

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

ATTAINMENT OF COURSE OUTCOME- ACTION TAKEN REPORT

Name of the Faculty:	Dr. SHANKARAIAH NADDI	Department:	Physics 2022-2026 AHSC09	
Regulation:	UG20	Batch:		
Course Name:	Applied Physics	Course Code:		
Semester:	H.	Target Value:	60% (1.8 on 3 scale)	

Attainment of Cos:

	Course Outcome	Direct Attainment	Indirect Attainment	Overall Attainment	Observations
CO1	Demonstrate the basic concepts of python programming with the help of data types, operators and expressions, console input/output	2.3	2.5	2.3	Target Attained
CO2	Make use of control statements for altering the sequential execution of programs in solving problems.	0.9	2.5	1.2	Target Not Attained
CO3	Demonstrate operations on built-in container data types (list, tuple, set, dictionary) and strings	3	2.5	2.9	Target Attained
CO4	Illustrate operations and applications on strings with the help of built in functions.	1.3	2.5	1.5	Target Not Attained
CO5	Solve the problems by using modular programming concepts through functions.	2.3	2.5	2.3	Target Attained
CO6	Identify object oriented programming constructs for developing large, modular and reusable real-time programs.	3	2.5	2.9	Target Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

In this Course CO2 and CO4 requires additional attention and it is improved by

- CO 2: Providing information on different solids and important aspects of semiconductors in terms of carrier concentration for implementation.
- CO 4: Conducting more tutorials on modular the properties of dielectric and magnetic materials suitable for engineering applications to make the students to benefit.

Course Coordinator

Mentor

HOD