

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

ATTAINMENT OF COURSE OUTCOME- ACTION TAKEN REPORT

Name of the Faculty:	Ms. KS INDRANI	Department:	CSIT	
Regulation:	UG20 Batch:		2020-2024	
Course Name:	Analog and Digital Electronics		AECC08 60% (1.8 on 3 scale)	
Semester:	III	Target Value:		

Attainment of Cos:

	Course Outcome	Direct Attainment	Indirect Attainment	Overall Attainment	Observations
CO1	Demonstrate the volt-ampere characteristics of semiconductor devices for finding cut-in voltage, resistance and capacitance.	0.9	2.5	1.2	Target not Attained
CO2	Illustrate half wave and full wave rectifier circuits with filter and without filters used to convert the alternating current in to direct current.	0.9	2.5	1.2	Target not Attained
CO3	Analyze the input and output characteristics of transistor configurations and small signal h-parameter models to determine the input - output resistances, current gain and voltage gain	0.9	2.5	1.2	Target not Attained
CO4	Identify the functionality of logic gates, parity code and hamming code techniques for error detection and correction of single bit in digital systems.	1.6	2.5	1.8	Target Attained
CO5	Make use of appropriate logic gates to implement combinational logic circuits.	1.6	2.5	1.8	Target Attained
CO6	Select a required flip flop to realize synchronous and asynchronous counters for memory storing applications.	0.6	2.5	1	Target not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)
In this Course CO1,CO2,CO3 and CO6 requires additional attention and it is improved by

- CO 1: Planning and conducting more tutorial hours to understand the topics like operation of PN junction diode and BJT amplifiers with their characteristics.
- CO2: Providing more inputs to understand the operation of half wave and full wave rectifiers with and without filters and its parameter calculations with example problems.
- CO3: Conducting special classes on transistor configurations and their operations, h-parameter models for deriving the required parameter's with examples problems.
- CO 6: Giving more assignment problems for realization of synchronous and asynchronous counters with required flip flops.

Course Coordinator

Mentor

HOD