

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

ATTAINMENT OF COURSE OUTCOME- ACTION TAKEN REPORT

Name of the Faculty:	Ms. P Annapurna	Department:	ECE
Regulation:	R18	Batch:	2019-2023
Course Name:	Satellite and Microwave Engineering	Course Code:	AECB28
Semester:	VII	Target Value:	60% (1.8)

Attainment of COs:

	Course Outcome	Direct Attainment	Indirect Attainment	Overall Attainment	Observations
CO1	Analyze the concepts of transmission lines and waveguides to derive the field components of wave equations in rectangular modes.	0.9	2.1	1.1	Target not Attained
CO2	Illustrate the principle of waveguide components to couple microwave power and make the relation between input and output power	1.6	2.1	1.7	Target not Attained
CO3	Apply the concept of S-Matrix to measure output power in microwave junctions and directional couplers	3	2.1	2.8	Target Attained
CO4	Demonstrate the operation of microwave tubes, solid state devices for the generation and transmission of the microwave frequencies.	0.9	2.1	1.1	Target not Attained
CO5	Classify the satellite subsystems to control the altitude and position of a complete space vehicle / satellite	2.3	2.1	2.3	Target Attained
CO6	Identify an appropriate modulation, multiplexing and multiple access schemes for a satellite communication link to improve the link performance.	1.6	2.1	1.7	Target not Attained

Action Taken Report: (To be filled by the concerned faculty/course coordinator)

CO1: Guest lectures will be conducted on the concepts of transmission lines and waveguides to derive the field components of wave equations in rectangular modes.

CO2: Guest lectures will be conducted on the principle of waveguide components to couple microwave power and make the relation between input and output power

CO4: Guest lectures will be conducted on operation of microwave tubes, solid state devices for the generation and transmission of the microwave frequencies.

CO6: Assignments and additional information will be provided on the identification of an appropriate modulation, multiplexing, and multiple access schemes for a satellite communication link to improve the link performance.

Course Coordinator

Mentor

HOD

Dr. P. MUNASWAMY M.Tech, Ph.D., MISTE Professor & Head ELECTRONICS AND COMMUNICATION ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad- 500 043, T.S.