

IARE INSTITUTE OF AERONAUTICAL ENGINEERING

Outcome Based Education (OBE) Manual IARE - R18

Department of Electronics and Communication Engineering

(M.Tech - Embedded Systems)

Contents

1	Vision	n, Mission, Quality Policy, Philosophy & Core Values	1
	1.1	Vision and Mission of the Institution	1
	1.2	Vision and Mission of the Department	2
2	Progr	am Educational Objectives (PEOs)	2
	2.1	Mapping of program educational objectives to program outcomes:	3
3	Progr	am Outcomes (POs)	3
4	Relati	ion between the Program Educational Objectives and the POs	4
5	Bloom	ns Taxonomy	5
	5.1	Incorporating Critical Thinking Skills into Course Outcome Statements	6
	5.2	Definitions of the different levels of thinking skills in Bloom's taxonomy:	6
	5.3	List of Action Words Related to Critical Thinking Skills	7
6	Guide	elines for writing Course Outcome Statements:	10
	6.1	Course Outcomes (COs)	10
	6.2	Developing Course Outcomes	10
	6.3	Relationship of Course Outcome to Program Outcome	11
	6.4	Characteristics of Effective Course Outcomes	11
	6.5	Examples of Effective Course Outcomes	11
	6.6	CO-PO Course Articulation Matrix (CAM) Mapping	14
	6.7	Tips for Assigning the values while mapping COs to POs	15
	6.8	Method for Articulation	15
7	Key C	Competencies for Assessing Program Outcomes:	16
8	Progr	am Outcomes Attained through course modules:	18
9	Metho	ods for measuring Learning Outcomes and Value Addition:	19
	9.1	Continuous Internal Assessment (CIA)	20
	9.2	Alternate Assessment Tools (AAT)	20
	9.3	Semester End Examination (SEE)	20
	9.4	Laboratory and Project Works	20
	9.5	Course Exit Surveys	20
	9.6	Programme Exit Survey	21
	9.7	Alumni Survey	21
	9.8	Employer Survey	21
	9.9	Course Expert Committee	21
	9.10	Programme Assessment and Quality Improvement Committee (PAQIC)	21
	9.11	Department Advisory Board (DAB)	21
	9.12	Faculty Meetings	22
	9.13	Professional Societies	22
10	CO-	Assessment processes and tools:	22

A	Sam	ple Course Description	26
	12	Course Description:	25
		11.1 PO Direct Attainment is calculated using the following rubric:	24
	11	PO- Assessment tools and Processes	24
		10.2 Indirect Assessment:	23
		10.1 Direct Assessment:	22

OVERVIEW

Outcome Based Education (OBE) is an educational model that forms the base of a quality education system. There is no single specified style of teaching or assessment in OBE. All educational activities carried out in OBE should help the students to achieve the set goals. The faculty may adapt the role of instructor, trainer, facilitator, and/or mentor, based on the outcomes targeted.

OBE enhances the traditional methods and focuses on what the Institute provides to students. It shows the success by making or demonstrating outcomes using statements "able to do" in favour of students. OBE provides clear standards for observable and measurable outcomes.

National Board of Accreditation (NBA) is an authorised body for the accreditation of higher education institutions in India. NBA is also a full member of the Washington Accord. NBA accredited programmes and not the institutions.

Higher Education Institutions are classified into two categories by NBA

Tier – 1: Institutions consists of all IITs, NITs, Central Universities, State Universities and Autonomous Institutions. Tier - 1 institutions can also claim the benefits as per the Washington Accord.

Tier - 2 Institutions consists of affiliated colleges of universities.

What is Outcome Based Education (OBE)?

Institutions adopting OBE try to bring changes to the curriculum by dynamically adapting to the requirements of the different stakeholders like Students, Parents, Industry Personnel and Recruiters. OBE is all about feedback and outcomes.

Four levels of outcomes from OBE are:

- 1. Program Educational Objectives (PEOs)
- 2. Program Outcomes (POs)
- 3. Program Specific Outcomes (PSOs)
- 4. Course Outcomes (COs)

Why OBE?

- 1. International recognition and global employment opportunities.
- 2. More employable and innovative graduates with professional and soft skills, social responsibility and ethics.
- 3. Better visibility and reputation of the technical institution among stakeholders.
- 4. Improving the commitment and involvement of all the stakeholders.
- 5. Enabling graduates to excel in their profession and accomplish greater heights in their careers.
- 6. Preparing graduates for the leadership positions and challenging them and making them aware of the opportunities in the technology development.

Benefits of OBE

Clarity: The focus on outcome creates a clear expectation of what needs to be accomplished by the end of the course.

Flexibility: With a clear sense of what needs to be accomplished, instructors will be able to structure their lessons around the students' needs.

Comparison: OBE can be compared across the individual, class, batch, program and institute levels. **Involvement:** Students are expected to do their own learning. Increased student's involvement allows them to feel responsible for their own learning, and they should learn more through this individual learning.

- Teaching will become a far more creative and innovative career
- Faculty members will no longer feel the pressure of having to be the "source of all knowledge".
- Faculty members shape the thinking and vision of students towards a course.

India, OBE and Accreditation:

From 13 June 2014, India has become the permanent signatory member of the Washington Accord. Implementation of OBE in higher technical education also started in India. The National Assessment and Accreditation Council (NAAC) and National Board of Accreditation (NBA) are the autonomous bodies for promoting global quality standards for technical education in India. NBA has started accrediting only the programs running with OBE from 2013.

The National Board of Accreditation mandates establishing a culture of outcome-based education in institutions that offer Engineering, Pharmacy, Management program. Reports of outcome analysis help to find gaps and carryout continuous improvements in the education system of an Institute, which is very essential.

1 Vision, Mission, Quality Policy, Philosophy & Core Values

1.1 Vision and Mission of the Institution

Vision

To bring forth professionally competent and socially sensible engineers, capable of working across cultures meeting the global standards ethically.

Mission

To provide students with an extensive and exceptional education that prepares them to excel in their profession, guided by dynamic intellectual community and be able to face the technically complex world with creative leadership qualities.

Further, be instrumental in emanating new knowledge through innovative research that emboldens entrepreneurship and economic development for the benefit of wide spread community.

Quality Policy

Our policy is to nurture and build diligent and dedicated community of engineers providing a professional and unprejudiced environment, thus justifying the purpose of teaching and satisfying the stake holders.

A team of well qualified and experienced professionals ensure quality education with its practical application in all areas of the Institute.

Philosophy

The essence of learning lies in pursuing the truth that liberates one from the darkness of ignorance and Institute of Aeronautical Engineering firmly believes that education is for liberation.

Contained therein is the notion that engineering education includes all fields of science that plays a pivotal role in the development of world-wide community contributing to the progress of civilization. This institute, adhering to the above understanding, is committed to the development of science and technology in congruence with the natural environs. It lays great emphasis on intensive research and education that blends professional skills and high moral standards with a sense of individuality and humanity. We thus promote ties with local communities and encourage transnational interactions in order to be socially accountable. This accelerates the process of transfiguring the students into complete human beings making the learning process relevant to life, instilling in them a sense of courtesy and responsibility.

Core Values

Excellence: All activities are conducted according to the highest international standards.

Integrity: Adheres to the principles of honesty, trustworthiness, reliability, transparency and accountability.

Inclusiveness: To show respect for ethics, cultural and religious diversity and freedom of thought.

Social Responsibility: Promotes community engagement, environmental sustainability, and global citizenship. It also promotes awareness of, and support for, the needs and challenges of the local and global communities.

Innovation: Supports creative activities that approach challenges and issues from multiple perspectives in order to find solutions and advance knowledge.

1.2 Vision and Mission of the Department

Vision

To produce professionally competent engineers, innovators and entrepreneurs capable of effectively addressing the technical challenges with social responsibility and professional ethics.

Mission

To provide an academic environment that will ensure high quality education, training and research by keeping students abreast of latest research and innovations in science and technology aimed at promoting employability, entrepreneurship, leadership qualities with ethics and research attitude.

M1: To provide an academic environment that will ensure high quality education, training and research.

M2: To keep the students abreast of latest research and innovations in science and technology.

M3: To promote employability, entrepreneurship, leadership qualities with ethics and research attitude

2 Program Educational Objectives (PEOs)

Program Educational Objectives (PEOs) should be defined by the Head of the Department in consultation with the faculty members. PEOs are a promise by the department to the aspiring students about what they will achieve once they join the programme. PEO assessment is not made compulsory by NBA as it is quite difficult to measure in Indian context. NBA assessors usually do not ask for PEO assessment. PEOs are about professional and career accomplishment after 4 to 5 years of graduation. PEOs can be written from different perspectives like Career, Technical Competency and Behaviour. While writing the PEOs do not use the technical terms as it will be read by prospective students who wants to join the programme. Three to five PEOs are recommended.

Program Educational Objective – I: Lifelong learning and Research:

Be successful practicing professionals or pursue doctoral studies in areas related to the program, contributing significantly to research and development activities

Program Educational Objective – II: Sucess in Professional career:

Demonstrate technical competence, such as identifying, formulating, analyzing, and creating engineering solutions using appropriate current embedded engineering techniques, skills, and tools.

Program Educational Objective – III: Communication skills and Leadership:

To work and communicate effectively in inter-disciplinary environment, either independently or in a team, and demonstrate leadership qualities.

Program Educational Objective – IV: Design/Development of Solutions:

An ability to apply their in-depth knowledge in embedded systems to evaluate, analyze and synthesize existing and novel designs.

With a view to challenge ourselves and to nurture diverse capabilities for professional and intellectual growth for our students it is important for the department to define departmental objectives in generalized and broad format. Adherence to these objectives is proposed to be demonstrated through actions or achievements.

The department of Electronics and Communication Engineering periodically reviews these objectives and as part of this review process, encourages comments from all interested parties including current students, alumni, prospective students, faculty, teaching assistants and members of related professional organizations, and colleagues from other educational institutions.

2.1 Mapping of program educational objectives to program outcomes:

The following Figure 1 shows the correlation between the PEOs and the POs

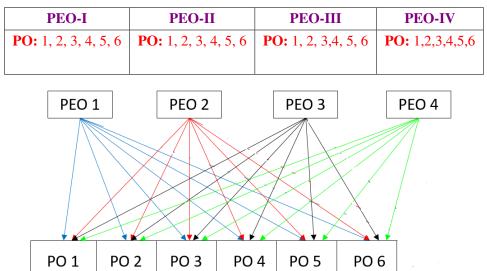


FIGURE 1: Correlation between the PEOs and the POs

3 Program Outcomes (POs)

A Program Learning Outcome is broad in scope and be able to do at the end of the programme. POs are to be in line with the graduate attributes as specified in the Washington Accord. POs are to be specific, measurable and achievable. NBA has defined 3 POs and departement has defined 3 more and totally 6 POs are followed for the course. In the syllabus book given to students, there should be clear mention of course objectives and course outcomes along with CO-PO course articulation matrix for all the courses.

	M. Tech (ECE) - PROGRAM OUTCOMES (PO's)
A gradu	ate of the Electronics and Communication Engineering Program will demonstrate:
PO1	Independently carry out research / investigation and development work to solve practical
	problems.

PO2	Write and present a substantial technical report / document		
PO3	Write and present a substantial technical report / document		
PO4	Apply the skills and knowledge needed to serve as a professional engineer skilful at de-		
	signing embedded systems for effective use in communications, IoT, medical electronics		
	and signal processing applications.		
PO5	Function on multidisciplinary environments by working cooperatively, creatively and		
	responsibly as a member of a team		
PO6	Recognize the need to engage in lifelong learning through continuing education and		
	research.		

4 Relation between the Program Educational Objectives and the POs

Broad relationship between the program objectives and the program outcomes is given in the following Table below:

		(1)	(2)	(3)	(4)
	PEO's→ ↓PO's	Lifelong learning	Success in Profession	Communica -tion skills	velopment
		and	-al career	and Lead-	of Solutions
		Research		ership	
PO1	Independently carry out re-	3	3	3	3
	search / investigation and				
	development work to solve				
	practical problems.				
PO2	Write and present a sub-	2	2	3	3
	stantial technical report /				
	document				
PO3	Demonstrate a degree of	2	3	2	3
	mastery over the area as				
	per the specialization of				
	the program. The mas-				
	tery should be at a level				
	of higher than the require-				
	ments in the appropriate				
	bachelor program				

PO4	Apply the skills and knowledge needed to serve as a	2	3	2	3
	professional engineer skil- ful at designing embedded systems for effective use in communications, IoT, med- ical electronics and signal				
PO5	processing applications. Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member of a team.	2	2	2	2
PO6	Recognize the need to engage in lifelong learning through continuing education and research.	3	3	3	3

Relationship between Program Outcomes and Program Educational Objectives

Key: 3 = High; 2 = Medium; 1 = Low

- The assessment process of POs can be direct or indirect.
- The direct assessment will be done through interim assessment by conducting continuous internal exam and semester end exams.
- The indirect assessment on the other hand could be done through student's programme exit questionnaire, alumni survey and employment survey.

5 Blooms Taxonomy

Bloom's taxonomy is considered as the global language for education. Bloom's Taxonomy is frequently used by teachers in writing the course outcomes as it provides a readymade structure and list of action verbs. The stages ascend in complexity and what they demand of students. First students need to simply remember information provided to them — but reciting something doesn't demonstrate having learned it, only memorization. With understanding comes the ability to explain the ideas and concepts to others. The students are then challenged to apply the information and use it in new ways, helping to gain a deeper understanding of previously covered material and demonstrating it moving forward. Questioning information is a vital part of learning, and both analysis and evaluation do just this. Analysing asks a student to examine the information in a new way, and evaluation demands the student appraise the material in a way that lets them defend or argue against it as they determine. The final step in the revised taxonomy is creating, which entails a developing new product or point of view. How does this learned information impact your world? How can it be used to impact not just your education but the way you interact with your surroundings? By utilizing Bloom's Taxonomy, students are not going to forget the information as soon as the class ends - rather, they retain and apply

the information as they continue to grow as a student and in their careers, staying one step ahead of the competition.

5.1 Incorporating Critical Thinking Skills into Course Outcome Statements

Many faculty members choose to incorporate words that reflect critical or higher-order thinking into their learning outcome statements. Bloom (1956) developed a taxonomy outlining the different types of thinking skills people use in the learning process. Bloom argued that people use different levels of thinking skills to process different types of information and situations. Some of these are basic cognitive skills (such as memorization) while others are complex skills (such as creating new ways to apply information). These skills are often referred to as critical thinking skills or higher-order thinking skills.

Bloom proposed the following taxonomy of thinking skills. All levels of Bloom's taxonomy of thinking skills can be incorporated into expected learning outcome statements. Recently, Anderson and Krathwohl (2001) adapted Bloom's model to include language that is oriented towards the language used in expected learning outcome statements. A summary of Anderson and Krathwohl's revised version of Bloom's taxonomy of critical thinking is provided in Figure 3.

FIGURE 2: Revised version of Bloom's taxonomy

5.2 Definitions of the different levels of thinking skills in Bloom's taxonomy:

- Remember –recalling relevant terminology, specific facts, or different procedures related to information and/or course topics. At this level, a student can remember something, but may not really understand it.
- 2. **Understand** –the ability to grasp the meaning of information (facts, definitions, concepts, etc.) that has been presented.
- 3. **Apply** –being able to use previously learned information in different situations or in problem solving.
- 4. **Analyze** –the ability to break information down into its component parts. Analysis also refers to the process of examining information in order to make conclusions regarding cause and effect, interpreting motives, making inferences, or finding evidence to support statements/arguments.
- 5. **Evaluate** –being able to judge the value of information and/or sources of information based on personal values or opinions.

6. **Create** –the ability to creatively or uniquely apply prior knowledge and/or skills to produce new and original thoughts, ideas, processes, etc. At this level, students are involved in creating their own thoughts and ideas.

5.3 List of Action Words Related to Critical Thinking Skills

Here is a list of action words that can be used when creating the expected student learning outcomes related to critical thinking skills in a course. These terms are organized according to the different levels of higher-order thinking skills contained in Anderson and Krathwohl's (2001) revised version of Bloom's taxonomy.

Here is the revised Bloom's document with action verbs, which we frequently refer to while writing COs for our courses.

The cognitive process dimensions- categories:

Lower O	rder of Thinkii	ng (LOT)	Higher Or	der of Thinkin	g (HOT)
Remember	Understand	Apply	Analyse	Evaluate	Create
Interpreting	Recognizing	Executing	Differentiating	Checking	Planning
Illustrating	(identifying)	Implementing	Organizing	(coordinating,	Generating
Classifying	Recalling		Attributing	detecting,	Producing
Summarizing	(retrieving)			testing,	(constructing)
Inferring				monitoring)	
(concluding)				Critiquing	
comparing				(judging)	
explaining					

The Knowledge Dime	ension		
	Concrete Knowledge-	→Abstract knowledge	
Factual	Conceptual	Procedural	Metacognitive
Knowledge of terminologies Knowledge of specific details and elements	 Knowledge of classifications and categories Knowledge of principles and generalizations Knowledge of theories, models and structures 	 Knowledge of subject specific skills and algorithms Knowledge of subject specific techniques and methods Knowledge of criteria for determining when to use appropriate procedures 	Strategic Knowledge Knowledge about cognitive task, including appropriate contextual and conditional Knowledge Self- Knowledge

Action Verbs for Course Outcomes

	Lower Ord	Lower Order of Thinking (LOT)		High	Higher Order of Thinking (HOT)	g (HOT)
Definitions	Remember	Understand	Apply	Analyse	Evaluate	Create
Bloom's	Exhibit memory of	Demonstrate	Solve problems to	Examine and break	Present and defend	Compile information
Definition	previously learned	understanding of facts	new situations by	information into	opinions by	together in a different
	material by recalling	and ideas by	applying acquired	parts by	making judgments	way by combining
	facts, terms, basic	organizing,	knowledge, facts,	identifying motives	about information,	elements in a new
	concepts, and	comparing,	techniques and	or causes. Make	validity of ideas, or	pattern or proposing
	answers.	translating,	rules in a different	inferences and find	quality of work	alternative solution.
		interpreting, giving	way.	evidence to support	based on a set of	
		descriptions, and		generalizations.	criteria.	
		stating main ideas.				
Verbs						
	• Choose	 Classify 	• Apply	• Analyze	• Agree	• Adapt
	• Define	• Compare	• Build	• Assume	• Appraise	• Build
	• Find	• Contrast	• Choose	 Categorize 	• Assess	• Solve
	• How	• Demonstrate	• Construct	 Classify 	• Award	• Choose
	• Label	• Explain	• Develop	• Compare	• Choose	• Combine
	• List	• Illustrate	 Interview 	• Discover	• Criticize	• Invent
	• Match	• Infer	• Make use of	• Dissect	• Decide	• Compile
	• Extend	• Interpret	• Model	• Distinguish	• Deduct	• Compose
					• Importance	• Construct

Action Verbs for Course Outcomes

	Lower Ord	Lower Order of Thinking (LOT)		High	Higher Order of Thinking (HOT)	g (HOT)
Definitions	Remember	Understand	Apply	Analyse	Evaluate	Create
Verbs						
	• Name	• Outline	• Organize	• Divide	• Defend	• Create
	• Omit	• Relate	• Plan	• Examine	• Determine	• Design
	• Recall	• Rephrase	• Select	• Function	• Disprove	• Develop
	• Relate	• Show	• Solve	• Inference	• Estimate	• Estimate
	• Select	• Summarize	• Utilize	• Inspect	• Evaluate	• Formulate
	• Show	• Translate	• Identify	• List Motive	• Influence	• Happen
	• Spell	• Experiment with	 Interview 	• Simplify	• Interpret	• Imagine
	• Tell	• Illustrate	• Make use of	• Survey	• Judge	• Improve
	• What	• Infer	• Model	• Take part in	• Justify Mark	Make up
	• When	• Interpret	 Organize 	• Test for Theme	• Measure	• Maximize
	• Where	• Outline	• Plan	• Conclusion	Opinion	• Minimize
	• Which	• Relate	• Select	• Contrast	• Perceive	• Modify
	• Who	• Rephrase	• Solve		• Prioritize	 Original
	• Why	• Show	• Utilize		• Prove	Originate
		• Summarize	• Identify		• Criteria	• Plan
		• Translate			• Criticize	• Predict
		• Experiment with			• Compare	• Propose
					• Conclude	• Solution

6 Guidelines for writing Course Outcome Statements:

Well-written course outcomes involve the following parts:

- 1. Action verb
- 2. Subject content
- 3. Level of achievement as per BTL
- 4. Modes of performing task (if applicable)

6.1 Course Outcomes (COs)

A Course Outcome is a formal statement of what students are expected to learn in a course. When creating Course Outcomes remember that the outcomes should clearly state what students will do or produce to determine and/or demonstrate their learning. Course learning outcome statements refer to specific knowledge, practical skills, areas of professional development, attitudes, higher-order thinking skills, etc. that faculty members expect students to develop, learn, or master during a course.

A well-formulated set of Course Outcomes will describe what a faculty member hopes to successfully accomplish in offering their particular course(s) to prospective students, or what specific skills, competencies, and knowledge the faculty member believes that students will have attained once the course is completed. The learning outcomes need to be concise descriptions of what learning is expected to take place by course completion.

6.2 Developing Course Outcomes

When creating course outcomes consider the following guidelines as you develop them either individually or as part of a multi-section group:

- Limit the course outcomes to 8-12 statements for the entire course [more detailed outcomes can be developed for individual units, assignments, chapters, etc. if the instructor(s) wish (es)].
- Focus on overarching knowledge and/or skills rather than small or trivial details
- Focus on knowledge and skills that are central to the course topic and/or discipline.
- Create statements that have a student focus rather than an instructor centric approach (basic e.g., "upon completion of this course students will be able to list the names of the 28 states and 8 union territories" versus "one objective of this course is to teach the names of the 28 states and 8 union territories").
- Focus on the learning that results from the course rather than describing activities or lessons that are in the course.
- Incorporate and/or reflect the institutional and departmental missions.
- Include various ways for students to show success (outlining, describing, modelling, depicting, etc.) rather than using a single statement such as "at the end of the course, students will know ——— "as the stem for each expected outcome statement.

When developing learning outcomes, here are the core questions to ask yourself:

• What do we want students in the course to learn?

- What do we want the students to be able to do?
- Are the outcomes observable, measurable and are they able to be performed by the students?

Course outcome statements on the course level describe:

- What faculty members want students to know at the end of the course AND
- What faculty members want students to be able to do at the end of the course?

Course outcomes have three major characteristics

- They specify an action by the students/learners that is observable
- They specify an action by the students/learners that is measurable
- They specify an action that is done by the students/learners rather than the faculty members

Effectively developed expected learning outcome statements should possess all three of these characteristics. When this is done, the expected learning outcomes for a course are designed so that they can be assessed. When stating expected learning outcomes, it is important to use verbs that describe exactly what the student(s) / learner(s) will be able to do upon completion of the course.

6.3 Relationship of Course Outcome to Program Outcome

The Course Outcomes need to link to the Program Outcomes.

Learning outcomes formula:

STUDENTS SHOULD BE ABLE TO + BEHAVIOR + RESULTING EVIDENCE

For example, you can use the following template to help you write an appropriate course level learning outcome.

"Upon completion of this course students will be able to (knowledge, concept, rule or skill you expect them to acquire) by (how will they apply the knowledge or skill/how will you assess the learning)."

6.4 Characteristics of Effective Course Outcomes

Well written course outcomes:

- Describe what you want your students to learn in your course.
- Are aligned with program goals and objectives.
- Tell how you will know an instructional goal has been achieved.
- Use action words that specify definite, observable behaviours.
- Are assessable through one or more indicators (papers, quizzes, projects, presentations, journals, portfolios, etc.)
- Are realistic and achievable.
- Use simple language

6.5 Examples of Effective Course Outcomes

After successful completion of the course, Students will be able to:

- Critically review the methodology of a research study published in a scholarly sociology journal.
- Design a Web site using HTML and JavaScript.
- Describe and present the contributions of women to American history.

- Recognize the works of major Renaissance artists.
- Facilitate a group to achieve agreed-upon goals.
- Determine and apply the appropriate statistical procedures to analyze the results of simple experiments.
- Develop an individual learning plan for a child with a learning disability.
- Produce a strategic plan for a small manufacturing business.
- Analyse a character's motivation and portray that character before an audience.
- Differentiate among five major approaches to literary analysis
- List the major ethical issues one must consider when planning a human-subjects study.
- Locate and critically evaluate information on current political issues on the Web.
- List and describe the functions of the major components of the human nervous system.
- Correctly classify rock samples found in...
- Conduct a systems analysis of a group interaction.
- Demonstrate active listening skills when interviewing clients.
- Apply social psychological principles to suggest solutions to contemporary social problems.

A more detailed model for stating learning objectives requires that objectives have three parts: a condition, an observable behaviour, and a standard. The table below provides three examples.

S No	Condition	Observable Behaviour	Standard
1	Given a list of drugs	the student will be able to classify	with at least 70% accu-
		each item as amphetamine or barbi-	racy
		turate	
2	Immediately follow-	the student will be able to summa-	mentioning at least
	ing a fifteen-minute	rize in writing the major issues be-	three of the five major
	discussion on a topic.	ing discussed.	topics.
3	Given an algebraic	the student will be able to correctly	within a period of five
	equation with one	solve a simple linear equation	minutes.
	unknown.		

The following examples describe a course outcome that is not measurable as written, an explanation for why the course outcome is not considered measurable, and a suggested edit that improves the course outcome

Original course out-	Evaluation of language used in	Improved course outcome
come	this course outcome	
Explore in depth the lit-	Exploration is not a measurable	Upon completion of this course
erature on an aspect of	activity but the quality of the prod-	the students will be able to: write
teaching strategies.	uct of exploration would be mea-	a paper based on an in-depth
	surable with a suitable rubric.	exploration of the literature on an
		aspect of teaching strategies.

Examples that are TOO general and VERY HARD to measure...

• ... will appreciate the benefits of learning a foreign language.

- ... will be able to access resources at the Institute library.
- ... will develop problem-solving skills.
- ... will have more confidence in their knowledge of the subject matter. Examples that are still general and HARD to measure...
- ... will value knowing a second language as a communication tool.
- ... will develop and apply effective problem-solving skills that will enable one to adequately navigate through the proper resources within the institute library.
- ... will demonstrate the ability to resolve problems that occur in the field.
- ... will demonstrate critical thinking skills, such as problem solving as it relates to social issues.

Examples that are SPECIFIC and relatively EASY to measure...

- ... will be able to read and demonstrate good comprehension of text in areas of the student's interest or professional field.
- ... will demonstrate the ability to apply basic research methods in psychology, including research design, data analysis, and interpretation.
- ... will be able to identify environmental problems, evaluate problem-solving strategies, and develop science-based solutions.
- ... will demonstrate the ability to evaluate, integrate, and apply appropriate information from various sources to create cohesive, persuasive arguments, and to propose design concepts.

An Introspection - Examine Your Own Course Outcomes

- If you have written statements of broad course goals, take a look at them. If you do not have a written list of course goals, reflect on your course and list the four to six most important student outcomes you want your course to produce.
- Look over your list and check the one most important student outcome. If you could only achieve one outcome, which one would it be?
- Look for your outcome on the list of key competencies or outcomes society is asking us to produce. Is it there? If not, is the reason a compelling one?
- Check each of your other "most important" outcomes against the list of outcomes. How many are on the list of key competencies?
- Take stock. What can you learn from this exercise about what you are trying to accomplish as a teacher? How clear and how important are your statements of outcomes for your use and for your students'? Are they very specifically worded to avoid misunderstanding? Are they supporting important needs on the part of the students?

Write Your Course Outcomes!

One of the first steps you take in identifying the expected learning outcomes for your course is identifying the purpose of teaching the course. By clarifying and specifying the purpose of the course, you will be able to discover the main topics or themes related to students' learning. Once discovered, these themes will help you to outline the expected learning outcomes for the course. Ask yourself:

- What role does this course play within the program?
- How is the course unique or different from other courses?
- Why should/do students take this course? What essential knowledge or skills should they gain from this experience?

- What knowledge or skills from this course will students need to have mastered to perform well in future classes or jobs?
- Why is this course important for students to take?

6.6 CO-PO Course Articulation Matrix (CAM) Mapping

Course Articulation Matrix shows the educational relationship (Level of Learning achieved) between course outcomes and program outcomes for a course. This matrix strongly indicates whether the students are able to achieve the course learning objectives. The matrix can be used for any course and is a good way to evaluate a course syllabus.

The Table 1 gives information about the action verbs used in the POs and the nature of POs, stating whether the POs are technical or non-technical. You need to understand the intention of each POs and the Bloom's level to which each of these action verbs in the POs correlates to. Once you have understood the POs then you can write the COs for a course and see to what extent each of those CO's correlate with the POs.

Туре	POs	Action Verb(s) in	Bloom's level(s) for	Bloom's level(s) for COs
		POs	POs	
	PO1	Apply	L3	Bloom's L1 to L4 for theory courses.
	PO2	Build	L6	Bloom's L1 to L5 for laboratory courses.
		Discover	L4	Bloom's L1 to L6 for project work,
	PO3	Analyze	L4	experiential learning
		Choose	L5	
Technical	PO4	Illustrate	L2	
recinical		Build	L6	
	PO5	Explain	L2	
		Develop	L3	
	PO6	Develop	L3	
		Solve	L6	

TABLE 7: Process for mapping the values for CO-PO Matrix

At the end, the POs can be calculated using various descriptors that you may define. The mapping of CO towards a PO is evaluated using descriptors such as High, Medium, Low etc...

Observations:

- 1. The first five POs are purely of technical in nature, while the other POs are non-technical.
- 2. For the theory courses, while writing the COs, you need to restrict yourself between Blooms Level 1 to Level 4. Again, if it is a programming course, restrict yourself between Blooms Level 1 to Level 3 but for the other courses, you can go up to Blooms Level 4.
- 3. For the laboratory courses, while composing COs, you need to restrict yourself between Blooms Level 1 to Level 5.
- 4. Only for Mini-project and Main project, you may extend up to Blooms Level 6 while composing COs.

- 5. For a given course, the course in-charge has to involve all the other Professors who teach that course and ask them to come up with the CO-PO mapping. The course in-charge has to take the average value of all of these CO-PO mappings and finalize the values or the course in-charge can go with what the majority of the faculty members prefer for. Ensure that none of the Professors who are handling the particular course discuss with each other while marking the CO-PO values.
- 6. If you want to match your COs with non-technical POs, then correlate the action verbs used in the course COs with the thumb rule given in the table and map the values. (Applies only for mapping COs to non-technical POs).

6.7 Tips for Assigning the values while mapping COs to POs.

- 1. Select action verbs for a CO from different Bloom's levels based on the importance of the particular CO for the given course.
- 2. Stick on to single action verbs while composing COs but you may go for multiple action verbs if the need arises.
- 3. You need to justify for marking of the values in CO-PO articulation matrix. Use a combination of words found in the COs, POs and your course syllabus for writing the justification. Restrict yourself to one or two lines.
- 4. Values to CO-PO (technical POs in particular) matrix can be assigned by
 - (a) Judging the importance of the particular CO in relation to the POs. If the CO matches strongly with a particular PO criterion then assign 3, if it matches moderately then assign 2 or if the match is low then assign 1 else mark with "-" symbol.
 - (b) If an action verb used in a CO is repeated at multiple Bloom's levels, then you need to judge which Bloom's level is the best fit for that action verb.

6.8 Method for Articulation

- 1. Identify the key competencies of POs to each CO and make a corresponding mapping table with assigning \(\sqrt{mark} \) mark at the corresponding cell. One observation to be noted is that the first five POs are purely of technical in nature, while the other POs are non-technical.
- 2. Justify each CO PO mapping with a justification statement and recognize the number of vital features mentioned in the justification statement that are matching with the given Key Attributes for Assessing Program Outcomes. Use a combination of words found in the COs, POs and your course syllabus for writing the justification.
- 3. Make a table with number of key competencies for CO PO mapping with reference to the maximum given Key Attributes for Assessing Program Outcomes.
- 4. Make a table with percentage of key competencies for CO PO mapping with reference to the maximum given Key Attributes for Assessing Program Outcomes.
- 5. Finally, Course Articulation Matrix (CO PO Mapping) is prepared with COs and POs on the scale of 0 to 3, 0 being no correlation (marked with " "), 1 being the low/slight correlation, 2 being medium/moderate correlation and 3 being substantial/high correlation based on the following strategy

0– $0 \le C \le 5\%$ - No correlation.

 $1-5 < C \leqq 40\%$ - Low / Slight.

2 - 40% < C < 60% - Moderate

 $3-60\% \leqq C < 100\%$ - Substantial / High

7 Key Competencies for Assessing Program Outcomes:

PO	NBA statement / Vital features	No. of vital
		features
PO1	Independently carry out research / investigation and development	6
	work to solve practical problems.	
	1. Independence	
	2. Self driven	
	3. Quality of work	
	4. Problem identification and implementation	
	5. Demonstrate the solutions	
	6. Budget	
PO2	Write and present a substantial technical report / document.	6
	1. Demonstrate and communicate effectively in writing report and	
	document/ present orally.	
	2. Clarity (writing/ presentation)	
	3. Grammar/ punctuation (writing)	
	4. References	
	5. Speaking/ Presenting	
	6. Subject knowledge while preparing report	

PO	NBA statement / Vital features	No. of vital
		features
PO3	Demonstrate a degree of mastery over the area as per the specializa-	9
	tion of the program. The mastery should be at a level of higher than	
	the requirements in the appropriate bachelor program	
	1. Knowledge, understanding and demonstrations of embedded appli-	
	cations in real time scenario.	
	2. Ability to demonstrate and communicate effectively in writing /	
	orally societal problems.	
	3. Analyze and design innovative products	
	4. Problem formulation and abstraction	
	5. Use creativity to establish innovative solutions	
	6. Experimental design	
	7. Manage the design process and evaluate outcomes using modern	
	tools	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results and Validation	
PO4	Apply the skills and knowledge needed to serve as a professional en-	10
	gineer skilful at designing embedded systems for effective use in com-	
	munications, IoT, medical electronics and signal processing applica-	
	tions.	
	1. Understand the need of users with the importance of considerations	
	such as IoT and Robotics	
	2. Scientific principles and methodology	
	3. Problem formulation and abstraction	
	4. Use creativity to establish innovative solutions	
	5. Experimental design	
	6. Manage the design process and evaluate outcomes	
	7. Computer software / simulation packages / diagnostic equipment /	
	technical library resources / literature search tools	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results and Validation	
	10. Under take research and development projects in the field of Em-	
	bedded Systems	

PO	NBA statement / Vital features	No. of vital
		features
PO5	Function on multidisciplinary environments by working coopera-	7
	tively, creatively and responsibly as a member of a team	
	Maturity – requiring only the achievement of goals to drive their performance	
	2. Self-direction (take a vaguely defined problem and systematically work to resolution)	
	3. Individual performance is used during the classroom periods, in the hands-on labs, and in the design projects.	
	4. Knowledge of management techniques which may be used achieve engineering objectives	
	5. Meeting deadlines and producing solutions	
	6. Work with all level of people in the team.	
	7. Demonstrate ability to work well with a team	
PO6	Recognize the need to engage in lifelong learning through continuing	8
	education and research.	
	1. Project management and research orientation/ Ph.D	
	2. Strengthen in embedded and advanced engineering areas	
	3. Continuing education efforts through literature and courses	
	4. Personal development	
	5. Plan tasks and resources, manage risk and produce deliverables	
	6. Meeting deadlines and producing solutions	
	7. Work with all levels of people in team	
	8. Demonstrated ability to work well with a team	

8 Program Outcomes Attained through course modules:

Courses offered in Electronics and Communication Engineering Curriculum (IARE-R18) and POs attained through course modules for I, II, III, IV semesters.

Code	Code Subject			P	0		
		1	2	3	4	5	6
	I Semester N	1. Tech					
BESB01	BESB01 EMBEDDED SYSTEM DESIGN			✓			✓

Code	Subject			P	O		
		1	2	3	4	5	6
BESB02	MICRO CONTROLLERS AND PRO-			✓		✓	
	GRAMMABLE DIGITAL SIGNAL						
	PROCESSING						
BESB03	WIRELESS LANS AND PANS	✓	>	✓	✓	✓	✓
BESB06	PRINCIPLES OF DISTRIBUTED	✓		✓			
	EMBEDDED SYSTEMS						
BESB09	EMBEDDED PROGRAMMING	~		✓		✓	
	LABORATORY						
BESB10	MICROCONTROLLERS AND PRO-	~					
	GRAMMABLE DIGITAL SIGNAL						
	PROCESSORS LABORATORY						
	II Semester N	M. Tech					
BESB11	EMBEDDED SYSTEM ARCHITEC-	~		✓			✓
	TURE						
BESB12	INTERNET OF THINGS	✓		✓	✓		✓
BESB14	EMBEDDED WIRELESS SENSOR	~	✓	✓		✓	
	NETWORKS						
BESB16	MICROCONTROLLERS FOR EM-	~		✓		✓	
	BEDDED SYSTEM DESIGN						
BESB19	EMBEDDED SYSTEMS LABORA-	~		✓		✓	
	TORY						
BESB20	INTERNET OF THINGS LABORA-	~		✓	/		
	TORY						
BESB21	MINI PROJECT WITH SEMINAR	~	✓	✓	/	✓	✓
	III Semester M. Tech						
BESB22	EMBEDDED REAL TIME OPERAT-	~	/	/	/	/	/
	ING SYSTEMS						
BCSB30	WASTE TO ENERGY	✓	✓	✓		✓	✓
BCSB31	RESEARCH METHODOLOGY &				/	✓	✓
	IPR						
BESB40	PHASE - I DISSERTATION	<u> </u>	✓	✓	/	✓	✓
	IV Semester 1	M. Tech	1				
BESB41	PHASE - II DISSERTATION	✓	✓	✓	<u> </u>	✓	✓

9 Methods for measuring Learning Outcomes and Value Addition:

There are many different ways to assess student learning. In this section, we present the different types of assessment approaches available and the different frame works to interpret the results.

- i) Continuous Internal Assessment (CIA)
- ii) Alternate Assessment Tools (AAT)

- iii) Semester end examination (SEE)
- iv) Laboratory and project work
- v) Course exit survey
- vi) Program exit survey
- vii) Alumni survey
- viii) Employer survey
- ix) Course expert committee
- x) Program Assessment and Quality Improvement Committee (PAQIC)
- xi) Department Advisory Board (DAB)
- xii) Faculty meetings
- xiii) Professional societies

The above assessment indicators are detailed below.

9.1 Continuous Internal Assessment (CIA)

Two Continuous Internal Examinations (CIEs) are conducted for all courses by the department. All students must participate in this evaluation process. These evaluations are critically reviewed by HOD and senior faculty and the essence is communicated to the faculty concerned to analyze, improve and practice so as to improve the performance of the student.

9.2 Alternate Assessment Tools (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video etc. The AAT chosen for this course is given in table.

9.3 Semester End Examination (SEE)

The semester end examination is conducted for all the courses in the department. Before the Semester end examinations course reviews are conducted, feedback taken from students and remedial measures will be taken up such that the student gets benefited before going for end exams. The positive and negative comments made by the students about the course are recorded and submitted to the departmental advisory board (DAB) and to the principal for taking necessary actions to better the course for subsequent semesters.

9.4 Laboratory and Project Works

The laboratory work is continuously monitored and assessed to suit the present demands of the industry. Students are advised and guided to do project works giving solutions to research / industrial problems to the extent possible by the capabilities and limitations of the student. The results of the assessment of the individual projects and laboratory work can easily be conflated in order to provide the students with periodic reviews of their overall progress and to produce terminal marks and grading.

9.5 Course Exit Surveys

Students are encouraged to fill-out a brief survey on the fulfillment of course objectives. The data is reviewed by the concerned course faculty and the results are kept open for the entire faculty. Based on this, alterations or changes to the course objectives are undertaken by thorough discussions in faculty and DAB meetings.

9.6 Programme Exit Survey

The programme exist questionnaire form is to be filled by all the students leaving the institution. The questionnaire is designed in such a way to gather information from the students regarding the program educational objectives, solicit about program experiences, carrier choices, as well as any suggestions and comments for the improvement of the program. The opinions expressed in exit interview forms are reviewed by the DAB for implementation purposes.

9.7 Alumni Survey

The survey asks former students of the department about the status of their employment and further education, perceptions of institutional emphasis, estimated gains in knowledge and skills, involvement a sunder graduate student, and continuing involvement with Institute of Aeronautical Engineering. This survey is administered every three years. The data obtained will be analyzed and used in continuous improvement.

9.8 Employer Survey

The main purpose of this employer questionnaire is to know employer's views about the skills they require of employees compared to the skills actually possessed by them. The purpose e is also to identify gaps in technical and vocational skills, need for required training practices to fill these gaps and criteria for hiring new employees. These employer surveys are reviewed by the College Academic Council (CAC) to affect the present curriculum to suit the requirement so the employer.

9.9 Course Expert Committee

The course expert team is responsible in exercising the central domain of expertise in developing and renewing the curriculum and assessing its quality and effectiveness to the highest of professional standards. Inform the Academic Committee the 'day-to-day' matters as are relevant to the offered courses. This committee will consider the student and staff feedback on the efficient and effective development of the relevant courses. The committee also review the course full stack content developed by the respective course coordinator.

9.10 Programme Assessment and Quality Improvement Committee (PAQIC)

PAQIC Monitors the achievements of Program Outcomes (POs) and Program Educational Objectives (PEOs). It will evaluate the program effectiveness and proposes the necessary changes. It also prepares the periodic reports on program activities, progress, status or other special reports for management. It also motives the faculty and students towards attending workshops, developing projects, working models, paper publications and engaging in research activities.

9.11 Department Advisory Board (DAB)

Departmental Advisory Board plays an important role in the development of the department. Department level Advisory Board will be established for providing guidance and direction for qualitative growth of the department. The Board interacts and maintains liaison with key stakeholders. DAB will Monitor the progress of the program and develop or recommend the new or revised goals and objectives for the program. Also, the DAB will review and analyze the gaps between curriculum and Industry requirement and gives necessary feedback or advices to be taken to improve the curriculum.

9.12 Faculty Meetings

The DAB meets bi-annually for every academic year to review the strategic planning and modification of PEOs. Faculty meetings are conducted at least once in fortnight for ensuring the implementation of DAB's suggestions and guidelines. All these proceedings are recorded and kept for the availability of all faculties.

9.13 Professional Societies

The importance of professional societies like IEEE, IETE, ISTE, IE (I) etc., are explained to the students and they are encouraged to become members of the above to carry out their continuous search for knowledge. Student and faculty chapters of the above societies are constituted for a better technical and entrepreneurial environment. These professional societies promote excellence in instruction, research, public service and practice.

10 CO - Assessment processes and tools:

Course outcomes are evaluated based on two approaches namely direct and indirect assessment methods. The direct assessment methods are based on the Continuous Internal Assessment (CIA) and Semester End Examination (SEE) whereas the indirect assessment methods are based on the course end survey and program exit survey provided by the students, Alumni and Employer. The weightage in CO attainment of Direct and Indirect assessments are illustrated in Table.

Assessment	Assessment Tool	Weightage in CO attainment
Method		
	Continuous Internal Assessment	
Direct Assessment	(CIE & AAT)	80%
	Semester End Examination	
Indirect Assessment	Course End Survey	20%

10.1 Direct Assessment:

Direct assessment methods are based on the student's knowledge and performance in the various assessments and examinations. These assessment methods provide evidence that a student has command over a specific course, content, or skill, or that the students work demonstrates a specific quality such as creativity, analysis, or synthesis.

The various direct assessment tools used to assess the impact of delivery of course content is listed in Table.

- Continuous internal examination, semester end examinations, AAT (includes assignment, 5 minutes videos, seminars etc.) are used for CO calculation.
- The attainment values are calculated for individual courses and are formulated and summed for assessing the POs.
- Performance in AAT is indicative of the student's communication skills.

S No	Courses	Components	Frequency	Max.	Evidence
				Marks	
		Continuous	Twice in a	25	Answer script
		Internal	semester		
		Examination			
	G (F)	Alternative	Twice in a	5	Video / Quiz /
1	Core / Elective	Assessment Tools	semester		assignment
		(AAT)			
		Semester End	Once in a	70	Answer script
		Examination	semester		
		Conduction of	Once in a week	4	Work sheets
		experiment			
	Laboratory	Observation	Once in a week	4	Work sheets
		Result	Once in a week	4	Work sheets
2		Record	Once in a week	4	Work sheets
		Viva	Once in a week	4	Work sheets
		Internal laboratory	Once in a	10	Answer script
		assessment	semester		
		Semester End	Once in a	70	Answer script
		Examination	semester		
		Presentation	Twice in a	30	Presentation
3	Project Work		semester		
	Troject Work	Semester End	Once in a	70	Thesis report
		Examination	semester		
	Comprehensive	Written	Once in a	50	Online
4	Examination	examination	semester		assessment
'		(objective type)			
		Oral examination	Once in a	50	Viva
			Semester		

10.2 Indirect Assessment:

Course End Survey - In this survey, questionnaires are prepared based on the level of understanding of the course and the questions are mapped to Course Outcomes. The tools and processes used in indirect assessment are shown in Table.

TABLE 12: Tools used in Indirect assessment

Tools	Process	Frequency
Course end survey	 Taken for every course at the end of the semester Gives an overall view that helps to assess the extent of coverage/ compliance of COs Helps the faculty to improve upon the various teaching methodologies 	Once in a semester

Direct Tools: (Measurable in terms of marks and w.r.t. CO) Assessment done by faculty at department level

Indirect Tools: (Non measurable (surveys) in terms of marks and w.r.t. CO) Assessment done at institute level.

11 PO- Assessment tools and Processes

The institute has the following methods for assessing attainment of POs.

- 1. Direct method
- 2. Indirect method

The attainment levels of course outcomes help in computing the PO based upon the mapping done. TABLE 13: Attainment of PO

	Assessment	Tools	Weight
DO _a	Direct Assessment	CO attainment of courses	80%
POs	Indirect Assessment	Student exit survey	
Attainment	Attamment		2007
		Employer survey	20%

The CO values of both theory and laboratory courses with appropriate weightage as per CO-PO mapping, as per Program Articulation Matrix are considered for calculation of direct attainment of PO/PSOs.

11.1 PO Direct Attainment is calculated using the following rubric:

PO Direct Attainment = (Strength of CO-PO)*CO attainment / Sum of CO-PO strength.

The below figure represents the evaluation process of POs/PSOs attainment through course outcome attainment.

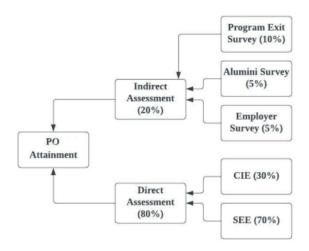


FIGURE 3: The evaluation process of PO attainment through course outcome attainment

12 Course Description:

The "Course Description" provides general information regarding the topics and content addressed in the course. A sample course description is given in Appendix – A for the reference.

The "Course Description" contains the following contents:

- Course Overview
- Prerequisite(s)
- Marks Distribution
- Content delivery / Instructional methodologies
- Evaluation Methodology
- · Course Objectives
- Course Outcomes
- Program Outcomes
- · How Program Outcomes are assessed
- Mapping of each CO with PO(s)
- Justification for CO PO mapping- direct
- Total count of key competencies for CO PO mapping
- Percentage of key competencies for CO PO
- Course articulation matrix (PO mapping)
- Assessment methodology-direct
- Assessment methodology-indirect
- Syllabus
- List of Text Books / References / Websites
- · Course Plan

Appendix A

Sample Course Description

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Branch	Electronics and Communication Engineering(ES)					
Course Title	Principles of 1	Principles of Distributed Embedded Systems				
Course Code	BESB06					
Program	M.Tech	M.Tech				
Semester	I	I				
Course Type	Professional E	Professional Elective-II				
Regulation	IARE- R18	IARE- R18				
		Theory Practical				
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	0	3	-	-	
Course Coordinator	Ms.N.Manjula, Assistant Professor, ECE					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECB58	VII	EMBEDDED SYSTEMS

II COURSE OVERVIEW:

A distributed embedded system consists of hardware and software parts interacting via an interconnection network. This course deals with the importance of real time communication systems, classification of real time systems, real time operating systems, and the design of real-time protocols. The applications include mobiles, routers, video games consoles, mp3 players, printers, GPS receivers, dishwashers, thermostats, anti-lock banking systems, medical imaging etc.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Principles of Distributed Embedded Systems	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	PowerPoint Presentation	✓	Chalk & Talk	✓	Assignments	X	MOOC
X	Seminars	✓	Others				

V EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, out of which 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE).Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept
30 %	To test the analytical skill of the concept
20 %	To test the application skill of the concept

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty/teacher handling the course as given in Table 4. CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Technical Seminar and Term Paper.

Component	Theory		nponent Theory		Total Marks
Type of Assessment		Technical Seminar and Term Paper	Total Warks		
CIA Marks	25	05	30		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semesterrespectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one

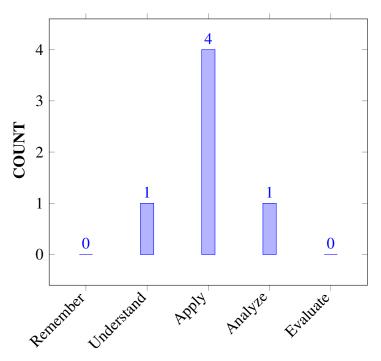
mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI COURSE OBJECTIVES:

The students will try to learn:


I	The concepts of embedded computing, RTOS (Real Time Operating System)				
	and embedded software tools for implementing embedded systems.				
II	The design principles of distributed embedded systems.				
III	CAN (Control Area Network) based systems to move into different embedded				
	applications.				

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize the concepts of real time systems for real time	Understand
	embedded applications	
CO 2	Build time constrained embedded systems using the concepts of	Apply
	RTOS (Real Time Operating System) for rapid design and	
	programming embedded systems	
CO 3	Construct the time constrained application as a member of a	Apply
	small group to meet design specifications	
CO 4	Identify the working of CAN (Control Area Network) standard	Apply
	protocol to execute real time applications.	
CO 5	Explore the fundamentals of CAN (Control Area Network)	Analyze
	standards and its configuration files, service data objectives for	
	preparing different electronic data sheets	
CO 6	Make use of the CAN (Control Area Network) open standards	Apply
	and design parameters for assuring quality of service and	
	internet working in various internet protocols.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Independently carry out research / investigation and development work to solve
	practical problems.
PO 2	Write and present a substantial technical report / document.
PO 3	Demonstrate a degree mastery over the area as per the area of specialization of
	the program. The mastery should be at a level of higher than the requirements
	in the appropriate bachelor program.
PO 4	Apply the skills and knowledge needed to serve as a professional engineer skil-
	ful at designing embedded systems for effective use in communications, IoT,
	medical electronics and signal processing applications.
PO 5	Function on multidisciplinary environments by working cooperatively, cre-
	atively and responsibly as a member of a team.
PO 6	Recognize the need to engage in lifelong learning through continuing education
	and research.

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 3	Demonstrate a degree mastery over the area as per	2	SEE / CIE /
	the area of specialization of the program. The mastery		AAT
	should be at a level of higher than the requirements in		
	the appropriate bachelor program.		
PO 4	Apply the skills and knowledge needed to serve as	2	SEE / CIE /
	a professional engineer skilful at designing embed-		AAT
	ded systems for effective use in communications, IoT,		
	medical electronics and signal processing applica-		
	tions.		

X MAPPING OF EACH CO WITH PO(s):

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	-	-	~	~	-	-
CO 2	-	-	✓	✓	-	-
CO 3	-	-	✓	~	-	-
CO 4	-	-	~	~	-	-
CO 5	-	-	~	~	-	-
CO 6	-	-	✓	~	-	-

XI JUSTIFICATIONS FOR CO - PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO1	PO 3	Demonstrate, Analyze and gain knowledge on	5
		complex engineering problems formulation in em-	
		bedded real time systems for establishing innovative	
		solutions for real time embedded applications and	
		their system components of solution development	

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 4	Manage design process and evaluate outcomes of scientific principles and methodology in problem formulation of real time embedded real time systems to establish innovative solutions for real time embedded applications by using engineering fundamentals and validate the results	5
CO2	PO 3	Gain knowledge, understanding of embedded application in real time scenario for analyzing the time constrained RTOS and develop inovative products to effectively manage design process and evaluate outcomes.	4
	PO 4	Build time constrained embedded systems using the concepts of embedded applications fundamentals to the solution of problem formulation and abstraction to establish innovative solutions using RTOS (Real Time Operating System) rapid design and its programming	3
CO 3	PO 3	Demostrate the time constrained in embedded applications to analyze and design innovative products, manage design process and evaluate outcomes with interpretation of results and vvalidations	4
	PO 4	Solution development by interpretating results of time constrained application with experimental design in real time embedded systems using engineering fundamentals.	4
CO4	PO 3	Knowledge of embedded systems is used to analyze and design CAN standard protocol to establish innovative solutions in real time scenario and validate the results	4
	PO 4	Apply the principles and methodology of CAN (Control Area Network) standard protocol to execute engineering fundamentals to problem formulation and abstraction to establish innovative solutions in IoT applications.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO5	PO 3	Demonstrate problem formulation and abstrac-	5
		tion to CAN (Control Area Network) standards and	
		its configuration files to manage the design pro-	
		cessfor preparing different electronic data sheets to	
		the solution development of IoT applications. and	
		interpret the results for understanding the embed-	
		ded applications in real time scenario.	
	PO 4	Apply the knowledge of imporatnce of considera-	3
		tions with the principles of CAN (Control Area Net-	
		work) standards for implementation of the solutions	
		preparing different electronic data sheets.	
CO 6	PO 3	Analyze and design CAN (Control Area Network)	5
		standards and its configuration files to manage the	
		design processfor preparing different electronic data	
		sheets for the solution development of IoT applica-	
		tions. and implement the results in demostration of	
		embedded systems in real time scenario.	
	PO 4	Illustrate the needs of importance concepts of CAN	3
		(Control Area Network) standards and its configura-	
		tion files manage the design processfor preparing	
		different electronic data sheets to the solution devel-	
		opment of IoT applications.	

XII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO MAPPING:

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
	6	6	9	10	7	8
CO 1	-	-	5	5	-	-
CO 2	-	-	4	3	-	-
CO 3	-	-	4	4	-	-
CO 4	-	-	4	3	-	-
CO 5	-	-	5	3	-	-
CO 6	-	-	5	3	-	-

XIII PERCENTAGE OF KEY COMPETENCIES FOR CO – PO:

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
	6	6	9	10	7	8
CO 1	-	-	55.5	50	-	-
CO 2	-	-	44.4	30	-	-
CO 3	-	-	44.4	40	-	-
CO 4	-	-	44.4	30	-	-
CO 5	-	-	55.5	30	-	-
CO 6	-	-	55.5	30	-	-

XIV COURSE ARTICULATION MATRIX (PO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

$$\boldsymbol{\theta}$$
 - $0 \le C \le 5\%$ – No correlation

$$1 - 5 < C \le 40\%$$
 – Low/ Slight

$$2 - 40 \% < C < 60\%$$
 –Moderate

$$3$$
 - $60\% \le C < 100\%$ – Substantial /High

COURSE	PROGRAM OUTCOMES					
OUTCOMES	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	-	-	2	2	-	-
CO 2	-	-	2	1	-	-
CO 3	-	-	2	2	-	-
CO 4	-	-	2	1	-	-
CO 5	-	-	2	1	-	-
CO 6	-	-	2	1	-	-
TOTAL	-	-	12	8	-	-
AVERAGE	-	-	2	1.33	-	-

XV ASSESSMENT METHODOLOGY INDIRECT:

✓ End Semester OBE Feed Back

XVI SYLLABUS:

UNIT I	REAL-TIME ENVIRONMENT					
	Real-time computer system requirements, classification of real time					
	systems, simplicity, global time, internal and external clock					
	synchronization, real time model. Real time communication, temporal					
	relations, dependability, power and energy awareness, real time					
	communication, event triggered, rate constrained, time triggered.					
UNIT II	REAL-TIME OPERATING SYSTEMS					
	USB bus, introduction, speed identification on the bus, USB states, USB					
	bus communication: Packets,data flow types, enumeration,					
	descriptors,PIC18 micro controller USB interface, C programs; CAN bus:					
	Introduction, frames, bit stuffing, types of errors, nominal bit timing, PIC					
	micro controller CAN interface, simple application with CAN.					
UNIT III	SYSTEM DESIGN					
	Scheduling problem, static and dynamic scheduling, system design.					
	Validation, time-triggered architecture.					
UNIT IV	INTRODUCTION TO CAN					
	Introduction to CAN open CAN open standard, object directory, electronic					
	data sheets and devices.					
UNIT V	CAN STANDARDS					
	Configuration files, service data objectives, network management CAN					
	open messages, device profile encoder.					

TEXTBOOKS

- 1. Hermann Kopetz, "Real-Time systems-Design Principles for distributed Embedded Applications", Springer, 2nd Edition, 2011.
- 2. Glaf P. Feiffer, Andrew Ayre and Christian Keyold, "Embedded networking with CAN and CAN open", Copperhill Media Corporation, 1st Edition, 2008.

REFERENCE BOOKS:

1. Rajkamal, "Embedded system-Architecture-Programming-Design", Tata Mc Graw Hill, 3rd Edition, 2011.

- 2. Frank Vahid, Tony Givargis, "Embedded System Design", JohnWiley and sons, 2nd Edition, 2002.
- 3. Lyla B Das, "Embedded Systems-An Integrated Approach", Pearson,1st Edition,2013.
- 4. David E. Simon, "An Embedded Software Primer", PearsonEducation, 1st Edition, 1999.

WEB REFERENCES:

- 1. https://www.youtube.com/watch?v=Uk9zFrEGguM
- 2. http://freevideolectures.com/blog/2010/11/130-nptel-iit-online-courses/

E-TEXT BOOKS:

- 1. http://dsp-book.narod.ru/ESDUA.pdf
- 2. http://esd.cs.ucr.edu/
- 3. www.intel.com/education/highered/Embedded/Syllabus/Embeddedsyllabus.pdf

XVII COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference				
	OBE DISCUSSION						
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-					
	CONTENT DELIVERY (TI	HEORY)					
1	Real-time computer system requirements	CO1	T1:1.1, 1.2				
2	Classification of real time systems	CO1	T1:1.1, 1.2				
3	Simplicity, global time	CO1	T1:2.1,2.2, T2:2.3,2.4				
4	Internal and external clock synchronization	CO1	T2:2.5				
5	Real time model and Real time communication	CO1	T2:2.6				
6	Temporal relations, dependability	CO1	T2:2.6				
7	Power and energy awareness	CO1	T1:3.1				
8	Event triggered architecture, rate constrained	CO1	T1:3.2				
9	Time triggered architecture	CO2	T2:3.5				
10	Inter component communication	CO2	T1:3.4				

11	Task management and dual role of time	CO2	T1:3.6
12	Inter task interactions	CO2	T1:4.2
13	Process input/output	CO2	T1:4.3
14	Agreement protocols	CO2	T1:4.4
15	Failure faults and errors	CO2	T1:4.4
16	Error detection	CO2	T1:4.4
17	Fault-Tolerant Units	CO2	T1:4.5
18	System design	CO3	T2:5.2
19	Scheduling problem	CO3	T2: 5.1, 5.2
20	Static and dynamic scheduling	CO3	T2:6.1, 6.2, 6.4
21	Validation	CO3	T2:7.2, 7.3, 7.4
22	Time triggered architecture	CO3	T2:8.1, 8.3
23	Introduction to Time-Triggered Protocols	CO3	T2:8.1, 8.3
24	Overview of the TTP/C Protocol Layers	CO3	T1:5.3
25	The Basic CNI, Internal Operation of TTP/C	CO3	T1:5.5, 5.6, 5.7
26	TTTP/A for Field Bus Applications	CO3	T1:5.5, 5.6, 5.7
27	Wide-Area Real-Time Systems	CO3	T1:5.5, 5.6, 5.7
28	CAN Overview, An Introduction to CAN	CO4	T1:5.5, 5.6, 5.7
29	Object Dictionary Organization	CO4	T1:5.5, 5.6, 5.7
30	Data Type Definitions, Communication Pro- file	CO4	T1:5.5, 5.6, 5.7
31	CAN open Devices, Object Dictionary Access Sequences	CO4	T1:5.5, 5.6, 5.7
32	Using Identifiers and Objects	CO5	T1:5.5, 5.6, 5.7
33	The Electronic Data Sheets (EDS)	CO5	T1:5.5, 5.6, 5.7
34	Device Configuration Files (DCF)	CO5	T1:5.5, 5.6, 5.7
35	Choosing the Devices and Tools	CO5	T1:5.5, 5.6, 5.7
36	Accessing the CAN open Object Dictionary (OD) with Service Data Objects (SDO)	CO5	T1:5.5, 5.6, 5.7
37	Handling Process Data with Process Data Objects (PDO)	CO5	T1:5.5, 5.6, 5.7
38	Network Management (NMT)	CO6	T1:5.5, 5.6, 5.7
			•

39	CAN open Example Configurations and Exercises	CO6	T1:5.5, 5.6, 5.7		
40	Contents of CAN open Messages	CO6	T1:5.5, 5.6, 5.7		
41	Masters and Managers (DS302)	CO6	T1:5.5, 5.6, 5.7		
42	Device Profile for Encoder	CO6	T1:5.5, 5.6, 5.7		
43	Device Profile for Generic I/O (DS401)	CO6	T1:5.5, 5.6, 5.7		
44	Safety-Relevant Communication (DSP304, DSP307)	CO6	T1:5.5, 5.6, 5.7		
45	Evaluating the System Requirements	CO6	T1:5.5, 5.6, 5.7		
	DISCUSSION OF QUESTION BANK				
1	Unit – I: Real-Time Environment	CO1	T1:1.1-1.6		
2	Unit– II: Real-Time Operating Systems	CO2	T2:2.1-2.5		
3	Unit – III:System Design	CO3,	T1:4.1-4.5,		
		CO4			
4	Unit – IV: Introduction To CAN	CO5	T2:5.1-5.4		
5	Unit – V:CAN Standards	CO6	T1:6.1-6.4,7.1-		
			7.4,T2:8.1-8.4		

Signature of Course Coordinator Ms.N.Manjula,Assistant Professor,ECE HOD,ECE