

INSTITUTE OF AERONATICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

ATTAINMENT OF COURSE OUTCOME- ACTION TAKEN REPORT

Name of the Faculty:	Mr MD. Khadir	Department:	ECE	
Regulation:	IARE-R16	Branch:	2017-2021	
Course Name:	Control Systems	Course Code:	AEE009	
Semester:	IV	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observations	
CO1	Relate the different physical and mechanical systems into equivalent electrical analogies using the mathematical form of complex physical systems.	1.6	2.2	1.7	Attainment target is not reached	
CO2	Utilize various reduction techniques for developing the transfer function and steady state error with the standard input signals.	1.6	2.2	1.7	Attainment target is not reached	
CO3	Make use of the time domain analysis to predict transient response specifications for analysing system's stability	0.9	2.2	1.2	Attainment target is not yet reached	
CO4	Infer the stability of first and second order systems using frequency domain specifications.	0.6	2.2	0.9	Attainment target is not yet reached	
CO5	Classify the types of compensators in time domain and frequency domains specifications for increasing the steady state accuracy of the system.	0.9	2.2	1.2	Attainment target is not reached	
CO6	Interpret linear system equations in state- variable form for the analysis of system's dynamic behavior.	0.9	2.2	1.2	Attainment target is not reached	

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO 1: Providing more information on different physical and mechanical systems into equivalent electrical analogies

CO 2: Additional inputs will be provided on reduction techniques for developing the transfer function

CO 3: Giving assignments on time domain analysis to predict transient response

CO 4: Conducting tutorial lectures on stability analysis of ffirst and second order systems in frequency domain.

CO 5: Providing more information on compensators in time domain and frequency domain.

CO 6: Conducting tutorial lectures on linear system equations and state variables.

MD kd-Course Coordinator Mentor

HOD

Head of the Department
Electronics and Communication Engineering
INSTALLE OF AERONAUTICAL ENGINEERING
INSTALLE OF AERONAUTICAL ENGINEERING