

Dundigal, Hyderabad - 500043, Telangana

ELECTRONICS AND COMMUNICATION ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Ms. M SREEVANI	Department:	Electronics and Communication Engineering
Regulation:	IARE - R20	Batch:	2021-2025
Course Name:	Electromagnetic Waves and Transmission Lines	Course Code:	AECC11
Semester:	IV	Target Value:	60% (1.8)

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Describe fundamental laws (Coulomb's and Gauss's) of electrostatic fields to evaluate the field intensity and flux density of continuous charge distributions	2.30	2.30	2.3	Attained
CO2	Demonstrate Biot-Savart's law and Ampere's circuit law to determine forces due to magnetic fields	2.00	2.30	2.1	- Attained
CO3	Apply Maxwell's equations and their applications to time varying fields and boundary conditions	0.90	2.30	1.2	Not Attained
CO4	Construct the wave equations for both conducting and dielectric media to derive the relation between electric and magnetic field intensities	1.40	2.30	1.6	Not Attained
CO5	Understand the propagation of electromagnetic waves through different media using the concept of uniform plane waves	2.70	2.30	2.6	Attained
CO6	Make use of the smith chart as a graphical tool to solve impedance matching issues in transmission lines	2.70	2.30	2.6	Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO3: Guest lecture will be conduct on Maxwell's equations and their applications

CO4: Tutorials will be conduct on wave equations for both conducting and dielectric media to derive the relation between electric and magnetic field intensities

Course Coordinator

Head of the Department

Head of the Department **ELECTRONICS AND COMMUNICATION ENGINEERING** INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad- 500 043. T.S.