

IARE INSTITUTE OF AERONAUTICAL ENGINEERING

Outcome Based Education (OBE) Manual IARE - UG20

Department of Electronics and Communication Engineering

Contents

1	Visior	n, Mission, Quality Policy, Philosophy & Core Values	1
	1.1	Vision and Mission of the Institution	1
	1.2	Vision and Mission of the Department	2
2	Progra	m Educational Objectives (PEOs)	2
	2.1	Mapping of program educational objectives to program outcomes and pro-	
		gram specific outcomes:	3
3	Progra	am Outcomes (POs)	4
4	Progra	m Specific Outcomes (PSOs)	5
5	Relation	on between the Program Educational Objectives and the POs	5
6	Relation	on between the Program Specific Outcomes and the Program Educational Ob-	
	jective	s:	8
7	Bloom	s Taxonomy	9
	7.1	Incorporating Critical Thinking Skills into Course Outcome Statements	9
	7.2	Definitions of the different levels of thinking skills in Bloom's taxonomy: 1	0
	7.3	List of Action Words Related to Critical Thinking Skills	0
8	Guidel	ines for writing Course Outcome Statements:	4
	8.1	Course Outcomes (COs)	4
	8.2	Developing Course Outcomes	4
	8.3	Relationship of Course Outcome to Program Outcome	5
	8.4	Characteristics of Effective Course Outcomes	5
	8.5	Examples of Effective Course Outcomes	5
	8.6	CO-PO Course Articulation Matrix (CAM) Mapping	8
	8.7	Tips for Assigning the values while mapping COs to POs	9
	8.8	Method for Articulation	9
9	Key C	Competencies for Assessing Program Outcomes:	20
10	Key C	ompetencies for Assessing Program Specific Outcomes:	26
11	Progra	am Outcomes and Program Specific outcomes Attained through course modules: 2	27
12	Metho	ds for measuring Learning Outcomes and Value Addition:	29
	12.1	Continuous Internal Assessment (CIA)	80
	12.2	Alternate Assessment Tools (AAT)	80
	12.3	Semester End Examination (SEE)	80
	12.4		80
	12.5	Course Exit Surveys	80
	12.6		80
	12.7		31
	12.8		31
	12.9		31
	12.10		31

A	Sam	pple Course Description	36
	15	Course Description:	35
		14.1 PO Direct Attainment is calculated using the following rubric:	
	14	PO/PSO - Assessment tools and Processes	34
		13.2 Indirect Assessment:	33
		13.1 Direct Assessment:	32
	13	CO - Assessment processes and tools:	32
		12.13 Professional Societies	32
		12.12 Faculty Meetings	31
		12.11 Department Advisory Board (DAB)	31

OVERVIEW

Outcome Based Education (OBE) is an educational model that forms the base of a quality education system. There is no single specified style of teaching or assessment in OBE. All educational activities carried out in OBE should help the students to achieve the set goals. The faculty may adapt the role of instructor, trainer, facilitator, and/or mentor, based on the outcomes targeted.

OBE enhances the traditional methods and focuses on what the Institute provides to students. It shows the success by making or demonstrating outcomes using statements "able to do" in favour of students. OBE provides clear standards for observable and measurable outcomes.

National Board of Accreditation (NBA) is an authorised body for the accreditation of higher education institutions in India. NBA is also a full member of the Washington Accord. NBA accredited programmes and not the institutions.

Higher Education Institutions are classified into two categories by NBA

Tier – 1: Institutions consists of all IITs, NITs, Central Universities, State Universities and Autonomous Institutions. Tier - 1 institutions can also claim the benefits as per the Washington Accord.

Tier - 2 Institutions consists of affiliated colleges of universities.

What is Outcome Based Education (OBE)?

Institutions adopting OBE try to bring changes to the curriculum by dynamically adapting to the requirements of the different stakeholders like Students, Parents, Industry Personnel and Recruiters. OBE is all about feedback and outcomes.

Four levels of outcomes from OBE are:

- 1. Program Educational Objectives (PEOs)
- 2. Program Outcomes (POs)
- 3. Program Specific Outcomes (PSOs)
- 4. Course Outcomes (COs)

Why OBE?

- 1. International recognition and global employment opportunities.
- 2. More employable and innovative graduates with professional and soft skills, social responsibility and ethics.
- 3. Better visibility and reputation of the technical institution among stakeholders.
- 4. Improving the commitment and involvement of all the stakeholders.
- 5. Enabling graduates to excel in their profession and accomplish greater heights in their careers.
- 6. Preparing graduates for the leadership positions and challenging them and making them aware of the opportunities in the technology development.

Benefits of OBE

Clarity: The focus on outcome creates a clear expectation of what needs to be accomplished by the end of the course.

Flexibility: With a clear sense of what needs to be accomplished, instructors will be able to structure their lessons around the students' needs.

Comparison: OBE can be compared across the individual, class, batch, program and institute levels. **Involvement:** Students are expected to do their own learning. Increased student's involvement allows them to feel responsible for their own learning, and they should learn more through this individual learning.

- Teaching will become a far more creative and innovative career
- Faculty members will no longer feel the pressure of having to be the "source of all knowledge".
- Faculty members shape the thinking and vision of students towards a course.

India, OBE and Accreditation:

From 13 June 2014, India has become the permanent signatory member of the Washington Accord. Implementation of OBE in higher technical education also started in India. The National Assessment and Accreditation Council (NAAC) and National Board of Accreditation (NBA) are the autonomous bodies for promoting global quality standards for technical education in India. NBA has started accrediting only the programs running with OBE from 2013.

The National Board of Accreditation mandates establishing a culture of outcome-based education in institutions that offer Engineering, Pharmacy, Management program. Reports of outcome analysis help to find gaps and carryout continuous improvements in the education system of an Institute, which is very essential.

1 Vision, Mission, Quality Policy, Philosophy & Core Values

1.1 Vision and Mission of the Institution

Vision

To bring forth professionally competent and socially sensible engineers, capable of working across cultures meeting the global standards ethically.

Mission

To provide students with an extensive and exceptional education that prepares them to excel in their profession, guided by dynamic intellectual community and be able to face the technically complex world with creative leadership qualities.

Further, be instrumental in emanating new knowledge through innovative research that emboldens entrepreneurship and economic development for the benefit of wide spread community.

Quality Policy

Our policy is to nurture and build diligent and dedicated community of engineers providing a professional and unprejudiced environment, thus justifying the purpose of teaching and satisfying the stake holders.

A team of well qualified and experienced professionals ensure quality education with its practical application in all areas of the Institute.

Philosophy

The essence of learning lies in pursuing the truth that liberates one from the darkness of ignorance and Institute of Aeronautical Engineering firmly believes that education is for liberation.

Contained therein is the notion that engineering education includes all fields of science that plays a pivotal role in the development of world-wide community contributing to the progress of civilization. This institute, adhering to the above understanding, is committed to the development of science and technology in congruence with the natural environs. It lays great emphasis on intensive research and education that blends professional skills and high moral standards with a sense of individuality and humanity. We thus promote ties with local communities and encourage transnational interactions in order to be socially accountable. This accelerates the process of transfiguring the students into complete human beings making the learning process relevant to life, instilling in them a sense of courtesy and responsibility.

Core Values

Excellence: All activities are conducted according to the highest international standards.

Integrity: Adheres to the principles of honesty, trustworthiness, reliability, transparency and accountability.

Inclusiveness: To show respect for ethics, cultural and religious diversity and freedom of thought.

Social Responsibility: Promotes community engagement, environmental sustainability, and global citizenship. It also promotes awareness of, and support for, the needs and challenges of the local and global communities.

Innovation: Supports creative activities that approach challenges and issues from multiple perspectives in order to find solutions and advance knowledge.

1.2 Vision and Mission of the Department

Vision

To produce professionally competent engineers, innovators and entrepreneurs capable of effectively addressing the technical challenges with social responsibility and professional ethics.

Mission

To provide an academic environment that will ensure high quality education, training and research by keeping students abreast of latest research and innovations in science and technology aimed at promoting employability, entrepreneurship, leadership qualities with ethics and research attitude.

M1: To provide an academic environment that will ensure high quality education, training and research.

M2: To keep the students abreast of latest research and innovations in science and technology.

M3: To promote employability, entrepreneurship, leadership qualities with ethics and research attitude

2 Program Educational Objectives (PEOs)

Program Educational Objectives (PEOs) should be defined by the Head of the Department in consultation with the faculty members. PEOs are a promise by the department to the aspiring students about what they will achieve once they join the programme. PEO assessment is not made compulsory by NBA as it is quite difficult to measure in Indian context. NBA assessors usually do not ask for PEO assessment. PEOs are about professional and career accomplishment after 4 to 5 years of graduation. PEOs can be written from different perspectives like Career, Technical Competency and Behaviour. While writing the PEOs do not use the technical terms as it will be read by prospective students who wants to join the programme. Three to five PEOs are recommended.

Program Educational Objective - I: Success in Professional career:

To be excel in professional career, in applied research by acquiring the knowledge in the fundamentals of Electronics and Communication Engineering principles and professional skills through rigorous learning – teaching.

Program Educational Objective – II: Design/Development of Solutions:

To be in a position to analyze real life problems and design socially accepted and economically feasible solutions in the field of electronics & communication engineering or other allied engineering or other fields.

Program Educational Objective – III: Lifelong learning and Research:

To involve themselves in lifelong learning and professional development by pursuing higher education

and participation in research and development activities to integrate engineering issues to broader social contexts.

Program Educational Objective – IV: Communication skills and Leadership:

To exhibit effective communication skills in their professional career, lead a team with good leadership traits and good interpersonal relationship with the members related to other engineering streams.

With a view to challenge ourselves and to nurture diverse capabilities for professional and intellectual growth for our students it is important for the department to define departmental objectives in generalized and broad format. Adherence to these objectives is proposed to be demonstrated through actions or achievements.

The department of Electrical and Electronics Engineering periodically reviews these objectives and as part of this review process, encourages comments from all interested parties including current students, alumni, prospective students, faculty, teaching assistants and members of related professional organizations, and colleagues from other educational institutions.

2.1 Mapping of program educational objectives to program outcomes and program specific outcomes:

The following Figure 1 shows the correlation between the PEOs and the POs

PEO-I	PEO-II	PEO-III	PEO-IV
PO: 1, 2, 3, 4, 5, 6, 7,	PO: 1, 2, 3, 4, 5, 6, 8,	PO: 1, 2, 3, 5, 6, 7, 8,	PO: 6, 7, 8, 9, 10, 11,
8, 9, 10, 11, 12	9, 10, 11, 12	9, 10, 11, 12	12

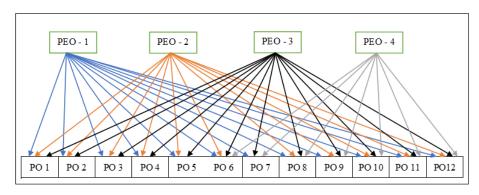


FIGURE 1: Correlation between the PEOs and the POs

The following Figure 2 shows the correlation between the PEOs and the PSOs

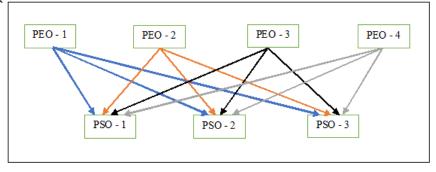


FIGURE 2: Correlation between the PEOs and the PSOs

PEO-I	PEO-II	PEO-III	PEO-IV
PSO: 1, 2, 3	PSO: 1, 2, 3	PSO: 1, 2, 3	PSO: 1,2,3

3 Program Outcomes (POs)

A Program Learning Outcome is broad in scope and be able to do at the end of the programme. POs are to be in line with the graduate attributes as specified in the Washington Accord. POs are to be specific, measurable and achievable. NBA has defined 12 POs and you need not define those POs by yourself and it is common for all the institutions in India. In the syllabus book given to students, there should be clear mention of course objectives and course outcomes along with CO-PO course articulation matrix for all the courses.

	B. Tech (ECE) - PROGRAM OUTCOMES (PO's)							
A gradu	ate of the Electronics and Communication Engineering Program will demonstrate:							
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering							
	fundamentals, and an engineering specialization to the solution of complex engineering							
	problems.							
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex							
	engineering problems reaching substantiated conclusions using first principles of math-							
	ematics, natural sciences, and engineering sciences							
PO3	Design/development of solutions: Design solutions for complex engineering problems							
	and design system components or processes that meet the specified needs with appropri-							
	ate consideration for the public health and safety, and the cultural, societal, and environ-							
	mental considerations.							
PO4	Conduct investigations of complex problems: Use research-based knowledge and re-							
	search methods including design of experiments, analysis and interpretation of data, and							
	synthesis of the information to provide valid conclusions.							
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and							
	modern engineering and IT tools including prediction and modeling to complex engi-							
	neering activities with an understanding of the limitations.							
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to							
	assess societal, health, safety, legal and cultural issues and the consequent responsibili-							
	ties relevant to the professional engineering practice.							
PO7	Environment and sustainability: Understand the impact of the professional engineer-							
	ing solutions in societal and environmental contexts, and demonstrate the knowledge of,							
	and need for sustainable development.							
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities							
	and norms of the engineering practice.							
PO9	Individual and team work: Function effectively as an individual, and as a member or							
	leader in diverse teams, and in multidisciplinary settings.							

PO10	Communication: Communicate effectively on complex engineering activities with the						
	engineering community and with society at large, such as, being able to comprehend and						
	write effective reports and design documentation, make effective presentations, and give						
	and receive clear instructions.						
PO11	Project management and finance: Demonstrate knowledge and understanding of the						
	engineering and management principles and apply these to one's own work, as a member						
	and leader in a team, to manage projects and in multidisciplinary environments.						
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to						
	engage in independent and life-long learning in the broadest context of technological						
	change.						

4 Program Specific Outcomes (PSOs)

Program Specific Outcomes (PSOs) are statements that describe what the graduates of a specific engineering program should be able to do. A list of PSOs written for the department of Electronics and Communication Engineering is given below.

	B. Tech (ECE) - PROGRAM SPECIFIC OUTCOMES (PSO's)					
A gradu	A graduate of the Electronics and Communication Engineering Program will demonstrate:					
PSO1	PSO1 Build embedded software and digital circuit development platform for robotics,					
	embedded systems and signal processing applications.					
PSO2	PSO2 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual					
	Instrumentation and System on Chip (SOC) designs.					
PSO3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating					
	the Patch and Smart Antennas for Wired and Wireless Communication Applications.					

5 Relation between the Program Educational Objectives and the POs

Broad relationship between the program objectives and the program outcomes is given in the following Table below:

	PEO's→ ↓ PO's	(1) Success in Profession -al career	(2) Design/ Development of Solutions	(3) Lifelong learning and Research	(4) Communica -tion skills and Leadership
PO1	Apply the knowledge of	3	3	3	2
	mathematics, science, engi-				
	neering fundamentals, and				
	an engineering specializa-				
	tion to the solution of com-				
	plex engineering problems.				

PO2	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	3	2	2
PO3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	3	2	2
PO4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	3	2	2
PO5	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	3	2	2

PO6	Apply reasoning informed by the contextual knowl- edge to assess societal, health, safety, legal and cul- tural issues and the conse- quent responsibilities rele- vant to the professional en- gineering practice.	2	3	3	3
PO7	Understand the impact of the professional engineer- ing solutions in societal and environmental con- texts, and demonstrate the knowledge of, and need for sustainable development.	2	2	3	3
PO8	Apply ethical principles and commit to professional ethics and responsibil- ities and norms of the engineering practice.	2	2	3	3
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	2	3	3	3
PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	3	3	3

PO11	Recognize the need for, and	2	3	3	3
	have the preparation and				
	ability to engage in inde-				
	pendent and life-long learn-				
	ing in the broadest context				
	of technological change.				
PO12	Demonstrate knowledge	2	2	3	3
	and understanding of the				
	engineering and manage-				
	ment principles and apply				
	these to one's own work,				
	as a member and leader in				
	a team, to manage projects				
	and in multidisciplinary				
	environments.				

Relationship between Program Outcomes and Program Educational Objectives Key: 3 = High; 2 = Medium; 1= Low

6 Relation between the Program Specific Outcomes and the Program Educational Objectives:

	PEO's→ ↓ PO's	(1) Success in Profession -al career	(2) Design/ Development of Solutions	(3) Lifelong learning and	(4) Communica -tion skills and
	<u> </u>			Research	Leadership
PSO1	Build Embedded Software	2	3	3	2
	and Digital Circuit De-				
	velopment platform for				
	Robotics, Embedded Sys-				
	tems and Signal Processing				
	Applications				
PSO2	Focus on the Application	3	2	3	2
	Specific Integrated Circuit				
	(ASIC) Prototype designs,				
	Virtual Instrumentation and				
	System on Chip (SOC) de-				
	signs.				

PSO3	Make use of High Fre-	2	2	2	3
	quency Structure Simulator				
	(HFSS) for modeling and				
	evaluating the Patch and				
	Smart Antennas for Wired				
	and Wireless Communica-				
	tion Applications.				

Relationship between Program Specific Outcomes and Program Educational Objectives Key: 3 = High; 2 = Medium; 1= Low

Note:

- The assessment process of POs and PSOs can be direct or indirect.
- The direct assessment will be done through interim assessment by conducting continuous internal exam and semester end exams.
- The indirect assessment on the other hand could be done through student's programme exit questionnaire, alumni survey and employment survey.

7 Blooms Taxonomy

Bloom's taxonomy is considered as the global language for education. Bloom's Taxonomy is frequently used by teachers in writing the course outcomes as it provides a readymade structure and list of action verbs. The stages ascend in complexity and what they demand of students. First students need to simply remember information provided to them — but reciting something doesn't demonstrate having learned it, only memorization. With understanding comes the ability to explain the ideas and concepts to others. The students are then challenged to apply the information and use it in new ways, helping to gain a deeper understanding of previously covered material and demonstrating it moving forward. Questioning information is a vital part of learning, and both analysis and evaluation do just this. Analysing asks a student to examine the information in a new way, and evaluation demands the student appraise the material in a way that lets them defend or argue against it as they determine. The final step in the revised taxonomy is creating, which entails a developing new product or point of view. How does this learned information impact your world? How can it be used to impact not just your education but the way you interact with your surroundings? By utilizing Bloom's Taxonomy, students are not going to forget the information as soon as the class ends - rather, they retain and apply the information as they continue to grow as a student and in their careers, staying one step ahead of the competition.

7.1 Incorporating Critical Thinking Skills into Course Outcome Statements

Many faculty members choose to incorporate words that reflect critical or higher-order thinking into their learning outcome statements. Bloom (1956) developed a taxonomy outlining the different types of thinking skills people use in the learning process. Bloom argued that people use different levels of thinking skills to process different types of information and situations. Some of these are basic cognitive skills (such as memorization) while others are complex skills (such as creating new ways

to apply information). These skills are often referred to as critical thinking skills or higher-order thinking skills.

Bloom proposed the following taxonomy of thinking skills. All levels of Bloom's taxonomy of thinking skills can be incorporated into expected learning outcome statements. Recently, Anderson and Krathwohl (2001) adapted Bloom's model to include language that is oriented towards the language used in expected learning outcome statements. A summary of Anderson and Krathwohl's revised version of Bloom's taxonomy of critical thinking is provided in Figure 3.

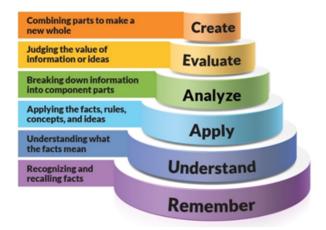


FIGURE 3: Revised version of Bloom's taxonomy

7.2 Definitions of the different levels of thinking skills in Bloom's taxonomy:

- Remember –recalling relevant terminology, specific facts, or different procedures related to information and/or course topics. At this level, a student can remember something, but may not really understand it.
- 2. **Understand** –the ability to grasp the meaning of information (facts, definitions, concepts, etc.) that has been presented.
- 3. **Apply** –being able to use previously learned information in different situations or in problem solving.
- 4. **Analyze** –the ability to break information down into its component parts. Analysis also refers to the process of examining information in order to make conclusions regarding cause and effect, interpreting motives, making inferences, or finding evidence to support statements/arguments.
- 5. **Evaluate** –being able to judge the value of information and/or sources of information based on personal values or opinions.
- 6. **Create** –the ability to creatively or uniquely apply prior knowledge and/or skills to produce new and original thoughts, ideas, processes, etc. At this level, students are involved in creating their own thoughts and ideas.

7.3 List of Action Words Related to Critical Thinking Skills

Here is a list of action words that can be used when creating the expected student learning outcomes related to critical thinking skills in a course. These terms are organized according to the different levels of higher-order thinking skills contained in Anderson and Krathwohl's (2001) revised version of Bloom's taxonomy.

Here is the revised Bloom's document with action verbs, which we frequently refer to while writing COs for our courses.

The cognitive process dimensions- categories:

Lower O	rder of Thinkii	ng (LOT)	Higher Or	der of Thinkin	g (HOT)
Remember	Understand	Apply	Analyse	Evaluate	Create
Interpreting	Recognizing	Executing	Differentiating	Checking	Planning
Illustrating	(identifying)	Implementing	Organizing	(coordinating,	Generating
Classifying	Recalling		Attributing	detecting,	Producing
Summarizing	(retrieving)			testing,	(constructing)
Inferring				monitoring)	
(concluding)				Critiquing	
comparing				(judging)	
explaining					

The Knowledge Dime	ension		
	Concrete Knowledge-	→Abstract knowledge	
Factual	Conceptual	Procedural	Metacognitive
 Knowledge of terminologies Knowledge of specific details and elements 	 Knowledge of classifications and categories Knowledge of principles and generalizations Knowledge of theories, models and structures 	 Knowledge of subject specific skills and algorithms Knowledge of subject specific techniques and methods Knowledge of criteria for determining when to use appropriate procedures 	Strategic Knowledge Knowledge about cognitive task, including appropriate contextual and conditional Knowledge Self- Knowledge

Action Verbs for Course Outcomes

	Lower Orde	Lower Order of Thinking (LOT)		High	Higher Order of Thinking (HOT)	(HOT)
Definitions	Remember	Understand	Apply	Analyse	Evaluate	Create
Bloom's	Exhibit memory of	Demonstrate	Solve problems to	Examine and break	Present and defend	Compile information
Definition	previously learned	understanding of facts	new situations by	information into	opinions by	together in a different
	material by recalling	and ideas by	applying acquired	parts by	making judgments	way by combining
	facts, terms, basic	organizing,	knowledge, facts,	identifying motives	about information,	elements in a new
	concepts, and	comparing,	techniques and	or causes. Make	validity of ideas, or	pattern or proposing
	answers.	translating,	rules in a different	inferences and find	quality of work	alternative solution.
		interpreting, giving	way.	evidence to support	based on a set of	
		descriptions, and		generalizations.	criteria.	
		stating main ideas.				
Verbs						
	• Choose	 Classify 	• Apply	• Analyze	• Agree	• Adapt
	• Define	• Compare	• Build	• Assume	• Appraise	• Build
	• Find	• Contrast	• Choose	 Categorize 	• Assess	• Solve
	• How	• Demonstrate	• Construct	 Classify 	• Award	• Choose
	• Label	• Explain	• Develop	• Compare	• Choose	 Combine
	• List	• Illustrate	• Interview	• Discover	• Criticize	• Invent
	• Match	• Infer	• Make use of	• Dissect	• Decide	• Compile
	• Extend	• Interpret	• Model	 Distinguish 	• Deduct	• Compose
					• Importance	• Construct

Action Verbs for Course Outcomes

	Lower Ord	Lower Order of Thinking (LOT)		High	Higher Order of Thinking (HOT)	g (HOT)
Definitions	Remember	Understand	Apply	Analyse	Evaluate	Create
Verbs						
	• Name	• Outline	• Organize	• Divide	• Defend	• Create
	• Omit	• Relate	• Plan	• Examine	• Determine	• Design
	• Recall	• Rephrase	• Select	• Function	• Disprove	• Develop
	• Relate	• Show	• Solve	• Inference	• Estimate	• Estimate
	• Select	Summarize	• Utilize	• Inspect	• Evaluate	• Formulate
	• Show	• Translate	• Identify	• List Motive	• Influence	• Happen
	• Spell	• Experiment with	 Interview 	Simplify	• Interpret	• Imagine
	• Tell	• Illustrate	• Make use of	• Survey	• Judge	• Improve
	• What	• Infer	• Model	• Take part in	• Justify Mark	• Make up
	• When	• Interpret	 Organize 	• Test for Theme	• Measure	• Maximize
	• Where	• Outline	• Plan	• Conclusion	• Opinion	• Minimize
	• Which	• Relate	• Select	• Contrast	• Perceive	• Modify
	• Who	• Rephrase	• Solve		• Prioritize	 Original
	• Why	• Show	• Utilize		• Prove	 Originate
		Summarize	• Identify		 Criteria 	• Plan
		• Translate			• Criticize	• Predict
		• Experiment with			• Compare	• Propose
					• Conclude	• Solution

8 Guidelines for writing Course Outcome Statements:

Well-written course outcomes involve the following parts:

- 1. Action verb
- 2. Subject content
- 3. Level of achievement as per BTL
- 4. Modes of performing task (if applicable)

8.1 Course Outcomes (COs)

A Course Outcome is a formal statement of what students are expected to learn in a course. When creating Course Outcomes remember that the outcomes should clearly state what students will do or produce to determine and/or demonstrate their learning. Course learning outcome statements refer to specific knowledge, practical skills, areas of professional development, attitudes, higher-order thinking skills, etc. that faculty members expect students to develop, learn, or master during a course.

A well-formulated set of Course Outcomes will describe what a faculty member hopes to successfully accomplish in offering their particular course(s) to prospective students, or what specific skills, competencies, and knowledge the faculty member believes that students will have attained once the course is completed. The learning outcomes need to be concise descriptions of what learning is expected to take place by course completion.

8.2 Developing Course Outcomes

When creating course outcomes consider the following guidelines as you develop them either individually or as part of a multi-section group:

- Limit the course outcomes to 8-12 statements for the entire course [more detailed outcomes can be developed for individual units, assignments, chapters, etc. if the instructor(s) wish (es)].
- Focus on overarching knowledge and/or skills rather than small or trivial details
- Focus on knowledge and skills that are central to the course topic and/or discipline.
- Create statements that have a student focus rather than an instructor centric approach (basic e.g., "upon completion of this course students will be able to list the names of the 28 states and 8 union territories" versus "one objective of this course is to teach the names of the 28 states and 8 union territories").
- Focus on the learning that results from the course rather than describing activities or lessons that are in the course.
- Incorporate and/or reflect the institutional and departmental missions.
- Include various ways for students to show success (outlining, describing, modelling, depicting, etc.) rather than using a single statement such as "at the end of the course, students will know _____ "as the stem for each expected outcome statement.

When developing learning outcomes, here are the core questions to ask yourself:

• What do we want students in the course to learn?

- What do we want the students to be able to do?
- Are the outcomes observable, measurable and are they able to be performed by the students?

Course outcome statements on the course level describe:

- What faculty members want students to know at the end of the course AND
- What faculty members want students to be able to do at the end of the course?

Course outcomes have three major characteristics

- They specify an action by the students/learners that is observable
- They specify an action by the students/learners that is measurable
- They specify an action that is done by the students/learners rather than the faculty members

Effectively developed expected learning outcome statements should possess all three of these characteristics. When this is done, the expected learning outcomes for a course are designed so that they can be assessed. When stating expected learning outcomes, it is important to use verbs that describe exactly what the student(s) / learner(s) will be able to do upon completion of the course.

8.3 Relationship of Course Outcome to Program Outcome

The Course Outcomes need to link to the Program Outcomes.

Learning outcomes formula:

STUDENTS SHOULD BE ABLE TO + BEHAVIOR + RESULTING EVIDENCE

For example, you can use the following template to help you write an appropriate course level learning outcome.

"Upon completion of this course students will be able to (knowledge, concept, rule or skill you expect them to acquire) by (how will they apply the knowledge or skill/how will you assess the learning)."

8.4 Characteristics of Effective Course Outcomes

Well whise ibowhat web went your students to learn in your course.

- Are aligned with program goals and objectives.
- Tell how you will know an instructional goal has been achieved.
- Use action words that specify definite, observable behaviours.
- Are assessable through one or more indicators (papers, quizzes, projects, presentations, journals, portfolios, etc.)
- Are realistic and achievable.
- Use simple language

8.5 Examples of Effective Course Outcomes

After successful completion of the course, Students will be able to:

- Critically review the methodology of a research study published in a scholarly sociology journal
- Design a Web site using HTML and JavaScript.
- Describe and present the contributions of women to American history.

- Recognize the works of major Renaissance artists.
- Facilitate a group to achieve agreed-upon goals.
- Determine and apply the appropriate statistical procedures to analyze the results of simple experiments.
- Develop an individual learning plan for a child with a learning disability.
- Produce a strategic plan for a small manufacturing business.
- Analyse a character's motivation and portray that character before an audience.
- Differentiate among five major approaches to literary analysis
- List the major ethical issues one must consider when planning a human-subjects study.
- Locate and critically evaluate information on current political issues on the Web.
- List and describe the functions of the major components of the human nervous system.
- Correctly classify rock samples found in...
- Conduct a systems analysis of a group interaction.
- Demonstrate active listening skills when interviewing clients.
- Apply social psychological principles to suggest solutions to contemporary social problems.

A more detailed model for stating learning objectives requires that objectives have three parts: a condition, an observable behaviour, and a standard. The table below provides three examples.

S No	Condition	Observable Behaviour	Standard
1	Given a list of drugs	the student will be able to classify	with at least 70% ac-
		each item as amphetamine or barbi-	curacy
		turate	
2	Immediately follow-	the student will be able to summarize	mentioning at least
	ing a fifteen-minute	in writing the major issues being dis-	three of the five ma-
	discussion on a topic.	cussed.	jor topics.
3	Given an algebraic	the student will be able to correctly	within a period of
	equation with one	solve a simple linear equation	five minutes.
	unknown.		

The following examples describe a course outcome that is not measurable as written, an explanation for why the course outcome is not considered measurable, and a suggested edit that improves the course outcome

Original course out-	Evaluation of language used in	Improved course outcome
come	this course outcome	
Explore in depth the	Exploration is not a measur-	Upon completion of this course the
literature on an aspect	able activity but the quality of	students will be able to: write a
of teaching strategies.	the product of exploration would	paper based on an in-depth explo-
	be measurable with a suitable	ration of the literature on an aspect
	rubric.	of teaching strategies.

Examples that are TOO general and VERY HARD to measure...

• ... will appreciate the benefits of learning a foreign language.

- ... will be able to access resources at the Institute library.
- ... will develop problem-solving skills.
- ... will have more confidence in their knowledge of the subject matter. Examples that are still general and HARD to measure...
- ... will value knowing a second language as a communication tool.
- ... will develop and apply effective problem-solving skills that will enable one to adequately navigate through the proper resources within the institute library.
- ... will demonstrate the ability to resolve problems that occur in the field.
- ... will demonstrate critical thinking skills, such as problem solving as it relates to social issues.

Examples that are SPECIFIC and relatively EASY to measure...

- ... will be able to read and demonstrate good comprehension of text in areas of the student's interest or professional field.
- ... will demonstrate the ability to apply basic research methods in psychology, including research design, data analysis, and interpretation.
- ... will be able to identify environmental problems, evaluate problem-solving strategies, and develop science-based solutions.
- ... will demonstrate the ability to evaluate, integrate, and apply appropriate information from various sources to create cohesive, persuasive arguments, and to propose design concepts.

An Introspection - Examine Your Own Course Outcomes

- If you have written statements of broad course goals, take a look at them. If you do not have a written list of course goals, reflect on your course and list the four to six most important student outcomes you want your course to produce.
- Look over your list and check the one most important student outcome. If you could only achieve one outcome, which one would it be?
- Look for your outcome on the list of key competencies or outcomes society is asking us to produce. Is it there? If not, is the reason a compelling one?
- Check each of your other "most important" outcomes against the list of outcomes. How many are on the list of key competencies?
- Take stock. What can you learn from this exercise about what you are trying to accomplish as a teacher? How clear and how important are your statements of outcomes for your use and for your students'? Are they very specifically worded to avoid misunderstanding? Are they supporting important needs on the part of the students?

Write Your Course Outcomes!

One of the first steps you take in identifying the expected learning outcomes for your course is identifying the purpose of teaching the course. By clarifying and specifying the purpose of the course, you will be able to discover the main topics or themes related to students' learning. Once discovered, these themes will help you to outline the expected learning outcomes for the course. Ask yourself:

- What role does this course play within the program?
- How is the course unique or different from other courses?
- Why should/do students take this course? What essential knowledge or skills should they gain from this experience?

- What knowledge or skills from this course will students need to have mastered to perform well in future classes or jobs?
- Why is this course important for students to take?

8.6 CO-PO Course Articulation Matrix (CAM) Mapping

Course Articulation Matrix shows the educational relationship (Level of Learning achieved) between course outcomes and program outcomes for a course. This matrix strongly indicates whether the students are able to achieve the course learning objectives. The matrix can be used for any course and is a good way to evaluate a course syllabus.

The Table 1 gives information about the action verbs used in the POs and the nature of POs, stating whether the POs are technical or non-technical. You need to understand the intention of each POs and the Bloom's level to which each of these action verbs in the POs correlates to. Once you have understood the POs then you can write the COs for a course and see to what extent each of those CO's correlate with the POs.

TABLE 9: Process for mapping the values for CO-PO Matrix

Type	POs	Action	Bloom's	Bloom's level(s) for COs	
		Verb(s) in	level(s)		
		POs	for POs		
	PO1	Apply	L3	Bloom's L1 to L4 for theory courses.	
	PO2	Identify	L2	Bloom's L1 to L5 for laboratory courses.	
		Formulate	L6	Bloom's L1 to L6 for project work,	
		Review	L2	experiential learning	
		Design	L6		
Technical	PO3	Develop	L3, L6		
		Analyse	L4		
	PO4	Interpret	L2, L3		
		Design	L6		
		Create	L6		
	PO5	Select	L1, L2,		
	103		L6		
		Apply	L3		
	PO6	Thumb Rule	:		
	PO7	If Bloom's L1 Action Verbs of a CO: Correlates with any of PO6			
	PO8	to PO12, then assign 1.			
Non-Technical	PO9	If Bloom's L2	2 to L3 Action	on Verbs of a CO: Correlates with any of	
	PO10	PO6 to PO12	, then assign	2.	
	PO11	If Bloom's L	4 to L6 Action	on Verbs of a CO: Correlates with any of	
	PO12	PO6 to PO12	, then assign	3	

At the end, the POs can be calculated using various descriptors that you may define. The mapping of CO towards a PO is evaluated using descriptors such as High, Medium, Low etc...

Observations:

- 1. The first five POs are purely of technical in nature, while the other POs are non-technical.
- 2. For the theory courses, while writing the COs, you need to restrict yourself between Blooms Level 1 to Level 4. Again, if it is a programming course, restrict yourself between Blooms Level 1 to Level 3 but for the other courses, you can go up to Blooms Level 4.
- 3. For the laboratory courses, while composing COs, you need to restrict yourself between Blooms Level 1 to Level 5.
- 4. Only for Mini-project and Main project, you may extend up to Blooms Level 6 while composing COs.
- 5. For a given course, the course in-charge has to involve all the other Professors who teach that course and ask them to come up with the CO-PO mapping. The course in-charge has to take the average value of all of these CO-PO mappings and finalize the values or the course in-charge can go with what the majority of the faculty members prefer for. Ensure that none of the Professors who are handling the particular course discuss with each other while marking the CO-PO values.
- 6. If you want to match your COs with non-technical POs, then correlate the action verbs used in the course COs with the thumb rule given in the table and map the values. (Applies only for mapping COs to non-technical POs).

8.7 Tips for Assigning the values while mapping COs to POs.

- 1. Select action verbs for a CO from different Bloom's levels based on the importance of the particular CO for the given course.
- 2. Stick on to single action verbs while composing COs but you may go for multiple action verbs if the need arises.
- 3. You need to justify for marking of the values in CO-PO articulation matrix. Use a combination of words found in the COs, POs and your course syllabus for writing the justification. Restrict yourself to one or two lines.
- 4. Values to CO-PO (technical POs in particular) matrix can be assigned by
 - (a) Judging the importance of the particular CO in relation to the POs. If the CO matches strongly with a particular PO criterion then assign 3, if it matches moderately then assign 2 or if the match is low then assign 1 else mark with "-" symbol.
 - (b) If an action verb used in a CO is repeated at multiple Bloom's levels, then you need to judge which Bloom's level is the best fit for that action verb.

8.8 Method for Articulation

1. Identify the key competencies of POs/PSOs to each CO and make a corresponding mapping table with assigning ✓ mark at the corresponding cell. One observation to be noted is that the first five POs are purely of technical in nature, while the other POs are non-technical.

- 2. Justify each CO PO/PSO mapping with a justification statement and recognize the number of vital features mentioned in the justification statement that are matching with the given Key Attributes for Assessing Program Outcomes. Use a combination of words found in the COs, POs/PSOs and your course syllabus for writing the justification.
- 3. Make a table with number of key competencies for CO PO/PSO mapping with reference to the maximum given Key Attributes for Assessing Program Outcomes.
- 4. Make a table with percentage of key competencies for CO PO/PSO mapping with reference to the maximum given Key Attributes for Assessing Program Outcomes.
- 5. Finally, Course Articulation Matrix (CO PO / PSO Mapping) is prepared with COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation (marked with " "), 1 being the low/slight correlation, 2 being medium/moderate correlation and 3 being substantial/high correlation based on the following strategy

$$0-0 \le C \le 5\%$$
 - No correlation.
$$1-5 < C \le 40\%$$
 - Low / Slight.
$$2-40\% < C < 60\%$$
 - Moderate
$$3-60\% \le C < 100\%$$
 - Substantial / High

9 Key Competencies for Assessing Program Outcomes:

PO	NBA statement / Vital features	No. of vital
		features
PO1	Apply the knowledge of mathematics, science, engineering funda-	3
	mentals, and an engineering specialization to the solution of complex	
	engineering problems (Engineering Knowledge). Knowledge, under-	
	standing and application of	
	 Scientific principles and methodology 	
	2. Mathematical principles	
	3. Own and / or other engineering disciplines to integrate / support	
	study of their own engineering discipline	

PO	NBA statement / Vital features	No. of vital
		features
PO2	Identify, formulate, review research literature, and analyse complex	3
	Engineering problems reaching substantiated conclusions using first	
	principles of mathematics natural sciences, and Engineering sciences	
	(Problem Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results	
	10. Documentation	
DO2		10
PO3	Design solutions for complex Engineering problems and design sys-	10
	tem components or processes that meet the specified needs with ap-	
	propriate consideration for the public health and safety, and the cul-	
	tural, societal, and Environmental considerations (Design/Develop-	
	ment of Solutions).	
	1. Investigate and define a problem and identify constraints including	
	environmental and sustainability limitations, health and safety and risk assessment issues	
	2. Understand customer and user needs and the importance of con-	
	siderations such as aesthetics	
	3. Identify and manage cost drivers	
	4. Use creativity to establish innovative solutions	
	5. Ensure fitness for purpose for all aspects of the problem including	
	production, operation, maintenance and disposal	
	6. Manage the design process and evaluate outcomes	
	7. Knowledge and understanding of commercial and economic con-	
	text of engineering processes	
	8. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	9. Understanding of the requirement for engineering activities to pro-	
	mote sustainable development	
	10. Awareness of the framework of relevant legal requirements governing	
	engineering activities, including personnel, health, safety, and risk issues	

PO	NBA statement / Vital features	No. of vital
		features
PO4	Use research-based knowledge and research methods including de-	11
	sign of experiments, analysis and interpretation of data, and synthe-	
	sis of the information to provide valid conclusions (Conduct Investi-	
	gations of Complex Problems).	
	1. Knowledge of characteristics of particular materials, equipment,	
	processes, or product	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology devel-	
	opment, etc.)	
	4. Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and contrac- tual issues	
	5. Understanding of appropriate codes of practice and industry stan-	
	dards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty.	
	8. Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of sys-	
	tems and components through the use of analytical methods and	
	modeling techniques	
	10. Ability to apply quantitative methods and computer software rel-	
	evant to their engineering discipline, in order to solve engineering	
	problems	
	11. Understanding of and ability to apply a systems approach to en-	
	gineering problems.	
PO5	Create, select, and apply appropriate techniques, resources, and	1
	modern Engineering and IT tools including prediction and modelling	
	to complex Engineering activities with an understanding of the limi-	
	tations (Modern Tool Usage).	
	1. Computer software / simulation packages / diagnostic equipment /	
	technical library resources / literature search tools.	

PO	NBA statement / Vital features	No. of vital
		features
PO6	Apply reasoning informed by the contextual knowledge to assess so-	5
	cietal, health, safety, legal and cultural issues and the consequent re-	
	sponsibilities relevant to the professional engineering practice (The	
	Engineer and Society).	
	Knowledge and understanding of commercial and economic context of engineering processes	
	2. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	3. Understanding of the requirement for engineering activities to promote sustainable development	
	4. Awareness of the framework of relevant legal requirements govern-	
	ing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues	
	5. Understanding of the need for a high level of professional and eth-	
	ical conduct in engineering	
PO7	Understand the impact of the professional Engineering solutions in	3
	societal and Environmental contexts, and demonstrate the knowledge	
	of, and need for sustainable development (Environment and Sustain-	
	ability). Impact of the professional Engineering solutions (Not tech-	
	nical)	
	1. Socio economic	
	2. Political and	
	3. Environmental	
PO8	Apply ethical principles and commit to professional ethics and re-	3
	sponsibilities and norms of the Engineering practice (Ethics).	
	1. Comprises four components:ability to make informed ethical	
	choices, knowledge of professional codes of ethics, evaluates the	
	ethical dimensions of professional practice, and demonstrates ethi-	
	cal behavior.	
	2. Stood up for what they believed in	
	3. High degree of trust and integrity	

PO	NBA statement / Vital features	No. of vital
		features
PO9	Function effectively as an individual, and as a member or leader in di-	12
	verse teams, and in multidisciplinary settings (Individual and Team-	
	work).	
	1. Independence	
	2. Maturity – requiring only the achievement of goals to drive their performance	
	3. Self-direction (take a vaguely defined problem and systematically work to resolution)	
	4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.	
	5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen - week design project.	
	6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference.	
	7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.	
	8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.	
	9. Ability to work with all levels of people in an organization10. Ability to get along with others	
	11. Demonstrated ability to work well with a team	
	12. Subjective evidence from senior students shows that the friend-	
	ships and teamwork extend into the Junior years, and for some of	
	those students, the friendships continue into the workplace after graduation.	
DO10	Communicate effectively on complex Engineering activities with the	5
1 010	Engineering community and with society at large, such as, being able	J
	to comprehend and write effective reports and design documentation,	
	make effective presentations, and give and receive clear instructions	
	(Communication). "Students should demonstrate the ability to com-	
	municate effectively in writing / Orally."	
	1. Clarity (Writing)	
	2. Grammar/Punctuation (Writing)	
	3. References (Writing)	
	4. Speaking Style (Oral)	
	5. Subject Matter (Oral)	

PO	NBA statement / Vital features	No. of vital
		features
PO11	Demonstrate knowledge and understanding of the Engineering and	12
	management principles and apply these to one's own work, as a mem-	
	ber and leader in a team, to manage projects and in multidisciplinary	
	Environ ments (Project Management and Finance).	
	1. Scope Statement	
	2. Critical Success Factors	
	3. Deliverables	
	4. Work Breakdown Structure	
	5. Schedule	
	6. Budget	
	7. Quality	
	8. Human Resources Plan	
	9. Stakeholder List	
	10. Communication	
	11. Risk Register	
	12. Procurement Plan	
PO12	Recognize the need for and have the preparation and ability to en-	8
	gage in independent and life-long learning in the broadest context of	
	technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

10 Key Competencies for Assessing Program Specific Outcomes:

PSO	NBA statement / Vital features	No. of vital
		features
PSO1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications	5
	 Analyze and solve real time problems in Robotics. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications Develop embedded systems modules using Real Time Operating System. Undertake research and development projects in the field of Embedded Systems. Adopt the engineering professional code and conduct 	
PSO2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register-Transfer-Level designs Analyse and develop models for system level descriptions for synthesis of SOC Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) Programming and hands-on skills to meet requirements of global environment. 	11

PSO	NBA statement / Vital features	No. of vital
		features
PSO3	Make use of High Frequency Structure Simulator (HFSS) for mod-	7
	eling and evaluating the Patch and Smart Antennas for Wired and	
	Wireless Communication Applications.	
	1. Explicit software and programming tools for antenna design.	
	2. Adopt technical library resources and literature search.	
	3. Explore smart antennas.	
	4. Model, program for operation and control of smart antennas for	
	wireless communication applications.	
	5. Interface automation tools.	
	6. Research, analysis, problem solving and presentation using soft-	
	ware aids.	
	7. Programming and hands-on skills to meet requirements of global	
	environment.	

11 Program Outcomes and Program Specific outcomes Attained through course modules:

Courses offered in Electronics and Communication Engineering Curriculum (IARE-R20) and POs/P-SOs attained through course modules for I, II, III, IV semesters.

Code	Subject		PO												PSO		
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
			I	Sem	estei	r B. '	Tech	l									
AHSC01	English										/						
AHSC02	Linear Algebra and	~	~														
	Calculus																
AHSC03	Engineering	✓	✓		✓											~	
	Physics																
ACSC01	Python	✓	✓	✓		✓				✓	/		/	✓			
	Programming																
AHSC04	English Language	✓	~		/									✓			
	and																
	Communication																
	Skills Laboratory																
AHSC05	Physics Laboratory	✓	✓		✓									✓			
ACSC02	Python	~	~	~		~				/	/		/	/		~	
	Programming																
	Laboratory																

Code	Subject	PO											PSO			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
				II SI	EME	ESTI	ER									
AHSC06	Chemistry	✓	✓					✓								
AHSC07	Mathematical	✓	✓													
	Transform															
	Techniques															
AEEC02	Electrical Circuits	✓		✓	~										✓	
ACSC04	Programming for	✓	✓		~										✓	
	Problem Solving															
	using C															
ACSC06	Experiential	✓		~			~							✓	~	$\overline{}$
	Engineering															
	Education															
	(ExEEd)-Academic															
	Success															
AEEC03	Electrical Circuits	✓		~			✓									
	Laboratory															
ACSC05	Programming for	✓		✓			✓							✓	✓	
	Problem Solving															
	using C Laboratory															
AMEC04	Engineering	✓	~	/		/								/		
	Workshop Practice															
			1	II S	EMI	EST]	ER									
AECC01	Electronic Devices	/	~	/										/		
	and Circuits															
AECC02	Signals and	~	~	/										/		
	Systems															
AECC03	Digital System	~	~	/	/										✓	
	Design															
AECC04	Probability Theory	/	~	/										/		
	and Stochastic															
	Processes															
ACSC08	Data Structures	✓	✓	<u> </u>		<u> </u>					<u> </u>		<u> </u>	<u> </u>		
ACSC09	ExEEd-		/			/								/	/	
	Prototype/Design															
	Building															
AECC05			~			/								/		
	and Circuits															
	Laboratory															

Code	Subject	PO												PSO				
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
AECC06	Digital System	✓	✓	✓	✓	✓				✓	/				\			
	Design Laboratory																	
ACSC10	Data Structures	✓	✓	✓		✓					/		✓					
	Laboratory																	
IV SEMESTER																		
AHSC12	Complex Analysis	✓	✓	✓							✓			✓				
	and Special																	
	Functions																	
AECC09	Analog and Pulse	✓	✓	✓							✓							
	Circuits																	
AECC10	Analog and Digital	✓	✓	✓							/					/		
	Communications																	
AECC11	Electromagnetic	✓	✓	✓		✓					/			✓				
	Waves and																	
	Transmission																	
	Lines																	
AECC12	IC Applications	✓	✓	✓							✓			✓				
ACSC14	ExEEd		✓	✓							/			✓	\	$\overline{}$		
	-Fabrication/Model																	
	Development																	
AECC13	Analog and Pulse	✓	✓	✓									✓	✓				
	Circuits																	
	Laboratory																	
AECC14	Analog and Digital		✓			/				✓	✓							
	Communications																	
	Laboratory																	
AECC15	IC Applications	✓	✓		/	✓				~				/				
	Laboratory																	

12 Methods for measuring Learning Outcomes and Value Addition:

There are many different ways to assess student learning. In this section, we present the different types of assessment approaches available and the different frame works to interpret the results.

- i) Continuous Internal Assessment (CIA)
- ii) Alternate Assessment Tools (AAT)
- iii) Semester end examination (SEE)
- iv) Laboratory and project work
- v) Course exit survey
- vi) Program exit survey
- vii) Alumni survey

- viii) Employer survey
- ix) Course expert committee
- x) Program Assessment and Quality Improvement Committee (PAQIC)
- xi) Department Advisory Board (DAB)
- xii) Faculty meetings
- xiii) Professional societies

The above assessment indicators are detailed below.

12.1 Continuous Internal Assessment (CIA)

Two Continuous Internal Examinations (CIEs) are conducted for all courses by the department. All students must participate in this evaluation process. These evaluations are critically reviewed by HOD and senior faculty and the essence is communicated to the faculty concerned to analyze, improve and practice so as to improve the performance of the student.

12.2 Alternate Assessment Tools (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table.

12.3 Semester End Examination (SEE)

The semester end examination is conducted for all the courses in the department. Before the Semester end examinations course reviews are conducted, feedback taken from students and remedial measures will be taken up such that the student gets benefited before going for end exams. The positive and negative comments made by the students about the course are recorded and submitted to the departmental academic council (DAC) and to the principal for taking necessary actions to better the course for subsequent semesters.

12.4 Laboratory and Project Works

The laboratory work is continuously monitored and assessed to suit the present demands of the industry. Students are advised and guided to do project works giving solutions to research / industrial problems to the extent possible by the capabilities and limitations of the student. The results of the assessment of the individual projects and laboratory work can easily be conflated in order to provide the students with periodic reviews of their overall progress and to produce terminal marks and grading.

12.5 Course Exit Surveys

Students are encouraged to fill-out a brief survey on the fulfillment of course objectives. The data is reviewed by the concerned course faculty and the results are kept open for the entire faculty. Based on this, alterations or changes to the course objectives are undertaken by thorough discussions in faculty and DAC meetings.

12.6 Programme Exit Survey

The programme exist questionnaire form is to be filled by all the students leaving the institution. The questionnaire is designed in such a way to gather information from the students regarding the program educational objectives, solicit about program experiences, carrier choices, as well as any suggestions

and comments for the improvement of the program. The opinions expressed in exit interview forms are reviewed by the DAC for implementation purposes.

12.7 Alumni Survey

The survey asks former students of the department about the status of their employment and further education, perceptions of institutional emphasis, estimated gains in knowledge and skills, involvement a sunder graduate student, and continuing involvement with Institute of Aeronautical Engineering. This survey is administered every three years. The data obtained will be analyzed and used in continuous improvement.

12.8 Employer Survey

The main purpose of this employer questionnaire is to know employer's views about the skills they require of employees compared to the skills actually possessed by them. The purpose e is also to identify gaps in technical and vocational skills, need for required training practices to fill these gaps and criteria for hiring new employees. These employer surveys are reviewed by the College Academic Council (CAC) to affect the present curriculum to suit the requirement so the employer.

12.9 Course Expert Committee

The course expert team is responsible in exercising the central domain of expertise in developing and renewing the curriculum and assessing its quality and effectiveness to the highest of professional standards. Inform the Academic Committee the 'day-to-day' matters as are relevant to the offered courses. This committee will consider the student and staff feedback on the efficient and effective development of the relevant courses. The committee also review the course full stack content developed by the respective course coordinator.

12.10 Programme Assessment and Quality Improvement Committee (PAQIC)

PAC Monitors the achievements of Program Outcomes (POs), Program Specific Outcomes (PSOs) and Program Educational Objectives (PEOs). It will evaluate the program effectiveness and proposes the necessary changes. It also prepares the periodic reports on program activities, progress, status or other special reports for management. It also motives the faculty and students towards attending workshops, developing projects, working models, paper publications and engaging in research activities.

12.11 Department Advisory Board (DAB)

Departmental Advisory Board plays an important role in the development of the department. Department level Advisory Board will be established for providing guidance and direction for qualitative growth of the department. The Board interacts and maintains liaison with key stakeholders. DAB will Monitor the progress of the program and develop or recommend the new or revised goals and objectives for the program. Also, the DAB will review and analyze the gaps between curriculum and Industry requirement and gives necessary feedback or advices to be taken to improve the curriculum.

12.12 Faculty Meetings

The DAC meets bi-annually for every academic year to review the strategic planning and modification of PEOs. Faculty meetings are conducted at least once in fortnight for ensuring the implementation of DAC's suggestions and guidelines. All these proceedings are recorded and kept for the availability of all faculties.

12.13 Professional Societies

The importance of professional societies like IEEE, IETE, ISTE, IE (I) etc., are explained to the students and they are encouraged to become members of the above to carry out their continuous search for knowledge. Student and faculty chapters of the above societies are constituted for a better technical and entrepreneurial environment. These professional societies promote excellence in instruction, research, public service and practice.

13 CO - Assessment processes and tools:

Course outcomes are evaluated based on two approaches namely direct and indirect assessment methods. The direct assessment methods are based on the Continuous Internal Assessment (CIA) and Semester End Examination (SEE) whereas the indirect assessment methods are based on the course end survey and program exit survey provided by the students, Alumni and Employer. The weightage in CO attainment of Direct and Indirect assessments are illustrated in Table.

Assessment Method	Assessment Tool	Weightage in CO attainment
Direct Assessment	Continuous Internal Assessment (CIE & AAT)	80%
	Semester End Examination	
Indirect Assessment	Course End Survey	20%

13.1 Direct Assessment:

Direct assessment methods are based on the student's knowledge and performance in the various assessments and examinations. These assessment methods provide evidence that a student has command over a specific course, content, or skill, or that the students work demonstrates a specific quality such as creativity, analysis, or synthesis.

The various direct assessment tools used to assess the impact of delivery of course content is listed in Table.

- Continuous internal examination, semester end examinations, AAT (includes assignment, 5 minutes videos, seminars etc.) are used for CO calculation.
- The attainment values are calculated for individual courses and are formulated and summed for assessing the POs.
- Performance in AAT is indicative of the student's communication skills.

S No	Courses	Components	Frequency	Max.	Evidence
				Marks	
		Continuous Internal	Twice in a	25	Answer script
1	Core / Elective	Examination	semester		
1	Core / Elective	Alternative	Twice in a	5	Video / Quiz /
		Assessment Tools	semester		assignment
		(AAT)			
		Semester End	Once in a	70	Answer script
		Examination	semester		
		Conduction of	Once in a week	4	Work sheets
		experiment			
		Observation	Once in a week	4	Work sheets
		Result	Once in a week	4	Work sheets
2	Laboratory	Record	Once in a week	4	Work sheets
		Viva	Once in a week	4	Work sheets
		Internal laboratory	Once in a	10	Answer script
		assessment	semester		
		Semester End	Once in a	70	Answer script
		Examination	semester		
		Presentation	Twice in a	30	Presentation
3	Project Work		semester		
		Semester End	Once in a	70	Thesis report
		Examination	semester		
	Comprehensive	Written examination	Once in a	50	Online
4	Examination	(objective type)	semester		assessment
		Oral examination	Once in a	50	Viva
			Semester		

13.2 Indirect Assessment:

Course End Survey - In this survey, questionnaires are prepared based on the level of understanding of the course and the questions are mapped to Course Outcomes. The tools and processes used in indirect assessment are shown in Table.

TABLE 15: Tools used in Indirect assessment

Tools	Process	Frequency
Course end survey	 Taken for every course at the end of the semester Gives an overall view that helps to assess the extent of coverage/ compliance of COs Helps the faculty to improve upon the various teaching methodologies 	Once in a semester

Direct Tools: (Measurable in terms of marks and w.r.t. CO) Assessment done by faculty at department level

Indirect Tools: (Non measurable (surveys) in terms of marks and w.r.t. CO) Assessment done at institute level.

14 PO/PSO - Assessment tools and Processes

The institute has the following methods for assessing attainment of POs/PSOs.

- 1. Direct method
- 2. Indirect method

The attainment levels of course outcomes help in computing the PO/PSO based upon the mapping done.

TABLE 16: Attainment of PO/PSOs

	Assessment	Tools	Weight
DO ₂ /DCO ₂	Direct Assessment	CO attainment of courses	80%
POs/PSOs	Indirect Assessment	Student exit survey	
Attainment		Alumni survey	2007
		Employer survey	20%

The CO values of both theory and laboratory courses with appropriate weightage as per CO-PO mapping, as per Program Articulation Matrix are considered for calculation of direct attainment of PO/PSOs.

14.1 PO Direct Attainment is calculated using the following rubric:

PO Direct Attainment = (Strength of CO-PO)*CO attainment / Sum of CO-PO strength.

The below figure represents the evaluation process of POs/PSOs attainment through course outcome attainment.

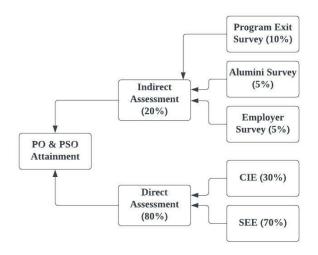


FIGURE 4: Evaluation process of POs/PSOs attainment

15 Course Description:

The "Course Description" provides general information regarding the topics and content addressed in the course. A sample course description is given in Annexure – A for the reference.

The "Course Description" contains the following contents:

- Course Overview
- Prerequisite(s)
- · Marks Distribution
- Content delivery / Instructional methodologies
- Evaluation Methodology
- · Course Objectives
- Course Outcomes
- Program Outcomes
- Program Specific Outcomes
- How Program Outcomes are assessed
- How Program Specific Outcomes are assessed
- Mapping of each CO with PO(s), PSO(s)
- Justification for CO PO / PSO mapping- direct
- Total count of key competencies for CO PO/ PSO mapping
- Percentage of key competencies for CO PO/ PSO
- Course articulation matrix (PO / PSO mapping)
- Assessment methodology-direct
- Assessment methodology-indirect
- Syllabus
- List of Text Books / References / Websites
- · Course Plan

Appendix A

Sample Course Description

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and	Electronics and Communication Engineering					
Course Title	Electronic Dev	ices and Circuit	s				
Course Code	AECC01						
Program	B.Tech						
Semester	III	ECE					
Course Type	Core	Core					
Regulation	IARE-UG20	IARE-UG20					
		Theory Practical					
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	3 1 4					
Course	Mr B Naresh, Assistant Professor						
Coordinator							

I COURSE PRE-REQUISITES:

Level	Course Code	Semester Prerequisites	
B.Tech	AHSC03	I	Engineering Physics
B.Tech	AEEC02	II	Electrical Circuits

II COURSE OVERVIEW:

This course provides the constructional features and principle of operation of the basic semiconductor devices such as diodes, bipolar and unipolar transistors. It intended to provide the different biasing configurations of the semiconductor devices to provide temperature stability. Analytical skills to configure semiconductor devices for the applications - rectifiers, clippers, voltage regulators, clampers and amplifiers.

III MARKS DISTRIBUTION:

Subject	SEE B	Examination	CIE Examination	Total Marks
Electronic Devices and	Circuits 70	0 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

/	Power Point Presentations	✓	Chalk & Talk	X	Assignments	X	MOOC
✓	Open Ended Experiments	X	Seminars	X	Mini Project	✓	Videos
X	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50%	Understand
33%	Apply
17%	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component		Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	30
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
	Total Marks		100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

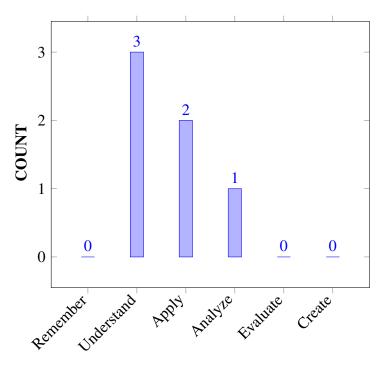
Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:


I	The operational principles, characteristics of semiconductor devices and circuits for rectification, amplification, conditioning and voltage regularization of
	signals.
II	The analytical skills needed to model analog and digital integrated circuits (IC) at discrete and micro circuit level.
III	The foundations of basic electronic circuits necessary for building complex electronic hardware.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate the characteristics of semiconductor devices for	Understand
	determining the device parameters such as resistances, current	
	gain and voltage gain.	
CO 2	Apply the pn junction characteristics for the diode applications	Apply
	such as switch,rectifiers, Clippers and Clampers.	
CO 3	Examine DC and AC load line analysis of BJT and FET	Analyze
	amplifiers for optimal operating level regardless of input, load	
	placed on the device.	
CO 4	Extend the biasing techniques for bipolar and uni-polar	Understand
	transistor amplifier circuits considering stability condition for	
	establishing a proper operating point.	
CO 5	Utilize low frequency model for estimation of the characteristic	Apply
	parameters of BJT, FET amplifier circuits.	
CO 6	Demonstrate the working principle of special purpose	Understand
	semiconductor diodes and transistors for triggering and voltage	
	regulation applications.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

Program Outcomes

PO 12 **Life-Long Learning:** Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	SEE/CIE/AAT
	mathematics, science, engineering fundamentals,		
	and an engineering specialization to the solution		
	of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review re-	2	SEE/CIE/AAT
	search literature, and analyze complex engineering		
	problems reaching substantiated conclusions using		
	first principles of mathematics, natural sciences,		
	and engineering sciences.		
PO 3	Design/Development of Solutions: Design solu-	2	SEE/CIE/AAT
	tions for complex Engineering problems and de-		
	sign system components or processes that meet the		
	specified needs with appropriate consideration for		
	the public health and safety, and the cultural, soci-		
	etal, and Environmental considerations		
PO 10	Communication: Communicate effectively on	1	SEE/CIE/AAT
	complex engineering activities with the engineer-		
	ing community and with society at large, such as,		
	being able to comprehend and write effective re-		
	ports and design documentation, make effective		
	presentations, and give and receive clear instruc-		
	tions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	PROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit Devel-	2	AAT
	opment platform for Robotics, Embedded Systems		
	and Signal Processing Applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s),PSO(s):

				PSO'S											
COURSE	РО	РО	РО	РО	PO	PO	РО	РО	РО	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	✓	/	-		-	-	-	-	1	\	-	-	-	-	-
CO 2	✓	✓	✓	-	-	-	-	-	1	\	-	-	/	_	-
CO 3	✓	✓	-	-	-	-	-	-	-	\	-	-	-	_	-
CO 4	✓	✓	✓	-	-	-	-	-	-	\	-	-	-	_	-
CO 5	✓	✓	-	-	-	-	-	-	-	\	-	-		_	-
CO 6	✓	-	ı	-	-	-	-	ı	ı	>	-	-	_	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Illustrate the volt-ampere characteristics (knowledge) of semiconductor devices to derive mathematical model for diode current, static and dynamic resistance by applying the principles of mathematics and science for solving complex engineering problems.	2
	PO 2	Understand the given problem statement and formulate the static and dynamic resistance from the voltampere characteristics of the semiconductor devices using principles of mathematics and engineering science	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	2
CO 2	PO 1	Apply (knowledge) the pn junction characteristics for the diode applications of diode as switch, clippers, Clampers and rectifiers by analyzing complex engi- neering problems using the principles of mathemat- ics, engineering science	2
	PO 2	Understand the given the diode application problem statement and finding the solution implementation of rectifier circuits by analyzing complex engineering problems	4
	PO 3	Design solutions for complex engineering problems and design system components of diode applications that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations.	5
	PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	2
	PSO 1	Formulate and Evaluate the rectifier circuit applications in the field of Intelligent Embedded and Semiconductor technologies	1
CO 3	PO 1	Explain (Understand) DC and AC load line analysis of different amplifiers for optimal operating level by applying mathematics, science engineering for complex engineering problems.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Understand the given problem statement for DC and AC load line analysis using complex problem analysis by the principles of mathematics and engineering sciences.	4
	PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	2
CO 4	PO 1	Design (knowledge) the various biasing techniques for BJT, JFET and MOSFETs amplifier circuits for stable operation by applying mathematics, science and engineering fundamentals for complex engineering problems.	3
	PO 2	Understand the problem statement of biasing techniques for BJT, JFET and MOSFETs amplifier and formulate a proper operating point in complex problem analysis using mathematics.	4
	PO 3	Design solutions for complex engineering problems and design system components of BJT and FET amplifiers that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations.	4
	PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	2
CO 5	PO 1	Estimate (Knowledge) the characteristic parameters of BJT, FET amplifier circuits for solving complex engineering problems using low frequency model by applying mathematics, science and engineering fundamentals.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Analyze small signal analysis problem statements of	4
		BJT, FET amplifier circuits using mathematics principles.	
	PO 10	Communication: Communicate effectively on com-	2
		plex Engineering activities with the Engineering	
		community and with society at large, such as, being	
		able to comprehend and write effective reports and	
		design documentation, make effective presentations,	
		and give and receive clear instructions	
CO 6	PO 1	Demonstrate (Understand) the working principle	1
		(knowledge) of special purpose semiconductor de-	
		vices and transistors like Zener diode, Tunnel diode,	
		SCR, UJT and Photo Diode for applications like trig-	
		gering and voltage regulation by applying science for	
		engineering problems.	
	PO 10	Communication: Communicate effectively on com-	2
		plex Engineering activities with the Engineering	
		community and with society at large, such as, being	
		able to comprehend and write effective reports and	
		design documentation, make effective presentations,	
		and give and receive clear instructions	

*Note: Refer appendix-I for key competencies

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	1	1	1
CO 1	2	3	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 2	2	4	5	-	-	-	-	-	-	2	-	-	1	-	-
CO 3	2	4	-	1	-	-	-	-	1	2	-	-	-	ı	-
CO 4	3	4	4	1	-	-	-	-	1	2	-	-	-	ı	-
CO 5	3	4	-	-	-	-	-	-	-	2	-	-	-		-
CO 6	1	-	-	1	-	-	-	-	-	2	-	-	-		-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO - PO/ PSO

				PSO'S											
COURSE	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	30.0	-	-	-	-	-	-	-	40	-	-	-	-	-
CO 2	66.7	40.0	50.	0 -	-	-	-	-	-	40	-	-	50	-	-
CO 3	66.7	40.0	-	-	-	ı	-	-	ı	40	-	-	-	-	-
CO 4	100	40.0	40.	0 -	1	1	-	-	1	40	-	-	-	-	-
CO 5	100	40.0	-	-	-	-	-	-	-	40	-	-	-		-
CO 6	33.3	-	-	-		1	ı	ı	1	40	ı	ı			-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \le C \le 5\%$ – No correlation

 $1 - 5 < C \le 40\% - \text{Low/ Slight}$

2 - 40 % < C < 60% –Moderate

 $3 - 60\% \le C < 100\%$ – Substantial /High

				PRO)GR	AM (OUT	CON	AES				PSO'S			
COURSE	РО	PO	РО	РО	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	1	1	1	1	-	-	-	ı	1	-	-	1	1	-	
CO 2	3	2	2	-	-	-	-	-	-	1	-	-	2	-	-	
CO 3	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-	
CO 4	3	2	2	-	-	-	-	-	-	1	-	-	-	-	-	
CO 5	3	2	-	-	-	-	-	-	-	1	-	-	-		-	
CO 6	1	-	-	-	-	-	-	-	-	1	-	-	-		-	
TOTAL	16	9	4	-	-	-	-	-	-	6	-	-	2	-	-	
AVERAGE	2.7	1.8	2	-	-	-	•	-	-	1	•	-	2	•	-	

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	✓	SEE Exams	✓	Seminars	✓
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	Concept Video	✓	Open Ended Experiments	✓
Assignments	-				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

/	Early Semester Feedback	~	End Semester OBE Feedback
X	Assessment of activities / Modeling and Experimental Tools in Engineering by Experts	-	-

XVIII SYLLABUS:

MODULE I	DIODE AND APPLICATIONS
	Diode - Static and Dynamic resistances, Equivalent circuit, Load line analysis, Diffusion and Transition Capacitances, Diode Applications: Switch-Switching times. Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, Rectifiers With Capacitive Filter, Clippers-Clipping at two independent levels, Clampers-Clamping Operation, types, Clamping Circuit Theorem, Comparators.
MODULE II	BIPOLAR JUNCTION TRANSISTOR (BJT)
	Principle of Operation and characteristics - Common Emitter, Common Base, Common Collector Configurations, Operating point, DC & AC load lines, Transistor Hybrid parameter model, Determination of h-parameters from transistor characteristics, Conversion of h-parameters.
MODULE III	TRANSISTOR BIASING AND STABILIZATION
	Bias Stability, Fixed Bias, Collector to Base bias, Self-Bias, Bias Compensation using Diodes and Transistors.
	Analysis and Design of Small Signal Low Frequency BJT Amplifiers: Analysis of CE, CC, CB Amplifiers and CE Amplifier with emitter resistance, low frequency response of BJT Amplifiers, effect of coupling and bypass capacitors on CE Amplifier.
MODULE IV	JUNCTION FIELD EFFECT TRANSISTOR
	Construction, Principle of Operation, Pinch-Off Voltage, Volt- Ampere Characteristic, comparison of BJT and FET, Biasing of FET, FET as Voltage Variable Resistor, MOSFET Construction and its Characteristics in Enhancement and Depletion modes.
MODULE V	FET AMPLIFIERS
	Small Signal Model, Analysis of CS, CD, CG JFET Amplifiers. Basic Concepts of MOSFET Amplifiers.

Special Purpose Devices: Zener Diode - Characteristics, Voltage Regulator; Principle of Operation - SCR, Tunnel diode, UJT, Varactor Diode.

TEXTBOOKS

- 1. S Salivahanan, N Suresh Kumar "Electronic Devices and Circuits", 2nd Edition, 2018, McGraw Hill Education.
- 2. J. Millman and Christos C. Halkias, "Integrated Electronics", International Student Edition, 2008, Tata McGraw Hill Publications.
- 3. David A. Bell, "Electronic Devices and Circuits", 5th Edition, Oxford University Press.

REFERENCE BOOKS:

- 1. R.L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits", 9th Edition, 2006, PEI/PHI.
- 2. B.P.Singh, Rekha Singh, "Electronic Devices and Circuits", 2nd Edition, 2013, Pearson Publisher.
- 3. K. Lal Kishore, "Electronic Devices and Circuits", 2nd Edition, 2005, BS Publisher.
- 4. Anil K. Maini and Varsha Agarwal, "Electronic Devices and Circuits", 1stEdition, 2009, Wiley India Pvt. Ltd.

COURSE WEB PAGE:

https://lms.iare.ac.in/index?route=course/details&course id=350

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference		
	OBE DISCUSSION				
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping		https: //lms. iare.ac. in/index? route= course/ details& courseid= 350		
2	pn Junction Formation, Biasing of pn Junction and its characteristics	CO 1	T1: 2.1		

3	Diode Resistances, Equivalent circuit	CO 1	T1: 2.6
5	Load line analysis , Diffusion and Transition Capacitances	CO 1	T1: 2.7
6	Half Wave Rectifier	CO 2	T1: 3.2.1
7	Full Wave Rectifier	CO 2	T1: 3.2.2.
8	Bridge Rectifier	CO 2	T1: 3.2.3
9	Rectifiers With Capacitive Filter	CO 2	T1: 3.6
11	Positive peak and negative peak Clippers operation	CO 2	T1: 6.15
12	Clipping at two independent levels	CO 2	T1:5.13-5.14 R5: 8.2
14	Positive peak and negative peak Clampers	CO 2	R5: 8.5-8.6
15	Clamping Circuit Theorem	CO 3	R5: 8.5-8.6
17	Principle of Operation of BJT	CO 1	T1: 4.2
19	Common Emitter Configuration with characteristics	CO 1	T1: 4.4
20	Common Base Configuration with characteristics	CO 1	T1: 4.4
21	Common Collector Configuration with characteristics	CO 1	T1: 4.4
22	Transistor current components and relation among current gains	CO 1	T1: 4.3
23	Operating point, DC & AC load lines	CO 3	T1: 5.2, 5.3
25	Transistor Hybrid parameter model	CO 5	T1: 6.3
26	Transistor biasing and stabilization	CO 4	T1: 5.4, 5.5
27	Fixed Bias	CO 4	T1: 5.4.1
29	Collector to Base bias	CO 4	T1: 7.2-7.3
31	Self-Bias	CO 4	T1:5.4.3
33	Bias Compensation using Diodes and Transistors	CO 4	T1: 5.6
34	Exact Analysis of transistor amplifier using low frequency model	CO 5	T1: 6.6
35	Approximate Analysis of transistor amplifier using low frequency model	CO 5	T1:6.8
36	Analysis of CE amplifier with emitter resistance using low frequency model	CO 5	T1:6.9
39	Effect of coupling and bypass capacitors on CE Amplifier	CO 5	T1:6.13

40	Construction, Principle of Operation of JFET, Comparison of BJT and FET	CO 1	T1:4.12
42	Volt- Ampere Characteristic of JFET, Pinch-Off Voltage	CO 1	T1:4.13
43	Biasing of FET	CO 4	T1: 5.9
44	MOSFET Construction and its Characteristics in Enhancement mode	CO 1	T1: 4.15
45	MOSFET Construction and its Characteristics in Depletion mode	CO 1	T1:4.16
46	Analysis of generalized JFET Amplifier	CO 5	T1: 6.15
47	Analysis of CS JFET Amplifier	CO 5	T1:6.16
49	Analysis of CD JFET Amplifier	CO 5	T1:6.17
51	Analysis of CG JFET Amplifier	CO 5	T1: 6.18
53	Zener Diode - Characteristics, Voltage Regulator	CO 6	T1: 2.9,2.11
54	Principle of Operation - SCR	CO 6	T1: 2.16
55	Tunnel diode	CO 6	T1: 2.12
56	UJT operation ,Varactor Diode operation	CO 6	T1:2.19,2.18
	PROBLEM SOLVING/ CASE STUDIE	S	
4	Related to Diode current and its resistance calculation	CO 1	T1: 2.3
10	Rectifier parameters estimation	CO 2	T2:2.6
13	Clipper circuits	CO 2	T2:2.9
16	Clamper circuits	CO 2	T2:2.10
24	Load line analysis of BJT	CO 3	T2:5.3
18	Current gain of transistor configuration	CO 1	T1:4.3
28	Transistor fixed biasing	CO 4	T2:5.4.1
30	Transistor collector to base biasing	CO 4	T2:5.4.3
32	Transistor self-biasing	CO 4	T1:5.4.5
37	CE Transistor amplifier analysis	CO 5	T1:6.14
38	CB Transistor amplifier analysis	CO 5	T1:6.14
39	CC Transistor amplifier analysis	CO 5	T1:6.14
47	CS Amplifier analysis	CO 5	T1:6.16
49	CD Amplifier analysis	CO 5	T1: 6.17 R5:
			4.4

52	Zener diode regulator	CO 6	T1: 2.11		
	DISCUSSION OF DEFINITION AND TERMINOLOGY				
57	Diode applications	CO 1,	DT		
		CO 2			
58	Bipolar Junction Transistor (BJT)	CO 1	DT		
59	Transistor biasing and stabilization	CO 3,	DT		
		CO 4			
60	Junction field effect transistor	CO 1	DT		
61	FET amplifiers	CO 5,	DT		
		CO 6			
	DISCUSSION OF QUESTION BANK				
57	Diode applications	CO 1,	DT		
		CO 2			
58	Bipolar Junction Transistor (BJT)	CO 1	DT		
59	Transistor biasing and stabilization	CO 3,	DT		
		CO 4			
60	Junction field effect transistor	CO 1	DT		
61	FET amplifiers	CO 5,	DT		
		CO 6			

Signature of Course Coordinator

HOD, ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering	3
	Knowledge).	
	Knowledge, understanding and application of 1. Scientific principles and methodology. 2. Mathematical principles.	
	3. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results	10

PO 3

Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (**Design/Development of Solutions**).

- 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues
- 2. Understand customer and user needs and the importance of considerations such as aesthetics
- 3. Identify and manage cost drivers
- 4. Use creativity to establish innovative solutions
- 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal
- 6. Manage the design process and evaluate outcomes.
- 7. Knowledge and understanding of commercial and economic context of engineering processes
- 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context
- 9. Understanding of the requirement for engineering activities to promote sustainable development
- 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues

10

	T	
PO 4.	Use research-based knowledge and research methods in-	11
	cluding design of experiments, analysis and interpretation	
	of data, and synthesis of the information to provide valid	
	conclusions (Conduct Investigations of Complex Prob-	
	lems).	
	1. Knowledge of characteristics of particular materials,	
	equipment, processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowl-	
	edge can be applied (example, operations and management,	
	technology development, etc.)	
	4. Understanding use of technical literature and other infor-	
	mation sources Awareness of nature of intellectual property	
	and contractual issues	
	5. Understanding of appropriate codes of practice and in-	
	dustry standards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty	
	8. Understanding of engineering principles and the ability	
	to apply them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance	
	of systems and components through the use of analytical	
	methods and modeling techniques	
	10. Ability to apply quantitative methods and computer	
	software relevant to their engineering discipline, in order	
	to solve engineering problems	
	11. Understanding of and ability to apply a systems ap-	
	proach to engineering problems.	
PO 5	Create, select, and apply appropriate techniques, resources,	1
	and modern Engineering and IT tools including prediction	
	and modelling to complex Engineering activities with an	
	understanding of the limitations (Modern Tool Usage).	
	1. Computer software / simulation packages / diagnostic	
	equipment / technical library resources / literature search	
	tools.	

PO 6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering.	5
PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity	3

PO 9

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).

- 1. Independence
- 2. Maturity requiring only the achievement of goals to drive their performance
- 3. Self-direction (take a vaguely defined problem and systematically work to resolution)
- 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.
- 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project.
- 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference
- 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.
- 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.
- 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation
- 10. Ability to work with all levels of people in an organization
- 11. Ability to get along with others
- 12. Demonstrated ability to work well with a team

12

PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO11	Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan	12

PO12	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long	8
	Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering con-	
	cepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new	
	technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	