design process and evaluate outcomes	7
	PO 4	Develop RA, RC and SQL queries for database creation and maintenance by Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature , appropriate codes of practice , industry standards and apply system approach to output qualitative output	6
	PO 5	Select appropriate techniques to retrieve information using modern tools such as SQL	1
	PO 10	Develop queries in SQL , RA and RC for retrieving information in real time applications with clear understanding of needs	1
	PO 12	Choose appropriate techniques to model Database project using advanced concepts of CSE to meet industry trends	3
	PSO 1	Demonstrate RA, RC and SQL queries for database creation and maintenance by using a set of instructions.	2
	PSO 2	Identify clauses and verbs of SQL for retrieving Information from database	2
	PSO 3	Selectl for real time database application for any Enterprise.	1
CO 4	PO 1	Illustrate the definition of Functional Dependencies, Inference rules and minimal sets of FD's to maintain data integrity basic fundamentals of mathematics and engineering fundamentals.	2
004	PO 2	Illustrate the definition of Functional Dependencies, Inference rules and minimal sets of FD's to maintain data integrity with the Problem statement and system definition, Problem formulation and abstraction , Information and data collection, Model translation.	7
	PO 3	Make use of normalization techniques for reducing redundancy of database to Investigate and define a problem and identify constraints ,Understand customer and user needs, for creating and Managing the design process and evaluate outcomes.	5

	PO 4	Apply normalization techniques to normalize a database by Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature , Understanding of appropriate codes of practice and industry standards.	2
	PO 10	Develop efficient logical model of database using normalization for real time database applications with clear understanding of enterprise needs.	1
	PSO 1	Make use of normalization to identify the need of constraints and design appropriate techniques to develop data centric applications .	3
	PSO 2	Apply normalization to design efficient information retrieval system .	1
	PSO 3	Apply dependencies for normalization and extend the study for advanced frameworks and platforms of data storage.	1
	PO 1	Demonstrate the concepts of transaction ACID properties and recovery techniques in data manipulation with basic engineering fundamentals.	1
CO 5	PO 2	Outline concurrent transaction processing, recovery techniques in transaction failure by formulating and stating the problem with constraints using Information management and data collection.	5
	PO 3	Make use of concurrency control protocols to preserve the database in a consistent state by Investigate and define a problem and identify constraints ,Understand customer and user needs, Manage the design process and evaluate outcomes	3
	PO 4	Utilize concurrency control protocols to preserve the database in a consistent state by Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature.	2
	PO 10	Build a database which will always in a consistent state during concurrent transaction processing with reference to security and integrity.	1
	PSO 3	Extend concurrent transactions and recovery processing to manage large data sets by using innovative technical tools and advanced frameworks	1
CO 6	PO 1	Describe disk storage devices, file organization to select efficient data storage with basic fundamentals of mathematics and engineering fundamentals	2
	PO 2	Apply indexing ,hashing techniques to access the records from the file effectively through problem statement and formulation with data collection and validation in designing experiment and developing effective data retrieval system	7

PO 3	Apply indexing techniques to access the records from the file effectively by Investigate and define a problem and identify constraints ,Understand customer and user needs, Manage the design process and evaluate outcomes,.	5
PO 10	Make use of efficient data storage devices to implement effective retrieval techniques with clear understanding of data structures	1
PSO 2	Outline the indexing and hashing techniques for efficient and secure retrieval of data in query processing .	2
PSO 3	Extend storage devices characteristics and organization of data with innovative technical tools and advanced frameworks	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO / PSO MAPPING:

COURSE	Pro	Program Outcomes/ No. of Key Competencies Matched													5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	-	-	-	-	-	-	-	1	-	-	-	-	
- CO 2	-	5	5	6	-	-	-	-	-	1	-	2	2	2	1
CO 3	2	5	7	6	-	-	-	-	-	1	-	2	2	2	1
CO 4	2	7	5	2	-	-	-	-	-	1	-	-	3	1	1
- CO 5	1	5	3	2	-	-	-	-	-	1	-	-	-	-	1
CO 6	2	7	5	-	-	-	-	-	-	1	-	-	-	1	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO / PSO:

COURSE		PROGRAM OUTCOMES													PSO'S			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2			
CO 1	100	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0			
CO 2	0.0	50.0	50.0	54.5	0.0	0.0	0.0	0.0	0.0	20.0	0.0	37.5	33.3	100	50.0			
CO 3	66.7	50.0	70.0	54.5	100	0.0	0.0	0.0	0.0	20.0	0.0	25.5	33.3	100	50.0			
CO 4	66.7	70.0	50.0	27.3	0.0	0.0	0.0	0.0	0.0	20.0	0.0	00.0	50.0	50.0	50.0			
CO 5	33.3	50.0	30.0	27.3	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	50.0			
CO 6	66.7	70.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	50.0	50.0			

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\pmb{0}$ - $0 \leq C \leq 5\%$ – No correlation

2 - 40% C < 60% – Moderate

 $1-5 < C \le 40\% - Low/Slight$

3 - ($60\% \le$	C <	100% -	$\operatorname{Substantial}$	$/\mathrm{High}$
-------	------------	-----	--------	------------------------------	------------------

COURSE		PROGRAM OUTCOMES													PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	1	-	-	-	-	-	-	-	1	-	-	-	-	-		
CO 2	0	2	2	2	-	-	-	-	-	1	-	1	1	3	2		
CO 3	3	2	3	2	3	-	-	-	-	1	-	1	1	3	2		
CO 4	3	3	2	1	-	-	-	-	-	1	-	-	2	2	2		
CO 5	1	2	1	1	-	-	-	-	-	1	-	-	-	-	2		
CO 6	3	3	2	-	-	-	-	-	-	1	-	-	-	2	2		
TOTAL	13	13	10	6	3	-	-	-	-	6	-	2	4	10	8		
AVERAGE	2.6	2.16	2	3	-	-	-	-	-	1	-	1	1.33	2.5	1.6		

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	1	SEE Exams	\checkmark	Assign- ments	✓
Laboratory Practices	-	Student Viva	_	Certifica- tion	-
Term Paper	-	5 Minutes Video	\checkmark	Open Ended Ex- periments	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVIII SYLLABUS:

MODULE I	CONCEPTUAL MODELING INTRODUCTION
	Introduction to Data bases: Purpose of Database Systems, View of Data, Data Models, Database Languages, Database Users, Various Components of overall DBS architecture, Various Concepts of ER Model, Basics of Relational Model.
MODULE II	RELATIONAL APPROACH

	Relational algebra and calculus: Relational algebra, selection and projection, set operations, renaming, joins, division, examples of algebra queries, relational calculus: Tuple relational calculus, Domain relational calculus, expressive power of algebra and calculus.					
MODULE III	SQL QUERY - BASICS, RDBMS - NORMALIZATION					
	SQL – Data Definition commands, Queries with various options, Mata manipulation commands, Views, Joins, views, integrity and security; Relational database design: Pitfalls of RDBD, Lossless joindecomposition, Functional dependencies, Armstrong Axioms, Normalization for relational databases 1st 2nd and 3rd normal forms, Basic definitions of MVDs and JDs, 4th and 5th normal forms Theory of games: Introduction, terminology, solution of games with saddle points and without saddle points, 2 x 2 games, dominance principle, m x 2 and 2 x n games, graphical method.					
MODULE IV TRANSACTION MANAGEMENT						
	Transaction processing: Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability. Concurrency Control: Lock-Based Protocols, Timestamp-Based Protocols, Validation-Based Protocols,Multiple Granularity, Multiversion Schemes, Deadlock Handling. Recovery: Failure Classification, Storage Structure ,Recovery and Atomicity, Log-Based Recovery, Shadow Paging, Recovery With Concurrent Transactions Buffer Management .					
MODULE V	DATA STORAGE AND QUERY PROCESSING					
	Data storage: Overview of Physical Storage Media, Magnetic Disks, Storage Access, File Organization, Organization of Records in Files. Indexing and Hashing: Basic Concepts: Ordered Indices, B+-Tree Index Files, B-Tree Index Files, Static Hashing, Dynamic Hashing, Comparison of Ordered Indexing and Hashing.Query Processing: Overview, Measures of Query Cost.					

TEXT BOOKS

.

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw-Hill 6th Edition, 2017.
- 2. Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, 6th Edition, 2014. 2. Raghu Ramakrishnan, "Database Management System", Tata McGraw

REFERENCE BOOKS:

- 1. Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 3rd Edition, 2007.
- 2. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", Pearson Education, United States, 1st Edition, 2000.
- 3. Peter Rob, Corlos Coronel, "Database System, Design, Implementation and Management", Thompson Learning Course Technology, 5th Edition, 2003.

COURSE WEB PAGE:

https://nptel.ac.in/courses/112105171/1

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference				
	OBE DISCUSSION						
1	1 CD based on OBE for DBMS course						
CONTENT DELIVERY (THEORY)							
1	Introduction to Databases	CO 1	T2:1.1-1.5				
2	File System vs. Database system	CO 1	T2: 1.6-1.8 T1.2.1				
3	Data Models and Levels of Abstraction	CO 1	T2:1.1 - 1.5				
4	Database users and Database languages, DBS architecture	CO 1	T1:1.5, 1.4.2, 1.4.3				
5	Basics of ER Model	CO 2	T1:2.2				
6	Extended ER Model	CO 2	T1:3.1				
7	Basics of Relational Model	CO 1	T1:3.1,3.2 R1:6.2-6.8				
8	Logical Database design.	CO 1	T1: 3.1				
9	Relational database languages	CO 3	T1:4.1				
10	Basic operations of Relational algebra	CO 3	T1:4.1				
11	Derived operations of Relational algebra, Extended operations of Relational algebra	CO 3	T1: 4.1				
12	Queries in Relational algebra	CO 3	T1:4.1,4.2.2				
13	Tuple Relational Calculus	CO 3	T1:4.3				
14	Domain Relational calculus	CO 3	T1:4.3				
15	Intiegrity constraints – RDB Design	CO 4	T1: 3.1				
16	Pitfalls of RDBD	CO 4	T1:3.1				
17	Lossless join decomposition	CO 4	T1: 9.1,19.1.3				
18	Functional dependencies Armstrong Axioms	CO 4	T2: 19.4				
19	Closure of set of FDs and Attribute Closure, Canonical Cover	CO 4	T2: 19.4				
20	Purpose of Normalization – RDBD.	CO 4	T1: 9.1				
21	1st, and 2nd normal forms.	CO 4	T1: 9.1				
22	3rd and BCNF normal forms.	CO 4	T1: 9.1				
23	4NF, 5NF Normal forms and Other Dependencies.	CO 4	T2: 19.8-199				
24	Transaction Concept, Transaction State	CO 4	T2:15.1				
25	Implementation of Atomicity and Durability.	CO 5	T2:15.1				
26	Serial Vs. Nonserial Transactions.	CO 5	T2:15.1				
27	Serializability – Conflict Serializability.	CO 5	T2: 16.1				

28	View Serializability.	CO 5	T2: 16.3
29	Lock-Based Protocols.	CO 5	T2: 16.1
30	Deadlock Handling – Concurrent Transactions	CO 5	T2: 16.3
31	Implementation of locks and Multiple Granularity.	CO 5	T2: 16.1
32	Timestamp-Based and Validation-Based Protocols	CO 5	T2: 16.3
33	Transaction Recovery and LogBbased Recovery techniques	CO 5	T2:17.1
34	Recovery Algorithms – Buffer Management	CO 5	T2:17.1
35	Physical Storage Media	CO 6	T1: 8.1
36	Data Access and File Organization Techniques	CO 6	T1: 8.1
37	B+ Tree index File Organization	CO 6	T1: 8.3-8.4
38	B-Tree and Bit Index File Organization	CO 6	T1: 10 10.2
39	Static and Dynamic Hashing Techniques	CO 6	T1: 8.3-8.4
40	Query Processing : Overview	CO 6	T1: 10 10.2
	PROBLEM SOLVING/ C	CASE STUDI	ES
1	SQL – DDL Statements	CO 3	R1.5
2	SQL – DML Statements.	CO 3	R1.5.1
3	SQL – Builtn funcions	CO 3	R1.5.2
4	SQL – SELECT Statement	CO 3	R1.5.3
5	SQL - Join operation .	CO 3	R1.5.4
6	SQL – Subqueries.	CO 3	R1.5.5
7	SQl – Views	CO 3	R1.5.6
8	SQL – Stored Programs and stored Functions	CO 3	R1.5.7
9	SQL - Triggers	CO 3	R1.5.8
10	Problems on Rlational algebra and Relational Calculus	CO 3	R1.4
11	Problems on ER Model	CO 2	R1.2
12	Problems on Concurrent Transactions and Recovery	CO 5	R1.3
13	Problems on Normalization.	CO 4	R1.3
14	Problems on Functional dependencies.	CO 4	R1.3
15	Problems on B-trees and hashing	CO 6	R1.9, R1.10
	DISCUSSION ON DEFINITION	AND TERM	INOLOGY
1	Data, Information, Database, DBMS, basics of ER modelling, FMS	CO 1, CO 2	T1.1, R1.1,2
2	Relation, keys, relational algebric operators, relational calculus	CO 3	R1.4

3	SQL basics, normal forms , dependencies	CO 3,CO 4	R1.5
4	Transaction, ACID properties, Concurrency control, Recovery management	CO 5	R1.18, 19,20
5	Storage devices, Data Organization Techniques, B trees, Hashing	CO 6	R1.7, 8, 9,10
	DISCUSSION ON QUES	STION BA	NK
1	ER diagrams, Logical design of database	CO 1, CO 2	T1.1, R1.1,2
2	Quering in Relational algebra , relational calculus	CO 3	R1.4
3	SQL queries, Normal forms, Key identification, FDs	CO 3,CO 4	R1.5
4	Serializability problems, concurrent transactions, lock based protocols, Recovery problems	CO 5	R1.18, 19,20
5	File Organization Techniques, B trees, Hashing Techniques, Query optimization techniques	CO 6	R1.7, 8, 9,10

Course Coordinator Dr K.Suvarchala, Associate Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPL	COMPUTER SCIENCE AND ENGINEERING					
Course Title	THEOR	THEORY OF COMPUTATION					
Course Code	AIT002	AIT002					
Program	B.Tech						
Semester	IV	IV					
Course Type	Core	Core					
Regulation	R-16	R-16					
		Theory Practical					
Course Structure	Lecture	Lecture Tutorials Credits Laboratory Credits					
	3 - 3						
Course Coordinator	Ms Divyavani, Assistant Professor						

I COURSE PRE-REQUISITES:

UG	AHSC010	11	Probability and Statistics.
UG	ACS002	П	Data Structures
UG	AHS013	111	Discrete Mathematical Structures

II COURSE OVERVIEW:

This course focuses on infinite languages in finite ways, and classifies machines by their power to recognize. It includes finite automata, regular grammar, push down automata, context free grammars, and Turing machines It is applicable in designing phrasing and lexical analysis of a compiler, genetic programming and recursively enumerable languages

III MARKS DISTRIBUTION:

Subject	SEE Examination CIE Examin		Total Marks	
THEORY OF	70 Marks	30 Marks	100	
COMPUTATION				

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	х	MOOC
x	Open Ended Experiments	х	Seminars	х	Mini Project	х	Videos
х	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
60 %	Understand
20%	Apply
10%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks		
Type of Assessment	CIE Exam	Quiz \AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

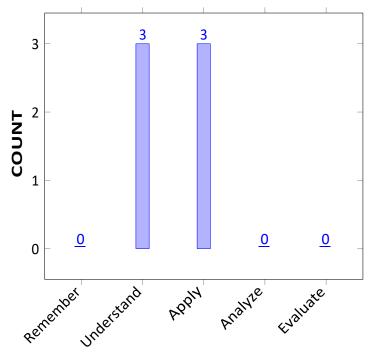
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The fundamental knowledge of automata theory which is used to solve computational problems
II	The reorganization of context free language for processing infinite information using push down automata.
111	The computer based algorithms with the help of an abstract machine to solve recursively Enumerable problems

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of deterministic finite automata and non deterministic finite automata for modeling lexical analysis and text editors.	Apply
CO 2	Extend regular expressions and regular grammars for parsing and designing programming languages.	Understand
CO 3	Illusrate the pumping lemma on regular and context free languages for perform negative test .	Understand
CO 4	Demonstarte context free grammars, normal forms for generating patterns of strings and minimize the ambiguity in parsing the given strings.	Understand
CO 5	Construct push down automata for context free languages for developing parsing phase of a compiler.	Apply
CO 6	Apply Turing machines and Linear bounded automata for recognizing the languages, complex problems.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations

	Program Outcomes
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE / SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2.5	AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2.5	SEE / AAT

PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide vali- conclusions.		CIE / Quiz / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

F	PROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	2.3	Group discussion/ Short term courses
PSO 3	Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry.	2.0	Research papers/ Industry exposure

3 = High; **2** = Medium; **1** = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES										PSO'S				
COURSE	РО	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	>	-	-	-	-	-	-	-	-	-	-		-	-	\checkmark
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 3	>	<	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	>	<	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark		-	-	-	-	-	-	-	\checkmark	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Solve the lexical analysis and text editor's using deterministic finite automata and non- deterministic finite automata using the principles of mathematical principles and scientific principles.	2
	PSO 3	Demonstrate the basic text editors in real world software, using industry standard tools and collaboration techniques in the field of computational programming.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 2	PO 1	Understand the basics of regular expressions and regular grammars, its types and properties for applying mathematical principles and scientific principles.	2
	PSO 1	Make use of the concept of regular expressions and regular grammars for developing algorithms of machine learning and networking concepts.	3
CO 3	PO 1	Find an optimized solution for the given problem using pumping lemma by applying the knowledge of mathematical principles and computer engineering methodologies.	2
	PO 2	Understand the given problem and develop the solution using pumping lemma from the provided information and interpret of results for validation.	5
	PO 3	Explain and demonstrate the pumping lemma, by investigate and define a problem and identify constraints, Understand customer and user needs, Manage the design process and evaluate outcomes.	5
CO 4	PO 1	Describe the role of Ambiguity in construction of context free grammars by understanding mathematical principles and scientific principles.	2
	PO 2	Understand the given problem and analyze the grammar and eliminate ambiguity using derivation trees by model, design, document the results for interpretation.	6
	PSO 1	Understand the normalization techniques in the area related to parsing desire for higher studies in field of compiler design, machine Learning and data science.	3
CO 5	PO 1	Describe acceptance of context free language by final state and by empty stack problems by understanding mathematical principles, engineering methodologies and scientific principles.	3
	PO 2	Understand equivalence of context free language and pushdown automata for validation , model, design of inter conversion for solving the given problem related to engineering from the provided information , data and documentation.	6
	PSO 3	Understand the principle of languages , grammars for computational programming to achieve engineering objectives.	1
CO 6	PO 1	Describe the recursively enumerable languages and churchs hypothesis using mathematical principles and scientific principles.	3
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems in the Design and Model of Turing machine in reaching substantiated conclusions by the interpretation of results.	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	Make Use of Turing machines to develop programs (define problem)for identify the solution (innovative) of complex engineering problems which satisfy the user constraints.	6
	PO 4 Ability to identify ,classify and describe the performance of turing machine by using analytical methods and modeling techniques.		4
	PSO 1	Analyze computable functions in the areas related to simulation of Turing machine, software testing, high performance computing, machine learning, software engineering and computer networks	6

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES								PSO'S					
COURSE	РО	РО	PO	РО	PO	РО	РО	PO	PO	РО	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-		-	-	1
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO 3	2	5	5	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	6	-	-		-	-	-	-	-	-	-	3	-	-
CO 5	3	6	-	-	-	-	-	-	-	-	-	-	-	-	1
CO 6	3	5	6	5	-	-	-	-	-	I	I		6	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO / PSO:

COURSE			P	ROG	RA	мо	υτο	CON	/IES				P	PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	66.7	-	-	-	-	-	-	-	-	-	-		-	-	50.0	
CO 2	66.7	-	-	-	-	-	-	-	-	-	-	-	50.0	-	-	
CO 3	66.7	50.0	50.0	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	66.7	60.0	-	-		-	-	-	-	-	-	-	50.0	-	-	
CO 5	100.0	60.0	-	-	-	-	-	-	-	-	-	-	-	-	50.0	
CO 6	100.0	50.0	60.0	55.0		I	-	-	-	-	-		100.0	-	-	

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{0}$ 0 \leq C \leq 5% No correlation
- **2** 40 % <C < 60% –Moderate
- 1-5 <C \leq 40% Low/ Slight
- ${\boldsymbol 3}$ 60% \leq C < 100% Substantial /High

COURSE				PR	OGR	AM	OU	тсо	MES	5			I	PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	2	
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-	
CO 3	3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-	
CO 5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	2	
CO 6	3	2	3	2	-	-	-	-	-	-	-	-	3	-	-	
TOTAL	18	10	5	2	I	-	-	-	-	-	-	-	7	-	4	
AVERAGE	3.0	2.5	2.5	2.0	-	-	-	-	-	-	-	-	2.3	0	2.0	

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Ex- periments	-
Assignments	~				

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback				
Х	Assessment of Mini Projects by Experts						

XVIII SYLLABUS:

UNIT I	FINITE AUTOMATA			
	Fundamentals: Alphabet, strings, language, operations; Introduction to finite automata: The central concepts of automata theory, deterministic finite automata, nondeterministic finite automata, an application of finite automata, finite automata with and without epsilon transitions, Conversion of NFA to DFA Machines.			
UNIT II	REGULAR LANGUAGES			
	Regular sets, regular expressions, identity rules, constructing finite automata for a given regular expressions, conversion of finite automata to regular expressions, pumping lemma of regular sets, closure properties of regular sets (proofs not required), regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and finite automata, inter conversion.			
UNIT III	CONTEXT FREE GRAMMARS			
	Context free grammars and languages: Context free grammar, derivation trees, sentential forms, right most and leftmost derivation of strings, applications. Ambiguity in context free grammars, minimization of context free grammars, Chomsky normal form, Greibach normal form, pumping lemma for context free languages, enumeration of properties of context free language (proofs omitted)			
UNIT IV	PUSHDOWN AUTOMATA			

	Pushdown automata, definition, model, acceptance of context free language, acceptance by final state and acceptance by empty stack and its equivalence, equivalence of context free language and pushdown automata, inter conversion; (Proofs not required); Introduction to deterministic context free languages and deterministic pushdown automata.
UNIT V	TURING MACHINE
	Turing machine: Turing machine, definition, model, design of Turing machine, computable functions, recursivey enumerable languages, Church's hypothesis, counter machine, types of Turing machines (proofs not required), linear bounded automata and context sensitive language, Chomsky hierarchy of languages.

TEXT BOOKS

1. John E. Hopcroft , Rajeev Motwani, Jeffrey D. Ullman, —Introduction to Automata, Theory, Languages and Computation, Pearson Education, 3rd Edition, 2007.

REFERENCE BOOKS:

- 1. John C Martin, —Introduction to Languages and Automata Theory, Tata McGraw Hill, 3rd Edition, 2017
- 2. Daniel I.A. Cohen, Introduction to Computer Theory, John Wiley Sons, 2nd Edition, 2004.

COURSE WEB PAGE:

https://nptel.ac.in/courses/106103070

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference						
	OBE DISCUS	SION							
1	are planned to achieve stated objectives and outcomes. We will focuses on measuring student performance i.e. outcomes at different levels. Course outcomes(CO),Program Outcomes(PO)and Program Specific Outcomes(PSO) and also mapping of CO's to PO's PSO's and their attainments are discussed.								
	CONTENT DELIVERY (THEORY)								
1	Alphabet, strings, language and operations	CO1	T1:1.5-1.6						
2	finite automata and concepts of automata theory	CO1	T1:2.1-2.2, R2:38-64						
3	Demonstrate the behavior of deterministic finite automata	CO 1	T1:2.2-2.3						
4-6	Understand the functionality of non- deterministic finite automata and Finite automata with epsilon transitions.	CO 1	T1:2.3-2.4, R1:3.1-3.3, R2:142-148						
7	application of finite automata, Conversion of NFA to DFA, Moore and Melay Machines.	CO 1	T1:2.3-2.4, R1:3.1-3.3, R2:142-148						

0 To binder the negative factor, regular expressions, identity rulesCO 111: 51: 51: 51: 51: 51: 51: 51: 51: 51:	8-10	understand the Regular sets, regular	CO 2	T1: 3.1-3.2
expressions, finite automata to regular expressionsCO 3T1: 4.1-4.214-15 regular grammars, right linear and left linear grammarsCO 4T1: 4.1-4.216-19Regular grammars-right linear and left linear grammarsCO 4T1: 4.4-4.520-22regular linear grammars and finite automata, inter conversion.CO 4T1: 5.1-5.5, R1:4.2-4.423-24Apply Context free grammar on derivation derivation of stringsCO 4T1: 5.1-5.5, R1:4.2-4.425-27sentential forms, right most and leftmost derivation of stringsCO 4T1: 5.1-5.5, R1:4.2-4.428-29Ambiguity in context free grammarsCO 4T1: 7.4-7.5, R1:4.2-4.430-32Understand Minimization of context free grammars, Chomsky normal form, Greibach normal formCO 5T1: 6.1-6.2, R1:5.2-5.433-34Pumping lemma for context free languages, propertiesCO 5T1: 6.1-6.2, R1:5.2-5.438-41push down automata for acceptance of context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.442-43acceptance of context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automata automata.CO 5T1: 6.3-6.444-45Describe Equivalence of context free language and pushdown automata automata.CO 6T1: 8.1-8.2, R1:7.2-7.445-53Describe Iuring machine, definition, model, computable functionsCO 6T1: 8.1-8.2, R1:7.5-7.657-58Types of Turing machines and Church's hypothesis.CO 6T1: 9.1-9.8, R2:551-560<	8-10		02	11. 5.1-5.2
regular grammars, right linear and left linear grammarsCO 4T1: 4.4-4.516-19Regular grammars-right linear and left linear grammarsCO 4T1: 4.4-4.520-22regular linear grammars and finite automata, inter conversion.CO 4T1: 5.1-5.5, R1:4.2-4.423-24Apply Context free grammar on derivation treesCO 4T1: 5.1-5.5, R1:4.2-4.425-27sentential forms, right most and leftmost derivation of stringsCO 4T1: 5.1-5.5, R1:4.2-4.428-29Ambiguity in context free grammars ormal formCO 4T1: 7.4-7.5, R1:6.1-6.228-29Ambiguity in context free grammars normal formCO 4T1: 7.4-7.5, R1:6.1-6.230-32Understand Minimization of context free grammars, Chomsky normal form, Greibach normal formCO 3T1: 7.4-7.5, R1:6.1-6.233-34Pumping lemma for context free languages, acceptance of context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.438-41push down automata for guagesCO 5T1: 6.1-6.2, R1:5.2-5.442-43acceptance by empty stack and its Equivalence.CO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 6T1: 8.1-8.2, R1:7.2-7.444-47Inter conversion, deterministic push down automata.CO 6T1: 8.1-8.2, R1:7.2-7.645-56Apply Recursively enumerable languagesCO 6T1: 8.1-8.2, R1:7.2-7.657-58Types of Turing machine, definition, model, ucomutable functionsCO 6T1: 8.1-8.2, R1:7.2-7.659-60Line	11-13	expressions, finite automata to regular	CO 2	T1: 3.1-3.2
linear grammars20-22regular linear grammar and finite automata, inter conversion.CO 2T1: 4.4-4.523-24Apply Context free grammar on derivation treesCO 4T1: 5.1-5.5, R1:4.2-4.425-27sentential forms, right most and leftmost derivation of stringsCO 4T1: 5.1-5.5, R1:4.2-4.428-29Ambiguity in context free grammarsCO 4T1: 5.1-5.5, R1:4.2-4.430-32Understand Minimization of context free grammars, Chomsky normal form, Greibach normal formCO 3T1: 7.4-7.5, R1:6.1-6.233-34Pumping lemma for context free languages, propertiesCO 5T1: 6.1-6.2, R1:5.2-5.435-37Apply the push down automata for acceptance of context free LanguagesCO 5T1: 6.1-6.2, R1:5.2-5.438-41push down automata for given context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.442-43acceptance by empty stack and its equivalence.CO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 6T1: 8.1-8.2, R1:7.2-7.445-54Apply Recursively enumerable languagesCO 6T1: 8.1-8.2, R1:7.2-7.657-56Types of Turing machine, definition, model, computable functionsCO 6T1: 8.1-8.2, R1:7.5-7.659-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-56059-60Linear bounded automata and context sensitive language. </td <td>14-15</td> <td>regular grammars, right linear and left</td> <td>CO 3</td> <td>T1: 4.1-4.2</td>	14-15	regular grammars, right linear and left	CO 3	T1: 4.1-4.2
Inter conversion.Inter conversion.23-24Apply Context free grammar on derivation treesCO 4T1: 5.1-5.5, R1:4.2-4.425-27sentential forms, right most and leftmost derivation of stringsCO 4T1: 5.1-5.5, R1:4.2-4.428-29Ambiguity in context free grammarsCO 4T1: 5.1-5.5, R1:4.2-4.430-32Understand Minimization of context free grammars, Chomsky normal form, Greibach normal formCO 3T1: 7.4-7.5, R1:6.1-6.233-34Pumping lemma for context free languages, propertiesCO 5T1: 6.1-6.2, R1:5.2-5.435-37Apply the push down automata for acceptance of context free LanguagesCO 5T1: 6.1-6.2, R1:5.2-5.438-41push down automata for given context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.442-43acceptance of context free Languages Equivalence.CO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.3-6.444-45Describe Equivalence of context free language and pushdown automataCO 6T1: 8.1-8.2, R1:7.2-7.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.2-8.6, R1:7.5-7.659-60Linear bounded automata and context sensitive language.CO 6T1: 8.2-8.6, R1:7.5-7.659-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-56059-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-56059-60Linear bounded	16-19		CO 4	T1: 4.4-4.5
treesCO25-27sentential forms, right most and leftmost derivation of stringsCO 4T1: 5.1-5.5, R1:4.2-4.428-29Ambiguity in context free grammarsCO 4T1: 5.1-5.5, R1:4.2-4.430-32Understand Minimization of context free grammars, Chomsky normal form, Greibach normal formCO 4T1: 7.4-7.5, R1:6.1-6.233-34Pumping lemma for context free languages, propertiesCO 3T1: 7.4-7.5, R1:6.1-6.233-34pumping lemma for context free languages, propertiesCO 5T1: 6.1-6.2, R1:5.2-5.435-37Apply the push down automata for acceptance of context free LanguagesCO 5T1: 6.1-6.2, R1:5.2-5.438-41push down automata for given context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.442-43acceptance by empty stack and its Equivalence.CO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.3-6.444-45Describe Equivalence of context free language and pushdown automataCO 6T1: 8.1-8.2, R1:7.2-7.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's sensitive language.CO 6T1: 9.1-9.8, R2:551-56059-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-56059-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-56059-60Linear bounded automata and context <b< td=""><td>20-22</td><td></td><td>CO 2</td><td>T1: 4.4-4.5</td></b<>	20-22		CO 2	T1: 4.4-4.5
derivation of stringsconstruction28-29Ambiguity in context free grammarsCO 4T1: 5.1-5.5, R1:4.2-4.430-32Understand Minimization of context free grammars, Chomsky normal form, Greibach normal formCO 4T1: 7.4-7.5, R1:6.1-6.233-34Pumping lemma for context free languages, propertiesCO 3T1: 7.4-7.5, R1:6.1-6.235-37Apply the push down automata for acceptance of context free LanguagesCO 5T1: 6.1-6.2, R1:5.2-5.438-41push down automata for given context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.442-43acceptance by empty stack and its Equivalence.CO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.3-6.446-47inter conversion, deterministic push down automata.CO 6T1: 8.1-8.2, R1:7.2-7.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.2-8.6, R1:7.5-7.654-56Apply Recursively enumerable languagesCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's sensitive language.CO 6T1: 9.1-9.8, R2:551-56059-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-560FOBLEM SOLVING/ CASE STUERS1Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*}CO 1T1:2.3-2.4, R1:3.1-3.3	23-24		CO 4	T1: 5.1-5.5, R1:4.2-4.4
30-32Understand Minimization of context free grammars, Chomsky normal form, Greibach normal formCO 4T1: 7.4-7.5, R1:6.1-6.233-34Pumping lemma for context free languages, propertiesCO 3T1: 7.4-7.5, R1:6.1-6.235-37Apply the push down automata for acceptance of context free LanguagesCO 5T1: 6.1-6.2, R1:5.2-5.438-41push down automata for given context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.442-43acceptance by empty stack and its Equivalence.CO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.1-6.2, R1:5.2-5.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.1-8.2, R1:7.5-7.654-56Apply Recursively enumerable languagesCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's hypothesis.CO 6T1: 9.1-9.8, R2:551-56059-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.<	25-27		CO 4	T1: 5.1-5.5, R1:4.2-4.4
grammars, Chomsky normal form, Greibach normal formImage: Chomsky normal form, Greibach normal formImage: Chomsky normal form, Greibach normal form33-34Pumping lemma for context free languages, propertiesCO 3T1: 7.4-7.5, R1:6.1-6.235-37Apply the push down automata for acceptance of context free LanguagesCO 5T1: 6.1-6.2, R1:5.2-5.438-41push down automata for given context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.442-43acceptance by empty stack and its Equivalence.CO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.1-6.2, R1:5.2-5.446-47inter conversion, deterministic push down automata.CO 5T1: 6.3-6.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.1-8.2, R1:7.2-7.454-56Apply Recursively enumerable languagesCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's hypothesis.CO 6T1: 9.1-9.8, R2:551-56059-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.CO 6T1: 9.1-9.8, R2:551-56071Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*}CO 1T1:2.3-2.4, R1:3.1-3.3	28-29	Ambiguity in context free grammars	CO 4	T1: 5.1-5.5, R1:4.2-4.4
propertiesCO 5T1: 6.1-6.2, R1:5.2-5.435-37Apply the push down automata for acceptance of context free LanguagesCO 5T1: 6.1-6.2, R1:5.2-5.438-41push down automata for given context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.442-43acceptance by empty stack and its Equivalence.CO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.3-6.446-47inter conversion, deterministic push down automata.CO 5T1: 6.3-6.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.1-8.2, R1:7.2-7.454-56Apply Recursively enumerable languagesCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's hypothesis.CO 6T1: 8.2-8.6, R1:7.5-7.659-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.CO 6T1: 9.1-9.8, R2:551-56071Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*}CO 1T1:2.3-2.4, R1:3.1-3.3	30-32	grammars, Chomsky normal form, Greibach	CO 4	T1: 7.4-7.5, R1:6.1-6.2
acceptance of context free LanguagesCO38-41push down automata for given context free languagesCO 5T1: 6.1-6.2, R1:5.2-5.442-43acceptance by empty stack and its Equivalence.CO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.3-6.446-47inter conversion, deterministic push down automata.CO 6T1: 8.1-8.2, R1:7.2-7.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.1-8.2, R1:7.2-7.454-56Apply Recursively enumerable languagesCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's sensitive language.CO 6T1: 9.1-9.8, R2:551-56059-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.CO 6T1: 9.1-9.8, R2:551-5601Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*}CO 1T1:2.3-2.4, R1:3.1-3.3	33-34		CO 3	T1: 7.4-7.5, R1:6.1-6.2
IanguagesIanguages42-43acceptance by empty stack and its Equivalence.CO 5T1: 6.1-6.2, R1:5.2-5.444-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.3-6.446-47inter conversion, deterministic push down automata.CO 5T1: 6.3-6.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.1-8.2, R1:7.2-7.454-56Apply Recursively enumerable languagesCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's hypothesis.CO 6T1: 8.2-8.6, R1:7.5-7.659-60Linear bounded automata and context sensitive language.CO 6T1:9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.CO 6T1:9.1-9.8, R2:551-5601Describe a DFA for the following language L={w/lw mod5=0,w belongs to (a,b)*}CO 1T1:2.3-2.4, R1:3.1-3.3	35-37		CO 5	T1: 6.1-6.2, R1:5.2-5.4
Equivalence.CO 544-45Describe Equivalence of context free language and pushdown automataCO 5T1: 6.3-6.446-47inter conversion, deterministic push down automata.CO 5T1: 6.3-6.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.1-8.2, R1:7.2-7.454-56Apply Recursively enumerable languagesCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's hypothesis.CO 6T1: 8.2-8.6, R1:7.5-7.659-60Linear bounded automata and context sensitive language.CO 6T1: 9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.CO 6T1: 9.1-9.8, R2:551-5601Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*}CO 1T1:2.3-2.4, R1:3.1-3.3	38-41		CO 5	T1: 6.1-6.2, R1:5.2-5.4
Ianguage and pushdown automataImage: CO 5T1: 6.3-6.446-47inter conversion, deterministic push down automata.CO 5T1: 6.3-6.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.1-8.2, R1:7.2-7.454-56Apply Recursively enumerable languagesCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's hypothesis.CO 6T1: 8.2-8.6, R1:7.5-7.659-60Linear bounded automata and context sensitive language.CO 6T1:9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.CO 6T1:9.1-9.8, R2:551-5601Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*}CO 1T1:2.3-2.4, R1:3.1-3.3	42-43		CO 5	T1: 6.1-6.2, R1:5.2-5.4
automata.Image: CO 6T1: 8.1-8.2, R1:7.2-7.448-53Describe Turing machine, definition, model, computable functionsCO 6T1: 8.1-8.2, R1:7.2-7.454-56Apply Recursively enumerable languagesCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's hypothesis.CO 6T1: 8.2-8.6, R1:7.5-7.659-60Linear bounded automata and context sensitive language.CO 6T1:9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.CO 6T1:9.1-9.8, R2:551-560PROBLEM SOLVING/ CASE STUDIES1Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*}CO 1T1:2.3-2.4, R1:3.1-3.3	44-45	•	CO 5	T1: 6.3-6.4
computable functionsCO 654-56Apply Recursively enumerable languagesCO 6T1: 8.2-8.6, R1:7.5-7.657-58Types of Turing machines and Church's hypothesis.CO 6T1: 8.2-8.6, R1:7.5-7.659-60Linear bounded automata and context sensitive language.CO 6T1:9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.CO 6T1:9.1-9.8, R2:551-560 PROBLEM SOLVING/ CASE STUDIES 1Describe a DFA for the following language $L=\{w/ w \mod 5=0, w belongs to (a,b)*\}$ CO 1T1:2.3-2.4, R1:3.1-3.3	46-47		CO 5	T1: 6.3-6.4
57-58Types of Turing machines and Church's hypothesis.CO 6T1: 8.2-8.6, R1:7.5-7.659-60Linear bounded automata and context sensitive language.CO 6T1:9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.CO 6T1:9.1-9.8, R2:551-560 PROBLEM SOLVING/ CASE STUDIES 1Describe a DFA for the following language $L=\{w/ w \mod 5=0, w belongs to (a,b)*\}$ CO 1T1:2.3-2.4, R1:3.1-3.3	48-53	- · · · ·	CO 6	T1: 8.1-8.2, R1:7.2-7.4
hypothesis.Image: Construction59-60Linear bounded automata and context sensitive language.CO 6T1:9.1-9.8, R2:551-56061-62Chomsky hierarchy of languages.CO 6T1:9.1-9.8, R2:551-560PROBLEM SOLVING/ CASE STUDIES1Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*}CO 1T1:2.3-2.4, R1:3.1-3.3	54-56	Apply Recursively enumerable languages	CO 6	T1: 8.2-8.6, R1:7.5-7.6
sensitive language.CO 661-62Chomsky hierarchy of languages.CO 6T1:9.1-9.8, R2:551-560PROBLEM SOLVING/ CASE STUDIES1Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*}CO 11T1:2.3-2.4, R1:3.1-3.3	57-58		CO 6	T1: 8.2-8.6, R1:7.5-7.6
PROBLEM SOLVING/ CASE STUDIES 1 Describe a DFA for the following language CO 1 T1:2.3-2.4, R1:3.1-3.3 L={w/ w mod5=0,w belongs to (a,b)*} CO 1 T1:2.3-2.4, R1:3.1-3.3	59-60		CO 6	T1:9.1-9.8, R2:551-560
1Describe a DFA for the following languageCO 1T1:2.3-2.4, R1:3.1-3.3 $L=\{w/ w \mod 5=0, w \text{ belongs to } (a,b)^*\}$ CO 1T1:2.3-2.4, R1:3.1-3.3	61-62	Chomsky hierarchy of languages.	CO 6	T1:9.1-9.8, R2:551-560
$L=\{w/ w mod5=0, w belongs to (a,b)*\}$		PROBLEM SOLVING/	CASE STU	IDIES
	1	$L=\{w/ w mod5=0, w belongs to (a,b)*\}$	CO 1	T1:2.3-2.4, R1:3.1-3.3

2	Convert NFA with ϵ to equivalent NFA M=({q0,q1,q2},{0,1,2}, δ , q0, {q2}) where δ is given by	CO1	T1:2.3-2.4, R1:3.1-3.3
	$[\delta (q0,0)=\{q0\}, \delta (q0,1)=\phi, \delta (q0,2)=\phi, \delta(q0, \epsilon)=q1]$		
	$ \begin{bmatrix} \delta & (q1,0) = \phi, \ \delta & (q1,1) = q1 \end{bmatrix}, \ \delta & (q1,2) = \phi, \delta \\ (q1, \epsilon) = q2 \end{bmatrix} $		
	$ \begin{bmatrix} \delta (q2,0)=\phi, \ \delta (q2,1)=\phi, \ \delta (q2,2)=\{q2\}, \delta \\ (q2, \epsilon)=\phi \end{bmatrix} $		
3	Convert NFA with ϵ to equivalent DFA	CO 1	T1:2.3-2.4, R1:3.1-3.3
	$\longrightarrow \begin{array}{c} \begin{array}{c} a \\ q_0 \end{array} \xrightarrow{a} \end{array} \begin{array}{c} \begin{array}{c} c \\ q_1 \end{array} \xrightarrow{\epsilon} \end{array} \begin{array}{c} \begin{array}{c} c \\ q_2 \end{array} \end{array}$		
4	Describe Pumping Lemma for Regular Languages. Prove that the language L = $\{a^n/n\}$ is a $n^5\}$ is not regular	CO 3	T1: 7.4-7.5, R1:6.1-6.2
5	Convert the following automata into Regular expression M=($\{q1,q2,q3\},\{0,1\}, \delta,$	CO 2	T1: 3.1-3.2
	q1, {q2,q3}) where δ is given by		
	$\begin{bmatrix} \delta & (q1,0) = \{q2\}, & \delta & (q1,1) = \{q3\} \end{bmatrix}$ $\begin{bmatrix} \delta & (q2,0) = \{q1\}, & \delta & (q2,1) = \{q3\} \end{bmatrix}$		
6	[δ (q3,0)={q2}, δ (q3,1)= {q2}] Describe the DFA Transition diagram for	CO 1	T1:3.1-3.2
	equivalent Regular expression (ab+a) *(aa+b)		
7	Convert the following grammar into GNF $S \rightarrow ABA/AB/BA/AA/B A \rightarrow aA/a$,	CO 4	T1: 7.4-7.5, R1:6.1-6.2
	$B \rightarrow bB/b$		
8	Describe the context free grammars in the four tuple form.(V,T,P,S) for the given	CO 4	T1: 7.4-7.5, R1:6.1-6.2
	languages on ={a,b} i. All strings having at least two a's ii. All possible strings not containing triple b's		
9	Describe the steps to show the following is not CFG. { $a^m b^n c^p \mid m < n \text{ or } n < p$ }	CO 4	T1: 7.4-7.5, R1:6.1-6.2
10	Construct PDA for equal number of x's and y's. eg: xyyxxy	CO 5	T1: 6.1-6.2, R1:5.2-5.4
11	Construct NDPDA for L = { $\forall f = W^R$ /W $\in (X + Y)^*$ }	CO 5	T1: 6.1-6.2, R1:5.2-5.4
12	Construct DPDA for L = { $\forall f = W^R$ /W $\in (X + Y)^*$ }	CO 5	T1: 6.1-6.2, R1:5.2-5.4
13	Construct a Turing Machine that accepts	CO 6	T1: 8.2-8.6, R1:7.5-7.6
	the language $L = \{ a^{2n}b^n n \ge 0 \}$. Give the transition diagram for the Turing Machine obtained.		

14	Construct a Turing Machine to accept the following languages $L = \{w^n x^n y^n z^n \mid n \ge 1\}$	CO 6	T1:8.2-8.6, R1:7.5-7.6
15	Design a Turing Machine that accepts the language denoted by regular expression (000)*	CO 6	T1:8.2-8.6, R1:7.5-7.6
	DISCUSSION ON DEFINITION	AND TEF	RMINOLOGY
1	Alphabet, strings, language and operations	CO 1	T1:1.5-1.6
2	understand the Regular sets, regular expressions, identity rules	CO 2	T1:3.1-3.2
3	Understand Minimization of context free grammars, Chomsky normal form, Greibach normal form	CO 4	T1:7.4-7.5, R1:6.1-6.2
4	push down automata for given context free languages	CO 5	T1:6.1-6.2, R1:5.2-5.4
5	Types of Turing machines and Church's hypothesis.	CO 6	T1:8.2-8.6, R1:7.5-7.6
	DISCUSSION ON QUI	ESTION BA	ANK
1	Describe the DFA with the set of strings having "aaa as a substring over an alphabet Σ ={a,b}.	CO 1	T1:1.5-1.6
2	Convert Regular Expression (11+0)*(00+1)* to Finite Automata.	CO 2	T1:3.1-3.2
3	Describe a CFG for the languages $L=\{a^ib^j \mid i \leq 2j\}$	CO 4	T1:7.4-7.5, R1:6.1-6.2
4	Define the NPDA(Nondeterministic PDA) and DPDA(deterministic PDA) equivalent? Illustrate with an example.	CO 5	T1:6.1-6.2, R1:5.2-5.4
5	Describe a Turing Machine. With a neat diagram explain the working of a Turing Machine.	CO 6	T1: 8.2-8.6, R1:7.5-7.6

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMP	COMPUTER SCIENCE AND ENGINEERING				
Course Title	OPERA	OPERATING SYSTEMS				
Course Code	ACS007	ACS007				
Program	B.Tech	B.Tech				
Semester	IV	IV				
Course Type	Core	Core				
Regulation	R-16					
	Theory Practical					
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	3	2	
Course Coordinator	Mr. Laxman Kumar, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS002	II	Data Structures
B.Tech	AIT001	III	Design and Analysis of Algorithms

II COURSE OVERVIEW:

This course emphasizes on basic knowledge of various types of operating systems, effective resource utilization by using systems and applications software. It is designed to provide in-depth critique on the problems of resource management, scheduling, concurrency, synchronization, memory management, file management, protection and security of used system. Learned knowledge will be implemented in design and development of hybrid operating systems, command control systems, and in real time environments.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Operating Systems	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	x Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level	
10%	Remember	
45%	Understand	
18%	Apply	
27%	Analyze	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theory		Total Marks
Type of Assessment	CIE Exam Quiz \AAT		
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

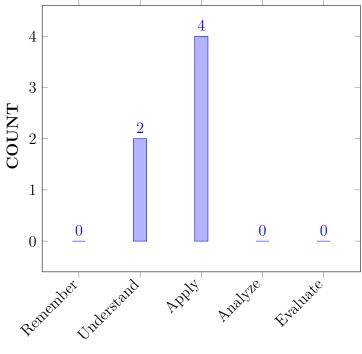
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The principles of operating systems, services and functionalities with its evolution.
II	The structures, functions and components of modern operating systems
III	The conventional hardware at different OS abstraction levels.
IV	The essential skills to examine issues and methods employed in design of operating systems with identification of various functionalities.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate different architectures used in design of modern	Understand
	operating systems.	
CO 2	Solve problems related to process scheduling, synchronization	Apply
	and deadlock handling in uni and multi-processing systems.	
CO 3	Choose memory allocation algorithms for effective utilization of	Apply
	resources.	
CO 4	Select various page replacement algorithms applied for	Apply
	allocation of frames.	
CO 5	Make use of different file allocation and disk scheduling	Apply
	algorithms applied for efficient utilization of storage.	
CO 6	Outline mechanisms used in protection of resources in real time	Understand
	environment	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations		
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations		
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE / CIE /
	knowledge of mathematics, science, engineering		AAT
	fundamentals, and an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	SEE / CIE /
102	research literature, and analyze complex	0	AAT
	engineering problems reaching substantiated		11111
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	2	SEE / CIE /
	solutions for complex Engineering problems and		AAT
	design system components or processes that		
	meet the specified needs with appropriate consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 4	Conduct Investigations of Complex	2	SEE / CIE /
	Problems: Use research-based knowledge and		AAT
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
PO 10	conclusions.	2	
PO 10	Communication: Communicate effectively on complex engineering activities with the	Z	SEE / CIE / AAT
	engineering community and with society at		ллі
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions.		
PO 12	Life-Long Learning: Recognize the need for	1	SEE / CIE /
	and having the preparation and ability to		AAT
	engage in independent and life-long learning in the breadest context of technological change		
2 — High	the broadest context of technological change $2 - Modium; 1 - Low$		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Profi- ciency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2	QUIZ
PSO 2	Focus on improving software reliability, network security / information retrieval systems.	3	QUIZ
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	3	QUIZ

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES								PSO'S						
COURSE	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	_	-	\checkmark	-	\checkmark	\checkmark	-	-
CO 6	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Understand the structure and evolution of operating system by understanding fundamentals of Computer engineering specialization and mathematical and scientific principles.	3
	PO 10	Communicate effectively on evolution of operating systems including deep subject knowledge.	1
	PO 12	By understanding different operating system architectures, one can personally continue understanding of different operating systems developed by the companies to stay up with new technology and for personal development.	2
	PSO 1	Identify the need, key issues and applications of the operating system in various real time environments.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.	
	PSO 3	By understanding different operating system architectures, one can acquire knowledge on advanced operating systems for engineering practice and higher education and even can extend the knowledge to become an entrepreneur.	2	
CO 2	PO 1	Understand the concept of Process, process scheduling, issues and their solutions related to process synchronization by using mathematical principles, fundamental of Computer engineering specialization and scientific principles.	3	
	PO 2	Identify synchronization problem and understand the problem statement of classical synchronization problems collect the data needed for solving the problem then analyze different models of solutions for classical synchronization problems by semaphores and monitors and interpret the solutions	6	
	PO 3	Define the process synchronization problem, understand the user needs then identify the resources required next manage the design process using banker's algorithm and evaluate outcomes.	4	
	PO 4	By having the knowledge of characteristics of process and understanding the context in classical synchronization problems and the solutions provided using the technical constructs like semaphores and monitors with their working strategies, these can be applied for understanding of other synchronization problems.	5	
	PO 10	Communicate effectively on process communication using process communication techniques and explaining each technique.	2	
	PO 12	By understanding process management, one can personally continue understanding internal functioning of operating systems developed by the companies to stay up with new technology and for personal development.	2	
	PSO 1	Identify the need for process scheduling and apply appropriate algorithms for scheduling of process arriving at various time intervals.	4	
	PSO 2	By acquiring knowledge of process management one can design software applications with reliability and applications with fast information retrieval.	2	
CO 3	PO 1	Describe the need and various techniques for memory management by understanding the limits of contiguous memory allocation through applying mathematical principles, fundamental of Computer engineering specialization and scientific principles	3	

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.	
	PO 2	Identify problem of memory management and understand the problem statement of contiguous memory management then analyze different models of non-contiguous memory management.	3	
	PO 3	Define the problem related to contiguous memory management, understand the user needs then identify the memory requirements of each process next manage the design process by using non-contiguous memory management techniques and evaluate outcomes.	4	
	PO 10	Communicate effectively on memory management techniques with clarity on contiguous and varied strategies and explaining each technique with appropriate terminology.	2	
٤	PSO 1	Identify the need of efficient utilization of main memory and apply various contiguous and non-contiguous memory allocation techniques of memory management.	4	
CO 4	PO 1	Understand the concept of virtual memory and various algorithms for effective usage of memory by applying the knowledge of computer engineering fundamentals, mathematical and scientific principles.	3	
	PO 2	Identify the need for page replacement, understand the problem statement of allocation of pages to frames, then collect the data related to available pages and frames then analyze various models for solving problem based on the given sequence of pages and interpret their results accordingly.	6	
	PO 3	Define the problem of mapping of large virtual memory to the existing physical memory, understand the user needs then manage the design process using page replacement algorithms and evaluate outcomes by identifying the number of page faults incurred.	4	
	PO 4	By understanding characteristics of process, understanding the context in virtual memory management using demand paging and segmentation, this knowledge can be applied for virtualizing engineering process.	4	
	PO 10	Communicate on utilization of main memory using pictorial representation of demand paging and segmentation and explaining them in detail.	2	
	PSO 1	Identify the need of separation of logical memory from physical memory and apply appropriate algorithms for allocating given sequence of pages to frames.	4	
CO 5	PO 1	Understand the concept of file system and analyze various file allocation methods by using the knowledge of computer engineering fundamentals, mathematical and scientific principles.	3	

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Identify the need for disk scheduling, understand the problem statement of disk scheduling, then collect the data related to location of data to be accessed in the disk structure then analyze different scheduling algorithm models used for solving problems related to finding total head movements and interpret their results.	6
	PO 3	Define the problem of file allocation to disk block, understand the user needs then identify the free disk space available next manage the design process by using appropriate file allocation methods.	4
	PO 10	Communicate on effective utilization of mass storage structures clearly using pictorial representation of disk structure.	2
	PO 12	By understanding mass storage structure, one can personally continue understanding of different storage devices developed by the companies to stay up with new technology.	2
	PSO 1	Identify the need of scheduling the service of disk I/O requests and apply appropriate algorithms for processing I/O requests.	4
CO 6	PO 1	Explain the importance of protection of objects and the protection provided for them by using domain concept in terms of access matrix implementation by applying knowledge of computer science fundamentals.	1
	PO 10	Communicate on protection of computer system components using protection strategies in detail.	1
	PO 12	By understanding the concept of protection, one can study and analyze various protection mechanisms developed recently for personal development.	2
	PSO 1	Identify the need of protection provided to the hardware and software components of the computer system and analyze the techniques provided for their protection.	1
	PSO 2	By acquiring knowledge of protection one can design software applications with high security and reliability.	1
	PSO 3	By understanding the concept of protection, one can acquire knowledge on advanced protection mechanisms for engineering practice and higher education and even can extend the knowledge to become an entrepreneur.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	PO	РО	РО	PO	PO	РО	РО	PO	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	1	-	2	1	-	2
CO 2	3	6	4	5	-	-	-	-	-	2	-	2	4	2	-
CO 3	3	3	4	-	-	-	-	-	-	2	-	-	4	-	-
CO 4	3	6	4	4	-	-	-	-	-	2	-	-	4	-	-
CO 5	3	6	4	-	-	-	-	-	-	2	-	2	4	-	-
CO 6	1	-	-	-	-	-	-	-	-	1	-	2	1	1	2

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	РО	РО	РО	PO	PO	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	-	-	-	-	-	-	-	-	20	-	25	17		100
CO 2	100	60	40	45	-	-	-	-	-	40	-	25	67	100	-
CO 3	100	30	40	-	-	-	-	-	-	40	-	-	67	-	-
CO 4	100	60	40	36	-	-	-	-	-	40	-	-	67	-	-
CO 5	100	60	40	-	-	-	-	-	-	40	-	25	67	-	-
CO 6	33	-	-	-	-	-	-	-	-	20	-	25	17	50	100

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 5 < C \le 40\% Low/$ Slight
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $3 60\% \le C < 100\%$ Substantial /High

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	РО	РО	PO	PO	PO	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	1	-	1	1	-	3
CO 2	3	3	2	2	-	-	-	-	-	2	-	1	3	3	-
CO 3	3	1	2	-	-	-	-	-	-	2	-	-	3	-	-
CO 4	3	3	2	2	-	-	-	-	-	2	-	-	3	-	-
CO 5	3	3	2	-	-	-	-	-	-	2	-	1	3	-	-
CO 6	1	-	-	-	-	-	-	-	-	1	-	1	1	2	3
TOTAL	16	10	8	4	-	-	-	-	-	10	-	4	14	5	6
AVER- AGE	2.7	2.5	2	2	-	-	-	-	-	1.7	-	1	2.3	2.5	3

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	\checkmark	Open Ended Experiments	-
Assignments	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback
--	--------------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	Operating systems objectives and functions: Computer system architecture, operating systems structure, operating systems operations; Evolution of operating systems: Simple batch, multi programmed, time shared, personal computer, parallel distributed systems, real time systems, special purpose systems, operating system services, user operating systems interface; Systems calls: Types of systems calls, system programs, protection and security, operating system design and implementation, operating systems structure, virtual machines.
MODULE II	PROCESS AND CPU SCHEDULING, PROCESS COORDINATION
	Process concepts: The process, process state, process control block, threads; Process scheduling: Scheduling queues, schedulers, context switch, preemptive scheduling, dispatcher, scheduling criteria, scheduling algorithms, multiple processor scheduling; Real time scheduling; Thread scheduling; Case studies Linux windows; Process synchronization, the critical section problem; Peterson's solution, synchronization hardware, semaphores and classic problems of synchronization, monitors.
MODULE III	MEMORY MANAGEMENT AND VIRTUAL MEMORY
	Logical and physical address space: Swapping, contiguous memory allocation, paging, structure of page table. Segmentation: Segmentation with paging, virtual memory, demand paging; Performance of demand paging: Page replacement, page replacement algorithms, allocation of frames, thrashing
MODULE IV	FILE SYSTEM INTERFACE, MASS-STORAGE STRUCTURE
	The concept of a file, access methods, directory structure, file system mounting, file sharing, protection, file system structure, file system implementation, allocation methods, free space management, directory implementation, efficiency and performance; Overview of mass storage structure: Disk structure, disk attachment, disk scheduling, disk management, swap space management; Dynamic memory allocation: Basic concepts; Library functions.

MODULE V	DEADLOCKS, PROTECTION
	System model: Deadlock characterization, methods of handling deadlocks, deadlock prevention, dead lock avoidance, dead lock detection and recovery form deadlock system protection, goals of protection, principles of protection, domain of protection, access matrix, implementation of access matrix, access control, revocation of access rights, capability based systems, language based protection.

TEXTBOOKS

- 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Principles∥, Wiley Student Edition, 8th Edition, 2010.
- 2. . William Stallings, Operating System- Internals and Design Principles $\|,$ Pearson Education, 6th Edition, 2002.

REFERENCE BOOKS:

- 1. Andrew S Tanenbaum, Modern Operating Systems , PHI, 3rd Edition, 2007.
- 2. D. M. Dhamdhere, Operating Systems a Concept based Approach, Tata McGraw-Hill, 2nd Edition, 2006.

WEB REFERENCES:

- 1. www.smartzworld.com/notes/operatingsystems
- 2. www.scoopworld.in
- 3. www.sxecw.edu.in
- 4. www.technofest2u.blogspot.com

COURSE WEB PAGE:

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer- ence					
	OBE DISCUSSION							
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	_	-					
	CONTENT DELIVERY (THEORY)							
2	Computer system architecture, operating systems structure	CO 1	T1:1.1- 1.4					
3	operating systems operations	CO 1	T1:1.5					
4	Evolution of operating systems: Simple batch, multi programmed, time shared, personal computer	CO 1	T2:2.2					
5	parallel distributed systems, real time systems, special purpose systems,	CO 1	T2:2.2					

6	operating system services, user operating systems interface	CO 1	T2:2.1- 2.2
7	Systems calls: Types of systems calls, system programs	CO 1	T2:2.3- 2.5
8	protection and security, operating system design and implementation	CO 1	T1:2.6
9	operating systems structure, virtual machines.	CO 1	T1:2.7- 2.8
10	Process concepts: The process, process state	CO 2	T1:3.1- 3.2
11	process control block, threads;	CO 2	T1:3.2- 3.4
12	Process scheduling: Scheduling queues, schedulers, context switch	CO 2	T1:5.2
13	preemptive scheduling, dispatcher, scheduling criteria	CO 2	T1:5.3
14	scheduling algorithms	CO 2	T1:5.3
15	multiple processor scheduling	CO 2	T1:5.3
17	Real time scheduling; Thread scheduling;	CO 2	T1:5.4- 5.5
18	Case studies Linux windows	CO 2	T1:5.6, 21.4
19	Process synchronization, the critical section problem	CO 2	T1:6.1
20	Peterson's solution	CO 2	T1:6.2- 6.3
21	synchronization hardware	CO 2	T1:6.4
22	semaphores	CO 2	T1:6.5
23	classic problems of synchronization, monitors.	CO 2	T1:6.6- 6.7
24	Logical and physical address space: Swapping, contiguous memory allocation	CO 3	T1:8.1
26	paging, structure of page table	CO 3	T1:8.2
27	Segmentation: Segmentation with paging	CO 3	T1:8.3
29	virtual memory, demand paging	CO 3	T1:8.4- 8.5
30	Performance of demand paging	CO 3	T1:8.6
31	Page replacement, page replacement algorithms,	CO 4	T1:8.6
33	allocation of frames	CO 4	T1:9.5
34	Thrashing	CO 4	T1:9.6
35	The concept of a file, access methods	CO 4	T1:10.1- 10.2
36	directory structure	CO 4	T1:10.3
37	file system mounting	CO 4	T1:10.5
38	file sharing, protection	CO 4	T1:10.6
39	file system structure	CO 4	T1:10.6
40	file system implementation	CO 4	T1:11.3
41	allocation methods	CO 4	T1:11.4

43	free space management	CO 4	T1:11.5
44	directory implementation, efficiency and performance	CO 4	T1:11.6
45	Overview of mass storage structure: Disk structure, disk attachment	CO 5	T1:12.1- 12.3
46	disk scheduling, disk management, swap space management	CO 5	T1:12.4- 12.6
48	Dynamic memory allocation: Basic concepts; Library functions.	CO 5	T1:12.7- 12.8
49	System model: Deadlock characterization, methods of handling deadlocks	CO 2	T1:7.1- 7.2
50	deadlock prevention	CO 2	T1:8.1
51	deadlock avoidance	CO 2	T1:8.2
52	dead lock detection and recovery form deadlock system protection	CO 2	T1:8.3
55	goals of protection, principles of protection, domain of protection	CO 6	T2:27.8
56	access matrix, implementation of access matrix, access control, revocation of access rights	CO 6	T2:27.9
57	capability based systems, language based protection	CO 6	T1:8.2- 8.3
	PROBLEM SOLVING/ CASE STUDIES	5	
16	Problems on CPU scheduling algorithms	CO 2	T1:5.3- 5.3
25	Problems on contiguous memory allocation	CO 3	T1:8.1- 8.3
28	Problems on paging and segmentation	CO 3	T1:8.4- 8.6 T1:9.1- 9.2
32	Problems on page replacement algorithms	CO 4	T1:9.4- 9.6
42	Problems on file allocation methods	CO 5	T1:11.3- 11.6
47	Problems on disk scheduling	CO 5	T1:12.1- 12.6
53	Problems on deadlock avoidance	CO 2	T1:8.1- 8.3
54	Problems on recovery from deadlocks	CO 2	T1:8.1- 8.3
	DISCUSSION OF DEFINITION AND TERMIN	JOLOGY	
58	Definitions on operating systems fundamentals	CO 1	T1:1.2
59	Definitions on process, CPU scheduling and process coordination	CO 2	T1:1.5
60	Definitions on memory management and virtual memory	CO 3, CO 4	T1:8,9

61	Definitions on file system interface and mass storage structure	CO 5	T1:10,11					
62	Definitions on deadlocks and protection	CO 2, CO 6	T1:9.1					
	DISCUSSION OF QUESTION BANK							
1	Introduction	CO 1	T1:1.2					
2	Process and CPU Scheduling, Process Coordination	CO 2	T1:1.5					
3	Memory Management and Virtual Memory	CO 3,4	T1:8,9					
4	File System Interface, Mass Storage Structure	CO 5	T1:10,11					
5	Deadlocks, Protection	CO 2,6	T1: 9.1					

Signature of Course Coordinator

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	DATABASE MANAGEMENT SYSTEMS LABORATORY				
Course Code	ACS104	ACS104			
Program	B.Tech				
Semester	IV	CSE			
Course Type	Theory				
Regulation	IARE - R16				
		Theory		F	Practical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	-	-	-	3	1.5
Course Coordinator	Dr. K Suvarch	. K Suvarchala, Assistant Professor			

I COURSE OVERVIEW:

This Laboratory course introduces the query language for design and development of a database by using various software's such as SQL, ORACLE, and MS – Access etc. It provides practice on built-in SQL functions using languages like DDL, DCL, DML and TCL to create and manage database systems and perform Set operations, Sub Queries, Joins; and PL/SQL programs to implement Exceptions, Cursors, Stored Functions, Views, Sequences, Locks and Triggers. This is essential for mobile and web application development for business, scientific and engineering applications.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS002	111	Data Structures

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Database Management Systems Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks of assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based	
20 %	Objective	Purpose	
20 %	Analysis	Algorithm	
20 %	Design	Programme	
20 %	Conclusion	Conclusion	
20 %	Viva	Viva	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance		
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

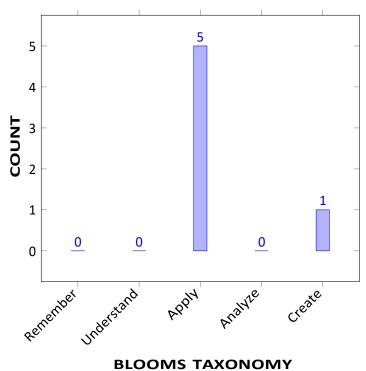
Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


I	The SQL commands for data definition, manipulation, control and perform transactions in database systems.
11	The procedural language for implementation of functions, procedures, cursors and triggers using PL/SQL programs.
111	The logical design of a real time database system with the help of Entity Relationship diagrams.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate database creation and manipulation concepts with the help of SQL queries.	Apply
CO 2	Make use of inbuilt functions of SQL queries to perform data aggregations, subqueries, embedded queries and views	Apply
CO 3	Apply key constraints on database for maintaining integrity and quality of data.	Apply
CO 4	Demonstrate normalization by using referential key constraint.	Apply
CO 5	Implement PL/SQL programs on procedures, cursors and triggers for enhancing the features of database system to handle exceptions.	Apply
CO 6	Design database model with the help of Entity Relationship diagrams for a real time system or scenario.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab Exer- cises,CIE,SEE

PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	3	Lab Exer- cises,CIE,SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Lab Exer- cises,CIE,SEE
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	Lab Exer- cises,CIE,SEE
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	2	Lab Exer- cises,CIE,SEE

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	3	Lab Exercises

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 2	Demonstrate the use of SQL for database creation and maintenance with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	3
	PO 3	Demonstrate the use of SQL for database creation and maintenance with the help of Investigate and define a problem and identify constraints Manage the design process and evaluate outcomes	4

	PSO 5	Demonstrate the use of SQL for database creation and maintenance by Understanding of contexts in which engineering knowledge can be applied, understanding use of technical literature, Understanding of appropriate codes of practice and industry standards .	3
	PSO 2	Demonstrate the use of SQL for database creation and maintenance by using a set of instructions.	1
CO 2	PO 2	Make Use of SQL queries for data aggregation, calculations, views, sub-queries, embedded queries manipulation with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	4
	PO 3	Make Use of SQL queries for data aggregation, calculations, views, sub-queries, embedded queries manipulation with the help of Investigate and define a problem and identify constraints, Manage the design process and evaluate outcomes.	3
	PO 5	Make Use of SQL queries for data aggregation, calculations,views, sub-queries, embedded queries manipulation by Understanding of contexts in which engineering knowledge can be applied, understanding use of technical literature, Understanding of appropriate codes of practice and industry standards	3
	PO 10	Build strong foundation on SQL queries for career building by communicating effectively with engineering community.	2
	PSO 2	Make Use of SQL queries for data aggregation, calculations, views, sub-queries, embedded queries manipulation by using a set of steps	3
CO 3	PO 2	Define the relational data model, its constraints and keys to maintain integrity of data with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	4
	PO 10	Build strong foundation on relational model and keys for career building by communicating effectively with engineering community.	
CO 4	PO 2	Apply normalization techniques to normalize a database with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	4
	PO 3	Apply normalization techniques to normalize a database Investigate and define a problem and identify constraints, understand customer and user needs, Manage the design process and evaluate outcomes, Investigate and define a problem and identify constraints, understand customer and user needsManage the design process and evaluate outcomes	4

PO 5 Apply normalization techniques to normalize a database by Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate codes of practice and industry standards. 3 PSO 2 Apply normalization techniques to normalize a database by using sequence of steps 1 CO 5 PO 2 Define PL/SQL programs on procedures, cursors and triggers for enhancing the features of database system to handle exceptions. with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation 4 CO 6 PO 2 Model the real-world database systems using Entity Relationship Diagrams from the requirement specification with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation 4 PO 3 Model the real-world database systems using Entity Relationship Diagrams from the requirement specification through Investigate and define a problem and identify constraints, Understand customer and user needs, Manage the design process and evaluate outcomes. 3 PO 5 Model the real-world database systems using Entity Relationship Diagrams from the requirement specification Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate codes of practice and industry standards. 3 PO 12 Build strong foundation on SQL and ER diagrams for careere building by communicating effectively wit				
CO 5PO 2Define PL/SQL programs on procedures, cursors and triggers for enhancing the features of database system to handle exceptions. with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation4CO 6PO 2Model the real-world database systems using Entity Relationship Diagrams from the requirement specification with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation4PO 3Model the real-world database systems using Entity Relationship Diagrams from the requirement specification with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation4PO 3Model the real-world database systems using Entity Relationship Diagrams from the requirement specification through Investigate and define a problem and identify constraints, Understand customer and user needs, Manage the design process and evaluate outcomes.3PO 5Model the real- world database systems using Entity Relationship Diagrams from the requirement specification Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.2PO 12Build strong foundation on SQL and ER diagrams for career building by communicating effectively with engineering community1PSO 2Model the real-world database systems using Entity Relationship Diagrams from the requirement specification1		PO 5	Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate codes of practice and	3
CO 6PO 2Model the real-world database systems using Entity Relationship Diagrams from the requirement specification with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation4CO 6PO 2Model the real-world database systems using Entity Relationship Diagrams from the requirement specification with the Problem statement and system definition, 		PSO 2		1
Relationship Diagrams from the requirement specification with the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation4PO 3Model the real-world database systems using Entity Relationship Diagrams from the requirement specification through Investigate and define a problem and identify constraints, Understand customer and user needs, Manage the design process and evaluate outcomes.4PO 5Model the real- world database systems using Entity Relationship Diagrams from the requirement specification Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.3PO 12Build strong foundation on SQL and ER diagrams for career building by communicating effectively with engineering community2PSO 2Model the real-world database systems using Entity Relationship Diagrams from the requirement specification1	CO 5	PO 2	triggers for enhancing the features of database system to handle exceptions. with the Problem statement and system definition, Problem formulation and abstraction,	4
Relationship Diagrams from the requirement specification through Investigate and define a problem and identify constraints, Understand customer and user needs, Manage the design process and evaluate outcomes.PO 5Model the real- world database systems using Entity Relationship Diagrams from the requirement specification Understanding of contexts in which engineering 	CO 6	PO 2	Relationship Diagrams from the requirement specification with the Problem statement and system definition, Problem formulation and abstraction, Information	4
Relationship Diagrams from the requirement specification Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.PO 12Build strong foundation on SQL and ER diagrams for career building by communicating effectively with engineering community2PSO 2Model the real-world database systems using Entity 		PO 3	Relationship Diagrams from the requirement specification through Investigate and define a problem and identify constraints, Understand customer and user needs, Manage the design process and evaluate	4
career building by communicating effectively with engineering community PSO 2 Model the real-world database systems using Entity 1 Relationship Diagrams from the requirement specification 1		PO 5	Relationship Diagrams from the requirement specification Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate	3
Relationship Diagrams from the requirement specification		PO 12	career building by communicating effectively with	2
		PSO 2	Relationship Diagrams from the requirement specification	1

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOME	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1		2	3		3									3	
CO 2		2	3		3					2				3	
CO 3		2								3					
CO 4		2	3		3									2	

CO 5	2								
CO 6	2	3	3				2	3	

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 2, PO 3, PSO 3	SEE Exams	PO 2,PO 3, PO 5, PO 10,PO12	Seminars	-
Laboratory Practices	PO 1,PO 3, PO 5	Student Viva	PO 2, PO 3,PO10	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback		
X	Assessment of Mini Projects by Experts				

XIV SYLLABUS:

WEEK I

1. Create a table called Employee with the following structure. Name Type Emp no Number E name Varchar2(20) Job Varchar2(20) Mgr Number Sal Number Add a column commission with domain to the Employee table Insert any five records into the table. Update the column details of job Rename the column of Employ table using alter command. Delete the employee whose empno is19. 2. Create department table with the following structure. Name Type Dept no Number Dept name Varchar2(20) location Varchar2(20) Add column designation to the department table. Insert values into the table. List the records of emp table grouped by dept no. Update the record where dept no is 9. Delete any column data from the table. 3. Create a table called Customer table Name Type Cust Name Varchar2(20) Cust city Varchar2(20) Cust city Varchar2(20) Insert records into the table. Add salary column to the table. Alter the table column domain. Drop salary column of the customer table. Delete the rows of customer table whose cust city is hyd. 4. Create a table called branch table. Name Type Branch Name Varchar2(20) Branch city Varchar2(20) Asserts Number Increase the size of data type for asserts to the branch. Add and drop a column to the branch table. Insert values to the table. Update the branch name column Delete any two columns from the table 5. Create a table called sailor table Name Type S Name Varchar2(20) Rating Varchar2(20) Sid Number Add column age to the sailor table. Insert values into the sailor table. Delete the row with rating¿8. Update the column details of sailor. Insert null values into the table. 6. Create a table called reserves table. Name Type Boat Id Number Page 8 **Day Number** Sid Number

WEEK II	QUERIES USING DDL AND DML
	1.
	a. Create a user and grant all permissions to the user.
	b. Insert the any three records in the employee table and use rollback. Check the result.
	c. Add primary key constraint and not null constraint to the employee table.d. Insert null values to the employee table and verify the result.2.
	a. Create a user and grant all permissions to the user.
	b. Insert values in the department table and use commit.
	c. Add constraints like unique and not null to the department table.
	d. Insert repeated values and null values into the table.3.
	a. Create a user and grant all permissions to the user.
	b. Insert values into the table and use commit.
	c. Delete any three records in the department table and use rollback.
	d. Add constraint primary key and foreign key to the table.4.
	a. Create a user and grant all permissions to the user.
	b. Insert records in the sailor table and use commit.
	c. Add save point after insertion of records and verify savepoint.
	d. Add constraints not null and primary key to the sailor table.5.
	a. Create a user and grant all permissions to the user.
	b. Use revoke command to remove user permissions.
	c. Change password of the user created.
	d. Add constraint foreign key and not null.
	6.
	a. Create a user and grant all permissions to the user.
	b. Update the table reserves and use savepoint and rollback.
	c. Add constraint primary key , foreign key and not null to the reserves table
WEEK III	QUERIES USING AGGREGATE FUNCTIONS

	1. a. By using the group by clause, display the enames who belongs to deptno 10,
	whose salary is same as respective departments average salary.
	b. Display lowest paid employee details under each department.
	c. Display number of employees working in each department and their department
	number.
	d. Using builtin functions, display number of employees working in each department
	and their department name from dept table. Insert deptname to dept table and
	insert deptname for each row, do the required thing specified above.
	e. List all employees which start with either B or C.
	f. Display only these ename of employees where the maximum salary is greater than
	or equal to 5000.
	2.
	a. Calculate the average salary for each different job.
	b. Show the average salary of each job excluding manager.
	c. Show the average salary for all departments employing more than three people.
	d. Display employees who earn more than the lowest salary in department 30
	e. Show that value returned by sign (n)function.
	f. How many days between day of birth to current date.3.
	a. Show that two substring as single string.
	b. List all employee names, salary and 15
	c. Display lowest paid emp details under each manager
	d. Display the average monthly salary bill for each deptno.
	e. Show the average salary for all departments employing more than two people.
	f. By using the group by clause, display the eid who belongs to deptno 05 along
	with average salary.
	4.
	a. Count the number of employees in department20
	b. Find the minimum salary earned by clerk.
	c. Find minimum, maximum, average salary of all employees.
	d. List the minimum and maximum salaries for each job type.
	e. List the employee names in descending order.
	f. List the employee id, names in ascending order by empid.
	5.
	a. Find the sids , names of sailors who have reserved all boats called "INTERLAKE
	Find the age of youngest sailor who is eligible to vote for each rating level with at
	least two such sailors.
	b. Find the sname , bid and reservation date for each reservation.
	c. Find the ages of sailors whose name begin and end with B and has at least
	3 characters.
	d. List in alphabetic order all sailors who have reserved red boat.
	e. Find the age of youngest sailor for each rating level.
	6.
	a. List the Vendors who have delivered products within 6 months from order date.b. Display the Vendor details who have supplied both Assembled and Subparts.
	c. Display the Sub parts by grouping the Vendor type (Local or NonLocal).
	d. Display the Vendor details in ascending order.
WEEK IV	PROGRAMS ON PL/SQL

	1. a. Write a PL/SQL program to swap two numbers.
	b. Write a PL/SQL program to find the largest of three numbers.
	2.
	a. Write a PL/SQL program to find the total and average of 6 subjects and display
	the grade. b. Write a PL/SQL program to find the sum of digits in a given number.
	3.
	a. Write a PL/SQL program to display the number in reverse order.
	 b. Write a PL / SQL program to check whether the given number is prime or not. 4.
	a. Write a PL/SQL program to find the factorial of a given number.
	b. Write a PL/SQL code block to calculate the area of a circle for a value of radius
	varying from 3 to 7. Store the radius and the corresponding values of calculated area in an empty table named areas, consisting of two columns radius and area. 5.
	a. Write a PL/SQL program to accept a string and remove the vowels from the
	string. b. Write a PL/SQL program to accept a number and a divisor. Make sure the
	divisor is less than or equal to 10. Else display an error message. Otherwise Display
	the remainder in words.
WEEK V	PROCEDURES AND FUNCTIONS
	1. Write a function to accept employee number as parameter and return Basic +HRA together as single column.
	2. Accept year as parameter and write a Function to return the total net salary
	spent for a given year.
	 Create a function to find the factorial of a given number and hence find NCR. Write a PL/SQL block o pint prime Fibonacci series using local functions.
	5. Create a procedure to find the lucky number of a given birthdate.
	6. Create function to the reverse of given number.
WEEK VI	TRIGGERS
	1. Create a row level trigger for the customers table that would fire for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This
	trigger will display the salary difference between the old values and new values: CUSTOMERS table.
	2. Creation of insert trigger, delete trigger, update trigger practice triggers using
	the passenger database. Passenger (Passport id INTEGER PRIMARY KEY, Name
	VARCHAR (50) Not NULL, Age Integer Not NULL, Sex Char, Address VARCHAR
	(50) Not NULL);3. Insert row in employee table using Triggers. Every trigger is created with name
	any trigger have same name must be replaced by new name. These triggers can raised before insert, update or delete rows on data base. The main difference
	between a trigger and a stored procedure is that the former is attached to a table and is only fired when an INSERT, UPDATE or DELETE occurs.
	4. Convert employee name into uppercase whenever an employee record is inserted
	or updated. Trigger to fire before the insert or update.
	5. Trigger before deleting a record from emp table. Trigger will insert the row to be
	deleted into table called delete emp and also record user who has deleted the record
	and date and time of delete. 6. Create a transparent audit system for a table CUST MSTR. The system must keep track of the records that are being deleted or updated
	more the system must keep track of the records that are being deleted of updated

WEEK VII	PROCEDURES
	 Create the procedure for palindrome of given number. Create the procedure for GCD: Program should load two registers with two Numbers and then apply the logic for GCD of two numbers. GCD of two numbers is performed by dividing the greater number by the smaller number till the remainder is zero. If it is zero, the divisor is the GCD if not the remainder and the divisors of the previous division are the new set of two numbers. The process is repeated by dividing greater of the two numbers by the smaller number till the remainder is zero and GCD is found. Write the PL/SQL programs to create the procedure for factorial of given number. Write the PL/SQL programs to create the procedure to find sum of N natural number. Write the PL/SQL programs to create the procedure to find Fibonacci series. Write the PL/SQL programs to create the procedure to check the given number is perfect or not.
WEEK VIII	CURSORS
	 Write a PL/SQL block that will display the name, dept no,salary of fist highest paid employees. Update the balance stock in the item master table each time a transaction takes place in the item transaction table. The change in item master table depends on the item id is already present in the item master then update operation is performed to decrease the balance stock by the quantity specified in the item transaction in case the item id is not present in the item master table then the record is inserted in the item master table. Write a PL/SQL block that will display the employee details along with salary using cursors. To write a Cursor to display the list of employees who are working as a Managers or Analyst.
WEEK IX	 CASE STUDY: BOOK PUBLISHING COMPANY A publishing company produces scientific books on various subjects. The books are written by authors who specialize in one particular subject. The company employs editors who, not necessarily being specialists in a particular area, each take sole responsibility for editing one or more publications. A publication covers essentially one of the specialist subjects and is normally written by a single author. When writing a particular book, each author works with on editor, but may submit another work for publication to be supervised by other editors. To improve their competitiveness, the company tries to employ a variety of authors,more than one author being a specialist in a particular subject for the above case study, do the following: Analyze the data required. Normalize the attributes.
WEEK X	CASE STUDY GENERAL HOSPITAL

· · ·	
	A General Hospital consists of a number of specialized wards (such as Maternity, Pediatric, Oncology, etc). Each ward hosts a number of patients, who were admitted on the recommendation of their own GP and confirmed by a consultant employed by the Hospital.On admission, the personal details of every patient are recorded. A separate register is to be held to store the information of the tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for each patient. Each patient is assigned to one leading consultant but may be examined by another doctor, if required. Doctors are specialists in some branch of medicine and may be leading consultants for a number of patients, not necessarily from the same ward. For the above case study, do the following. 1. Analyze the data required. 2. Normalize the attributes. 3. Create the logical data model using E-R diagrams.
WEEK XI	CASE STUDY: CAR RENTAL COMPANY
	A database is to be designed for a car rental company. The information required includes a description of cars, subcontractors (i.e. garages), company expenditures, company revenues and customers. Cars are to be described by such data as: make, model, year of production, engine size, fuel type, number of passengers, registration number, purchase price, purchase date, rent price and insurance details. It is the company policy not to keep any car for a period exceeding one year. All major repairs and maintenance are done by subcontractors (i.e. franchised garages), with whom CRC has long-term agreements. Therefore the data about garagesto be kept in the database includes garage names, addresses, range of services and the like. Some garages require payments immediately after a repair has been made; with others CRC has made arrangements for credit facilities. Company expenditures are to be registered for all outgoings connected with purchases, repairs, maintenance, insurance etc. Similarly the cash inflow coming from all sources: Car hire, car sales, insurance claims must be kept of file. CRC maintains a reasonably stable client base. For this privileged category of customers special credit card facilities are provided. These customers may also book in advance a particular car. These reservations can be made for any period of time up to one month. Casual customers must pay a deposit for an estimated time of rental, unless they wish to pay by credit card. All major credit cards are accepted. Personal details such as name, address, telephone number, driving license, number about each customer are kept in the database. For the above case study, do the following: 1. Analyze the data required. 2. Normalize the attributes.
WEEK XII	CASE STUDY: STUDENT PROGRESS MONITORING SYSTEM

A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons) M.Sc., etc) within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programme have compulsory modules. The database is also to contain some information about students including their numbers, names, addresses, degrees they read for, and their past performance i.e. modules taken and examination results. For the above case study, do the following: 1. Analyze the data required.
2. Normalize the attributes.
3. Create the logical data model i.e., ER diagrams.
4. Comprehend the data given in the case study by creating respective tables with primary keys and foreign keys wherever required.
 Insert values into the tables created (Be vigilant about Master- Slave tables). Display the Students who have taken M.Sc course.
 Display the Module code and Number of Modules taught by each Lecturer. Retrieve the Lecturer names who are not Module Leaders.
9. Display the Department name which offers "English" module.
10. Retrieve the Prerequisite Courses offered by every Department(with department names).
11. Present the Lecturer ID and Name who teaches Mathematics.
12. Discover the number of years a Module is taught.
13. List out all the Faculties who work for Statistics Department.
14. List out the number of Modules taught by each Module Leader.
15. List out the number of Modules taught by a particular Lecturer.
16. Create a view which contains the fields of both Department and Module tables.
(Hint The fields like Module code, title, credit, Department code and its name).
17. Update the credits of all the prerequisite courses to 5. Delete the Module History from the Module table.

TEXTBOOKS

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", Mc raw-Hill, 4th Edition,2002.
- 2. Ivan Bayross, "SQL, PL/SQL The programming language of oracle", BPB publications, 4th Revised Edition, 2010.

REFERENCE BOOKS:

- 1. Ramez Elmasri, Shamkant, B. Navathe, "Database Systems", Pearson Education, 6th Edition, 2013.
- 2. Peter Rob, Carles Coronel, "Database System Concepts", Cengage Learning, 7th Edition, 2008.
- 3. M L Gillenson, "Introduction to Database Management", Wiley Student Edition, 2012.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Introduction to database management system environments.	CO 1	T1:4.1, T2:1.1
2	Creation of tables using DDL and DML commands.	CO 2	T1:4.9,4.11, T2:7
3	Working with integrity constraints	CO 3,CO4	T1:3, T2:8
4	Working with DCL and TCL commands	CO1,CO 4	T1:6.6, T2:12
5	Queries using aggregate functions.	CO 3	T1:4.4, T2:10
6	Nested queries using comparison keywords and logical operators	CO 3	T1:4.6, T2:10
7	Working with Programs on pl/sql.	CO 6	T2:15
8	Working with Procedures.	CO 3,CO 6	T2:18
9	Working with Triggers.	CO 6	T2:18
10	Working with functions.	CO 5	T2:18
11	Working with Cursors.	CO 6	T2:10
12	Case study	CO 7	T1:2, T2:1

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments		
1	Implementation of views using SQL.		
2	Practical Implementation of assertions using PL/SQL.		

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	OPERATI	OPERATING SYSTEMS LABORATORY					
Course Code	ACS106	ACS106					
Program	B.Tech	B.Tech					
Semester	IV	IV CSE					
Course Type	Core						
Regulation	IARE - R16						
		Theory		Practio	cal		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	1	4	3	2		
Course Coordinator	Ms A. Harika, Assistant Professor						

I COURSE OVERVIEW:

This course provides a comprehensive introduction to operating system design concepts, data structures and algorithms. The course is designed to provide in-depth critique on the problems of resource management and scheduling, concurrency and synchronization, memory management, file management, peripheral management, protection and security. This course is intended to discuss the topics in a general setting not tied to any one particular operating system. Throughout the course, the study of practical aspects that pertain to the most popular operating systems such as Unix/Linux and Windows are considered as case studies.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS002	II	Data Structures
B.Tech	ACS004	111	Computer Organization and Architecture

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Operating Systems Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab		Viva		Probing further
\checkmark		\checkmark	Worksheets	\checkmark	Questions	\checkmark	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks of assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based Programming ba	
20 %	Objective Purpose	
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to dayFinal internal labperformanceassessment		
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

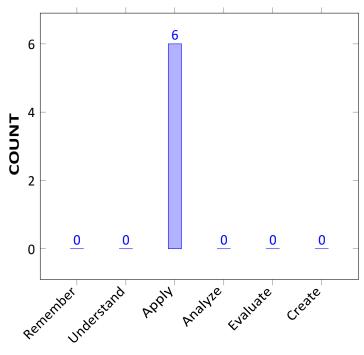
Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


I	The principles of operating systems, services and functionalities with its evolution.
П	The structures, functions and components of modern operating systems
- 111	The conventional hardware at different OS abstraction levels.
IV	The essential skills to examine issues and methods employed in design of operating systems with identification of various functionalities.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of pre-emptive and non-pre-emptive scheduling strategies for calculating system performance.	Apply
CO 2	Choose page replacement algorithm for effective utilization of main memory.	Apply
CO 3	Utilize file allocation strategy for efficient mass storage devices management.	Apply
CO 4	Develop deadlock handling procedures for improving process management.	Apply
CO 5	Build various memory management techniques for better usage of memory.	Apply
CO 6	Make use of various file organization techniques for proper organization of directory structures.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems	3	Lab Exer- cises,CIE,SEE
PO 2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab Exer- cises,CIE,SEE
PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	2	Lab Exer- cises,CIE,SEE
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Lab Exer- cises,CIE,SEE
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	1	Lab Exer- cises,CIE,SEE
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2	Lab Exer- cises,CIE,SEE
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2	Lab Exer- cises,CIE,SEE
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	Lab Exer- cises,CIE,SEE
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Lab Exer- cises,CIE,SEE

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	Lab Exercises
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	3	Lab Exercises
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	3	Lab Exercises

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Apply scientific principles and methodologies, other engineering disciplines for scheduling in uniand multi-processor systems.	3
	PO 4	Use research-based knowledge and research methods including design of scheduling experiments.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development to run scheduling algorithms of both pre-emptive and non -preemptive.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different tasks by pre-emptive scheduling.	2
	PO 8	Apply professional ethics and responsibilities and norms for performing different tasks by proper scheduling mechanisms.	2
	PO 10	Demonstrate the ability for communicating effectively in writing, speaking style subject matter in process scheduling.	3
	PO 12	Keeping current in CSE and advanced engineering concepts of process scheduling in multi-processor environment.	5
	PSO 1	Understand, design and analyze computer programs in the areas related to virtualization in cloud computing environment.	2
CO 2	PO 1	Apply scientific principles and methodologies, other engineering disciplines to perform page replacement.	5

	PO 2	Use creativity to establish innovative solution to develop various page replacement algorithms.	6
	PO 4	Understanding of appropriate codes of practice solution to develop various page replacement strategies.	4
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on techniques of efficient memory utilization.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different page replacement techniques.	1
	PO 8	Apply professional ethics and responsibilities and norms by using page replacement techniques in an efficient manner.	1
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in page replacement techniques of memory management.	3
	PO 12	Keeping current in CSE and advanced engineering concepts ofpage replacement for proper memory utilization.	4
	PSO 1	Understand, design and analyze computer programs in the areas related to various memory management techniques.	4
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines by using efficient memory management techniques.	2
CO 3	PO 1	Apply scientific principles and methodologies, other engineering disciplines to construct simple applications on file allocation strategies.	3
	PO 2	Experimental design on usage of various file allocation strategies in mass storage devices.	1
	PO 4	Understanding of appropriate codes of practice solution to develop simple programs for proper storage structure in secondary storage devices.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on services by proper storage allocation.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable developmentefficient storage mechanisms for proper functioning of a system.	1
	PO 8	Apply professional ethics and responsibilities and norms for providing efficient mechanisms of file allocation.	1
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in file allocation strategies.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of proper storage mechanisms.	5
	PSO 1	Understand, design and analyze computer programs in the areas related to effective utilization of space in secondary storage devices.	4
CO 4	PO 1	Apply scientific principles and methodologies, other engineering disciplines for deadlock handling.	3

Р	PO 3	Use creativity to establish innovative solution to develop simple programs on deadlock avoidance mechanisms.	5
P	PO 4	Understanding of appropriate codes of practice solution to develop simple deadlock handling mechanisms.	5
P	PO 6	Understanding of the requirement for engineering activities to promote sustainable development onproper handling of deadlocks.	1
P	°O 7	Demonstrate the knowledge of, and need for sustainable development for performing different deadlock handling mechanisms.	1
P	PO 8	Apply professional ethics and responsibilities and norms different services for proper handling of deadlocks.	1
P	PO 9	Effective teamwork and process management services rendered will handle deadlocks.	1
P	0 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in four ways of handling deadlocks.	4
P	0 12	Keeping current in CSE and advanced engineering concepts of deadlock prevention and handling.	5
P	SO 1	Understand, design and analyze computer programs in the areas related to deadlock handling.	4
CO 5 P	PO 1	Apply scientific principles and methodologies, other engineering disciplines to construct simple programs of various techniques of memory management.	3
P	PO 2	Experimental design on usage of various techniques of memory management in multiprocessor environment .	6
P	PO 3	Use creativity to establish innovative solution to develop simple applications on efficient memory management.	5
P	PO 4	Understanding of appropriate codes of practice solution to develop simple programs for memory management.	1
P	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on memory management techniques.	1
P	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different memory management techniques.	1
P	PO 8	Apply professional ethics and responsibilities and norms at the time of implementing memory management.	1
P	0 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in memory management techniques.	4

	PO 12	Keeping current in CSE and advanced engineering concepts of proper memory management.	5
	PSO 1	Understand, design and analyze computer programs in the areas related to programs for memory management.	4
CO 6	PO 1	Apply scientific principles and methodologies, other engineering disciplines to properly organize directory structures.	1
	PO 3	Use creativity to establish innovative solution to develop variousfile organization techniques.	5
	PO 4	Understanding of appropriate codes of practice to develop various file organization techniques.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development in various file organization techniques.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for various file organization techniques.	1
	PO 8	Apply professional ethics and responsibilities and norms for proper development of techniques for file organization.	1
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in various file organization techniques.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of various file organization techniques.	5
	PSO 1	Understand, design and analyze computer programs in the areas related to proper file organization.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines by applying various file organization techniques.	2
	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in development of operating systems.	2

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

	PROGRAM OUTCOMES													PSO'S	5
COURSE	РО	РО	РО	РО	РО	РО	РО	PO	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	1	-	1	2	2	-	3	-	2	2	-	-
CO 2	3	3	-	2	-	1	2	2	-	3	-	2	3	3	-
CO 3	3	1	-	1	-	1	2	2	-	3	-	2	3	-	-
CO 4	3	-	2	2	-	1	2	2	1	3	-	2	3	-	-
CO 5	3	3	2	1	-	1	2	2	-	3	-	2	3	-	-

		PROGRAM OUTCOMES												PSO'S	
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 6	2	-	2	1	-	1	2	2	-	3	-	2	2	3	3

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	1	SEE Exams	1	Seminars	-
Laboratory Practices	1	Student Viva	1	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	✓ Early Semester Feedback		End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XIV SYLLABUS:

WEEK I	CPU SCHEDULING ALGORITHMS
	Write a program to simulate the FCFS and SJF non-preemptive CPU Scheduling algorithms to find turnaround time and waiting time.
WEEK II	CPU SCHEDULING ALGORITHMS
	Write a program to simulate the Round Robin and Proiorty CPU Scheduling algorithms to find turnaround timeand waiting time.
WEEK III	PAGE REPLACEMENT ALGORITHMS
	Write a program to simulate FIFO page replacement algorithm.
WEEK IV	PAGE REPLACEMENT ALGORITHMS
	Write a program to simulate LRU and LFU page replacement algorithms.
WEEK V	FILE ALLOCATION STRATEGIES
	Write a program to simulate the Sequential file allocation strategies
WEEK VI	BANKER ALGORITHMS
	Write a program to simulate Bankers algorithm for the purpose of deadlock avoidance.
WEEK VII	BANKER ALGORITHMS
	Write a program to simulate Bankers algorithm for the purpose of deadlock Prevention.
WEEK VIII	MEMORY MANAGEMENT TECHNIQUES
	Write a program to simulate the MVT memory management techniques.
WEEK IX	MEMORY MANAGEMENT TECHNIQUES
	Write a program to simulate the MFT memory management techniques
WEEK X	FILE ORGANIZATION TECHNIQUES

	Write a program to simulate the Single level directory file organization techniques.
WEEK XI	FILE ORGANIZATION TECHNIQUES
	Write a program to simulate the Two level directory file organization techniques
WEEK XII	PAGING TECHNIQUES
	Write a program to Simulate paging technique of memory management

REFERENCE BOOKS

- 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Principles", Wiley StudentEdition, 8th Edition, 2010.
- 2. Andrew S Tanenbaum, "Modern Operating Systems", PHI, 3rd Edition, 2007.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Simulate the FCFS and SJF	CO1	R1:1.2
2	Simulate the Round Robin and Proiorty	CO1	R2:2.4
3	simulate page replacement algorithms FIFO.	CO2	R2:2.5
4	Simulate page replacement algorithms LRU and LFU	CO2	R1:2.6
5	Simulate the Sequential file allocation strategies.	CO3	R2:22.7
6	Simulate Bankers algorithm for the purpose of deadlock avoidance	CO4	R2:5.3
7	Simulate Bankers algorithm for the purpose of deadlock prevention	CO4	R1:6.3
8	Simulate the MVT memory management techniques	CO5	R2:6.8
9	Simulate the MFT memory management techniques.	CO5	R2:13.1
10	Simulate the Single level directory file organization techniques.	CO6	R1:13.2
11	Simulate the Two level directory file organization techniques.	CO6	R2:13.7
12	Simulate paging technique of memory management	CO5	R1:10.2

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments	
1	Interrupts, Exceptions, and System Calls.	
2	Multicore Programming, Multithreading Models	
3	Free Space Management, I/O Systems	

Signature of Course Coordinator

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Computer Science and Engineering				
Course Title	Microprocessors and Interfacing				
Course Code	AEC021	AEC021			
Program	B.Tech				
Semester	V				
Course Type	Core				
Regulation	R-16				
		Theory		Pract	cical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	Ms B. Lakshmi Prasanna, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS004	III	Computer Organization and Architecture
B.Tech	AEC020	III	Digital Logic Design

II COURSE OVERVIEW:

Microprocessors are the key components in most of the modern embedded and system-on-chip designs. This course outlines the architecture and signal description of Intel microprocessors. The instruction set and assembly language programming along with I/O and memory interfacing techniques are covered. The knowledge acquired from this course will enable the students in development of embedded hardware projects and models for engineering and scientific applications.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Microprocessors and Interfacing	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

,	\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
	x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
	x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could

be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
50 %	Understand
30 %	Apply
10 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	Quiz AAT	100ai Marks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

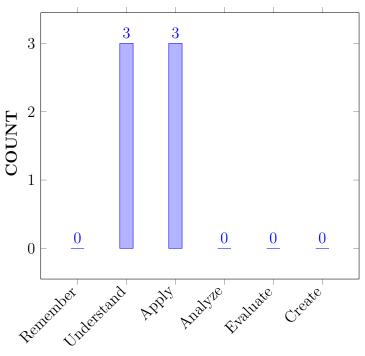
Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The signal descriptions along with functional architecture and hardware interfacing
	skills using microprocessors.
II	The instruction set and logic to build assembly language programs for arithmetic, logic and automated electronic systems.
TTT	
III	The essential concepts of development through a practical hands-on approach on
	advanced ARM processors and Internet of Things based systems.

VII COURSE OUTCOMES:

After successful	acmulation	ofthe	0011700	atudanta	chould	he able to
After successful	completion	or the	course,	students	snouiu	be able to:

CO 1	Outline the functional components of microprocessors for	Understand
	understanding the operation of architectures.	
CO 2	Make use of addressing modes and instruction set of target	Apply
	microprocessors for writing an assembly language programs to perform	
	a task.	
CO 3	Demonstrate the internal architecture and modes of operation of	Understand
	peripheral devices for interfacing memory and I/O devices.	
CO 4	Illustrate the interrupt handling mechanism in microprocessors using	Understand
	interrupt controller.	
CO 5	Choose an appropriate data transfer scheme and hardware for data	Apply
	transfer between the devices.	
CO 6	Develop microprocessor based applications using necessary input and	Apply
	output devices.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes		
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	

	Program Outcomes		
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations		
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization	3	SEE, CIE, AAT , QUIZ
	to the solution of complex engineering problems.	-	
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	SEE, CIE, AAT, QUIZ

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 3	Design/Development of Solutions: Design	2	SEE, CIE,
	solutions for complex Engineering problems and		AAT , QUIZ
	design system components or processes that meet		
	the specified needs with appropriate consideration		
	for the public health and safety, and the cultural,		
	societal, and Environmental considerations		
PO 10	Communication: Communicate effectively on	1	SEE, CIE,
	complex Engineering activities with the		AAT , QUIZ
	Engineering community and with society at large,		
	such as, being able to comprehend and write		
	effective reports and design documentation, make		
	effective presentations, and give and receive clear		
	instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

PROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
Understand, design and analyze computer	3	AAT
programs in the areas related to algorithms,		
system software, web design, big data, artificial		
intelligence, machine learning and networking.		
	programs in the areas related to algorithms, system software, web design, big data, artificial	Understand, design and analyze computer3programs in the areas related to algorithms, system software, web design, big data, artificial intelligence, machine learning and networking.3

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES												PSO'S	;
COURSE	РО	PO	РО	РО	PO	РО	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-		-	-	-
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Describe the features and architectures of Intel 8086 processor (knowledge) by applying the knowledge of mathematics, Engineering fundamentals, and electronics engineering specialization for understanding the operation.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Explain the functional components of microprocessors and microcontrollers by giving effective presentations and receive clear instructions for understanding the operation of architectures.	1
CO 2	PO 1	Illustrate instructions from the set library (knowledge) for efficient assembly level programming by applying the knowledge of science, engineering fundamentals and mathematics.	3
	PO 2	Select proper instructions from the instruction set by Information and data collection for Solution development by writing assembly language level programming efficient and Interpretation of results	3
	PO 3	Manage the design process and make use of creativity to establish solutions by selecting proper mnemonics to write the assembly language level programming by Understanding of the requirement for engineering activities to promote sustainable development.	3
	PO 10	Utilize addressing modes and instruction set of target microprocessors and microcontrollers microcontrollers by giving effective presentations and receive clear instructions for writing an assembly language programs to perform a task .	1
	PSO 1	Develop software program skills to write efficient programs by understanding the algorithms using system software, for artificial intelligence, machine learning application areas.	2
CO 3	PO 1	Illustrate the internal architecture and modes of operation of peripheral devices like PPI, DMA controller, PIC, USART by applying the principles of mathematics, engineering fundamentals, electronics engineering specialization for the solution of complex engineering problems.	3
	PO 2	Explain the Problem statement and system definition for interfacing devices with microprocessor by Information and data collection using peripheral devices like PPI, DMA controller, PIC, USART for Solution development and Interpret the results	4
	PO 3	Manage the design process and evaluate outcomes by interfacing devices with microprocessor and microcontroller using Programmable Peripheral Interface (PPI) and Interrupt Controllers to establish innovative solutions byUnderstanding of the requirement for engineering activities to promote sustainable development	3
	PO 10	Describe the internal architecture and modes of operation of peripheral devices by giving effective presentations and receive clear instructions for interfacing memory and I/O devices.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 4	PO 2	Explain the functionality of various types of interrupts and their structure with Information and data collection for controlling the processor or controller with program execution flow and Interpret the results for solution development using interrupt controller.	3
	PO 3	Understand the requirement for engineering activities to promote sustainable development in Interrupt handling and use creativity to establish innovative solutions using interrupt controller by Managing the design process and evaluate outcomes	3
	PO 10	Explain the interrupt handling mechanism in microprocessors and microcontrollers by giving effective presentations and receive clear instructions using interrupt controller.	1
CO 5	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems by differentiating synchronous & asynchronous communication with Information and data collection for data transfer between the devices using first principles of mathematics and Engineering sciences and then Interpret the results	4
	PO 3	understand the customer and user needs and select an appropriate data transfer scheme and hardware by Managing the design process and evaluate outcomes to promote sustainable development for data transfer between the devices using creativity to establish innovative solutions	4
	PO 10	Select an appropriate data transfer scheme and hardware by giving effective presentations and receive clear instructions for data transfer between the devices.	1
CO 6	PO 1	Build (Apply)necessary hardware and software interface using microcomputer based systems to provide solution for real world problems by applying knowledge of mathematics, engineering fundamentals, engineering specialization.	3
	PO 2	Identify problem and Choose necessary hardware and software interface (information and data collection) and conduct experimental design with model translation to provide solution development for real world problems by interpreting results.	6

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	Organize necessary hardware and software interface based on user needs and importance of considerations for innovative solutions, of the problem including all aspects to manage design process, in microcomputer based systems by applying different techniques, to achieve required sustained development, with legal requirements governing engineering activities, including personnel, health, safety, and risk issues.	6
	PO 10	Build microprocessor and microcontroller based applications using necessary input and output devices and give effective presentations and receive clear instructions.	1
	PSO 1	Develop microprocessor based applications in the fields of rartificial intelligence, machine learning using system software and necessary input output devices.	2

Note: For Key Attributes refer Annexure - I

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

				PRO)GR.	$\mathbf{A}\mathbf{M}$	OUT	CON	MES					PSO'S	
COURSE	PO	PO	РО	РО	PO	PO	РО	РО	РО	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	3	3	-	-	-	-	-	-	1		-	2	-	-
CO 3	3	4	3	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	-	3	3	-	-	-	-	-	-	1	-	-	-	-	-
CO 5	-	4	4	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	3	6	6	-	-	-	-	-	-	1	-	-	2	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

				PRO	OGR.	$\mathbf{A}\mathbf{M}$	OUT	COL	MES				PSO'S		
COURSE	РО	РО	РО	РО	PO	PO	РО	РО	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	100	-	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 2	100	30	30	-	-	-	-	-	-	20	-	-	100	-	-
CO 3	100	40	30	-	-	-	-	-	-	20	-	-	-	-	-
CO 4	-	30	30	I	-	-	-	I	-	20	-	-	-	-	-
CO 5	-	40	40	-	-	-	-	-	-	20	-	-	-	-	-
CO 6	100	60	60	-	-	-	-	-	-	20	-	-	100	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	PO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	1	1	-	-	-	-	-	-	1	-	-	3	-	-
CO 3	3	2	1	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	-	1	1	-	-	-	-	-	-	1	-	-	-	-	-
CO 5	-	2	2	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	3	3	3	-	-	-	-	-	-	1	-	-	3	-	-
TOTAL	12	9	8	-	-	-	-	-	-	6	-	-	6	-	-
AVERAGE	3	1.8	1.6	-	-	-	-	-	-	1	-	-	3	-	-

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	
Quiz	\checkmark	Tech - Talk	-	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	-	5 Minutes Video / Concept Video	-	Open Ended Experiments	-
Micro Projects	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
Х	Assessment of activities / Modeling	and E	xperimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	OVERVIEW OF 8086 MICROPROCESSOR
	Introduction to 8085 microprocessor. RISC and CISC processors, architecture of 8086 microprocessor, special functions of general purpose register, 8086 flag register and function of 8086 flags, addressing modes of 8086, instruction set of 8086, assembler directives, simple programs, procedures, and macros.
MODULE II	PIN DIAGRAM OF 8086 AND AEESMBLY LANGUAGE PROGRAMMING
	Minimum mode and maximum mode of operation, timing diagram, Assembly language programs: Assembly language programs involving logical, branch and call instructions, sorting, evaluation of arithmetic expressions, string manipulation

MODULE III	8255 PROGRAMMABLE PERIPHERAL INTERFACE (PPI)
	Various modes of 8255 operation and interfacing to 8086; Interfacing keyboard, displays, 8279 Stepper motor and actuators, digital to analog and analog to digital converter interfacing. Interrupt structure of 8086: Interrupt structure of 8086, Vector interrupt table, interrupt service routines; Introduction to DOS and BIOS interrupts, 8259 PIC architecture and interfacing cascading of interrupt controller and its importance.
MODULE IV	SERIAL DATA TRANSFER SCHEMES
	Asynchronous and synchronous data transfer schemes, 8251 USART architecture and interfacing; TTL to RS 232C and RS232C to TTL conversion; Sample program of serial data transfer; Introduction to high-speed serial communications standards, USB.
MODULE V	ADVANCED MICROPROCESSORS
	80286 microprocessor: Architecture, registers (Real/Protected mode), privilege levels, descriptor cache, memory access in GDT and LDT, multitasking, addressing modes; Flag register 80386: Architecture, register organization, memory access in protected mode, paging; 80486: Only the technical features.

TEXTBOOKS

- 1. D. V. Hall, "Microprocessors and Interfacing", Tata McGraw-Hill Education, 3rd Edition 2013.
- 2. A.K Ray, K. M. Bhurchandani, "Advanced Microprocessors and Peripherals" Tata McGraw-Hill Education, 2nd Edition, 2006.
- 3. Savaliya M. T, "8086 Programming and Advance Processor Architecture", Wiley India Pvt., 1st Edition,2012.

REFERENCE BOOKS:

- 1. N. Senthil Kumar, M. Saravanan, S.Jeevanathan, S. K. Shah, "Microprocessors and Interfacing", Oxford University, 1st Edition, 2012.
- 2. Lyla B. Das, "The x86 Microprocessors", Pearson India, 2nd Edition, 2014.

WEB REFERENCES:

- 1. http://www.daenotes.com/electronics/digital-electronics/Intel-8085 8 bit microprocessor/axzz2I9yUSe7I
- $2.\ http://www.smartzworld.com/notes/microprocessor-and-microcontroller-pdf-notes-mpmc-notes-pdf/$
- 3. http://www.iare.ac.in

COURSE WEB PAGE:

1. https://www.iare.ac.in/?q=courses/computer-science-and-engineering-autonomous/microprocessors-and-interfacing

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference			
OBE DISCUSSION						
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://https: //www.iare.ac .in/?q=courses /computer science-and- engineering -engineering- autonomous/ microprocessors and- interfacing			
	CONTENT DELIVERY (THEORY)					
2	Register organization of 8086 microprocessor	CO 1	T1:1.1 R2:1.3			
3	Flag Register of 8086 Microprocessor	CO 1	T1:1.1 R2:1.2.2			
4	Architecture and signal description of 8086 microprocessor	CO 1	T1:1.2 R2:1.1,6.1			
5	Physical memory organization of 8086 microprocessor	CO 1	T1:1.4 R2:2.3			
7	General bus operation, I/O addressing capability and special purpose activities	CO 1	T1:1.5,1.6,1.7			
8	Operation of 8086 microprocessor in minimum mode with read nd write timing diagrams	CO 1	T1:1.8 R2:6.3			
9	Operation of 8086 microprocessor in maximum mode with read nd write timing diagrams	CO 1	T1:1.9 R2:6.4			
10	Machine language instruction formats	CO 2	T1:2.1 R2:3.1			
11	Addressing modes of 8086 Microprocessor	CO 2	T1:2.2 R2:1.4			
12	Instruction Set Of 8086 Microprocessor: Data transfer instructions	CO 2	T1:2.3 R2:3.2			
13	Instruction Set Of 8086 Microprocessor: Arithmetic and Logical instructions	CO 2	T1: 2.3 R2:3.4,3.5			
14	Instruction Set Of 8086 Microprocessor: Program control transfer instructions	CO 2	T1: 2.3 R2:3.3			
15	Instruction Set Of 8086 Microprocessor: Machine Control Instructions and Flag manipulation instructions	CO 2	T1: 2.3 R2:3.7			
16	Instruction Set Of 8086 Microprocessor: Shift and rotate instructions	CO 2	T1: 2.3 R2:3.6			
17	Instruction Set Of 8086 Microprocessor: String instructions	CO 2	T1: 2.3 R2:4.1			
18	Assembler Directives and operators	CO 2	T1:2.4 R2:2.2			
19	Machine level programs, programming with an assembler	CO 2	T1:3.1,3.2,3.3 R2:2.1			
24	Introduction to stack and stack structure of 8086/8088 microprocessor	CO 1	T1:4.1,4.2			

25	Interrupts and Interrupt service routines	CO 4	T1:4.3 R2:8.1
26	Interrupt cycle of 8086 microprocessor, non- mask able interrupt and mask able interrupts	CO 4	T1:4.4,4.5,4.6 R2:8.2
27	Interrupt programming	CO 4	T1:4.7
28	Interfacing I/O ports	CO 3	T1:5.3
29	Pin diagram and Architecture 8255 PPI	CO 3	T1:5.4 R2:9.2
30	Operating modes of 8255 PPI	CO 3	T1:5.5 R2:9.3
31	A/D and D/A converters	CO 6	T1:5.6,5.7 R2:9.8,9.9
33	Stepper motor interfacing	CO 6	T1:5.8 R2:9.11
34	Control of high power devices using 8255 PPI	CO 6	T1:5.9
35	Pin configuration of 8259 PIC	CO 4	T1:6.2 R2:10.3
36	Architecture of 8259 PIC	CO 4	T1:6.2 R2:10.3
38	Keyboard /display controller 8279	CO 6	T1:6.3 R2:10.2
40	Programmable communication interface 8251 USART	CO 5	T1:6.4 R2:11.3
42	DMA Controller 8257	CO 3	T1:7.1 R2:11.6
43	TTL to RS 232C and RS232C to TTL conversion	CO 5	T1:17.2 R2:20.1
44	Introduction to highspeed serial communications standards	CO 5	T1:17.3
45	USB	CO 5	T1:17.8 R2:19.9
46	80286 microprocessor: Architecture, registers (Real/Protected mode)	CO 1	T1:17.4 R2:19.10
48	privilege levels, descriptor cache, memory access in GDT and LDT	CO 1	T1:17.5 R2:20.3,20.4
49	multitasking	CO 1	T1:17.6 R2:20.6
50	Flag register 80386: Architecture, register organization, memory access in protected mode	CO 1	T1:17.7 R2:20.5
	PROBLEM SOLVING/ CASE STUDI	ES	
6	Physical address calculation	CO 1	T1:1.1 R2:1.1
20	Assembly language programs For Sorting of numbers using 8086 microprocessor	CO 2	T1:3.4 R2:4.7
21	Assembly language programs for multibyte addition and subtraction, sum of squares using 8086 microprocessor	CO 2	T1:3.4 R2:4.7
22	Assembly language programs for String manipulations using 8086 microprocessor	CO 2	T1:3.4 R2:4.1
23	Assembly language programs for Code conversions using 8086 microprocessor	CO 2	T1:3.4 R2:4.4,4.5

	· · · · ·		r
28	Memory interfacing to 8086 microprocessor (Static RAM)	CO 3	T1:5.1 R2:12.2,12.3
29	Memory interfacing to 8086 microprocessor (EPROM)	CO 3	T1:5.2 R2:12.4
32	Interfacing A/D and D/A converters with 8086 microprocessor	CO 6	T1:5.6,5.7 R2:9.8,9.9
34	Assembly language programs to rotate stepper motor in clockwise and anticlock wise direction	CO 2	T1:5.8 R2:9.11
37	Cascading of Interrupt Controller and its importance, interfacing 8259 PIC with 8086 microprocessor	CO 4	T1:6.2 R2:10.3,10.4
39	Interfacing keyboard /display controller 8279 to 8086 microprocessor	CO 6	T1:6.3 R2:10.2
41	Interfacing programmable communication interface 8251 USART to 8086 microprocessor	CO 5	T1:6.4 R2:11.3
47	Assembly language programming using data transfer, arithmetic, logical and branch instructions	CO 2	T1:17.8 R2:19.3
51	Sample program of serial data transfer	CO 5	T1:17.6 R2:20.2
52	addressing modes of 80386	CO 2	T1:17.9 R2:21.3
53	paging	CO 1	T1:17.9 R2:21.1
	DISCUSSION OF DEFINITION AND TERMI	INOLOG	Y
54	OVERVIEW OF 8086 MICROPROCESSOR	CO 1, CO 2	T1, R2
55	PIN DIAGRAM OF 8086 AND AEESMBLY LANGUAGE PROGRAMMING	CO 1, CO 2, CO 3	T1, R2
56	8255 PROGRAMMABLE PERIPHERAL INTERFACE (PPI)	CO 2, CO 3, CO 4, CO 5, CO 6	T1, R2
57	SERIAL DATA TRANSFER SCHEMES	CO 2, CO 5	T1, R2
58	ADVANCED MICROPROCESSORS	CO 1, CO 2, CO 6	T1, R2
	DISCUSSION OF QUESTION BANK	X	
59	OVERVIEW OF 8086 MICROPROCESSOR	CO 1, CO 2	T1, R2
60	PIN DIAGRAM OF 8086 AND AEESMBLY LANGUAGE PROGRAMMING	CO 1, CO 2, CO 3	T1, R2
61	8255 PROGRAMMABLE PERIPHERAL INTERFACE (PPI)	CO 2, CO 3, CO 4, CO 5, CO 6	T1, R2

62	SERIAL DATA TRANSFER SCHEMES	CO 2, CO 5	T1, R2
63	ADVANCED MICROPROCESSORS	CO 1, CO 2, CO 6	T1, R2

Signature of Course Coordinator Ms B. Lakshmi Prasanna, Assistant Professor

HOD, ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	 Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation 	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10

	1
 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	
 Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to 	11
Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment	1
	 production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding of appropriate codes of practice and industry standards 6. Awareness of nature of intellectual property and contractual issues 5. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to work with technical uncertainty 8. Understanding of engineering processes 9. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems. Create, select, and apply appropriate techniques, resources, and modeling to complex Lengineering and IT tools including prediction and modeling to complex Engineering and IT tools including prediction and modeling to omplex Lengineering

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

PO 12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning – stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2.2 new significant chills 	8
	6. Continued personal development7. Have learned at least 2-3 new significant skills8. Have taken up to 80 hours (2 weeks) training per year	

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING					
Course Title	WEB TECHNOLOGIES					
Course Code	ACS006					
Program	B.Tech					
Semester	V					
Course Type	Core					
Regulation	R-16					
	Theory Practical					
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Coordinator	CH.Srividya, Assistant Professor					

I COURSE OVERVIEW:

This course emphasize on website development, build dynamic and database driven web applications. using tools. Content of this course covers an insight into HTTP communication protocol, the markup languages HTML, DHTML, XML and the CSS for formatting and transforming web content, interactive graphics and multimedia content on the web. It also enriches client-side and server side programming using servlets JSP, PHP and connects with Data bases. There is a growing need for management and decision makers to gain a clearer understanding of the application development process, from planning through to deployment and maintenance. It will also give you how you can analyze requirements, plan, design, implement and test arrange of web applications.

II COURSE PRE-REQUISITES:

Γ	Level	Course Code	Prerequisites	
	B.Tech	ACS001	Ι	Computer Programming
	B.Tech	ACS003	III	Object Oriented Programming Through Java Laboratory

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Web Technologies	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

С	Power Point Presentations	С	Chalk & Talk	С	Assignments	X	MOOC
X	Open Ended Experiments	X	Seminars	X	Mini Project	С	Videos
X	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20	Remember
40	Understand
25	Apply
15	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks		
Type of Assessment	CIE Exam	Quiz \AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

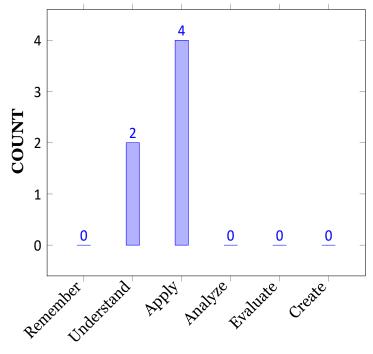
Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The fundamentals of designing static and dynamic web pages using HTML and DHTML for creation of websites
II	The concepts of client - server programming with JavaScript, XML, Servlets, JSP and PHP
III	The project-based experience needed for designing real time web based client-server applications

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate basic elements of HTML and CSS for designing static web pages.	Understand
CO 2	Develop effective and interactive web pages using dynamic HTML with javascript and XML for client/server based applications.	Apply
CO 3	Make use of Servlets and Java Server Pages for server side programming with Model View Control architecture.	Apply
CO 4	Summarize basic concepts of PHP for designing static and dynamic web pages.	Understand
CO 5	Build dynamic web pages using XML and PHP with database connectivity to perform CRUD operations and validate using AJAX and Java Script.	Apply
CO 6	Construct website by using front end and backend end programming.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	CIE/Quiz/AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIE/Quiz/AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	Assignments
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. 1: 2 = Medium: 1 = Low	1	SEE/ CIE, AAT, QUIZ

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Professional Skills: Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	2	CIA/SEE/AAT
PSO 2	Problem-Solving Skills: Focus on mobile and web applications development and learn the emerging technologies and frameworks in demand with employers and contemporary challenges.	2	CIA/SEE/AAT
PSO 3	Successful Career and Entrepreneurship: Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry.	3	CIA/SEE/AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES								PSO'S					
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	С	-	С	-	С	-	-	-	-	С	-	С	С	-	С
CO 2	С	С	С	-	С	-	-	-	-	С	-	С	С	-	С
CO 3	С	С	С	-	С	-	-	-	-	С	-	С	С	-	С
CO 4	С	-	С	-	С	-	-	-	-	С	-	С	С	-	С
CO 5	С	С	С	-	С	-	-	-	-	С	-	С	С	С	С
CO 6	С	С	С	С	С	-	-	-	-	С	-	С	С	С	С

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Identify(knowledge) the structure of web page using HTML elements with their importance in webpage designing by applying basic principles of mathematics and engineering Fundamentals of programming.	2
	PO 3	Understand the customer needs of static and dynamic webpages and use creativity to provide innovative solutions in designing attractive webpages using various mark-up languages ,scripting languages by considering all aspects of the problem by managing the design process cost effectively and evaluate the outcomes to achieve engineering objectives to provide sustainable development.	5

			
	PO 5	Apply appropriate techniques, modern Engineering and IT tools to design a web page with HTML and CSS and use search tools such as browsers to produce the view of webpage.	1
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community related to web development and with society at large, to design web pages and write effective Programming by using the elements of HTML and CSS.	2
	PO 12	Recognize the need for advanced concepts related to HTML and CSS for understanding and developingweb applications through continuing education efforts with ongoing learning – stays up with industry trends.	2
	PSO 1	Identify the Customer needs and problem specific constraints in designing web pages related to the basic concepts of HTML and CSS.	2
	PSO 3	Make use of modern computer tool in designing Web applications by applying the technical skills and Knowledge on advanced frameworks and platforms and desire for higher studies.	1
CO 2	PO 1	Apply the knowledge of client side and server-side scripting, mark-up languages to develop effective web pages by applying principles of mathematics and engineering fundamentals.	2
	PO 2	Understand the problem statement and formulate (complex)specific engineering problems related to the concepts of HTML, Javascript and XML by considering the information and data provided by the customer to provide sustained conclusions by using model translation and validate the implementation of webpage by interpretation of results .	8
	PO 3	Design solution for effective webpage by considering the customer requirementsand use creativity and to ensure sustainable development in design processof web application toensure fitness of the problemby using HTML,Javascript,XML	5
	PO 5	Effective web pages are developed by using computer software related to web development with concepts related to Dynamic HTML ,XML and Java script for client/server based web applications.	1
	PO 10	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing client/server based web applications by using HTML ,XML and Java script concepts.	2

	DO		_
	PO 12	Recognize the need for advanced concepts in developing web applications and through continuing education efforts with ongoing learning – stays up with industry trends/ new technology related to the concepts of HTML,Javascript,XML.	2
	PSO 1	Understand the need and constraints related to programming concepts of dynamic HTML, Java Script and XML languages in designing web pages.	2
	PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2
CO 3	PO 1	Illustrate the use of servlets and JSP for server-side programming by applying principles of programming engineering fundamentals and mathematics.	2
	PO 2	Understand the given problem statement and formulate (complex)specific engineering problems related to Servlets ,and JSPs by appliying MVC architecture from the information and data collection.	2
	PO 3	Design solution for effective webpage by considering the customer requirementsand use creativity and to ensure sustainable development in design process of web application to ensure fitness of the problem by using servlets and jsp with MVC architecture.	5
	PO 5	Effective server side web pages are developed by using computer software related to web development with concepts related to Servlets and JSP,s by using MVC architecture.	1
	PO 10	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing web pages by using Servlets and JSP with MVC architecture	2
	PO 12	Recognize the need for advanced concepts in developing web applications and through continuing education efforts with ongoing learning –stays up with industry trends/ new technology related to the concepts of Servlets, JSP with MVC architecture.	2
	PSO 1	Understand the need and constraints related to programming concepts of servlets, and JSP in designing web pages.	2
	PSO 3	Make use of modern computer tool in designing Web applications it desire for higher studies andto be an entrepreneur .	2
CO 4	PO 1	Understand the basic concepts of PHP in designing webpages by applying the principles of programming Engineering fundamentals and mathematics.	2

	PO 3	Understand the customer needs n designing static and dynamic web pages to ensure fitness of the problem by managing all the aspects under design process and to provide sustainable development.	4
	PO 5	Effective web pages are developed by using computer software related to web development with concepts related to PHP for designing static and dynamic web pages.	1
	PO 10	Communicate effectively on complex Engineering activities related to web development with the customer to take the specific needs in designing static and dynamic web pages by using PHP.	2
	PO 12	Recognize the need for advanced concepts in developing web applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology related to the concepts of PHP.	2
	PSO 1	Understand the need and constraints related to programming concepts of PHP in designing web pages.	2
	PSO 3	Make use of modern computer tool in designing Web applications by applying the technical skills and Knowledge on advanced frameworks and platforms .	1
CO 5	PO 1	Illustrate the use of XML.PHP,AJAX and data base connectivity in designing web pages by applying the principles of mathematics and engineering fundamentals	2
	PO 2	Understand the given problem statement and formulate the(complex) engineering problems of creating dynamic webpages using XML,PHP,AJAX and Javascriptby considering all the specifications by the information provided by the user and use model translations if required and validate the conclusion of the problem by the Interpretation of results by implementing the webpages.	8
	PO 3	Design dynamic webpages using XML,PHP,AJAX and database connectivity by considering the customer requirementsand use creativity to ensure sustainable development in design process of web pages to ensure fitness of the problemand to manage cost drivers.	6
	PO 5	Design web pages by using the computer software related to programming by using the concepts of PHP interaction with the database to perform CRUD and by using XML and AJAX.	1
	PO 10	Communicate effectively with the customer to take the specific needs in designing dynamic web pages by using the concepts of PHP with data base connectivity and AJAX.	2

	PO 12	Build web applications according to technological changes done in software environment trelated to the concepts of PHP,XML,AJAX with database connectivity through continuing education efforts with ongoing learning.	2
	PSO 1	Understand the need and constraints of the customers related to the web design by using the concepts of PHP,XML and AJAX.	2
	PSO 2	Understand and develop web applications using PHP for Improving software reliability.	1
	PSO 3	Make use of modern computer tool in designing Web applications for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2
CO 6	PO 1	Apply the knowledge of front end and back end programming in designing website by applying principles of mathematics and engineering fundamentals	2
	PO 2	Understand the given problem statement and formulate the(complex) engineering problems of creating dynamic webpages using XML,PHP,AJAX and Javascriptby considering all the specifications by the information provided by the user and use model translations if required and validate the conclusion of the problem by the Interpretation of results by implementing the webpages.	9
	PO 3	Create dynamic website using front end and backend programminglanguages by considering the customer requirementsand use creativity to ensure sustainable development in design process of web pages to ensure fitness of the problem and to manage cost drivers.	6
	PO 4	Design website by conducting investigations on complex requirements of the user including design process,technologies,analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	7
	PO 5	Create web site by using front end and backend technologies in developing web application by using Computer software .	1
	PO 10	Communicate effectively in designing website with the customer to take the requirements related to the designing of web pages by using front end and back end programming.	2
	PO 12	Construct web site according to technological changes done in software environment related to front end and backend programming through continuing education efforts with ongoing learning – stays up with industry trends/ new technology.	2

PSO 1	Design the web applications by considered all the constraints of the customer in designing web pages by using front end and backend programming languages.	2
PSO 2	Understand and develop web applications for Improving software reliability.	1
PSO 3	Make use of modern computer tool in designing Web applications for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE				PRO	OGR	AM	OUI	CON	MES]	PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	5	-	1	-	-	-	-	2	-	2	2	-	1
CO 2	2	8	5	-	1	-	-	-	-	2	-	2	2	-	1
CO 3	2	2	5	-	1	-	-	-	-	2	-	2	2	-	2
CO 4	2	-	4	-	1	-	-	-	-	2	-	2	2	-	1
CO 5	2	8	6	-	1	-	-	-	-	2	-	2	2	1	2
CO 6	2	9	6	7	1	-	-	-	-	2	-	2	2	1	2

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE]	PRO	GRA	M C	UT	COM	IES				P	'SO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	-	50	-	100	-	-	-	-	40	-	25	33.3	-	50
CO 2	66.7	80	50	-	100	-	-	-	-	40	-	25	33.3	-	50
CO 3	66.7	20	50	-	100	-	-	-	-	40	-	25	33.3	-	100
CO 4	66.7	-	40	-	100	-	-	-	-	40	-	25	33.3	-	50
CO 5	66.7	80	60	-	100	-	-	-	-	40	-	25	33.3	50	100
CO 6	66.7	90	60	63.6	100	-	-	-	-	40	-	25	33.3	50	100

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, **0** being **no correlation**, **1** being the **low correlation**, **2** being **medium correlation** and **3** being **high correlation**.

- **0** $0 \le C \le 5\%$ No correlation
- **1** -5 <C≤ 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- **3** 60% \leq C < 100% Substantial /High

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	2	-	3	-	-	-	-	1	-	1	2	-	2
CO 2	3	3	2	-	3	-	-	-	-	1	-	1	2	-	2

CO 3	3	1	2	-	3	-	-	-	-	1	-	1	2	-	3
CO 4	3	-	1	-	3	-	-	-	-	1	-	1	2	-	2
CO 5	3	3	3	-	3	-	-	-	-	1	-	1	2	2	3
CO 6	3	3	3	-	3	-	-	-	-	1	-	1	2	2	3
TOTAL	18	10	13	3	18	-	-	-	-	6	-	6	6	4	15
AVER- AGE	3	2.5	2.1	3	3	-	-	-	-	1	-	1	2	2	2.5

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	С	SEE Exams	С	Assignments	С
Seminars	-	Student Viva	-	Certification	-
Laboratory Practices	-	5 Minutes Video	-	Open Ended Experiments	-
Term Paper	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

ſ	С	Early Semester Feedback	С	End Semester OBE Feedback
ſ	X	Assessment of Mini Projects by Ex	xperts	

XVIII SYLLABUS:

MODULE I	INRODUCTION TO HTML AND JAVA SCRIPT
	Introduction to html: fundamentals of HTML elements, Document body, text, hyperlink, lists, tables, color and images, frames; Cascading Style Sheets: Introduction, defining your own styles, properties and values in styles, style sheets, formatting blocks, and layers. JavaScript: JavaScript basics, variables, string manipulation, mathematical functions, statements, operators, arrays and functions.
MODULE II	OBJECTS IN JAVASCRIPT AND XML
	Objects in JavaScript: Data and objects in JavaScript, regular expressions, exception handling, built- in objects, events; Dynamic HTML with JavaScript: Data validation, opening a new window, Rollover buttons, moving images, multiple pages in a single download, floating logos. XML: Basics XML, document type definition, xml schemas, Document Object Model, presenting XML.
MODULE III	SERVLETS AND JSP
	Servlet: Lifecycle of a Servlet, a simple Servlet, the Servlet API, the Javax. Servlet package, reading Servlet parameters, the javax.Servlet.HTTP package, Handling HTTP requests and responses, using cookies and sessions. JSP: The anatomy of a JSP page, JSP processing, declarations, directives, expressions, code snippets, implicit objects, using beans in JSP pages, connecting to database inJSP.

MODULE IV	INTRODUCTION TO PHP
	Basics of PHP: downloading, installing, configuring PHP, programming in a web environment and the anatomy of a PHP page; Overview of PHP data types and concepts: Variables and data types, operators, expressions and statements, strings, arrays and functions
MODULE V	PHP AND DATABASE ACCESS
	PHP and database access: Basic database concepts, connecting to a My SQL database, retrieving and displaying results, modifying, updating and deleting data; MVC architecture: PHP and AJAX other web technologies: PHP and XML.

TEXTBOOKS

- 1. Chris Bates, "Web Programming: Building Internet Applications", Wiley Dream Tech, 2nd Edition, 2002.
- 2. Jeffrey C K Jackson, "Web Technologies", Pearson Education, 1st Edition, 2006
- 3. Steven Holzner, "The Complete reference PHP", Tata McGraw-Hill, 1st Edition, 2007.

REFERENCE BOOKS:

- 1. WHans Bergsten, "Java Server Pages", O Reilly, 3rd Edition, 2003.
- 2. D. Flanagan, "Java Script", O Reilly, 6th Edition, 2011.
- 3. Jon Duckett, "Beginning Web Programming", WROX, 2nd Edition, 2008.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference						
	OBE DISCUSSION								
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	_	https://lms. iare.ac.in/ index?route= course/ details& course_id= 177						
	CONTENT DELIVERY (THEORY)								
1	Basic concepts: Introduction to HTML	CO 1	T1:1.1 T1:2.1						
2	Fundamentals of HTML elements, Document body	CO 1	T1:2.1 R2 : 1.4						
3	Text,Hyperlink, Lists,Tables,color and images,Frames	CO 1	T1:2.2-2.8						
4	Introduction to CascadingStyleSheets,Defining your own styles	CO1	T1:4.1-4.4.3						

5	Properties and values in styles	CO 3	T1:4.4
6	Stylesheets,Formattingblocks,Layers	CO 1,	T1:4.5
7	JavaScript basics,variables,	CO 2,	T1:5.1 -5.4
8	String manipulation	CO 2	T1:5.5
9	Mathematicalfunctions, statements, operators	CO 2	T1:5.6-5.8
10	Arrays and Functions.	CO 2	T1:5.9-5.10
11	Data and objects in JavaScript, built-in objects.	CO 2	T1:6.1,6.4
12	Regular expressions.	CO 2	T1:6.2
13	Exception handling	CO 2	T1:6.3
14	Events	CO 2	T1:6.5
15	HTML with JavaScript: Data validation	CO 2	T1:7.1
16	Opening a window, Roll over buttons	CO 2	T1:7.2,7.6
17	Moving images, multiple pages in a single download, floating logos	CO 2	T1:7.7-7.10
18	Basics XML, document type definition	CO 2	T1: 14.1,14.2
19	Xml schemas.	CO 2	T1: 14.3
20	Document Object Model	CO 2	T1: 14.4
21	Presenting XML	CO 2	T1: 14.5
22	Life cycle of a Servlet, a simple Servlet	CO 3	T2: 6.1-6.4
23	The servlet API, the Javax. servlet package.	CO 3	T2: 6.1-6.4
24	Reading Servlet parameters	CO 3	T1:6.5
25	Handling HTTP requests and responses, Packages.	CO 3	T1:6.5
26	Cookies and sessions	CO 3	T2: 6.6-6.7
27	The anatomy of a JSP page, JSP processing, declarations	CO 3	T2: 8.1-8.2
28	Directives, Eexpressions, Code snippets	CO 3	T2: 8.3-8.4
29	Implicit objects, using beans in JSP pages, connecting to database in JSP.	CO 3	T2: 8.5
30	Basics of PHP, downloading, installing, configuring PHP	CO4	T3:1.1
31	Programming in a web environment and the anatomy of a PHP page	CO4	T3:1.1
32	Overview of PHP datatypes and concepts:Vari- ables,datatypes,operators,expressionsand statements	CO 4	T3:1. 2
33	Complex structures, structures and functions	CO 4	T3:2.1
34	Passing structures through pointers, self-referential structures	CO 4	T3:3.4
35	Strings, arrays, Functions	CO 4	T3: 3.10
36	PHP and data base access :Basic database concepts, connecting to a My SQL	CO 5	T3:3.10

[~~~	— 0
37	Retrieving and displaying results,modifying,updating and deleting data	CO 5	T3: 3.18
38	MVC Architecture	CO 5	T3: 3.12
39	PHP and other web technologies: PHP and XML	CO 5	T3: 3.13
40	PHP and AJAX.	CO 5	T3: 3.14
	PROBLEM SOLVING		
41	Create a table to show your class timetable.	CO 1	T1:2.7
42	Build a HTML document that has the form with the following controls: (a) A text box to collect the customer's name. (b) Four checkboxes, one each for the following items: i. Four HTML textbooks for Rs.1000. ii. Eight XML textbooks for Rs.2000. iii. Four Javabeans books for Rs.2500. iv. Eight UML textbooks for Rs.1500.	CO 1	T1:2.6
43	Build a script that inputs three integers from the user and displays sum, average, product, smallest and largest of these numbers in an alert dialog	CO 2	T1:6.3
44	Write an HTML page that has one input, which can take multi-line text and a submit button. Once the user clicks the submit button should show the number of characters, words and lines in the entered using an alert message. Words are separated with space and lines are separated with new line character.	CO 2	T1: 2.1-2.9
45	Build the page(s) for accepting the values of name and marks in a table then display them in the descending order of the marks.	CO 2	T1:2.5
46	Build web page for a library system, page should be in such a way that it should contain all book details- details include fields like Book name, Author name, ISBN and no. of copies available. Design webpage using CSS.	CO 6	T1: 2.1-2.9
47	Construct HTML page for any company home page and explain.	CO 6	T1: 2.4
48	Write a Java Script function to print an integer with commas as thousands separators.	CO 2	T1:4.8
49	Write a Java Script program to test the first character of a string is uppercase or not. Write a pattern that matches e-mail addresses.	CO 2	T1:2.2
50	Write a Java Script program to sort a list of elements using quick sort.	CO 2	T2: 4.1-4.5
51	Write a Java Script function which will take an array of numbers stored and find the second lowest and second greatest numbers, respectively.	CO 2	T2: 4.2-4.6

52Write a Java Script program which compute, the average marks of the following students then determine the corresponding grade.CO 2T2: 4.1-4.653To design the scientific calculator and make event for each button using java script.CO 2T1: 4.154A simple calculator web applicationCO 6T1: 4.455Write php program how to send mail using PHP.CO 4T3: 9.556Write php program to upload image to the server using html and PHP.CO 5T3: 5.558Write php program to upload registration form from the database.CO 5T3: 6.559Write php program to display the registration form from databaseCO 1.COT1:1.1 T1:2.160HTML, Java script, CSS, arrays, functions, string manipulationCO 1.COT1:1.1 T1:2.161Data validation, regular expressions, exception handlingCO 2T1:2.162Servlet, cookies and sessions, JSP pageCO 3T2:6.2-6.863PHPCO 4T3: 2.164My SQL database, retrieving MVC architectureCO 5T1: 2.1-2.966State the order of evaluation of the operandsCO 2T1: 2.1-2.967The WC architecture in PHP with a neat value of x after each statement is performed. X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3))));CO 5T2: 8.768create a database using PHP and My SQLCO 5T3: 10.11,1269Write a PH Script to validate username and password by reading values from html form and the validate the html form information using XML file?CO 5 <td< th=""><th></th><th></th><th></th><th></th></td<>				
for each button using java script.for54A simple calculator web applicationCO 6T1: 4.455Write php program how to send mail using PHP.CO 4T3: 9.556Write php program to upload image to the server using html and PHP.CO 4T3: 4.457Write php program to upload registration form into databaseCO 5T3: 5.558Write php program to display the registration form from the database.CO 5T3: 6.559Write php program to delete the registration form from the database.CO 5T3: 6.760HTML, Java script, CSS, arrays, functions, string manipulationCO 1, CO 2T1:1.1 T1:2.161Data validation, regular expressions, exception handlingCO 2T1:2.162Servlet, cookies and sessions, JSP pageCO 3T2:6.2-6.863PHPCO 4T3: 2.164My SQL database, retrieving MVC architectureCO 2T1: 2.1-2.965A simple calculator web application that takes two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 5.1-5.966State the order of evaluation of the operators in the following JavaScript statement is performed. $X=2/2+2*^2-2/2; X=(3*9*(3+(9*3/(3)))));$ CO 5T3: 5.1067The MVC architecture in PHP with a neat diagram?CO 5T3: 5.10T3: 10.11.1268create a database using PHP and My SQLCO 5T3: 10.11.1269Write a PHP Script to validate us	52	8	CO 2	T2: 4.1-4.6
55Write php program how to send mail using PHP.CO 4T3:9.556Write php program to upload image to the server using html and PHP.CO 4T3: 4.457Write php program to upload registration form into databaseCO 5T3: 5.558Write php program to display the registration form from the database.CO 5T3: 6.559Write php program to delete the registration form from databaseCO 5T3: 6.760HTML, Java script, CSS, arrays, functions, string manipulationCO 1,CO 2T1:1.1 T1:2.161Data validation, regular expressions, exception handlingCO 2T1:2.162Servlet, cookies and sessions, JSP pageCO 3T2:6.2-6.863PHPCO 4T3:2.164My SQL database, retrieving MVC architecture two numbers and an operator (+, -/, *) from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statement is performed. $X=2/2+2*2-2/2, X=(3*0*(3+(9*3/(3))));)$ CO 5T3: 5.1067The MVC architecture in PHP with a neat diagram?CO 5T3: 5.10T3: 5.1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3: 10,11,12	53	5	CO 2	T1: 4.1
56Write php program to upload image to the server using html and PHP.CO 4T3: 4.457Write php program to upload registration form into databaseCO 5T3: 5.558Write php program to display the registration form from the database.CO 5T3: 6.559Write php program to delete the registration form from databaseCO 5T3: 6.760HTML, Java script, CSS, arrays, functions, string manipulationCO 1, CO 2T1:1.1 T1:2.161Data validation, regular expressions, exception handlingCO 2T1:2.162Servlet, cookies and sessions, JSP pageCO 3T2:6.2-6.863PHPCO 4T3: 2.164My SQL database, retrieving MVC architecture two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statement is performed. $X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3)))));$ CO 5T3: 5.1067The MVC architecture in PHP with a neat diagram?CO 5T3: 5.10T3: 10.11.1268create a database using PHP and My SQLCO 5T3: 5.10T3: 5.1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3: 10.11.12	54	A simple calculator web application	CO 6	T1: 4.4
using html and PHP.CO57Write php program to upload registration form into databaseCO 5T3: 5.558Write php program to display the registration form from the database.CO 5T3: 6.559Write php program to delete the registration form from databaseCO 5T3: 6.760HTML, Java script, CSS, arrays, functions, string manipulationCO 1,CO 2T1:1.1 T1:2.161Data validation, regular expressions, exception handlingCO 2T1:2.162Servlet, cookies and sessions, JSP pageCO 4T3:2.164My SQL database, retrieving MVC architecture two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statement is performed. X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3)))));CO 5T2:8.767The MVC architecture in PHP with a neat diagram?CO 5T3: 5.1069Write a PHP Script to validate username and password by reading PHP and My SQLCO 5T3: 5.1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3: 10,11,12	55	Write php program how to send mail using PHP.	CO 4	T3:9.5
into databaseInto database58Write php program to display the registration form from the database.CO 5T3: 6.559Write php program to delete the registration form from databaseCO 5T3: 6.760HTML, Java script, CSS, arrays, functions, string manipulationCO 1,CO 2T1:1.1 T1:2.161Data validation, regular expressions, exception handlingCO 2T1:2.162Servlet, cookies and sessions, JSP pageCO 3T2:6.2-6.863PHPCO 4T3:2.164My SQL database, retrieving MVC architectureCO 2T1: 2.1-2.9DISCUSSION ON QUESTION BANK65A simple calculator web application that takes two numbers and an operator $(+, -, /, *)$ from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. $X=2/2+2*^2-2/2; X=(3*9*(3+(9*3/(3))));$ CO 5T2:8.767The MVC architecture in PHP with a neat diagram?CO 5T3: 5,1068create a database using PHP and My SQLCO 5T3: 10,11,1269Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3: 10,11,12	56		CO 4	T3: 4.4
form from the database.CO 5T3: 6.759Write php program to delete the registration form from databaseCO 5T3: 6.760HTML, Java script, CSS, arrays, functions, string manipulationCO 1,CO 2T1:1.1 T1:2.161Data validation, regular expressions, exception handlingCO 2T1:2.162Servlet, cookies and sessions, JSP pageCO 4T3:2.164My SQL database, retrieving MVC architectureCO 2T1:2.1-2.965A simple calculator web application that takes two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operandsCO 2T1:2.1-2.966State the order of evaluation of the operators in the following JavaScript statement is performed. $X=2/2+2^2-2/2; X=(3*9*(3+(9*3/(3))));$ CO 5T1:5.1-5.967The MVC architecture in PHP with a neat diagram?CO 5T2:8.768create a database using PHP and My SQLCO 5T3: 10,11,1269Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12	57		CO 5	T3: 5.5
form from databaseImage: constraint of the second state of t	58		CO 5	T3: 6.5
60HTML, Java script, CSS, arrays, functions, string manipulationCO 1,CO 2T1:1.1 T1:2.1 261Data validation, regular expressions, exception handlingCO 2T1:2.162Servlet, cookies and sessions, JSP pageCO 3T2:6.2-6.863PHPCO 4T3:2.164My SQL database, retrieving MVC architecture two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. $X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3))));$ CO 5T2:8.767The MVC architecture in PHP with a neat diagram?CO 5T3: 5,1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12	59		CO 5	T3: 6.7
manipulation261Data validation, regular expressions, exception handlingCO 2T1:2.162Servlet, cookies and sessions, JSP pageCO 3T2:6.2-6.863PHPCO 4T3:2.164My SQL database, retrieving MVC architecture two numbers and an operator $(+, -,/, *)$ from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. $X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3))));$ CO 2T1: 5.1-5.967The MVC architecture in PHP with a neat diagram?CO 5T3: 5,1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12		DISCUSSION ON DEFINITION AND T	ERMINOI	OGY
handlingImage: CO 3T2:6.2-6.862Servlet, cookies and sessions, JSP pageCO 4T3:2.163PHPCO 4T3:2.164My SQL database, retrieving MVC architectureCO 5T3:10,11,12DISCUSSION ON QUESTION BANK65A simple calculator web application that takes two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3))));CO 2T1:5.1-5.967The MVC architecture in PHP with a neat diagram?CO 5T2:8.768create a database using PHP and My SQLCO 5T3: 5,1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12	60		-	T1:1.1 T1:2.1
63PHPCO 4T3 :2.164My SQL database, retrieving MVC architectureCO 5T3:10,11,12DISCUSSION ON QUESTION BANK65A simple calculator web application that takes two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3))));CO 2T1:5.1-5.967The MVC architecture in PHP with a neat diagram?CO 5T2:8.768create a database using PHP and My SQLCO 5T3: 5,1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12	61		CO 2	T1:2.1
64My SQL database, retrieving MVC architectureCO 5T3:10,11,12DISCUSSION ON QUESTION BANK65A simple calculator web application that takes two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3))));CO 2T1:5.1-5.967The MVC architecture in PHP with a neat diagram?CO 5T2:8.768create a database using PHP and My SQLCO 5T3: 5,1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12	62	Servlet, cookies and sessions, JSP page	CO 3	T2:6.2-6.8
DISCUSSION ON QUESTION BANK65A simple calculator web application that takes two numbers and an operator (+, -,/,*) from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3)))));CO 2T1:5.1-5.967The MVC architecture in PHP with a neat diagram?CO 5T2:8.768create a database using PHP and My SQLCO 5T3: 5,1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12	63	РНР	CO 4	T3 :2.1
65A simple calculator web application that takes two numbers and an operator $(+, -,/, *)$ from an HTML page and returns the result page with the operation performed on the operandsCO 2T1: 2.1-2.966State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. $X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3))));$ CO 2T1:5.1-5.967The MVC architecture in PHP with a neat diagram?CO 5T2:8.768create a database using PHP and My SQLCO 5T3: 5,1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12	64	My SQL database, retrieving MVC architecture	CO 5	T3:10,11,12
two numbers and an operator $(+, -,/, *)$ from an HTML page and returns the result page with the operation performed on the operandsCO 266State the order of evaluation of the operators in the following JavaScript statements and show the value of x after each statement is performed. $X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3))));$ CO 2T1:5.1-5.967The MVC architecture in PHP with a neat diagram?CO 5T2:8.768create a database using PHP and My SQLCO 5T3: 5,1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12		DISCUSSION ON QUESTION	BANK	
the following JavaScript statements and show the value of x after each statement is performed. $X=2/2+2*2-2/2; X=(3*9*(3+(9*3/(3))));$ CO 567The MVC architecture in PHP with a neat diagram?CO 5T2:8.768create a database using PHP and My SQLCO 5T3: 5,1069Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12	65	two numbers and an operator $(+, -,/, *)$ from an HTML page and returns the result page with the	CO 2	T1: 2.1-2.9
diagram?CO 568create a database using PHP and My SQLCO 569Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5	66	the following JavaScript statements and show the value of x after each statement is performed.	CO 2	T1:5.1-5.9
69Write a PHP Script to validate username and password by reading values from html form and then validate the html form information using XML file?CO 5T3:10,11,12	67		CO 5	T2:8.7
password by reading values from html form and then validate the html form information using XML file?	68	create a database using PHP and My SQL	CO 5	T3: 5,10
70My SQL database, retrieving MVC architectureCO 5T3:10	69	password by reading values from html form and then validate the html form information using	CO 5	T3:10,11,12
	70	My SQL database, retrieving MVC architecture	CO 5	T3:10

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING					
Course Title	COMPILER DESIGN					
Course Code	AIT004					
Program	B.Tech					
Semester	V					
Course Type	Core					
Regulation	R16					
		Theory		Practi	cal	
Course Structure	Lecture Tutorials Credits Laboratory Credits				Credits	
3 1 4 -				-		
Course Coordinator	Ms. K Sreeveda , Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	ACS01	I	Computer Programming
UG	ACS02	П	Data Structures
UG	AHS013	111	Discrete Mathematical Structures
UG	AIT002	IV	Theory of Computation

II COURSE OVERVIEW:

This course describes the basic techniques for compiler construction and tools that can be used to perform syntax-directed translation of a high-level programming language into an executable code. It will provide deeper insights into the more advanced semantics aspects of programming languages, machine independent optimizations and code generation.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Compiler Design	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Chalk & Talk		Quiz		Assignments	х	MOOCs
\checkmark		\checkmark		\checkmark			
	PPT		Seminars	х	Mini Project		Videos
\checkmark		\checkmark				\checkmark	
х	open Ended Experiments						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
40 %	Understand
50 %	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam	Quiz \AAT	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

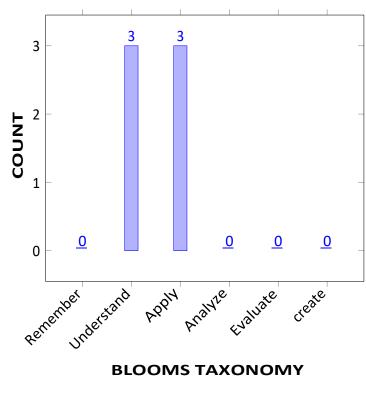
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table.

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The process of translating a high-level language to machine code required for compiler construction.
11	The Software tools and techniques used in compiler construction such as lexical analyser and parser generators.
111	The data structures used in compiler construction such as abstract syntax trees, symbol tables, three-address code, and stack machines.
IV	The deeper insights into the syntax and semantic aspects of programming languages, dynamic memory allocation and code generation.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize phases of a compiler in the construction of language processors.	Understand	
CO 2	2 Make use of finite automata for designing a lexical analyzer for a specific programming language constructs.		
CO 3	Choose top down, bottom up parsing methods for developing a parser with representation of a parse table or tree.	Apply	
CO 4	Outline syntax directed translations, intermediate forms for performing semantic analysis along with code generation.	Understand	
CO 5	Relate symbol table, type checking and storage allocation strategies used in run-time environment.		
CO 6	Select code optimization techniques on intermediate code form for generating target code.	Apply	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes				
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.				
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.				
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations				
PO 4					
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations				
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.				

Program Outcomes			
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12			

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

Program		Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE / Quiz / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	1	CIE / Quiz / AAT
PO 3	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	CIE / Quiz / AAT
PO 5	Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	3	CIE / Quiz / AAT

PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations,	2	CIE / Quiz / AAT/Tech- Talk
	and give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyse computer programs in the areas related to Algorithms, System Software, Web design, Bigdata, Artificial Intelligence, Machine Learning and Networking.	3	Group dis- cussion/ Short term courses
PSO 2	Focus on mobile and web applications development and learn the emerging technologies and frameworks in demand with employers and contemporary challenges.	3	Industry expo- sure/AAT
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	Group dis- cussion/ Short term courses/AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	-	-	-	1	-	-	-	-	-	-	-	✓	-	-
CO 2	✓	-	-	-	-	-	-	-	-	-	-	-	✓	-	-
CO 3	1	1	-	-	-	-	-	-	-	-	-	-	-	1	-
CO 4	✓	-	✓	-	1	-	-	-	-	-	-	-	-	-	-
CO 5	-	1	✓	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	1	1	-	-	1	-	-	-	-	1	-	-	-	-	1

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Describe the role of lexical analyzer and recognition of tokens, from regular expressions to finite automataby applying engineering fundamentals and provide solutions to engineering problems.	2
	PO 5	Understand the phases of compiler in optimizing regular Expressions by using the mathematical principles and computer science methodologies.	1
	PSO 1	Understand pass and phases of translation for specific problems with lexical analyzer generator.	1
CO2	PO 1	Understand the significant phases of translation, bootstrapping, LEX-lexical analyzer generator in lexical analysis using mathematical principles, fundamental of Computer engineering specialization and scientific principles.	3
	PSO 1	Understand the finite automata, regular Expressions in the area related to lexical analysis.	1
CO 3	PO 1	Understand the different types of parsing methods including the backtracking by apply the knowledge of computer engineering fundamentals and mathematical principles	2
	PO 2	Understand the problem statement and choose appropriate techniques by analyzing various grammars including stack implementation of parser by the interpretation of results.	3
	PSO 2	Understand the basic difference between top down parsing and bottom up parsing with reference to grammars and parser generator.	2
CO 4	PO 1	Describe Intermediate forms using syntax tree and three address code using mathematical principles and scientific principles.	2
	PO 3	Explain and demonstrate the translation of simple statements, Boolean expression and flow of control statements with three address code.	2
	PO 5	Understand the concepts of three address statements and its implementation in the intermediate code generation.	1
CO 5	PO 2	Analyze the process of symbol tables in runtime environment.	1
	PO 3	Understand the concepts of runtime environment evaluate the Source languageissues.	2

CO 6	PO 1	Demonstrate the code optimization by applying the principles of mathematics and engineering fundamentals.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems in the Design of a Code Generator and addresses in the target Code in reaching substantiated conclusions by the interpretation of results.	3
	PO 5	Create the addresses for Design of a Code Generator (complex) Engineering activities in Computer software.	1
	PO 10	Understand code optimization techniques on intermediate code forms such as syntax trees and design documentation, for improving the performance of a program.	1
	PSO 3	Demonstrate the basic optimization in real world software, using industry standard tools and collaboration techniques in the field of application programming.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2				1								1		
CO 2	3												1		
CO 3	2	3												2	
CO 4	2		2		1										
CO 5		1	2												
CO6	2	3			1					1					1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	0.0	0.0	0.0	100.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0
CO 2	100.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0
CO 3	66.7	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0
CO 4	66.7	0.0	20.0	0.0	100.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 5	0.0	10.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 6	66.7	30.0	0.0	0.0	100.	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	50.0

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** 0 \leq C \leq 5% No correlation
- **2** 40 % <C < 60% –Moderate
- 1-5 <C \leq 40% Low/ Slight
- **3** 60% \leq C < 100% Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	PO	PO	PO	PO	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	3	-	-	-	-	-	-	-	3	-	-
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO 3	3	1	-	-	-	-	-	-	-	-	-	-	-	3	-
CO 4	3	-	1	-	3	-	-	-	-	-	-	-	-	-	-
CO 5	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	1	-	-	3	-	-	-	-	2	-	-	-	-	2
TOTAL	15	3	2		9					2			6	3	2
AVERAGE	3	1	1		3					2			3	3	2

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	,	SEE Exams	,	Seminars	-
	\checkmark		\checkmark		
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Ex- periments	-
Assignments	\checkmark				

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback					
Х	Assessment of Mini Projects by Exp	Assessment of Mini Projects by Experts						

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO COMPILERS AND PARSING
	Introduction to compilers: Definition of compiler, interpreter and its differences, the phases of a compiler; Lexical Analysis: Role of lexical analyzer, input buffering, recognition of tokens, finite automata, regular Expressions, from regular expressions to finite automata, pass and phases of translation, bootstrapping, LEX-lexical analyzer generator. Parsing: Parsing, role of parser, context free grammar, derivations, parse trees, ambiguity, elimination of left recursion, left factoring, eliminating ambiguity from dangling-else grammar, classes of parsing, topdown parsing: backtracking, recursive-descent parsing, predictive parsers, LL(1) grammars.
MODULE II	BOTTOM-UP PARSING
	Bottom-up parsing: Definition of bottom-up parsing, handles, handle pruning, stack implementation of shift- reduce parsing, conflicts during shift-reduce parsing, LR grammars, LR parsers-simple LR, canonical LR and Look Ahead LR parsers, error recovery in parsing, parsing ambiguous grammars, YACC-automatic parser generator.
MODULE III	SYNTAX-DIRECTED TRANSLATION AND INTERMEDIATE CODE GENERATION
	Syntax-directed translation: Syntax directed definition, construction of syntax trees, S-attributed and L- attributed definitions, translation schemes, emitting a translation. Intermediate code generation: Intermediate forms of source programs— abstract syntax tree, polish notation and three address code, types of three address statements and its implementation, syntax directed translation into three-address code, translation of simple statements, Boolean expressions and flow-of control statements
MODULE IV	TYPE CHECKING ANDRUN TIME ENVIRONMENT
	Type checking: Definition of type checking, type expressions, type systems, static and dynamic checking of types, specification of a simple type checker, equivalence of type expressions, type conversions, overloading of functions and operators; Run time environments: Source language issues, Storage organization, storage- allocation strategies, access to nonlocal names, parameter passing, symbol tables, and language facilities for dynamic storage allocation.
MODULE V	CODE OPTIMIZATION AND CODE GENERATION
	Code optimization: The principle sources of optimization, optimization of basic blocks, loops in flow graphs, peephole optimization; Code generator: Issues in the design of a code generator, the target machine, runtime storage management, basic blocks and flow graphs, a simple code generator, register allocation and assignment, DAG representation of basic blocks.

TEXTBOOKS

1. Alfred V.Aho, RaviSethi, JeffreyD, Ullman, —Compilers–Principles, Techniques and Tools, Pearson Education, 2nd Edition, 2006.

REFERENCE BOOKS:

- 1. Kenneth C.Louden, Thomson, —CompilerConstruction—PrinciplesandPractice, PWS Publishing, 1st Edition, 1997.
- 2. Andrew W. Appel, —Modern Compiler Implementation C, Cambridge University Press, Revised Edition, 2004.

COURSE WEB PAGE:

- 1. http://csenote.weebly.com/principles-of-compiler-design.html
- 2. http://www.faadooengineers.com/threads/32857-Compiler-Design-Notes-full-book-pdf-download
- 3. http://www.e-booksdirectory.com/details.php?ebook=10166
- 4. http://www.e-booksdirectory.com/details.php?ebook=7400re

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference					
OBE DISCUSSION								
1	In Outcome-Based Education (OBE), we discussed about course delivery assessment that							
	are planned to achieve stated objectives and	outcomes. W	/e will focuses on measuring					
	student performance i.e. outcomes at differen	nt levels. Cou	urse outcomes(CO),Program					
	Outcomes(PO)and Program Specific Outcom	es(PSO) and	also mapping of CO's to PO's					
	PSO's and their attainments are discussed.							
	CONTENT DELIVER	RY (THEO	RY)					
1	Introduction to compilers: Definition of compiler, interpreter and its differences	CO 1	T1:1.1-1.5 R1:1.1					
2	The phases of a compiler	CO 1	T1:3.6-3.7 R1:2.2-2.4					
3	Lexical Analysis: Role of lexical analyzer, input buffering	CO 1	T1: 1.5					
4	recognition of tokens, finite automata.	CO 2	T1:1.1 R1:1.6					
5	regular Expressions	CO 2	T1:3.8-4.3 R1:3.1-3.3					
6	from regular expressions to finite automata.	CO 2	T1: 4.3-4.4 R1:4.1					
7-8	pass and phases of translation, bootstrapping, LEX-lexical analyzer generator.	CO 2	T1:4.5-4.7 R1:4.3-4.5					
9	Syntax Analysis: Parsing, role of parser, context free grammar.	CO 3	T1:4.5-4.7 R1:5.1-5.2					
10	derivations, parse trees, ambiguity	CO 3	T1:4.7 R1:5.3					
11	elimination of left recursion, left factoring	CO 3	T1: 4.7 R1:5.4-5.5					
12	eliminating ambiguity from dangling-else grammar	CO 3	T1:4.7 R1:5.6					
13	Types of parsing: Top-down parsing	CO 3	T1:4.9 R1:5.5					

14	backtracking, recursive-descent parsing, predictive parsers,	CO 3	T1: 4.9
15	LL (1) grammars	CO 3	T1: 5.1-5.4 R1:6.1
16	Bottom-up parsing: Definition of bottom-up parsing,.	CO 3	T1:8.4-8.6
17	handles, handle pruning, stack implementation of shift-reduce parsing,	CO 3	T1: 6.1 R1:6.4-6.5
18	conflicts during shift-reduce parsing,	CO 3	T1: 7.1-7.5 R1:7.1
19	LR grammars, LR parsers-simple LR,	CO 3	T1: 7.6-7.7
20	canonical LR and Look Ahead LR parsers,	CO 3	T1: 10.2
21	YACC-automatic parser generator.	CO 3	T1:10.1-10.2 T1:10.4,9.9
22	Syntax-Directed Translation: Syntax directed definitions, construction of syntax trees	CO 4	T1: 9.1-9.2
23	S-attributed and L- attributed definitions; Syntax Directed Translation schemes.	CO 4	T1: 9.3 R1:7.6
24	Intermediate code generation: Intermediate forms of source	CO 4	T1: 9.4
25	programs- abstract syntax tree, polish notation and three address code,	CO 4	T1:9.6-9.7 R1:8.1-8.8
26	Types of three address statements and its implementation	CO 4	T1: 9.8
27	syntax directed translation into three-address code	CO 4	T1: 9.1-9.2
28	translation of simple statements, Boolean expressions	CO 4	T1: 9.1-9.2
29	Flow-of- Control statements.	CO 4	R1:8.1-8.8
30	Type checking: Definition of type checking,	CO 5	R1:8.1-8.8
31	type expressions, type systems, static and dynamic checking of	CO 5	T1: 9.4
32	specification of a simple type checker	CO 5	T1: 9.1-9.2
33	Run time environments: Source language issues,	CO 5	T1: 9.1-9.2
34	Types Storage organization	CO 5	T1: 9.1-9.2
35	storage-allocation strategies,	CO 5	T1: 9.1-9.2
36	access to nonlocal data on the stack,	CO 5	T1: 9.1-9.2
37	Garbage collection, symbol tables.	CO 5	T1: 9.1-9.2
38	Code optimization: The principle sources of optimization	CO 6	T1: 9.1-9.2
39	optimization of blocks	CO 6	T1:10.1-10.2 T1:10.4,9.9
40	loops in flow graphs	CO 6	T1: 10.2
41	peephole optimization	CO 6	T1: 9.1-9.2

42	Code Generation: Issues in the Design of a Code Generator	CO 6	T1: 9.1-9.2
43-44	The Target Language, addresses in the Target Code,	CO 6	T1:10.1-10.4
45-46	Basic Blocks and Flow Graphs	CO 6	T1: 9.1-9.2
47	Optimization of Basic Blocks	CO 6	T1: 9.1-9.2
48	A Simple Code Generator	CO 6	T1:9.6-9.7 R1:8.1-8.8
49	register allocation and assignment	CO 6	T1:9.6-9.7
50-52	DAG representation of basic blocks.	CO 6	R1:8.1-8.8
	PROBLEM SOLVING/	CASE STU	DIES
1	Consider the following fragment of C code: float i, j; i = i*70+j+2; Construct the output at all phases of the compiler for above C code	CO 1	T1:1.1-1.5 R1:1.1
2	For the following expression total = count + rate * 5 Construct the output after each phase of compiler?	CO 1	T1:1.1-1.5 R1:1.1
3	Convert NFA with ϵ to equivalent NFA M=({q0,q1,q2}, {0,1,2}, δ , q0, {q2}) where δ is given by [δ (q0,0)={q0}, δ (q0,1)= ϕ , δ (q0,2)= ϕ , δ (q0, ϵ)=q1] [δ (q1,0)= ϕ , δ (q1,1)=q1, δ (q1,2)= ϕ , δ (q1, ϵ)=q2] [δ (q2,0)= ϕ , δ (q2,1)= ϕ , δ (q2,2)= {q2}, δ (q2, ϵ)= ϕ]	CO 2	T1:1.1 R1:1.6
4	Describe a DFA for the following language L={w/ w mod5=0,w belongs to (a,b)*} L={w/ w mod5=1,w belongs to (a,b)*}	CO 2	T1:1.1 R1:1.6
5	Describe the DFA Transition diagram for equivalent Regular expression (ab+a) *(aa+b)	CO 2	T1:3.8-4.3 R1:3.1-3.3
6	Construct the FIRST and FOLLOW sets for following grammar S aBDh, B cC, C bC/ ϵ , D EF, E g/ ϵ , F f/ ϵ	CO 3	T1: 4.9
7	Construct SLR parsing table for the below grammar? E E+T T T T*F F F (E) id.	CO 3	T1: 7.6-7.7
8	Outline the CLR Parsing model and write the CLR parsing algorithm for constructing the parsing table	CO 3	T1: 10.2

9	Construct production rules and semantic actions for the following grammar along with annotated parse tree for the expression: "int a, b, c"? D T L T int T float; L L1, id L id	CO 4	T1: 9.1-9.2	
10	Construct the three address code and draw the abstract tree for the following expressions? a) (x-y)*z+m-n b) a+(b-c)+(b+c)*(a*e)	CO 4	T1: 9.1-9.2	
11	Translate the expression – (a + b) * (c + d) + (a + b +c) into a) quadruples b) triples	CO 4	T1: 9.8	
12	Explain briefly about Activation record with block diagram	briefly about Activation record CO 5 T1: 9.1-9.2		
13	3 Explain the specification of a simple type CO 5 checker		R1:8.1-8.8	
14	Construct the code sequence generated by the simple code generation algorithm for x*y+(m-k)-(g+b)	CO 6	T1:9.6-9.7 R1:8.1-8.8	
15	Explain the concept of Function-Preserving Transformations	CO 6	T1:10.1-10.2 T1:10.4,9.9	
	DISCUSSION ON DEFINITION	AND TER	RMINOLOGY	
1	Definition of compiler, interpreter and its differences, the phases of a compiler	CO 1	T1:1.1-1.5 R1:1.1	
2	LR grammars, LR parsers-simple LR,CLR ,LALR	CO 3	T1: 7.6-7.7	
3	Syntax directed definition, construction of syntax trees, S-attributed and L- attributed definitions	CO 4	T1: 9.1-9.2	
4	Storage organization, storage- allocation strategies, access to nonlocal names	CO 5	T1: 9.1-9.2	
5	optimization of basic blocks, loops in flow graphs, peephole optimization; Code generator	CO 6	T1:10.1-10.2 T1:10.4,9.9	
	DISCUSSION ON QUI	ESTION B	ANK	
1	Describe how various phases could be combined as a pass in compiler	CO 1	T1:1.1-1.5 R1:1.1	
2	Identify whether the following grammar is CLR or not with reasons? S AA, A aA b	CO 3	T1: 7.6-7.7	

3	Construct production rules and semantic actions for S-attributed grammar for the following grammar along with syntax tree and annotated parse tree for the given string a*b-c/d+e? L E E E+T E-T T T T*F T/F F F P-F P P (E) P ID	CO 4	T1: 9.1-9.2
4	Explain briefly about stack storage allocation with block diagram.	CO 5	T1: 9.1-9.2
5	Identify the register descriptor target code for the source language Statement and its cost. (a-b) + (a-c) + (a-c)	CO 6	T1:10.1-10.2 T1:10.4,9.9

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING					
Course Title	DIGITA	DIGITAL IMAGE PROCESSING					
Course Code	AEC508						
Program	B.Tech						
Semester	VII	VII					
Course Type	PROFES	PROFESSIONAL ELECTIVE - II					
Regulation	R-16						
		Theory		Prac	ctical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
Course Coordinator	Dr. B. Surekha Reddy, Assistant Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AEC003	III	Probability Theory and Stochastic Process
UG	AEC009	V	Digital Communications

II COURSE OVERVIEW:

The course is intended to provide image processing fundamentals, representation, sampling, quantization, image acquisition and imaging geometry. Transform techniques including two dimensional Fourier transforms, Walsh, Hotelling, Haar and Slant transforms. Analyze image processing filters and techniques for the applications of enhancement, segmentation and compression.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Image Processing	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	Х	MOOC
х	Open Ended Experiments	х	Seminars	Х	Mini Project	Х	Videos
\checkmark	Quiz	Х	Others				

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
70%	Understand
20%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

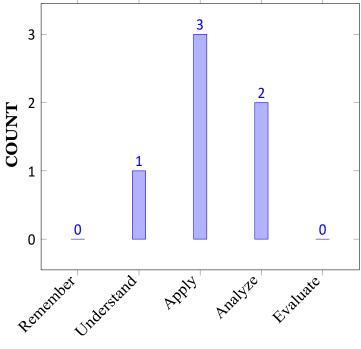
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The fundamental concepts of digital image processing methods and techniques.
II	The image enhancement, image segmentation and compression techniques in spatial and frequency domains.
III	The algorithms to solve image processing problems to meet design specifications of various applications of image processing in industry, medicine and defense.
IV	Fundamentals of image representation and processing in MATLAB.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Interpret the principles and terminology of digital image processing	Understand
	for describing the features of image.	
CO 2	Make use of image transform techniques for analyzing images in	Apply
	transformation domain for image pre-processing.	
CO 3	Construct image intensity transformation and filtering techniques for	Apply
	image enhancement in the spatial and frequency domain.	
CO 4	Analyze the image restoration in the spatial and frequency domains	Analyze
	to deal with noise models for removing degradation from given image.	
CO 5	Apply region-based morphological operations and edge-based image	Apply
	segmentation techniques for detection of objects in images to remove	
	the imperfections in the structure of the image.	
CO 6	Compare the lossy and lossless compression models for achieving	Analyze
	image compression.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE/CIE/
	knowledge of mathematics, science, engineering		Quiz/AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	SEE/CIE,
	research literature, and analyze complex		Quiz/AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	1	SEE/CIE,
	solutions for complex Engineering problems and		Quiz/AAT
	design system components or processes that meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 4	Conduct Investigations of Complex	2	SEE /CIE,
101	Problems: Use research-based knowledge and	2	Quiz/AAT
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		
PO 10	Communication: Communicate effectively on	1	TECH TALK/
	complex engineering activities with the		CONCEPT
	engineering community and with society at		VIDEOS
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions.		
PO 12	Life-long learning: Recognize the need for,		
	and have the preparation and ability to engage		
	in independent and life-long learning in the		
	broadest context of technological change.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2	SEE, PROJECTS

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	>	-	-	\checkmark	-	-
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	 Image: A start of the start of	-	\checkmark	\checkmark	-	-
CO 4	\checkmark	\checkmark	\checkmark	>	-	-	-	-	-	>	-	-	\checkmark	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-
CO 6	\checkmark	\checkmark	-	I	-	-	-	-	-		I	\checkmark	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Illustrate the principles of the Digital Image Processing terminology (knowledge) for understanding image and its representation, pixel, intensity, gray level, relationship between the pixels by applying the principles of engineering science to complex engineering problems	2
	PO 10	Effective presentation and Speaking Style on sampling and quantization and write Subject Matter Effectively the difference between analog and digital images.	4
CO 2	PO 1	Develop a image with various image transform properties types and its types using Scientific principles and methodology fundamental mathematics.	3
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for image transforms using first principles of mathematics and Engineering sciences.	5
	PO 10	Effective presentation and Speaking Style on properties of transforms and write Subject Matter Effectively on types of transforms.	4
	PSO 1	Design of experiments on image transforms with project development and execution process of modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO 3	PO 1	Illustrate the principles of an image find by using engineering techniques for image enhancement by using mathematical methods .	2
	PO 2	Illustrate the filter processing model translation for spatial domain and formulate the time domain filter.	2
	PO 3	Develop a histogram techniques complex engineering problem with appropriate considerations and environmental considerations for image enhancement.	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 4	Demonstrate the Use image enhancement analyze and interpretation and Ability to apply quantitative methods in frequency domain processing technique to provide valid digital image.	7
	PO 10	Effective presentation and Speaking Style on histogram processing Write Subject Matter Effectively on manipulation technique of an digital image.	4
	PO 12	Recognize the need for the image segmentation in different image applications and ability to improve the enhancement algorithms in the broadest context of technological advancements.	6
	PSO 1	Design of experiments with project development and execution modern tools such as MATLAB with image processing tool box, python, CV2.	6
CO 4	PO 1	Distinguish the image restoration in the spatial and frequency domains (knowledge) to remove the noise present the image by applying the principles of (mathematics, engineering science for complex engineering problems.	2
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for image restoration using first principles of mathematics and Engineering sciences	5
	PO 3	(Develop spatial and frequency domain techniques complex engineering problem with appropriate considerations and environmental considerations for image restoration.	4
	PO 4	Understand the image restoration in the spatial and frequency domains (knowledge) methods including design of experiments, analysis of complex problems.	4
	PO 10	Effective presentation and Speaking Style and write on degradation models and noise sources for image restoration of digital images	3
	PSO 1	Design of experiments with project development and execution image restoration with modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO 5	PO 1	Interpret Image Segmentation and formulate representation techniques to apply Mathematical principles fundamental mathematics.	3
	PO 2	Apply Problem statement the segmentation techniques for edge linking and boundaries by using principles of mathematics and formulate segmentation techniques.	3
	PO 10	Effective presentation and Speaking Style and write on image segmentation techniques.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 12	Recognize the need for image Segmentation technique, and broadest context of technological change in digital image and advanced engineering concepts.	6
	PSO1	Design of experiments with project development and execution image segmentation with modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO6	PO 1	Understand the various source coding techniques and Interpret Image Compression standards using engineering science and mathematical models.	3
	PO 2	Identify and analyze fidelity criteria, image compression models implement using engineering science, design system components for source Encoder and decoder, error free compression and model translation using principal of mathematics.	5
	PO 10	Present effectively and Clarity source encoder and write effectively subject matter on decoder techniques.	4
	PO 12	Recognize the ability of image restoration algorithms for life-long learning in the broadest context of image processing.	4

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

				PRO)GR	AM	OUI	CON	MES				PSO'S			
COURSE	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	-	-	-	-	-	-	-	-	2	-	-	-	-	-	
CO 2	3	5	-	-	-	-	-	-	-	2	-	-	2	-	-	
CO 3	2	2	5	7	-	-	-	-	-	2	-	6	2	-	-	
CO 4	2	5	5	4	-	-	-	-	-	2	-	-	2	-	-	
CO 5	3	3	-	-	-	-	-	-	-	2	-	6	2	-	-	
CO 6	3	5	-	-	-	-	-	-	-	2	-	4	-	-	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0
CO 2	100	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	0.0	100	0.0	0.0
CO 3	66.6	20.0	50.0	63.6	0.0	0.0	0.0	0.0	0.0	40.0	0.0	50.0	100	0.0	0.0
CO 4	66.6	50.0	50.0	36.3	0.0	0.0	0.0	0.0	0.0	40.0	0.0	0.0	100	0.0	0.0

				PRC)GR	AM	OUT	CON	ЛES				PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 5	100	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	50.0	100	0.0	0.0	
CO 6	100	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	33.3	0.0	0.0	0.0	

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\pmb{0}$ - $0 \leq C \leq 5\%$ – No correlation

- **1** -5 < C \leq 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- **3** 60% \leq C < 100% Substantial /High

		PROGRAM OUTCOMES								PSO'S	5				
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	1	-	-	3	-	-
CO 3	3	1	2	3	-	-	-	-	-	1	-	2	3	-	-
CO 4	3	2	2	1	-	-	-	-	-	1	-	-	3	-	-
CO 5	3	1	-	-	-	-	-	-	-	1	-	2	3	-	-
CO 6	3	2	-	-	-	-	-	-	-	1	-	1	-	-	-
TOTAL	18	8	4	4	-	-	-	-	-	6	-	5	12	-	-
AVERAGE	3	1.6	2	2	-	-	-	-	-	1	-	1.6	3	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Experiments	-
Assignments	-	Tech-Talk	-		

XVII ASSESSMENT METHODOLOGY-INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback			
X	Assessment of activities / Modeling and Experimental Tools in Engineering by Experts					

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	Digital image fundamentals and image transforms digital image fundamentals, sampling and quantization, relationship between pixels; Image transforms: 2-D FFT, properties, Walsh transform, Hadamard transform, discrete cosine transform, Haar transform, Slant transform, Hoteling transform.
MODULE II	IMAGE ENHANCEMENT
	Introduction, image enhancement in spatial domain, enhancement through point processing, types of point processing, histogram manipulation, linear and non-linear gray level transformation, local or neighborhood operation, median filter processing; Spatial domain high pass filtering, filtering in frequency domain, obtaining frequency domain filters from spatial filters, generating filters directly in the frequency domain, low pass (smoothing) and high pass (sharpening) filters in frequency domain.
MODULE III	IMAGE RESTORATION
	Image restoration degradation model, algebraic approach to restoration. Inverse filtering, least mean square filters, constrained least square restoration, interactive restoration.
MODULE IV	IMAGE SEGMENTATION
	Image segmentation detection of discontinuities, edge linking and boundary detection, threshold, region oriented segmentation morphological image processing dilation and erosion, structuring element decomposition, the Strel function, erosion; Combining dilation and erosion: Opening and closing the hit and miss transformation.
MODULE V	IMAGE COMPRESSION
	Image compression: Redundancies and their removal methods, fidelity criteria, image compression models, source encoder and decoder, error free compression, lossy compression, JPEG 2000 standard.

TEXTBOOKS

- 1. R.C. Gonzalez & R.E. Woods, Digital Image Processing^{II}, Addison Wesley/ Pearson education, 2nd Education, 2002.
- 2. S. Jayaraman, S. Esakkirajan, T. Veerakumar, "Digital Image Processing", TMH, 3rd Edition, 2010.

REFERENCE BOOKS:

- 1. A.K.Jain, Fundamentals of Digital Image Processing, PHI. 3RD Edition, 2003.
- 2. Rafael C. Gonzalez, Richard E Woods and Steven, Digital Image Processing using MATLABIL. Edition, PEA, 2004.
- 3. William K. Pratt, John, Digital Image Processingl, Wilely, 3rd Edition, 2004.
- 4. Somka, Hlavac, Boyle, "Digital Image Processing and Computer Vision", Cengage Learning, 1st Edition, 2008.
- 5. Adrain Low, "Introductory Computer vision Imaging Techniques and Solutions", Tata McGraw-Hill, 2nd Edition, 2008.
- 6. John C. Russ, J. Christian Russ, "Introduction to Image Processing & Analysis", CRC Press, 1st Edition, 2010.

WEB REFERENCES:

1. https://nptel.ac.in/courses/117105135

COURSE WEB PAGE:

1. https://akanksha.iare.ac.in/index?route=course/details&course_id=129

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference							
	OBE DISCUSSION	• •								
1	Course Description on Outcome Based Education (OBE): Outcomes (CO), Program Outcomes (PO) and CO-PO M		ves, Course							
	CONTENT DELIVERY (THEORY)									
1	Introduction to Image Processing	CO 1	T1:1.4- 1.5							
2	Digital Image Fundamentals	CO 1	T1:1.4- 1.5							
3	Analyze sampling and quantization	CO 1	T1:2.4- 2.5							
4	Relationship between pixels	CO 1	T1:2.4- 2.5							
5	Introduction to Image transforms	CO 1	T1:2.4- 2.5							
6	2D-FFT and properties	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10							
7	Properties of 2D FFT	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10							
8	Haar transform, Slant transform	CO 2	T1:3.1- 3.6							
9	Hoteling transform, Walsh transform	CO 2	T1:3.1- 3.6							
10	Hoteling transform, Walsh transform	CO 2	T1:3.1- 3.6							
11	Discrete cosine transform, Hadamard transform	CO 2	T1:3.1- 3.6							
12	Introduction to image enhancement	CO 3	T1:3.1- 3.6							
13	Image enhancement in spatial domain	CO 3	T1:3.1- 3.6							
14	Understand enhancement through point processing	CO 3	T1:3.1- 3.8							
15	Types of point processing	CO 3	T1:3.1- 3.8							
16	Histogram manipulation	CO 3	T1:3.1- 3.8							

17		00.0	T 1 2 1
17	Understand median filter processing	CO 3	T1:3.1-
			3.8; R2:
			7.4-7.5
18	Spatial domain high pass filtering	CO 3	T1:3.1-
			3.8; R2:
			7.4-7.5
19	Histogram equalization	CO 3	T1:3.1-
			3.8; R2:
			7.4-7.5
20	Apply the Histogram processing technique for image	CO 3	T1:3.1-
_	enhancement		3.8; R2:
			7.4-7.5
21	Understand filtering in frequency domain	CO 4	T1:4.1-
<i>2</i> 1	Chaerstand Intering in nequency domain	0.0 4	4.6
22	Obtaining fragmanay domain filtars from anotial filtars	CO 4	
ZZ	Obtaining frequency domain filters from spatial filters	0 4	T1:4.1-
			4.6
23	Generating filters directly in the frequency domain	CO 4	T1:4.1-
			4.6
24	Low pass (smoothing) filter in frequency domain.	CO 4	T1:4.1-
			4.6
25	High pass (sharpening) filter in frequency domain	CO 4	T1:4.1-
			4.6
26	Introduction to Image segmentation	CO 5	T1:10.1-
			10.6
27	Detection of discontinuities	CO 5	T1:10.1-
21	Detection of discontinuities	005	10.6
28	Edge linking and houndary detection	CO 5	
28	Edge linking and boundary detection		T1:10.1- 10.6
20			
29	Threshold techniques for image segmentation	CO 5	T1:10.1-
			10.6
30	Understand region oriented segmentation	CO 5	T1:10.1-
			10.6 ;
			T1:9.1-
			9.6
31	Morphological image processing, dilation and erosion	CO 5	T1:10.1-
			10.6;
			T1:9.1-
			9.6
32	Understand structuring element decomposition, the Strel	CO 5	T1:9.1-
	function, erosion;		9.6
33	Combining dilation and erosion: Opening and closing	CO 5	T1:9.1-
			9.6
34	The hit and miss transformation	CO 5	T1:9.1-
J-			9.6
25	Introduction to Image compression		
35	Introduction to Image compression	CO61	T1:8.1-
			8.3 ; R2:
			7.4-7.5

36	Redundancies and their removal methods	CO 6	T1:8.1- 8.3; R2:
			7.4-7.5
37	Fidelity criteria, image compression models	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
38	Understand source encoder and decoder	CO 6	T1-8.1-
			8.1.7
39	Error free compression	CO 6	T1-8.1- 8.1.7
40	Lossy compression & JPEG 2000 standard	CO 6	T1-8.1- 8.1.7
	PROBLEM SOLVING/ CASE STUDIES		0.117
1	Problem solving on 2-D FFT and it's properties	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10
2	Problem solving on Walsh transform, Hadamard transform	CO 3	T1:3.1- 3.6
3	Problem solving on Haar Transform	CO 2	T1:3.1- 3.6
4	Problem solving on Slant, Hoteling and discrete cosine transform	CO 2	T1:3.1- 3.6
5	Problem solving on image enhancement in spatial domain and point processing	CO 3	T1:3.1- 3.6
6	Problem solving on histogram manipulation and equalization	CO 3	T1:3.1- 3.8
7	Problem solving on gray-level transformation and median filter processing	CO 3	T1:3.1- 3.8
8	Problem solving on image enhancement using filtering methods	CO 3	T1:4.1- 4.6
9	Problem solving on image enhancement using filtering methods	CO 3	T1:4.1- 4.6
10	Problem solving on image restoration using filtering techniques	CO 4	T1:4.1- 4.6
11	Problem solving on image segmentation using edge linking and boundary detection	CO 5	T1:10.1- 10.6
12	Problem solving on image segmentation using region orientation morphological processing	CO 5	T1:10.1- 10.6
13	Problem solving on image segmentation using dilation and erosion	CO5	T1:10.1- 10.6
14	Problem solving on image compression using removal of redundancies	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
15	Problem solving on image compression using JPEG 2000 standard	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	

1	Definitions and terminologies on Introduction to Digital image processing	CO 1	T1:1.4- 1.5				
2	Definitions and terminologies on image enhancement	CO 3	T1:3.1- 3.8				
3	Definitions and terminologies on image restoration	CO 4	T1:4.1- 4.6				
4	Definitions and terminologies on image segmentation	CO 5	T1:10.1- 10.6				
5	Definitions and terminologies on image compression	CO 6	T1:8.1- 8.3; R2: 7.4-7.5				
	DISCUSSION OF QUESTION BANK						
1	Discussion on question bank of introduction to digital image processing	CO 2	T1:1.4- 1.5				
2	Discussion on question bank of image enhancement	CO 3	T1:3.1- 3.8				
3	Discussion on question bank of image restoration	CO 4	T1:3.1- 3.8; R2: 7.4-7.5				
4	Discussion on question bank of image segmentation	CO 5	T1:10.1- 10.6				
5	Discussion on question bank of image compression	CO 6	T1:8.1- 8.3; R2: 7.4-7.5				

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING							
Course Title	SOFTWAI	SOFTWARE ENGINEERING						
Course Code	ACSB26							
Program	B.Tech							
Semester	V	CSE						
Course Type	Core							
Regulation	IARE - R16							
		Theory		Practi	cal			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	3	-	3	-	-			
Course Coordinator	Ms .B Shashirekha, Assistant Professor							

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	-	-	Basic knowledge of computer
			Hardware and Software

II COURSE OVERVIEW:

This course concentrates on developing basic understanding about various activities that are involved in a software development. This course enables the student to develop necessary skills for developing a product or applications. The course focuses on all activities involved in software development (communication, planning, modeling, construction, deployment). In this course; students will gain a broad understanding of the discipline of software engineering and its application to the development and management of software systems. Student can implement and get knowledge about development of the software and gains knowledge of basic engineering methods and practices, and their appropriate application.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
SOFTWARE	70 Marks	30 Marks	100
ENGINEERING			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	PPT	\checkmark	Chalk & Talk	\checkmark	Assignments	X	MOOC
x	Open Ended Experiments	X	Seminars	X	Mini Project	X	Videos
X	Others			•		•	

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
60 %	Understand
20 %	Apply
20 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam	10tal Marks	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

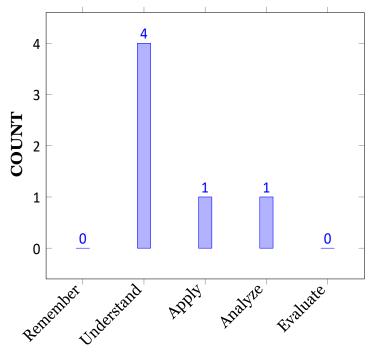
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	Learn how to elicitate requirements and develop software life cycles.
II	Understand the design considerations for enterprise integration and deployment.
III	Analyze quality assurance techniques and testing methodologies.
IV	Prepare a project plan for a software project that includes estimates of size and effort, a schedule, resource allocation, configuration control, and project risk.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Describe process models, approaches and techniques for managing a software development process.	Understand
CO 2	Recognize the importance project planning activities that accurately help in selection and initiation of individual projects and of portfolios of projects in the enterprise.	Understand
CO 3	Explain software model and behavior of a software system.	Understand
CO 4	Develop the approaches to verification and validation including static analysis and reviews.	Apply
CO 5	Demonstrate the concept of risk management through risk identification, risk measurement and mitigation.	Understand
CO 6	Make use of earned value analysis and project metric for scheduling and improving the quality of software.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 10	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	CIE / Quiz / AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIE / Quiz / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	CIE / Quiz / AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3	CIE / Quiz / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyse computer programs in the areas related to Algorithms, System Software, Web design, Bigdata, Artificial Intelligence, Machine Learning and Networking.	3	CIE / Quiz / AAT
PSO 2	Focus on improving software reliability, network security and information retrieval systems.	2	CIE / Quiz / AAT
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	CIE / Quiz / AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES									PSO'S					
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 3	<	<	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-		\checkmark	-	-
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Explain the evolution of software and its characteristics and challenges by applying computer science methodologies	1
CO 2	PO 1	Compare process models, approaches and techniques to manage a given software development process by using the mathematical principles and computer science methodologies.	3
	PSO 1	Understand the differences between analysis and analytics in the areas related to Algorithms , Bigdata , Artificial Intelligence , Machine Learning and Networking .	4
CO 3	PO 1	Understand the concept of Earned Value Analysis (EVA) to measure the projects progress at any given point in time by applying mathematical principles and computer science methodologies	2

	PO 2	Understand the key issues in problems identification and formulation, data collection, model translation, validation, interpretation of results and documentation in optimizing business decisions.	6
	PO 3	Classify the key issues in terms of defining various problems, customer and user needs, cost effective and creative solutions, design process, economic context and management techniques.	7
CO 4	PO 1	Explain the concept of data dictionary process and querying the software by applying mathematical principles and computer science methodologies	2
	PO 2	Understand the problem and develop solutions using different data technologies and document the results for interpretation	4
	PO 3	Identify the appropriate technology like black box testing and white box testing. suitable for various problems, by understanding customer and user needs , with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques.	7
	PO 10	Communicate effectively in orally and written by comprehend and write effective reports and design documentation with the	5
	PO 12	Recognize the need for advanced concepts testing technologies for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change.	5
	PSO 1	Explain the technologies used to process and querying the data in the areas related to Algorithms , Bigdata , Artificial Intelligence , Machine Learning and Networking .	4
CO 5	PO 1	Select appropriate process modelcomponent for finding model the structure and behavior of a software system. using computer science methodologies .	1
	PO 2	Make use of Hadoop components on huge volume of information and data collected from various sources and perform model translation and validation	3
	PO 4	Make use of Hadoop components for developing applications based on technical literature and quality issues. Identify, classify and describe the performance of systems through analytical methods and techniques.	3

	PO 10	Communicate in written and orally by comprehending and writing effective reports and design documentation and presentations on Hadoop components for developing applications with the engineering community by having major focus on clarity on content, Grammar/Punctuation with appropriate References, good Speaking style and depth in subject matter.	5
	PSO 1	Make use of Hadoop components on huge volume data used to develop analytical solutions related to Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
CO 6	PO 1	Translate the data from traditional file system to HDFS for analyzing big data in Hadoop ecosystem using the mathematical principles and computer science methodologies	2
	PO 2	Translation of data structure from traditional to HDFS includes volume of information and data, file structure translation methods, validation and solution development with proper documentation.	6
	PO 10	Communicate in written form by comprehending and writing effective reports and design documentation on HDFS file system applications with the engineering community by having major focus on clarity on content, Grammar/Punctuation with appropriate References, good Speaking style and depth in subject matter.	5

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	4	-	-
CO 2	6	7	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	4	7	-	1	-	-	-	-	-	5	-	-	4	-
CO 5	1	3	3	-	-	-	-	-	-	5	-	-	-	-	-
CO 6	2	6	-	-	-	-	-	-	-	3	-		-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	33.3	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	66.7	-	-	-	-	-	-	-	-	-	-	-	66.7	-	-

CO 3	66.7	60.0	70.0	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	66.7	40.0	70.0	-	-	-	-	-	-	100	-	60.0	66.7	-	-
CO 5	33.3	30.0	30.0	-	-	-	-	-	-	100	-	-	-	-	-
CO 6	66.7	60.0	-	-	-	-	-	-	-	60.0	-		66.7	-	-

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

0 - $0 \le C \le 5\%$ – No correlation

2 - 40 % <C < 60% –Moderate

 $1-5 < C \le 40\% - Low/Slight$

3 - $60\% \le C < 100\%$ – Substantial /High

	PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	3	-	-	-	-	-	-	3	-		-	-	-
CO 5	1	1	1	-	-	-	-	-	-	3	-	-	-	-	-
CO 6	3	3	-	-	-	-	-	-	-	3	-		-	-	-
TOTAL	23	18	16	11	9	-	-	-	-	3	-	-	1.5	1.5	1.5
AVER- AGE	2.5	2.5	2.6	2.7	3.0	-	-	-	-	2.6	-	3	30	2.5	3.0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	\checkmark	Open Ended Experiments	-
Assignments	\checkmark				

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Ex	xperts	

XVIII SYLLABUS:

MODULE I	SOFTWARE PROCESS AND PROJECT MANAGEMENT
	Software process and project management: Introduction to software engineering, software process, perspective and specialized process models; Software project management: Estimation: LOC and FP based estimation, COCOMO model; Project scheduling: Scheduling, earned value analysis, risk management.
MODULE II	REQUIREMENT ANALYSIS AND SPECIFICATION
	Requirement Analysis and Specification: Software requirements: Functional and nonfunctional, user requirements, system requirements, software requirements document; Requirement engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management; Classical analysis: Structured system analysis, petri nets, data dictionary.
MODULE III	SOFTWARE DESIGN
	Software Design: Design process: Design concepts, design model, design heuristic, architectural design, architectural styles, accessing alternative architectural designs, and architectural mapping using data flow. User interface design: Interface analysis, interface design; Component level design: Designing class based components, traditional components.
MODULE IV	TESTING AND IMPLEMENTATION
	Testing and Implementation : Software testing fundamentals: Internal and external views of testing, white box testing, basis path testing, control structure testing, black box testing, regression testing, unit testing, integration testing, validation testing, system testing and debugging; Software implementation techniques: Coding practices, refactoring.
MODULE V	PROJECT MANAGEMENT
	Project Management: Estimation: FP based, LOC based, make/buy decision; COCOMO II: Planning, project plan, planning process, RFP risk management, identification, projection; RMMM: Scheduling and tracking, relationship between people and effort, task set and network, scheduling; EVA: Process and project metrics.

TEXTBOOKS

- 1. Roger S. Pressman, "Software Engineering A Practitioner's Approach", McGraw-Hill International Edition, 7th Edition, 2010.
- 2. Ian Somerville, "Software Engineering", Pearson Education Asia, 9th Edition, 2011.

REFERENCE BOOKS:

- 1. Rajib Mall, "Fundamentals of Software Engineering", PHI Learning Private Limited, 3rd Edition, 2009.
- 2. Pankaj Jalote, "Software Engineering, A Precise Approach", Wiley India, 1st Edition, 2010.

WEB REFERENCES: 1. https://nptel.ac.in/courses/112105171/1

COURSE WEB PAGE:

1. lms.iare.ac.in

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Institutions adopting OBE try to bring changes to the curriculum by dynamically adapting to the requirements of the different stakeholders like Students, Parents, Industry Personnel and Recruiters. OBE is all about feedback and outcomes. In this we will discuss about the course outcomes and program outcomes and their attainment		
	CONTENT DELIVERY (THEORY)		
1-2	Introduction to Software Engineering	CO1	T2: 1.1-1.3
2-5	Software processes	CO2	T1: 2.2-2.3
6-9	Process models	CO4	T1:
		~ ~	2.1,2-3-2.6
11-12	Software Project Management	CO3	R2: 3.4-3.9
11-12	LOC and FP based estimation COCOMO model	CO5	R2: 4.1-4.3
12-13	Project Scheduling, EVA	CO5	T1: 27.1
14	Risk management	CO5	T1: 28.1
15-17	Software Requirements	CO4	T2: 4.1-4.3
18-19	Requirements Engineering process	CO6, 5	T1: 4.4-4.7
20-21	Classical Analysis	CO2	R1: 1.1-1.4
22-24	Design process	CO2	T1 8.1-8.4
25-28	Architectural design	CO3, CO1	T1:9.1, 9.3,9.4,9.6
29-33	User interface design	CO4	T1:11.3-11.4
34-37	Component level design	CO3	T1:10.2, 10.5
38-44	Software Testing fundamentals	CO2	T1:17.3,17.6- 17.8
45-47	Software implementation techniques	CO1	T1:10.1-1.3
48-51	Project management	CO1	T1: 26.2, 26.6.4,
52-55	COCOMO II	CO1, 2	T1:26.1-26.3 28.1- 28.7
56-59	Project Scheduling	CO3, 4	T1:27.1-27.6
60-62	Project Metrics	CO2	T1:25.1-25.6
	CASE STUDIES		

1	Develop a set of actions for the communication activity. Select one action and define a task set for it.	CO 6	T1:11.2.1
2	Developing software in which quality is "good enough"	CO 6	T1:11.2.2
3	Explain why systems developed as prototypes should not normally be used as production systems.	CO 6	T1:11.2.18
4	Software myth	CO 6	T1:11.2.25
5	layered technology of software engineering.	CO 6	T1:11.4.1
6	Software myth.	CO 6	T1:11.4.2
7	Evolutionary process models	CO 6	R2:7.5
8	Spiral model	CO 6	R2:7.5
4	concurrent development model (or) concurrent engineering model.	CO 6	R2:7.5
10	layers of software engineering.	CO 6	R2:7.5
11	COCOMO model.	CO 6	T1:11.4.1
12	component level design and deployment level design elements.	CO 6	T1:11.4.2
13	software architecture	CO 6	T1:11.5.1
14	system representation in architectural context	CO 6	T1:11.5.2
15	Coupling and Cohesion in designing class based components. s	CO 6	T2:7.5
	DISCUSSION OF DEFINITION AND TERM	NOLO	GY
1	Definations of Software Process and Poject Management	CO 1	R1:2.1-2.11
2	Definations of Requirement Analysis and Specification	CO 2, 3	R1:4.2-4.11
3	Definations of Software Design	CO 4	R2:5.6-5.9
4	Definations of Testing and Implementation	CO 5	R4:8.1-8.9
5	Definations of Project Management	CO 6	R2:12.1-12.16
	DISCUSSION OF QUESTION BANI	X	
1	Software Process and Poject Management	CO 1,	R1:2.1-2.11
2	Requirement Analysis and Specification	CO 2,	R1:4.2-4.11
		3	
3	Software Design	CO 4	R2:5.6-5.9
4	Testing and Implementation	CO 5	R4:8.1-8.9
5	Project Management	CO 6	R2:12.1-12.16

Signature of Course Coordinator Ms .B Shashirekha, Assistant Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING				
Course Title	OPTIM	OPTIMIZATION TECHNIQUES				
Course Code	AHS012	AHS012				
Program	B.Tech					
Semester	V	V				
Course Type	Core	Core				
Regulation	R16					
		Theory		Pract	ical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	2	1	3	-	-	
Course Coordinator	Dr K Suvarchala, Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHS003	Ι	Computational Mathematics and Integral
			Calculus

II COURSE OVERVIEW:

The primary objective of this course is to introduce the methods of optimization techniques, precise mathematical concept, study how to design algorithms, establish their correctness, study their efficiency and memory needs. The goal is to maintain a balance between theory, numerical computation, and problem setup for solution by optimization software and applications to engineering systems.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Discrete Mathematical	70 Marks	30 Marks	100
Structures			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	x Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could

be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
40 %	Understand
50 %	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	Quiz AAT	10tal Maiks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

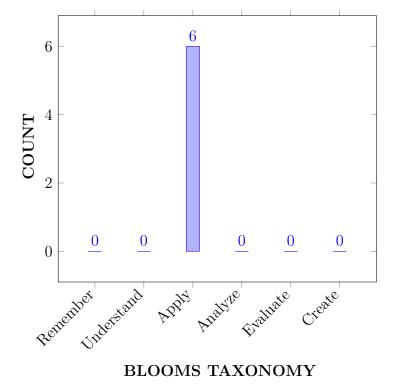
This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Learn fundamentals of linear programming through optimization
II	Apply the mathematical results and numerical techniques of optimization theory
	to concrete Engineering Problems


III	Understand and apply optimization techniques to industrial applications.
IV	Apply the dynamic programming and quadratic approximation to electrical and electronic problems and applications

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

	- /	
CO 1	Solve Linear Programming Problems of different applications in	Apply
	engineering by formulating LP model with optimization principles.	
CO 2	Make use of transportation and assignment problems to obtain	Apply
	feasible and optimal values in allocating and assigning resources for	
	real-time applications.	
CO 3	Select appropriate game theory and sequencing technique to reduce	Apply
	conflicting solutions and in completion of jobs with minimum possible	
	time.	
CO 4	Choose appropriate dynamic programming methods to transform	Apply
	complex optimization problem into sequence of simpler in solving	
	various types of problems.	
CO 5	Identify dappropriate quadratic approximation techniques to solve	Apply
	constrained optimization problems.	
CO 6	Develop an ability to identify, formulate and solve simple and complex	Apply
	engineering problems Iby using appropriate optimization technique.	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.			
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.			
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations			
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.			
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations			
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.			
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.			
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.			
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.			
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.			
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.			
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change			

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE / CIE /
	knowledge of mathematics, science, engineering		AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	SEE / CIE /
	research literature, and analyze complex		AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.	2	
PO 3	Design/Development of Solutions: Design	3	SEE / CIE / AAT
	solutions for complex Engineering problems and		AAI
	design system components or processes that meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 4	Conduct Investigations of Complex	3	SEE / CIE /
	Problems: Use research-based knowledge and		ÁAT
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		
PO 10	Communication: Communicate effectively on	1	SEE / CIE /
	complex engineering activities with the		AAT
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
DO 12	and give and receive clear instructions.		
PO 12	Life-Long Learning: Recognize the need for	1	SEE / CIE /
	and having the preparation and ability to		AAT
	engage in independent and life-long learning in the broadest context of technological change		
2 — High	$r_{1} = r_{2} = r_{1} = r_{2}$		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	SEE/AAT

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Profi- ciency Assessed by
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	SEE/AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES									PSO'S					
COURSE	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark
CO 5	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Linear Programming Problems of different applications in engineering are solved by using scientific, mathematical and own engineering discipline principles.	3
	PO 2	Linear Programming Problems of different applications in engineering are solved by identifying, defining and formulating the problem with data collection, solution development and interpretation of results.	6
	PO 3	Design/Development of solution for LP models of different engineering applications to meet the specified needs with appropriate Consideration of various constraints.	6
	PO 10	Linear programming problems will be solved with clear applications of engineering and optimization principals.	2
	PO 12	Applying LP problems in computer science related, industry oriented applications for continuus development.	3
	PSO 1	Formulate LP problems for given statement with constraints, design and develop an algorithm to solve the same for voluminous data processing .	4
	PSO 3	Apply knowledge on frameworks associated with optimization techniques for solving LP problems	1

	PO 1	Transportation and Assignment Problems of different applications in engineering are solved by using scientific, mathematical and own engineering discipline principles	3
CO 2	PO 2	Transportation and Assignment problems of different real time applications in engineering are solved by identifying, defining and formulating the problem with data collection, solution development and interpretation of results.	7
	PO 3	Design/Development of solution for Transportation and Assignment models of different engineering applications to meet the specified needs with appropriate Consideration of allocating and assigning resources for real-time applications.	6
	PO 4	Use the knowledge of characteristics of transportation and Assignment methods to design , analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	8
	PO 10	Transportation and Assignment problems will be solved with clear applications of engineering and optimization principals.	2
	PO 12	Applying Transportation and Assignment problems in computer science related, industry oriented applications for continuous development.	3
	PSO 1	Formulate Transportation and Assignment problems for given statement with constraints, design and develop an algorithm to solve the same for voluminous data processing .	4
	PSO 3	Apply knowledge on frameworks associated with optimization techniques for solving Transportation and Assignment problems	1
	PO 1	Selection of algorithm for assigning a suitable person to existing vacancy of jobs positions, need the knowledge of science and engineering fundamentals	3
CO 3	PO 2	Problem analysis based on principles of mathematics, Manufacturing engineering fundamentals and sciences is essential to identify and analyze the material distribution schedule to minimize total distribution cost	8
	PO 3	Design/Development of solution for Sequencing and Game Theory to reduce conflicting solutions and in completion of jobs with minimum possible time of different engineering applications to meet the specified needs with appropriate Consideration.	8
	PO 10	Sequencing and Game Theory problems will be solved with clear applications of engineering and optimization principals.	2
	PO 12	Applying Sequencing and Game Theory problems in computer science related, industry oriented applications for continuous development.	3

	1		
	PSO 1	Formulate Sequencing and Game Theory problems for given statement with constraints, design and develop an algorithm to solve the same for voluminous data processing.	4
	PSO 3	Develop practical experience for solving the real time problem using computational and experimental tools in the field of Manufacturing process	1
CO 4	PO 1	Analyze the dynamic programming concepts to solve shortest path and queuing models by applying the knowledge of mathematics, science and metrology engineering fundamentals.	3
004	PO 2	Choose appropriate dynamic programming methods to transform complex optimization problem into sequence of simpler in solving various types of real time applications in engineering are solved by identifying, defining and formulating the problem with data collection, solution development and interpretation of results.	6
	PO 3	Design/Development of solution for dynamic programming problems of different engineering applications to meet the specified needs with appropriate Consideration.	6
	PO 10	Dynamic Programming problems will be solved with clear applications of engineering and optimization principals.	2
	PO 12	Applying Dynamic Programming problems problems in computer science related, industry oriented applications for continuous development.	3
	PSO 1	Formulate for the given statement with constraints, design and develop an algorithm to solve the same for voluminous data processing.	4
	PSO 3	Apply knowledge on frameworks associated with optimization techniques for solving Dynamic Programming problems problems	1
	PO 1	Quadratic approximation techniques to solve constrained optimization problems by using scientific, mathematical and own engineering discipline principles	3
CO 5	PO 2	Direct Quadratic Approximation of different real time applications in engineering are solved by identifying, defining and formulating the problem with data collection, solution development and interpretation of results.	8
	PO 3	Design/Development of solution for Direct Quadratic Approximation problems to solve constrained optimization problems of different engineering applications to meet the specified needs with appropriate Consideration.	8
	PO 4	Use the knowledge of characteristics of Quadrartric Approximation to design , analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	8

	PO 10	Direct Quadratic Approximation problems will be solved with clear applications of engineering and optimization principals.	2
	PO 12	Applying Direct Quadratic Approximation problems in computer science related, industry oriented applications for continous development.	3
	PSO 1	Formulate Direct Quadratic Approximation problems for given statement with constraints, design and develop an algorithm to solve the same for voluminous data processing .	4
	PSO 3	Apply knowledge on frameworks associated with optimization techniques for solving Direct Quadratic Approximation problems	1
CO 6	PO 1	Complex engineering problems are solved by using scientific, mathematical and own engineering discipline principles	3
	PO 2	Complex engineering problems of different real time applications in engineering are solved by identifying, defining and formulating the problem with data collection, solution development and interpretation of results.	8
	PO 3	Design/Development of solution for Complex engineering problems of different engineering applications to meet the specified needs with appropriate Consideration.	8
	PO 4	Use the knowledge of characteristics of optimization techniques to design , analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	8
	PO 10	Complex engineering problems will be solved with clear applications of engineering and optimization principals.	2
	PO 12	Applying Complex engineering problems in computer science related, industry oriented applications for continuus development.	3
	PSO 1	Formulate Complex engineering problems for the given statement with constraints, design and develop an algorithm to solve the same for voluminous data processing .	4
	PSO 3	Apply knowledge on frameworks associated with optimization techniques for solving Complex Engineering problems	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	PO	РО	РО	PO	PO	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	6	6	-	-	-	-	-	-	2	-	3	4	-	1
CO 2	3	7	6	8	-	-	-	-	-	2	-	3	4	-	1
CO 3	3	8	8	-	-	-	-	-	-	2	-	3	4	-	1
CO 4	3	6	6	-	-	-	-	-	-	2	-	3	4	-	1
CO 5	3	8	8	8	-	-	-	-	-	2	-	3	4	-	1
CO 6	3	8	8	8	-	-	-	-	-	2	-	3	4	-	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

	PROGRAM OUTCOMES									PSO'S					
COURSE	PO	PO	РО	PO	РО	PO	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100.0	60.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	37.5	66.66	0.0	50.0
CO 2	100.0	70.0	60.0	72.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	37.5	66.66	0.0	50.0
CO 3	100.0	80.0	80.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	37.5	66.66	0.0	50.0
CO 4	100.0	60.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	37.5	66.66	0.0	50.0
CO 5	100.0	80.0	80.0	72.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	37.5	66.66	0.0	50.0
CO 6	100.0	80.0	80.0	72.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	37.5	66.66	0.0	50.0

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 5 < C \le 40\% Low/Slight$
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

	PROGRAM OUTCOMES										PSO'S				
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	-	-	-	-	-	-	1	-	1	3	-	2
CO 2	3	3	3	3	-	-	-	-	-	1	-	1	3	-	2
CO 3	3	3	3	-	-	-	-	-	-	1	-	1	3	-	2
CO 4	3	3	3	-	-	-	-	-	-	1	-	1	3	-	2
CO 5	3	3	3	3	-	-	-	-	-	1	-	1	3	-	2
CO 6	3	3	3	3	-	-	-	-	-	1	-	1	3	-	2
TOTAL	18	18	18	9	-	-	-	-	-	6	-	6	18	-	12
AVERAGE	3.0	3.0	3.0	3.0	-	-	-	-	-	1	-	1	3.0	-	2

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Experiments	-
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVIII SYLLABUS:

MODULE I	LINEAR PROGRAMMING
	Definition, characteristics and phases, types of models, operations research models, applications, linear programming problem formulation, graphical solution, simplex method; Artificial variables techniques: Two-phase method, Big-M method.
MODULE II	TRANSPORTATION AND ASSIGNMENT PROBLEMS
	Transportation problem, formulation, optimal solution, unbalanced transportation problem, degeneracy, assignment problem, formulation, optimal solution, variants of assignment problem, traveling salesman problem
MODULE III	SEQUENCING AND THEORY OF GAMES
	Sequencing: Introduction, flow-shop sequencing, n jobs through two machines, n jobs through three machines, job shop sequencing two jobs through m machines.
	Theory of games: Introduction, terminology, solution of games with saddle points and without saddle points, $2 \ge 2$ games, dominance principle, m ≥ 2 and $2 \ge n$ games, graphical method.
MODULE IV	DYNAMIC PROGRAMMING
	Introduction: Terminology, Bellman's principle of optimality, applications of dynamic programming shortest path problem, linear programming problem.
MODULE V	QUADRATIC APPROXIMATION
	Quadratic approximation methods for constrained problems: Direct quadratic approximation, quadratic approximation of the Lagrangian function, variable metric methods for constrained optimization

TEXTBOOKS

- 1. A Ravindran, "Engineering Optimization", JohnWiley&Sons Publications, 4thEdition, 2009.
- 2. Hillier, Liberman, "Introduction to Operation Research", Tata McGraw-Hill, 2nd Edition,2000.

REFERENCE BOOKS:

- 1. Dr. J K Sharma, "Operation Research", Mac Milan Publications, 5thEdition, 2013.
- 2. Ronald L. Rardin, "Optimization in Operation Research", Pearson Education Pvt. Limited, 2005.
- 3. N V S Raju, "Operation Research", S M S Education, 3rdRevised Edition.

WEB REFERENCES:

- $1.\ http://www.web.stanford.edu/class/cs103x$
- 2. http://www.saylor.org/course/cs202/.
- 3. http://www.cse.iitd.ernet.in/ bagchi/courses/discrete-book

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index ?route=course/details& course id=84

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference					
	OBE DISCUSSION							
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms.iare.ac.in/in- dex ?route=course/details& course id=84					
	CONTENT DELIVER	Y (THEORY)						
1-3	Definition, characteristics and phases, types of models	CO 1, ,CO 6	T1:1.1,1.2					
4-6	operations research models, applications	CO 1,CO 6	T1: 1.2.7, 1.2.8					
7	linear programming problem formulation, graphical solution	CO 1	T1:1.2.9, 1.2.11, 1.3					
8-14	simplex method, Artificial variables techniques: Two-phase method, Big-M method	CO 1	T1:1.5, 1.4.2,1.4.3					
15-20	Transportation problem, formulation, optimal solution, unbalanced transportation problem	CO 2,CO 6	T1:1.4.3, 1.4.4,2.3.1, 2.3.2,2.3.6,2.3.7,2.3.8					
21-25	degeneracy, assignment problem, formulation, optimal solution, variants of assignment problem	CO 2	R2:4.3 T1:2.4.1, 2.4.2,2.4.3, 4.1					

26-29	traveling salesman problem, Sequencing: Introduction, flow-shop sequencing	CO 2,CO 3,CO 6	T1:3.1,3.2 R1:6.2-6.8
30-35	n jobs through two machines, n jobs through three machines, job shop sequencing two jobs through m machines.	CO 3 ,CO 6	R1: 7.1-7.6
36-38	Theory of games: Introduction, terminology, solution of games with saddle points and without saddle points	CO 3,CO 6	R2:8.1
39-44	2 x 2 games, dominance principle, m x 2 and 2 x n games, graphical method	CO 3	R2:8.2, 8.3
45-48	Introduction: Terminology, Bellman's principle of optimality	CO 4,CO 6	R2: 9.1-9.3
49-54	Applications of dynamic programming shortest path problem, linear programming problem.	CO 4	R2: 9.8, 9.9, 10.1, 10.2
55-59	Quadratic approximation methods for constrained problems: Direct quadratic approximation, quadratic approximation of the Lagrangian function	CO 5,CO 6	T2:5.5, 5.9, 5.10
60	variable metric methods for constrained optimization	CO 5,CO 6	R2:10.4, 10.6,10.7
	PROBLEM SOLVING/ 0	CASE STUDIE	S
1	Problems on Linear programming formulation	CO1,CO 6	T2:2.1
2	Problems on Simplex methods	CO1	T2:2.3
3	Problems on graphical method	CO1,CO 6	T2:2.3.1
4	Problems on transportation formulation	CO 2	T2:7.2,7.3
5	Problems on Assignment formulation	CO 2,CO 6	T2:10.3.1
6	Problems on unbalanced transportation problems	CO 2,CO 6	T2:13.3.2, 13.4.1
7	Problems on Degeneracy	CO 2	T2:17.1.1, 17.1.3
8	Problems on n jobs on two/three/n machines	CO 2,CO 6	T2:18.3.4, 18.3.4.1
9	Problems on games with saddle point and without saddle point	CO 3	T2:22.12, 19.1.2
10	Problems on 2X2,mx2,2xn and graphical method.	CO 3,CO 6	T2:18.4, 18.4.3
11	Problems on shortest path algorithm	CO 5,CO 6	T2:19.2, 18.4.4
12	Problems on variable metric methods for constrained optimization	CO 5,CO 6	T2:23.1.1, 23.1.3
	DISCUSSION ON DEFINITION	AND TERMI	NOLOGY
1	Definition on Linear programming	CO 1,CO 6	T2:18.3.4, 18.3.4.1
2	Definition on Transportation and Assignment problems	CO 2,CO 6	T2:22.12, 19.1.2
3	Definition on Sequencing and Game theory	CO 3,CO 6	T2:18.4, 18.4.3
4	Definitions on Quadratic Approximation	CO 4,CO 6	T2:19.2, 18.4.4

5	Definitions on Direct Quadratric Approximation	CO 5, CO6	T2:23.1.1, 23.1.3
	DISCUSSION ON QUE	STION BANK	Σ.
1	Linear Programming	CO 1, CO 6	T2:18.3.4, 18.3.4.1
2	Transportation and Assignment problems	CO 2, CO 6	T2:22.12, 19.1.2
3	Sequencing and Game TheoryI	CO 3, CO6,	T2:18.4, 18.4.3
4	Quadratric Approximation	CO4, CO 6	T2:19.2, 18.4.4
5	Direct Quadratric Approximation	CO 5, CO 6	T2:23.1.1, 23.1.3

Course Coordinator Dr K Suvarchala, Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	RESEARCH	H AND C	ONTEN ⁻		PMENT
Course Code	AHS106				
Program	B.Tech				
Semester	V	CSE			
Course Type	Elective				
Regulation	IARE - R16				
		Theory		Practi	cal
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	-	-	-	3	1.5
Course Coordinator	Dr. B. Surekh	na Reddy, A	ssistant P	rofessor	

I COURSE PRE-REQUISITES:

Level	Course Code	Course Code Semester	
-	-	-	-

II COURSE OVERVIEW:

Research-based learning (RBL) presents as an alternative learning model that can develop the critical thinking skills. The research-based learning is conducted under constructivism which covers four aspects: learning which constructs students understanding, learning through developing prior knowledge, learning which involves social interaction process, and meaningful learning which is achieved through real-world experience. The major focus is to engage students in the inquiry process where they formulate questions, conduct investigations, apply information and media to learning, and generate products that illustrate learning. The 5E learning cycle adopted for RBL leads students through five phases: Engage, Explore, Explain, Elaborate, and Evaluate which results in greater benefits concerning students ability for scientific inquiry.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Research and Content	70 Marks	30 Marks	100
Development			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab Worksheets	\checkmark	Viva Questions	\checkmark	Probing further Questions
--------------	------------	--------------	----------------	--------------	----------------	--------------	------------------------------

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks of assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based Programming based	
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Obje	ective	Analysis	Design	Conclusion	Viva	Total
	2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

I	Gain a practical understanding of the various methodological tools used for social scientific research.
П	Learn the ethical, political, and pragmatic issues involved in the research process.
111	Improve their ability to develop technical writing.
IV	Identify the overall process of designing a research study from its inception to its report.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Apply the knowledge of research in finding the gaps from literature survey to formulate new ideas.	Apply
CO 2	Apply the techniques of data collection and sample design involved with different case studies for solving the research problem.	Apply
CO 3	Analyze the process of testing involved with the survey results for implementing novel models.	Analyze
CO 4	Understand the concepts of formatting styles for different documentation procedures.	Understand
CO 5	Explore the knowledge on multimedia tutorials and blogs for research paper development.	Apply
CO 6	Develop the presentation skills on the literature findings and research methodologies for advanced interacting tools.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 2	Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab exercises/ CIE/SEE

PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	2	Lab exercises/ CIE/SEE
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2	Lab Exercises
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	Lab Exercises
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Lab Exercises

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2	Lab Exercises
PSO2	Focus on improving software reliability, network security or information retrieval systems.	2	Lab Exercises
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	Lab Exercises

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 2	Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics and engineering sciences.	3
	PO 9	Individual and team work:Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2

	1		
	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1
	PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2
	PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	3
	PSO2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	3
	PSO3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	3
CO2	PO2	Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics and engineering sciences.	3
	PO5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations.	3
	PO 9	Individual and team work:Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2
	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1
	PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2
	PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	3
	PSO2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	3
	PSO3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	3
CO3	PO2	Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics and engineering sciences.	3

	PO5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations.	3
	PO 9	Individual and team work:Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	3
	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1
	PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3
	PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	3
	PSO2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	3
	PSO3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	3
CO4	PO5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations.	3
	PO 9	Individual and team work:Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	3
	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3
	PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	3
	PSO2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	3
	PSO3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	3
CO5	PO5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations.	3
	PO 9	Individual and team work:Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	3

	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3
	PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2
	PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	3
	PSO2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	3
	PSO3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	3
CO6	PO 9	Individual and team work:Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	3
	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3
	PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3
	PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	3
	PSO2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	3
	PSO3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	3

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

				PR	OGR	AM	ουτ	CON	ЛES					PSO'S	;
COURSE	РО	РО	PO	РО	РО	РО	РО	PO	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	-	3	-	-	-	-	-	-	2	1	-	2	3	3	3
CO 2	-	3	-	-	3	-	-	-	2	1	-	2	3	3	3
CO 3	-	3	-	-	3	-	-	-	3	1	-	3	3	3	3
CO 4	-	-	-	-	3	-	-	-	3	3	-		3	3	3
CO 5	-	-	-	-	3	-	-	-	3	3	-	2	3	3	3
CO 6	-	-	-	-	-	-	-	-	3	3	-	-	3	3	3

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	>	Student Viva	\checkmark	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback		
X	Assessment of Mini Projects by Experts				

XIV SYLLABUS:

WEEK I	LATEX FOR DOCUMENTATION
	Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check and Track Changes using LaTeX; Mathematical expressions, Subscripts and superscripts, brackets and parentheses, fractions and binomials, aligning equations, operators, spacing in math mode, integrals, sums and limits, display style in math mode, list of Greek letters and math symbols, mathematical fonts; Prepare class timetable and student marks list using LaTex;

WEEK II	RESEARCH FORMULATION AND DESIGN
	Motivation and objectives – Research methods vs. Methodology. Types of research – Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical, concept of applied and basic research process, criteria of good research. Defining and formulating the research problem, selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-primary and secondary sources, reviews, monograph, patents, research databases, web as a source, searching the web, critical literature review, identifying gap areas from literature and research database, development of working hypothesis.
WEEK III	DATA COLLECTION AND SAMPLING DESIGN
	Sources of Date: Primary Dada, Secondary Data; Procedure Questionnaire -Survey and Experiments - Design of survey and Experiments- Sampling Merits and Demirts - Control Observations - Procedures - Sampling Errors.
WEEK IV	CONTENT DEVELOPMENT
	Document design and layout; Papers; Articles; E-book formats. Forums; Multimedia tutorials; Wikis; Blogs; Websites
WEEK V	PROOF READING PROCESS AND REPORT WRITING
	Definition, purpose, difference between content and copy, editing, competing priorities, elements of structure, style and appearance, evaluation, overall organizing, clarity of expression, grammatical accuracy, correctness of layout; Meaning of Interpretation, technique of Interpretation, precaution in Interpretation; Significance of report writing, different steps in writing report, layout of the research report, types of reports, oral presentation, mechanics of writing a research report, precautions for writing research reports, conclusions.

TEXTBOOKS

- 1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, "An Introduction to Research Methodology", RBSA Publishers. U.K., 2002.
- 2. Kothari, C.R, "Research Methodology: Methods and Techniques". New Age International. 418p, 1990.
- 3. Stefan Kottwitz , "LATEX Beginner's Guide", Packt Publishing Limited, 2011.

REFERENCE BOOKS:

- 1. Meenakshi Raman, Sangeeta Sharma, "Technical Communication", Oxford Publishers, 1st Edition, 2004.
- 2. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, ESS Publications. 2 volumes.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Introduction to Research Methodology, Documentation and Content Development	CO 1	T1: 1.2
2	Topic selection, Research Formulation and Design for writing working paper by students.	CO 1	T2: 3.5
3	Data Collection and Sampling Design exercises for writing working paper by students	CO 2	T1: 3.4

4	Data Collection and Sampling Design exercises for writing working paper by students	CO 2	T2: 2.2
5	Abstract Writing by using LATEX software.	CO 3	T1: 2.4
6	Writing a Working Paper using LATEX software (Introduction)	CO 3	T3: 4.5
7	Writing a Working Paper using LATEX software (Literature Survey with References)	CO 3	T3: 4.6
8	Report Submission and Seminar of Working Paper (till Literature Survey only)	CO 3	T2: 5.1
9	Writing a Working Paper using LATEX software (Research Methodology)	CO 4	T2: 5.2
10	Writing a Working Paper using LATEX software (Research Methodology)	CO 4	T1: 7.1
11	Writing a Working Paper using LATEX software (Results and Discussion).	CO 4	T1:7.2
12	Writing a Working Paper using LATEX software (Results and Discussion)	CO 5	T1:7.3
13	Writing Working Paper using LATEX software (Conclusion)	CO 5	T1:7.3
14	Proof reading exercises on Working Paper	CO 6	T1:7.3
15	Plagiarism Analysis and Paraphrasing Exercises on Working Paper	CO 6	T2:7.3
16	Report Submission and Seminar on Full Length Working Paper	CO 6	T2:7.3

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Integration of knowledge and skills from various areas through more complex investigations and multi-disciplinary projects.
2	Autonomous learning encouraged through independent research of unstructured problems
3	Teamwork, which helps prepare students for a social environment
4	Self-evaluation and self-criticism, against self-competency, trying to see beyond their own ideas and knowledge

Signature of Course Coordinator Dr. B. Surekha Reddy, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTE	COMPUTER SCIENCE AND ENGINEERING			
Course Title	DATA WAR	DATA WAREHOUSING AND DATA MINING			
Course Code	AIT006				
Program	B.Tech				
Semester	VI	VI CSE			
Course Type	Core	Core			
Regulation	IARE-R16				
		Theory		Pract	ical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	Mr. V.Muniraju Naidu, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester Prerequisites	
B.Tech	ACSB08	111	Database Management System
B.Tech	AHSB12	П	Probability and statistics

II COURSE OVERVIEW:

Data mining refers to extracting or mining knowledge from large amounts of data. It emphasizes various techniques and algorithms used to explore, analyze and leverage data and turn it into valuable and actionable information. It includes data warehousing and data mining functionalities such as analytical processing, descriptive analysis, association mining, classification, clustering and outlier analysis. The techniques are used to tackle data centric applications in various domains such as financial analysis, telecommunication industry, intrusion detection, and complex data mining applications in stream, web, text, spatial and other scientific applications.

III MARKS DISTRIBUTION:

SEE Examination	CIE Examination	Total Marks
70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	х	MOOC
х	Open Ended Experiments	х	Seminars	х	Mini Project	х	Videos
х	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
20 %	Understand
60 %	Apply
10 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	ory	Total Marks
Type of Assessment	CIE Exam	Quiz \AAT	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

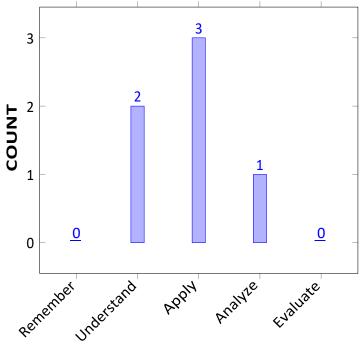
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The scope and essentiality of data warehousing and mining.
II	The analysis of data, choosing relevant models and algorithms for respective applications.
111	The process and mining of complex data types such as streams, spatial, web and multimedia
IV	The research perspectives towards advances in data mining

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Relate knowledge discovery in databases (KDD) process with the help of data warehouse fundamentals and data mining functionalities	Understand
CO 2	Select appropriate preprocessing techniques on real time data for usage of data mining algorithms	Apply
CO 3	Apply Apriori and FP growth methods on transaction data for frequent pattern mining	Apply
CO 4	Choose classification or clustering algorithm for building a classification or prediction model.	Apply
CO 5	Infer complex data models with respect to multimedia, streams, spatial and web mining	Understand
CO 6	Examine data mining algorithms for solving real world problems	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	CIE/Quiz/AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIE/Quiz/AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	CIE/Quiz/AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	CIE/Quiz/AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	Quiz
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	1	Quiz
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	CIE/Quiz/ AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES													PSO'S			
COURSE	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-		-	-	-			
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark			
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark			
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark			
CO 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	\checkmark	\checkmark	\checkmark			
CO 6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	\checkmark	\checkmark	-			

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain the knowledge extraction Process by using mathematical ,computer science principles by integrating computer science knowledge.	3
CO 2	PO 1	Explain the data preprocessing techniques by applying mathematical principles and computer science principles by integrating computer science knowledge	3
	PO 2	Understand the data and apply the appropriate preprocessing techniques to solve real time data specific Problem statement and system definition, Problem formulation and abstraction, Information and data collection by including variant sizes of information and data collection, validation, experimental design, solution development and interpretation of results.	8

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.						
	PO 10	PO 10 Communicate in written form by comprehending and writing effective reports and design documentation of prediction data model with the engineering community by having major focus on clarity on content with appropriate References and good Speaking style.							
	PO 12	Recognize the need for advanced concepts in classification and prediction for developing data centric applications through continuing education efforts with ongoing learning stays up with industry trends/ new technology	1						
	PSO 1	Develop data mining applications for specific problems by including huge volume of data and related to Algorithms, Artificial Intelligence, Machine Learning.	3						
	PSO 2	Develop data mining applications for specific problems with a major focus on improving software reliability, network security and information retrieval systems.	1						
	PSO 3	Develop applications by using modern computer tools related to create innovative career paths.	1						
CO 3	PO 1	Select appropriate frequent pattern mining method for finding associations among attributes of data in transaction data using mathematical principles and computer science principles by integrating computer science knowledge.	3						
	PO 2	Make use of Apriori or FP growth methods on transaction Problem statement and system definition, Problem formulation and abstraction, Information and data collection validation, experimental design, Solution development and interpretation of results.	6						
	PO 3	Identify the appropriate model for various problems, by understanding customer and user needs, with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques for the requirement engineering activities to promote sustainable development.	8						
	PSO 1	Make use of data mining concepts on huge volume data used to develop analytical solutions related to Machine Learning.	1						
CO 4	PO 1	Develop a prediction model by extending classification model with the help of mathematical and scientific principles by integrating computer science knowledge.	3						
	PO 2	Extend a created data model for specific prediction problems by including specific problems by including variant sizes of information and data collection, validation, experimental design, solution development,Implementation ,and interpretation of results and documentation is used as a sample data for new projects	8						

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	Develop a data model by investigating and defining various problems, understanding customer and user needs, with cost effective and creative solutions with variant algorithms by managing the design process, knowledge on economic context, management techniques.	7
	PO 4	Develop a prediction and classification data model with laboratory skills, technical literature and quality issues to Identify, classify and describe the performance of systems through analytical methodsfor quantitative methodsand technical uncertainty	8
	PO 5	Make use of software / libraries for developing prediction model	1
	PO 10	Communicate effectively in orally and written by comprehend and write effective reports and design documentation and presentations on data exploration with the engineering community by having major focus on clarity on content, Grammar/Punctuation, appropriate References, good Speaking style and depth in subject matter.	5
	PO 12	Recognize the need for advanced concepts in big data technologies for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change.	5
	PSO 1	Develop data mining applications for specific problems by including huge volume of data and related to Algorithms, Artificial Intelligence, Machine Learning	3
	PSO 2	Develop data mining applications for specific problems with a major focus on improving software reliability, network security and information retrieval systems.	1
	PSO 3	Develop applications by using modern computer tools related to create innovative career paths	1
CO 5	PO 1	Select any data models with respect to multimedia, streams, spatial and web mining using mathematical principles and computer science principles by integrating computer science knowledge.	3
	PO 2	Make use of spatial and web mining methods on transaction data collection, validation, experimental design, Solution development and interpretation of results.	5
	PO 3	Select appropriate frequent pattern mining methodfor investigating and defining various problems, understanding customer and user needs, with cost effective and creative solutions with variant algorithms by managing the design process, knowledge on economic context, management techniques.	8

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 4	Develop a text based model with laboratory skills, technical literature and quality issues to Identify, classify and describe the performance of systems through analytical methodsfor quantitative methodsand technical uncertainty	7
	PO 5	Make use of software / libraries for finding text based and web based mining	1
	PO 10	Communicate in written form by comprehending and writing effective reports and design documentation of multimedia data model with the engineering community by having major focus on clarity on content	1
	PSO 1	Explain the complex data models used to process and querying the data in the areas related to Algorithms, Artificial Intelligence, Machine Learning	3
	PSO 2	Develop applications using data mining concepts with a major focus on improving software reliability, network securityand information retrieval systems.	1
	PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies	1
. CO 6	PO 1	Understand the data mining model and examine the accuracy of the model by applying mathematical and scientific principles by integrating computer science knowledge.	3
	PO 2	Extend a created data model for specific real time problems by including specific problems by including variant sizes of information and data collection, validation, experimental design, solution development,Implementation ,and interpretation of results and documentation is used as a sample data for new projects	8
	PO 3	Develop a real time model by investigating and defining various problems, understanding customer and user needs, with variant algorithms by managing the design process, knowledge on economic context, management techniques	6
	PO 4	Develop a data model with laboratory skills, technical literature and quality issues to Identify, classify and describe the performance of systems through analytical methods	6
	PO 5	Make use of software / libraries for developing mining model.	1
	PO 10	Communicate in orally form by comprehending and writing effective reports and design documentation data mining applications with the engineering community by having major focus content with good Speaking style.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 1	Categorize various data mining concepts in the areas related to Algorithms, Artificial Intelligence, Machine Learning.	3
	PSO 2	Develop applications using data mining concepts with a major focus on improving software reliability, network securityand information retrieval systems.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES													PSO'S		
COURSE	РО	PO	РО	РО	PO	РО	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	-	-	-	-	-	-	-	-	-	-		-	-	-		
CO 2	3	8	-	-	-	-	-	-	-	1	-	2	3	-	2		
CO 3	3	6	8	-	-	-	-	-	-	-	-	-	-	-	1		
CO 4	3	8	7	8	1	-	-	-	-	3	-	1	3	1	1		
CO 5	3	5	8	7	1	-	-	-	-	1	-	-	3	1	1		
CO 6	3	8	6	6	1	-	-	-	-	1	-		3	1	-		

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES													PSO'S		
COURSE	РО	РО	PO	РО	РО	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	100	-	-	-	-	-	-	-	-	-	-		-	-	-		
CO 2	100	80	-	-	-	-	-	-	-	20	-	16.6	50	-	100		
CO 3	100	60	80	-	-	-	-	-	-	-	-	-	-	-	50		
CO 4	100	80	70	72.7	100	-	-	-	-	60	-	8.3	50	50	50		
CO 5	100	50	80	63.6	100	-	-	-	-	20	-	-	50	50	50		
CO 6	100	80	60	54.5	100	-	-	-	-	20	-		50	50	-		

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

0 - $0 \le C \le 5\%$ – No correlation

1 -5 <C \leq 40% – Low/ Slight

2 - 40 % <C < 60% –Moderate

 $\boldsymbol{3}$ - 60% \leq C $\,<\,$ 100% – Substantial /High

	PROGRAM OUTCOMES							PSO'S							
COURSE	РО	РО	PO	РО	РО	РО	PO	РО	РО	PO	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	3	3	-	-	-	-	-	-	-	1	-	1	2	-	3
CO 3	3	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO 4	3	3	3	3	3	-	-	-	-	2	1		2	2	1
CO 5	3	2	3	3	3	-	-	-	-	1	-	-	2	2	2
CO 6	3	3	2	2	3	-	-	-	-	1	-	-	2	2	-
TOTAL	18	13	11	8	9	-	-	-	-	5	-	2	8	6	8
AVERAGE	3	2.6	2.75	2.6	3.0	-	-	-	-	1.25	-	1	2.0	2.0	2.0

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	√ -
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	\checkmark	Open Ended Experiments	-
Assignments	\checkmark				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback
--	--------------	---------------------------

XVIII SYLLABUS:

MODULE I	DATA WAREHOUSING
	Introduction to Data warehouse, A Multi-dimensional data model- Star, Snow flake and Fact constellationschemas, Measures, Concept hierarchy, Data warehouse architecture- A three tier Data warehouse architecture, types of OLAP servers, Data warehouse Implementation, Data Marts, Differences between OLAT and OLTP.
MODULE II	DATA MINING
	Introduction, What is Data Mining, Definition, Knowledge Discovery in Data (KDD), Kinds of data bases, Data mining functionalities, Classification of data mining systems, Data mining task primitives, Data Preprocessing: Data cleaning, Data integration and transformation, Data reduction, Data discretization and Concept hierarchy.

MODULE III	ASSOCIATION RULE MINING
	Association Rules: Problem Definition, Frequent item set generation, The APRIORI Principle, support and confidence measures, association rule generation; APRIORI algorithm. FP-Growth Algorithms, Compact Representation of Frequent item Set-Maximal Frequent item set, closed frequent item set.
MODULE IV	CLASSIFICATION AND PRIDICTION
	Issues Regarding Classification and Prediction, Classification by Decision Tree Induction, Bayesian Classification, Classification by Back propagation, Classification Based on Concepts from Association Rule Mining, Other Classification Methods, Prediction, Classifier Accuracy.
MODULE V	CLUSTERING
	Types of data, categorization of major clustering methods, K-means partitioning methods, hierarchical methods, density based methods, grid based methods, model based clustering methods, outlier analysis. Mining Complex Types of Data: Multidimensional Analysis and Descriptive Mining of Complex, Data Objects, Mining Spatial Databases, Mining Multimedia Databases, Mining Time-Series and Sequence Data, Mining Text Databases, Mining the World Wide Web.

ΤΕΧΤΒΟΟΚS

- 1. Jiawei Han, Michelin Kamber, "Data Mining-Concepts and techniques", Morgan Kaufmann Publishers, Elsevier, 2nd Edition, 2006
- 2. Alex Berson, Stephen J.Smith, "Data warehousing Data mining and OLAP", Tata McGraw- Hill, 2nd Edition, 2007

REFERENCE BOOKS:

- 1. Arum K Pujari, "Data Mining Techniques", 3rd Edition, Universities Press, 2005
- 2. Pualraj Ponnaiah, Wiley, "Data Warehousing Fundamentals", Student Edition, 2004
- 3. Ralph Kimball, Wiley, "The Data Warehouse Life Cycle Toolkit", Student Edition, 2006.
- 4. Vikram Pudi, P Radha Krishna, Data Mining, Oxford University, 1st Edition, 2007.

WEB REFERENCES:

- 1. https://onlinecourses.nptel.ac.in/noc21 cs06/preview
- 2. http://www.anderson.ucla.edu
- 3. https://www.smartzworld.com

COURSE WEB PAGE:

https://www.youtube.com/watch?v=IID7-ipjQUk

XIX COURSE PLAN:

S.No	Topics to be covered	CO's	Reference T1: 4.1				
	OBE DISCUSSION						
1	1 Discussion on Outcome Based Education, CO's and PO's						
	CONTENT DELIVERY (THEORY)						
2	Introduction to Data warehouse	CO1	T1: 3.1				
3	Difference between operational database systems and datawarehouses	CO1	T1: 3.1				
4	Data warehouse architecture- A three tier Data warehouse architecture	CO1	T1: 3.3				
5	Types of OLAP servers	CO1	T1: 3.3				
6	Data warehouse Implementation	CO1	T1: 3.3				
7	Data Marts, Differences between OLAT and OLTP.	CO1	T1: 3.3				
8	Multi-dimensional data model: Star Schema	CO5	T1: 3.2				
9	Multi-dimensional data model: Snow Flake Schema	CO5	T1: 3.2				
10	Fact Consultation, Fact Table, Dimension Table	CO5	T1: 3.2				
11	OLAP Cube and OLAP Operations	CO2	T1: 3.4-3.5				
12	OLAP Server Architecture-ROLAP	CO2	T1: 3.4-3.5				
13	OLAP Server Architecture- MOLAP	CO2	T1: 3.4-3.5				
14	OLAP Server Architecture- HOLAP.	CO2	T1: 3.4-3.5				
15	Data Mining: Introduction, Fundamentals of Data Mining, Definition	CO1	T1: 1.1-1.7				
16	KDD, Challenges, Data Mining Tasks.	CO1	T1: 1.1-1.7				
17	Data Processing	CO2	T1: 2.1-2.5				
18	Data Cleaning	CO2	T1: 2.1-2.5				
19	Dimensionality Reduction	CO2	T1: 2.1-2.5				
20	Feature Subset Selections	CO4	T1: 2.3-2.4				
21	Data Transformation.	CO4	T1: 2.3-2.4				
22	Discretization and Measures of Similarity and Dissimilarity-Basics.	CO4	T1: 2.3-2.4				
23	Association Rules	CO5	T1: 5.3				
24	Problem definition	CO5	T1: 5.3				

25	Frequent item set generation,	CO5	T1: 5.3
26	The APRIORI Principle, Support and confidence measures	CO3	T1: 5.2
27	Association rule generation; APRIORI algorithm.	CO3	T1: 5.2
28	The partition algorithms	CO3	T1: 5.2.2
29	FP-growth Algorithm.	CO3	T1: 5.2.2
30	Compact Representation of Frequent item Set- Maximal Frequent item set closed frequent itemset.	CO5	T1: 5.2.4
31	Classification and prediction	CO4	T1: 6.1-6.2
32	Basic concepts	CO4	T1: 6.1-6.2
33	Classification by Decision Tree Induction	CO4	T1: 6.1- 6.2
34	Classification by Back propagation	CO4	T1: 6.1-6.2
35	Issues Regarding Classification and Prediction	CO4	T1: 6.1- 6.2
36	Introduction about Bayesian classification	CO4	T1: 6.4
37	Types of Bayesian classification	CO4	T1: 6.4
38	Rule based classification C	CO4	T1: 6.5
39	Classification by back propagation	CO4	T1: 6.5
40	Classification Based on Concepts from Association Rule Mining	CO4, CO6	T1: 6.6
41	Other Classification Methods	CO4, CO6	T1: 6.6
42	Prediction, Classifier Accuracy	CO4, CO6	T1: 6.6
43	Clustering Analysis, Hierarchical methods	CO4	T1: 7.1-7.3
44	Density based methods	CO5	T1: 7.5
45	Grid based methods, outlier analysis	CO5	T1: 7.6
46	Mining Complex Types of Data	CO5	T1: 7.11
47	Multi dimensional Analysis and Descriptive Mining of Complex	CO5	T1: 7.11
48	Types of Data: Data Objects	CO5	T1: 7.11
49	Mining Spatial Databases	CO5	T1: 7.11
50	Mining Multimedia Databases	CO5	T1: 7.11
51	Mining Time-Series and Sequence Data	CO5	T1: 7.11
52	Mining Text Databases	CO6	T1: 7.11
53	Mining The World Wide Web	CO6	T1: 7.11
54	Real Time Applications	CO6	T1: 7.11
55	Example Systems	CO6	T1: 7.11
	PROBLEM SOLVING/ CASE STUDIES	,	
1	Problems on Hierarchical and lattice structures of attributes in warehouse dimensions for location and time.	CO 3	R2:7.5
2	Problems on Multi-dimensional modelling	CO 2	R2:7.5

3	Problems on Analytical processing	CO 3	R2:7.5		
4	Problems on Implementation techniques of data warehouse	CO 2	R2:7.5		
5	Problems on OLAP operations on multi-dimensional data cube at possible levels.	CO 2	R2:7.5		
6	Problems on preprocessing techniques and relate to the given data to perform summarization and visualization	CO 3	R2:7.5		
7	Problems on applications of frequent pattern mining methods	CO 3	R2:7.5		
8	Problems on frequent item set methods and pattern growth approach	CO 3	R2:7.5		
9	Problems on Basic Classification Methods	CO 3	R2:7.5		
	DISCUSSION OF DEFINITION AND TERMINOLOGY				
1	Definitions on Data Warehousing	CO 1	T1:1.2		
2	Definitions on Data Mining	CO 2	T1:1.6		
3	Definitions on Association Rule Mining	CO 3	T1:8,9		
4	Definitions on Classification and Prediction	CO 4	T1:9.1		
5	Definitions on Clustering	CO 5	T1:10,11		
	DISCUSSION OF QUESTION BANK				
1	MODULEI	CO 1	T1:1.2		
2	MODULE II	CO 2	T1:1.5		
3	MODULE III	CO 3	T1:8,9		
4	MODULE IV	CO 4	T1:9.1		
5	MODULE V	CO 5,6	T1:10,11		

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING			
Course Title	LINUX I	LINUX PROGRAMMING			
Course Code	ACS010				
Program	B.Tech				
Semester	VI				
Course Type	CORE				
Regulation	R-16				
		Theory		Pract	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	2	1	3	-	-
Course Coordinator	P ANJAIAH, ASSISTANT PROFESSOR				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS001	Ι	Computer Programming
B.Tech	AIT003	IV	Computer Networks

II COURSE OVERVIEW:

This course provides a deep understanding of the operating system architecture and low-level interfaces (principally, system calls and library functions) that are required to build system-level, multithreaded, and network applications on Linux and UNIX systems. The course consists of a mixture of detailed presentations coupled with a large number of carefully designed practical exercises that allow participants to apply the knowledge learned in the presentations.By the completion of the course, participants will have the mastery needed to write complex system, network, and multithreaded applications on a Linux or UNIX system.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Linux Programming	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	\checkmark	MOOC
	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
70 %	Understand
20 %	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component	Theory			Total Marks
Type of Assessment	CIE Exam Quiz AAT		AAT	
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

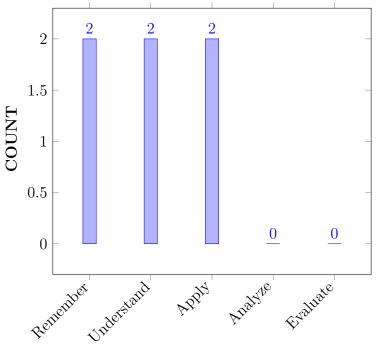
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	Interpret the Linux utilities to control the resources
II	Learn basic concepts of shell scripts and file structures.
III	Understand the concepts of process creation and interruption for multitasking applications.
IV	Explore memory allocation and inter process communication methods.
V	Provide support for distributed and network applications in Linux environment.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate operations using file handling, text processing and linux	Understand
	utilities.	
CO 2	Outline the different shell scripts to execute systems programs and	Remember
	application programs.	
CO 3	Make use of different system calls for file I/O operations and	Apply
	managing the file systems.	
CO 4	Demonstrate the concepts of process and signal system calls for	Understand
	process creation, scheduling, controlling and termination.	
CO 5	Outline IPC mechanisms such as pipes, shared memory, message	Remember
	queues, semaphores for performing inter process communication	
CO 6	Utilize socket concepts for connection-oriented and connectionless	Apply
	communication between client and server systems.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge	3	SEE/CIE,
	of mathematics, science, engineering		Quiz/AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE/CIE,
	research literature, and analyze complex		Quiz/AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design / development of solutions: Design	2	SEE/ CIE,
	solutions for complex engineering problems and		AAT, QUIZ
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and environmental		
	considerations.		
PO 5	Modern tool usage: Create, select, and apply	3	SEE/ CIE,
	appropriate techniques, resources, and modern		AAT, QUIZ
	engineering and IT tools including prediction		
	and modeling to complex engineering activities		
	with an understanding of the limitations.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	3	Assignments
PSO 2	Focus on mobile and web applications development and learn the emerging technologies and frameworks in demand with employers and contemporary challenges.	2	Assignments
PSO 3	Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry.	-	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PRO)GR	$\mathbf{A}\mathbf{M}$	OUT	COL	MES				PSO'S		
COURSE	PO	PO	PO	РО	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	<	-	-	-	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-
CO 2	\checkmark	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-
CO 5	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-
CO 6	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3
	PSO 1	Understand, analyze and develop computer programs to implement own operating systems using system calls and utilities.	3
CO 2	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3
CO 3	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3
CO 4	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 2	Identify and analyze complex engineering problems for accessing operating services.	2
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 2	Ability to apply standard practices and strategies in software project devleopment using open ended programming to design client server applications.	2
CO 5	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 3	Design solutions for complex engineering problems using inter process communication mechanisms.	3
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3
	PSO 1	Understand, analyze and develop computer programs to implement own operating systems using system calls and utilities.	3
CO 6	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals for overcoming the problems of operating systems like Windows, Mac etc and managing file systems.	3
	PO 3	Design solutions for complex engineering problems using inter process communication mechanisms.	3
	PO 5	Create, select, and apply appropriate techniques to solve the problems in inter process communication.	3
	PSO 1	Understand, analyze and develop computer programs to implement own operating systems using system calls and utilities.	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	РО	РО	PO	PO	РО	РО	PO	РО	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	3	-	-	-	-	-	-	-	3	-	-
CO 2	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	-	3	-	-	-	-	-	-	-	-	2	-
CO 5	3	-	2	-	3	-	-	-	-	-	-	-	3	-	-
CO 6	3	-	2	-	3	-	-	-	-	-	-	-	3	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	РО	РО	PO	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	-	-	-	100	-	-	-	-	-	-	-	100	-	-
CO 2	100	-	-	-	100	-	-	-	-	-	-	-	-	-	-
CO 3	100	-	-	-	100	-	-	-	-	-	-	-	-	-	-
CO 4	100	40	-	-	100	-	-	-	-	-	-	-	-	40	-
CO 5	100	-	40	-	100	-	-	-	-	-	-	-	100	-	-
CO 6	100	-	40	-	100	-	-	-	-	-	-	-	100	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- **1** $-5 < C \le 40\% Low / Slight$
- $\pmb{2}$ 40 % < C < 60% Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

				PRO)GR.	$\mathbf{A}\mathbf{M}$	OUT	CON	MES					PSO'S	
COURSE	PO	PO	РО	РО	PO	РО	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	3	-	-	-	-	-	-	-	3	-	-
CO 2	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	-	3	-	-	-	-	-	-	-	-	2	-
CO 5	3	-	2	-	3	-	-	-	-	-	-	-	3	-	-
CO 6	3	-	2	-	3	-	-	-	-	-	-	-	3	-	-
TOTAL	18	4	4	-	18	-	-	-	-	-	-	-	9	2	-
AVERAGE	3	2	2	-	3	-	-	-	-	-	-	-	3	2	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	
Laboratory Practices		Student Viva		Certification	
Term Paper		5 Minutes Video	\checkmark	Open Ended Experiments	
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

x Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback	
---	--------------	---------------------------	--

XVIII SYLLABUS:

MODULE I	INTRODUCTION AND LINUX UTILITIES
MODULE II	Introduction to Linux operating system: History of Linux, features of Linux, architecture of Unix/Linux, Linux Utilities-File handling utilities, Security by file permissions, Process utilities, Disk utilities, Networking commands, Filters, Text processing utilities and Backup utilities; Applications: Shell programming with Bourne again shell(bash)- Introduction, shell responsibilities, pipes and Redirection, here documents, running a shell script, the shell as a programming language, shell meta characters, file name substitution, shell variables, command substitution, shell commands, the environment, quoting, test command, control structures, arithmetic in shell, shell script examples, interrupt processing, functions, debugging shell scripts. FILES AND DIRECTORIES SYSTEM CALLS
	Files and Directories: File Concept, File types, File System Structure, File
	metadata- Inodes, kernel support for files, System calls for file I/O operations- open, create, read, write, close, lseek,dup2, file status informationstat family, file and record locking- fcntl function, permission- chmod, fchmod, file ownership- chown, lchown, links- soft links and hard links- symlink, link, unlink; Directories: creating, removing and changing directories- mkdir, rmdir, chdir, obtaining current working directory- getcwd, directory contents, scanning directories- opendir, readdir, closedir, rewinddir functions.
MODULE III	PROCESS AND SIGNALS
	Process – Process concept, Layout of a C program, image in main memory, process environment- environment list, environment variables, getenv, setenv, Kernel support for process, process identification, process control - process creation, replacing a process image, waiting for a process, process termination, zombie process, orphan process, system call interface for process management- fork, vfork, exit, wait, waitpid, exec family, process groups, sessions and controlling terminal, differences between threads and processes. Signals– Introduction to signals, Signal generation and handling, Kernel support for signals, Signal function, unreliable signals, reliable signals, kill, raise, alarm, pause, abort, sleep functions.
MODULE IV	INTERPROCESS COMMUNICATION
	Inter process Communication: Introduction to IPC, IPC between processes on a single computer system, IPC between processes on different systems, Pipes- creation, IPC between related processes using unnamed pipes, FIFOs- creation, IPC between unrelated processes using FIFOs(named pipes), differences between unnamed and named pipes. Message Queues- Kernel support for messages, APIs for message queues, client/server example; Semaphores-Kernel support for semaphores, APIs for semaphores, file locking with Semaphores.
MODULE V	SHARED MEMORY AND SOCKETS
	Shared Memory- Kernel support for shared memory, APIs for shared memory, shared memory example. Sockets: Introduction to Berkeley Sockets, IPC over a network, client/server model, Socket Address structures (UNIX domain and internet domain), Socket system calls for connection oriented protocol and connectionless protocol, example-client / server programs- single client/server connection, Multiple simultaneous clients.

TEXTBOOKS

- 1. Sumitabha Das, "Your Unix The Ultimate Guide", Tata McGraw-Hill, New Delhi, India, 2012.
- 2. W. Richard. Stevens, "Advanced Programming in the UNIX Environment" Pearson Education, New Delhi, India, 2013.

REFERENCE BOOKS:

- 1. T. Chan, "Unix System Programming using C++" PHI. 4 th Edition, 2007.
- 2. N. Mathew, R. Stones, Wrox, "Beginning Linux Programming", Wiley India Edition, 4 th Edition, 2014.
- 3. Graham Glass, King Ables, "Unix for Programmers and Users", Pearson Education, 3 rd Edition, 2008.
- 4. A. Hoover, "System Programming with C and Unix", 3 rd Edition, 2008.
- 5. K. A. Robbins, "System Programming, Communication, Concurrency and Threads", Pearson Education, 4 thEdition, 2014.

WEB REFERENCES:

- 1. https://www.edx.org/course/introduction-linux-linuxfoundationx-lfs101x-0
- 2. http://www.tutorialspoint.com/listtutorials/linux/1
- 3. http://www.compsci.hunter.cuny.edu/ sweiss/course_materials/unix_lecture_notes.php.

COURSE WEB PAGE:

https://www.youtube.com/playlist?list=PLzkMouYverAL-n5gSzmx00aAusHgyzfGDvspace-0.5cm

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1				
	OBE DISCUSSION						
1	In Outcome-Based Education (OBE), we discussed about cour	se delivery a	assessment that				
	are planned to achieve stated objectives and outcomes. We wi	ll focuses on	measuring				
	student performance i.e. outcomes at different levels. Course of	outcomes(CO	D),Program				
	Outcomes(PO) and Program Specific Outcomes(PSO) and also	mapping of	CO's to PO's				
	PSO's and their attainments are discussed.						
	CONTENT DELIVERY (THEORY)						
2	Understand history of Linux and its features	CO 1	T2:				
			1.1-1.5,				
			T1: 4.1				
3	Architecture of Unix/Linux	CO 1	T2:				
			4.7-4.8,				
			5.3-5.4				
4-5	vi editor, general purpose-File handling utilities,	CO 1	T2:				
			3.10,15.6,				
			17.5-17.6				

6	Security by file permissions, Process utilities,	CO 1	T2:
0	Security by the permissions, 1 rocess utilities,	001	3.10,15.6,
			17.5-17.6
7-8	Disk utilities, Networking commands, Filters.	CO 1	T2:
			12.3-12.9
			15.9-
			15.10
9	Text processing utilities and Backup utilities.	CO 1	T2: 13.4
10-11	SED: Scripts, operation, addresses.	CO 1	T2: 18.1,
			T2:18.12
12-13	commands; AWK: Execution, fields and record.	CO 2	T2: 8.5
14	scripts, operation, patterns, actions, associative arrays.	CO 2	T2: 14.14
15	string and mathematical functions.	CO 2	T2: 8.9
16-17	system commands in awk, applications	CO 2	T2: 8.4,
			8.10
18-19	Shell: Shell responsibilities.	CO 2	T2: 14.5-
			14.17
20	shell as a programming language, here documents.	CO 3	R4:
			4.1-4.14
21-22	Demonstrate running a shell script, the shell as a	CO 3	R4:
	programming language.		5.1-5.9
23	shell meta characters, file name substitution.	CO 3	R4:
			5.10-5.11
24-25	shell variables, command substitution, shell commands,	CO 2	R4:
	quoting, test command.		3.1-3.12,
00.07		<u> </u>	4.2
26-27	control structures, arithmetic in shell, interrupt processing,	CO 3	T2: 5.2
	functions, and debugging scripts.	00.2	D 4
28	File structure and directories: Introduction to file system, file descriptors, file types, file system structure.	CO 3	R4: 4.20-4.22,
	me descriptors, me types, me system structure.		4.15-4.17
29-31	File metadata:Inodes, System calls for file I/O operations	CO 4	R4: 8.6
32-33	open, create, read, write, close, lseek, dup2, file status	CO 4	R4: 8.6
52-55	information-stat family.	004	114. 0.0
34	File and record locking: fcntl function, file permissions,.	CO 4	R4:
01	The and record rooming. Tente reneeron, the permissions,		10.1-10.3
35-36	Demonstrate file ownership, links.	CO 4	R4: 10.4-
00 00	Demonstrate me ownersmp, mins.	001	10.19
37-38	Demonstrate Directories: Creating, removing and changing	CO 5	R4:
	directories		14.1-14.4
39	Demonstrate obtaining current working directory.	CO 5	R4: 14.5
40	Demonstrate directory contents, scanning directories.	CO 5	R4: 14.6
41-43	Demonstrate Process: Process identifiers, process structure:	CO 5	R4: 14.7
0+-11	process table.		
44	Demonstrate viewing processes, system processes, process	CO 5	R4: 14.8
111	scheduling.		107. 17.0
45-46	Demonstrate Starting new processes: Waiting for a process,	CO 5	R4: 14.8
	process termination, zombie processes		
	process termination, zomble processes		

47	Demonstrate fork, vfork, exit, wait, waitpid, exec	CO 6	R4: 14.9
48-49	Demonstrate orphan process, system call interface for	CO 6	R4: 14.9
10 10	process management.	000	1011 1110
50-51	Demonstrate Signals: Signal functions, unreliable signals.	CO 6	T1:
			13.1-13.2
52	Demonstrate interrupted system calls, kill, raise, alarm, pause.	CO 6	T1: 13.4
53-54	Demonstrate Data Management: Managing memory: malloc, free, realloc, calloc.	CO 6	T1: 13.5
55-57	Demonstrate File locking: Creating lock files, locking regions, use of read and write with locking.	CO 6	T1: 13.5
58	Understand competing locks, other lock commands, deadlocks	CO 6	R2: 15.1
59-60	Understand Inter process communication: Pipe, process pipes, the pipe call, parent and child processes, named pipes	CO 6	R2: 15.5
61-62	Understand APIs for shared memory, shared memory example; Semaphore	CO 6	R2: 15.5
63-64	Demonstrate Kernel support for semaphores, APIs for semaphores, file locking with semaphores.	CO 6	R2: 15.5
65-66	Introduction to sockets: Socket, socket connections, socket attributes.	CO 6	R2: 15.6
67-68	socket addresses, socket system calls for connection oriented protocol and connection less protocol.	CO 6	R2: 15.7
67-68	socket communications, comparison of IPC mechanisms.	CO 6	R2: 15.8
	PROBLEM SOLVING/ CASE STUDI	ES	
1	Problems on shell scripting in linux operating system to do various operations.	CO 3	R2:7.5
2	Problems on file system calls to implement utilities in linux operating system.	CO 2	R2:7.5
3	Problems on directory system calls to create and access directory files in linux operating system.	CO 3	R2:7.5
4	Problems on process for creating and terminating of linux operating system.	CO 2	R2:7.5
5	Problems on signals to control the process in linux.	CO 2	R2:7.5
6	Problems on Interprocess communication using pipes, fifo mechanisms.	CO 3	R2:7.5
7	Problems on Interprocess communication using message queues system calls.	CO 3	R2:7.5
8	Problems on Interprocess communication using shared memory and semaphores.	CO 3	R2:7.5
9	Problems on connection oriented and connection less to exchange data between process using system calls.	CO 3	R2:7.5
	DISCUSSION OF DEFINITION AND TERMI	NOLOGY	
1	Definitions on linux operating system and utilities	CO 1	T1:1.2
2	Definitions on shell responsibilities	CO 2	T1:1.6
3	Definitions on process system calls	CO 3	T1:8,9
		CO 4	T1:9.1

5	Definitions on inter process communication mechanisms	CO 5	T1:10,11			
	DISCUSSION OF QUESTION BANK					
1	Linux architecture and utilities, shell programming	CO 1	T1:1.2			
2	Files and Directory system calls	CO 2	T1:1.5			
3	3 Process and Signals		T1:8,9			
4	4 Inter Process Communication mechanisms of pipes, fifo,		T1:9.1			
	message queues					
5	Inter Process Communication using TCP and UDP protocols	CO 5,6	T1:10,11			

Signature of Course Coordinator P Anjaiah, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING				
Course Title	INTERNET OF THINGS (IoT)				
Course Code	ACS510				
Program	B. Tech				
Semester	VI				
Course Type	Professional Elective				
Regulation	R-16				
		Theory		Pract	tical
Course Structure	Lecture Tutorials Credits Laboratory Credits				
	3 - 3			-	
Course Coordinator	Course Coordinator Ms K.Rasmi, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AIT003	IV	Computer Networks

II COURSE OVERVIEW:

Internet of things (IoT) is a network of things that are embedded with software and sensors to process data. This course include physical and logical design of IoT systems, M2M systems, SDN, IoT Architecture components such as physical devices and endpoints, physical servers and cloud offerings. This is used in various applications such as Smart Refrigerator, Smart Homes and Smart environments.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Internet of Things	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	х	MOOC
x	Open Ended Experiments	\checkmark	Seminars	x	Mini Project	х	Videos
\checkmark	Quiz	х	Others				

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level	
10%	Remember	
50%	Understand	
25%	Apply	
15%	Analyze	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam	Quiz \AAT	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

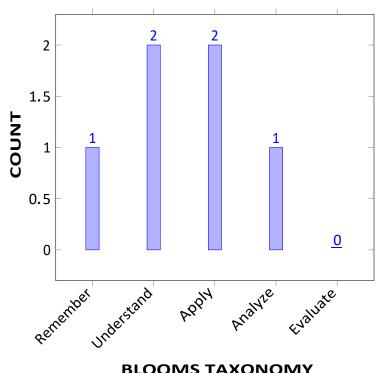
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The significance of the Internet of Things
II	The sensors, actuators and communication protocols used for establishing communication in M2M.
- 111	The real time IoT applications related to smart environments.

VII COURSE OUTCOMES:

Atter su	ccessful completion of the course, students should be able to:	
CO 1	Relate the characteristics and appropriate levels of IoT for reusing of deployed IoT resources across application domains.	Remember
CO 2	Identify the necessity of communication models, protocols and API's for accessing data from sensors and actuators to overcome issues like failure of any connected devices.	Apply
CO 3	Compare Machine to Machine withIoT and identifying the role of SDN,NFV, NETCONFG-YANG for data exchange between devices and management on network.	Understand
CO 4	Relate architectural reference model and state of the art methodologies in IoT application domains for managing access control of IoT devices.	Understand
CO 5	Choose raspberry Pi device and set up the environment for connecting other devices/sensors to communicate with raspberry pi using Python language.	Apply
CO 6	Analyze different cloud storage models and protocols that are scalable & available on demand for designing IoT applications.	Analyze

After successful completion of the course students should be able to:

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII **PROGRAM OUTCOMES:**

	Program Outcomes						
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.						

	Program Outcomes
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering	3	CIE/Quiz/AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	CIE/Quiz/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	Seminar/ Conferences/ Workshops
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	Seminar/ Conferences/ Workshops
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Assignments/ Discussion
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	3	Seminars/ Workshops/ Short term courses

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2	Research papers/ Group discussion
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	2	Research papers/ Group discussion
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1	Seminar/ Assign- ments

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark
CO 2	-	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	\checkmark	-
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-		\checkmark	-	-
CO 5	-	-	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-
CO 6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 3	Relate the characteristics and appropriate levels of IoT for designing solutions for complex engineering problems and reusing of deployed IoT resources in design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations across application domains.	4
	PO 4	Use research-based knowledge and research methods including design of experiments for reusing of deployed IoT resources across application domains.	5
	PO 7	Relate the characteristics and appropriate levels of IoT in the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of deployed IoT resources across application domains for sustainable development.	2
	PSO1	Relate the characteristics and appropriate levels of IoT for designing next-generation computer systems.	2
	PSO3	Relate the characteristics and appropriate levels of IoT for practical experience in shipping real world software reusing of deployed IoT resources across application domains.	2

	1		
CO 2	PO 2	Identify the necessity of communication models, protocols and API's and analyze complex engineering problems reaching substantiated conclusions using engineering sciences.	3
	PO 4	Identify the necessity of communication models, protocols and API's for accessing data from sensors and actuators in the design of experiments, analysis and interpretation of data.	5
	PSO 1	Identify the necessity of communication models, protocols and API's for designing next-generation computer systems.	2
	PSO 2	Identify the necessity of communication models, protocols and API's for accessing data from sensors and actuators and learn the emerging technologies and frameworks in demand with employers and contemporary challenges.	2
CO 3	PO 1	Apply the knowledge of engineering fundamentals for identifying the role of SDN,NFV, NETCONFG-YANG for data exchange between devices and management on network to the solution of complex engineering problems.	3
	PO 2	Identifying the role of SDN,NFV, NETCONFG-YANG for data exchange between devices and management on network and analyze complex engineering problems reaching substantiated conclusions using engineering sciences.	3
	PO 3	Use either Machine to Machine or IoT to design solutions for complex engineering problems that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	4
	PSO 1	Compare Machine to Machine with IoT and identify the role of SDN,NFV,NETCONFG-YANG for designing next- generation computer systems.	2
CO 4	PO 1	Apply the knowledge of engineering fundamentals to relate the architectural reference model and state of the art methodologies in IoT application domains for the solution of complex engineering problems.	3
	PO 2	Identify state of the art methodologies in IoT application domains for managing access control of IoT devices and analyze complex engineering problems using principles of engineering sciences.	3
	PO 3	Design solutions for complex engineering problems by relating architectural reference model and state of the art methodologies in IoT application domains for managing access control of IoT devices.	3

	PO 4	Use research methods including design of experiments, and analyze state of the art methodologies in IoT application domains for managing access control of IoT devices.	5
	PSO 1	Relate architectural reference model and state of the art methodologies in IoT application domains for designing next-generation computer systems and use the data for knowledge discovery tools.	3
CO 5	PO 3	Design solutions for complex engineering problems using raspberry Pi device and set up the environment for connecting other devices/sensors to communicate specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	4
	PO 4	Use research-based knowledge and research methods including design of experiments using raspberry Pi device and set up the environment for connecting other devices/sensors to communicate with raspberry pi using Python language.	5
	PO 5	Select and apply appropriate techniques to set up the environment for connecting other devices/sensors to communicate with raspberry pi using Python language for modeling to complex engineering activities.	1
	PSO 1	Choose raspberry Pi device and set up the environment for designing next-generation computer systems to connect other devices/sensors to communicate with raspberry pi using Python language.	3
CO 6	PO 1	Apply the knowledge of different cloud storage models and protocols that are scalable & available on demand for designing IoT applications and an engineering specialization to the solution of complex engineering problems.	3
	PO 2	Identify different cloud storage models and protocols that are scalable & available for complex engineering problems reaching substantiated conclusions using principles of engineering sciences for designing IoT applications.	5
	PO 3	Design solutions for complex engineering problems using different cloud storage models and protocols that are scalable & available on demand for designing IoT applications for the public health and safety, and the cultural, societal, and environmental considerations.	4
	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data for using different cloud storage models and protocols that are scalable & available on demand for designing IoT applications.	6

PO 5	Select, and apply appropriate cloud storage models and protocols that are scalable & available on demand for modeling to complex engineering activities.	1
PSO 1	Analyze different cloud storage models and protocols that are scalable & available on demand for designing next-generation IoT applications.	2
PSO 3	Analyze different cloud storage models and protocols that are scalable & available on demand for designing IoT applications for practical experience in shipping real world software using industry standard tools and collaboration techniques.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

COURSE	Pro	gram	o Out	tcom	es/	No. c	of Ke	y Co	mpe	tenci	ies N	latched	I	PSO'S	S
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	6	2	3
CO 1	0	0	4	5	0	0	1	0	0	0	0	0	2	0	2
CO 2	0	3	0	5	0	0	0	0	0	0	0	0	2	2	0
CO 3	3	3	4	0	0	0	0	0	0	0	0	0	2	0	0
CO 4	3	3	3	5	0	0	0	0	0	0	0	0	3	0	0
CO 5	0	0	4	5	1	0	0	0	0	0	0	0	3	0	0
CO 6	3	5	4	6	1	0	0	0	0	0	0	0	2	0	2

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

COURSE				PR	OGR	AM	ουτ	CON	/IES				PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	6	2	3
CO 1	0.0	0.0	40.0	45.5	0.0	0.0	43.3	0.0	0.0	0.0	0.0	0.0	34.0	0.0	100
CO 2	0.0	30.0	0.0	45.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	34.0	100	0.0
CO 3	100	30.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	34.0	0.0	0.0
CO 4	100	30.0	30.0	45.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0
CO 5	0.0	0.0	40.0	45.5	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0
CO 6	100	50.0	40.0	55.0	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	34.0	0.0	100

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** $0 \le C \le 5\%$ No correlation
- **1** -5 <C≤ 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- $\boldsymbol{3}$ 60% \leq C $\,<\,$ 100% Substantial /High

COURSE		PROGRAM OUTCOMES								PSO'S					
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	6	2	3

CO 1	-	-	1	2	-	-	2	-	-	-	-	-	1	-	3
CO 2	-	1	-	2	-	-	-	-	-	-	-	-	1	3	-
CO 3	3	1	1	-	-	-	-	-	-	-	-	-	1	-	-
CO 4	3	1	1	2	-	-	-	-	-	-	-	-	2	-	-
CO 5	-	-	1	2	3	-	-	-	-	-	-	-	2	-	-
CO 6	3	2	1	2	3	-	-	-	-	-	-	-	1	-	3
TOTAL	9	5	5	10	6		2						8	3	6
AVERAGE	3.0	1.25	1.0	2.0	3.0		2.0						1.33	3.0	3.0

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Experiments	-
Assignments	\checkmark				

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
Х	Assessment of Mini Projects by Ex	perts	

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO INTERNET OF THINGS (IoT)
	Definition and characteristics of IoT, physical design of IoT, logical design of IoT, IoT enabling technologies, IoT levels and deployment, domain specific IoTs.
MODULE II	IOT AND M2M
	Introduction, M2M, difference between IoT and M2M, software defined networking (SDN) and network function virtualization (NFV) for IoT, basics of IoT system management with NETCONF- YANG.
MODULE III	IOT ARCHITECTURE AND PYTHON
	IoT Architecture: State of the art introduction, state of the art; Architecture reference model: Introduction, reference model and architecture, IoT reference model. Logical design using Python: Installing Python, Python data types and data structures, control flow, functions, modules, packages, file handling.
MODULE IV	IOT PHYSICAL DEVICES AND ENDPOINTS
	Introduction to Raspberry Pi interfaces (Serial, SPI, I2C), programming Raspberry PI with Python, other IoT devices.
MODULE V	IOT PHYSICAL SERVERS AND CLOUD OFFERINGS
	Introduction to cloud storage models and communication APIs; WAMP: AutoBahn for IoT, Xively cloud for IoT; Case studies illustrating IoT design: Home automation, smart cities, smart environment.

TEXTBOOKS

- 1. Arshdeep Bahga, Vijay Madisetti, —Internet of Things: A Hands-on-Approach, VPT, 1st Edition, 2014.
- 2. Matt Richardson, Shawn Wallac, –Getting Started with Raspberry Pi, O'Reilly (SPD), 3rd Edition, 2014.
- 3. Bernd Scholz-Reiter, Florian Michahelles, Architecting the Internet of Things, Springer

REFERENCE BOOKS:

- 1. Adrian McEwen, Hakim Cassimally, –Designing the Internet of things, John Wiley and sons, 1st edition, 2014.
- 2. Francis Da Costa, –Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, Apress Publications, 1st Edition, 2013.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Institutions adopting OBE try to bring changes to the curriculum by dynamically adapting to the requirements of the different stakeholders like Students, Parents, Industry Personnel and Recruiters. OBE is all about feedback and outcomes. In this we will discuss about the course outcomes and program outcomes and their attainment		
	CONTENT DELIVERY (THEORY)		
1	Understanding the basics concepts of IoT	CO1	T1:19-22
2	Motivations of IoT and various Applications of IoT	CO1	T1:22-24
3	Describe the Things of IoT and characteristics of IoT	CO1	T1:24-26
4-6	Analysis and Design of IoT in physical view	CO2	T1:26-30
7-8	Understandings the Logical design of IoT	CO2	T1:31-34
9-10	Describing various IoT enabling technologies	CO2	T1:34-49
11-12	Identifying specific Domains IoTs	CO1	T1:53-72
13	Understanding the basic differences between IoT and M2M	CO3	T1: 72-80
14	Implementation of SDN and NFV architecture in IoT	CO3	T1:80-85
15	Identifying IoT system management with NETCONF-YANG	CO3	T1:91-92
16	Uses of SNMP in IoT protocols	CO3	T1:93-94
17-18	Implementation of NETCONF-YANG by using Python	CO3	T1:96-97
19-21	Development of IoT Architecture with standards	CO4	T3:170- 186
22-27	Logical design of IoT using Python	CO4	T1:141- 150

28-35	Describe the physical endpoints used in IoT	CO5	T1:186- 196
36-38	Identifying the various IoT physical servers and cloud	CO6	T1:197-
20.45	offerings	601.8	198
39-45	Real time applications of IoT with Case studies design	CO1 & CO6	T1:254- 264
	PROBLEM SOLVING/ CASE STUDIES	5	
1	Determine the IoT levels for designing home automation IoT system including smart lighting and intrusion detection.	CO2	T1:19-72
2	In Forest fire detection which level of IoT is used? Explain with a neat diagram and its working principle.	CO2	T1:19-72
3	Explain domain specific home automation of IoT	CO1,CO6	T1:19-72
4	Write a Python program for controlling an LED with a switch.	CO5	T1:141- 150
5	Write a Python program for switching LED/Light based on reading LDR reading.	CO5	T1:141- 150
6	Implement the air pollution monitoring system using the webSocket approach.	CO1,CO2	T1:24
7	Design and discuss the levels of IoT in smart Irrigation.	CO2	T1:24
8	Write a python script to interface LED and switch with Raspberry Pi	CO5	T1:141- 150
9	Explain about IoT cloud with home automation.	CO6	T1:197- 198
10	What are the impacts that can be observed in implementing internet of Things on Agriculture sector?	CO1	T1:254- 264
11	Write a Python program for blinking LED with Raspberry Pi?	CO5	T1:141- 150
12	Discuss about the analysis of IoT with smart environment.	CO1,CO6	T1:254- 264
13	What Impacts will the Internet Of Things have on infrastructure and smart cities sector?	CO6	T1:254- 264
14	Write a Python program for sending an email on a switch press.	CO5	T1:141- 150
15	Extend the functionality of the home intrusion detection IoT system by interfacing a webcam. Implement a function in the controller to capture an image from the webcam and send it as an attachment in the email alert when an intrusion is detected.	CO1,CO6	T1:254- 264
	DISCUSSION OF DEFINITION AND TERMIN		
1	Define interoperable characteristics of IoT	CO1	T1:19
2	Expand the term UART	CO2	T1:19
3	Expand the term MQTT	CO2	T1:19
4	Which protocols provide connectivity between M2M nodes within an M2M area network?	CO3	T1: 72-80
5	What is the role of Configuration API in NETCONF?	CO3	T1:91-92
	DISCUSSION OF QUESTION BANK		

1	What are the risks and challenges that we should be aware of when it comes to the Internet of Everything?	CO 1,CO 2	T1:19-72
2	Determine the IoT levels for designing structural health monitoring. Explain with a neat diagram.	CO 1,CO6	T1:74-97
3	Define the various domain specific applications of IoT.Explain any 2 in detail.	CO 1,CO6	T1:70-140
4	What is the purpose of information model and function model in IoT reference model ?	CO 5	T1:186- 198
5	How Rasberry Pi different from a desktop computer? Justify your answer with an illustration.	CO 6	T1:254- 264

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTE	COMPUTER SCIENCE AND ENGINEERING					
Course Title	OBJECT O	RIENTED A	ANALYSIS A	AND DESIG	N PATTERNS		
Course Code	ACS015						
Program	B.Tech						
Semester	VI						
Course Type	Core						
Regulation	R-16						
		Theory		Pr	actical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3 1 4						
Course Coordinator	Dr. C. Raghavendra, Associate Professoror						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS003	III	Object Oriented Programming through JAVA
B.Tech	ACS005	IV	Database Management Systems

II COURSE OVERVIEW:

This course emphasizes on the design and construction of software systems using Unified Modeling Language as a tool that view a system as a set of objects to realize the systems functionality. This course includes object-oriented analysis and design techniques that impact the implementation of software systems. Learned skills will be applied to the development of project and the analysis of real-world object-oriented systems.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Object Oriented Analysis and Design Patterns	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
	Presentations						
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level	
10	Remember	
45	Understand	
18	Apply	
27	Analyze	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theory CIE Exam Quiz \AAT		Total Marks	
Type of Assessment				
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

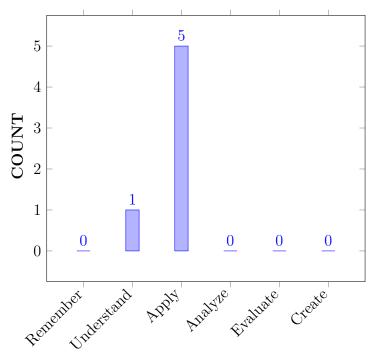
Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table.

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:


The students will try to learn:

Ι	Applying UML meta models in analysis and design of software
II	Transformation of use cases into object oriented software realization through
	object oriented analysis and design using UML
III	Constructing forward and reverse engineering using case tools.
IV	Developing application of OOAD practices from a software project management
	perspective.

VII COURSE OUTCOMES: After successful completion of the course, students should be able to:

CO 1	Demonstrate basic principles, building blocks and different views for designing conceptual model and architectural views of the system.	Understand
CO 2	Make use of architectural modeling diagrams for studying static aspects of the system.	Apply
CO 3	Construct behavioral modeling diagrams for studying dynamic aspects of the system.	Apply
CO 4	Utilize creational, structural and behavioral design patterns to solve design problems in real time applications .	Apply
CO 5	Organize architectural and domain model representation of next gen POS system by using system sequence and use case diagrams.	Apply
CO 6	Identify structural, behavioral modeling in designing and appropriate design patterns to solve design problems in real-time applications.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

	Program Outcomes		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE / CIE /
	knowledge of mathematics, science, engineering		AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	SEE / CIE /
	research literature, and analyze complex		AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	3	SEE / CIE /
	solutions for complex Engineering problems and		AAT
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 5	Modern tool usage: Create, select, and	3	SEE / CIE /
	apply appropriate techniques, resources, and		AAT
	modern engineering and IT tools including		
	prediction analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions and modeling to complex		
	engineering activities with an understanding of		
	the limitations.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 10	Communication: Communicate effectively on	3	SEE / CIE /
	complex engineering activities with the		AAT
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions		
PO 12	Life-Long Learning: Recognize the need for	1	SEE / CIE /
	and having the preparation and ability to		AAT
	engage in independent and life-long learning in		
	the broadest context of technological change.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

PROGRAM SPECIFIC OUTCOMES		Strength	Proficiency Assessed
			by
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	2	SEE/AAT
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	SEE/AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE				PRO)GR.	AM	OUT	COL	MES]	PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-
CO 2	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-
CO 3	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-
CO 4	\checkmark	-	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark
CO 5	\checkmark	-	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-
CO 6	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Usage of CASE tool for modelling simple to complex engineering activities with understanding requirements and limitations of user.	1
	PO 3	Use of methods in CASE tools complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for development of models in efficiant manner.	7
	PO 5	Apply Different views techniques, resources, and modern engineering and IT tools including prediction analysis and interpretation of data, and synthesis of the information to provide valid conclusions and modeling to complex engineering activities with an understanding of the limitations.	1
	PO 10	Use of designing conceptual model and Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2
	PO 12	Apply architectural views of the system Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1
	PSO 2	Formulate and Evaluate engineering concepts to Design next-generation computer systems for modelling simple to complex engineering activities with understanding requirements and limitations of user.	1
CO 2	PO 1	Apply Modeling diagrams in Engineering knowledge and modelling principles, building blocks and architectural views of the system with support of UML.	2
	PO 2	Identify, studying static aspects of the system formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	6
	PO 3	Design solutions for simple and complex problems by Defining and understanding customer requirements, identifying various static and dynamic functions, managing design process and evaluate the outcomes as UML diagrams.	7

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

	PO 5	Conduct investigation of complex problems for visualizing artefacts by using basic and advanced building blocks with knowledge of process, laboratory skills, understanding knowledge and ability to apply a systems approach to engineering problems.	1
	PO 10	Make use of building blocks for creating architectural view of system using UML by communicating effectively to engineering community	2
	PO 12	Usage of CASE tool for modelling simple to complex engineering activities with understanding requirements and limitations of user for architectural view of system.	1
	PSO 2	Focus on studying static aspects of the system improving software reliability, network security or information retrieval systems.	1
CO 3	PO 1	Apply Engineering knowledge and modelling principles, building blocks and architectural views of the system with support of UML.	2
	PO 2	Understand the given problem and system definition, problem formulation, collecting data, modelling, solution development and documentation by using diagrams for static and dynamic aspects of the system.	6
	PO 3	Make use of architectural modeling diagrams Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	7
	PO 5	Usage of CASE tool for modelling simple to complex engineering activities with understanding requirements and limitations of user.	1
	PO 10	Communicate static and dynamic aspects of the system using UML diagrams for specifying structure and interaction of objects during runtime.	2
	PO 12	Recognize the need and develop suitable building blocks using UML diagrams for future advancement and lifelong learning.	1
	PSO 2	Focus on studying static aspects of the system improving software reliability, network security or information retrieval systems.	1
CO 4	PO 1	Apply Engineering knowledge and modelling principles, in identifying basic building blocks for visualizing artefacts of system.	2
	PO 3	Design solutions for simple and complex problems by Defining problem, understand customer requirements, identifying basic building blocks to draw UML diagrams.	6

	PO 10	Communicate with structural and behavioral design patterns effectively on complex engineering activities with the engineering community and give and receive clear instructions.	2
	PO 12	Recognize solve design problems in real time applications and develop suitable building blocks using UML diagrams for future advancement and lifelong learning.	1
	PSO 2	Focus on studying static aspects of the system improving software reliability, network security or information retrieval systems.	1
	PSO 3	Make use of computational and advanced CASE tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1
CO 5	PO 1	Apply Architectural and domain model Engineering knowledge and modelling principles, in identifying basic building blocks for visualizing artefacts of system.	2
	PO 3	Design representation of Next gen POS system for simple and complex problems by Defining problem, understand customer requirements, identifying basic building blocks to draw UML diagrams.	6
	PO 10	Communicate static and dynamic aspects of the system using using system sequence and use case diagrams. For specifying structure and interaction of objects during runtime	2
	PO 12	Recognize the need and develop suitable building blocks using UML diagrams for future advancement and lifelong learning	1
	PSO 2	Formulate and Evaluate engineering concepts to Design next-generation computer systems by using advanced building blocks of UML.	1
CO 6	PO 1	Apply structural modeling Engineering knowledge and modelling principles, in identifying basic building blocks for visualizing artefacts of system.	2
	PO 2	Understand the given problem and system definition, problem formulation, collecting data, modelling, solution development and documentation by using diagrams for static and dynamic aspects of the system.	10
	PO 3	Design representation of Next gen POS system for simple and complex problems by Defining problem, understand customer requirements, identifying basic building blocks to draw UML diagrams.	7
	PO 5	Apply Design Patterns to Conduct investigation of complex problems for visualizing diagrams of static and dynamic aspects by using basic and advanced building blocks knowledge of process, laboratory skills, understanding knowledge.	1

PO 10	Communicate structural, behavioral modeling using system sequence and use case diagrams. For specifying structure and interaction of objects during runtime.	2
PO 12	Recognize Design patterns the need and develop suitable building blocks using UML diagrams for future advancement and lifelong Learning.	1
PSO 2	Focus on studying static aspects of the system improving software reliability, network security or information retrieval systems.	1
PSO 3	Make use of computational and advanced CASE tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	1	-	7	-	1	-	-	-	-	2	-	1	-	1	-
CO 2	2	6	7	-	1	-	-	-	-	2	-	1	-	1	-
CO 3	2	6	7	-	1	-	-	-	-	2	-	1	-	1	-
CO 4	2	-	6	-	-		-	-	-	2	-	1	-	1	1
CO 5	2	-	6	-	-	-	-	-	-	2	-	1	-	1	-
CO 6	2	10	7	-	1	-	-	-	-	2	-	1	-	1	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	33.0	0.0	70.0	0.0	100	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	0.0
CO 2	66.0	60.0	70.0	0.0	100	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	0.0
CO 3	66.0	60.0	70.0	0.0	100	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	0.0
CO 4	66.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	50.0
CO 5	66.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	0.0
CO 6	66.0	100	70.0	0.0	100	0.0	0.0	0.0	0.0	40.0	0.0	12.5	0.0	50.0	50.0

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

1 -5 <C \leq 40% - Low/ Slight

 $\pmb{\mathcal{2}}$ - 40 % < C < 60% – Moderate

 $\boldsymbol{3}$ - 60% \leq C < 100% – Substantial /High

COURSE				PRC)GR/	AM	OUT	CON	AES				PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	3	-	3	-	-	-	-	3	-	1	-	2	-
CO 2	3	3	3	-	3	-	-	-	-	3	-	1	-	2	-
CO 3	3	3	3	-	3	-	-	-	-	3	-	1	-	2	-
CO 4	3	-	3	-	-	-	-	-	-	3	-	1	-	2	2
CO 5	3	-	3	-	-	-	-	-	-	3	-	1	-	2	-
CO 6	3	3	3	-	3	-	-	-	-	3	-	1	-	2	2
TOTAL	16	9	18	-	12	-	-	-	-	18	-	6	-	12	4
AVERAGE	2.6	3.0	3.0	-	3.0	-	-	-	-	3.0	-	1.0	2.0	2.0	
												-			

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	✓	Assignments	~
Seminars	-	Student Viva	-	Certification	-
Laboratory	-	5 Minutes Video	-	Open Ended	-
Practices				Experiments	
Term Paper	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Ex	xperts	

XVIII SYLLABUS:

MODULE I	STRUCTURAL MODELLING
	Introduction to UML: Importance of modeling, principles of modeling, object-oriented modeling, conceptual model of the UML, architecture, software development life cycle; Classes, relationships, common mechanisms and diagrams.
MODULE II	ADVANCED BEHAVIORAL MODELING
	Advanced classes, advanced relationships, interfaces, types and roles, packages, terms, concepts; Class and Object Diagrams: Terms, concepts, common modeling techniques for class and object diagrams.
MODULE III	ARCHITECTURAL MODELING
	Events and signals, state machines, processes and threads, time and space. State chart diagrams, component diagrams, deployment diagrams.
MODULE IV	DESIGN PATTERN
	GRASP: Designing objects with responsibilities, creator, low coupling, high cohesion, design patterns, creational, factory method, structural, behavioral, strategy.
MODULE V	APPLYING DESIGN PATTENS
	System sequence diagrams, logical architecture refinement; domain models, domain model refinement Case study: The next gen POS system, inception.

TEXTBOOKS

- 1. Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Language User Guide", Pearson Education, 2nd Edition, 2004.
- 2. Craig Larman, "Applying UML and Patterns: An Introduction to Object Oriented Analysis and Design and Iterative Development", Pearson Education, 3rd Edition, 2005.

REFERENCE BOOKS:

- 1. Simon Bennett, Steve McRobb, Ray Farmer, —Object Oriented Systems Analysis and Design Using UML^{||}, Tata McGraw-Hill Education, 4th Edition, 2010.
- 2. Pascal Roques, —Modeling Software Systems Using UML2 —, WILEY Dreamtech India Pvt. Ltd, 2 nd Edition, 2007.

WEB REFERENCES:

- 1. https://www.tutorialspoint.com/uml/uml.overview.html
- 2. https://www.utdallas.edu/ chung/OOAD/M03.1.StructuralDiagrams.ppt
- 3. https://onedrive.live.com/download?cid=99CBBF765926367

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details & course_id=413

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSS	SION	
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms.iare.ac.in/inde ?route=course/details& course id=413
	CONTENT DELIVERY	Y (THEORY)	<u> </u>
1	Introduction to UML: Importance of Modeling, Things, Principles of Modeling	CO 1	T1:1.1
2	Object Oriented Modeling, Structural things, Structural diagrams	CO1	T1:1.2
3	Conceptual model of the UML, Structural diagrams	CO2	T1:1.3-1.4
4	Behavioral diagrams	CO2	T1:2.3
5	UML architecture, Software Development Life Cycle	CO2	T1:2.4
6	Basic class diagram symbols and notations	CO2	T1:2.5
7-8	Class diagram: Purpose, Benefits with example	CO2	T1:4.1
9-10	Relationships: Dependencies, Generalizations, Associations with example	CO2	T1:5.1
11	Aggregation vs. Composition, Common mechanisms	CO2	T1:6.1
12-13	Advanced classes: scope, multiplicity, operations, examples	CO3	T1:7.1.1
14-16	Common modeling techniques for class diagram, Advanced relationships: dependency, generalization, association, realization, common modeling techniques	CO2	T1:8.1.1
17	Packages: Key elements of package diagram, visibility of packages, import and access	CO2	T1:11.4
18	Terms and Concepts: common uses, common modeling techniques, forward and reverse engineering	CO2	T1:12.5
19	Class Diagrams- Terms, concepts and common modeling techniques	CO2	T1:13.1
20	Object Diagrams: Terms, concepts and common modeling techniques	CO2	T1:13.3
21	Interactions: Interactions, concepts and common modeling techniques	CO3	T1:14.1
22-23	Interaction Diagrams: Terms, concepts, uses and common modeling techniques	CO4	T1:14.3

24-25	Use cases: Use case diagrams Terms, concepts, uses and common modeling techniques	CO2	T1:16.1
26-27	Activity Diagrams: Terms, concepts, uses and common modeling techniques	CO3	T1:16.4
28	Events and signals, State machines	CO4	T1:20.5
29	Processes and threads, Time and space	CO4	T1:1.2
30-31	GRASP: Designing objects with responsibilities, creator, low coupling, high cohesion	CO5	T2:2.3
32-33	design patterns, creational, factory method, structural, behavioral, strategy.	CO5	T2:2.9
34	System sequence diagrams,	CO6	T2:3.6
35	logical architecture refinement	CO6	T2:3.9
36-37	domain models, domain model refinement	CO6	T2:4.2
38	Deployment: Terms and concepts	CO6	T2:4.8
39-40	Deployment diagrams: Terms, concepts, uses and common modeling techniques	CO6	T2:5.9
41-43	Case Study: The Unified Library Application.	CO6	T2:6.1
44-45	Case Study: Real-Time applications	CO6	T2:6.4
	PROBLEM SOLVING/ C.	ASE STUDIES	
1	Build a class hierarchy to organize the following drink classes: Mineral water, alcoholic, nonalcoholic, grape juice and soda.	CO3	T1:5.1
2	Classify and describe four fundamental process activities which are common to all software processes.	CO2	T1:6.1
3	List four facts which indicate that the requirement capture and analysis process to be very difficult.	CO2	T1:7.1.1
4	Construct an object diagram that contains a three-level hierarchy of objects.	CO3	T1:8.1.1
5	Assume that you wise to buy a car. Identify all the attributes and methods of the car object. Write a short description of services that each will provide. Create a class hierarchy of the "car" class.	CO4	T1:11.4
6	Build basic class diagrams (of your choice) to identify and describe key concepts like classes, types in the system and their relationships.	CO3	T1:12.5

2	Advanced Behavioral Modeling	CO2	T1:5.1
1	Structural Modelling	CO1	T1:1.1
	DISCUSSION ON QUE	I I	
5	Case study: The next gen POS system, inception.	CO5,CO6	T2:10.1
4	Design Pattern, creational, factory method, structural, behavioral, strategy.	CO4	T2:1.1
3	Dynamic Diagrams.	CO3	T1:3.1.2
2	Class, object, Component Diagram, Deployment Diagram	CO2	T1:4.1.1
1	Model, encapsulation, behavioral things, UML, package.	CO1	T1:1.1
	DISCUSSION ON DEFINITION	AND TERMI	NOLOGY
15	Explain in detail about the notations of a sequence diagram with neat sketch.	CO4	T1:18
15	System application with the following requirements i. System should handle the in- patient, out-patient information through receptionist. ii. Doctors are allowed to view the patient history and give their prescription iii. There should be a information system to provide the required information Construct the component and deployment diagram	<u> </u>	T1.18
13	diagrams for ATM system.5 Consider the Hospital Management	CO6	T1:3.2
12	Study on the Next Gen POS system with suitable examples. Construct UML deployment and component	CO3	T1:20.5
11 12	Develop a state chart diagram of an ATM system.Develop a state chart diagram for the case	CO5 CO5	T1:16.1
10	Model a state machine for the controller of a home security system, which is responsible for monitoring various sensors around the perimeter of the house.	CO5	T1:14.3
9	Develop the activity diagram for the process sale and specify actor, use case and scenario with swim lanes.	CO4	T1:14.1
8	Construct an activity diagram the shows flow of control from activity to another by modeling a credit card validation system with swim lanes.	CO4	T1:13.3
7	Draw and model the activity diagrams to display either business flows or like flow charts. (Example: ATM system)	CO3	T1:13.1

3	Architectural Modeling	CO3	T1:7.1
4	Design Pattern	CO4	T2:1.1
5	Applying Design Pattens	CO5,CO6	T2:10.1

Course Coordinator

Dr. C. Raghavendra, Associate Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	IDEATION	AND PR	ODUCT	DEVELOP	MENT
Course Code	AEC201				
Program	B.Tech				
Semester	VI	CSE			
Course Type	Elective				
Regulation	IARE - R16				
		Theory		Practio	cal
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	-	-	-	3	1.5
Course Coordinator	Dr. D Srikar,	Assistant P	rofessor		

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

II COURSE OVERVIEW:

Ideation and product development lab mainly focuses on the creation of concrete solutions to specific problems. This is particularly challenging when the solution and its elements are entirely unknown. In so-called top-down approaches, the development focus is on the desired features of the new product rather than on already existing solutions or their elements. Both methods from product development, such as creativity techniques, and methods from lightweight design, such as physical surrogate modeling, help to explore the unknown and find a way to new solutions to complex problems. For complex problems, it is often important to consider the entire system by adopting a holistic and interdisciplinary view. In both lightweight design and in product development, all relevant requirements on a product, all aspects of feasibility and constraints on realization, and all interactions of all system components have to be taken into account.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Research and Content	70 Marks	30 Marks	100
Development			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab Worksheets	~	Viva Questions	\checkmark	Probing further Questions
--------------	------------	--------------	----------------	---	----------------	--------------	------------------------------

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks of assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component		Total Marks	
Type of Assessment	Day to day performance	Final internal lab assessment	
CIA Marks	20	10	30

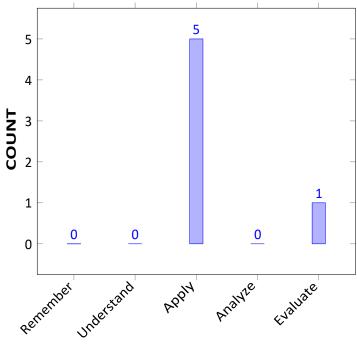
Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Obje	ective	Analysis	Design	Conclusion	Viva	Total
	2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


I	To develop next generation Entrepreneurs and Creative Leaders to resolve live challenges.
П	To understand about the future needs of industries.
- 111	To transform innovative ideas into successful businesses.
IV	To use a range of creative thinking tools to develop Out of the Box Ideas.
V	To develop Breakthrough Innovators and Dynamic Thinkers.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Develop knowledge and skills from various areas through more complex and multidisciplinary projects to select a research topic.	Apply
CO 2	Organize the collected evidences to make quantitative, qualitative and statistical analysis for finding the research problem.	Apply
CO 3	Solve unstructured problems that need research as an individual or as a member/leader in diverse teams to discern which information is reliable and which is not.	Apply
CO 4	Make use of a software tool by running simulations rigorously to get the desired output for the research problem found.	Apply
CO 5	Assess the outputs achieved by making judgments about information and validity of ideas for confirming the quality of work based on a set of criteria.	Evaluate
CO 6	Build a hardware prototype to test and analyze the product designed for an application.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering Knowledge: Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems.	2	Lab exercises/ CIE/SEE

Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab exercises/ CIE/SEE
Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations.	2	Lab exercises/ CIE/SEE
Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Lab exercises/ CIE/SEE
Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	2	Lab exercises/ CIE/SEE
Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2	Lab Exercises
Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	Lab Exercises
Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Lab Exercises
	research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations Individual and team work:Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering able to comprehend and write effective presentations, and give and receive clear instructions. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest	research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/Development of Solutions: Design 2 solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations. Conduct Investigations of Complex 2 Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations Individual and team work:Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2	Lab Exercises
PSO2	Focus on improving software reliability, network security or information retrieval systems.	2	Lab Exercises

PSO 3	Make use of modern computer tools for creating	2	Lab
	innovative career paths, to be an entrepreneur and		Exercises
	desire for higher studies		

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems.	3
	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2
	PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2
CO 2	PO 2	Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics and engineering sciences.	1
	PO 3	Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1
	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2
	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2
	PO 1	Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems	3
	PO 3	Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1

		Lice recearch based knowledge and recearch methods	
	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2
	PO 9	Function effectively as an individual, and as a member or	2
	105	leader in diverse teams, and in multidisciplinary settings.	2
CO 3	PO 10	Communicate effectively on complex Engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2
	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2
	PO 5	Create, select, and apply appropriate techniques, resources, and modernEngineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations.	3
CO 4	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1
	PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3
	PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	3
	PSO2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	3
	PSO3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	3
	PO 1	Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems.	2
	PO 2	Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics and engineering sciences.	1
CO 5	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1
	PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3

	PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2
	PO 2	Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics and engineering sciences.	1
CO 6	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1
	PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3
	PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

	PROGRAM OUTCOMES									PSO'S		;			
COURSE	РО	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	11	9	8
CO 1	3	-	-	2	-	-	-	-	-	2	-	-	-	-	-
CO 2	-	1	1	2	-	-	-	-	-	2	-	-	-	-	-
CO 3	3	-	1	2	-	-	-	-	-	2	-	-	-	-	-
CO 4	-	-	-	2	3	-	-	-	-	3	-		3	3	3
CO 5	2	1	-	1	-	-	-	-	-	3	-	2	-	-	-
CO 6	-	1	-	1	-	-	-	-	-	3	-	2	-	-	-

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 2, PO 9,	SEE Exams	PO 2,PO 9,	Seminars	-
	PO 12		PO 12		
Laboratory	PO 2,PO 5,	Student Viva	PO 2, PO5,	Certification	-
Practices	PO 9, P012		PSO2,PSO3		
	,PSO1,PSO2				
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback		
х	Assessment of Mini Projects by Experts				

XIV SYLLABUS:

WEEK I	INTRODUCTION TO PRODUCT DEVELOPMENT
	Product development -Examples of product development process-theories and methodologies-Product development teams- Product development planning process-Technical and business concerns. Understanding customer needs-Customer satisfaction -gathering customer needsOrganising and prioritizing customer needs.
WEEK II	ESTABLISHING PRODUCT FUNCTION
	Functional decomposition, Modeling process, Function trees, Creating function structure, Auguementation, Functional common basis.
WEEK III	PRODUCT TEARDOWN AND EXPERIMENTATION
	Teardown process, Teardown methods, Post teardown reporting- Applications of product teardown.

WEEK IV	BENCHMARKING AND ESTABLISHING ENGINEERING SPECIFICATIONS
	Benchmarking approach, examples, Support tools, Setting product specifications-Product portfolios architecture types, theory, platforms. Product architecture - Types and examples, Product modularity, Modular design and methods.
WEEK V	GENERATING, SELECTION AND EMBODIMENT OF CONCEPTS
	Concept generation process, methodsBasic and advanced-Morphological analysis, Concept selection process, Factors, Design evaluation, Information quality, Feasibility-Basic and advanced methods, Concept embodiment: General process, advanced methods Modeling of product metrics: Model selection, Model preparation, Mathematical modeling, Construction of product models.

ΤΕΧΤΒΟΟΚS

- 1. Product Design: Techniques in Reverse engineering New Product development. K Otto K Wood. Prentice Hall, 2001. ISBN 0-13-0212271-7 TCD Shelf Mark. HL-236-568.
- 2. Invention by design: how engineers get from thought to thing, Petroski H. Cambridge, Mass., London, Harvard University Press, 1996. ISBN 0674463676. TCD Shelf Mark. HL-201-280.
- 3. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation, Tim Brown, Harper Business, 2009, ISBN 978-0061766084.
- 4. Creative Confidence: Unleashing the Creative Potential Within Us All, Tom David Kelley, Crown Business, 2013, ISBN 978-0385349369.

REFERENCE BOOKS:

- 1. Kevin N. Otto and Kristin L. Wood Product Design Pearson Education 2001
- 2. Smith, Preston G., Reinertsen Donald G. (1991) Developing products in half the time, Van Nostrand Reinhold, New York.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Successful team formation and management	CO 3	T1: 1.3
2	Introduction to user-centred design	CO 1	T2: 2.4
3	Ideation and use of personas and POVs	CO 2	T1: 3.2
4	Need finding	CO 2	T2: 2.5
5	Embedded Microcontrollers for consumer products	CO 6	T1: 3.3
6	Human factors in engineering design	CO 2	T3: 4.2
7	Critical Experience and Critical Function Prototyping	CO 4	T3: 4.5
9	Dark Horse and Funky' prototyping	CO 5	T4: 5.1
10	Rapid prototyping and manufacturing	CO 6	T4: 6.5
11	User testing	CO 6	T1:6.1
12	Use of video/electronic media for communication	CO 6	T1:6.4

13	Start-ups and entrepreneurship	CO 6	T1:6.5
14	Intellectual Property	CO 6	T1:6.6

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Integration of knowledge and skills from various areas through more complex investigations and multi-disciplinary projects.
2	Autonomous learning encouraged through independent research of unstructured problems
3	Teamwork, which helps prepare students for a social environment
4	Self-evaluation and self-criticism, against self-competency, trying to see beyond their own ideas and knowledge

Signature of Course Coordinator Dr. D Srikar, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING				
Course Title	Softwar	Software Testing Methodologies			
Course Code	AIT008	AIT008			
Program	B.Tech				
Semester	VII				
Course Type	Core				
Regulation	R-16				
		Theory		Pract	ical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	1	4	1	2
Course Coordinator	Mr J.Tirupathi, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS008	IV	Software Engineering

II COURSE OVERVIEW:

The course will describe the basic techniques for testing and tools that can be used to perform automatic and manual testing for generating and validating test data. It will provide deeper insights into domain testing, path testing, transaction flow testing and transition testing. This course is used in the applications of banking system, library management, hotel management etc.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Software Testing	70 Marks	30 Marks	100
Methodology			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	х	MOOC
х	Open Ended Experiments	\checkmark	Seminars	х	Mini Project	\checkmark	Videos
х	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level	
10%	Remember	
40%	Understand	
33 %	Apply	
17%	Analyze	
0%	Evaluate	
0%	Create	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam	Quiz \AAT	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

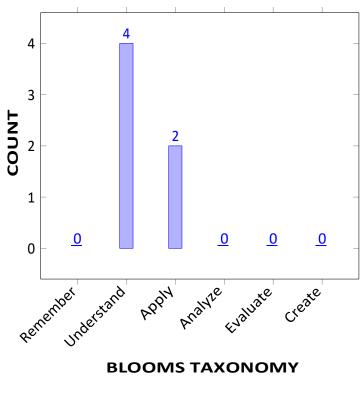
Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI COURSE OBJECTIVES:

The students will try to learn:


I	The scope and essentiality of software testing concepts, taxonomy and dichotomies related to software testing.
II	The techniques used to test a path, branch, statement coverage of a given software module.
	The techniques and principles in software testing related to transaction flow and statement testing.
IV	The hypothesis on the optimized software module used in solving complex problems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the concept of software testing objectives, process criteria, strategies and methods for effective testing.	Understand
CO 2	Classify the key issues and applications in transaction flow testing and data flow testing strategies.	Understand
CO 3	Make use of domains and paths in order to identify nice and ugly domains in domain testing	Apply
CO 4	Translate the path expressions using logic based testing to KV charts and its specifications.	Understand
CO 5	D 5 Develop a defect free module using path products and path expressions.	
CO 6	Explain the importance of good state graph and bad state graph related to transition testing for effective transition testing.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII **PROGRAM OUTCOMES:**

	Program Outcomes				
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.				
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.				
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations				
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.				
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations				
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.				
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.				
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.				

	Program Outcomes			
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.			
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.			
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.			
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change			

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	SEE/CIE/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	SEE/CIE/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	SEE/CIE/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions	2	SEE/CIE/AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	SEE/CIE/AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	SEE/CIE/AAT
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	1	SEE/CIE/AAT
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	3	SEE/CIE/AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PRC)GR/	٩M	ουτ	COL	VIES				PSO'S		
COURSE	РО	PO										PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	>	I	-	-	-	-	I	I	I	I	-	-	-	-	-
CO 2	\checkmark	<	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 4	\checkmark	\checkmark	-	-		-	-	-	-	-	-	-	-	-	
CO 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	<	\checkmark	\checkmark
CO	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain the concept of software testing objectives, process criteria, strategies and methods related to testing.	1
CO 2	PO 1	Explain the basics of data flow testing and the criteria related to data flow testing	2
	PO 2	Make use of domains and paths in order to identify nice and ugly domains in domain testing	6
	PO 3	Translate the path expressions using logic based testing to KV charts and its specifications.	7

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 3	PO 1	Make use of domains and paths in order to identify nice and ugly domains in domain testing.	1
	PO 2	Explain the basics of data flow testing and the criteria related to data flow testing.	3
	PO 4	Make use of domains and paths in order to identify nice and ugly domains in domain testing.	3
	PSO 1	Translate the path expressions using logic based testing to KV charts and its specifications.	4
CO 4	PO 1	Develop a defect free module using path products and path expressions.	2
	PO 2	Develop applications for path expressions and path products	6
CO 5	PO 1	Explain the importance of good state graph and bad state graph related to transition testing.	3
	PO 2	Demonstrate state graphs and transition testing with its various testability tips.	6
	PO 3	Explain the basics of data flow testing and the criteria related to data flow testing.	7
	PO 4	Make use of domains and paths in order to identify nice and ugly domains in domain testing.	5
	PO 5	Translate the path expressions using logic based testing to KV charts and its specifications.	4
	PSO 1	Explain the basics of data flow testing and the criteria related to data flow testing.	1
	PSO 2	Make use of domains and paths in order to identify nice and ugly domains in domain testing.	1
	PSO 3	Translate the path expressions using logic based testing to KV charts and its specifications.	2
CO 6	PO 1	Develop a defect free module using path products and path expressions.	3
	PO 2	Develop applications for path expressions and path products.	6
	PO 3	Explain the importance of good state graph and bad state graph related to transition testing.	7
	PSO 1	Demonstrate state graphs and transition testing with its various testability tips.	5

*Note: Refer appendix-I for key competencies

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	O PO											PSO	PSO	PSO
OUTCOMES	1	2 3 4 5 6 7 8 9 10 11 12										1	2	3	
	3	10 10 11 1 5 3 3 12 5 12 8											1	1	1

CO 1	1	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	2	6	7	-	-	-	-	1	-	-	-	-	-	-	-
CO 3	1	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	6	-	-	-	-	-	-	-	-	-		-	-	-
CO 5	3	6	7	5	1	-	-	-	-	-	-	-	4	1	2
CO 6	3	6	7	-	-	-	-	-	-	-	-	-	5	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

			I	PRO	GRA	M C	Ουτο	CON	1ES				PSO'S		
COURSE	РО	РО	РО	РО	PO	PO	PO	PO	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	33.3	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	66.7	60.0	70.0	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	33.3	30.0	30.0	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	66.7	60.0	-	-	-	-	-	-	-	-	-		-	-	-
CO 5	100	60.0	70.0	45.5	100	-	-	-	-	-	-	-	66.7	33.3	66.7
CO 6	100	60.0	70.0	-	-	-	-	-	-	-	-	-	66.7	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** $0 \le C \le 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- $\boldsymbol{3}$ 60% \leq C $\,<\,$ 100% Substantial /High

			F	RO	GRA	мс	υτα	ОМ	IES				PSO'S		
COURSE	РО	РО	РО	РО	РО	PO	PO	РО	РО	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	3	-	-	-	-	-	-	-	-	-		-	-	-
CO 5	3	3	3	2	3	-	-	-	-	-	-	-	3	1	3 -
CO 6	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-
TOTAL	14	13	10	2	3	-	-	-	-	-	-	-	6	1	3
AVERAGE	2.3	2.6	2.5	2.0	3.0	-	-	-	-	-	-	-	3.0	1.0	3.0

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Experiments	-
Assignments	\checkmark				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts / End Semester OBE Feedback

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO TESTING
	Introduction: Purpose of testing, dichotomies, model for testing, consequences of bugs, taxonomy of bugs. Flow graphs and path testing: Basics concepts of path testing, predicates, path predicates and Achievable paths, path sensitizing, path instrumentation, application of path testing.
MODULE II	TRANSACTION FLOW TESTING
	Transaction flow testing: Transaction flows, transaction flow testing techniques, dataflow testing, basics of dataflow testing, strategies in dataflow testing, application of dataflow testing.
MODULE III	LEVELS OF TESTING
	Domain testing: Domains and paths, nice and ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability. Logic based testing: Overview, decision tables, path expressions, kv charts, and specifications.
MODULE IV	PATH PRODUCTS
	Paths, path products and regular expressions: Path products and path expression, reduction procedure, applications, regular expressions and flow anomaly detection.
MODULE V	TRANSITION TESTING
	State, state graphs and transition testing: State graphs, good and bad state graphs, state testing, testability tips.

TEXTBOOKS

1. Boris Beizer, —Software Testing Techniques, Dreamtech Press, 2 nd Edition, 2003.

REFERENCE BOOKS:

- 1. P. C. Jorgenson, —Software Testing: A Craftmen's Approach, Auerbach Publications, 3 rd Edition, 2013.
- 2. Perry, -Effective Methods of Software Testing , John Wiley, 2 nd Edition, 1999.
- 3. P. Nageswara Rao, —Software Testing Concepts and Tools, DreamTech Press, 2 nd Edition, 2007.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping		W1
	CONTENT DELIVERY (THEORY)		
2	Introduction: Purpose of testing	CO 1	R1:1.1
3	Dichotomies, model for testing.	CO 2	T1:1.2
5	Model for testing.	CO 3	T1:1.3
6	Consequences of bugs, taxonomy of bugs.	CO 4	R1:1.5
9	Path testing and predicate, loops and path Sensitization.	CO 5	T1:3.2
10	Path instrumentation and their applications and link markers.	CO 6	T1:3.5
11	Transaction flows techniques ,Transaction flows, transaction flow testing technique	CO 7	T1:4.3
13	Basics of dataflow testing, strategies in dataflow testing, application of dataflow testing.	CO 8	T1:5.2
14	Domains and paths, Nice and ugly domains, domain testing.	CO 9	T1:6.2;
15	Domains and interfaces testing,	CO 10	T1:6.5
16	Domains and testability.	CO 11	T1:6.5
18	Logic based testing and decision tables.	CO 12	T1:10.2
20	Path expressions, k v charts, specifications	CO 13	T1:10.4
21	Path products and path expression	CO 14	R1:4.2.4
22	Reduction procedure, applications, regular expressions and flow anomaly detection	CO 15,CO 16, CO 17	T1:8.4
23	State graphs, good bad state graphs	CO 18,CO 19, CO 20	T1:11.3
25	State testing, Testability tips.	CO 19,CO 20	T1:11.3

Signature of Course Coordinator

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENC AND ENGINEERING

COURSE DESCRIPTION

Course Title	BIG DA	BIG DATA AND BUSINESS ANALYTICS								
Course Code	ACS012									
Program	B.Tech	B.Tech								
Semester	VII	VII								
Course Type	Core	Core								
Regulation	R-16									
		Theory		Pract	ical					
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits					
	3	1	4	3	2					
Course Coordinator Ms Sangeetha, Assistant Professor										

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB08	IV	Database Management Systems

II COURSE OVERVIEW:

This course provides a clear understanding on concepts of sources of big data, characteristics, storing and processing components, and analytics applications. This course emphasizes on potential impact of big data challenges, open research issues, and various tools associated with it. This course includes the introduction and processing big data with an overview of Hadoop technology and its components such as pig, hive, etc.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks		
Big Data and Business Analytics	70 Marks	30 Marks	100		

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk 🗸		Assignments	х	MOOC
х	Open Ended Experiments		Seminars	х	Mini Project	х	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
40 %	Understand
50 %	Apply
10 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks		
Type of Assessment	CIE Exam	Quiz \AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

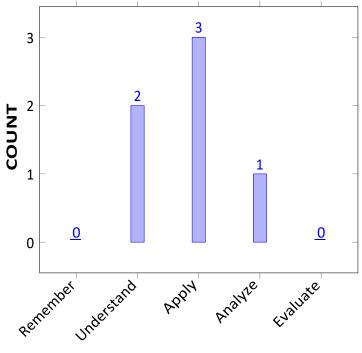
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The scope and essentiality of Big Data and Business Analytics.
II	The technologies used to store, manage, and analyze big data in a Hadoop ecosystem.
111	The techniques and principles in big data analytics with scalability and streaming capability.
IV	The hypothesis on the optimized business decisions in solving complex real-world problems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the evolution of big data and big data analytics along with its characteristics and challenges included in traditional business intelligence.	Understand
CO 2	Make use of appropriate components for processing, scheduling and knowledge extraction from large volumes the applications for handling huge volume of data	Apply
CO 3	Develop a Map Reduce application for optimizing the jobs.	Apply
CO 4	Develop the applications for handling huge volume of data using Pig Latin.	Apply
CO 5	Explain the importance of bigdata framework HIVE and its built-in functions, data types and services like DDL in Hadoop distributed file system.	Understand
CO 6	Extend the big data technologies used to process and querying the bigdata in Hadoop, MapReduce, Pig and Hive.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Assignments/ SEE /CIE,AAT, QUIZ
PO 5	Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2	Assignments
PO 12	Life - Long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1	SEE/ CIE, AAT, QUIZ

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	Research papers/ Group discussion/ Short term courses
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	2	Research papers/ Group discussion/ Short term courses
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	3	Research papers/ Group discussion/ Short term courses

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES											PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	~ -	<	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	<	<	\checkmark
CO 5	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 6	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Compare big data analysis and analytics in optimizing business decisions knowledge by using the mathematical principles and computer science methodologies.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Explain the evolution of big data and big data analytics along with its characteristics the problem and challenges includes the problem statement,data collection ,validation and documentation in traditional business intelligence.	5
	PO 3	Explain the evolution of big data in knowledge and understanding the big data analytics along with its characteristics and understand and manage challenges included in traditional business intelligence in engineering process .	4
	PO 5	Explain the evolution of big data and big data analytics along with its characteristics and challenges included in traditional business intelligence in computer software.	1
	PO 10	Explain the evolution of big data and big data analytics along with its characteristics in clarity and also challenges included in traditional business intelligence in reference .	2
	PO 12	keeping trend in CSE Explain the evolution of big data and big data analytics along with its characteristics in personal continuing and on going learning in challenges included in traditional business intelligence in project management .	4
	PSO 1	Explain the evolution of big data and big data analytics along with its characteristics and challenges in search engines , next generation computer systems , networking devices ,included in traditional business intelligence in knowledge discovery tools .	4
	PSO 2	Explain the evolution of big data and big data analytics along with its characteristics and challenges in mobile and web application development included in traditional business intelligence.	2
	PSO 3	Explain the evolution of big data and big data analytics along with its characteristics and challenges included in traditional business intelligence in practical experience in shipping real world software ,using industry standard tools.	2
CO 2	PO 1	Make use of appropriate components for processing, scheduling and knowledge extraction from large volumes the applications for handling huge volume of data by applying mathematical principles,scientific methodology,computer science	3
	PO 2	identify problem, problem statement and Make use of appropriate components for processing, scheduling and knowledge extraction to validate the data from large volumes for applications to handling huge volume of data in information and data collection in documentation	7

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	Investigate and define a problem identification appropriate components for processing, scheduling and knowledge extraction from large volumes the applications for handling huge volume of data to manage the design process	4
	PO 5	Make use of appropriate components for processing, scheduling and knowledge extraction from large volumes the applications for handling huge volume of data in computer software	1
	PO 10	Make use of appropriate components for processing, scheduling and knowledge extraction from large volumes in clarity the applications for handling huge volume of data with reference	2
	PO 12	Make use of appropriate components for processing, scheduling and knowledge extraction from large volumes the applications for handling huge volume of data In personal continued and ongoing learning	3
	PSO 1	Make use of Hadoop components on huge volume data used to develop analytical solutions related to Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
	PSO 2	Make use of Hadoop components on huge volume data used to develop analytical solutions related to mobile and web application in emerging technologies.	3
	PSO 3	Make use of Hadoop components on huge volume data used to develop analytical solutions related tousing industry standard tools and collabaration.	2
	PO 1	Apply scientific principles and methodologies , other engineering disciplines in map reduce, Hadoop.	3
CO 3	PO 2	Problem Analysis in map reduce, problem state- ment, data collection, validation, documentation in Hadoop.	5
	PO 3	Get the knowledge and understanding of a Map Reduce application understand and manage for optimizing the jobs in engineering process .	5
	PO 5	Develop a Map Reduce application for optimizing the jobs in computer software .	1
	PO 12	keeping trend in CSE Develop a Map Reduce application for optimizing the jobs in personal continuing,on going learning, project management.	4
	PSO 1	Develop a Map Reduce application for optimizing the jobs in Big data,Artificial Intelligence,Machine learning .	3
	PSO 2	Develop a Map Reduce application for optimizing the jobs in mobile and web application in emerging technologies .	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 3	Develop a Map Reduce application for optimizing the jobs related to using industry standard tools	1
	PO 1	Apply scientific principles and methodologies, other engineering disciplines to applications for handling huge volume of data using Pig Latin.	3
CO 4	PO 2	Analyze problem, problem statement in applications for handling huge volume of data using Pig Latin in data collection, validation, documentation .	5
	PO 3	Conduct investigation of complex problems for developing virtual machines using knowledge of process, laboratory skills, understanding knowledge and ability to apply a systems approach application for handling huge volume of data using Pig Latin.	4
	PO 5	Develop the applications for handling huge volume of data using Pig Latin in computer software .	1
	PO 10	Develop the applications with clarity for handling huge volume of data using Pig Latin with reference .	2
	PO 12	Keeping current in CSE and advanced engineering concepts of advanced applications for handling huge volume of data using Pig Latin in personal continuing,on going,project management	4
	PSO 1	Understand, Design and Analyze Computer Programs used in applications for handling huge volume of data using Pig Latin.	2
	PSO 2	Focus on improving Network Security and IRS in developing applications for handling huge volume of data using Pig Latin.	1
	PSO 3	Develop the applications for handling huge volume of data using Pig Latin in Industry standard tools and collabaration.	1
CO 5	PO 1	Understand the importance of big data framework HIVE by using computer science methodologies, mathematical and scientific principles.	3
	PO 2	Demonstrate the HIVE functions and services for specific problems by including huge volume of information and data collection, file structure translation, validation and solution development with proper documentation.	5
	PO 3	Explain the HIVE application process by including various problems, customer and user needs, with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques.	5
	PO 5	Explain the HIVE application process by computer software .	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	the importance of bigdata framework HIVE and its built-in functions, data types and services like DDL in clarity DDLin Hadoop distributed file system in reference	2
	PO 12	keeping trend in CSE Explain the HIVE application in personal continuning and On going learning process by project management.	4
	PSO 1	Explain the HIVE features and services for analyzing programs in the areas related to Algorithms, Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
	PSO 2	Explain the HIVE features and services for analyzing programs in the areas related to Mobile and web applicatin in emerging technologies .	3
	PSO 3	Explain the HIVE features and services for analyzing programs in the areas related to Industry standard tools and collabaration .	2
CO 6	PO 1	Explain the big data technologies used to process and querying the bigdata by applying mathematical principles and computer science methodologies	3
	PO 2	Understand the problem and develop solutions using big data technologies and document the results for interpretation	4
	PO 3	Identify the appropriate technology like pig, hive etc. suitable for various problems, by understanding customer and user needs, with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques.	4
	PO 5	Identify the appropriate technology like pig, hive etc. suitable for computer software	1
	PO 10	Identify the appropriate technology like pig, hive etc in clarity. with suitable examples for Reference	2
	PO 12	keeping current in CSE and advanced engineering conceptsIdentify the appropriate technology like pig, hive etc in personal continuing ,on going,project management.	7
	PSO 1	Explain the big data technologies used to process and querying the bigdata in the areas related to Algorithms, Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
	PSO 2	Explain the big data technologies used to process and querying the bigdata in the areas related to Mobile and web applicatin in emerging technolgies.	4
	PSO 3	Explain the big data technologies used to process and querying the bigdata in the areas related to Industry standard tols and collabaration.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

	PROGRAM OUTCOMES												PSO'S		
COURSE	Pro	Program Outcomes/ No. of Key Competencies Matched										PSO'S			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	6	2	3
CO 1	3	4	4	-	1	-	-	-	-	2	-	4	4	2	2
CO 2	3	7	4	-	1	-	-	-	-	2	-	5	4	2	2
CO 3	3	4	4	-	1	-	-	-	-	2	-	4	4	2	2
CO 4	3	4	4	-	1	-	-	-	-	2	-	4	3	1	2
CO 5	3	4	4	-	1	-	-	-	-	2	-	5	4	2	2
CO 6	3	4	4	-	1	-	-	-	-	2	-	4	3	2	2

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	40	40	-	100	-	-	-	-	40	-	50	66.6	100	66.6
CO 2	100	70	40	-	100	-	-	-	-	40	-	62.5	66.6	66.6	40
CO 3	100	40	40	-	100	-	-	-	-	40	-	50	66.6	60	60
CO 4	40	40	40	-	100	-	-	-	-	40	-	50	40	60	40
CO 5	100	40	40	-	100	-	-	-	-	40	-	62.5	40	60	40
CO 6	100	40	40	-	100	I	-	-	-	40	-	50	40	60	60

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

0 - $0 \le C \le 5\%$ – No correlation

1 -5 <C \leq 40% – Low/ Slight

2 - 40 % <C < 60% –Moderate

3 - 60% \leq C < 100% – Substantial /High

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	РО	PO	РО	PO	PO	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	2	I	3	-	-	I	-	2	-	2	3	2	2
CO 2	3	3	2	-	3	-	-	-	-	2	-	3	3	2	2
CO 3	3	2	2	-	3	-	-	-	-	2	-	2	3	2	1
CO 4	3	2	2	-	3	-	-	-	-	2	-	2	2	2	1
CO 5	3	2	2	-	3	-	-	-	-	2	-	3	3	1	1
CO 6	3	2	2	-	3	-	-	-	-	2	-	2	2	3	2

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Experiments	-
Assignments	\checkmark				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

	\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
ſ	Х	Assessment of Mini Projects by Experts		

XVIII SYLLABUS:

MODULE-I	INTRODUCTION TO BIG DATA
	Introduction to Big data: Characteristics of Data, Evolution of Big Data, Definition of Big Data, Challenges with Big Data, Traditional Business Intelligence (BI) versus Big Data. Big data analytics: Classification of Analytics, Importance and challenges facing big data, Terminologies Used in Big Data Environments, The Big Data Technology Landscape.
MODULE II	INTRODUCTION TO HADOOP
	Introducing Hadoop, RDBMS versus Hadoop, Distributed Computing Challenges, History and overview of Hadoop, Use Case of Hadoop, Hadoop Distributors, Processing Data with Hadoop, Interacting with Hadoop Ecosystem
MODULE III	THE HADOOP DISTRIBUTED FILESYSTEM
	Hadoop Distributed File System (HDFS): The Design of HDFS, HDFS Concepts, Basic Filesystem Operations, Hadoop Filesystems. The Java Interface- Reading Data from a Hadoop URL, Reading Data Using the Filesystem API, Writing Data. Data Flow- Anatomy of a File Read, Anatomy of a File Write, Limitations.
MODULE IV	UNDERSTANDING MAP REDUCE FUNDAMENTALS
	Map Reduce Framework: Exploring the features of Map Reduce, Working of MapReduce, Exploring Map and Reduce Functions, Techniques to optimize MapReduce jobs, Uses of MapReduce. Controlling MapReduce Execution with Input Format, Reading Data with custom Record Reader, -Reader, Writer, Combiner, Partitioners, MapReduce Phases, Developing simple MapReduce Application.
MODULE V	INTRODUCTION TO PIG AND HIVE
	Introducing Pig: Pig architecture, Benefits, Installing Pig, Properties of Pig, Running Pig, Getting started with Pig Latin, Working with operators in Pig, Working with functions in Pig. Introducing Hive: Getting started with Hive, Hive Services, Data types in Hive, Built-in functions in Hive, Hive DDL.

TEXTBOOKS

- 1. Seema Acharya, Subhashini Chellappan, —Big Data and Analytics, Wiley Publications, 2nd Edition, 2014DT Editorial Services, —Big Data, Dream Tech Press, 2nd Edition, 2015.
- 2. Tom White, —Hadoop: The Definitive Guide, O'Reilly, 3rd Edition, 2012.

3. Black Book Big Data, dreamtech publications, 1st Edition, 2017

REFERENCE BOOKS:

- Michael Minelli, Michele Chambers, Ambiga Dhiraj, —Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Wiley CIO Series, 1st Edition, 2013.
- 2. Rajiv Sabherwal, Irma Becerra- Fernandez, —Business Intelligence –Practice, Technologies and Management, John Wiley, 1st Edition, 2011.
- 3. Arvind Sathi, —Big Data Analytics: Disruptive Technologies for Changing the Game, IBM Corporation, 1st Edition, 2012.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https:// Ims. iare.ac.in /index ? route= course/ details& course id=84
	CONTENT DELIVERY (THEORY)		
1	Define big data and its importance.	CO 1	T1:2.3
2-3	Describe the elements of big data-volume, variety, velocity and veracity	CO 1	T1:2.1, 2.5
4-5	Understand the life cycle of big data	CO 1	T1:2.4
6-7	Define the importance and challenges of big data.	CO 1,	T1:2.5 – 2.6 R2:21.51
8	Understand Traditional Vs Big Data Business Approach	CO 1	T1:2.9
9-10	Classify the Big data analytics - Classification of Analytics	CO 1	T1:3.1 R2:21.51
11	Importance and challenges facing big data,	CO 2	T1:3.7 -3.8
12-14	Explain the terminologies Used in Big Data Environments	CO 2	T1:3.12 R2:21.55
15	Explain the Big Data Technology Landscape with Hadoop ecosystem.	CO 3	T1:4.1 – 4.2 R2:21.58
16	Understand the core components of Hadoop-big data.	CO 3	T2:26.16 R2:21.61

RDBMS versus Hadoop4519Recall the history and overview of HadoopCO 3,COT1:20Demonstrate the real time use case in HadoopCO 4T1:20Demonstrate the real time use case in HadoopCO 4T1:21-22Explain Hadoop Distributors and processing Data with HadoopCO 4,COT1:23Summarize the other components in Hadoop Interacting in Hadoop EcosystemCO 4,COT1:24Explain the Design concepts of HDFSCO 5T1:25Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,COT1:26-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,COT1:28-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,COT1:30-31Explore the features of MapReduce and Map and ReduceCO 4T1:	5.1 - 5.5 21.24 5.5 21.29 5.6 - 5.7 21.31 5.8 21.33 5.9 5.11 21.64 5.10- 5.10- 5.23
Image: second	21.24 :5.5 21.29 5.6 - 5.7 21.31 :5.8 21.33 :5.9 5.11 21.64 5.10- 5
19Recall the history and overview of HadoopCO 3,CO 4T1: R2:220Demonstrate the real time use case in HadoopCO 4 5T1: 521-22Explain Hadoop Distributors and processing Data with HadoopCO 4,CO 5T1: 523Summarize the other components in Hadoop Interacting in Hadoop EcosystemCO 4,CO 6T1: 724Explain the Design concepts of HDFSCO 4,CO 6T1: 82:225Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,CO 6T1: 726-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,CO 6T1: 728-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO 6T1: 730-31Explore the features of MapReduce and Map and ReduceCO 4T1: 7	:5.5 21.29 5.6 - 5.7 21.31 :5.8 21.33 :5.9 5.11 21.64 5.10- 5.10- 5.10- 5.10- 5.10-
20Demonstrate the real time use case in HadoopCO 4T1:20Demonstrate the real time use case in HadoopCO 4T1:21-22Explain Hadoop Distributors and processing Data with HadoopCO 4,COT1:23Summarize the other components in Hadoop Interacting in Hadoop EcosystemCO 4,COT1:24Explain the Design concepts of HDFSCO 5T1:25Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,COT1:26-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,COT1:28-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,COT1:30-31Explore the features of MapReduce and Map and ReduceCO 4T1:	21.29 5.6 - 5.7 21.31 5.8 21.33 5.9 5.11 21.64 5.10- 5.10- 5.10- 5.10-
20Demonstrate the real time use case in HadoopCO 4T1:520Demonstrate the real time use case in HadoopCO 4T1:521-22Explain Hadoop Distributors and processing Data with HadoopCO 4,COT1: R2:223Summarize the other components in Hadoop Interacting in Hadoop EcosystemCO 4,COT1: R2:224Explain the Design concepts of HDFSCO 5T1:: R2:225Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,COT1:: R2:226-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,COT2: G28-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,COT1: CO 4,CO30-31Explore the features of MapReduce and Map and ReduceCO 4T1: CO 4	5.6 – 5.7 21.31 :5.8 21.33 :5.9 5.11 21.64 5.10- 5.10- 5.10-
21-22Explain Hadoop Distributors and processing Data with HadoopCO 4,CO 5T1 R2:223Summarize the other components in Hadoop Interacting in Hadoop EcosystemCO 4,CO 6T1 R2:224Explain the Design concepts of HDFSCO 5 R2:2T1: R2:225Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,CO 6T1: R2:226-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,CO 6T1: R2:228-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO 6T1: R2:230-31Explore the features of MapReduce and Map and ReduceCO 4T1: T1:	5.7 21.31 5.8 21.33 5.9 5.11 21.64 5.10- 5.10- 5.10- 5.10-
21-22Explain Hadoop Distributors and processing Data with HadoopCO 4,CO T1: R2:223Summarize the other components in Hadoop Interacting in Hadoop EcosystemCO 4,CO 6T1: R2:224Explain the Design concepts of HDFSCO 5 R2:2T1: R2:225Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,CO 6T1: R2:226-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,CO 6T1: T2: 	21.31 :5.8 21.33 :5.9 5.11 21.64 5.10- 5.10- 5.10- 5.10-
Hadoop5R2:223Summarize the other components in Hadoop Interacting in Hadoop EcosystemCO 4,CO 6T1: 624Explain the Design concepts of HDFSCO 5T1: R2:225Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,CO 6T1: R2:226-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,CO 6T2 T228-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO 6T1: T230-31Explore the features of MapReduce and Map and ReduceCO 4T1: T2	21.33 :5.9 5.11 21.64 5.10- 5.10- 5.12:3
Hadoop5R2:223Summarize the other components in Hadoop Interacting in Hadoop EcosystemCO 4,CO 6T1: 624Explain the Design concepts of HDFSCO 5T1:: R2:225Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,CO 6T1:: R2:226-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,CO 6T228-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO 6T1:: 7230-31Explore the features of MapReduce and Map and ReduceCO 4T1:	:5.9 5.11 21.64 5.10- 5.10- 5.72:3
Hadoop Ecosystem624Explain the Design concepts of HDFSCO 525Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,CO26-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,CO28-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO30-31Explore the features of MapReduce and Map and ReduceCO 4T1:	5.11 21.64 5.10- 3 T2:3
Hadoop Ecosystem624Explain the Design concepts of HDFSCO 525Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,CO26-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,CO28-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO30-31Explore the features of MapReduce and Map and ReduceCO 4T1:	21.64 5.10- 5 T2:3
25Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,CO 5.13T1:5 5.1326-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,CO 6T2 628-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO 6T1:1 7230-31Explore the features of MapReduce and Map and ReduceCO 4T1:1	21.64 5.10- 5 T2:3
25Find differences between Basic Filesystem Operations and Hadoop Filesystems.CO 4,CO 5.13T1:5 5.1326-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,CO 6T2 628-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO 6T1:1 7230-31Explore the features of MapReduce and Map and ReduceCO 4T1:1	5.10- 5 T2:3
Hadoop Filesystems.65.1326-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,COT228-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,COT1:30-31Explore the features of MapReduce and Map and ReduceCO 4T1:	T2:3
26-27Explain the Java Interface for Reading Data from a Hadoop URL Using the Filesystem APICO 4,CO 6T2 628-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO 6T1:30-31Explore the features of MapReduce and Map and ReduceCO 4T1:	
URL Using the Filesystem API628-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO 6T1:30-31Explore the features of MapReduce and Map and ReduceCO 4T1:	
28-29Explain Writing Data and Data Flow- Anatomy of a File Read, Anatomy of a File Write, LimitationsCO 4,CO 6T1:30-31Explore the features of MapReduce and Map and ReduceCO 4T1:	2:3
Read, Anatomy of a File Write, Limitations6T230-31Explore the features of MapReduce and Map and ReduceCO 4T1:	
30-31 Explore the features of MapReduce and Map and Reduce CO 4 T1:	5.10
	2:3
Functions	8.1-
	T2:8
32 Outline the techniques to optimize MapReduce jobs and uses CO 4, T2:	27.8
	2:7
Format 6	
	8.2 –
	3.3
	8.4 –
	3.8
	L0.1-
	0.6
40-41Summarize Installation process of Pig along with PropertiesCO 4,COT2and getting started with Pig Latin,5	2:11
	L0.7-
	.12
	9.1-
	9.1- F2:12
	9.3-
	9.5-).8
PROBLEM SOLVING/ CASE STUDIES	-
	:7.5
	2:3
	:7.5
and getting started with Pig Latin.	
4 Develop applications by working with operators in Pig, CO 5 R2 Working with functions in Pig.	:7.5

6	Demonstrate Hive Data types, Built-in functions and Hive DDL.	CO 2	T3:4.5
7	Features of Hadoop explain in detail	CO 1	R4:5.2
8	Findingthe differences between Hadoop and Big Data	CO 1	T2:5.2
9	Describe Map Reduce Architecture	CO 3	R2:7.5
10	Challenges of Big data and Business analytics .	CO 1	R2:7.5
11	Features of Hadoop vs SQL	CO 2	R2:7.5
12	Describe Job Tracker and Task Tracker	CO 3	R2:7.5
13	Explain PIG, components of PIG and HIVE	CO 4	R2:7.5
14	Explain word count using pig scripting language	CO 6	R2:7.5
15	Difference between Pig Latin and Apache with example	CO 6	R2:7.5
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	Big data,Business Analytics,Structured data, semi-structured data,Structured data,Challenges of Big data	CO 1	R4:2.1
2	Hadoop, Hadoop Distributed File System, Features of Hadoop Distributed File System, Key Distinctions of Hadoop, Hadoop Components	CO 2	R4:2.1
3	Streaming Access pattern, File System, Comparing FS and HDFS, Hadoop Cluster, HDFS Architecture, Hadoop vs SQL	CO 3	R4:2.1
4	Definitionof map reduce, Map reduce architecture, Job Tracker, Task tracker, map reduce engine work	CO 4	R4:2.1
5	PIG,HIVEandWord count using pig,Pig components and pig tutorial,pig Latin data language,characteristics of Apache	CO 5	R4:2.1
	DISCUSSION OF QUESTION BANK		
1	Module I	CO 1,2	R4:2.1
2	Module II	CO 3	T4:7.3
3	Module III	CO 4	R4:5.1
4	Module IV	CO 5,6	T1:7.5
5	Module V	CO 6	T1: 4.1

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING					
Course Title	SOFTWARE DEVELOPMENT METHODOLOGY					
Course Code	AIT508	AIT508				
Program	B.Tech					
Semester	VII	CSE				
Course Type	Elective	ive				
Regulation	IARE - R16					
		Theory		Practi	cal	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Mr J. Thirupathi, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS008	V	Software Engineering

II COURSE OVERVIEW:

This course concentrates on developing basic understanding about various activities that are involved in a software development. This course enables the student to develop necessary skills for developing a product or applications. The course focuses on all activities involved in software development (communication, planning, modeling, construction, deployment). In this course; students will gain a broad understanding of the discipline of software engineering and its application to the development and management of software systems. Student can implement and get knowledge about development of the software and gains knowledge of basic engineering methods and practices, and their appropriate application.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
SOFTWARE	70 Marks	30 Marks	100
DEVELOPMENT			
METHODOLOGY			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	РРТ	\checkmark	Chalk & Talk	\checkmark	Assignments	х	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
х	Others				<u>.</u>		

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
60 %	Understand
20 %	Apply
20 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	Quiz \AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

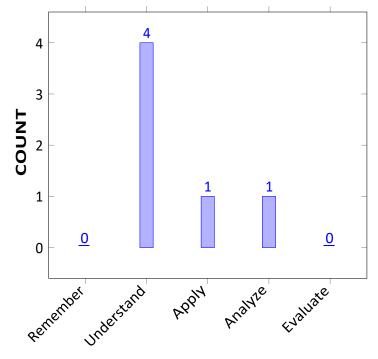
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


	I	Learn how to elicitate requirements and develop software life cycles.
	11	Understand the design considerations for enterprise integration and deployment.
I		Analyze quality assurance techniques and testing methodologies.
I	IV	Prepare a project plan for a software project that includes estimates of size and effort, a schedule, resource allocation, configuration control, and project risk.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Describe process models approaches and techniques for managing	ام مر م + م بر م
CO 1	Describe process models, approaches and techniques for managing a software development process.	Understand
CO 2	Recognize the importance project planning activities that	Understand
	accurately help in selection and initiation of individual projects and	
	of portfolios of projects in the enterprise.	
CO 3	Explain software model and behavior of a software system.	Understand
CO 4	Develop the approaches to verification and validation including	Apply
	static analysis and reviews.	,
CO 5	Demonstrate the concept of risk management through risk	Understand
	identification, risk measurement and mitigation.	
CO 6	Make use of earned value analysis and project metric for	Analyze
	scheduling and improving the quality of software.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes		
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	

PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 10	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	CIE / Quiz / AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIE / Quiz / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	CIE / Quiz / AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3	CIE / Quiz / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyse computer programs in the areas related to Algorithms, System Software, Web design, Bigdata, Artificial Intelligence, Machine Learning and Networking.	3	CIE / Quiz / AAT
PSO 2	Focus on improving software reliability, network security and information retrieval systems.	2	CIE / Quiz / AAT
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	CIE / Quiz / AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	РО	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	<	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	<	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 3	>	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	<	\checkmark	<	-	-	-	-	-	-	\checkmark	-		\checkmark	-	-
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 6	\checkmark	\checkmark	-	1	-	-	-	-	-	\checkmark	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Explain the evolution of software and its characteristics and challenges by applying computer science methodologies	1
CO 2	PO 1	Compare process models, approaches and techniques to manage a given software development process by using the mathematical principles and computer science methodologies.	3
	PSO 1	Understand the differences between analysis and analytics in the areas related to Algorithms, Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
CO 3	PO 1	Understand the concept of Earned Value Analysis (EVA) to measure the projects progress at any given point in time by applying mathematical principles and computer science methodologies	2

	PO 2	Understand the key issues in problems identification and formulation, data collection, model translation, validation, interpretation of results and documentation in optimizing business decisions.	6
	PO 3	Classify the key issues in terms of defining various problems, customer and user needs, cost effective and creative solutions, design process, economic context and management techniques.	7
CO 4	PO 1	Explain the concept of data dictionary process and querying the software by applying mathematical principles and computer science methodologies	2
	PO 2	Understand the problem and develop solutions using different data technologies and document the results for interpretation	4
	PO 3	Identify the appropriate technology like black box testing and white box testing. suitable for various problems, by understanding customer and user needs, with cost effective and creative solutions by managing the design process, knowledge on economic context, management techniques.	7
	PO 10	Communicate effectively in orally and written by comprehend and write effective reports and design documentation with the	5
	PO 12	Recognize the need for advanced concepts testing technologies for developing applications through continuing education efforts with ongoing learning – stays up with industry trends/ new technology and continued personal development in the broadest context of technological change.	5
	PSO 1	Explain the technologies used to process and querying the data in the areas related to Algorithms, Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
CO 5	PO 1	Select appropriate process modelcomponent for finding model the structure and behavior of a software system. using computer science methodologies .	1
	PO 2	Make use of Hadoop components on huge volume of information and data collected from various sources and perform model translation and validation	3
	PO 4	Make use of Hadoop components for developing applications based on technical literature and quality issues. Identify, classify and describe the performance of systems through analytical methods and techniques.	3

	PO 10	Communicate in written and orally by comprehending and writing effective reports and design documentation and presentations on Hadoop components for developing applications with the engineering community by having major focus on clarity on content, Grammar/Punctuation with appropriate References, good Speaking style and depth in subject matter.	5
	PSO 1	Make use of Hadoop components on huge volume data used to develop analytical solutions related to Bigdata, Artificial Intelligence, Machine Learning and Networking.	4
CO 6	PO 1	Translate the data from traditional file system to HDFS for analyzing big data in Hadoop ecosystem using the mathematical principles and computer science methodologies	2
	PO 2	Translation of data structure from traditional to HDFS includes volume of information and data, file structure translation methods, validation and solution development with proper documentation.	6
	PO 10	Communicate in written form by comprehending and writing effective reports and design documentation on HDFS file system applications with the engineering community by having major focus on clarity on content, Grammar/Punctuation with appropriate References, good Speaking style and depth in subject matter.	5

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

		PROGRAM OUTCOMES											PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	1	-	-	-	-	-	-	-	-	-	-		-	-	-	
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	4	-	-	
CO 2	6	7	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	2	4	7	-	1	-	-	-	-	-	5	-	-	4	-	
CO 5	1	3	3	-	-	-	-	-	-	5	-	-	-	-	-	
CO 6	2	6	-	-	-	-	-	-	-	3	-		-	-	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	33.3	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	66.7	-	1	I	I	-	I	-	-	-	I	-	66.7	-	-

CO 3	66.7	60.0	70.0	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	66.7	40.0	70.0	-	-	-	-	-	-	100	-	60.0	66.7	-	-
CO 5	33.3	30.0	30.0	-	-	-	-	-	-	100	-	-	-	-	-
CO 6	66.7	60.0	-	-	-	-	-	-	-	60.0	-		66.7	-	-

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** $0 \le C \le 5\%$ No correlation
- **2** 40 % <C < 60% –Moderate
- **1-5** <C≤ 40% Low/ Slight
- **3** 60% \leq C < 100% Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	3	-	-	-	-	-	-	3	-		-	-	-
CO 5	1	1	1	-	-	-	-	-	-	3	-	-	-	-	-
CO 6	3	3	-	-	-	-	-	I	-	3	-		-	-	-
TOTAL	23	18	16	11	9	-	-	-	-	3	-	-	1.5	1.5	1.5
AVERAGE	2.5	2.5	2.6	2.7	3.0	-	-	I	-	2.6	I	3	30	2.5	3.0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	\checkmark	Open Ended Experiments	-
Assignments	\checkmark				

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback			
Х	Assessment of Mini Projects by Experts					

XVIII SYLLABUS:

MODULE I	INTRODUCTION, A GENERIC VIEW OF PROCESS AND PROCESS MODELS
	Introduction to software engineering: The evolving role of software, changing nature of software, legacy software, software myths; A generic view of process: Software engineering, a layered technology, a process framework, the capability maturity model integration (CMMI), process patterns, process assessment, personal and team process models, process models: the waterfall model, incremental process models, the unified process.
MODULE II	SOFTWARE REQUIREMENTS AND REQUIREMENTS ENGINEERING PROCESS
	Software requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document; Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.
MODULE III	DESIGN ENGINEERING, CREATING AN ARCHITECTURAL DESIGN AND MODELING COMPONENT-LEVEL DESIGN
	Design engineering: Design process and design quality, design concepts, the design model, pattern based software design. Creating an architectural design: Software architecture, data design, architectural styles and patterns, architectural design, assessing alternative architectural designs, mapping data flow into software architecture.
MODULE IV	TESTING STRATEGIES AND PRODUCT METRICS
	Testing strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging; Product metrics: Software quality, frame work for product metrics, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance.
MODULE V	RISK MANAGEMENT AND QUALITY MANAGEMENT
	Risk management: Reactive vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM(Risk Mitigation, Monitoring and Management), RMMM plan; Quality Management: Quality concepts, software quality assurance, software Reviews, formal technical reviews, statistical software quality assurance, software reliability, The ISO 9000 quality standards.

TEXTBOOKS

- 1. Roger S. Pressman, "Software Engineering A Practitioner's Approach", McGraw-Hill International Edition, 6th Edition, 2005.
- 2. Ian Somerville, "Software Engineering", Pearson Education Asia, 7th Edition, 2004.

REFERENCE BOOKS:

1. Waman S Jawadekar , —Software Engineering : A Primer , Tata McGraw-Hill, 1st Edition, 2008.

- 2. Rajib Mall, "Fundamentals of Software Engineering", PHI Learning Private Limited, 3rd Edition, 2009.
- 3. Pankaj Jalote, "Software Engineering, A Precise Approach", Wiley India, 1st Edition, 2010.

WEB REFERENCES:

- 1. http://www.umsl.edu/ sauterv/analysis/Fall2013Papers/Buric/-5-references.html
- 2. https://toggl.com/developer-methods-infographic
- 3. https://www.w3.org/2001/sw/BestPractices/SE/

COURSE WEB PAGE:

1. Ims.iare.ac.in

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference			
	OBE DISCUSSION					
1	Institutions adopting OBE try to bring changes to the curriculum by dynamically adapting to the requirements of the different stakeholders like Students, Parents, Industry Personnel and Recruiters. OBE is all about feedback and outcomes. In this we will discuss about the course outcomes and program outcomes and their attainment					
	CONTENT DELIVERY (THEORY)	Γ	I			
1-2	Introduction to Software Engineering	CO1	T2: 1.1-1.3			
2-5	A generic view of process	CO2	T1: 2.2-2.3			
6-9	Capability maturity model integration (CMMI)	CO4	T1: 2.1,2-3-2.6			
11-12	Process models	CO3	R2: 3.4-3.9			
11-12	Software requirements	CO5	R2: 4.1-4.3			
12-13	Requirements engineering process	CO5	T1: 27.1			
14	Design engineering	CO5	T1: 28.1			
15-17	Creating an architectural design	CO4	T2: 4.1-4.3			
18-19	Testing strategies	CO6, 5	T1: 4.4-4.7			
20-21	Black-box and White-box testing	CO2	R1: 1.1-1.4			
22-24	Risk management	CO2	T1 8.1-8.4			
25-28	Software risks	CO3, CO1	T1:9.1, 9.3,9.4,9.6			
29-33	RMMM(Risk Mitigation, Monitoring and Management)	CO4	T1:11.3-11.4			
34-37	RMMM plan	CO3	T1:10.2, 10.5			
38-44	Quality Management	CO2	T1:17.3,17.6- 17.8			
45-47	Quality concepts	CO1	T1:10.1-1.3			

48-51	Softwara quality accurance	CO1	T1: 26.2,
40-51	Software quality assurance	COI	26.6.4,
52-55	Statistical software quality assurance	CO1,	T1:26.1-26.3
		2	28.1- 28.7
56-59	Software reliability	CO3,	T1:27.1-27.6
		4	
60-62	The ISO 9000 quality standards	CO2	T1:25.1-25.6
	CASE STUDIES		
1	Develop a set of actions for the communication activity. Select one action and define a task set for it.	CO 6	T1:11.2.1
2	Developing software in which quality is "good enough"	CO 6	T1:11.2.2
3	Explain why systems developed as prototypes should not normally be used as production systems.	CO 6	T1:11.2.18
4	Software myth	CO 6	T1:11.2.25
5	layered technology of software engineering.	CO 6	T1:11.4.1
6	Software myth.	CO 6	T1:11.4.2
7	Evolutionary process models	CO 6	R2:7.5
8	Spiral model	CO 6	R2:7.5
4	concurrent development model (or) concurrent engineering model.	CO 6	R2:7.5
10	layers of software engineering.	CO 6	R2:7.5
11	COCOMO model.	CO 6	T1:11.4.1
12	component level design and deployment level design elements.	CO 6	T1:11.4.2
13	software architecture	CO 6	T1:11.5.1
14	system representation in architectural context	CO 6	T1:11.5.2
15	Coupling and Cohesion in designing class based components. s	CO 6	T2:7.5
	DISCUSSION OF DEFINITION AND TERMI	NOLOG	6Y
1	Definations of Software Process and Poject Management	CO 1	R1:2.1-2.11
2	Definations of Requirement Analysis and Specification	CO 2,	R1:4.2-4.11
		3	
3	Definations of Software Design	CO 4	R2:5.6-5.9
4	Definations of Testing and Implementation	CO 5	R4:8.1-8.9
5	Definations of Project Management	CO 6	R2:12.1-12.16
	DISCUSSION OF QUESTION BANK		
1	A generic view of process and Process models	CO 1,	R1:2.1-2.11
2	Software requirements and Requirements engineering process	CO 2, 3	R1:4.2-4.11
3	Design engineering, Creating an architectural design and Modelling component-level design	CO 4	R2:5.6-5.9
4	Testing Strategies and Product metrics	CO 5	R4:8.1-8.9

Signature of Course Coordinator Mr J. Thirupathi, Assistant Professor

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMP	COMPUTER SCIENCE AND ENGINEERING				
Course Title	CLOUD APPLICATION DEVELOPMENT					
Course Code	ACS011	ACS011				
Program	B.Tech					
Semester	VII					
Course Type	CORE					
Regulation	R-16					
		Theory		Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Mr. R M Noorullah , Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACS007	IV	Operating Systems
B.Tech	ACS005	IV	Database Management Systems
B.Tech	AIT003	IV	Computer Networks

II COURSE OVERVIEW:

This Course emphasizes on transformation of the IT industry with high elastic scalability (EC) in the delivery of enterprise applications and capabilities across the various cloud service models. This course covers the concepts of cloud infrastructures, cloud service providers, virtualization, software-defined networks and cloud storage, cloud resource scheduling and management, programming models, and cloud security.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Cloud Application	70 Marks	30 Marks	100
Development			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	White board	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20%	Remember
40 %	Understand
25%	Apply
15 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE), 05 marks for quiz and 05 marks for alternative assessment tool(AAT).

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Quiz AAT	100al Marks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams. **Quiz - Online Examination**

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

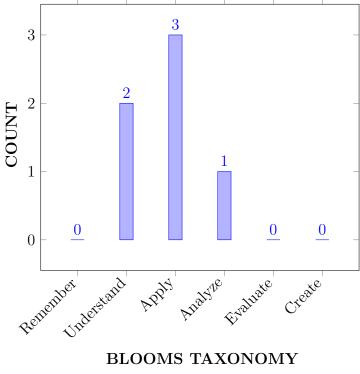
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The fundamental concepts of various services deployed with cloud models for solving current and future challenges.
II	The principles in data centre design and services provided with virtualization techniques.
III	The scaling and load balancing solutions for developing business models with appropriate cloud infrastructure, services and programming models.

VII **COURSE OUTCOMES:**

After successful completion of the course, students should be able to:

CO 1	Choose appropriate CSP based on user demanded services among	Apply
	AWS, GCP, MS Azure, and Apache Cloud Stack.	
CO 2	Identify the cloud architecture style and infrastructure in providing	Apply
	services with high elastic scalability as per user requirement.	
CO 3	Summarize Virtual Machine concepts for running different	Understand
	applications on different operating systems concurrently.	
CO 4	Make use of resource scheduling and management methods for	Apply
	finding the best match of combined resources as per user requirement.	
CO 5	Outline system security issues and vulnerabilities for reducing	Understand
	system-specific attacks under a virtualization environment.	
CO 6	Inspect various cloud services, programming models for developing a	Analyze
	business model according to customer requirements.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIA/SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	CIA/SEE
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	CIA/SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations	3	CIA/SEE
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	Tech Talk/Concept Videos/Open ended Experiments
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1	Tech Talk/Concept Videos/Open ended Experiments

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	CIA/SEE
PSO 2	Focus on improving software reliability, network security and information retrieval systems.	3	CIA/SEE
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	2	CIA/SEE

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	-	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-
CO 4	\checkmark	\checkmark	\checkmark	-		-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-
CO 6	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Apply scientific principles and methodologies, other engineering disciplines in selection of best cloud service provider based on customer requirements.	2
	PO 2	Problem Analysis in selection of best cloud service provider based on customer requirements	7
	PO 10	Subject matter and speaking style assessed in explanation of selecting best cloud service provider based on customer requirements	2
	PO 12	Keeping current in CSE and advanced engineering concepts in selecting best cloud service provider based on customer requirements	1
	PSO 3	Make use of modern computer tools for selecting best cloud service provider based on customer requirements	1
CO 2	PO 1	Apply scientific principles and methodologies, other engineering disciplines to select infrastructures and architectural styles of the system as per cloud user and organizational requirements.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Problem Analysis in selecting infrastructures and architectural styles of the system as per cloud user and organizational requirements.	9
	PO 3	Design solutions for architectural styles and infrastructure for providing services with high elastic scalability as per user requirement.	8
	PO 10	Subject matter and speaking style assessed in selecting infrastructures and architectural styles of the system as per cloud user and organizational requirements.	2
	PO 12	Keeping current in CSE and advanced engineering concepts in selecting infrastructures and architectural styles of the system as per cloud user and organizational requirements by tech talk, concept videos and open ended experiments.	1
	PSO 2	Focus on improving Network Security and IRS in selecting infrastructures and architectural styles of the system as per cloud user and organizational requirements.	2
	PSO 3	Make use of modern computer tools in selecting infrastructures and architectural styles of the system as per cloud user and organizational requirements.	1
CO 3	PO 1	Understand scientific principles and methodologies, other engineering disciplines in developing virtual machines to run different applications on different OSs.	2
	PO 2	Problem Analysis in developing virtual machines to run different applications on different OSs.	5
	PO 3	Design solutions for development of virtual machines to run different applications on different operating systems concurrently.	8
	PO 10	Subject matter and speaking style assessed in developing virtual machines to run different applications on different OSs.	2
	PO 12	Keeping current in CSE and advanced engineering concepts of advanced topics on virtual machines by tech talk, concept videos and open ended experiments.	1
	PSO 2	Focus on improving Network Security and IRS in developing virtual machines to run different applications on different OSs.	2
CO 4	PO 1	Apply scientific principles and methodology, mathematical principles and, other engineering disciplines on different types of resource scheduling algorithms for efficient utilization of pool of resources.	3
	PO 2	Problem Analysis in selecting different types of resource scheduling algorithms for efficient utilization of pool of resources.	8
	PO 3	PO 3 Design solutions for resource scheduling and management methods to find the best match of combined resources as per user requirement.	8

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Subject matter and speaking style assessed in explanation of resource scheduling algorithms for efficient utilization of pool of resources.	2
	PO 12	Keeping current in CSE and advanced engineering concepts of advanced topics on efficient utilization of pool of resources by tech talk, concept videos and open ended experiments	1
	PSO 1	Understand, Design and Analyze Computer Programs used in resource scheduling for efficient utilization of pool of resources.	6
	PSO 2	Focus on improving Network Security and in selecting different types of resource scheduling for efficient utilization of pool of resources.	1
	PSO 3	Make use of modern computer tools in selecting different types of resource scheduling algorithms for efficient utilization of pool of resources.	1
CO 5	PO 1	Understand scientific principles and methodologies, other engineering disciplines to handle security and vulnerabilities for reducing system-specific attacks.	2
	PO 10	Subject matter and speaking style assessed in explanation of security and vulnerabilities in virtualization environment	2
	PO 12	Keeping current in CSE and advanced engineering concepts of advanced topics on security and vulnerabilities by tech talk, concept videos and open ended experiments	1
	PSO 2	Focus on improving Network Security and IRS in handling security and vulnerabilities for reducing system-specific attacks.	1
CO 6	PO 1	Analyze scientific principles and methodology, mathematical principles and, other engineering disciplines to use various cloud services and programming models to develop business model based on customer requirements	3
	PO 2	Problem Analysis in various cloud services and programming models to develop business model based on customer requirements	10
	PO 3	Design solutions for various cloud services and programming models by Defining and understanding cloud user and organizational requirements, identifying various cloud infrastructure and services, managing design process and evaluate the outcomes.	9
	PO 5	Usage of Cloud Management tool for modeling simple to complex engineering activities with understanding cloud user requirements and limitations.	1
	PO 10	Subject matter and speaking style assessed in explanation of various cloud services and programming models to develop business model based on customer requirements	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 12	Keeping current in CSE and advanced engineering concepts of advanced topics on various cloud services and programming models by tech talk, concept videos and open ended experiments	4
	PSO 1	Understand, Design and Analyze Computer Programs used in various cloud services and programming models to develop business model based on customer requirements	6
	PSO 2	Focus on improving Network Security and IRS in various cloud services and programming models to develop business model based on customer requirements	2
	PSO 3	Make use of modern computer tools for various cloud services and programming models to develop business model based on customer requirements	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	7	-	-	-	-	-	-	-	2	-	1	-	-	1
CO 2	2	9	8	-	-	-	-	-	-	2	-	1	-	2	1
CO 3	2	5	4	-	-	-	-	-	-	2	-	1	-	2	-
CO 4	3	8	5	-		-	-	-	-	2	-	1	6	1	1
CO 5	2	-	-	-	-	-	-	-	-	2	-	1	-	1	-
CO 6	3	10	9	-	1	-	-	-	-	2	-	1	6	2	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	РО	PO	РО	PO	PO	PO	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.6	70.0	-	-	-	-	-	-	-	40.0	-	12.5	-		50.0
CO 2	66.6	90.0	80.0	-	-	-	-	-	-	40.0	-	12.5	-	100	50.0
CO 3	66.6	50.0	40.0	-	-	-	-	-	-	40.0	-	12.5	-	100	-
CO 4	100	80.0	50.0	-	-	-	-	-	-	40.0	-	12.5	100	50.0	50.0
CO 5	66.6	-	-	-	-	-	-	-	-	40.0	-	12.5	-	50.0	-
CO 6	100	100	90.0	-	100	-	-	-	-	40.0	-	12.5	100	100	50

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight

 $\pmb{\mathcal{2}}$ - 40 % < C < 60% – Moderate

 $3 - 60\% \le C < 100\%$ – Substantial /High

	PROGRAM OUTCOMES								PSO'S						
COURSE	РО	PO	РО	РО	PO	РО	PO	РО	РО	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	-	-	-	-	-	-	-	2	-	1	-	-	2
CO 2	3	3	3	-	-	-	-	-	-	2	-	1	-	3	2
CO 3	3	2	2	-	-	-	-	-	-	2	-	1	-	3	-
CO 4	3	3	2	-	-	-	-	-	-	2		1	3	2	2
CO 5	3	-	-	-	-	-	-	-	-	2	-	1	-	2	-
CO 6	3	3	3	-	3	-	-	-	-	2	-	1	3	3	2
TOTAL	18	14	10	-	3	-	-	-	-	12	-	6	6	15	8
AVERAGE	3.0	2.8	2.5	-	3.0	-	-	-	-	2.0	-	1	3	2.6	2

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	_	Student Viva	-	Certification	-
Term Paper	_	5 Minutes Video	\checkmark	Open Ended Experiments	-
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts	 ✓ 	End Semester OBE Feedback
--	-----------------------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION AND CLOUD APPLICATION DEVELOPMENT
	Introduction: Definition, Characteristics, Benefits, challenges of cloud computing, cloud models: IaaS (infrastructure as service),PaaS(platform as a service),SaaS(software as a service), deployment models-public, private, hybrid, community; Types of cloud computing: Grid computing utility computing, cluster; computing Cloud services: Amazon, Google, Azure, online services, open source private clouds, SLA; Applications of cloud computing: Healthcare, energy systems, transportation, manufacturing, education, government, mobile communication, application development.

	CLOUD ADCHUTECTUDE DDOCDAMMING MODDI
MODULE II	CLOUD ARCHITECTURE, PROGRAMMING MODEL
	Cloud Architecture, programming model: NIST reference architecture, architectural styles of cloud applications, single, multi, hybrid cloud site, redundant, non redundant, 3 tier, multi tier architectures; Programming model: Compute and data intensive; Compute intensive model: Parallel computation, BSP, workflows, coordination of multiple activities - zoo keeper; Data intensive model.
MODULE III	CLOUD RESOURCE VIRTUALIZATION
	Cloud resource virtualization: Basics of virtualization, types of virtualization techniques, merits and demerits of virtualization. Full vs Para - virtualization, virtual machine monitor/hypervisor - virtual machine basics, taxonomy of virtual machines, process vs system virtual machines. Emulation: Interpretation and binary translation, HLL, virtual machines, storage, desktop and application virtualization, applying virtualization.
MODULE IV	CLOUD RESOURCE MANAGEMENT AND SCHEDULING
	Cloud Resource Management and Scheduling: Policies and mechanisms for resource management, resource bundling, combinatorial, fair queuing, start time fair queuing, borrowed virtual time, cloud scheduling subject to deadlines, scheduling map reduce applications subject to deadlines, resource management and application scaling.
MODULE V	CLOUD SECURITY
	Cloud Security: Risks, privacy and privacy impacts assessments; Multi-tenancy issues, security in VM, OS, virtualization system security issues and vulnerabilities; Virtualization system-specific attacks: Technologies for virtualization-based security enhancement, legal. Compliance issues: Responsibility, ownership of data, right to penetration test, local law where data is held, examination of modern security standards (eg: PCIDSS), how standards deal with cloud services and virtualization, compliance for the cloud provider vs compliance for the customer.

TEXTBOOKS

- 1. Dan Marinescu, Cloud Computing: Theory and Practice $\|,$ M K Publishers, 1st Edition, 2013
- 2. Kai Hwang, Jack Dongarra, Geoffrey Fox, Distributed and Cloud Computing, From Parallel Processing to the Internet of Things^{||}, M K Publishers, 1st Edition, 2011.

REFERENCE BOOKS:

- 1. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing: A Practical Approach ||, McGraw Hill, 1st Edition, 2009.
- 2. Arshdeep Bahga, —Cloud Computing: A Hands on Approach ||, Vijay Madisetti Universities Publications, 1st Edition, 2013.

WEB REFERENCES:

- 1. https://www.oracle.com/in/cloud/application-development
- 2. http://computingcareers.acm.org/?page_id=12
- 3. http://en.wikibooks.org/wiki/cloud application

COURSE WEB PAGE:

https://www.iare.ac.in/?q=courses/computer-science-and-engineering-autonomous/cloud-application-development

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1					
	OBE DISCUSSION							
1	Course Overview, Objectives , Course Outcomes an	d POs/PSO	s					
	CONTENT DELIVERY (THEORY)							
2-3	Cloud Computing definition, characteristics, benefits, challenges	CO 1, CO 6	T1: 1.1, 1.2					
4-5	Cloud computing models and its deployment models	CO 1, CO 6	T1: 1.2					
6-7	Types of cloud computing techniques	CO 1, CO 6	T1: 1.2					
8-9	Different types of cloud services and Cloud Service Providers	CO 1, CO 6	T1: 1.3					
10-11	Various applications of cloud computing	CO 1, CO 6	T1: 3.6					
12-13	Cloud architecture concepts and selection criteria	CO 2, CO 6	T1: 1.1					
14-15	NIST reference architecture and various architectural styles of cloud applications	CO 2, CO 6	T1: 1.1, 3.8					
16	Programming model and Compute intensive model	CO 2, CO 6	T1: 4.2,4.3					
17-18	Virtualization and types of virtualization techniques	CO 3	R2: 4.7					
19-20	Merits and demerits of virtualization ; Full vs Para-virtualization	CO 3	T1: 4.9					
21-22	Virtual machine monitor/hypervisor and its types	CO 3	T1: 4.9					
23-24	Cloud resource management and scheduling	CO 4	T1: 6.1					
25-26	Various policies and mechanisms for resource management, resource bundling, combinatorial	CO 4	T1: 6.1					
27-28	Fair queuing, start time fair queuing, borrowed virtual time	CO 4	T1: 6.9, 6.10, 6.11					
29-30	Map reduce applications subject to deadlines	CO 4	T1: 6.13					
31-32	Resource management and application scaling.	CO 4	R1: 6.14					
33-34	Cloud Security: Risks, privacy	CO 5	T1:9					
35-36	Privacy impacts assessments; Multi-tenancy issues	CO 5	T1: 9.5					
37-38	Security in VM, OS	CO 5	R2: 9.6					
39-40	Virtualization system security issues	CO 5	T1: 9.1					
41-42	Virtualization system security vulnerabilities	CO 5	T1: 9.1					
43-44	Virtualization system-specific attacks: Technologies for virtualization-based security enhancement legal	CO 5	R1: 9.9					

	PROBLEM SOLVING/ CASE STUDIES	5	
1	Cloud computing delivery models with security and the reliability of each model.	CO 1, CO 2	T1:3.6
	Peer-to-peer systems and clouds the in terms of architecture, resource management, scope, and security		
2	Is cloud elasticity based on over provisioning sustainable? Give arguments to support.	CO 1, CO 2	T1:3.6
	Debating whether to install a private cloud or to use a public cloud (e.g., the AWS) for its computational and storage needs for an organization.		
3	Mobile devices could benefit from cloud computing; explain the reasons.	CO 1, CO 2	T1:3.6
4	Tips for managing multi-cloud environment with real time example.	CO 2, CO 6	T1:4.3
	Deploying a multi-tenant application across multiple cloud platforms.		
5	Usage of apache zookeeper to build distributed apps and describe how Zookeeper works.	CO 2, CO 6	T1:4.3
	Case study on Hadoop distributed file system used in cloud Computing.		
	Solving redundancy problems using different architectural styles		
6	Create a Map Reduce Application model by using data intensive model.	CO 2, CO 6	T1:4.3
	Compare the latest Top 500 list with the Top 500 Green List of HPC systems based on publicly reported data.		
7	Discuss Virtualization Middleware for Scientific Cloud Computing in Open Source Offerings.	CO 3	T1:4.9, R2:4.7
	Identify a hybrid cloud allows a company to maintain critical, confidential data and money on the new resources.		
	Design a large-scale virtual cluster system		
8	VMs practically share all resources of the virtual infrastructure including virtual switch. Using Virtualization analyze memory virtualization, processor virtualization, and virtualization of a communication channel. Analyze the results of the performance comparison by using virtual machines.	CO 3	T1:4.9, R2:4.7
9	Virtualization of the processor combined with virtual Memory management poses multiple challenges.	CO 3	T1:4.9, R2:4.7
	Describe the approaches used to exchange data among the domains of Xen and design experiments to compare the performance of data communication between the domains.		
10	Implementation of resource management policies: control theory, machine learning, utility-based, and market-oriented.	CO 4	T1:6.1, R1:6.14
	Optimal strategies for one could be in conflict with optimal strategies for one or more of the other classes.		

11	Relationship between the scale of a system and the policies and the mechanisms for resource management.	CO 4	T1:6.1, R1:6.14
	Workflow of cloud application use XML to describe this workflow, including the instances and the storage required for each task.		
12	Set up Hadoop-YARN cluster with ports to start each worker.	CO 4	T1:6.1, R1:6.14
	Itanium architecture , and identify several possible reasons.		
13	Identify the main security threats for the SaaS cloud delivery model on a Public cloud.	CO 5	T1:9.1, R1:9.9
	Analyze Amazon's privacy policies and design a service-level agreement.		
	Cloud service to analyze images and sign them before being listed and made available to the general public.		
14	Analyze the implications of the two-level security model of commodity operating systems.	CO 5	T1:9.1, R1:9.9
	Virtualization security on public, private, and hybrid clouds. Security risk posed by XenStore?		
15	Six attack surfaces are illustrated cloud delivery models.	CO 5	T1:9.1,
10	Impact of international agreements regarding privacy laws on cloud computing.		R1:9.9
	Security and functionality in a hypervisor" and discuss the performance of the system.		
	Virtual machine security and its application with an real time example by considering any one cloud service provider.		
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	-1
1	Definition, characteristics, benefits, challenges of cloud computing, cloud models, deployment models, types of cloud computing, cloud service provider, applications of cloud computing.	CO 1, CO 6	T1:3.6
2	Cloud architecture, architectural styles, programming models.	CO 2, CO 6	T1:4.3
3	Basics of virtualization, types of virtualization techniques, merits and demerits of virtualization, virtual machine basics, taxonomy of virtual machines, process vs system virtual machines.	CO 3	T1:4.9, R1:4.7
4	Policies and mechanisms for resource management, resource bundling, combinatorial, fair queuing, start time fair queuing, borrowed virtual time.	CO 4	T1:6.1, R1:6.14
5	Multi-tenancy issues, security in VM, OS, virtualization system security issues and vulnerabilities, technologies for virtualization.	CO 5	T1:9.1, R1:9.9
	DISCUSSION OF QUESTION BANK		
1	Challenges of cloud computing ,Cloud services and Applications of cloud computing	CO 1, CO 6	R4:2.1
2	Cloud Architecture and programming model	CO 2, CO 6	T4:7.3

3	Cloud resource virtualization	CO 3	R4:5.1
4	Cloud Resource Management and Scheduling	CO 4	T1:7.5
5	Cloud Security	CO 5	T1: 4.1

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	СОМР	COMPUTER SCIENCE AND ENGINEERING					
Course Title	ENERG	ENERGY FROM WASTE					
Course Code	AEE551						
Program	B.Tech						
Semester	VII	VII					
Course Type	Open Elective						
Regulation	IARE R-16						
	Theory Practical						
Course Structure	Lecture Tutorials Credits Laboratory Credits						
3 - 3							
Course Coordinator	Mr. Ch.Balakrishna, Assistant Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHS005	I	Engineering Chemistry
B.Tech	AHS009	П	Environmental Studies

II COURSE OVERVIEW:

The course is designed to create environmental awareness and consciousness among the present generation to become environmental responsible citizens. The course will discuss on the municipal solid waste composition, characteristics and to improve the methods to minimize municipal solid waste generation. This course deals with methods of disposal of solid waste by thermal biochemical processes and production of energy from different types of waste sand to know the environmental impacts of all types of municipal waste. This course will discuss the overall scenario of E-Waste management in India in comparison with other countries around the globe. This course will deals with E-waste legislation and government regulations on E-waste management.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Energy From Waste	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	РРТ		Chalk & Talk		Assignments	х	MOOC
\checkmark				\checkmark			
x	Open Ended Experiments	х	Seminars	х	Mini Project		Videos
х	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20%	Remember
60%	Understand
20%	Apply
0%	Analyze
0%	Evaluate

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam		
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

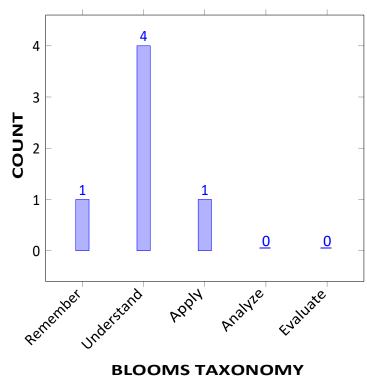
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Open Ended Experiment
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	The principles of solid waste management in reducing and eliminating dangerous impacts of waste materials on human health and the environment to contribute economic development and superior quality of life.
II	The insight of the design and operations of a municipal solid waste landfill by collection, transfer and transportation of municipal solid waste for the final disposal.
111	The main operational challenges in operating thermal and biochemical energy from waste facilities and device processes involved in recovering energy from wastes.
IV	The scenario of E-Waste management in India and other countries around the globe and assess the impact of electronic waste on human, environment and society by informal recycling and management. The sustainable solution of E-Waste Management can be achieved by adopting modern techniques and Life-Cycle Analysis approach.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Identify the different sources, types of solid waste by the properties of municipal solid waste for segregation and collection of waste.	Remember
CO 2	Understand the Composition, characteristics of leachate and preliminary design considerations of landfill to control the emission of gases and monitoring the movement of landfill leachate.	Understand
CO 3	Outline the Biochemical conversion of biomass for energy generation by anaerobic digestion of solid waste.	Understand
CO 4	Illustrate the thermo-chemical conversion of solid waste by using Gasification and pyrolysisprocess for energy generation.	Understand
CO 5	Identify the need to stringent health safeguards and environmental protection laws of India for the effective disposal of E-waste.	Apply
CO 6	Interpret the global scenario of environmental concerns and health hazards by the generation of E- waste.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	Program Outcomes
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/SEE/AAT
PO 3	Design/development of solutions: : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1	CIE/SEE/AAT
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	1	CIE/SEE/AAT
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	3	CIE/Quiz/AAT

PO 12	Life-long learning: Recognize the need for	1	CIE/SEE/AAT
	and having the preparation and ability to		
	engage in independent and life-long learning in		
	the broadest context of technological change.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 2	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	3	CIE/SEE/AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES											PSO'S			
COURSE	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-		-	-	-
CO 2	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	-	-	-	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-
CO 4	\checkmark	-	\checkmark	-	-	-	\checkmark	-	-	-	-		-	-	-
CO 5	-	-	-	-	-	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	-
CO 6	-	-	-	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.			
CO 1	CO 1 PO 1 Apply the Scientific principles for energy generation by applying different technologies from waste management plants.					
	PO 3	Identify the constraints including environmental health and safety and risk assessment issues of different methods of disposal of municipal solid waste by aerobic composting to promote sustainable development.	2			
	PO 6	Apply the knowledge of management techniques by understanding the requirement for engineering activities of municipal solid waste for the sustainable development .	3			
	PO 7	Interpret the discarding of solid waste and their impact on socio economic, environment is considered and energy generation activities by aerobic composting of waste.	2			

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 2	PO 3	Identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues for environmental monitoring system of land fill gases and composition of leachate and Understanding commercial and economic context of managing the land fill site	2
	PO 6	Understand the characteristics, generation and movement of leachate in landfills by the management techniques which uses for controlling the emission of gases in landfills to promote sustainable development	2
CO 3	PO 1	Explain the Scientific principles for Energy generation from waste bio-chemical conversion and to integrate / support the engineering disciplines	2
	PO 6	Apply the knowledge in planning and operations of waste to Energy plants for sustainable development by following legal legislation related to solid waste management for high level of professional and ethical values.	3
	PO 7	Identify the sources of energy generation by anaerobic digestion of sewage and municipal waste for socio economic solutions and direct combustion of municipal solid waste for environmental solutions.	2
	PSO 2	Identify the Energy generation processes from waste by bio-chemical conversion and help in Sustainable development and Safety of the public life.	2
CO 4	PO 1	Illustrate the methods of pyrolysis process by understanding Scientific principles and methodology and apply to integrate / support study of their own engineering discipline for solving environmental problems	2
	PO 3	Interpret thermo-chemical conversion sources of energy generation, gasification of waste and identify constraints including environmental and sustainability limitations	2
	PO 7	Understand the environmental benefits by using thermo-chemical process will decrease the emission of harmful gases and will attain Environmental sustainability.	1
CO 5	PO 6	Define the global scenario of environmental concerns by the increase in the generation of E-waste worldwide causing the personnel , health , safety , and risk (including environmental risk) issues and the problem can solved by imposing strong legal regulation for disposing of E-waste and help in sustainable development	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 12	List out the health hazards by the generation of E- waste and their impact on environment will be solved by the proper management and formal disposal of E-waste and this can be achieved by long term learning process in Professional certifications, advanced degree for developing advanced technologies in recycling of E-waste.	2
	PSO 2	Apply strong environmental protection laws in India for the effective disposal of E-waste and constraints including environmental and sustainability development and while recycling the E-waste and problem including production, operation, maintenance and disposal with proper safety	2
CO 6	PO 6	Define the global scenario of environmental concerns by the increase in the generation of E-waste worldwide causing the personnel , health , safety , and risk (including environmental risk) issues and the problem can solved by imposing strong legal regulation for disposing of E-waste and help in sustainable development	2
	PO 12	List out the health hazards by the generation of E- waste and their impact on environment will be solved by the proper management and formal disposal of E-waste and this can be achieved by long term learning process in Professional certifications, advanced degree for developing advanced technologies in recycling of E-waste.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	PO	РО	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	2	-	-	3	2	-	-	-	-	-	-	-	-
CO 2	-	-	2	-	-	2	-	-	-	-	-	-	-	-	-
CO 3	2	-	-	-	-	3	2	-	-	-	-	-	-	2	-
CO 4	2	-	2	-	-	-	1	-	-	-	-	-	-	-	-
CO 5	-	-	-	-	-	2	-	-	-	-	-	2	-	2	-
CO 6	-	-	-	-	-	2	-	-	-	-	-	2	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

	PROGRAM OUTCOMES										PSO'S				
COURSE	РО	PO	PO	РО	PO	PO	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	33.3	-	20.0	-	-	60.0	66.6	-	-	-	-	-	-	-	-
CO 2	-	-	20.0	-	-	40.0	-	-	-	-	-	-	-	-	-
CO 3	66.6	-	-	-	-	60.0	66.6	-	-	-	-	-	-	66.6	-
CO 4	66.6	-	20.0	-	-	-	33.3	-	-	-	-	-	-	-	-
CO 5	-	-	-	-	-	40.0	-	-	-	-	-	25	-	66.6	-
CO 6	-	-	-	-	-	40.0	-	-	-	-	-	25	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** $0 \le C \le 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- **3** 60% \leq C < 100% Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	1	-	-	2	3	-	-	-	-		-	-	-
CO 2	-	-	1	-	-	1	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	-	2	3	-	-	-	-	-	-	3	-
CO 4	3	-	1	-	-	-	1	-	-	-	-		-	-	-
CO 5	3	-	-	-	-	1	3	-	-	-	-	1	-	3	-
CO 6	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-
TOTAL	10	-	3	-	-	7	10	-	-	-	-	2	-	6	-
AVERAGE	3.0	-	1.0	-	-	1.0	3.0	-	-	-	-	1.0	-	3.0	

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	~	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	~	Open Ended Experiments	-
Assignments	~	Tech talk	-	-	

XVII ASSESSMENT METHODOLOGY INDIRECT:

Assessment of mini projects by experts

End Semester OBE Feedback

 \checkmark

XVIII SYLLABUS:

UNIT - I	INTRODUCTION TO WASTE AND WASTE PROCESSING
	Solid waste sources solid waste sources, types, composition, properties, global warming; Municipal solid waste: Physical, chemical and biological properties, waste collection and, transfer stations, waste minimization and recycling of municipal waste, segregation of waste, size reduction, managing waste, status of technologies for generation of energy from waste treatment and disposal aerobic composting, incineration, furnace type and design, medical waste / pharmaceutical waste treatment technologies, incineration, environmental impacts, measures to mitigate environmental effects due to incineration
UNIT - II	WASTE TREATMENT AND DISPOSAL
	Land fill method of solid waste disposal land fill classification, types, methods and sitting consideration; Layout and preliminary design of landfills: Composition, characteristics, generation, movement and control of landfill leachate and gases, environmental monitoring system for land fill gases.
UNIT - III	BIO-CHEMICAL CONVERSION
	Energy generation from waste bio-chemical conversion: Sources of energy generation, anaerobic digestion of sewage and municipal waste, direct combustion of MSW-refuse derived solid fuel. Industrial waste, agro residues and anaerobic digestion.
UNIT - IV	THERMO-CHEMICAL CONVERSION
	Biogas production, land fill gas generation and utilization, thermo-chemical conversion: Sources of energy generation, gasification of waste using gasifies briquetting, utilization and advantages of briquetting, environmental benefits of bio-chemical and thermo- chemical conversion
UNIT - V	E-WASTE MANAGEMENT
	E-waste: E-waste in the global context: Growth of electrical and electronics industry in India, environmental concerns and health hazards; Recycling e-waste: A thriving economy of the unorganized sector, global trade in hazardous waste, impact of hazardous e-waste in India; Management of e-waste: E-waste legislation, government regulations on e-waste management, international experience, need for stringent health safeguards and environmental protection laws of India.

TEXTBOOKS

- 1. Nicholas P Cheremisinoff, —Handbook of Solid Waste Management and Waste Minimization Technologie, An Imprint of Elsevier, New Delhi, 2003.
- P AarneVesilind, William A Worrell and Debra R Reinhart, —Solid Waste Engineering, 2 nd edition 2002.

- 3. M Dutta , B P Parida, B K Guha and T R Surkrishnan, —Industrial Solid Waste Management and Landfilling practice, Reprint Edition New Delhi, 1999.
- 4. RajyaSabha Secretariat, —E-waste in India: Research unit, Reprint Edition, June, 2011.

REFERENCE BOOKS:

- 1. C Parker and T Roberts (Ed), —Energy from Waste, An Evaluation of Conversion Technologies, Elsevier Applied Science, London, 1985.
- 2. KL Shah," Basics of Solid and Hazardous Waste Management Technology", Prentice Hall, Reprint Edition, 2000.
- 3. M Datta, —"Waste Disposal in Engineered Landfill", Narosa Publishing House, 1997.

WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

COURSE WEB PAGE:

1. https://akanksha.iare.ac.in

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1								
	OBE DISCUSSION										
	Outcome Based Education, CO PO attainment and Blooms Taxonomy										
CONTENT DELIVERY (THEORY)											
1	Sources of Municipal Solid waste	CO 1	T1:3.3, T2:1.2, R2: 2.2								
2	Types of Municipal Solid waste	CO 1	T1:3.4, T2:1.4								
3	Composition of Municipal Solid waste	CO 1	T1:3.5, R2:1.5								
4	Effects of Global warming	CO 1	T1:3.7, R2:1.8								
5	Segregation of waste, size reduction and managing waste	CO 1	T1: 3.9, R3: 1.10								
6	Waste collection and transfer stations	CO 1	T1:5.5, T2:6.2, R3:4.8								
7	Waste minimization and recycling of municipal waste	CO 1	T1:5.6, T2:6.3, R3:7.5								
8	Properties of Municipal solid waste	CO 1	T1:4.3, T2:5.2, R2: 5.7								

9	Incineration, furnace type and design	CO 1	T1: 4.4, R1:3.3
10	Measures to mitigate environmental effects due to incineration	CO 1	T1:4.5, T2: 5.4, R3: 7.3
11	Land fill methods and disposal of solid waste	CO 2	T1:4.6, T2:5.5
12	land fill classification	CO 2	T1: 4.5.2, T2: 5.6
13	Landfill sitting consideration	CO 2	T1:4.6 <i>,</i> T2:5.5
14	Layout and preliminary design of landfills	CO 2	T1:4.6.2, T2:5.5.2
15	Characteristics and composition of landfill	CO 2	T1:4.7, T2:5.6
16	Movement and control of landfill leachate and gases	CO 2	T1:4.7 <i>,</i> T2:5.8
17	Environmental monitoring system for land fill gases	CO 2	T1:4.7.2, T2:5.8.2
18	Energy generation from waste by bio-chemical conversion	CO 3	T1:4.8, T2:5.9
19	Sources of energy generation from bio solid waste	CO 3	T1:4.9, T2:5.7
20	Anaerobic digestion of sewage and municipal waste	CO 3	T1:6.2, T2:5.6
21	Direct combustion of MSW-refuse derived solid fuel	CO 3	T1:6.3, T2:5.7
22	Industrial waste, agro residues and anaerobic digestion	CO 3	T1:6.4, T2:5.8
23	Biogas production	CO 3	T1:6.5, T2:5.3
24	land fill gas generation and utilization	CO 3	T1:66, T2:5.2
25	Thermo-chemical conversion	CO 4	T1:6.7, T2:5.3
26	Sources of energy generation	CO 4	T1:6.5, T2:7.5
27	Gasification of waste using gasifies briquetting	CO 4	T1: 6.2, R2:7.9
28	Utilization and advantages of briquetting	CO 4	T1: 6.2
29	Environmental benefits of bio-chemical	CO 4	T1:6.2, T2:7.2
30	E-waste in the global context	CO 5	T1:6.3, T2:7.3

31	Growth of electrical and electronics industry in India	CO 5	T1:6.4, T2:7.5
32	Environmental concerns and health hazards	CO 5	T1: 6.2 <i>,</i> T2: 5.6
33	Recycling e-waste	CO 5	T1:6.3, T2: 5.7
34	A thriving economy of the unorganized sector and global trade in hazardous waste	CO 5	T1:6.4, T2:5.8
35	Impact of hazardous e-waste in India	CO 5	T1:2.1, T2:9.1
36	Management of e-waste	CO 5	T1:2.2, T2:9.2
37	E-waste legislation	CO 5	T1: 2.1, R2: 9.1
38	Government regulations on e-waste management	CO 5	T1:2.6, R1:5.1
39	International experience in management of e-waste	CO 6	T1:2.7, R1:5.2
40	Need for stringent health safeguards and environmental protection laws of India.	CO 6	T1:2.8, R1:5.5
41	Summarize government regulations on E-waste management	CO 6	T1:2.1, R1:5.6
42	Outline international E-waste management and the guidelines imposed for formal disposal	CO 6	T1:2.2, R1:5.4
43	Explain the need for stringent health safeguards of human health and their effects	CO 6	T1:2.4,R1:5
44	Discuss the need for environmental protection laws and	CO 6	T1:2.4, R1:5.5
45	Outline environmental protection laws of India with respect to E-waste management.	CO 6	T1:2.4, R1:5.5
	PROBLEM SOLVING/ CASE STUDIE	S	•
1	Explain different Types of Municipal Solid waste	CO 1	T1:3.3, T2:1.2, R2: 2.2
2	Explain the Composition of Municipal Solid waste	CO 1	T1:3.4, T2:1.4
3	Effects of Global warming	CO 1	T1:3.5,R2:1.5
4	Illustrate the importance of Land fill classification	CO 2	T1:4.5, T2: 5.4, R3: 7.3
5	Landfill sitting consideration	CO 2	T1:4.6, T2:5.5
6	Layout and preliminary design of landfills	CO 2	T1: 4.5.2, T2: 5.6

7	Anaerobic digestion of sewage and municipal waste	CO 3	T1:4.6, T2:5.5							
8	Direct combustion of MSW-refuse derived solid fuel	CO 3	T1:4.6.2, T2:5.5.2							
9	Industrial waste, agro residues and anaerobic digestion	CO 3	T1:4.7 <i>,</i> T2:5.6							
10	Explain the Thermo-chemical conversion	CO 4	T1:4.7, T2:5.8							
11	E-waste in the global context	CO 5	T1:4.7.2, T2:5.8.2							
12	Growth of electrical and electronics industry in India	CO 5	T1:4.7.2, T2:5.8.2							
13	E-waste legislation	CO 5	T1:4.8, T2:5.9							
14	Government regulations on e-waste management	CO 6	T1:4.9 <i>,</i> T2:5.7							
15	International experience in management of e-waste	CO 6	T1:6.3 <i>,</i> T2: 5.7							
DISCUSSION OF DEFINITION AND TERMINOLOGY										
1	Solid waste sources solid waste sources, types, composition, properties, Municipal solid waste: Physical, chemical and biological properties, waste collection and, transfer stations, waste minimization and recycling of municipal waste, environmental impacts, measures to mitigate environmental effects due to incineration	CO 1	T1:1.5, T2: 5.4, R3: 7.3							
2	Land fill method of solid waste, classification, types, methods and sitting consideration; Layout and preliminary design of landfills: Composition, characteristics, generation, movement and control of landfill leachate and gases, environmental monitoring system for land fill gases.	CO 2	T1:4.5, T2: 5.4, R3: 7.2							
3	Energy generation from waste bio-chemical conversion: Sources of energy generation, anaerobic digestion of sewage and municipal waste, direct combustion of MSW- refuse derived solid fuel. Industrial waste, agro residues and anaerobic digestion.	CO 3	T1:4.5, T2: 5.4, R3: 7.3							
4	Biogas production, land fill gas generation and utilization, thermo-chemical conversion:gasification of waste using gasifies briquetting, utilization and advantages of briquetting, environmental benefits of bio-chemical and thermo- chemical conversion	CO 4	T1:4.5, T2: 5.4, R3: 7.3							

5	E-waste in the global context: Growth of electrical and electronics industry in India, environmental concerns and health hazards; global trade in hazardous waste, Management of e-waste, legislation, government regulations on e-waste management, international experience and environmental protection laws of India	CO 5	T1:4.5, T2: 5.4, R3: 7.3							
	DISCUSSION OF QUESTION BANK									
1	Introduction to Waste and Waste Processing	CO 1	T1:3.3, T2:1.2, R2: 2.2							
2	Waste Treatment and Disposal	CO 2	Т 1.4:7.3							
3	Bio-Chemical Conversion	CO 3	T1:6.2, T2:5.6							
4	Thermo-Chemical Conversion	CO 4	T1:6.7, T2:5.3							
5	E-Waste Management	CO 5 <i>,</i> CO 6	T1:2.4, R1:5.5							

Signature of Course Coordinator Mr. CH. Balakrishna, Assistant Professor

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	BIG DATA	AND BU	SINESS	ANALYTIC	S LABORATORY		
Course Code	ACS111	ACS111					
Program	B.Tech						
Semester	VII	CSE					
Course Type	Theory						
Regulation	IARE - R16						
		LAB			Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	3	1.5		
Course Coordinator	Ms. Sangetha	a, Assistant	Professo	~			

I COURSE OVERVIEW:

Big data and Business Analytics Laboratory demonstrates distributed computing environment. It includes hands on experience on installation process of VMWare, LINUX commands, HDFS file management, MapReduce functions, Pig and Hive operations. This experience can be used to develop big data applications such as Web click stream analysis, Recommendation systems, Sentiment analysis etc.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB09	111	Database Management Systems Laboratory
B.Tech	ACS002	IV	Object Oriented Programming Through Java Laboratory
B.Tech	ACS002	VI	LINUX Laboratory
B.Tech	ACSB15	VI	DWDM Laboratory

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Database Management Systems	70 Marks	30 Marks	100
Laboratory			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Demo Video	\checkmark	Lab Worksheets	V	Viva Questions	\checkmark	Probing further Questions
---	------------	--------------	-------------------	---	-------------------	--------------	---------------------------------

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
-	_	-	-	-	

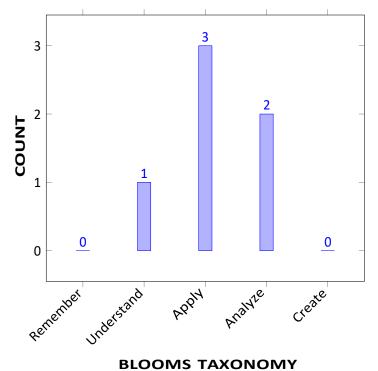
2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

I	The steps involved in creating distributed environment.
П	The platform for creating and run big data MapReduce programs on Hadoop.
111	Fundamental techniques and principles in achieving big data analytics with scalability and streaming capability


IV	How to solve complex real-world problems in for decision support.
----	---

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate distributed environment and its ecosystem with the help of VMWare and Linux commands.	understand
CO 2	Make use of hadoop distributed file management modes for handling big data in business analytics.	Apply
CO 3	Analyze the Big Data using Map-reduce programming in Hadoop framework.big data in business analytics.	Analyze
CO 4	Apply Hive commands for reading, writing and managing large datasets in hdfs .	Apply
CO 5	Implement the Pig Latin scripts in two different modes to perform a particular operation on the data that exists in the HDFS.	Apply
CO 6	Analyze adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

Program	Strength	Proficiency Assessed by
---------	----------	----------------------------

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	1	Lab Exer- cises,CIE,SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Lab Exer- cises,CIE,SEE
PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	3	Lab Exer- cises,CIE,SEE
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations	3	Lab Exer- cises,CIE,SEE

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	3	Lab Exercises

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Describe distributed environment and its ecosystem with the help of VMWare and Linux commands using principles of mathematics, science, and engineering fundamentals.	3
	PO 2	Describe distributed environment and its ecosystem with the help of VMWare and Linux commands. with Problem statement and system definition , Problem formulation and abstraction	2
CO 2	PO 1	Demonstratehadoop distributed file management modes for handling big data in business analytics basic fundamentals of mathematics and engineering fundamentals.	2

	PO 2	Demonstrate hadoop distributed file management modes for handling big data in business analyticsthe Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	3
	PO 3	Demonstrate hadoop distributed file management modes for handling big data in business analytics to Investigate and define a problem and identify constraints Manage the design process and evaluate outcomes	4
	PO 5	Demonstrate hadoop distributed file management modes for handling big data in business analytics by Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.	3
	PSO 2	Demonstrate hadoop distributed file management modes for handling big data in business analytics by using a set of steps.	1
CO 3	PO 2	Make Use of the Big Data using Map-reduce programming in Hadoop framework for memory management and faulty recovery. the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation.	2
	PO 3	Make Use of SQL Big Data using Map-reduce programming in Hadoop framework for memory management and faulty recoveryInvestigate and define a problem and identify constraints, Manage the design process and evaluate outcomes	3
	PO 5	Make Use of Big Data using Map-reduce programming in Hadoop framework for memory management and faulty recovery.by Understanding of contexts in which engineering knowledge can be applied, Understanding use of technical literature, Understanding of appropriate codes of practice and industry standards.	3
	PSO 2	Make Use of Big Data using Map-reduce programming in Hadoop framework for memory management and faulty recovery.by using a set of steps.	1
CO 4	PO 1	Define Hive commands for reading, writing and managing large datasets in hdfs the knowledge of mathematics , science, and engineering fundamentals.	3
	PO 2	Define Hive commands for reading, writing and managing large datasets in hdfs the Problem statement and system definition, Problem formulation and abstraction, Information and data collection, Model translation	4

CO 5	PO 2	Model the Pig Latin scripts in two different modes to	4
		perform a particular operation on the data that exists in	
		the HDFS with the Problem statement and system	
		definition, Problem formulation and abstraction,	
		Information and data collection, Model translation.	
	PO 3	Model the Pig Latin scripts in two different modes to	3
		perform a particular operation on the data that exists in	
		the HDFS. by Understanding of contexts in which	
		engineering knowledge can be applied,	
		Understanding use of technical literature, Understanding of appropriate codes of practice and	
		industry standards.	
	PO 5	Model the Pig Latin scripts in two different modes to	3
	PU 5	perform a particular operation on the data that exists in	5
		the HDFS. by Understanding of contexts in which	
		engineering knowledge can be applied,	
		Understanding use of technical literature,	
		Understanding of appropriate codes of practice and	
		industry standards.	
	PSO 2	Model the Pig Latin scripts in two different modes to	1
		perform a particular operation on the data that exists in	
		the HDFS by using sequence of steps.	
CO 6	PO 2	Illustrate adequate perspectives of big data analytics in	4
		various applications like recommender systems, social	
		media applications etc data integrity basic	
		fundamentals of mathematics and engineering	
		fundamentals.	
	PO 2	Illustrateadequate perspectives of big data analytics in	4
		various applications like recommender systems, social	
		media applications etc Problem statement and system	
		definition, Problemformulation and abstraction , Information and datacollection, Model translation	

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUTCOMES										PSO'S				
OUTCOME	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	2	-	I	-	-	I	-	-	-	-	-	-	-	-
CO 2	2	2	3	-	2	-	-	-	-	-	-	-	-	3	-
CO 3	-	2	3	-	3	-	-	-	-	-	-	-	-	3	-
CO 4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	

CO 5	-	3	2	-	2	-	-	-	-	-	-	-	-	-	-
CO 6	2	2	3	-	2	-	-	-	-	-	-	-	-	1	-

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 2, PO 3, PSO 3	SEE Exams	PO 2,PO 3, PO 5, PO 10,PO12	Seminars	-
Laboratory Practices	PO 1,PO 3, PO 5	Student Viva	PO 2, PO 3,PO10	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XIV SYLLABUS:

WEEK I	INSTALL VMWARE
	Installation of VMWare to setup the Hadoop environment and its ecosystems
WEEK II	QUERIES USING DDL AND DML
	a. Perform setting up and Installing Hadoop in its three operating modes. i. Standalone. ii. Pseudo distributed. iii. Fully distributed. b. Use web based tools to monitor your Hadoop setup.
WEEK III	USING LINUX OPERATING SYSTEM
	Implementing the basic commands of LINUX Operating System – File/Directory creation, deletion, update operations
WEEK IV	FILE MANAGEMENT IN HADOOP
	Implement the following file management tasks in Hadoop: a.Adding files and directories b.Retrieving files c.Deleting files Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command linux utilities.
WEEK V	MAPREDUCE PROGRAM 1
	Run a basic word count Map Reduce program to understand Map Reduce Paradigm.
WEEK VI	MAPREDUCE PROGRAM 2

	Write a Map Reduce program that mines weather data. Hint: Weather sensors collecting data every hour at many locations across the globe gather a large volume of log data, which is a good candidate for analysis with Map Reduce, since it is semi structured and record-oriented.
WEEK VII	MAPREDUCE PROGRAM 3
	Implement matrix multiplication with Hadoop Map Reduce
WEEK VIII	PIG LATIN LANGUAGE – PIG
	Installation of PIG.
WEEK IX	PIG COMMANDS
	Write Pig Latin scripts sort, group, join, project, and filter your data
WEEK X	PIG LATIN MODES, PROGRAMS
	a.Run the Pig Latin Scripts to find Word Count. b. Run the Pig Latin Scripts to find a max temp for each and every year.
WEEK XI	HIVE
	Installation of HIVE.
WEEK XII	HIVE OPERATIONS
	Use Hive to create, alter, and drop databases, tables, views, functions, and indexes.

TEXTBOOKS

1. Rajiv Sabherwal, Irma Becerra- Fernandez, "Business Intelligence –Practice, Technologies and Management", John Wiley, 1st Edition, 2011

REFERENCE BOOKS:

1. Jay Liebowitz, "Big Data and Business Analytics Laboratory", CRC Press.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Install VMware.	CO 1	T1:4.1, T2:1.1
2	Hadoop Modes	CO 2	T1:4.9,4.11, T2:7
3	Using Linux Operating System	CO 3,CO4	T1:3, T2:8
4	File Management In Hadoop	CO1,CO 4	T1:6.6, T2:12
5	Mapreduce Program 1	CO 3	T1:4.4, T2:10
6	Mapreduce Program 2	CO 3	T1:4.6, T2:10
7	Mapreduce Program 3	CO 5	T2:15
8	Mapreduce Program 4.	CO 3	T2:18
9	Pig Latin Language – Pig.	CO 6	T2:18
10	Pig Commands.	CO 5	T2:18
11	Pig Latin Modes, Pig Program	CO 6	T2:10
12	Hive	CO 4	T1:2, T2:1
12	Hive Operations	CO 5	T1:2, T2:1

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Implementation of application that stores big data in MongoDB.
2	Experimental Methods for the Evaluation of Big Data Systems.

Signature of Course Coordinator Ms. Sangeetha, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING COURSE DESCRIPTION

Course Title	CLOUD AI	CLOUD APPLICATION DEVELOPMENT LABORATORY					
Course Code	ACS110	ACS110					
Program	B.Tech						
Semester	VII	I CSE					
Course Type	Core						
Regulation	IARE - R16						
		Theory			Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	_	-	-	3	1.5		
Course Coordinator	Mr RM Noorullah, Assistant Professor						

I COURSE OVERVIEW:

This Laboratory course provides a foundation for which we can access the applications as utilities over the internet. It allows us to create, configure, and customize the business applications online. a cloud application, or cloud app, is a software program where cloud-based and local components work together. This model relies on remote servers for processing logic that is accessed through a web browser with a continual internet connection. Hadoop is an open-source framework that allows to store and process big data in a distributed environment across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	r Prerequisites	
B.Tech	ACS109	VI	Linux Programming Laboratory	
B.Tech	ACS104	IV	Database Management Systems Laboratory	
B.Tech	ACS101	Ι	Computer Programming Laboratory	

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Cloud Application Development Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab		Viva		Probing further
\checkmark		1	Worksheets	\checkmark	Questions	1	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end laberamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of	Day to day	Final internal lab	10tal Marks
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

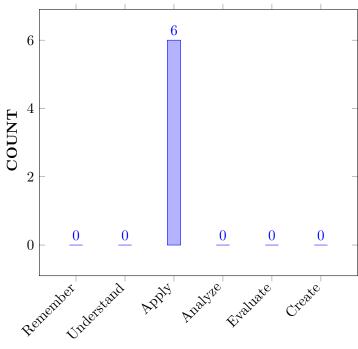
Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:


Ι	To run virtual machines of different configuration.
II	Big data application using Hadoop under cloud environment.
III	The developing web applications in cloud framework.

VII COURSE OUTCOMES:

CO 1	Make use of Virtualization and parallel processing on guest and host OS for performing different tasks by installing virtual machines.	Apply
CO 2	Develop Mapper and Reducer on simple applications by using Apache Hadoop on single node setup installation.	Apply
CO 3	Construct simple applications on services rendered by Amazon Web Service Cloud Service Provider.	Apply
CO 4	Build simple applications on services rendered by Google Service Provider.	Apply
CO 5	Utilize simple applications on services rendered by Microsoft Azure cloud Service Provider.	Apply
CO 6	Develop web based App by using Yahoo! pipes.	Apply

After successful completion of the course, students should be able to:

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Lab Exer- cises,CIE,SEE
PO 2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Lab Exer- cises,CIE,SEE
PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	3	Lab Exer- cises,CIE,SEE
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	Lab Exer- cises,CIE,SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Lab Exer- cises,CIE,SEE
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	1	Lab Exer- cises,CIE,SEE
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	1	Lab Exer- cises,CIE,SEE
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	1	Lab Exer- cises,CIE,SEE
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2	Lab Exer- cises,CIE,SEE

PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	Lab Exer- cises,CIE,SEE
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Lab Exer- cises,CIE,SEE

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.	1	Lab Exercises
PSO 2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.	3	Lab Exercises
PSO 3	Successful Career and Entrepreneurship: Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry	3	Lab Exercises

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Apply scientific principles and methodologies, other engineering disciplines to Make use of virtualization and parallel processing on guest and host OS for performing different tasks by installing virtual machines.	2
	PO 2	Experimental design on usage of virtualization and parallel processing on guest and host OS for performing different tasks by installing of virtual machines in cloud computing environment.	8

	PO 3	Understand customer and user needs and the importance of considerations to run virtualization and parallel processing on guest and host OS for performing different tasks by installing virtual machines.	7
	PO 4	Use research-based knowledge and research methods including design of experiments by installing of virtual machines in cloud computing environment.	11
	PO 5	Create, select, and apply appropriate techniques, resources to Make use of virtualization and parallel processing on guest and host OS for performing different tasks by installing virtual machines.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development to run virtualization and parallel processing on guest and host OS for performing different tasks by installing virtual machines.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different tasks by installing virtual machines.	1
	PO 8	Apply professional ethics and responsibilities and norms for performing different tasks by virtual machines in cloud computing environment.	1
	PO 10	Demonstrate the ability for communicating effectively in writing, speaking style subject matter in virtualization and parallel computing.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of virtual machines in cloud computing environment.	3
	PSO 1	Understand, design and analyze computer programs in the areas related to virtualization in cloud computing environment.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in cloud computing environment.	1
	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in virtual machines in cloud computing environment.	1
CO 2	PO 1	Apply scientific principles and methodologies, other engineering disciplines to Mapper and Reducer on simple applications by using Apache Hadoop on single node setup installation.	3
	PO 3	Use creativity to establish innovative solution to develop Mapper and Reducer on simple applications by using Apache Hadoop.	7
	PO 4	Understanding of appropriate codes of practice solution to develop Mapper and Reducer on simple applications by using Apache Hadoop.	11
	PO 5	Create, select, and apply appropriate techniques, resources to develop Mapper and Reducer on simple applications by using Apache Hadoop.	1

	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on simple applications by using Apache Hadoop.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different tasks by using Apache Hadoop on single node setup installation.	1
	PO 8	Apply professional ethics and responsibilities and norms by using Apache Hadoop on single node setup installation.	1
	PO 9	Effective teamwork and project management on simple applications by using Apache Hadoop.	6
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in Mapper and Reducer on simple applications by using Apache Hadoop.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of Mapper and Reducer on simple applications by using Apache Hadoop.	3
	PSO 1	Understand, design and analyze computer programs in the areas related to Mapper and Reducer on simple applications by using Apache Hadoop.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in Mapper and Reducer on simple applications by using Apache Hadoop.	1
	PSO 3	Make use of modern computer tools for creating innovative paths by using Apache Hadoop.	1
CO 3	PO 1	Apply scientific principles and methodologies, other engineering disciplines to construct simple applications on services rendered by Amazon Web Service Cloud Service Provider.	2
	PO 2	Experimental design on usage of Amazon Web Service Cloud Service Provider in cloud computing environment.	8
	PO 3	Use creativity to establish innovative solution to develop simple applications on services rendered by Amazon Web Service Cloud Service Provider.	7
	PO 4	Understanding of appropriate codes of practice solution to develop simple applications on services rendered by Amazon Web Service Cloud Service Provider.	11
	PO 5	Create, select, and apply appropriate techniques, resources to develop simple applications on services rendered by Amazon Web Service Cloud Service Provider.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on services rendered by Amazon Web Service Cloud Service Provider.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different t services rendered by Amazon Web Service Cloud Service Provider.	1
	PO 8	Apply professional ethics and responsibilities and norms different services rendered by Amazon Web Service Cloud Service Provider.	1

	PO 9	Effective teamwork and project management services rendered by Amazon Web Service Cloud Service Provider.	6
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in services rendered by Amazon Web Service Cloud Service Provider.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of services rendered by Amazon Web Service Cloud Service Provider.	4
	PSO 1	Understand, design and analyze computer programs in the areas related to services rendered by Amazon Web Service Cloud Service Provider.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in Amazon Web Service Cloud Service Provider.	2
	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in Amazon Web Service Cloud Service Provider.	2
CO 4	PO 1	Apply scientific principles and methodologies, other engineering disciplines to construct simple applications on services rendered by Google Cloud Service Provider.	2
	PO 2	Experimental design on usage of Google Cloud Service Provider in cloud computing environment.	8
	PO 3	Use creativity to establish innovative solution to develop simple applications on services rendered by Google Cloud Service Provider.	7
	PO 4	Understanding of appropriate codes of practice solution to develop simple applications on services rendered by Google Cloud Service Provider.	11
	PO 5	Create, select, and apply appropriate techniques, resources to develop simple applications on services rendered by Google Cloud Service Provider.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on services rendered by Google Cloud Service Provider.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different t services rendered by Google Cloud Service Provider.	1
	PO 8	Apply professional ethics and responsibilities and norms different services rendered by Google Cloud Service Provider.	1
	PO 9	Effective teamwork and project management services rendered by Google Cloud Service Provider.	6
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in services rendered by Google Cloud Service Provider.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of services rendered by Google Cloud Service Provider.	4

	PSO 1	Understand, design and analyze computer programs in the areas related to services rendered by Google Cloud Service Provider.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in Google Cloud Service Provider.	2
	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in Google Cloud Service Provider.	2
CO 5	PO 1	Apply scientific principles and methodologies, other engineering disciplines to construct simple applications on services rendered by Microsoft Azure Cloud Service Provider.	2
	PO 2	Experimental design on usage of Microsoft Azure Cloud Service Provider in cloud computing environment.	8
	PO 3	Use creativity to establish innovative solution to develop simple applications on services rendered by Microsoft Azure Cloud Service Provider.	7
	PO 4	Understanding of appropriate codes of practice solution to develop simple applications on services rendered by Microsoft Azure Cloud Service Provider.	11
	PO 5	Create, select, and apply appropriate techniques, resources to develop simple applications on services rendered by Microsoft Azure Cloud Service Provider.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on services rendered by Microsoft Azure Cloud Service Provider.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different t services rendered by Microsoft Azure Cloud Service Provider.	1
	PO 8	Apply professional ethics and responsibilities and norms different services rendered by Microsoft Azure Cloud Service Provider.	1
	PO 9	Effective teamwork and project management services rendered by Microsoft Azure Cloud Service Provider.	6
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in services rendered by Microsoft Azure Cloud Service Provider.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of services rendered by Microsoft Azure Cloud Service Provider.	4
	PSO 1	Understand, design and analyze computer programs in the areas related to services rendered by Microsoft Azure Cloud Service Provider.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in Microsoft Azure Cloud Service Provider.	2

	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in Microsoft Azure Cloud Service Provider.	2
CO 6	PO 1	Apply scientific principles and methodologies, other engineering disciplines to develop web based App by using Yahoo! pipes.	2
	PO 2	Experimental design on usage of web based App by using Yahoo! pipes in cloud computing environment.	8
	PO 3	Use creativity to establish innovative solution to develop web based App by using Yahoo! pipes.	7
	PO 4	Understanding of appropriate codes of practice solution to develop web based App by using Yahoo! pipes.	11
	PO 5	Create, select, and apply appropriate techniques, resources to develop web based App by using Yahoo! pipes.	1
	PO 6	Understanding of the requirement for engineering activities to promote sustainable development on web based App by using Yahoo! pipes.	1
	PO 7	Demonstrate the knowledge of, and need for sustainable development for performing different web based App by using Yahoo! pipes.	1
	PO 8	Apply professional ethics and responsibilities and norms different web based App by using Yahoo! pipes.	1
	PO 9	Effective teamwork and project management web based App by using Yahoo! pipes.	6
	PO 10	Demonstrate the ability to communicate effectively in writing, speaking style subject matter in web based App by using Yahoo! pipes.	4
	PO 12	Keeping current in CSE and advanced engineering concepts of web based App by using Yahoo! pipes.	4
	PSO 1	Understand, design and analyze computer programs in the areas related to web based App by using Yahoo! pipes.	2
	PSO 2	Focus on improving software reliability, network security and information retrieval systems machines in web based App by using Yahoo! pipes.	2
	PSO 3	Make use of modern computer tools for creating innovative paths, to be an entrepreneur in web based App by using Yahoo! pipes.	2

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	PO	PO	РО	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	3	1	1	1	-	3	-	1	1	2	2
CO 2	3	-	3	3	3	1	1	1	2	3	-	1	1	2	2
CO 3	3	3	3	3	3	1	1	1	2	3	-	2	1	3	3
CO 4	3	3	3	3	3	1	1	1	2	3	-	2	1	3	3
CO 5	3	3	3	3	3	1	1	1	2	3	-	2	1	3	3
CO 6	3	3	3	3	3	1	1	1	2	3	_	2	1	3	3

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

v	(Early Semester Feedback	√	End Semester OBE Feedback		
2	K	Assessment of Mini Projects by Experts				

XIV SYLLABUS:

WEEK I	VIRTUALIZATION
	Install Oracle Virtual box and create two VMs on your laptop.
WEEK II	VIRTUALIZATION
	Install Turbo C in guest OS and execute C program.
WEEK III	VIRTUALIZATION
	Test ping command to test the communication between the guest OS and Host OS.
WEEK IV	HADOOP
	Install Hadoop single node setup.
WEEK V	HADOOP
	Develop a simple hadoop application called Word Count. It counts the number of occurrences of each word in a given input set.
WEEK VI	HADOOP
	Develop hadoop application to count no of characters, no of words and each character frequency.

WEEK VII	HADOOP
	Develop hadoop application to process given data and produce results such as finding the year of maximum usage, year of minimum usage.
WEEK VIII	HADOOP
	Develop hadoop application to process given data and produce results such as how many female and male students in both schools the results should be in following format. GP-F #number GP-M #numbers MS-F #number MS-M #number
WEEK IX	CLOUD PROGRAMMING
	Establish an AWS account. Use the AWS Management Console to launch an EC2 instance and connect to it.
WEEK X	CLOUD PROGRAMMING
	Design a protocol and use Simple Queue Service(SQS) to implement the barrier synchronization after the first phase.
WEEK XI	CLOUD PROGRAMMING
	Use the Zookeeper to implement the coordination model in Problem 10.
WEEK XII	CLOUD PROGRAMMING
	Develop a Hello World application using Google App Engine
WEEK XIII	CLOUD PROGRAMMING
	Develop a Guestbook Application using Google App Engine.
WEEK XIV	WINDOWS AZURE
	Develop a Windows Azure Hello World application using.
WEEK XV	PIPES
	Create a Mashup using Yahoo! Pipes.

TEXT BOOKS

- 1. Dan Marinescu, —Cloud Computing: Theory and Practice ||, M K Publishers, 1st Edition, 2013.
- 2. Kai Hwang, Jack Dongarra, Geoffrey Foxr, —Distributed and Cloud Computing, FromParallel Processing to the Internet of Things^{||}, M K Publishers, 1st Edition, 2013.

REFERENCE BOOKS

- 1. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, —Cloud Computing: A Practical Approach , McGraw Hill, 1st Edition, 2009.
- 2. Arshdeep Bahga, Vijay Madisetti, —Distributed and Cloud Computing, Cloud computing A Hands on Approach , Universities Publications, 1st Edition, 2013.

XV COURSE PLAN:

S.No	Topics to be covered	CO's	Reference
1	Install Virtual Machine on Guest and Host OS	CO1	T1:5.4
2	Single node set up Installation	$\rm CO2$	T1:5.7
3	Simple applications on services rendered by Amazon Web Service Cloud Service Provider.	CO3	T1:11.1
4	Simple applications on services rendered by Google Service Provider.	CO4	T1:3.2
5	Simple applications on services rendered by Microsoft Azure cloud Service Provider.	CO5	T1:3.3
6	Web based App by using Yahoo! pipes	CO6	R2:2.8

The course plan is meant as a guideline. Probably there may be changes.

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Install Hadoop in semi-distributed environment.
2	ERP solutions using Google Cloud Service Provider.
3	CRMsolutions using Amazon Web Service Provider.

Signature of Course Coordinator Mr RM Noorullah, Assistant Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPU	COMPUTER SCIENCE AND ENGINEERING				
Course Title	E-COM	E-COMMERCE				
Course Code	AIT514	AIT514				
Program	B. Tech	B. Tech				
Semester	VIII	VIII				
Course Type	Elective	Elective				
Regulation	R-16	R-16				
		Theory		Pract	ical	
Course Structure	Lecture Tutorials Credits Laboratory Cred				Credits	
	3 - 3					
Course Coordinator	Ms.Rasmita Kumari Mohanty, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHS015	V	Business Economics and financial
			analysis

II COURSE OVERVIEW:

This course encompasses the marketing of products using the internet. It provides ultimate knowledge and skills to become an e-commerce whizz and resolve the organizational problems to succeed as an entrepreneur. The concepts include anatomy of e-commerce applications, electronic payment mechanisms, inter and intra organizational networks, resource discovery paradigm and multimedia involvement in e-commerce.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
E-COMMERCE	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Chalk & Talk	\checkmark	Quiz	\checkmark	Assignments	х	MOOC
\checkmark	LCD / PPT	\checkmark	Seminars	х	Mini Project	х	Videos
х	Open Ended Experiments						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
%	Remember
%	Understand
%	Apply
%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theory		Total Marks
Type of Assessment	CIE Exam Quiz		
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

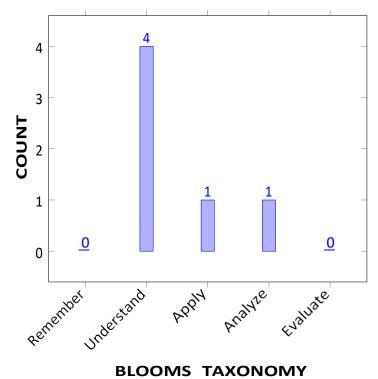
Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

I	The foundations and importance of E-commerce and its technology for business.
П	The steps, tools, and network mechanisms needed to start selling online.
- 111	The techniques and principles in Electronic Payment System and its environment.
IV	The main business and marketplace models for Electronic Communications and
	Trading.


VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain Explain business-to-consumer, business-to-business, and	Understand
	intra organizational models to develop an internet trading	
	relationships.	

CO 2	Demonstrate the retailing procedure in E-commerce to expertise in market research effectively	Understand
CO 3	List out the key features of internet, intranets and extranets to explain the use network systems in e-commerce business.	Analyze
CO 4	Explain digital library and supply chain management concepts to develop best management practices	Understand
CO 5	Make use of the major E-commerce revenue models to evaluate existing websites	Apply
CO 6	Explain theoretical and practical issues of conducting business over the internet and the Web to understand the multimedia effects on e- commerce .	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	CIE/Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	CIE/Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	CIE / Quiz / AAT
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIE / Quiz / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	CIE / Quiz / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	3	Quiz
PSO 2	Focus on improving software reliability, network security or information retrieval systems.	2	CIE / Quiz / AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES													PSO'S		
COURSE	РО	PO									РО	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-	
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	
CO 4	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-	 Image: A start of the start of	-	-	
CO 5	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	
CO 6	-	-	-		-	-	-	-	-	-	-	-	-	-	-	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain Business to Consumer, Business-to-Business, and Intra organizational on Internet trading relationships by Applying the knowledge of science, engineering fundamentals	2
	PSO 2	Focus on mobile applications and explain the components in the construction, operation and types of insulators and underground cables.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 2	PO 1	Understand the key issues and applications effectiveness of market research by applying mathematical principles and computer science methodologies	2
	PO 2	Understand the key issues in problems identificationand analyse complex Engineering problems in optimizing business decisions like Information and data collection and Interpretation of results	5
	PO 3	Make use of retailing procedure in E-commerce to expertise in market research effectively define a problem identify constraints including environmental and risk assessment issues andManage the design process innovative solutionsand environmental and sustainability limitations	7
	PO 10	Classify the key issues in terms of defining various problems, customer and user needs, cost effective and creative solutions, design process, economic context and management techniques.	5
CO 3	PO 1	List out the key features of Internet, Intranets and Extranets and explain how they relate to each other using computer science methodologies	1
	PO 2	Make use of internet information and data collected from various sources and perform model translation and validation by Experimental design and check Interpretation of results	5
	PO 10	Make use of different internet components for developing applications based on technical literature and quality issues. Identify, classify and describe the performance of systems through analytical methods and techniques.	5
CO 4	PO 1	discuss modern computing infrastructures from the perspective of the internet and organizations computer science methodologies, mathematical and scientific principles.	3
	PO 3	make use of digital library and supply chain management concepts to develop best management practices safety and risk assessment issues Identify and manage cost drivers and Manage the design process and evaluate outcomes	5
	PO 4	discuss modern computing infrastructures from the perspective of the internet and organizations Conduct Investigations of Complex Problems for Understanding of appropriate codes of practice and industry standards and Ability to work with technical uncertainty and the use of analytical methods and modeling techniques	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 1	Make use of next-generation computer systems and networking devices to develop management practices for knowledge discovery tools	4
CO 5	PO 1	Make use of the major e-commerce revenue models to evaluate existing websites mathematical and scientific principles by integrating computer science knowledge.	3
	PO 3	Major e-commerce revenue models to evaluate existing websites by investigating and defining various problems , understanding customer and user needs, with cost effective and creative solutions by managing the design process , knowledge on economic context , management techniques .	7
	PSO 1	Make use of networking devices, search engines and E-Commerce revenue models for existing websites to develop web browsers	4
CO 6	PO 4	make use of theoretical and practical issues of conducting business over the internet and the multimedia effects on e- commerce Knowledge of management and Understanding of commercial and economic context of engineering processes including personnel, health, safety, and risk issues	7

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

COURSE	Pro	gram	n Out	tcom	es/	No. c	of Ke	у Со	mpe	tenci	ies N	latched	PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	1	-
CO 2	2	5	7	-	-	-	-	-	-	5	-	-	-	-	-
CO 3	1	5	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 4	3	-	5	5	-	-	-	-	-	-	-	-	4	-	-
CO 5	3	-	7	-	-	-	-	-	-	-	-	-	4	-	-
CO 6	-	-	-	7	-	-	-	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES													PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50	0.0	0.0		
CO 2	66.7	50	70	0.0	0.0	0.0	0.0	0.0	0.0	100	0.0	0.0	0.0	0.0	0.0		
CO 3	33.3	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100	0.0	0.0	0.0	0.0	0.0		
CO 4	100	50	0.0	0.0	45.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	0.0	0.0		
CO 5	100	0.0	70	0.0	0.0	0.0	0.0	0.0	0.0	60.0	0.0	0.0	40	0.0	0.0		
CO 6	0.0	0.0	0.0	63.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** 0 \leq C \leq 5% No correlation
- **2** 40 % <C < 60% –Moderate
- **1-5** <C≤ 40% Low/ Slight
- **3** 60% \leq C < 100% Substantial /High

COURSE				PRC)GR/	٩M	ουτ	CON	MES					PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	2	-	
CO 2	3	2	3	-	-	-	-	-	-	3	-	-	-	-	-	
CO 3	1	2	-	-	-	-	-	-	-	3	-	-	-	-	-	
CO 4	3	-	2	2	-	-	-	-	-	-	-	-	3	-	-	
CO 5	3	-	3	-	-	-	-	-	-	-	-	-	3	-	-	
CO 6	-	-	-	3	-	-	-	-	-	-	-	-	-	-	-	
TOTAL	13	4	8	5	-	-	-	-	-	6	-	-	6	2	-	
AVERAGE	2.6	2.0	2.6	2.5	-	-	-	-	-	3.0	-	-	3.0	2.0	-	

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	x
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	х	Open Ended Experiments	-
Assignments	x				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts	 ✓ 	End Semester OBE Feedback
--	-----------------------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO ELECTRONIC COMMERCE
	Electronic Commerce: Frame work, media coverage; anatomy of e-commerce applications: E-commerce Consumer applications, E-ecommerce organization applications
MODULE II	ELECTRONIC PAYMENT SYSTEMS
	Types of electronic payment systems; Digital token based electronic payment system: E-cash, properties of e-cash, electronic cash in action, business issues and electronic cash, operational risk and electronic Cash, electronic checks; smart cards and electronic payment system; Credit card based electronic payment system; Risk and electronic payment system; Designing electronic payment system
MODULE III	PERFORMANCE OF TRANSMISSION LINES
	Inter organizational commerce: Electronic data interchange, electronic data interchange implementation, and value added networks; Intra organizational commerce: Work flow, automation customization and internal commerce, supply chain management. Corporate digital library: Document library, digital document types, corporate data warehouses; Advertising and marketing: Information based marketing, advertising on internet, on-line marketing Process, market research.
MODULE IV	CONSUMER SEARCH AND RESOURCE DISCOVERY
	Search and resource discovery paradigms, information search and retrieval, commerce catalogues, Information filtering.
MODULE V	MULTIMEDIA
	Multimedia: Key multimedia concepts, digital video and electronic commerce, desktop video processing, desktop video conferencing.

TEXTBOOKS

1. Ravi Kalakata, Whinston Andrew B, Frontiers of Electronic Commerce, Pearson, 1st Edition, 1996.

REFERENCE BOOKS:

1. David Whitley, E-Commerce-Strategy, Technologies and Applications, Tata McGraw-Hill, 2nd Edition, 2000.

- 2. Kamlesh K. Bajaj, E-Commerce the Cutting Edge of Business, Tata McGraw-Hill, 1st Edition, 2005
- 3. Christopher Westland, Theodore H. K Clark, Global Electronic Commerce- Theory and Case Studies, University Press, 1st Edition, 1999.

WEB REFERENCES:

1. www.engr.sjsu.edu/gaojerry/course/cmpe296u/296z/introduction.pdf

COURSE WEB PAGE:

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	-
	CONTENT DELIVERY (THEORY)		
1	Electronic Commerce: Frame work, media coverage anatomy of e-commerce	CO 1	R1:1.1
2	anatomy of e-commerce	CO 1	R1:1.1
3	consumer applications E-ecommerce organization applications	CO 2	T1:1.2
4	E-ecommerce organization applications	CO 2	T1:1.2
5	Types of electronic payment systems.	CO 3	T1:1.3
6	Digital token based electronic payment system: E-cash.	CO 3	T1:1.3
7	Electronic Cash In Action	CO 4	R1:1.5
8	Business Issues And Electronic Cash	CO 4	R1:1.5
9	operational risk and electronic Cash, electronic checks	CO 4	R1:1.5
10	Smart cards and electronic payment system.	CO 5	T1:3.2
11	Credit card based electronic payment system.	CO 5	T1:3.2
12	Risk and electronic payment system	CO 3	T1:3.5
13	Designing electronic payment system	CO 3	T1:3.5
14	PERFORMANCE OF TRANSMISSION LINES	CO 3	T1:4.3
15	Inter organizational commerce: Electronic data Interchange	CO 3	T1:4.3
16	Electronic Data Interchange Implementation	CO 8	T1:5.2
17	And Value Added Networks	CO 3	T1:5.2
18	Intra organizational commerce	CO 3	T1:5.2
19	Work flow, automation customization	CO 3	T1:5.2
20	internal commerce, supply chain management	CO 3	T1:5.2
21	Corporate digital library: Document library, digital document types, corporate data warehouses	CO 4	T1:6.2
22	digital document types, corporate data warehouses	CO 4	T1:6.2
23	Advertising and marketing: Information based marketing	CO 6	T1:6.5

24	advertising on internet, on-line marketing process, market research	CO6	T1:6.5
25	Search and resource discovery paradigms	CO 5	T1:10.2
26	information search and retrieval	CO 5	T1:10.2
27	Commerce Catalogues, Information Filtering	CO 2	T1:10.2
28	Information Filtering	CO 2	T1:10.2
29	MULTIMEDIA	CO 3	T1:10.4
30	Multimedia: Key Multimedia Concepts	CO 3	T1:10.4
31	Digital Video and Electronic Commerce	CO 3	T1:10.4
32	Desktop Video Processing, Desktop Video Conferencing.	CO 3	T1:10.4
	PROBLEM SOLVING/ CASE STUDIES		
1	how to develop the data processing technology of Big Data banking systems improve the credit risk management process?	CO 1	R1:1.5
2	what are the tools and techniques of Artificial Intelligence (AI) that can help in improving electronic commerce (E-commerce)?	CO 1	R1:1.5
3	Will the social aspects of interpersonal contacts be a barrier to the creation of electronic banks without staff?	CO 1	R1:1.5
4	Write use of electronic brokerages?	CO 1	T1:3.2
5	List the New forms of organizational structures?	CO 4	T1:3.2
6	What are the main characteristics of cash payment in contrast with cheque payment?	CO 4	T1:3.2
7	Why is a certifying authority required in E Commerce?	CO 4	T1:4.3
8	Define Trade cycle and describe the different stages of a Trade cycle.	CO 5	T1:4.3
9	What are the necessary conditions a hash function used in digital signature should satisfy?	CO 1	T1:4.3
10	Why is security important in E-Commerce?	CO 3	T1:6.2
11	how should merchants promote their ecommerce sites?	CO 1	T1:6.2
12	what security risk does ecommerce involve?	CO 1	T1:6.2
13	what are Internet Security Services? explain each one of them with an example	CO 5	T1:6.5
14	Write about the security service that are to be offered in E-Payment system in detail.	CO 5	T1:6.5
15	Once a company has acquired customer, the key to maximizing revenue is keeping them. explain how e-commerce is helpful in customer retention?	CO 5	T1:6.5
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	Discussion of definition and terminology on Introduction to electronic commerce	CO 1	R1:1.5
2	Discussion of definition and terminology on Electronic payment systems	CO 2	T1:3.2
3	Discussion of definition and terminology on Performance of transmission lines	CO 3	T1:5.2
4	Discussion of definition and terminology on Consumer Search and Resource discovery	CO 4,5	T1:6.2,6.5

5	Discussion of definition and terminology on Multimedia	CO 5,6	T1:10.2,4
	DISCUSSION OF QUESTION BANK		
1	Discussion of Question on Introduction to electronic commerce	CO 1	R1:1.5
2	Discussion of Questionon Electronic payment systems	CO 2	T1:3.2
3	Discussion of Question on Performance of transmission lines	CO3	T1:5.2
4	Discussion of Question on Consumer Search and Resource discovery	CO 4,5	T1:6.2,6.5
5	Discussion of Question on Multimedia	CO 5,6	T1:10.2,4

Signature of Course Coordinator

HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING				
Course Title	MACH	MACHINE LEARNING			
Course Code	ACS014	ACS014			
Program	B.Tech	B.Tech			
Semester	VIII				
Course Type	CORE				
Regulation	R16				
		Theory		Practical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	Dr Chukka Santaiah, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSB12	П	Probability and statistics

II COURSE OVERVIEW:

The main emphasis of this course is to provide systems the ability to automatically learn and improve from experience without being explicitly programmed. The course includes the fundamental concepts to build, train, and predict data models using machine learning (ML) algorithms. This course provides a clear understanding on concepts of supervised learning through decision trees, advanced techniques like neural networks, Naive Bayes and k-nearest neighbor algorithmandintroduction tounsupervised and reinforcement learning. Machine Learning has revolutionized industries like medicine, healthcare, manufacturing, banking, and several other industries.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Machine Learning	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	PPT	_	Chalk & Talk		Assignments	х	MOOC
		\checkmark		\checkmark			
х	Open Ended Experiments	<	Seminars	х	Mini Project	х	Quiz
x	Others			•			

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
70 %	Understand
20 %	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz .

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Quiz \AAT	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

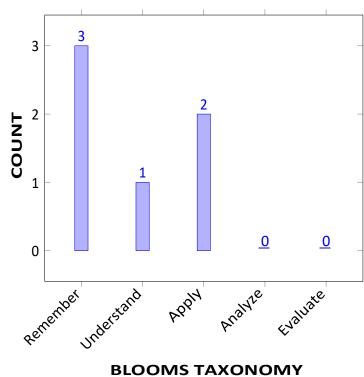
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The fundamental concepts, issues and challenges of machine learning associated to data for model selection.
11	The supervised learning methods such as decision trees, Na ["] ive Bayes classifier, k-nearest neighbor learning for building data models and basics of unsupervised learning methods.
111	The knowledge used for making predictions or decisions without human intervention on real-world problems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate machine learning concepts with decision trees in data classification for smart and automated applications.	Understand
CO 2	Make use of support vector machine and multilayer perceptrons to control learning rate in high dimensionality data classification.	Apply
CO 3	Select probabilistic classifiers with Naivebayes and graphical models for temporal data classification.	Remember
CO 4	Outline evolutionary algorithms to solve optimization problems in stochastic manner in machine learning.	Remember
CO 5	Utilize data clustering algorithms to perform cluster analysis with large categorical datasets in real life data mining applications.	Apply
CO 6	Identify appropriate machine learning techniques and suitable computing environment for real time applications.	Remember

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	Program Outcomes
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE / Quiz / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	CIE / Quiz / AAT
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Seminar/ AAT

PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	AAT
PO 12	Life - Long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Design next-generation computer systems, networking devices, search engines, soft computing and intelligent systems, web browsers, and knowledge discovery tools.	2	Research papers/ Group discussion
PSO 3	Practical experience in shipping real world software, using industry standard tools and collaboration techniques will equip to secure and succeed in first job upon graduation in IT industry.	2	Research papers/ Group discussion / Short term courses

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE				PSO'S											
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSC	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 3	\checkmark	>	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	-	-	-	-	-	-	>	-	-	\checkmark	-	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO1	Demonstrate machine learning concepts with decision trees in data classification for smart and automated applications, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	4
	PO2	Characteristics of machine learning that make it useful to identify real-world data, research, formulate and analyze complex engineering problems using principles of mathematics and engineering sciences.	5
	PO3	Design machine learning concepts with decision trees in data classification for smart and automated applications and design system components or processes and safety, and the cultural, societal, and environmental considerations.	5
	PO10	Determine machine learning concepts with decision trees in data classification for being able to comprehend and write effective reports and design documentation, make effective presentations.	1
	PSO1	Indicate machine learning concepts with decision trees in data classification for networking devices, search engines, soft computing and knowledge discovery tools.	4
	PSO3	Demonstrate machine learning concepts with decision trees in data classification for real world software, using industry standard tools and collaboration techniques.	3
CO 2	PO1	Make use of support vector machine and multilayer perceptrons to control learning rate in high dimensionality data classification, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3
	PO2	Accept support vector machine and multilayer perceptrons to control learning rate in high dimensionality to Identify, formulate, review research literature, and analyze complex engineeringproblems in data classification.	5

	PO3	Apply support vector machine and multilayer perceptrons to control learning rate for the specified needs with appropriate consideration for the safety, cultural, societal, and environmental considerations.	4
	PO10	Exploit of support vector machine and multilayer perceptrons to control learning rate in write effective reports.	5
	PSO1	Utilize the support vector machine and multilayer perceptrons to d esign next-generation computer systems, networking devices, and knowledge discovery tools	4
	PSO3	Make use of support vector machine and multilayer perceptrons to control learning rate in high dimensionality data classification using industry standard tools.	5
CO 3	PO1	Select probabilistic classifiers with Na [¬] ive bayes and graphical models to analyze the underlying mathematical relationships within and across machine learning algorithms to find solutions for complex engineering problems.	3
	PO2	Elect probabilistic classifiers with Na [¬] ive bayes and graphical models t o Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using engineering sciences	4
	PO3	Discriminate probabilistic classifiers with Na [¬] ive bayes and graphical models f o r the public health and safety, and the cultural, societal, and environmental considerations.	2
	PO10	Select probabilistic classifiers with Na ["] ive bayes and graphical models for design documentation.	5
	PSO1	Discriminate probabilistic classifiers with Naivebayes and graphical models for networking devices, search engines, soft computing and knowledge discovery tools	5
	PSO3	Elect probabilistic classifiers with Naivebayes and graphical models for using industry standard tools	5
CO 4	PO 1	Outline evolutionary algorithms to solve optimization problems in science, engineering fundamentals to relate the hypothesis space using machine learning.	3

	PO 2	Layout evolutionary algorithms to solve optimization problems in machine learning to Identify, formulate, review research literature, and analyze complex engineeringproblems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3
	PO 3	D e f i ne evolutionary algorithms to solve optimization problems instochastic manner in machine learning for the public health and safety, cultural, societal, and environmental considerations.	1
	PO10	Summarize evolutionary algorithms to solve optimization problems instochastic manner in machine learning to communicate effectively on complex Engineering.	2
	PSO1	Brief evolutionary algorithms to solve optimization problems instochastic manner in machine learning to design next-generation computer systems, networking devices, and knowledge discovery tools.	5
CO 5	PO1	Identify best models using algorithms for reasoning with uncertainty as well as the use of unreliable information using natural sciences and engineering sciences.	5
	PO2	Use research-based knowledge and methods for reasoning models with uncertainty as well as the use of unreliable information.	3
	PO3	Characteristics of machine learning that make it useful to identify real-world data, research , formulate and analyze complex engineering problems using principles of mathematics and engineering sciences .	5
	PO10	Communicate effectively on real world problems reasoning with uncertainty as well as the use of unreliable information by writing effective reports discussing with the engineering community.	3
	PSO1	Recognize models for reasoning with uncertainty as well as the use of unreliable information used in life-long learning in the broadest context of technological change.	3
CO 6	PO1	Apply the knowledge of mathematics and engineering fundamentals to identify appropriate learning functions as activation function for neural network design.	3
	PO2	Identify appropriate activation function to solve complex engineering problems using single or multilayer neural networks.	3

PO3	Characteristics of machine learning that make it useful to identify real-world data, research, formulate and analyze complex engineering problems using principles of mathematics and engineering sciences.	5
PO10	Characteristics of machine learning that make it useful to identify real-world data, research , formulate and analyze complex engineering problems using principles of mathematics and engineering sciences.	5
PSO1	Identify appropriate learning functions as activation function for designing next generation computer systems, intelligent systems and knowledge discovery tools.	4
PSO3	Characteristics of machine learning that make it useful to identify real-world data, research, formulate and analyze complex engineering problems using principles of mathematics and engineering sciences.	5

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE	Pro	gram	n Out	tcom	es/ I	No. c	of Ke	y Co	mpe	tenci	es N	latched	PSO'S				
OUTCOMES	PO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO	PSO	PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	5	5	-	-	-	-	-	-	1	-	-	4	-	1		
CO 2	3	5	4	-	-	-	-	-	-	1	-	-	3	-	1		
CO 3	3	5	4	-	-	-	-	-	-	1	-	-	4	-	1		
CO 4	3	7	4	-	-	-	-	-	-	1	-	-	3	-	-		
CO 5	1	5	5	-	-	-	-	-	-	1	-	-	3	-	-		
CO 6	3	7	7	-	-	-	-	-	-	1	-	-	4	-	2		

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE				PSO'S											
OUTCOMES	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	50	50	-	-	-	-	-	-	20	-	-	66.6	-	43.3
CO 2	100	50	40	-	-	-	-	-	-	20	-	-	50	-	43.3
CO 3	100	50	40	-	-	-	-	-	-	20	-	-	66.6	-	43.3
CO 4	100	70	40	-	-	-	-	-	-	20	-	-	50	-	-
CO 5	66.6	50	50	-	-	-	-	-	-	20	-	-	50	-	-
CO 6	100	70	70	-	-	-	-	-	-	20	-	-	66.6	-	66.6

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** 0 \leq C \leq 5% No correlation
- **2** 40 % <C < 60% –Moderate
- **1-5** <C≤ 40% Low/ Slight
- **3** 60% \leq C < 100% Substantial /High

COURSE				PRC)GR/	٩M	ουτ	COL	VIES				PSO'S			
OUTCOMES	PO	PO	PO	РО	РО	РО	РО	PO	PO	РО	РО	РО	PSO	PSO	PSC	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	2	2	-	-	-	-	-	-	1	-	-	3	-	2	
CO 2	3	2	1	1	-	1	-	-	-	1	-	-	2	-	2	
CO 3	3	2	1	-	-	-	-	-	-	1	-	-	3	-	2	
CO 4	3	2	1	1	-	1	-	-	-	1	-	-	2	-	-	
CO 5	2	2	2	-	-	-	-	-	-	1	-	-	2	-	-	
CO 6	3	2	3	-	-	-	-	-	-	1	-	-	3	-	3	
TOTAL	17	14	10	-	-	-	-	-	-	6	-	-	15	-	9	
AVERAGE	2.8	2.3	1.6	-	-	-	-	-	-	1	-	-	2.5	-	2.25	

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	~
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	~	5 Minutes Video	\checkmark	Open Ended Experiments	-
Assignments	~				

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
Х	Assessment of Mini Projects by Exp	perts	

XVIII SYLLABUS:

MODULE I	TYPES OF MACHINE LEARNING		
	Introduction: Well posed learning problems, Designing a Learning system, Perspective and Issues in Machine Learning. Concept Learning: Concept learning task, Concept learning as search, Find-S algorithm, Version space, Candidate Elimination algorithm, Inductive Bias.		
MODULE II	DECISION TREE LEARNINGS		
	Decision Tree Learning: Decision tree representation, Appropriate problems for decision tree learning, Basic decision tree learning algorithm, hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning.		
MODULE III ARTIFICIAL NEURAL NETWORKS			
	Artificial Neural Networks: Introduction, Neural Network representation, Appropriate problems, Perceptrons, Back propagation algorithm. Evaluating Hypothesis: Motivation, Estimating hypothesis accuracy, Basics of sampling theorem, Generalapproach for deriving confidence intervals, Difference in error of two hypothesis, Comparing learning algorithms.		
MODULE IV	BAYESIAN LEARNING		
	Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept learning, ML and LS error hypothesis, ML for predicting probabilities, MDL principle, Naive Bayes classifier, Bayesian belief networks,EM algorithm.		
MODULE V	INSTANCE BASED AND REINFORMENT LEARNING		
	Instance Based Learning: Introduction, k-nearest neighbor learning, locally weighted regression, radial basis function, cased-based reasoning. Reinforcement Learning: Introduction, Learning Task, Q Learning.		

TEXTBOOKS

- 1. Tom M. Mitchell, "Machine Learning", McGraw-Hill, 1st Edition, 2013.
- 2. Stephen Marsland, "Machine Learning An Algorithmic Perspective ", CRC Press, 1st Edition, 2009.

REFERENCE BOOKS:

1. RajjalShinghal, "Pattern Recognition and Machine Learning", Springer-Verlag, New York, 1st Edition, 2006..

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Institutions adopting OBE try to bring changes to the curriculum by dynamically adapting to the requirements of the different stakeholders like Students, Parents, Industry Personnel and Recruiters. OBE is all about feedback and outcomes. In this we will discuss about the course outcomes and program outcomes and their attainment		
	CONTENT DELIVERY (THEORY)		
1	Introduction to machine Learning	CO1	T1:1
2	Understanding Well posed learning problems	CO1	T1:1.1
3-4	Discuss the steps involved in Designing a Learning system	CO1	T1:1.2
5	Interpreting Issues in MachineLearning.	CO1	T1:1.3
6	Explain Concept learning task and Concept learning as search	CO1	T1:2.1,2.2
7	Explain Find-S algorithm	CO1	T1:2.4
8-9	Construct Version space using Candidate Elimination algorithm	CO1	T1:2.5,2.6
10	How to use Inductive Bias for different algorithms	CO1	T1:2.7
11	Decision tree representationusing attributes and values	CO2	T1:3.1,3.2
12	Appropriate problems for decision tree learning	CO2	T1:3.3
13	Basic decision tree learning algorithm advantages and disadvantages	CO2	T1:3.4
14-15	Construct decision tree by finding best attribute using ID3 Algorithm	CO2	T1:3.4
16	Explain how Hypothesis space search is used for prediction in decision tree learning	CO2	T1:3.5
17	How Inductive bias helps in reducing hypotheses space searching indecision tree learning	CO2	T1:3.6
18	Discussing Issues like overfitting in decision tree learning	CO2	T1:3.1
19	Introduction to Artificial Neural Networks	CO3	T1:4.1
20	Neural Network representation using inputs, output, weights and perceptron.	CO3	T1:4.2
21	Appropriate problems for neural network learning with different characteristics	CO3	T1:4.3
22-23	Representing single layer neural network and multilayer neural network using perceptrons	CO3	T1:4.4,4.5

24-25	Demonstration of Back propagation algorithm to update the	CO3	T1:4.5,4.6
26	weights.		T4 5 4
26	Evaluating accuracy of Hypothesis.	CO 3	T1:5.1
27	Finding sample error and true error to estimating hypothesis accuracy.	CO3, CO4	T1:5.2
28	Using basics of sampling theory to find the probability of predicting using binomial distribution.	CO4	T1:5.3
29	Understand the general approach for deriving confidence intervals used in finding true error.	CO4	T1:5.4
30	Observing the difference in error of two hypothesis so that prediction is accurate based on hypotheses.	CO4	T1:5.5
31	Comparing learning algorithms based on target functions considering the same training examples.	CO4	T1:5.6
32	Introduction to Bayesian Learning	CO5	T1:6.1
33	Design a concept learning algorithm based on Bayes theorem.	CO5	T1:6.2,6.3
34	Learning methods to minimize Least Squared error and maximize likelihood hypothesis.	CO5	T1:6.4
35	Using maximum likelihood hypotheses for predicting probabilities.	CO5	T1:6.5
36-37	Discussing Minimum Description Length principle and Bayesian learning method Naive Bayes classifier.	CO6	T1:6.6,6.7
38	Understand EM algorithm to train Bayesian belief networks used to describe the probability distribution.	CO6	T1:6.11,6.12
39	Introduction to Instance Based Learning	CO6	T1:8.1
40	k-nearest neighbor learning	CO6	T1:8.2
41	Locally weighted regression	CO6	T1:8.3
42	Radial basis function	CO6	T1:8.4
43	Cased-based reasoning	CO6	T1:8.5
44	Introduction to Reinforcement Learning	CO6	T1:13.1
45	Learning Task and Q Learning	CO6	T1:13.2,13.3
	PROBLEM SOLVING/ CASE STUDIES	S	
1	Cartoonifyimage with machine learning	CO 1	T1:11.2.1
2	Loan prediction using machine learning	CO 1	T1:11.2.2
3	Stock price prediction using machine learning	CO 2	T1:11.2.18
4	Predicting wine quality using wine quality dataset	CO 2	T1:11.2.25
5	Handwritten character recognition	CO 3	T1:11.4.1
6	Credit card fraud detection project	CO 3	T1:11.4.2
7	Enron investigation project	CO 4	R2:7.5
8	Online grocery recommendation using collaborative filtering	CO 4	R2:7.5
9	Rainfall prediction using linear regression	CO 5	R2:7.5
10	Voting classifier using sklearn	CO 5	R2:7.5
11	Fake news detection	CO 6	T1:11.4.1

12	Fake currency detection with machine learning	CO 6	T1:11.4.2					
13	software architecture	CO 6	T1:11.5.1					
14	system representation in architectural context	CO 6	T1:11.5.2					
15	Coupling and Cohesion in designing class based components.	CO 6	T2:7.5					
	S							
	DISCUSSION OF DEFINITION AND TERMIN	IOLOGY						
1	What is Perceptron in machine learning?	CO 1	R1:2.1-					
			2.11					
2	Define hypothesis?	CO 2, 3	R1:4.2-					
			4.11					
3	Define Gradient Descent?	CO 4	R2:5.6-5.9					
4	Define hypothesis?	CO 5	R4:8.1-8.9					
5	What are clustering techniques?	CO 6	R2:12.1-					
			12.16					
	DISCUSSION OF QUESTION BANK							
1	What is reinforcement learning?	CO 1,	R1:2.1-					
			2.11					
2	What is Pruning?	CO 2, 3	R1:4.2-					
			4.11					
3	Define Gradient Descent?	CO 4	R2:5.6-5.9					
4	Define MDL Principle?	CO 5	R4:8.1-8.9					
5	Define case-based reasoning	CO 6	R2:12.1-					
			12.16					

Signature of Course Coordinator

HOD, CSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	COMPUTER SCIENCE AND ENGINEERING						
Course Title	INFOR	INFORMATION SECURITY					
Course Code	ACS013						
Program	B.Tech						
Semester	VIII						
Course Type	Core						
Regulation	R-16	R-16					
	Theory Practical						
Course Structure	Lecture Tutorials Credits Laboratory Credits				Credits		
	3 - 3						
Course Coordinator	Ms B Geethavani, Assistant Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AIT003	IV	Computer Networks

II COURSE OVERVIEW:

This course focuses on the fundamentals of security that are used in protecting both the information present in computer storage as well as information passing over any computer networks. It includes attacks, security mechanisms, and secret-key and public-key cryptography. The authentication protocols and key management techniques for providing security in Email, IP and web, Firewalls and virtual private networks are learned.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Information Security	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	х	MOOC
×	Open Ended Experiments	х	Seminars	\checkmark	Quiz	х	Videos
×	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
45%	Understand
18%	Apply
27%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam Quiz \AAT		
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

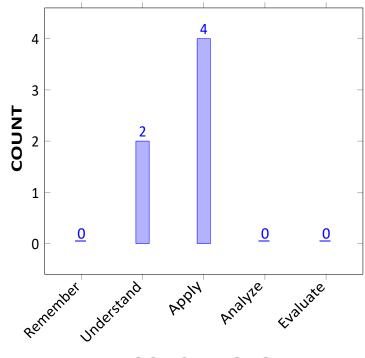
Two CIE exams shall be conducted at the end of the 8th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

VI COURSE OBJECTIVES:

The students will try to learn:


I	Understand security standards and practices. The scope and essentiality of threats, attacks to computers and networks associated to them
II	The symmetric and asymmetric key generation techniques used for providing message authentication, confidentiality and Integrity
	The use cases on cryptography and security systems for server and client systems such as web, email and firewalls

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Outline dmodel for network security and cryptographic algorithms to prevent attacks on computer and computer security.	Understand
CO 2	Demonstrate symmetric and asymmetric key ciphers for messaging end to end encryption used in different types of cryptographic algorithms	Understand
CO 3	Make use of tools and protocols used in message authentication and hashing functions for every day computing to remine secure	Apply
CO 4	Choose appropriate architecture and protocols used in email and IP security to protect against attackers and intruders	Apply
CO 5	Select firewalls to provide web security as case study in cryptography and network security	Apply
CO 6	Utilize cryptographic and security algorithms to enhance defence against cyber attacks and to improve organization working culture.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes						
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.						
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations						
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.						
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations						
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.						
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.						
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.						
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.						
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.						
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.						
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change						

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2.1	SEE / CIE / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2.3	SEE / CIE / AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1.3	SEE / CIE / AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2.5	SEE / CIE / AAT
PO 6	The engineer and society: CApply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	2.0	SEE / CIE / AAT
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	1.2	SEE / CIE / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	SEE / CIE / AAT
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	1.7	SEE / CIE / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by	
PSO 1	Understand, design and analyze computer programs in the areas related to Algorithms, System Software, Web design, Big data, Artificial Intelligence, Machine Learning and Networking.	2.3	SEE/CIE/AA	Т
PSO 3	Make use of modern computer tools for creating innovative career paths, to be an entrepreneur and desire for higher studies.	1.7	SEE/CIE/AA	Т

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES										PSO'S	5			
COURSE	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	<	<	<	-	<	-	<	-	<	-	<	>	-	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	<	-	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	<	-	\checkmark
CO 5	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Summarize the knowledge of mathematics to prevent attacks on computer using network security and cryptographic algorithms	1
	PO 2	Classify different network security and cryptographic algorithms by problem identification, formulation, abstraction, data collection, design and provide solution to prevent attacks on computer	6
	PO 3	Outline the customer requirements, maintenance and engineering activities to prevent attacks on computer using network and cryptography algorithms.	3
	PO 4	Interpret the appropriate quantitative method, engineering principles,technology development, industry standards,equipment,processes and the ability to apply them to develop the cryptographic and network security algorithms to prevent attacks on computer.	7

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 6	Outline the model for network security and cryptographic algorithms to prevent attacks on computer and computer security understand of commerical, management techniques and understand of the need .	3
	cryp com	Outline the model for network security and cryptographic algorithms to prevent attacks on computer and computer security ability to make informed ethical choices.	1
	PO 10	Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms	1
	PO 12	Use appropriate techniques and algorithms in computer science related, current trends of computer science, on going learning and continuum education industry oriented applications for preventing attacks on computers.	4
	PSO 1	Understand the problem specific constraints to prevent attacks on computers by applying appropriate, network security and cryptographic algorithms.	3
	PSO 3	Extend the use of modern computer tools for creating innovative career paths to prevent attacks on computer using network security and cryptographic algorithms.	1
CO 2	PO 1	Summarize the knowledge of mathematics, Scientific and Engineering principals to prevent attacks on computer using symmetric and asymmetric key ciphers for messaging end to end encryption.	3
	PO 2	Classify different network security and cryptographic algorithms by problem identification, formulation, abstraction, data collection, design and provide solution to prevent attacks on computer	6
	PO 3	Outline the customer requirements, maintenance and engineering activities to prevent attacks on computer using network and cryptography algorithms.	3
	PO 6	Demonstrate symmetric and asymmetric key ciphers for messaging end to end encryption used in different types of cryptographic algorithms understand of commerical, management techniques and understand of the need.	3
	PO 8	Demonstrate symmetric and asymmetric key ciphers for messaging end to end encryption used in different types of cryptographic algorithms ability to make informed ethical choices	1
	PO 10	Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 12	BUse appropriate techniques and algorithms in computer science related, industry oriented applications for preventing attacks on computers computer science related, current trends of computer science, on going learning.	3
	PSO 1	Understand the problem specific constraints to provide end to end security by applying, appropriate symmetric and asymmetric key ciphers for messaging end to end encryption used in different types of cryptographic algorithms.	4
	PSO 3	Extend the use of modern computer tools for creating innovative career paths to prevent attacks on computer using symmetric and asymmetric key ciphers for messaging end to end encryption used in different types of cryptographic algorithms.	1
CO 3	PO 1	Apply the knowledge of mathematics and Engineering principals to use the tools and protocols used in message authentication and hashing functions for every day computing to remain secure.	1
	PO 2	Classify different tools and protocols required for problem identification, formulation, abstraction, data collection, design and provide solution to prevent attacks on computer using MAC and Hash Function.	7
	PO 3	Outline the customer requirements, maintenance and engineering activities to remain secure in every day computing using MAC and Hash Functions.	3
	PO 6	Make use of tools and protocols used in message authentication understand of commerical, management techniques and understand of the need.	3
	PO 8	Make use of tools and protocols used in message authentication and hashing functions for every day computing to remine secure ability to make informed ethical choices .	1
	PO 10	Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms	1
	PO 12	Use appropriate techniques and algorithms in computer science related, current trends of computer science, on going learning and continuum education for preventing attacks on computers.	4
	PSO 1	Understand computers by applying appropriate , network security and cryptographic algorithms network security and cryptographic algorithms.	3
1	PSO 3	Make use of modern computer tools for creating innovative career paths for every day computing to remain secure using MAC and Hash functions.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 4	PO 1	Apply the knowledge of mathematics and Engineering principals to Choose appropriate architecture and protocols to provide security to email against attackers and intruders.	1
	PO 2	Make use of appropriate architecture and protocols required for problem identification, formulation, abstraction, data collection, design and to provide security to E-mail and IP.	6
	PO 3	Outline the customer requirements, maintenance , engineering activities to provide security, to email against attackers and intruders.	5
	PO 6	Choose appropriate architecture and protocols used in email and IP security to protect against attackers and intruders understand of commerical, management techniques and understand of the need.	3
	PO 8	Choose appropriate architecture and protocols used in email and IP security to protect against attackers and intruders ability to make informed ethical choices .	1
	PO 10	Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms.	1
	PO 12	Use appropriate techniques and algorithms in computer science related, current trends of computer science, on going learning.for preventing attacks on computers.	3
	PSO 1	Understand the problem specific constraints to prevent attacks on E-mail and IP by choosing appropriate architecture and protocols.	2
	PSO 3	Extend the use of modern computer tools for creating innovative career paths to prevent attacks on E-mail using appropriate algorithms.	1
CO 5	PO 1	Apply the knowledge of mathematics and Engineering principals to Select firewalls to provide web security as case study in cryptography and network security	1
	PO 2	Classify different firewalls required fordifferent tools and protocols required for problem identification, formulation, abstraction, data collection, design and provide solution and to provide web security.	7
	PO 3	Outline the customer requirements, maintenance , engineering activities to provide security, web security using appropriate firewalls.	5
	PO 6	Select firewalls to provide web security as case study in understand of commerical, management techniques and understand of the need. cryptography and network security.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 8	Select firewalls to provide web security as case study in ability to make informed ethical choices cryptography and network security.	1
	PO 10	Security problems on computers will be solved with clear applications of engineering network , security and cryptographic algorithms .	1
	PO 12	Use appropriate techniques and algorithms in computer science related, current trends of computer science, on going learning and continuum education for preventing attacks on computers.	4
	PSO 1	Understand the computers by applying appropriate, network security and cryptographic algorithms web security by using appropriate firewall.	3
	PSO 3	Extend the use of modern computer tools for creating innovative career paths to to provide web security by using appropriate firewall.	1
CO 6	PO 1	Apply the knowledge of mathematics and Engineering principals to to enhance defence against cyber-attacks and to improve organization working culture using cryptographic and security algorithms.	1
	PO 2	Classify different cryptographic and security algorithms required for problem identification, formulation, abstraction, data collection, design and provide solution to enhance defence against cyber-attacks and to improve organization working culture.	6
	PO 3	Outline the customer requirements, maintenance and engineering activities to enhance defence against cyber-attacks and to improve organization working culture using cryptographic and security algorithms	3
	PO 4	Interpret the appropriate quantitative method, engineering principles, the ability,to enhance defence against cyber-attacks and to improve organization working culture	5
	PO 6	Utilize cryptographic and security algorithms to enhance defence against cyber attacks and to understand of commerical, management techniques and understand of the need.	3
	PO 8	Utilize cryptographic and security algorithms to enhance defence against cyber attacks and to improve organization working culture	1
	PO 10	Security problems on computers will be solved with clear applications of engineering network, security and cryptographic algorithms	1
	PO 12	Use appropriate techniques , algorithms in computer science related, industry oriented applications for preventing attacks oncomputers.	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 1	Understand the problem, specific constraints and to prevent attacks on computers by applying appropriate network security and cryptographic algorithms.	3
	PSO 3	Extend the use of modern computer tools for creating innovative career paths to prevent attacks on computer using network security and cryptographic algorithms.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	6	3	7	-	3	-	1	-	1	-	4	3	-	1
CO 2	3	6	3	-	-	3	-	1	-	1	-	3	4	-	1
CO 3	1	7	3	-	-	3	-	1	-	1	-	4	3	-	1
CO 4	1	6	5	-	-	3	-	1	-	1	-	3	2	-	1
CO 5	1	7	5	-	-	3	-	1	-	1	-	4	3	-	1
CO 6	1	6	3	5	-	3	-	1	-	1	-	4	3	-	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	РО	PO	PO	PO	PO	РО	РО	PO	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	43.3	60	30	63.3	-	60	-	33.3	-	20	-	50	50	-	33.3
CO 2	100	60	30	-	-	60	-	33.3	-	20	-	37.5	66.6	-	33.3
CO 3	43.3	70	30	-	-	60	-	33.3	-	20	-	50	50	-	43.3
CO 4	43.3	60	50	-	-	60	-	33.3	-	20	-	37.5	33.3	-	43.3
CO 5	43.3	70	50	-	-	60	-	33.3	-	20	-	50	50	-	43.3
CO 6	43.3	60	30	45.4	-	60	-	33.3	-	20	-	50	50	-	43.3

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- **0** $0 \le C \le 5\%$ No correlation
- **1** -5 <C≤ 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- **3** 60% \leq C < 100% Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	2	1	3	-	2	-	1	-	1	-	2	2	-	1
CO 2	3	2	1	-	-	2	-	1	-	1	-	1	3	-	1
CO 3	2	3	1	-	-	2	-	1	-	1	-	2	3	-	2
CO 4	2	2	2	-	-	2	-	1	-	1	-	1	1	-	2
CO 5	2	3	2	-	-	2	-	1	-	1	-	2	3	-	2
CO 6	2	2	1	2	-	2	-	2	-	1	-	2	2	-	2
TOTAL	13	14	8	5	-	12	-	7	-	6	-	10	14	-	12
AVERAGE	2.1	2.3	1.3	2.5	-	2.0	-	1.2	-	1	-	1.7	2.3	-	1.7

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	\checkmark	Open Ended Experiments	-
Assignments	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
Х	Assessment of Mini Projects by Exp	perts	

XVIII SYLLABUS:

MODULE I	ATTACKS ON COMPUTERS AND COMPUTER SECURITY						
	Attacks on computers and computer security: Introduction, the need for security, security approaches, principles of security, types of security attacks, security services, security mechanism, a model for network security; Cryptography concepts and techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.						
MODULE II	SYMMETRIC KEY CIPHERS						
	Symmetric key ciphers:Block cipher principles and algorithms (DES,AES,Blowfish), differential and linear cryptanalysis, block cipher modes of operation, stream ciphers,RC4 location, and placement of encryption function, key distribution; Asymmetric key ciphers: Principles of public key cryptosystems, algorithms (RSA Diffie-Hellman, ECC) key distribution.						

MODULE III	MESSAGE AUTHENTICATION ALGORITHM AND HASH FUNCTIONS						
	Message authentication algorithm and hash functions: Authentication requirements, functions, message, authentication codes, hash functions, secure hash algorithm, whirlpool, HMAC, CMAC, digital signatures, knapsack algorithm. Authentication application: Kerberos, X.509 authentication service, public – key infrastructure, biometric authentication.						
MODULE IV	E-MAIL SECURITY						
	E-mail Security: Pretty Good Privacy; S/MIMI IP Security: IP security overview, IP security architecture, authentication header, encapsulating security payload, combining security associations, key management.						
MODULE V	WEB SECURITY						
	WEB SECURITY Web security: Web security considerations, secure socket layer and transport layer security, secure electronic transaction intruders; Virus and firewalls: Intruders, intrusion detection password management, virus and related threats, countermeasures, firewall design principles; Types of firewalls Case Studies on Cryptography and security: Secure inter-branch payment transactions, cross site scripting vulnerability, virtual electronics.						

TEXTBOOKS

- 1. William Stallings, —Cryptography and Network Security, Pearson Education, 4th Edition, 2005.
- 2. Atul Kahate, —Cryptography and Network Security, McGraw-Hill, 2nd Edition, 2009.

REFERENCE BOOKS:

- 1. C K Shymala, N Harini, Dr. T R Padmanabhan, —Cryptography and Network Security, Wiley India, 1st Edition, 2016.
- 2. Behrouz A. Forouzan Debdeep Mukhopadhyay, —Cryptography and Network Security, McGraw- Hill, 2nd Edition, 2010.

WEB REFERENCES:

- 1. http://bookboon.com/en/search?q=INFORMATION+SECURITY
- 2.

https://books.google.co.in/books/about/Cryptography_Network Security _Sie _2E.html?id=Kokjwdf0 C

- 3. https://books.google.co.in/books/about/Information_Security.html?id=Bh45pU0_E_4C
- 4. www.technofest2u.blogspot.com

COURSE WEB PAGE:

https://lms.iare.ac.in/index ?route=course/details& course id=84

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	-
	CONTENT DELIVERY (THEORY)		
2	Introduction, the need for security	CO 1	T1:1.1- 1.4
3	security approaches, principles of security	CO 1	T1:1.5
4	types of security attacks, security services	CO 1	T2:2.2
5	security mechanism, a model for network security	CO 1	T2:2.2
6	Cryptography concepts and techniques: Introduction, plain text and cipher text,	CO 1	T2:2.1- 2.2
7	substitution techniques	CO 1	T2:2.3- 2.5
8	transposition techniques,	CO 1	T1:2.6
9	encryption and decryption	CO 1	T1:2.7- 2.8
10	symmetric and asymmetric key cryptography,	CO 1	T1:3.1- 3.2
11	steganography, key range and key size	CO 1	T1:3.2- 3.4
12	possible types of attacks.	CO 1	T1:5.2
13	Symmetric key ciphers:Block cipher principles and algorithms (DES,AES,Blowfish)	CO 2	T1:5.3
14	differential and linear cryptanalysis,	CO 2	T1:5.3
15	block cipher modes of operation,	CO 2	T1:5.3
17	stream ciphers,RC4 location, and placement of encryption function	CO 2	T1:5.4- 5.5
18	key distribution; Asymmetric key ciphers: Principles of public key cryptosystems	CO 2	T1:5.6, 21.4
19	algorithms (RSA Diffie-Hellman, ECC) key distribution.	CO 2	T1:6.1
20	Message authentication algorithm and hash functions	CO 3	T1:6.2- 6.3
21	Authentication requirements, functions, message	CO 3	T1:6.4
22	authentication codes, hash functions	CO 3	T1:6.5
23	secure hash algorithm	CO 3	T1:6.6- 6.7
24	whirlpool, HMAC	CO 3	T1:8.1
26	CMAC	CO 3	T1:8.2
27	digital signatures,	CO 3	T1:8.3

29	knapsack algorithm	CO 3	T1:8.4-
			8.5
30	Authentication application: Kerberos	CO 3	T1:8.6
31	X.509 authentication service,	CO 3	T1:8.6
33	public – key infrastructure, biometric authentication.	CO 3	T1:9.5
34	E-mail Security: Pretty Good Privacy;	CO 4	T1:9.6
35	S/MIMI IP Security	CO 4	T1:10.1- 10.2
36	IP security overview	CO 4	T1:10.3
37	IP security architecture	CO 4	T1:10.5
38	authentication header	CO 4	T1:10.6
39	encapsulating security payload	CO 4	T1:10.6
40	combining security associations	CO 4	T1:11.3
41	key management.	CO 4	T1:11.4
43	Web security: Web security considerations,	CO 5	T1:11.5
44	secure socket layer and transport layer security,	CO 5	T1:11.6
45	secure electronic transaction intruders	CO 5	T1:12.1- 12.3
46	Virus and firewallst	CO 5	T1:12.4- 12.6
48	Intruders, intrusion detection password management	CO 5	T1:12.7- 12.8
49	virus and related threats, countermeasures	CO 6	T1:7.1- 7.2
50	firewall design principles;	CO5	T1:8.1
51	Types of firewalls Case Studies on Cryptography and security	CO 5	T1:8.2
52	Secure inter-branch payment transactions	CO 6	T1:8.3
55	cross site scripting vulnerability	CO 6	T2:27.8
56	Secure inter-branch payment transactions	CO 6	T2:27.9
57	virtual electronics.	CO 6	T1:8.2- 8.3
	PROBLEM SOLVING/ CASE STUDIES	s	
16	Problems on Substitution techniques	CO 1	T1:5.3- 5.3
25	Problems on transposition techniques	CO 1	T1:8.1- 8.3
28	Problems on RSA algorithm	CO 2	T1:8.4- 8.6 T1:9.1- 9.2
32	Problems on encryption and decryption methods	CO 3	T1:9.4- 9.6
42	Problems on ceaser cipher method	CO 1	T1:11.3- 11.6

47	Problems on Hill Ciphermethod	CO 2	T1:12.1- 12.6
53	Problems on performance issues	CO 2	T1:8.1- 8.3
54	Problems on DES Algorithm	CO 2	T1:8.1- 8.3
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
58	Definitions on information security terminologies	CO 1	T1:1.2
59	Definitions on symmetric and asymmetric cipher	CO 2	T1:1.5
60	Definitions on MAC and Hash functions	CO 3	T1:8,9
61	Definitions on E-mil and PGP	CO 4	T1:10,11
62	Definitions on Intruders, Firewalls	CO 5, CO 6	T1:9.1
	DISCUSSION OF QUESTION BANK	0.0	
1		CO 1	T1:1.2
	Tyoes of security attacks		
2	Symmetric and asymmetric algrorthims	CO 2	T1:1.5
3	Authentication and hashing algorithms	CO 3	T1:8,9
4	Email security algorithms	CO 4	T1:10,11
5	Intrusion Detection system and firewalls	CO 5,6	T1: 9.1

Signature of Course Coordinator

HOD, CSE