

## INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

## ELECTRONICS AND COMMUNICATION ENGINEERING

## ATTAINMENT OF COURSE OUTCOME- ACTION TAKEN REPORT

| Name of the Faculty: | Dr. R Murali Prasad | Department:  | ECE       |  |
|----------------------|---------------------|--------------|-----------|--|
| Regulation:          | UG20                | Branch:      | 2020-2024 |  |
| Course Name:         | Signals and systems | Course Code: | AECC02    |  |
| Semester:            | emester: III        |              | 60% (1.8) |  |

## Attainment of Cos:

| Course Outcome |                                                                                                                                                      | Direct<br>Attainment | Indirect<br>Attainment | Overall<br>Attainment | Observations                         |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|-----------------------|--------------------------------------|
| CO1            | Describe the concepts of signals and signal properties for performing mathematical operations.                                                       | 1.6                  | 2.3                    | 1.7                   | Attainment target is not yet reached |
| CO2            | Make use of Fourier series and Fourier transform for calculating spectral characteristics of periodic and aperiodic signals                          | 0.3                  | 2.3                    | 0.7                   | Attainment target is not yet reached |
| CO3            | Utilize the concepts of convolution and correlation to determine the response of a LTI system.                                                       | 1.3                  | 2.3                    | 1.5                   | Attainment target is not yet reached |
| CO4            | Classify the ideal low pass, high pass, band<br>pass and band stop filters for obtaining the<br>response of linear time invarianat system            | 0.6                  | 2.3                    | 0.9                   | Attainment target is not yet reached |
| CO5            | Apply the Laplace and Z transform for analyzing the frequency domain representation of continuous and discrete time signals and system respectively. | 0.9                  | 2.3                    | 1.2                   | Attainment target is not yet reached |
| CO6            | Demonstrate the procedure for sampling and reconstruction of band limited signals by using sampling techniques.                                      | 0.9                  | 2.3                    | 1.2                   | Attainment target is not yet reached |

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: Conducting Guest lectures on the concepts of signals and signal properties for improving students performance

CO2: Additional inputs will be provided on Fourier series and Fourier transform for calculating spectral characteristics

CO3: Additional inputs will be provided on concepts of convolution and correlation

CO4: Additional inputs will be provided on the ideal low pass, high pass, band pass and band stop filters

CO5: Giving assignments and conducting tutorials on the Laplace and Z transform for analyzing the frequency domain representation of continuous and discrete time signals

CO6: Giving assignments and conducting tutorials on sampling and reconstruction of band limited signals by using sampling techniques.

Mentor

Head of the Department