

#### **INSTITUTE OF AERONAUTICAL ENGINEERING** (Autonomous)

Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department         | ELECTRONICS AND COMMUNICATION ENGINEERING |                                        |         |            |         |  |
|--------------------|-------------------------------------------|----------------------------------------|---------|------------|---------|--|
| Course Title       | COMPI                                     | COMPLEX ANALYSIS AND SPECIAL FUNCTIONS |         |            |         |  |
| Course Code        | AHSB05                                    | AHSB05                                 |         |            |         |  |
| Program            | B. Tech                                   | B. Tech                                |         |            |         |  |
| Semester           | III                                       |                                        |         |            |         |  |
| Course Type        | Foundation                                |                                        |         |            |         |  |
| Regulation         | R-18                                      |                                        |         |            |         |  |
|                    |                                           | Theory                                 |         | Pra        | ctical  |  |
| Course Structure   | Lecture                                   | Tutorials                              | Credits | Laboratory | Credits |  |
|                    | 3                                         | 1                                      | 4       | -          | -       |  |
| Course Coordinator | Ms. L Indira, Assistant Professor         |                                        |         |            |         |  |

#### I COURSE PRE-REQUISITES:

| Level | Course Code | Semester      | Prerequisites                             |
|-------|-------------|---------------|-------------------------------------------|
| -     | -           | -             | Basic Principles of complex functions and |
|       |             | probabilities |                                           |

#### **II COURSE OVERVIEW:**

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes complex functions and differentiation, complex integration, power series expansion of complex function and special functions. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

#### **III MARKS DISTRIBUTION:**

| Subject              | SEE Examination | CIE Examination | Total Marks |
|----------------------|-----------------|-----------------|-------------|
| Complex Analysis and | 70 Marks        | 30 Marks        | 100         |
| Special Functions    |                 |                 |             |

#### **IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:**

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | $\checkmark$ | Assignments  | x            | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|--------------|--------|
| x            | Open Ended Experiments    | x            | Seminars     | x            | Mini Project | $\checkmark$ | Videos |
| x            | Others                    |              |              |              |              |              |        |

#### **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 25 %                          | Understand            |
| 75 %                          | Apply                 |
| 0 %                           | Analyze               |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for continuous internal examination (CIE), 05 marks for quiz and 05 marks for alternative assessment tool

| Component          | Theory            |    |    | Total Marks |
|--------------------|-------------------|----|----|-------------|
| Type of Assessment | CIE Exam Quiz AAT |    |    |             |
| CIA Marks          | 20                | 05 | 05 | 30          |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz - Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table. (

| Concept Video | Tech-talk | Open Ended Experiment |
|---------------|-----------|-----------------------|
| 40%           | 40%       | 20%                   |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The applications of complex variable and conformal mapping in two dimensional complex potential theories.                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| II  | The fundamental calculus theorems and criteria for the independent path on<br>contour integral used in problems of engineering |
| III | The concepts of special functions and its application for solving the partial                                                  |
|     | differential equation in mathematical physics and engineering.                                                                 |
| IV  | The Mathematics of combinatorial enumeration by using generating functions and                                                 |
|     | Complex analysis for understanding the numerical growth rates                                                                  |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Identify</b> the fundamental concepts of analyticity and                 | Understand |
|------|-----------------------------------------------------------------------------|------------|
|      | differentiability for finding complex conjugates, conformal mapping         |            |
|      | of complex transformations.                                                 |            |
| CO 2 | Apply integral theorems of complex analysis and its consequences            | Apply      |
|      | for the analytic function with derivatives of all orders in simple          |            |
|      | connected region.                                                           |            |
| CO 3 | <b>Extend</b> the Taylor and Laurent series for expressing the function     | Apply      |
|      | in terms of complex power series.                                           |            |
| CO 4 | Apply Residue theorem for computing definite integrals by using             | Apply      |
|      | the singularities and poles of real and complex analytic functions          |            |
|      | over closed curves.                                                         |            |
| CO 5 | <b>Determine</b> the characteristics of special functions for obtaining the | Apply      |
|      | proper and improper integrals for obtaining the proper and                  |            |
|      | improper integrals.                                                         |            |
| CO 6 | Apply the role of Bessel functions in the process of obtaining the          | Apply      |
|      | series solutions for second order differential equation                     |            |

### COURSE KNOWLEDGE COMPETENCY LEVEL



## **BLOOMS TAXONOMY**

# VIII PROGRAM OUTCOMES:

| Program Outcomes |                                                                                                                                                                                                                                                                                                          |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PO 1             | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |  |  |
| PO 2             | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |  |  |
| PO 3             | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |  |  |
| PO 4             | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |  |  |
| PO 5             | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |  |  |
| PO 6             | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |  |  |
| PO 7             | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |  |  |
| PO 8             | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |  |  |

|       | Program Outcomes                                                              |  |  |  |
|-------|-------------------------------------------------------------------------------|--|--|--|
| PO 9  | Individual and team work: Function effectively as an individual, and as a     |  |  |  |
|       | member or leader in diverse teams, and in multidisciplinary settings.         |  |  |  |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering          |  |  |  |
|       | activities with the engineering community and with society at large, such as, |  |  |  |
|       | being able to comprehend and write effective reports and design               |  |  |  |
|       | documentation, make effective presentations, and give and receive clear       |  |  |  |
|       | instructions.                                                                 |  |  |  |
| PO 11 | Project management and finance: Demonstrate knowledge and                     |  |  |  |
|       | understanding of the engineering and management principles and apply these    |  |  |  |
|       | to one's own work, as a member and leader in a team, to manage projects       |  |  |  |
|       | and in multidisciplinary environments.                                        |  |  |  |
| PO 12 | Life-Long Learning: Recognize the need for and having the preparation         |  |  |  |
|       | and ability to engage in independent and life-long learning in the broadest   |  |  |  |
|       | context of technological change                                               |  |  |  |

#### IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | PROGRAM OUTCOMES                                   | $\mathbf{Strength}$ | Proficiency<br>Assessed by |
|------|----------------------------------------------------|---------------------|----------------------------|
| PO 1 | Engineering knowledge: Apply the                   | 3                   | CIE/Quiz/AAT               |
|      | knowledge of mathematics, science, engineering     |                     |                            |
|      | fundamentals, and an engineering specialization    |                     |                            |
|      | to the solution of complex engineering problems.   |                     |                            |
| PO 2 | Problem analysis: Identify, formulate, review      | 2                   | CIE/Quiz/AAT               |
|      | research literature, and analyze complex           |                     |                            |
|      | engineering problems reaching substantiated        |                     |                            |
|      | conclusions using first principles of mathematics, |                     |                            |
|      | natural sciences, and engineering sciences.        |                     |                            |
| PO 4 | Conduct Investigations of Complex                  | 1                   | CIE/Quiz/AAT               |
|      | <b>Problems:</b> Use research-based knowledge and  |                     |                            |
|      | research methods including design of               |                     |                            |
|      | experiments, analysis and interpretation of data,  |                     |                            |
|      | and synthesis of the information to provide valid  |                     |                            |
|      | conclusions.                                       |                     |                            |

3 = High; 2 = Medium; 1 = Low

### X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| Р     | PROGRAM SPECIFIC OUTCOMES                       | $\mathbf{Strength}$ | Proficiency<br>Assessed<br>by |
|-------|-------------------------------------------------|---------------------|-------------------------------|
| PSO 1 | Formulate and evaluate the applications in the  | -                   | -                             |
|       | field of Intelligent Embedded and Semiconductor |                     |                               |
|       | technologies.                                   |                     |                               |
| PSO 2 | Focus on the practical experience of ASIC       | -                   | -                             |
|       | prototype designs, Virtual instrumentation and  |                     |                               |
|       | SOC designs.                                    |                     |                               |
| PSO 3 | Build the Embedded hardware design and          | -                   | -                             |
|       | software programming skills for entry level job |                     |                               |
|       | positions to meet the requirements of employers |                     |                               |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              |                                     | PSO'S |              |   |   |   |   |   |    |    |    |   |   |     |
|----------|--------------|-------------------------------------|-------|--------------|---|---|---|---|---|----|----|----|---|---|-----|
| COURSE   | PO           | PO |       |              |   |   |   |   |   |    |    |    |   |   | PSO |
| OUTCOMES | 1            | 2                                   | 3     | 4            | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3   |
| CO 1     | $\checkmark$ | -                                   | -     | -            | - | - | - | - | - | -  | -  |    | - | - | -   |
| CO 2     | $\checkmark$ | $\checkmark$                        | -     | $\checkmark$ | - | - | - | - | - | -  | -  | -  | - | - | -   |
| CO 3     | $\checkmark$ | $\checkmark$                        | -     | -            | - | - | - | - | - | -  | -  | -  | - | - | -   |
| CO 4     | $\checkmark$ | -                                   | -     | $\checkmark$ |   | - | - | - | - | -  | -  |    | - | - | -   |
| CO 5     | $\checkmark$ | $\checkmark$                        | -     | -            | - | - | - | - | - | -  | -  | -  | - | - | -   |
| CO 6     | $\checkmark$ | $\checkmark$                        | -     | -            |   | - | - | - | - | -  | -  | -  | - | - |     |

# XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| COURSE | PO'S  |                                                                                                                                                                                                                                                                                                                   | No. of       |
|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| OUT    | PSO'S | Justification for mapping (Students will be                                                                                                                                                                                                                                                                       | Key          |
| COMES  | 1505  | able to)                                                                                                                                                                                                                                                                                                          | Competencies |
| CO 1   | PO 1  | Identify the basic properties of analytic functions<br>which are closed with respect to the fundamental<br>operations of arithmetic (knowledge), algebra and<br>applicability in solving majority of functions in<br>various engineering problems by applying<br>Mathematical principles.                         | 2            |
| CO 2   | PO 1  | Apply the integral theorem of complex analysis<br>(knowledge) and its consequences to the analytic<br>function for solving complex problems by<br>applying the principal problems of mathematics.                                                                                                                 | 2            |
|        | PO 2  | Identify the problem statement to build<br>extensions of Cauchy's theorem and application<br>of necessary condition to vanish a contour<br>integral around the simple connected regions<br>from the provided information and data in<br>reaching substantiated conclusions by using<br>principles of mathematics. | 4            |
|        | PO 4  | Apply quantitative methods to simplify the<br>calculation of certain contour integrals<br>(knowledge) on simply connected regions in order<br>to solve engineering problems.                                                                                                                                      | 2            |
| CO 3   | PO 1  | Apply the knowledge of geometric series that<br>enable us to use Cauchy's integral formula for<br>understanding power series representations of<br>analytic functions by applying the principles of<br>mathematics.                                                                                               | 2            |
|        | PO 2  | IdeIdentify the problem formulation and<br>abstraction of rational complex functions for<br>expressing in negative or positive terms of power<br>series (knowledge) using Laurent's series and<br>Taylor's series by applying the principles of<br>mathematics.                                                   | 4            |

| CO 4 | PO 1 | Apply the method of finding residues of given<br>real or complex integrand (knowledge) the<br>singular points and poles of complex functions<br>and applicability of Residue theorem to solve<br>definite and indefinite complex integrals by<br>applying the principles of mathematics. | 2 |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 4 | Make use of the quantitative methods of finding<br>residues for evaluating line integrals (length of<br>curve) of analytic functions over closed curves<br>and applicability of Residue theorem by applying<br>the principles of mathematics.                                            | 2 |
| CO 5 | PO 1 | Identify the characteristics of beta and gamma<br>functions as a generalization to the elementary<br>factorial function (knowledge) and applicability<br>for solving improper integrals by applying the<br>principles of mathematics                                                     | 3 |
|      | PO 2 | Identify the given problem and formulate<br>relationship between beta and gamma functions<br>(knowledge) and their applicability for solving<br>improper integrals by transforming by applying<br>the principles of mathematics.                                                         | 1 |
| CO 6 | PO 1 | Recognize the Bessel functions as series solution<br>of second order differential equation (knowledge)<br>and find its generating function and use it to<br>prove some useful standard results and recurrence<br>relations by applying the principles of<br>mathematics.                 | 3 |
|      | PO 2 | Identify the given problem and formulate<br>relationship between beta and gamma functions<br>(knowledge) and their applicability for solving<br>improper integrals by transforming by applying<br>the principles of mathematics.                                                         | 1 |

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    |                                     | PSO'S |   |   |   |   |   |   |    |    |    |   |     |     |
|----------|----|-------------------------------------|-------|---|---|---|---|---|---|----|----|----|---|-----|-----|
| COURSE   | PO | PO |       |   |   |   |   |   |   |    |    |    |   | PSO | PSO |
| OUTCOMES | 1  | 2                                   | 3     | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2   | 3   |
| CO 1     | 2  | -                                   | -     | - | - | - | - | - | - | -  | -  |    | - | 2   | -   |
| CO 2     | 2  | 4                                   | -     | 2 | - | - | - | - | - | -  | -  | -  | - | -   | -   |
| CO 3     | 2  | 4                                   | -     | - | - | - | - | - | - | -  | -  | -  | - | -   | -   |
| CO 4     | 2  | -                                   | -     | 2 |   | - | - | - | - | -  | -  |    | 2 | 2   | -   |
| CO 5     | 2  | 4                                   | -     | - | - | - | - | - | - | -  | -  | -  | - | -   | -   |
| CO 6     | 2  | 4                                   | -     | - | - | - | - | - | - | -  | -  |    | - | -   | -   |

#### XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          |      |                                     | PSO'S |    |   |   |   |   |   |    |    |    |   |     |     |
|----------|------|-------------------------------------|-------|----|---|---|---|---|---|----|----|----|---|-----|-----|
| COURSE   | PO   | PO |       |    |   |   |   |   |   |    |    |    |   | PSO | PSO |
| OUTCOMES | 1    | 2                                   | 3     | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2   | 3   |
| CO 1     | 66.7 | -                                   | -     | -  | - | - | - | - | - | -  | -  |    | - | -   | -   |
| CO 2     | 66.7 | 40.0                                | -     | 20 | - | - | - | - | - | -  | -  | -  | - | -   | -   |
| CO 3     | 66.7 | 40.0                                | -     | -  | - | - | - | - | - | -  | -  | -  | - | -   | -   |
| CO 4     | 66.7 | -                                   | -     | 20 |   | - | - | - | - | -  | -  |    | - | -   | -   |
| CO 5     | 66.7 | 40.0                                | -     | -  | - | - | - | - | - | -  | -  | -  | - | -   | -   |
| CO 6     | 66.7 | 40.0                                | -     | -  |   | - | - | - | - | -  | -  |    | - | -   | -   |

**XV** COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- **1**  $-5 < C \le 40\% Low / Slight$
- $\pmb{2}$  40 % < C < 60% Moderate
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

|          | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |
|----------|------------------|----|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|
| COURSE   | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO   | PSO |
| OUTCOMES | 1                | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |
| CO 1     | 3                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     |     |
| CO 2     | 3                | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | -   |
| CO 3     | 3                | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | _   |
| CO 4     | 3                | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | _   |
| CO 5     | 3                | 2  | -  | -  | -  | -  | _  | -  | -  | -  | -  | -  | -   | -     | _   |
| CO 6     | 3                | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | _   |
| TOTAL    | 18               | 4  | -  | 3  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | _   |
| AVERAGE  | 3                | 2  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -     | _   |

#### XVI ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams               | $\checkmark$ | SEE Exams    | $\checkmark$ | Seminars      | -            |
|-------------------------|--------------|--------------|--------------|---------------|--------------|
| Laboratory<br>Practices | -            | Student Viva | -            | Certification | -            |
| Term Paper              | -            | Tech-talk    | $\checkmark$ | Concept video | $\checkmark$ |
| Assignments             | -            |              |              |               |              |

#### XVII ASSESSMENT METHODOLOGY-INDIRECT:

x Assessment of mini projects by experts  $\checkmark$  End Semester OBE Feedback

#### XVIII SYLLABUS:

| MODULE I   | Complex functions differentiation and integration:                                                                                                                                                                                                                                                                                                                            |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Complex functions and its representation on argand plane, concepts of limit,<br>continuity, differentiability, analyticity, Cauchy-Riemann conditions and<br>harmonic functions; Milne-Thomson method, Bilinear Transformation                                                                                                                                                |
| MODULE II  | COMPLEX INTEGRATION                                                                                                                                                                                                                                                                                                                                                           |
|            | Line integral: Evaluation along a path and by indefinite integration; Cauchy's integral theorem; Cauchy's integral formula; Generalized integral formula; Power series expansions of complex functions And contour Integration: Radius of convergence.                                                                                                                        |
| MODULE III | POWER SERIES EXPANSION OF COMPLEX FUNCTION                                                                                                                                                                                                                                                                                                                                    |
|            | Expansion in Taylor's series, Maclaurin's series and Laurent series. Singular point; Isolated singular point; Pole of order m; Essential singularity; Residue: Cauchy Residue Theorem. Evaluation of Residue by Laurent Series and Residue Theorem. Evaluation of integrals of the type $\int_{0}^{2\pi} f(\cos \theta, \sin \theta) d\theta$ and $\int_{0}^{\infty} f(x) dx$ |
| MODULE IV  | SPECIAL FUNCTIONS-I                                                                                                                                                                                                                                                                                                                                                           |
|            | Improper integrals; Beta and Gamma functions: Definitions; Properties of<br>Beta and Gamma function; Standard forms of Beta functions; Relationship<br>between Beta and Gamma functions                                                                                                                                                                                       |
| MODULE V   | SPECIAL FUNCTIONS-II                                                                                                                                                                                                                                                                                                                                                          |
|            | Bessel's Differential equation: Bessel function, properties of Bessel function,<br>Recurrence relations of Bessel function, Generating function and<br>Orthogonality of Bessel function, Trigonometric expansions involving Bessel<br>function.                                                                                                                               |

#### **TEXTBOOKS**

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons Publishers, 10th Edition,2010
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2015.

#### **REFERENCE BOOKS:**

- 1. T.K.V Iyengar, B. Krishna Gandhi, "Engineering Mathematics III", S. Chand and Co., 12th Edition, 2015.
- 2. Churchill, R.V. and Brown, J.W, "Complex Variables and Applications", Tata Mc Graw-Hill, 8th Edition, 2012.

#### WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

#### COURSE WEB PAGE:

 $1. \ lms.iare.ac.in$ 

## XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO's | Reference<br>T1: 4.1 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------|
|      | OBE DISCUSSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                      |
| 1    | In Out Come Based Education student should Identify<br>curves and regions in the complex planedefined by simple<br>expressions. Describe basic properties of complex<br>integration and having the ability to compute such<br>integrals. Decide when and where a given function is<br>analytic and be able to find it series developement.<br>Describe conformal mappings between various plane<br>regions. Present the central ideas in the solution of<br>Dirichlets problem. Able to Classify Singularities and<br>Poles of Complex functions. Relate improper integrals<br>with beta and gamma functions. Idenatify the role of<br>Bessel functions for solving differential equations. |      |                      |
|      | CONTENT DELIVERY (THEORY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                      |
| 2    | Understanding the complex function in Argand plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 1 | T1:12.4,<br>R1:4.13  |
| 3    | Apply the limit of a complex function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 1 | T1:12.4,<br>R1:4.13  |
| 4    | Apply the continuity of a complex function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO 1 | T1:12.4,<br>R1:4.13  |
| 5    | Apply the differentiability and analyticity of a complex function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO 1 | T1:12.4,<br>R1:4.13  |
| 6    | Identify and Apply the of Cauchy-Riemann conditions in<br>Cartesian and Polar forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO 1 | T1:12.4,<br>R1:4.13  |
| 7    | Evaluate the Harmonic Conjugates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 1 | T1:12.4,<br>R1:4.13  |
| 8    | Apply the Milne-Thomson method to find the Analytic function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO 1 | T1:12.4,<br>R1:4.13  |
| 9    | Apply the properties of Bilinear transformation for complex functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO 1 | T1:12.5,<br>R1:8.8   |
| 10   | Evaluate the Line Integral for a given path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO 2 | T1:13.1,<br>R1:5.3   |
| 11   | Apply the Cauchy's integral theorem in a given plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO 3 | T1:13.1,<br>R1:5.3   |
| 12   | Apply the Cauchy's integral formula for evaluating<br>contour integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO 3 | T1:13.1,<br>R1:5.3   |

| . 13 | Apply the Cauchy's general integral formula for<br>evaluating contour integration.                             | CO 3     | T1:13.1,<br>R1:5.3   |
|------|----------------------------------------------------------------------------------------------------------------|----------|----------------------|
| 14   | Define the Power series expansions of complex functions<br>and contour Integration                             | CO 4     | T1:14.1,<br>R1:6.1   |
| 15   | Evaluate the Radius of convergence of power series<br>complex function                                         | CO 4     | T1:14.1,<br>R1:6.1   |
| 16   | Identify the types of power series expansions                                                                  | CO 4     | T1:14.1,<br>R1:6.1   |
| 17   | Define the types of Singularities and its nature                                                               | CO 4     | T1:15.2 ,<br>R1:6.6  |
| 18   | Define the concept of Residues                                                                                 | CO 4     | T1:15.2 ,<br>R1:6.6  |
| 19   | Evaluate the Residues of complex functions.                                                                    | CO4      | T1:15.2 ,<br>R1:6.6  |
| 20   | Evaluate of contour integrals by Residue theorem.                                                              | CO4      | T1:15.2 ,<br>R1:6.6  |
| 21   | Definite integrals of the Type -I                                                                              | CO 5     | T2: 7.14,<br>R1:1.6  |
| 22   | Indefinite integrals of Type-II                                                                                | CO5      | T2: 7.14,<br>R1:1.6  |
| 23   | Improper integrals; Beta and Gamma functions                                                                   | CO5      | T2: 7.14,<br>R1:1.6  |
| 24   | Definitions; Properties of Beta                                                                                | CO5      | T2: 7.14,<br>R1:1.6  |
| 25   | Standard forms1,2,3 of Beta functions                                                                          | CO 5     | T2: 16.6,<br>R1:7.36 |
| 26   | Standard forms 4,5,6, ,of Beta functions;                                                                      | CO 5     | T2: 16.8,<br>R1:7.41 |
| 27   | Definitions; Properties Gamma function                                                                         | CO 5     | T2: 16.9,<br>R1:7.42 |
| 28   | Relationship between beta and gamma functions                                                                  | CO 6     | T2: 16.9,<br>R1:7.42 |
| 29   | Theorems of gamma functions                                                                                    | CO 6     | T2: 16.9,<br>R1:7.42 |
| 30   | Complex functions differentiation and integration:<br>Complex functions and its representation on argand plane | CO 2     | T2: 16.9,<br>R1:7.42 |
| 31   | Concepts of limit, continuity                                                                                  | CO 1     | T1:12.4,<br>R1:4.13  |
| 32   | Problems related to beta functions                                                                             | CO5      | T2: 7.14, R1:1.6     |
| 33   | Problems related to gamma functions                                                                            | CO5      | T2: 7.15,R1:16.5     |
| 34   | Properties of Beta and Gamma function                                                                          | CO8, CO9 | T2:11.3              |
|      |                                                                                                                |          | R1:16.5              |

|      |                                                            |          | T2: 16.5              | ]       |
|------|------------------------------------------------------------|----------|-----------------------|---------|
| 35   | Bessel's Differential equation: Bessel function properties | CO5      | 12. 10.0              |         |
| 00   | of Bessel function                                         |          | D1.7 29               |         |
|      |                                                            |          | n1.7.32               | -       |
|      |                                                            |          | T2: 16.6              |         |
| 36   | Solutions of Bessel differential equation by power series  | CO 6     |                       |         |
|      | method.                                                    |          | R1:16.9               |         |
| 37   | Generating function                                        | CO 5     | T2: 11.4 ,F           | 1:16.18 |
| 38   | Recurrence relations-I II III of Bessel function           | CO6      | T2: 16.8 F            | 1.7 41  |
| 30   | Recurrence relations IV V VI of Bessel function            |          | T1.175                |         |
| - 39 | Recurrence relations IV, V, VI of Dessel function          |          | 17.6                  |         |
|      |                                                            |          | 17.0,<br>B1.16.3.1    |         |
| 40   |                                                            | CO C     | Tt1.10.5.1            | -       |
| 40   | Generating function                                        | 00.6     | 12: 10.9,<br>D1.7 499 |         |
| 41   |                                                            |          | n1.7.422              | -       |
| 41   | Orthogonality of Bessel function                           | CO 4     | T1:13.4,              |         |
|      |                                                            |          | R1:5.10               | -       |
|      | PROBLEM SOLVING/ CASE STUDI                                | ES       |                       |         |
| 42   | Problems on generalized integral formula                   | CO 2     | T1:14.1,              |         |
|      |                                                            |          | R1:6.1                |         |
| 43   | Problems on generalized integral formula                   | CO 2     | T1:14.1,              |         |
|      |                                                            |          | R1:6.1                |         |
| 44   | Problems on power series expansions of complex functions   | CO 3     | T1:14.1.              | -       |
|      | Expansion in Taylor's series                               |          | R1:6.1                |         |
| 45   | Problems on Maclaurin's series                             | CO 3     | T1.15 2               | -       |
| 10   |                                                            |          | R1.66                 |         |
| 46   | Problems on Laurent series                                 | CO 3     | T1.15 3               | -       |
| 40   | 1 TODIENIS ON L'AUTENT SELLES                              |          | R1.10.0,              |         |
| 47   | Duchlang on types of singularities, note of order m        | CO 4     | T1.15 2               |         |
| 41   | Problems on types of singularities, pole of order m        |          | 11:15.3,<br>D1.70     |         |
| - 10 |                                                            | CO A     | T1.17.9               |         |
| 48   | Problems on evaluation of residue by Laurent Series        | CO 3     | T1:15.3,              |         |
|      |                                                            |          | R1:7.9                | -       |
| 49   | Problems on Residue Theorem.                               | CO 4     | T1:14.1,              |         |
|      |                                                            |          | R1:6.1                | -       |
| 50   | Problems on definite integrals of the type -I              | CO 3     | T1:15.3,              |         |
|      |                                                            |          | R1:7.9                |         |
| 51   | Problems on indefinite integrals of type-II                | CO 4     | T1:15.3,              |         |
|      |                                                            |          | R1:7.9                |         |
| 52   | PSolving problems on Cauchy's Residues Theorem             | CO 5     | T2: 16.9,             |         |
|      |                                                            |          | R1:7.42               |         |
| 53   | Solving problems on Definite integrals of the type -I.II   | CO 5     | T2: 16.9.             | -       |
|      |                                                            |          | R1:7.42               |         |
| 54   | Solving problems on Trigonometric expansions involving     | CO 6     | T2· 16.9              | -       |
| 01   | Bessel function                                            |          | R1.7 42               |         |
| 55   | Solving problems on both and gamma functions               | CO 5     | T2. 167               | -       |
| 00   | borving problems on beta and gamma functions               |          | 12.10.7,<br>R1.7.26   |         |
| FC   | Definitions and terminals are Coucher D'and a life         | <u> </u> | T1.10.4               | -       |
| 06   | in Cartesian and Polar forms                               |          | 11:12.4,<br>D1.4 19   |         |
|      | In Cartesian and Folar forms                               |          | n1:4.13               |         |

|    | DISCUSSION OF DEFINITION AND TERMINOLOGY                                                                                                               |          |                      |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|--|--|
| 57 | Definitions and terminology the differentiability and<br>analyticity of a complex function                                                             | CO 1,CO2 | T1:12.4,<br>R1:4.13  |  |  |
| 58 | Definitions and terminology Milne-Thomson method to<br>find the Analytic function                                                                      | CO 1,CO2 | T1:12.4,<br>R1:4.13  |  |  |
| 59 | Definitions and terminology on Cauchy's general integral<br>formula for evaluating contour integration, on types of<br>singularities , pole of order m | CO 4     | T1:13.4,<br>R1:5.10  |  |  |
| 60 | Definitions and Terminology on special functions-I<br>module IV                                                                                        | CO 5     | T1:15.2 ,<br>R1:6.6  |  |  |
| 61 | Definitions and Terminology on special functions-II module V                                                                                           | CO 6     | T1:12.4,<br>R1:4.13  |  |  |
|    | DISCUSSION OF QUESTION BANK                                                                                                                            | ζ        |                      |  |  |
| 62 | Discussion of Question Bank of Module II Complex<br>functions and differentiation                                                                      | CO 1,2   | T1:12.3,<br>R1:4.4   |  |  |
| 63 | Discussion of Question Bank of Module II complex<br>integration                                                                                        | CO 3     | T1:12.5,<br>R1:8.8   |  |  |
| 64 | Discussion of Question Bank of Module III power series<br>expansion of complex function                                                                | CO4      | T1:15.1,<br>R1:7.4   |  |  |
| 65 | Discussion of Question Bank of Module IV special<br>functions-I                                                                                        | CO 5     | T2: 7.15,<br>R1:1.65 |  |  |
| 66 | Discussion of Question Bank of Module V special functions-I                                                                                            | CO 6     | T2: 16.9,<br>R1:7.42 |  |  |

Signature of Course Coordinator Ms. L.Indira, Assistant Professor

HOD, ECE



# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

#### COURSE DESCRIPTION

| Department                                                    | Electronics and Communication Engineering |           |         |            |         |  |
|---------------------------------------------------------------|-------------------------------------------|-----------|---------|------------|---------|--|
| Course Title                                                  | Electronic Devices and Circuits           |           |         |            |         |  |
| Course Code                                                   | AECB06                                    |           |         |            |         |  |
| Program                                                       | B.Tech                                    |           |         |            |         |  |
| Semester                                                      | III                                       | ECE       |         |            |         |  |
| Course Type                                                   | Core                                      |           |         |            |         |  |
| Regulation                                                    | IARE-UG20                                 |           |         |            |         |  |
|                                                               |                                           | Theory    |         | Pract      | tical   |  |
| Course Structure                                              | Lecture                                   | Tutorials | Credits | Laboratory | Credits |  |
|                                                               | 3                                         | 1         | 4       | -          | -       |  |
| Course Coordinator Mr. D Khalandar Basha, Assistant Professor |                                           |           |         |            |         |  |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites       |
|--------|-------------|----------|---------------------|
| B.Tech | AHSB04      | Ι        | Waves and Optics    |
| B.Tech | AEEB03      | II       | Electrical Circuits |

#### II COURSE OVERVIEW:

This course provides the constructional features and principle of operation of the basic semiconductor devices such as diodes, bipolar and unipolar transistors. It intended to provide the different biasing configurations of the semiconductor devices to provide temperature stability. Analytical skills to configure semiconductor devices for the applications - rectifiers, clippers, voltage regulators, clampers and amplifiers.

#### **III MARKS DISTRIBUTION:**

| Subject                | SEE Examination | CIE Examination | Total Marks |
|------------------------|-----------------|-----------------|-------------|
| Electronic Devices and | 70 Marks        | 30 Marks        | 100         |
| Circuits               |                 |                 |             |

#### IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | x | Assignments  | x            | MOOC   |
|--------------|---------------------------|--------------|--------------|---|--------------|--------------|--------|
| $\checkmark$ | Open Ended Experiments    | x            | Seminars     | x | Mini Project | $\checkmark$ | Videos |
| x            | Others                    |              |              |   |              |              |        |

#### **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 50%                           | Understand            |
| 33%                           | Apply                 |
| 17%                           | Analyze               |
| 0 %                           | Evaluate              |
| 0 %                           | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

|             | Component                                      | Marks | Total Marks |  |
|-------------|------------------------------------------------|-------|-------------|--|
| CIA         | Continuous Internal Examination – 1 (Mid-term) | 10    |             |  |
|             | Continuous Internal Examination – 2 (Mid-term) | 10    | - 30        |  |
|             | AAT-1                                          | 5     |             |  |
|             | AAT-2                                          | 5     |             |  |
| SEE         | Semester End Examination (SEE)                 | 70    | 70          |  |
| Total Marks |                                                |       | 100         |  |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The operational principles, characteristics of semiconductor devices and circuits for rectification, amplification, conditioning and voltage regularization of signals. |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | The analytical skills needed to model analog and digital integrated circuits (IC) at discrete and micro circuit level.                                                  |
| III | The foundations of basic electronic circuits necessary for building complex electronic hardware.                                                                        |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Illustrate</b> the characteristics of semiconductor devices for determining | Understand |
|------|--------------------------------------------------------------------------------|------------|
|      | the device parameters such as resistances, current gain and voltage gain.      |            |
| CO 2 | Apply the pn junction characteristics for the diode applications such          | Apply      |
|      | as switch, rectifiers, Clippers and Clampers.                                  |            |
| CO 3 | <b>Examine</b> DC and AC load line analysis of BJT and FET amplifiers for      | Analyze    |
|      | optimal operating level regardless of input, load placed on the device.        |            |
| CO 4 | <b>Extend</b> the biasing techniques for bipolar and uni-polar transistor      | Understand |
|      | amplifier circuits considering stability condition for establishing a          |            |
|      | proper operating point.                                                        |            |
| CO 5 | Utilize low frequency model for estimation of the characteristic               | Apply      |
|      | parameters of BJT, FET amplifier circuits.                                     |            |
| CO 6 | <b>Demonstrate</b> the working principle of special purpose semiconductor      | Understand |
|      | diodes and transistors for triggering and voltage regulation                   |            |
|      | applications.                                                                  |            |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



#### **BLOOMS TAXONOMY**

#### VIII PROGRAM OUTCOMES:

| Program Outcomes |                                                                                                                                                                                                                                                                                                          |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PO 1             | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |  |  |
| PO 2             | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |  |  |
| PO 3             | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |  |  |
| PO 4             | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |  |  |
| PO 5             | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |  |  |
| PO 6             | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |  |  |
| PO 7             | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |  |  |
| PO 8             | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |  |  |
| PO 9             | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |  |  |
| PO 10            | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |  |  |
| PO 11            | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |  |  |
| PO 12            | <b>Life-Long Learning:</b> Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                           |  |  |

#### IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | PROGRAM OUTCOMES                                   | Strength | Proficiency<br>Assessed by |
|-------|----------------------------------------------------|----------|----------------------------|
| PO 1  | Engineering knowledge: Apply the                   | 3        | SEE/CIE/AAT                |
|       | knowledge of mathematics, science, engineering     |          |                            |
|       | fundamentals, and an engineering specialization    |          |                            |
|       | to the solution of complex engineering problems.   |          |                            |
| PO 2  | Problem analysis: Identify, formulate, review      | 2        | SEE/CIE/AAT                |
|       | research literature, and analyze complex           |          |                            |
|       | engineering problems reaching substantiated        |          |                            |
|       | conclusions using first principles of mathematics, |          |                            |
|       | natural sciences, and engineering sciences.        |          |                            |
| PO 3  | Design/Development of Solutions: Design            | 2        | SEE/CIE/AAT                |
|       | solutions for complex Engineering problems and     |          |                            |
|       | design system components or processes that         |          |                            |
|       | meet the specified needs with appropriate          |          |                            |
|       | consideration for the public health and safety,    |          |                            |
|       | and the cultural, societal, and Environmental      |          |                            |
|       | considerations                                     |          |                            |
| PO 10 | <b>Communication:</b> Communicate effectively on   | 1        | SEE/CIE/AAT                |
|       | complex engineering activities with the            |          |                            |
|       | engineering community and with society at          |          |                            |
|       | large, such as, being able to comprehend and       |          |                            |
|       | write effective reports and design                 |          |                            |
|       | documentation, make effective presentations,       |          |                            |
|       | and give and receive clear instructions.           |          |                            |

3 = High; 2 = Medium; 1 = Low

#### X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| Р     | ROGRAM SPECIFIC OUTCOMES                                                                                                                  | ${f Strength}$ | Proficiency<br>Assessed<br>by |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|
| PSO 1 | Build Embedded Software and Digital Circuit<br>Development platform for Robotics, Embedded<br>Systems and Signal Processing Applications. | 2              | AAT                           |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              | PROGRAM OUTCOMES |              |    |    |    |    |    |    |              |    |    |              | PSO'S |     |
|----------|--------------|------------------|--------------|----|----|----|----|----|----|--------------|----|----|--------------|-------|-----|
| COURSE   | PO           | PO               | PO           | PO | PO | PO | PO | РО | PO | PO           | PO | PO | PSO          | PSO   | PSO |
| OUTCOMES | 1            | 2                | 3            | 4  | 5  | 6  | 7  | 8  | 9  | 10           | 11 | 12 | 1            | 2     | 3   |
| CO 1     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -     | -   |
| CO 2     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -     | -   |
| CO 3     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -     | -   |
| CO 4     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -     | -   |
| CO 5     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  |              | -     | -   |
| CO 6     | $\checkmark$ | -                | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -     | -   |

# XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                 | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Illustrate the volt-ampere characteristics (knowledge)<br>of semiconductor devices to derive mathematical<br>model for diode current, static and dynamic resistance<br>by applying the principles of mathematics and science<br>for solving complex engineering problems.                                                            | 2                                      |
|                    | PO 2          | Understand the given <b>problem statement</b> and<br><b>formulate</b> the static and dynamic resistance from the<br>volt-ampere characteristics of the semiconductor devices<br>using <b>principles of mathematics and engineering</b><br><b>science</b>                                                                             | 3                                      |
|                    | PO 10         | <b>Communication:</b> Communicate effectively on<br><b>complex Engineering activities</b> with the Engineering<br>community and with society at large, such as, being able<br>to comprehend and <b>write effective reports</b> and design<br>documentation, make effective presentations, and give<br>and receive clear instructions | 2                                      |
| CO 2               | PO 1          | Apply (knowledge) the pn junction characteristics for<br>the diode applications of diode as switch, clippers,<br>Clampers and rectifiers by analyzing complex<br>engineering problems using the principles of<br>mathematics, engineering science                                                                                    | 2                                      |
|                    | PO 2          | Understand the given the diode application <b>problem</b><br><b>statement</b> and finding the <b>solution implementation</b><br>of rectifier circuits by <b>analyzing complex</b><br><b>engineering problems</b>                                                                                                                     | 4                                      |
|                    | PO 3          | Design solutions for complex engineering problems<br>and design system components of diode<br>applications that meet the specified needs with<br>appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental<br>considerations.                                                     | 5                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                 | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 10         | <b>Communication:</b> Communicate effectively on<br><b>complex Engineering activities</b> with the Engineering<br>community and with society at large, such as, being able<br>to comprehend and <b>write effective reports</b> and design<br>documentation, make effective presentations, and give<br>and receive clear instructions | 2                                      |
|                    | PSO 1         | Formulate and Evaluate the rectifier circuit applications<br>in the field of Intelligent Embedded and Semiconductor<br>technologies                                                                                                                                                                                                  | 1                                      |
| CO 3               | PO 1          | Explain (Understand) DC and AC load line analysis of<br>different amplifiers for optimal operating level by<br>applying <b>mathematics</b> , science engineering for<br>complex engineering problems.                                                                                                                                | 2                                      |
|                    | PO 2          | Understand the given <b>problem statement</b> for DC and AC load line analysis using <b>complex problem</b><br><b>analysis by the principles of mathematics and</b><br><b>engineering sciences.</b>                                                                                                                                  | 4                                      |
|                    | PO 10         | <b>Communication:</b> Communicate effectively on<br><b>complex Engineering activities</b> with the Engineering<br>community and with society at large, such as, being able<br>to comprehend and <b>write effective reports</b> and design<br>documentation, make effective presentations, and give<br>and receive clear instructions | 2                                      |
| CO 4               | PO 1          | Design (knowledge) the various biasing techniques for<br>BJT, JFET and MOSFETs amplifier circuits for stable<br>operation by applying <b>mathematics</b> , science and<br><b>engineering fundamentals for complex</b><br><b>engineering problems</b> .                                                                               | 3                                      |
|                    | PO 2          | Understand the <b>problem statement</b> of biasing<br>techniques for BJT, JFET and MOSFETs amplifier and<br>formulate a proper operating point in <b>complex</b><br><b>problem analysis using mathematics.</b>                                                                                                                       | 4                                      |
|                    | PO 3          | Design solutions for complex engineering problems<br>and design system components of BJT and FET<br>amplifiers that meet the specified needs with<br>appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental<br>considerations.                                                 | 4                                      |
|                    | PO 10         | <b>Communication:</b> Communicate effectively on<br><b>complex Engineering activities</b> with the Engineering<br>community and with society at large, such as, being able<br>to comprehend and <b>write effective reports</b> and design<br>documentation, make effective presentations, and give<br>and receive clear instructions | 2                                      |
| CO 5               | PO 1          | Estimate (Knowledge) the characteristic parameters of<br>BJT, FET amplifier circuits for <b>solving complex</b><br><b>engineering problems</b> using low frequency model by<br>applying <b>mathematics</b> , science and engineering<br>fundamentals.                                                                                | 3                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                 | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 2          | Analyze small signal analysis <b>problem statements</b> of BJT, FET amplifier circuits using <b>mathematics principles.</b>                                                                                                                                                                                                          | 4                                      |
|                    | PO 10         | <b>Communication:</b> Communicate effectively on<br><b>complex Engineering activities</b> with the Engineering<br>community and with society at large, such as, being able<br>to comprehend and <b>write effective reports</b> and design<br>documentation, make effective presentations, and give<br>and receive clear instructions | 2                                      |
| CO 6               | PO 1          | Demonstrate (Understand) the working principle<br>(knowledge) of special purpose semiconductor devices<br>and transistors like Zener diode, Tunnel diode, SCR,<br>UJT and Photo Diode for applications like triggering<br>and voltage regulation by applying science for<br>engineering problems.                                    | 1                                      |
|                    | PO 10         | <b>Communication:</b> Communicate effectively on<br><b>complex Engineering activities</b> with the Engineering<br>community and with society at large, such as, being able<br>to comprehend and <b>write effective reports</b> and design<br>documentation, make effective presentations, and give<br>and receive clear instructions | 2                                      |

\*Note: Refer appendix-I for key competencies

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO   | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
|          | 3  | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 1     | 1   | 1   |
| CO 1     | 2  | 3                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -     | -   | -   |
| CO 2     | 2  | 4                | 5  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | 1     | -   | -   |
| CO 3     | 2  | 4                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -     | -   | -   |
| CO 4     | 3  | 4                | 4  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -     | -   | -   |
| CO 5     | 3  | 4                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -     |     | -   |
| CO 6     | 1  | -                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -     |     | -   |

|          |      | PROGRAM OUTCOMES |      |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|------|------------------|------|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO   | PO               | PO   | PO | РО | PO | РО | PO | PO | РО | РО | РО | PSO   | PSO | PSO |
| OUTCOMES | 1    | 2                | 3    | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 66.7 | 30.0             | -    | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -   | -   |
| CO 2     | 66.7 | 40.0             | 50.0 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | 50    | -   | -   |
| CO 3     | 66.7 | 40.0             | -    | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -   | -   |
| CO 4     | 100  | 40.0             | 40.0 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -   | -   |
| CO 5     | 100  | 40.0             | -    | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     |     | -   |
| CO 6     | 33.3 | -                | -    | -  | -  | -  | _  | -  | -  | 40 | -  | -  | -     |     | -   |

#### XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

**XV** COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- **1** -5 <C< 40% Low/ Slight
- 2 40 % < C < 60% Moderate
- $3 60\% \leq C < 100\%$  Substantial /High

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | PSO'S |          |     |     |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|-------|----------|-----|-----|
| COURSE   | PO  | PO               | PO | PO | PO | PO | РО | PO | PO | PO | PO | PO    | PSO      | PSO | PSO |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1        | 2   | 3   |
| CO 1     | 3   | 1                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -        | -   | -   |
| CO 2     | 3   | 2                | 2  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | 2        | -   | -   |
| CO 3     | 3   | 2                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -        | -   | -   |
| CO 4     | 3   | 2                | 2  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -        | -   | _   |
| CO 5     | 3   | 2                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -        |     | _   |
| CO 6     | 1   | -                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -        |     | -   |
| TOTAL    | 16  | 9                | 4  | -  | -  | -  | -  | -  | -  | 6  | -  | -     | <b>2</b> | -   | -   |
| AVERAGE  | 2.7 | 1.8              | 2  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | <b>2</b> | -   | -   |

#### XVI ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams               | ~ | SEE Exams     | $\checkmark$ | Seminars                  | $\checkmark$ |
|-------------------------|---|---------------|--------------|---------------------------|--------------|
| Laboratory<br>Practices | - | Student Viva  | -            | Certification             | -            |
| Term Paper              | _ | Concept Video | ~            | Open Ended<br>Experiments | ~            |
| Assignments             | - |               |              |                           |              |

#### XVII ASSESSMENT METHODOLOGY-INDIRECT:

| $\checkmark$ | Early Semester Feedback | $\checkmark$ | End Semester OBE Feedback |
|--------------|-------------------------|--------------|---------------------------|
|--------------|-------------------------|--------------|---------------------------|

| X | Assessment of activities / Modeling and | - | - |
|---|-----------------------------------------|---|---|
|   | Experimental Tools in Engineering by    |   |   |
|   | Experts                                 |   |   |

#### XVIII **SYLLABUS:**

| MODULE I   | DIODE AND APPLICATIONS                                                                                                                                                                                                                                                                                                                                                                                               |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Diode - Static and Dynamic resistances, Equivalent circuit, Load line<br>analysis, Diffusion and Transition Capacitances, Diode Applications:<br>Switch-Switching times. Rectifier - Half Wave Rectifier, Full Wave Rectifier,<br>Bridge Rectifier, Rectifiers With Capacitive Filter, Clippers-Clipping at two<br>independent levels, Clampers-Clamping Operation, types, Clamping Circuit<br>Theorem, Comparators. |
| MODULE II  | <b>BIPOLAR JUNCTION TRANSISTOR (BJT)</b>                                                                                                                                                                                                                                                                                                                                                                             |
|            | Principle of Operation and characteristics - Common Emitter, Common Base,<br>Common Collector Configurations, Operating point, DC & AC load lines,<br>Transistor Hybrid parameter model, Determination of h-parameters from<br>transistor characteristics, Conversion of h-parameters.                                                                                                                               |
| MODULE III | TRANSISTOR BIASING AND STABILIZATION                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Bias Stability, Fixed Bias, Collector to Base bias, Self-Bias, Bias<br>Compensation using Diodes and Transistors.                                                                                                                                                                                                                                                                                                    |
|            | Analysis and Design of Small Signal Low Frequency BJT<br>Amplifiers: Analysis of CE, CC, CB Amplifiers and CE Amplifier with<br>emitter resistance, low frequency response of BJT Amplifiers, effect of<br>coupling and bypass capacitors on CE Amplifier.                                                                                                                                                           |
| MODULE IV  | JUNCTION FIELD EFFECT TRANSISTOR                                                                                                                                                                                                                                                                                                                                                                                     |
|            | Construction, Principle of Operation, Pinch-Off Voltage, Volt- Ampere<br>Characteristic, comparison of BJT and FET, Biasing of FET, FET as Voltage<br>Variable Resistor, MOSFET Construction and its Characteristics in<br>Enhancement and Depletion modes.                                                                                                                                                          |
| MODULE V   | FET AMPLIFIERS                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Small Signal Model, Analysis of CS, CD, CG JFET Amplifiers. Basic<br>Concepts of MOSFET Amplifiers.                                                                                                                                                                                                                                                                                                                  |
|            | <b>Special Purpose Devices:</b> Zener Diode - Characteristics, Voltage Regulator; Principle of Operation - SCR, Tunnel diode, UJT, Varactor Diode.                                                                                                                                                                                                                                                                   |

#### **TEXTBOOKS**

- 1. S Salivahanan, N Suresh Kumar "Electronic Devices and Circuits", 2nd Edition, 2018, McGraw Hill Education.
- 2. J. Millman and Christos C. Halkias, "Integrated Electronics", International Student Edition, 2008, Tata McGraw Hill Publications.
- 3. David A. Bell, "Electronic Devices and Circuits", 5th Edition, Oxford University Press.

- **REFERENCE BOOKS:** 1. R.L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits", 9th Edition, 2006, PEI/PHI.
  - 2. B.P.Singh, Rekha Singh, "Electronic Devices and Circuits", 2nd Edition, 2013, Pearson Publisher.

- 3. K. Lal Kishore, "Electronic Devices and Circuits", 2nd Edition, 2005, BS Publisher.
- 4. Anil K. Maini and Varsha Agarwal, "Electronic Devices and Circuits", 1stEdition, 2009, Wiley India Pvt. Ltd.

#### COURSE WEB PAGE:

https://lms.iare.ac.in/index?route=course/details&course~id=350

#### XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No           | Topics to be covered                                                                                                                        | Reference                                                                          |                         |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|--|--|
| OBE DISCUSSION |                                                                                                                                             |                                                                                    |                         |  |  |
| 1              | Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes (CO),<br>Program Outcomes (PO) and CO-PO Mapping | https://lms.<br>iare.ac.in/<br>index?route=<br>course/<br>details&<br>courseid=350 |                         |  |  |
|                | CONTENT DELIVERY (THEO                                                                                                                      | RY)                                                                                | <u></u>                 |  |  |
| 2              | pn Junction Formation, Biasing of pn Junction and<br>its characteristics                                                                    | CO 1                                                                               | T1: 2.1                 |  |  |
| 3              | Diode Resistances, Equivalent circuit                                                                                                       | CO 1                                                                               | T1: 2.6                 |  |  |
| 5              | Load line analysis , Diffusion and Transition<br>Capacitances                                                                               | CO 1                                                                               | T1: 2.7                 |  |  |
| 6              | Half Wave Rectifier                                                                                                                         | CO 2                                                                               | T1: 3.2.1               |  |  |
| 7              | Full Wave Rectifier                                                                                                                         | CO 2                                                                               | T1: 3.2.2.              |  |  |
| 8              | Bridge Rectifier                                                                                                                            | CO 2                                                                               | T1: 3.2.3               |  |  |
| 9              | Rectifiers With Capacitive Filter                                                                                                           | CO 2                                                                               | T1: 3.6                 |  |  |
| 11             | Positive peak and negative peak Clippers operation                                                                                          | CO 2                                                                               | T1: 6.15                |  |  |
| 12             | Clipping at two independent levels                                                                                                          | CO 2                                                                               | T1:5.13-5.14<br>R5: 8.2 |  |  |
| 14             | Positive peak and negative peak Clampers                                                                                                    | CO 2                                                                               | R5: 8.5-8.6             |  |  |
| 15             | Clamping Circuit Theorem                                                                                                                    | CO 3                                                                               | R5: 8.5-8.6             |  |  |
| 17             | Principle of Operation of BJT                                                                                                               | CO 1                                                                               | T1: 4.2                 |  |  |
| 19             | Common Emitter Configuration with characteristics                                                                                           | CO 1                                                                               | T1: 4.4                 |  |  |
| 20             | Common Base Configuration with characteristics                                                                                              | CO 1                                                                               | T1: 4.4                 |  |  |
| 21             | Common Collector Configuration with<br>characteristics                                                                                      | CO 1                                                                               | T1: 4.4                 |  |  |
| 22             | Transistor current components and relation among<br>current gains                                                                           | CO 1                                                                               | T1: 4.3                 |  |  |
| 23             | Operating point, DC & AC load lines                                                                                                         | CO 3                                                                               | T1: 5.2, 5.3            |  |  |
| 25             | Transistor Hybrid parameter model                                                                                                           | CO 5                                                                               | T1: 6.3                 |  |  |
| 26             | Transistor biasing and stabilization                                                                                                        | CO 4                                                                               | T1: 5.4, 5.5            |  |  |
| 27             | Fixed Bias                                                                                                                                  | CO 4                                                                               | T1: 5.4.1               |  |  |
| 29             | Collector to Base bias                                                                                                                      | CO 4                                                                               | T1: 7.2-7.3             |  |  |
| 31             | Self-Bias                                                                                                                                   | CO 4                                                                               | T1:5.4.3                |  |  |

| 33                                       | Bias Compensation using Diodes and Transistors                                | CO 4                    | T1: 5.6             |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------|-------------------------|---------------------|--|--|--|
| 34                                       | Exact Analysis of transistor amplifier using low frequency model              | CO 5                    | T1: 6.6             |  |  |  |
| 35                                       | Approximate Analysis of transistor amplifier using<br>low frequency model     | CO 5                    | T1:6.8              |  |  |  |
| 36                                       | Analysis of CE amplifier with emitter resistance<br>using low frequency model | CO 5                    | T1:6.9              |  |  |  |
| 39                                       | Effect of coupling and bypass capacitors on CE CO 5 T1:6.13<br>Amplifier      |                         |                     |  |  |  |
| 40                                       | Construction, Principle of Operation of JFET,<br>Comparison of BJT and FET    | CO 1                    | T1:4.12             |  |  |  |
| 42                                       | Volt- Ampere Characteristic of JFET, Pinch-Off<br>Voltage                     | CO 1                    | T1:4.13             |  |  |  |
| 43                                       | Biasing of FET                                                                | CO 4                    | T1: 5.9             |  |  |  |
| 44                                       | MOSFET Construction and its Characteristics in<br>Enhancement mode            | CO 1                    | T1: 4.15            |  |  |  |
| 45                                       | MOSFET Construction and its Characteristics in<br>Depletion mode              | CO 1                    | T1:4.16             |  |  |  |
| 46                                       | Analysis of generalized JFET Amplifier                                        | CO 5                    | T1: 6.15            |  |  |  |
| 47                                       | Analysis of CS JFET Amplifier                                                 | CO 5                    | T1:6.16             |  |  |  |
| 49                                       | Analysis of CD JFET Amplifier                                                 | CO 5                    | T1:6.17             |  |  |  |
| 51                                       | Analysis of CG JFET Amplifier                                                 | CO 5                    | T1: 6.18            |  |  |  |
| 53                                       | Zener Diode - Characteristics, Voltage Regulator                              | CO 6                    | T1: 2.9,2.11        |  |  |  |
| 54                                       | Principle of Operation - SCR                                                  | CO 6                    | T1: 2.16            |  |  |  |
| 55                                       | Tunnel diode                                                                  | CO 6                    | T1: 2.12            |  |  |  |
| 56                                       | UJT operation ,Varactor Diode operation                                       | CO 6                    | T1: 2.19,2.18       |  |  |  |
| PROBLEM SOLVING/ CASE STUDIES            |                                                                               |                         |                     |  |  |  |
| 4                                        | Related to Diode current and its resistance calculation                       | CO 1                    | T1: 2.3             |  |  |  |
| 10                                       | Rectifier parameters estimation                                               | CO 2                    | T2:2.6              |  |  |  |
| 13                                       | Clipper circuits                                                              | CO 2                    | T2:2.9              |  |  |  |
| 16                                       | Clamper circuits                                                              | CO 2                    | T2:2.10             |  |  |  |
| 24                                       | Load line analysis of BJT                                                     | CO 3                    | T2:5.3              |  |  |  |
| 18                                       | Current gain of transistor configuration                                      | CO 1                    | T1:4.3              |  |  |  |
| 28                                       | Transistor fixed biasing                                                      | CO 4                    | T2:5.4.1            |  |  |  |
| 30                                       | Transistor collector to base biasing                                          | CO 4                    | T2:5.4.3            |  |  |  |
| 32                                       | Transistor self-biasing                                                       | $\overline{\text{CO}}4$ | T1:5.4.5            |  |  |  |
| 37                                       | CE Transistor amplifier analysis                                              | CO 5                    | T1:6.14             |  |  |  |
| 38                                       | CB Transistor amplifier analysis                                              | CO 5                    | T1:6.14             |  |  |  |
| 39                                       | CC Transistor amplifier analysis                                              | CO 5                    | T1:6.14             |  |  |  |
| 47                                       | CS Amplifier analysis                                                         | CO 5                    | T1:6.16             |  |  |  |
| 49                                       | CD Amplifier analysis                                                         | CO 5                    | T1: 6.17 R5:<br>4.4 |  |  |  |
| 52                                       | Zener diode regulator                                                         | CO 6                    | T1: 2.11            |  |  |  |
| DISCUSSION OF DEFINITION AND TERMINOLOGY |                                                                               |                         |                     |  |  |  |

| 57                          | Diode applications                   | CO 1, | DT |  |  |
|-----------------------------|--------------------------------------|-------|----|--|--|
|                             |                                      | CO 2  |    |  |  |
| 58                          | Bipolar Junction Transistor (BJT)    | CO 1  | DT |  |  |
| 59                          | Transistor biasing and stabilization | CO 3, | DT |  |  |
|                             |                                      | CO 4  |    |  |  |
| 60                          | Junction field effect transistor     | CO 1  | DT |  |  |
| 61                          | FET amplifiers                       | CO 5, | DT |  |  |
|                             |                                      | CO 6  |    |  |  |
| DISCUSSION OF QUESTION BANK |                                      |       |    |  |  |
| 57                          | Diode applications                   | CO 1, | DT |  |  |
|                             |                                      | CO 2  |    |  |  |
| 58                          | Bipolar Junction Transistor (BJT)    | CO 1  | DT |  |  |
| 59                          | Transistor biasing and stabilization | CO 3, | DT |  |  |
|                             |                                      | CO 4  |    |  |  |
| 60                          | Junction field effect transistor     | CO 1  | DT |  |  |
| 61                          | FET amplifiers                       | CO 5, | DT |  |  |
|                             |                                      | CO 6  |    |  |  |

Signature of Course Coordinator

HOD, ECE

# ANNEXURE - I

#### **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No. of<br>KCF's |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| PO 1         | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3               |
| PO 2         | Identify, formulate, review research literature, and analyse<br>complex Engineering problems reaching substantiated conclusions<br>using first principles of mathematics natural sciences, and<br>Engineering sciences (Problem Analysis).<br>1. Problem or opportunity identification<br>2. Problem statement and system definition<br>3. Problem formulation and abstraction<br>4. Information and data collection<br>5. Model translation<br>6. Validation<br>7. Experimental design<br>8. Solution development or experimentation / Implementation<br>9. Interpretation of results<br>10. Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10              |
| PO 3         | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design processes</li> <li>8. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> </ul> | 10              |

| PO 4. | <ul> <li>Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems).</li> <li>1. Knowledge of characteristics of particular materials, equipment, processes, or products</li> <li>2. Workshop and laboratory skills</li> <li>3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.)</li> <li>4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues</li> <li>5. Understanding of appropriate codes of practice and industry standards</li> <li>6. Awareness of quality issues</li> <li>7. Ability to work with technical uncertainty</li> <li>8. Understanding of engineering principles and the ability to applied the problem is provide them to apply here universities are applied and the ability to apply here universities are applied to apply here.</li> </ul> | 11 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|       | <ul><li>apply them to analyse key engineering processes</li><li>9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques</li><li>10. Ability to apply quantitative methods and computer software</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|       | relevant to their engineering discipline, in order to solve<br>engineering problems<br>11. Understanding of and ability to apply a systems approach to<br>engineering problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| PO 5  | Create, select, and apply appropriate techniques, resources, and<br>modern Engineering and IT tools including prediction and<br>modelling to complex Engineering activities with an<br>understanding of the limitations (Modern Tool Usage).<br>1. Computer software / simulation packages / diagnostic<br>equipment / technical library resources / literature search tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1  |
| PO 6  | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  |

| PO 7 | <ul> <li>Understand the impact of the professional Engineering solutions<br/>in societal and Environmental contexts, and demonstrate the<br/>knowledge of, and need for sustainable development<br/>(Environment and Sustainability).</li> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>Socio economic</li> <li>Political</li> <li>Environmental</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3  |
| PO 9 | <ul> <li>Function effectively as an individual, and as a member or leader<br/>in diverse teams, and in multidisciplinary settings (Individual<br/>and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive<br/>their performance</li> <li>3. Self-direction (take a vaguely defined problem and<br/>systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on<br/>labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented<br/>Mini-Project, and for the seventeen -week design project.</li> <li>6. Instruction on effective teamwork and project management is<br/>provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know<br/>their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's<br/>performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the<br/>friendships and teamwork extends into the Junior years, and for<br/>some of those students, the friendships continue into the<br/>workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> | 12 |

| PO 10 | Communicate effectively on complex Engineering activities with<br>the Engineering community and with society at large, such as,<br>being able to comprehend and write effective reports and design<br>documentation, make effective presentations, and give and receive<br>clear instructions (Communication).<br>"Students should demonstrate the ability to communicate<br>effectively in writing / Orally"<br>1. Clarity (Writing)<br>2. Grammar/Punctuation (Writing)<br>3. References (Writing)<br>4. Speaking Style (Oral)<br>5. Subject Matter (Oral)                                                                                                                                    | 5  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO11  | <ul> <li>Demonstrate knowledge and understanding of the Engineering<br/>and management principles and apply these to one's own work, as<br/>a member and leader in a team, to manage projects and in<br/>multidisciplinary Environments (Project Management and<br/>Finance).</li> <li>1. Scope Statement</li> <li>2. Critical Success Factors</li> <li>3. Deliverables</li> <li>4. Work Breakdown Structure</li> <li>5. Schedule</li> <li>6. Budget</li> <li>7. Quality</li> <li>8. Human Resources Plan</li> <li>9. Stakeholder List</li> <li>10. Communication</li> <li>11. Risk Register</li> <li>12. Procurement Plan</li> </ul>                                                           | 12 |
| PO12  | <ul> <li>Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning).</li> <li>1. Project management professional certification / MBA</li> <li>2. Begin work on advanced degree</li> <li>3. Keeping current in CSE and advanced engineering concepts</li> <li>4. Personal continuing education efforts</li> <li>5. Ongoing learning – stays up with industry trends/ new technology</li> <li>6. Continued personal development</li> <li>7. Have learned at least 2-3 new significant skills</li> <li>8. Have taken up to 80 hours (2 weeks) training per year</li> </ul> | 8  |



# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department Electronics and Communication Engineering |                                   |           |         |            |         |  |
|------------------------------------------------------|-----------------------------------|-----------|---------|------------|---------|--|
| Course Title                                         | Digital System Design             |           |         |            |         |  |
| Course Code                                          | AECB07                            |           |         |            |         |  |
| Program                                              | B.Tech                            |           |         |            |         |  |
| Semester                                             | III                               |           |         |            |         |  |
| Course Type                                          | Core                              |           |         |            |         |  |
| Regulation                                           | IARE - R18                        |           |         |            |         |  |
|                                                      | Theory                            |           |         | Practical  |         |  |
| Course Structure                                     | Lecture                           | Tutorials | Credits | Laboratory | Credits |  |
|                                                      | 3                                 | 1         | 4       | -          | -       |  |
| Course Coordinator                                   | Dr. V Vijay , Associate Professor |           |         |            |         |  |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites       |
|--------|-------------|----------|---------------------|
| B.Tech | AEE002      | II       | Electrical circuits |

#### **II COURSE OVERVIEW:**

The course will make them learn the basic theory of switching circuits and their applications in detail. Starting from a problem statement they will learn to design circuits of logic gates that have a specified relationship between signals at the input and output terminals. They will be able to design combinational and sequential circuits. They will learn to design counters, adders, sequence detectors. This course provides a platform for advanced courses like computer architecture, microprocessors & microcontrollers and VLSI design. Greater emphasis is placed on the use of programmable logic devices and State machines.

#### **III MARKS DISTRIBUTION:**

| Subject               | SEE         | CIE         | Total Marks |
|-----------------------|-------------|-------------|-------------|
|                       | Examination | Examination |             |
| Digital System Design | 70 Marks    | 30 Marks    | 100         |

#### IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| 1 | Power Point<br>Presentation | 1 | Chalk & Talk | 1 | Assignments  | x | MOOC   |
|---|-----------------------------|---|--------------|---|--------------|---|--------|
| x | Open Ended<br>Experiments   | x | Seminars     | x | Mini Project | x | Videos |
| x | Others                      |   |              |   | •            |   | •      |

#### **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 10 %                          | Remember              |
| 50 %                          | Understand            |
| 25 %                          | Apply                 |
| 15 %                          | Analyze               |
| 0 %                           | Evaluate              |
| 0 %                           | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

| Component          | Theo     | Total Marks |             |  |  |
|--------------------|----------|-------------|-------------|--|--|
| Type of Assessment | CIE Exam | Quiz \AAT   | 100ar Marks |  |  |
| CIA Marks          | 25       | 05          | 30          |  |  |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $17^{th}$  week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes,

seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | Simplification of the logic functions using boolean algebraic theorems and techniques. |
|-----|----------------------------------------------------------------------------------------|
| II  | Implementation of conventional combinational and sequential circuits.                  |
| III | The exploration of the logic families and semiconductor memories.                      |
| IV  | The realization of the micro and macro circuits using VHDL programming.                |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | Outline binary arithmetic operations and optimize boolean               | Understand |
|------|-------------------------------------------------------------------------|------------|
|      | functions using karnaugh and tabulation method.                         |            |
| CO 2 | Apply combinational circuits for realization of basic building          | Apply      |
|      | blocks of conventional electronic circuits.                             |            |
| CO 3 | <b>Interpret</b> the knowledge of flip-flops and latches in synchronous | Understand |
|      | and asynchronous modules for memory storing applications.               |            |
| CO 4 | <b>Extend</b> the logic design techniques for ECL, TTL and CMOS         | Understand |
|      | methodologies for designing the fundamental gate level modelling.       |            |
| CO 5 | <b>Extend</b> the characteristics of logic families and PLDs to enhance | Apply      |
|      | the design skills indigital integrated circuits.                        |            |
| CO 6 | <b>Evaluate</b> synthesis and simulation of VHDL modules for            | Analyze    |
|      | implementing combinational and sequential circuits.                     |            |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



#### **BLOOMS TAXONOMY**

### VIII PROGRAM OUTCOMES:

| Program Outcomes |                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PO 1             | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |  |  |  |  |
| PO 2             | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |  |  |  |  |
| PO 3             | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |  |  |  |  |
| PO 4             | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |  |  |  |  |
| PO 5             | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |  |  |  |  |
| PO 6             | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                      |  |  |  |  |
| PO 7             | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |  |  |  |  |
| PO 8             | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |  |  |  |  |
| PO 9             | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |  |  |  |  |
| PO 10            | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |  |  |  |  |
| PO 11            | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |  |  |  |  |
| PO 12            | <b>Life-Long Learning:</b> Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                 |  |  |  |  |

#### IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | PROGRAM OUTCOMES                                                                                                                                                                                                                                                                                                     | Strength | Proficiency<br>Assessed by |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization                                                                                                                                                                               | 3        | SEE / CIE /<br>AAT         |
|      | to the solution of complex engineering problems.                                                                                                                                                                                                                                                                     |          |                            |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review<br>research literature, and analyze complex<br>engineering problems reaching substantiated<br>conclusions using first principles of mathematics,<br>natural sciences, and engineering sciences                                                                  | 3        | SEE / CIE /<br>AAT         |
| PO 3 | <b>Design / development of solutions:</b> Design<br>solutions for complex engineering problems and<br>design system components or processes that<br>meet the specified needs with appropriate<br>consideration for the public health and safety,<br>and the cultural, societal, and environmental<br>considerations. | 1        | SEE / CIE /<br>AAT         |
| PO 4 | <b>Conduct investigations of complex</b><br><b>problems:</b> Use research-based knowledge and<br>research methods including design of<br>experiments, analysis and interpretation of data,<br>and synthesis of the information to provide valid<br>conclusions.                                                      | 1        | SEE / CIE /<br>AAT         |

3 = High; 2 = Medium; 1 = Low

#### X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| Р     | ROGRAM SPECIFIC OUTCOMES                                                                              | Strength | Proficiency<br>Assessed |
|-------|-------------------------------------------------------------------------------------------------------|----------|-------------------------|
|       |                                                                                                       |          | by                      |
| PSO 1 | Focus on the practical experience of ASIC prototype designs, virtual instrumentation and SoC designs. | -        | -                       |
| PSO 2 | Focus on the practical experience of ASIC prototype designs, virtual instrumentation and SoC designs. | 2        | SEE / CIE<br>/ AAT      |
| PSO 3 | Focus on the practical experience of ASIC prototype designs, virtual instrumentation and SoC designs. | -        | -                       |

3 = High; 2 = Medium; 1 = Low

| COURSE   |              | PROGRAM OUTCOMES |              |              |    |    |    |    |    |              | PSO'S |    |     |              |     |
|----------|--------------|------------------|--------------|--------------|----|----|----|----|----|--------------|-------|----|-----|--------------|-----|
| OUTCOMES | PO           | PO               | PO           | PO           | PO | PO | PO | PO | PO | PO           | PO    | PO | PSO | PSO          | PSO |
|          | 1            | 2                | 3            | 4            | 5  | 6  | 7  | 8  | 9  | 10           | 11    | 12 | 1   | 2            | 3   |
| CO 1     | $\checkmark$ | $\checkmark$     | -            | -            | -  | -  | -  | -  | -  | $\checkmark$ | -     |    | -   | -            | -   |
| CO 2     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -            | -   |
| CO 3     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | $\checkmark$ | -   |
| CO 4     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -            | -   |
| CO 5     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | $\checkmark$ | -   |
| CO 6     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -            | -   |

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

# XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)         | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | O 1 Understand the number systems, Boolean operations,       |                                        |
|                    |               | code conversion code by applying its <b>own</b>              |                                        |
|                    |               | engineering discipline, science principles and               |                                        |
|                    |               | methodology.                                                 |                                        |
|                    | PO 2          | Understand the given <b>problem statement</b> and            | 4                                      |
|                    |               | formulate the design (complex) engineering                   |                                        |
|                    |               | problems in detecting and correcting errors in the           |                                        |
|                    |               | received data in reaching substantiated                      |                                        |
|                    | DO 10         | conclusions by the interpretation of results.                |                                        |
|                    | PO 10         | Understand the given <b>problem statement</b> and            | 1                                      |
|                    |               | communicate the novel implementation to get it               |                                        |
|                    | DO 1          | published in the scientific community.                       |                                        |
| CO 2               | PO I          | Demonstrate the design procedures of various adder           | 2                                      |
|                    |               | circuits with own engineering discipline, science            |                                        |
|                    | DO 9          | Inductive and methodology.                                   | 7                                      |
|                    | PO 2          | formulate the (compley) engineering problems on              | 1                                      |
|                    |               | adder circuit design translate the information into          |                                        |
|                    |               | the model using type of adder from the provided              |                                        |
|                    |               | information and data. develop solutions based                |                                        |
|                    |               | on the functionality of the circuit. <b>validate</b> the     |                                        |
|                    |               | output of the circuit in reaching substantiated              |                                        |
|                    |               | conclusions by the interpretation of results.                |                                        |
|                    | PO 3          | Understand the customer needs, use creativity                | 3                                      |
|                    |               | and manage design process in realization of                  |                                        |
|                    |               | combinational circuits using logic gates and <b>evaluate</b> |                                        |
|                    |               | outcomes.                                                    |                                        |
| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                          | No. of Key<br>Competencies |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                    | PO 4          | <b>Design</b> various combinational circuits which are basic<br>requirement of various systems using <b>design of</b><br><b>experiments</b> , <b>analysis and interpretation of</b><br><b>data</b> .                                                                                                                                                                                                                                                          | 2                          |
|                    | PO 10         | Understand the given <b>problem statement</b> and<br><b>communicate</b> the novel implementation to get it<br><b>published in the scientific community.</b>                                                                                                                                                                                                                                                                                                   | 1                          |
| CO 3               | PO 1          | Compare the asynchronous counters using design<br>procedure of sequential circuit and excitation tables of<br>flip – flops with <b>own engineering discipline</b> ,<br><b>mathematical and science principles and</b><br><b>methodology</b> .                                                                                                                                                                                                                 | 3                          |
|                    | PO 2          | Understand the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems on<br>adder circuit design <b>translate the information</b> into<br>the model using type of adder from the provided<br><b>information and data</b> , develop solutions based on<br>the functionality of the circuit, <b>validate</b> the output of<br>the circuit in reaching substantiated conclusions by<br>the <b>interpretation of results</b> . | 6                          |
|                    | PO 3          | Design of a clocked flip-flop conversion from one type<br>of flip-flop to another, registers and counters<br><b>mathematics, science and engineering</b><br><b>fundamentals.</b>                                                                                                                                                                                                                                                                              | 3                          |
|                    | PO 4          | Use research-based knowledge on design of<br>asynchronous counters analysis and interpretation of<br>data.                                                                                                                                                                                                                                                                                                                                                    | 2                          |
|                    | PO 10         | Understand the given <b>problem statement</b> and<br><b>communicate</b> the novel implementation to get it<br><b>published in the scientific community.</b>                                                                                                                                                                                                                                                                                                   | 1                          |
|                    | PSO 2         | <b>Design counter design for</b> application specific integrated circuit (ASIC) prototype designs, system on chip (SoC) designs                                                                                                                                                                                                                                                                                                                               | 2                          |
| CO 4               | PO 1          | Build tristate TTL, ECL, CMOS families and their<br>interfacing for <b>memory element designs</b> using<br><b>complex features of logic families.</b>                                                                                                                                                                                                                                                                                                         | 3                          |
|                    | PO 2          | Understand the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems on<br>adder circuit design <b>translate the information</b> into<br>the model using type of adder from the provided<br><b>information and data</b> , develop solutions based on<br>the functionality of the circuit, <b>validate</b> the output of<br>the circuit in reaching substantiated conclusions by<br>the <b>interpretation of results</b> . | 7                          |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                          | No. of Key<br>Competencies |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                    | PO 3          | Design universal gates using the design mechanisms of TTL, ECL, CMOS using the <b>basic transistor models</b> of corresponding logic families.                                                                                                                                                                                                                                                                                                                | 1                          |
|                    | PO 4          | Implement tristate TTL, ECL, CMOS families and their <b>interfacing</b> with <b>memory elements</b> .                                                                                                                                                                                                                                                                                                                                                         | 2                          |
|                    | PO 10         | Understand the given <b>problem statement</b> and<br><b>communicate</b> the novel implementation to get it<br><b>published in the scientific community.</b>                                                                                                                                                                                                                                                                                                   | 1                          |
| CO 5               | PO 1          | Explore the concept of programmable logic devices for<br>understanding architectural blocks of FPGA using the<br><b>own engineering discipline, science principles</b><br><b>and methodology.</b>                                                                                                                                                                                                                                                             | 2                          |
|                    | PO 2          | Understand the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems on<br>adder circuit design <b>translate the information</b> into<br>the model using type of adder from the provided<br><b>information and data</b> , develop solutions based on<br>the functionality of the circuit, <b>validate</b> the output of<br>the circuit in reaching substantiated conclusions by<br>the <b>interpretation of results</b> . | 7                          |
|                    | PO 3          | Develop digital gates based on customer needs for<br>design of universal gates using the design mechanisms<br>of TTL, ECL, and CMOS using the <b>basic transistor</b><br><b>models</b> of corresponding logic families.                                                                                                                                                                                                                                       | 1                          |
|                    | PO 4          | Implement tristate TTL, ECL, CMOS families and their <b>interfacing</b> with <b>Memory elements</b> .                                                                                                                                                                                                                                                                                                                                                         | 2                          |
|                    | PO 10         | Understand the given <b>problem statement</b> and<br><b>communicate</b> the novel implementation to get it<br><b>published in the scientific community.</b>                                                                                                                                                                                                                                                                                                   | 1                          |
| CO 6               | PO 1          | Understand data types and objects, dataflow,<br>behavioral and structural modeling for realizing the<br>hardware modeling of the sequential, combinational<br>blocks using the <b>own engineering discipline</b> ,<br><b>Science principles and methodology</b> .                                                                                                                                                                                             | 2                          |
|                    | PO 2          | Understand the given <b>problem statement</b> and<br>formulate the design (complex) engineering<br>problems of digital logic design, translate the<br>information into hardware circuit programming<br>from provided information and data, develop<br>solutions based on the simulation result, validate<br>the results reaching substantiated conclusions by<br>the interpretation of results.                                                               | 7                          |
|                    | PO 3          | <b>Develop</b> digital system design <b>based on customer</b><br><b>needs for design of</b> combinational, sequential<br>circuits and <b>evaluate outcomes of the designs.</b>                                                                                                                                                                                                                                                                                | 3                          |

| Course<br>Outcomes | PO'S<br>PSO'S                   | Justification for mapping (Students will be able to)                                                                                                        | No. of Key<br>Competencies |  |  |  |
|--------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
|                    | PO 4                            | Use knowledge of VHDL programming, able to<br>identify, classify and describe performance of<br>digital designs for various logical operations using        | 2                          |  |  |  |
|                    | laboratory skills and analysis. |                                                                                                                                                             |                            |  |  |  |
|                    | PO 10                           | Understand the given <b>problem statement</b> and<br><b>communicate</b> the novel implementation to get it<br><b>published in the scientific community.</b> | 1                          |  |  |  |
|                    | PSO 2                           | Apply digital circuit design in various fields such as<br>application specific integrated circuit (ASIC)<br>prototype designs, system on chip (SoC) designs | 2                          |  |  |  |

## Note: For Key Attributes refer Annexure - ${\bf I}$

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

| COURSE   |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |  |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|--|
| OUTCOMES | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO   | PSO |  |
|          | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |  |
|          | 3  | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2     | 2   |  |
| CO 1     | 2  | 4                | _  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 2     | 2  | 7                | 3  | 2  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 3     | 3  | 6                | 3  | 2  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | 1     | -   |  |
| CO 4     | 2  | 7                | 1  | 2  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 5     | 2  | 7                | 3  | 2  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | 1     | -   |  |
| CO 6     | 2  | 7                | 1  | 2  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |

## XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

| COURSE   |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |  |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|--|
| OUTCOMES | PO  | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO   | PSO |  |
|          | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |  |
|          | 3   | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2     | 2   |  |
| CO 1     | 67  | 40               | -  | -  | I  | -  | I  | -  | -  | 20 | -  | -  | -   | -     | -   |  |
| CO 2     | 67  | 70               | 30 | 30 | -  | -  | -  | -  | -  | 20 | -  | -  | -   | -     | -   |  |
| CO 3     | 100 | 60               | 30 | 18 | -  | -  | -  | -  | -  | 20 | -  | -  | -   | 50    | -   |  |
| CO 4     | 67  | 70               | 10 | 18 | -  | I  | I  | I  | -  | 20 | -  | -  | -   | -     | -   |  |
| CO 5     | 67  | 70               | 30 | 18 | -  | -  | -  | -  | -  | 20 | -  | -  | -   | 50    | -   |  |
| CO 6     | 67  | 70               | 10 | 18 | -  | -  | -  | -  | -  | 20 | -  | -  | -   | -     | -   |  |

## XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$  -  $0 \leq C \leq 5\%$  – No correlation

1 -5 <C $\leq$  40% – Low/ Slight

 $\pmb{\mathcal{2}}$  - 40 % < C < 60% – Moderate

| <i>3</i> - 60% < | C < | 100% – | Substantial | /High |
|------------------|-----|--------|-------------|-------|
|------------------|-----|--------|-------------|-------|

| COURSE   |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |  |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|--|
| OUTCOMES | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO   | PSO |  |
|          | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |  |
| CO 1     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 2     | 3  | 3                | 1  | 1  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 3     | 3  | 3                | 1  | 1  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | 2     | -   |  |
| CO 4     | 3  | 3                | 1  | 1  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 5     | 3  | 3                | 1  | 1  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | 2     | -   |  |
| CO 6     | 3  | 2                | 1  | 1  | -  | -  | -  | -  | -  | 1  | -  | I  | -   | -     | -   |  |
| TOTAL    | 18 | 16               | 5  | 5  | 0  | 0  | 0  | 0  | 0  | 6  | 0  | 0  | 0   | 4     | 0   |  |
| AVERAGE  | 3  | $\overline{2.7}$ | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0   | 2     | 0   |  |

## XVI ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams      | $\checkmark$ | SEE Exams         | $\checkmark$ | Assignments   | -            |
|----------------|--------------|-------------------|--------------|---------------|--------------|
| Quiz           | -            | Tech - Talk       | -            | Certification | -            |
| Term Paper     | -            | Seminars          | -            | Student Viva  | -            |
| Laboratory     | -            | 5 Minutes Video / | $\checkmark$ | Open Ended    | $\checkmark$ |
| Practices      |              | Concept Video     |              | Experiments   |              |
| Micro Projects | -            | -                 | -            | -             | -            |

## XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback               | $\checkmark$ | End Semester OBE Feedback                    |
|--------------|---------------------------------------|--------------|----------------------------------------------|
| $\checkmark$ | Assessment of activities / Modeling a | and E        | experimental Tools in Engineering by Experts |

## XVIII SYLLABUS:

| MODULE I  | LOGIC SIMPLIFICATION AND COMBINATIONAL<br>LOGICDESIGN                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Review of boolean algebra and De Morgan's theorem, SOP & POS forms, canonical forms, karnaughmaps up to 6 variables, binary codes, code conversion. |
| MODULE II | MSI DEVICES                                                                                                                                         |

|            | MSI devices like comparators, multiplexers, encoder, decoder, driver & multiplexed display, half and full adders, subtractors, serial and parallel adders, BCD adder, barrel shifter and ALU                                                                                                                                        |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODULE III | SEQUENTIAL LOGIC DESIGN                                                                                                                                                                                                                                                                                                             |
|            | Building blocks like S-R, JK and Master-Slave JK FF, edge triggered FF, ripple and synchronous counters, shift registers. Finite state machines, design of synchronous FSM, algorithmic state machines charts. Designing synchronous circuits like pulse train generator, pseudo random binary sequence generator, clock generation |
| MODULE IV  | LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES                                                                                                                                                                                                                                                                                           |
|            | TTL NAND gate, specifications, noise margin, propagation delay, fan-in, fan-out, tristate TTL, ECL, CMOS families and their interfacing, memory elements, concept of programmable logic devices like FPGA. Logic implementation using programmable devices.                                                                         |
| MODULE V   | VLSI DESIGN FLOW                                                                                                                                                                                                                                                                                                                    |
|            | Design entry: schematic, FSM & HDL, different modeling styles in VHDL, data types and objects, dataflow, behavioral and structural modeling, synthesis and simulation VHDL constructs and codes for combinational and sequential circuits.                                                                                          |

## **TEXTBOOKS**

- 1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th Edition, 2009.
- 2. Douglas Perry, "VHDL", Tata McGraw Hill, 4th Edition, 2002.
- 3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd Edition,2006.

## **REFERENCE BOOKS:**

- 1. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989.
- 2. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd Edition 2012.

## WEB REFERENCES:

- 1. http://www.igniteengineers.com
- 2. http://www.ocw.nthu.edu.tw
- 3. http://www.uotechnology.edu.iq

## COURSE WEB PAGE:

1. lms.iare.ac.in/index?route=course/details&course\_id=406

## XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                          | CO's | Reference                                                                               |  |  |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|      | OBE DISCUSSION                                                                                                                                |      |                                                                                         |  |  |  |  |  |  |  |  |  |
| 0    | Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes (CO),<br>Program Outcomes (PO) and CO - PO Mapping | -    | https://lms.<br>iare.ac.in/<br>index?route=<br>course/<br>details&<br>course_id=<br>406 |  |  |  |  |  |  |  |  |  |
|      | CONTENT DELIVERY (THEO                                                                                                                        | RY)  |                                                                                         |  |  |  |  |  |  |  |  |  |
| 1    | Introduction to number systems                                                                                                                | CO 1 | T1:1.1 to 1.5<br>R1:3.1 to 3.5                                                          |  |  |  |  |  |  |  |  |  |
| 2    | Base conversion methods                                                                                                                       | CO 1 | T1:2.1 to 2.6<br>R2:2.8 to 3.5                                                          |  |  |  |  |  |  |  |  |  |
|      | CONTENT DELIVERY (THEORY)                                                                                                                     |      |                                                                                         |  |  |  |  |  |  |  |  |  |
| 3    | Complements of numbers                                                                                                                        | CO 1 | T1:4.1 to 4.9<br>R2:2.1 to 2.4                                                          |  |  |  |  |  |  |  |  |  |
| 4    | Codes- binary codes                                                                                                                           | CO 1 | T1:6.1 to 6.5<br>R2:7.1 to 7.7                                                          |  |  |  |  |  |  |  |  |  |
| 5    | BCD code and its properties                                                                                                                   | CO 1 | T1:8.1 to 8.4<br>R2:4.1 to 4.8                                                          |  |  |  |  |  |  |  |  |  |
| 6    | Unit distance code                                                                                                                            | CO 1 | T1:8.8 to 8.9<br>R2:3.3 to 3.7                                                          |  |  |  |  |  |  |  |  |  |
| 7    | Alphanumeric codes                                                                                                                            | CO 1 | T2:3.1 to 3.2<br>R2: 2.7 to 2.9                                                         |  |  |  |  |  |  |  |  |  |
| 8    | Error detecting and correcting codes                                                                                                          | CO 1 | T2:4.1 to 4.9                                                                           |  |  |  |  |  |  |  |  |  |
| 9    | Basic theorems and its properties                                                                                                             | CO 1 | T2:5.1 to 5.2<br>R1:3.1 to 3.5                                                          |  |  |  |  |  |  |  |  |  |
| 10   | Switching functions                                                                                                                           | CO 1 | T2:5.3 to 5.5<br>R2:5.1 to 5.8                                                          |  |  |  |  |  |  |  |  |  |
| 11   | Canonical form                                                                                                                                | CO 1 | T2:3.1 to 3.5<br>R1:2.1 to 2.5                                                          |  |  |  |  |  |  |  |  |  |
| 12   | Standard form                                                                                                                                 | CO 1 | T2:3.1 to 3.6<br>R2:2.8 to 3.5                                                          |  |  |  |  |  |  |  |  |  |
| 13   | Algebraic simplification of digital logic gates                                                                                               | CO 1 | T2:4.1 to 4.9<br>R2:2.1 to 2.4                                                          |  |  |  |  |  |  |  |  |  |
| 14   | Properties of XOR gates                                                                                                                       | CO 1 | T2:6.1 to 6.5<br>R2:7.1 to 7.7                                                          |  |  |  |  |  |  |  |  |  |
| 15   | Universal gates                                                                                                                               | CO 2 | T2:7.1 to 7.4<br>R2:4.1 to 4.8                                                          |  |  |  |  |  |  |  |  |  |
| 16   | Multilevel NAND/NOR realizations                                                                                                              | CO 2 | T2:7.8 to 7.9<br>R2:3.3 to 3.7                                                          |  |  |  |  |  |  |  |  |  |

| 17 | Combinational design                              | CO 2 | T3:3.1 to 3.2                                                                                    |
|----|---------------------------------------------------|------|--------------------------------------------------------------------------------------------------|
| 18 | Arithmotic circuits adders                        | CO 2 | $\begin{array}{c} \text{R2: } 2.7 \text{ to } 2.9 \\ \text{T3:} 4.1 \text{ to } 4.8 \end{array}$ |
| 10 | Culture store                                     |      | T2.5.1 to 4.8                                                                                    |
| 19 | Subtractors                                       |      | 13:5.1 to 5.2<br>B1:3.1 to 3.5                                                                   |
| 20 | Sorial addor                                      | CO 2 | $T_{2} = 5.5$                                                                                    |
| 20 |                                                   |      | R2:5.1 to 5.8                                                                                    |
| 21 | 1's complement subtractor                         | CO 2 | T3:6.1 to 6.5                                                                                    |
|    |                                                   |      | R1:3.1 to 3.5                                                                                    |
| 22 | 2's complement subtractor                         | CO 2 | T3:6.6 to 6.8                                                                                    |
|    |                                                   |      | R2:2.8 to $3.5$                                                                                  |
| 23 | Combinational and sequential circuits             | CO 2 | T3:6.9 to 6.10                                                                                   |
|    |                                                   |      | R2:2.1 to 2.4                                                                                    |
| 24 | The binary cell                                   | CO 3 | T3:7.1 to 7.5                                                                                    |
|    |                                                   |      | R2:7.1 to 7.7                                                                                    |
| 25 | The fundamentals of sequential machine operation  | CO 3 | T3:7.6 to 7.7                                                                                    |
|    |                                                   |      | R2:4.1 to 4.8                                                                                    |
| 26 | Flip-flop                                         | CO 3 | T3:7.8 to 7.10                                                                                   |
|    |                                                   |      | R2:3.3 to 3.7                                                                                    |
| 27 | D-Latch Flip-flop                                 | CO 3 | T3:7.11 to 7.12                                                                                  |
|    |                                                   |      | R2: 2.7 to 2.9                                                                                   |
| 28 | Clocked T Flip-flop                               | CO 3 | T1:4.1 to $4.9$                                                                                  |
| 29 | Clocked JK flip-flop                              | CO 4 | T1:5.1 to 5.2                                                                                    |
|    |                                                   |      | R1:3.1 to 3.5                                                                                    |
| 30 | Design of a clocked flip-flop conversion from one | CO 4 | T1: $5.3$ to $5.5$                                                                               |
|    | type of flip-flop to another                      |      | R2:5.1 to 5.8                                                                                    |
| 31 | Registers and counters                            | CO 4 | T1:1.1 to 1.5                                                                                    |
|    |                                                   |      | R1:3.1 to 3.5                                                                                    |
| 32 | Analyze TTL NAND gate, specifications             | CO 4 | T1:2.1 to 2.6                                                                                    |
|    |                                                   |      | R2:2.8 to 3.5                                                                                    |
| 33 | Noise margin, propagation delay                   | CO 5 | T1:4.1 to 4.9                                                                                    |
|    |                                                   |      | R2:2.1 to 2.4                                                                                    |
| 34 | Fan-in, fan-out                                   | CO 5 | T1:6.1 to 6.5                                                                                    |
|    |                                                   |      | R2:7.1 to 7.7                                                                                    |
| 35 | Implement tristate TTL, ECL.                      | CO 5 | T2:5.1 to $5.4$                                                                                  |
|    |                                                   |      | R2:4.1 to 4.8                                                                                    |
| 36 | CMOS families and their interfacing, memory       | CO 6 | T1:2.8 R2:3.3                                                                                    |
|    | elements                                          |      | to 3.7                                                                                           |
| 37 | Understand concept of programmable logic devices  | CO 6 | T3:3.7 to 3.8                                                                                    |
|    | like FPGA                                         |      | R2: 2.7 to 2.9                                                                                   |
| 38 | Logic implementation using programmable devices   | CO 6 | T3:4.1 to 4.9                                                                                    |
| 39 | Design entry: Schematic, FSM & HDL, different     | CO 6 | T $3:5.1$ to $5.2$                                                                               |
|    | modeling styles in VHDL                           |      | R1:3.1 to 3.5                                                                                    |

| 40         | Understand data types and objects, dataflow,    | CO 6     | T3:5.3 to 5.5                                          |  |  |  |  |  |
|------------|-------------------------------------------------|----------|--------------------------------------------------------|--|--|--|--|--|
|            | Denavioral and structural modeling              | UDIES    | R2:5.1 to 5.8                                          |  |  |  |  |  |
| 41         | 41 Multilevel NAND/NOP realizations             |          |                                                        |  |  |  |  |  |
| 41         | Multilevel NAND/NOR realizations                | 001      | 11:1.1  to  1.5<br>B1.3.1 to 3.5                       |  |  |  |  |  |
| 42         | Combinational design                            | CO 1     | T1.9.1 to 9.6                                          |  |  |  |  |  |
| 42         | Combinational design                            | 001      | $R^{11.2.1} to 2.0$<br>$R^{2.2} 8 to 3.5$              |  |  |  |  |  |
| 43         | Arithmotic circuits addors                      | CO 1     | T1.4.1 to 4.9                                          |  |  |  |  |  |
| 40         |                                                 | 001      | R2:2.1 to 2.4                                          |  |  |  |  |  |
| 44         | 1's complement subtractor                       | $CO_2$   | T1.61 to 65                                            |  |  |  |  |  |
|            |                                                 | 002      | R2:7.1 to 7.7                                          |  |  |  |  |  |
| 45         | 2's complement subtractor                       | CO 2     | T2:5.1 to 5.4                                          |  |  |  |  |  |
|            |                                                 |          | R2:4.1 to 4.8                                          |  |  |  |  |  |
| 46         | Combinational and sequential circuits           | CO 3     | T1:2.8 to 2.9                                          |  |  |  |  |  |
|            |                                                 |          | R2:3.3 to 3.7                                          |  |  |  |  |  |
| 47         | Clocked T Flip-flop                             | CO 3     | T3:3.7 to 3.8                                          |  |  |  |  |  |
|            |                                                 |          | R2: 2.7 to 2.9                                         |  |  |  |  |  |
| 48         | Clocked JK flip-flop                            | CO 4     | T1:4.1 to 4.9                                          |  |  |  |  |  |
| 49         | Design of a clocked flip-flop conversion        | CO 4     | T1:5.1 to 5.2                                          |  |  |  |  |  |
|            |                                                 |          | R1:3.1 to 3.5                                          |  |  |  |  |  |
| 50         | Registers and counters                          | CO 5     | T1:5.3 to 5.5                                          |  |  |  |  |  |
|            |                                                 |          | R2:5.1 to 5.8                                          |  |  |  |  |  |
| 51         | Analyze TTL NAND gate, specifications           | CO 5     | T1:1.1 to 1.5                                          |  |  |  |  |  |
|            |                                                 |          | R1:3.1 to 3.5                                          |  |  |  |  |  |
| 52         | Implement tristate TTL, ECL                     | CO 5     | T1:2.1 to 2.6                                          |  |  |  |  |  |
|            |                                                 |          | R2:2.8 to 3.5                                          |  |  |  |  |  |
| 53         | CMOS families, memory elements                  | CO 6     | T1:4.1 to 4.9                                          |  |  |  |  |  |
|            |                                                 | <u> </u> | R2:2.1 to 2.4                                          |  |  |  |  |  |
| 54         | Programmable logic devices.                     | CO 6     | T1:6.1 to 6.5                                          |  |  |  |  |  |
|            |                                                 | <u> </u> | R2:7.1 to 7.7                                          |  |  |  |  |  |
| 55         | Schematic, FSM & HDL, different modeling styles | CO 6     | 12:5.1  to  5.4                                        |  |  |  |  |  |
|            | III VIDL.                                       |          | R2:4.1 to 4.8                                          |  |  |  |  |  |
|            | DISCUSSION OF DEFINITION AND TE                 |          |                                                        |  |  |  |  |  |
| 56         | Universal gates                                 | COT      | T1:1.1  to  1.5<br>D1.2.1 to 2.5                       |  |  |  |  |  |
|            |                                                 | <u> </u> | T1.5.1 t0 5.5                                          |  |  |  |  |  |
| 57         | Multilevel NAND/NOR realizations                | 00.2     | 11:2.1  to  2.0<br>$R_{2}:2.8 \text{ to } 3.5$         |  |  |  |  |  |
| <b>E</b> 0 | Combinational design                            | CO 4     | $T_{1,4,1,4,0}$                                        |  |  |  |  |  |
| 86         | Combinational design                            | 004      | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |  |  |  |  |  |
| 50         | Arithmotic circuits adders                      | CO 5     | T1.6 1 to 65                                           |  |  |  |  |  |
| 09         | Antimetic circuits-adders                       |          | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |  |  |  |  |  |
| 60         | Logic implementation using programmable devices | CO 6     | T2.51 to 54                                            |  |  |  |  |  |
|            | Logic implementation using programmable devices |          | R2:4.1 to 4.8                                          |  |  |  |  |  |
|            | DISCUSSION OF QUESTION B                        | ANK      |                                                        |  |  |  |  |  |
|            |                                                 |          |                                                        |  |  |  |  |  |

| 61 | Design of a clocked flip-flop conversion | CO 1 | T1:1.1 to 1.5<br>R1:3.1 to 3.5 |
|----|------------------------------------------|------|--------------------------------|
| 62 | Registers and counters                   | CO 2 | T1:2.1 to 2.6<br>R2:2.8 to 3.5 |
| 63 | Analyze TTL NAND gate, specifications    | CO 3 | T1:4.1 to 4.9<br>R2:2.1 to 2.4 |
| 64 | Implement tristate TTL, ECL.             | CO 4 | T1:6.1 to 6.5<br>R2:7.1 to 7.7 |
| 65 | CMOS families, memory elements           | CO 5 | T2:5.1 to 5.4<br>R2:4.1 to 4.8 |

## Course Coordinator Dr. V Vijay , Associate Professor

HOD, ECE

## ANNEXURE - I

## **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No.<br>of<br>KCF's |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| PO 1         | <ul> <li>PO 1 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of <ol> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ol> </li> </ul>                                                                                                                                                                                                                                          |                    |  |  |
| PO 2         | Identify, formulate, review research literature, and analyse complex<br>Engineering problems reaching substantiated conclusions using first<br>principles of mathematics natural sciences, and Engineering sciences<br>( <b>Problem Analysis</b> ).<br>1. Problem or opportunity identification<br>2. Problem statement and system definition<br>3. Problem formulation and abstraction<br>4. Information and data collection<br>5. Model translation<br>6. Validation<br>7. Experimental design<br>8. Solution development or experimentation / Implementation<br>9. Interpretation of results<br>10. Documentation                                                                                                | 10                 |  |  |
| PO 3         | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations</li> <li>(Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> </ul> | 10                 |  |  |

|      | <ul> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design process and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 4 | Use research-based knowledge and research methods including design<br>of experiments, analysis and interpretation of data, and synthesis of<br>the information to provide valid conclusions (Conduct<br>Investigations of Complex Problems).<br>1. Knowledge of characteristics of particular materials, equipment,<br>processes, or products<br>2. Workshop and laboratory skills<br>3. Understanding of contexts in which engineering knowledge can be<br>applied (example, operations and management, technology<br>development, etc.)<br>4. Understanding use of technical literature and other information<br>sources Awareness of nature of intellectual property and contractual<br>issues<br>5. Understanding of appropriate codes of practice and industry<br>standards<br>6. Awareness of quality issues<br>7. Ability to work with technical uncertainty<br>8. Understanding of engineering principles and the ability to apply<br>them to analyse key engineering processes<br>9. Ability to identify, classify and describe the performance of<br>systems and components through the use of analytical methods and<br>modeling techniques<br>10. Ability to apply quantitative methods and computer software<br>relevant to their engineering discipline, in order to solve engineering<br>problems<br>11. Understanding of and ability to apply a systems approach to<br>engineering problems. | 11 |
| PO 5 | Create, select, and apply appropriate techniques, resources, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  |
|      | <ul> <li>modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).</li> <li>1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -  |

| PO 6 | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety,</li> </ul> | 5  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | and risk (including environmental risk) issues<br>5. Understanding of the need for a high level of professional and<br>ethical conduct in engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| PO 7 | Understand the impact of the professional Engineering solutions in<br>societal and Environmental contexts, and demonstrate the<br>knowledge of, and need for sustainable development (Environment<br>and Sustainability).<br>Impact of the professional Engineering solutions (Not technical)<br>1. Socio economic<br>2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                      | 3  |
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                 | 3  |
| PO 9 | <ul> <li>Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive their performance</li> <li>3. Self-direction (take a vaguely defined problem and systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project.</li> </ul>                                                                                                                | 12 |

|       | <ul> <li>6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> |    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 10 | Communicate effectively on complex Engineering activities with the<br>Engineering community and with society at large, such as, being able<br>to comprehend and write effective reports and design documentation,<br>make effective presentations, and give and receive clear instructions<br>(Communication).<br>"Students should demonstrate the ability to communicate effectively<br>in writing / Orally"<br>1. Clarity (Writing)<br>2. Grammar/Punctuation (Writing)<br>3. References (Writing)<br>4. Speaking Style (Oral)<br>5. Subject Matter (Oral)                                                                                                                                                                                                                                                          | 5  |
| PO 11 | <ul> <li>Demonstrate knowledge and understanding of the Engineering and<br/>management principles and apply these to one's own work, as a<br/>member and leader in a team, to manage projects and in<br/>multidisciplinary Environments (Project Management and<br/>Finance).</li> <li>1. Scope Statement</li> <li>2. Critical Success Factors</li> <li>3. Deliverables</li> <li>4. Work Breakdown Structure</li> <li>5. Schedule</li> <li>6. Budget</li> <li>7. Quality</li> <li>8. Human Resources Plan</li> <li>9. Stakeholder List</li> <li>10. Communication</li> <li>11. Risk Register</li> <li>12. Procurement Plan</li> </ul>                                                                                                                                                                                 | 12 |

| PO 12 | Recognize the need for and have the preparation and ability to       | 8 |
|-------|----------------------------------------------------------------------|---|
|       | engage in independent and life-long learning in the broadest context |   |
|       | of technological change (Life - Long Learning).                      |   |
|       | 1. Project management professional certification / MBA               |   |
|       | 2. Begin work on advanced degree                                     |   |
|       | 3. Keeping current in CSE and advanced engineering concepts          |   |
|       | 4. Personal continuing education efforts                             |   |
|       | 5. Ongoing learning – stays up with industry trends/ new technology  |   |
|       | 6. Continued personal development                                    |   |
|       | 7. Have learned at least 2-3 new significant skills                  |   |
|       | 8. Have taken up to 80 hours (2 weeks) training per year             |   |



## **INSTITUTE OF AERONAUTICAL ENGINEERING** (Autonomous)

Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department Electronics and Communication Engineering            |                                           |           |         |            |         |  |
|-----------------------------------------------------------------|-------------------------------------------|-----------|---------|------------|---------|--|
| Course Title                                                    | Probability Theory and Stochastic Process |           |         |            |         |  |
| Course Code                                                     | AECB08                                    |           |         |            |         |  |
| Program                                                         | B.Tech                                    |           |         |            |         |  |
| Semester                                                        | III                                       |           |         |            |         |  |
| Course Type                                                     | Foundation                                |           |         |            |         |  |
| Regulation                                                      | R-18                                      |           |         |            |         |  |
|                                                                 | Theory                                    |           |         | Practical  |         |  |
| Course Structure                                                | Lecture                                   | Tutorials | Credits | Laboratory | Credits |  |
|                                                                 | 3                                         | -         | 3       | -          | -       |  |
| Course Coordinator Mrs G.Mary swarna latha, Assistant Professor |                                           |           |         |            |         |  |

## I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites                     |
|--------|-------------|----------|-----------------------------------|
| B.Tech | AHSB02      | Ι        | Linear algebra and calculus       |
| B.Tech | AHSB11      | II       | Mathematical Transform Techniques |

## **II COURSE OVERVIEW:**

Stochastic or random processes are mathematical objects defined on probability space. The study of these processes is of primary importance in all science and engineering specializations. This course comprises two parts. The first part introduces the fundamental principles of probability theory and random variables necessary to understand the stochastic processes. The second part introduces the basic concepts of random processes, random signals, and their interaction with the electrical or electronic systems. The course forms the basis for the next level courses of an electronics engineer such as analog communication, digital communication and digital signal processing, radar systems and digital image processing. It is also useful for a data science engineer in designing the machine learning algorithms.

## **III MARKS DISTRIBUTION:**

| Subject                                      | SEE Examination                                    | CIE Examination | Total Marks |  |
|----------------------------------------------|----------------------------------------------------|-----------------|-------------|--|
| Probability Theory and<br>Stochastic Process | bability Theory and 70 Marks<br>Stochastic Process |                 | 100         |  |

## IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | $\checkmark$ | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|---|--------|
| x            | Open Ended Experiments    | x            | Seminars     | x            | Mini Project | x | Videos |
| x            | Others                    |              |              |              |              |   |        |

## **V EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 58 %                          | Understand            |
| 25%                           | Apply                 |
| 17 %                          | Analyze               |
| 0 %                           | Evaluate              |
| 0 %                           | Create                |

## Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

| Component          | r-       | Total Marks |    |
|--------------------|----------|-------------|----|
| Type of Assessment | CIE Exam | 100al Marks |    |
| CIA Marks          | 20       | 10          | 30 |

## Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

## Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

## VI COURSE OBJECTIVES:

The students will try to learn:

| Ι   | The fundamental concepts of the 1-dimensional and 2-dimensional random variables and their characterization in probability space.                                                             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | The stationary random process, its framework and application for analyzing random signals and noises.                                                                                         |
| III | The characteristics of 1-dimensional stationary random signals in time and frequency domains.                                                                                                 |
| IV  | Analysis of the response of a linear time invariant (LTI) system driven by 1-<br>dimensional stationary random signals useful for subsequent design and analysis<br>of communication systems. |

## VII COURSE OUTCOMES:

| 111001 20 | constraine compression of the course, statemes should be asie to            |            |
|-----------|-----------------------------------------------------------------------------|------------|
| CO 1      | Infer the concepts of the random experiment, event probability,             | Understand |
|           | joint event probability, and conditional event probability for proving      |            |
|           | the Bayes theorem and for computing complex event probabilities             |            |
|           | and independence of multiple events.                                        |            |
| CO 2      | <b>Explain</b> the concept of random variable, the probability distribution | Understand |
|           | function, probability density function and operations on single             |            |
|           | random variable to analytically derive the moments.                         |            |
| CO 3      | <b>Develop</b> joint distribution, density function, expectation operator   | Apply      |
|           | and transformations for multiple random variables using the concept         |            |
|           | of single random variable.                                                  |            |
| CO 4      | <b>Extend</b> the random variable concept to random process and its         | Understand |
|           | sample functions for demonstrating the time domain and frequency            |            |
|           | domain characteristics.                                                     |            |
| CO 5      | <b>Develop</b> analytically the auto-power and cross- power spectral        | Apply      |
|           | densities to solve the related problems of random processes using           |            |
|           | correlation functions and the Fourier transform.                            |            |
| CO 6      | Analyze the response of a linear time invariant (LTI) system driven         | Analyze    |
|           | by stationary random processes using the time domain and                    |            |
|           | frequency domain description of random processes.                           |            |

## After successful completion of the course, students should be able to:

## COURSE KNOWLEDGE COMPETENCY LEVEL



**BLOOMS TAXONOMY** 

## VIII PROGRAM OUTCOMES:

| Program Outcomes |                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PO 1             | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |  |  |  |  |
| PO 2             | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |  |  |  |  |
| PO 3             | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |  |  |  |  |
| PO 4             | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |  |  |  |  |
| PO 5             | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |  |  |  |  |
| PO 6             | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |  |  |  |  |
| PO 7             | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |  |  |  |  |
| PO 8             | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |  |  |  |  |
| PO 9             | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |  |  |  |  |
| PO 10            | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |  |  |  |  |
| PO 11            | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |  |  |  |  |
| PO 12            | <b>Life-Long Learning:</b> Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                           |  |  |  |  |

## IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | PROGRAM OUTCOMES                                   | Strength | Proficiency<br>Assessed by |
|-------|----------------------------------------------------|----------|----------------------------|
| PO 1  | Engineering knowledge: Apply the                   | 3        | SEE/CIE/Quiz               |
|       | knowledge of mathematics, science, engineering     |          |                            |
|       | fundamentals, and an engineering specialization    |          |                            |
|       | to the solution of complex engineering problems.   |          |                            |
| PO 2  | Problem analysis: Identify, formulate, review      | 2        | SEE/CIE/Quiz               |
|       | research literature, and analyze complex           |          |                            |
|       | engineering problems reaching substantiated        |          |                            |
|       | conclusions using first principles of mathematics, |          |                            |
|       | natural sciences, and engineering sciences.        |          |                            |
| PO 3  | Design/Development of Solutions: Design            | 2        | SEE/CIE/Quiz               |
|       | solutions for complex Engineering problems and     |          |                            |
|       | design system components or processes that         |          |                            |
|       | meet the specified needs with appropriate          |          |                            |
|       | consideration for the public health and safety,    |          |                            |
|       | and the cultural, societal, and Environmental      |          |                            |
|       | considerations                                     |          |                            |
| PO 10 | <b>Communication:</b> Communicate effectively on   | 1        | SEE/CIE/Quiz               |
|       | complex engineering activities with the            |          |                            |
|       | engineering community and with society at          |          |                            |
|       | large, such as, being able to comprehend and       |          |                            |
|       | write effective reports and design                 |          |                            |
|       | documentation, make effective presentations,       |          |                            |
|       | and give and receive clear instructions.           |          |                            |

3 = High; 2 = Medium; 1 = Low

## X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| Р     | ROGRAM SPECIFIC OUTCOMES                                                                                                                                                   | $\mathbf{Strength}$ | Proficiency<br>Assessed<br>by |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|
| PSO 3 | Make use of High Frequency Structure Simulator<br>(HFSS) for modeling and evaluating the Patch<br>and Smart Antennas for Wired and Wireless<br>Communication Applications. | 2                   | ААТ                           |

3 = High; 2 = Medium; 1 = Low

## XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          | PROGRAM OUTCOMES |              |              |    |    |    |    |    |    |              | PSO'S |    |     |     |              |
|----------|------------------|--------------|--------------|----|----|----|----|----|----|--------------|-------|----|-----|-----|--------------|
| COURSE   | PO               | PO           | PO           | PO | PO | PO | PO | PO | PO | PO           | PO    | PO | PSO | PSO | PSO          |
| OUTCOMES | 1                | 2            | 3            | 4  | 5  | 6  | 7  | 8  | 9  | 10           | 11    | 12 | 1   | 2   | 3            |
| CO 1     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -   | $\checkmark$ |
| CO 2     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -   | <b>&gt;</b>  |
| CO 3     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -   | <b>&gt;</b>  |
| CO 4     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -   | <b>&gt;</b>  |
| CO 5     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -   | $\checkmark$ |
| CO 6     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -   | $\checkmark$ |

## XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Make use of(knowledge) the concepts of the random<br>experiment, sample space, and appreciate (understand)<br>the meaning of event probability, joint event<br>probability, and conditional event probability for<br>(apply) proving the Bayes theorem and for<br>demonstrating (understanding) the random variables<br>using the <b>mathematical principles</b> and <b>scientific</b><br><b>methodology</b> to support the study of next-level<br>courses such as communications, digital signal<br>processing, ( <b>own engineering discipline</b> ) etc. | 3                                      |
|                    | PO 2          | Demonstrate(understand) the physical significance of<br>the correlation and covariance functions, and <b>identify</b> ,<br>formulate,(apply)and <b>state a(complex) problem</b> , to<br><b>develop (apply)</b> solution using inversion of<br>correlation/ covariance matrices in certain areas of<br>communication ( <b>problems</b> ) and <b>interpret and</b><br><b>document the results</b> .                                                                                                                                                           | 6                                      |
|                    | PO 3          | Develop the solutions for <b>complex Engineering</b><br><b>problems</b> and <b>design system components</b> using<br>the Bayes theorem, understand <b>customer and user</b><br><b>needs</b> and identify the <b>cost limitations</b> for the<br>selection of parameters, <b>use creativity</b> in applying<br>the methods of model analyses for <b>innovative</b><br><b>solutions</b> for the use of Baye's theorem.                                                                                                                                        | 6                                      |
|                    | PO 10         | Demonstrate the ability to communicate effectively in <b>writing</b> design documentation and make effective presentations.                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                      |
|                    | PSO 3         | Develop conditional event probability for the<br>implementation of total probability and Bayes theorem<br>in <b>wired and wireless communication</b><br><b>applications</b> .                                                                                                                                                                                                                                                                                                                                                                               | 1                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 2               | PO 1          | Define (knowledge) a random variable using<br>(knowledge) a real mapping function of outcomes of a<br>random experiment into a random variable, define<br>(knowledge) the probabilities and (understand) the<br>continuous/discrete probability density function and<br>distribution function for characterizing (knowledge,<br>understand) various types of density functions such as<br>Gaussian, Rayleigh, Poisson, etc. using the<br><b>mathematical principles</b> and <b>scientific</b><br><b>methodology</b> to support(understand) their<br>applications in next-level Courses of the program. (<br><b>own engineering discipline</b> ).                        | 3                                      |
|                    | PO 2          | Demonstrate(understand) the random variable as a<br>statistical average operation to <b>identify</b> ,<br><b>formulate,(apply)and state a(complex) problem</b> ,<br>to develop (apply)solution using appropriate<br>expectation operations in certain areas of<br>communication ( problems).                                                                                                                                                                                                                                                                                                                                                                            | 3                                      |
|                    | PO 3          | Make use of distribution and density functions for<br>customer and user needs and identify the cost<br>limitations for the selection of parameters, use<br>creativity in applying the methods of model analyses<br>for innovative solutions for the analysis of noise in<br>communications.                                                                                                                                                                                                                                                                                                                                                                             | 4                                      |
|                    | PO 10         | Demonstrate the ability to communicate effectively in <b>writing</b> design documentation and make effective presentations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                      |
|                    | PSO 3         | Explain distribution and density functions of standard<br>random variables for <b>wired and wireless</b><br><b>communication applications</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                      |
| CO 3               | PO 1          | Define (knowledge) the transformation and/or the<br>expectation operation on random variables and their<br>functions, to formulate the definition of moments of a<br>random variable using <b>mathematical principles</b> and<br>demonstrate (understand) the use of the characteristic<br>and moment generating functions(knowledge) to<br>analytically derive the standard moments(by means of<br><b>scientific principles and methodology</b> ) useful for<br>identifying (understand) various noises encountered in<br>communication systems and electronic circuits to<br>support the other courses of the program( <b>own</b><br><b>engineering discipline</b> ). | 3                                      |
|                    | PO 2          | Demonstrate(understand) the physical significance of<br>the characteristic and moment generating functions<br>and develop (apply) the Nth order standard and<br>central moments using the above functions to<br><b>identify, formulate and state a problem, and</b><br><b>develop solution</b> that uses moments as features and<br><b>interpret and document the results</b> .                                                                                                                                                                                                                                                                                         | 6                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                                                              | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 3          | Develop the solutions for <b>complex Engineering</b><br><b>problems</b> and <b>design system components</b> using<br>the multiple random variables, understand <b>customer</b><br><b>and user needs</b> and identify the <b>cost limitations</b><br>for the selection of parameters, <b>use creativity</b> in<br>applying the methods of model analyses for the use of<br>multiple random variables.                                                                                              | 5                                      |
|                    | PO 10         | Demonstrate the ability to communicate effectively in <b>writing</b> design documentation and make effective presentations.                                                                                                                                                                                                                                                                                                                                                                       | 1                                      |
|                    | PSO 3         | Explain joint distribution and density functions of<br>standard random variables for <b>wired and wireless</b><br>communication applications.                                                                                                                                                                                                                                                                                                                                                     | 1                                      |
| CO 4               | PO 1          | Define (knowledge)the random process as the extension<br>(understand) of scalar random variables using<br><b>mathematical principles</b> and explain (understand)<br>the meaning of correlation and co variance using<br><b>scientific principles and methodology</b> and<br>interpret (understand) them for supporting the study<br>of interdisciplinary courses such as digital image<br>processing ( <b>own engineering discipline</b> ) and data<br>sciences (other engineering disciplines). | 3                                      |
|                    | PO 2          | Demonstrate(understand) the physical significance of<br>the random process and develop (apply) the Nth order<br>distribution and density functions using the random<br>variable concept to <b>identify</b> , <b>formulate and state a</b><br><b>problem</b> , <b>and develop solution</b> that uses<br>co-variance and correlation as features.                                                                                                                                                   | 5                                      |
|                    | PO 3          | Develop the solutions for <b>complex Engineering</b><br><b>problems</b> and <b>design system components</b> using<br>the random process, understand <b>customer and user</b><br><b>needs</b> and identify the <b>cost limitations</b> for the<br>selection of parameters, <b>use creativity</b> in applying<br>the methods of model analyses the use of random<br>process.                                                                                                                        | 5                                      |
|                    | PO 10         | Demonstrate the ability to communicate effectively in <b>writing</b> design documentation and make effective presentations.                                                                                                                                                                                                                                                                                                                                                                       | 1                                      |
|                    | PSO 3         | Explain random process for finding co variance and correlation in <b>wired and wireless communication applications</b> .                                                                                                                                                                                                                                                                                                                                                                          | 1                                      |
| CO 5               | PO 1          | Relate (understand) the correlation and co-variance<br>(knowledge) of random process to the linear and time<br>invariant systems using the <b>mathematical</b><br><b>principles</b> and demonstrate (understand) the system<br>response and its physical significance using <b>scientific</b><br><b>methodology and integrate</b> these concepts into the<br>study of communication systems (own engineering<br><b>discipline</b> ) and (complex) signal processing systems.                      | 3                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 2          | Demonstrate(understand) the physical significance of<br>the random process and develop (apply) the reponse of<br>LTI system using the random process concept to<br><b>identify, formulate and state a problem, and</b><br><b>develop solution</b> that uses co-variance and<br>correlation as features.                                                                                                                                                                                                                              | 5                                      |
|                    | PO 3          | Develop solutions for <b>complex Engineering</b><br><b>problems</b> and <b>design system components</b> using<br>random process for <b>customer and user needs</b> and<br>identify the <b>cost limitations</b> for the selection of<br>parameters, <b>use creativity</b> in applying the methods<br>of model analyses for the analysis of linear time<br>invariant systems in time domain.                                                                                                                                           | 5                                      |
|                    | PO 10         | Demonstrate the ability to communicate effectively in <b>writing</b> design documentation and make effective presentations.                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                      |
|                    | PSO 3         | Explain random process for finding co variance and correlation for response of an LTI system in <b>wired</b> and wireless communication applications.                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |
| CO 6               | PO 1          | Define (knowledge) the auto power spectral density<br>and cross power spectral density functions, to<br>formulate the response of LTI systems using<br><b>mathematical principles</b> and demonstrate<br>(understand) the use of the joint characteristic and<br>joint moment generating functions(knowledge) to<br>analytically derive the power spectral densities of the<br>LTI system (by means of scientific principles and<br>methodology and for supporting( own engineering<br>discipline) some image processing algorithms. | 3                                      |
|                    | PO 2          | Demonstrate(understand) the physical significance of<br>the random process and develop (apply) the response<br>of LTI system in frequency domain using the random<br>process concept to <b>identify and develop solution</b><br>that uses Fourier transform properties.                                                                                                                                                                                                                                                              | 2                                      |
|                    | PO 3          | Develop the solutions for <b>complex Engineering</b><br><b>problems</b> and <b>design system components</b> using<br>the power spectral density functions, understand<br><b>customer and user needs</b>                                                                                                                                                                                                                                                                                                                              | 3                                      |
|                    | PO 10         | Demonstrate the ability to communicate effectively in <b>writing</b> design documentation and make effective presentations.                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                      |
|                    | PSO 3         | Explain random process for finding power spectral density functions for the response of LTI systems in <b>wired and wireless communication applications</b> .                                                                                                                                                                                                                                                                                                                                                                        | 1                                      |

Note: For Key Attributes refer Annexure -  ${\bf I}$ 

## XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-**PING:**

|          | PR | PROGRAM OUTCOMES/KEY COMPETENCIES |    |    |    |    |    |    |    |    |    | IES | PSO'S |     |     |
|----------|----|-----------------------------------|----|----|----|----|----|----|----|----|----|-----|-------|-----|-----|
| COURSE   | PO | PO                                | PO | PO | PO | PO | PO | РО | PO | PO | PO | PO  | PSO   | PSO | PSO |
| OUTCOMES | 1  | 2                                 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12  | 1     | 2   | 3   |
|          | 3  | 10                                | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8   | 2     | 2   | 2   |
| CO 1     | 3  | 6                                 | 6  | -  | -  | -  | -  | I  | -  | 1  | -  |     | -     | -   | 1   |
| CO 2     | 3  | 3                                 | 4  | -  | -  | -  | -  | -  | -  | 1  | -  | -   | -     | -   | 1   |
| CO 3     | 3  | 6                                 | 5  | -  | -  | -  | -  | -  | -  | 1  | -  | -   | -     | -   | 1   |
| CO 4     | 3  | 5                                 | 5  | -  | -  | -  | -  | -  | -  | 1  | -  |     | -     | -   | 1   |
| CO 5     | 3  | 5                                 | 5  | -  | -  | -  | -  | -  | -  | 1  | -  | -   | -     | -   | 1   |
| CO 6     | 3  | 2                                 | 3  | -  | -  | -  | -  | -  | -  | 1  | -  |     | -     | -   | 1   |

#### PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO XIV

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO  | PO               | PO | PO | PO | PO | PO | РО | PO | РО | РО | PO | PSO   | PSO | PSO |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
|          | 3   | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2     | 2   | 2   |
|          |     |                  |    |    |    |    |    |    |    |    |    |    |       |     |     |
| CO 1     | 100 | 60               | 60 | -  | -  | -  | -  | -  | -  | 20 | -  | -  | -     | -   | 50  |
| CO 2     | 100 | 30               | 40 | -  | -  | -  | _  | -  | -  | 20 | -  | -  | -     | -   | 50  |
| CO 3     | 100 | 60               | 50 | -  | -  | -  | -  | -  | -  | 20 | -  | -  | -     | -   | 50  |
| CO 4     | 100 | 50               | 50 | -  |    | -  | -  | -  | -  | 20 | -  |    | -     | -   | 50  |
| CO 5     | 100 | 50               | 50 | -  | -  | -  | -  | -  | -  | 20 | -  | -  | -     | -   | 50  |
| CO 6     | 100 | 20               | 30 | -  | -  | -  | -  | -  | -  | 20 | -  | -  | -     | -   | 50  |

**XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):** CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- 1 -5 <C $\leq$  40% Low/ Slight
- 2 40 % < C < 60% –Moderate
- $3 60\% \leq C < 100\%$  Substantial /High

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO   | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 3  | 3                | 3  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 2   |
| CO 2     | 3  | 1                | 1  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 2   |
| CO 3     | 3  | 3                | 2  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 2   |
| CO 4     | 3  | 2                | 2  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 2   |
| CO 5     | 3  | 2                | 2  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 2   |
| CO 6     | 3  | 1                | 1  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 2   |
| TOTAL    | 36 | 11               | 14 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | 10  |

|          |    | PROGRAM OUTCOMES |      |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|----|------------------|------|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | РО | PO               | РО   | РО | РО | PO | РО | РО | PO | PO | РО | РО    | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3    | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
| AVERAGE  | 3  | 2.75             | 2.33 | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   | 2   |

## XVI ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams  | $\checkmark$ | SEE Exams       | $\checkmark$ | Assignments   | - |
|------------|--------------|-----------------|--------------|---------------|---|
| Quiz       | -            | Tech - Talk     | $\checkmark$ | Certification | - |
| Term Paper | -            | Seminars        | -            | Student Viva  | - |
| Laboratory | -            | 5 Minutes Video | $\checkmark$ | Open Ended    | - |
| Practices  |              | / Concept Video |              | Experiments   |   |
| Micro      | -            | -               | -            | -             | - |
| Projects   |              |                 |              |               |   |

## XVII ASSESSMENT METHODOLOGY-INDIRECT:

| $\checkmark$ | Early Semester Feedback                   | $\checkmark$ | End Semester OBE Feedback            |
|--------------|-------------------------------------------|--------------|--------------------------------------|
| $\checkmark$ | Assessment of activities / Modeling and E | xperime      | ntal Tools in Engineering by Experts |

## XVIII SYLLABUS:

| MODULE I   | PROBABILITY, RANDOM VARIABLES AND OPERATIONS<br>ON RANDOM VARIABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <ul> <li>Random Experiments, Sample Spaces, Events, Probability, Axioms, Joint,</li> <li>Conditional and Total Probabilities, Bay's Theorem, Independent Events.</li> <li>Random Variables: Definition, Conditions for mapping function of a Random</li> <li>Variable, Types of Random Variable, Distribution and Density functions:</li> <li>Definition and Properties, Binomial, Poisson, Uniform, Gaussian,</li> <li>Exponential, Rayleigh, random variables, Methods of defining Conditioning</li> <li>Event, Conditional Distribution, Conditional Density and their Properties,</li> <li>Expected Value of a Random Variable, Function of a Random Variable,</li> <li>Standard and Central Moments, Variance and Skew, Chebychev's Inequality</li> </ul> |
| MODULE II  | SINGLE RANDOM VARIABLE<br>TRANSFORMATIONS-MULTIPLE RANDOM VARIABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | <ul> <li>Characteristic Function, Moment Generating Function, Monotonic and<br/>Non-monotonic Transformations of Single Random Variables (Continuous and<br/>Discrete), Vector Random Variables, Joint Distribution Function and its<br/>Properties, Marginal Distribution Functions, Joint Density Function and its<br/>Properties, Marginal Density Functions, Conditional Distribution and Density<br/>– Point Conditioning, Conditional Distribution and Density – Interval<br/>conditioning, Statistical Independence, Sum of Two and more Random<br/>Variables, Central Limit Theorem: Equal and Unequal Distribution.</li> </ul>                                                                                                                        |
| MODULE III | OPERATIONS ON MULTIPLE RANDOM VARIABLES –<br>EXPECTATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|           | PART:1 Expected value of a function of multiple random variables,            |
|-----------|------------------------------------------------------------------------------|
|           | Correlation and Covariance, Correlation Coefficient, Joint Moments about     |
|           | the origin, Joint Central moments, Joint characteristic function, Joint      |
|           | moment generating function. PART:2 Jointly Gaussian random variables:        |
|           | Two random variables case and N random variable case, Properties,            |
|           | Transformations of Multiple Random Variables, Jacobian Matrix, Linear        |
|           | Transformations of Gaussian Random Variables                                 |
| MODULE IV | <b>RANDOM PROCESSES – TEMPORAL CHARACTERISTICS</b>                           |
|           | Random Process: Definition and Classification, Distribution and Density      |
|           | Functions, Stationarity and Statistical Independence., First- Order, Second- |
|           | Order, Wide-Sense Stationarities (N-Order) and Strict-Sense Stationarity,    |
|           | Time Averages and Ergodicity, Mean-Ergodic and Correlation- Ergodic          |
|           | Processes, Autocorrelation Function and Its Properties, Cross-Correlation    |
|           | Function and Its Properties, Covariance Functions, Gaussian and Poisson      |
|           | Random Processes. Response of Linear Systems to Random Process input,        |
|           | Mean and MS value of System Response, Autocorrelation Function of            |
|           | Response, Cross- Correlation between Input and Output.                       |
| MODULE V  | RANDOM PROCESSES – SPECTRAL CHARACTERISTICS                                  |
|           | Power Density Spectrum: Definition and Properties, Relationship between      |
|           | Power Density Spectrum and Autocorrelation Function, Cross Power Spectral    |
|           | Density: Definition and Properties, Relationship between Cross-Power         |
|           | Spectrum and Cross-Correlation Function, System Evaluation using Random      |
|           | Noise, Spectral Characteristics of System Response: Power Density Spectrum   |
|           | of Response, Cross-Power Density Spectra of Input and Output, Noise          |
|           | Bandwidth, White and Colored Noises.                                         |
|           |                                                                              |

## **TEXTBOOKS**

1. Peyton Z. Peebles, "Probability, Random Variables and Random Signal Principles", Tata McGraw Hill, 4th Edition, 2001.

## **REFERENCE BOOKS:**

- 1. Y. Mallikarjuna Reddy, "1. Probability Theory and Stochastic Processes ", University Press, 4thEdition, 2013.
- 2. Athanasios Papoulis and S. Unnikrishna Pillai, "2. Probability, Random Variables and Stochastic Processes ",PHI, 4th Edition,2002.
- 3. K .Murugesan, P. Guruswamy, "3. Probability, Statistics and Random Processes", Anuradha Agencies, 3rd Edition,2003.
- 4. Bruce Hajck,"4. Random Processes for Engineers, Cambridge University Press, 2015Signals, Systems & Communications - B.P. Lathi, B.S. Publications, 2003.

## WEB REFERENCES:

- 1. https://nptel.ac.in/courses/111/102/111102111/
- 2. https://lms.iare.ac.in/index?route=course/details&course\_id=358

## COURSE WEB PAGE: https://www.iare.ac.in/?q=courses/r18-auto-ece/

probability-theory-and-stochastic-process

## XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                        | CO's | Reference                                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------|
|      | OBE DISCUSSION                                                                                                                              |      |                                                                                                     |
| 1    | Course Description on Outcome Based Education (OBE),<br>Course Objectives, Course Outcomes (CO), Program<br>Outcomes (PO) and CO-PO Mapping |      | https:<br>//lms.<br>iare.ac.<br>in/<br>index?<br>route=<br>course/<br>details&<br>course_<br>id=358 |
|      | CONTENT DELIVERY (THEORY)                                                                                                                   |      |                                                                                                     |
|      | Probability, axioms, joint, conditional probabilities                                                                                       | CO 1 | T1:1.1-<br>1.5,<br>R1:1.1-<br>1.9                                                                   |
| 2    | Total probabilities, Bay's theorem                                                                                                          | CO 1 | T1:1.1-<br>1.5,<br>R1:1.1-<br>1.9                                                                   |
| 3    | Random variables, types of random variable                                                                                                  | CO 2 | T1:2.0-<br>2.1                                                                                      |
| 4    | Distribution and density functions: definition and properties                                                                               | CO 2 | T1:2.2-<br>2.5,<br>R1:2.3-<br>2.4                                                                   |
| 5    | Binomial, Poisson, Uniform random variables                                                                                                 | CO 2 | T1:2.2-<br>2.5,<br>R1:2.3-<br>2.4                                                                   |
| 6    | Gaussian, Exponential, Rayleigh, random variables                                                                                           | CO 2 | T1:2.2-<br>2.5,<br>R1:2.3-<br>2.4                                                                   |
| 7    | Conditional distribution, conditional density and their properties                                                                          | CO 2 | T1:2.6,<br>R1:2.7                                                                                   |
| 8    | Expected Value of a Random Variable                                                                                                         | CO 2 | T1:3.0-<br>3.2, R1:<br>3.3-3.5                                                                      |
| 9    | Standard and Central Moments, Variance and Skew                                                                                             | CO 2 | T1:3.0-<br>3.2, R1:<br>3.3-3.5                                                                      |
| 10   | Chebychev's Inequality                                                                                                                      | CO 2 | T1:3.0-<br>3.2, R1:<br>3.3-3.5                                                                      |

| 11 | Characteristic function, moment generating function properties                                                      | CO 2 | T1:3.3,<br>R1: 3.6             |
|----|---------------------------------------------------------------------------------------------------------------------|------|--------------------------------|
| 12 | Monotonic transformations of Single random variables.                                                               | CO 2 | T1:3.4,<br>R1: 3.8             |
| 13 | Non-monotonic transformations of single random variables<br>(continuous and discrete)                               | CO 2 | T1:3.4,<br>R1: 3.8             |
| 14 | Random Vector ,Joint distribution function and its properties, marginal distribution functions                      | CO 3 | T1:4.0-<br>4.4, R2:<br>4.2-4.3 |
| 15 | Joint density function and its properties, marginal density functions                                               | CO 3 | T1:4.0-<br>4.4, R2:<br>4.2-4.3 |
| 16 | Conditional distribution and density – point conditioning,<br>interval conditioning                                 | CO 3 | T1:4.5,<br>R2: 4.4             |
| 17 | Statistical independence, Sum of two and more random variables                                                      | CO 3 | T1:4.5,<br>R2: 4.4             |
| 18 | Central limit theorem                                                                                               | CO 3 | T1:4.6-<br>4.7, R1:<br>4.6-4.7 |
| 19 | Expected value of a function of multiple random variables ,<br>Correlation and covariance , correlation coefficient | CO 3 | T1:5.0-<br>5.1, R1:<br>5.2-5.3 |
| 20 | Joint moments about the origin, joint central moments                                                               | CO 3 | T1:5.2,<br>R1:<br>5.4-5.5      |
| 21 | Joint characteristic function, Joint moment generating function                                                     | CO 3 | T1:5.2,<br>R1:<br>5.4-5.5      |
| 22 | Jointly Gaussian random variables,2 and N random variable case                                                      | CO 3 | T1:5.3,<br>R1: 5.6             |
| 23 | Transformations of multiple random variables                                                                        | CO 3 | T1:5.4-<br>5.5, R1:<br>5.7-5.9 |
| 24 | Linear transformations of Gaussian random variables                                                                 | CO 3 | T1:5.4-<br>5.5, R1:<br>5.7-5.9 |
| 25 | Random Process: Classification                                                                                      | CO 4 | T1:5.4-<br>5.6, R1:<br>6.2-6.6 |
| 26 | Stationarity and statistical independence of random process                                                         | CO 4 | T1:6.1-<br>6.2, R1:<br>6.7-6.9 |
| 27 | Wide-sense stationarities (N-Order) and Strict-sense stationarity                                                   | CO 4 | T1:6.1-<br>6.2, R1:<br>6.7-6.9 |
| 28 | Time Averages and Ergodicity                                                                                        | CO 4 | T1:6.1-<br>6.2, R1:<br>6.7-6.9 |

| 29 | Autocorrelation Function and Its Properties                | CO 4  | T1:6.3,                 |
|----|------------------------------------------------------------|-------|-------------------------|
|    |                                                            |       | R1: 6.10-               |
|    |                                                            |       | 6.12                    |
| 30 | Covariance Functions, Cross-correlation function and its   | CO 4  | T1:6.4,                 |
|    | Properties                                                 |       | RI: 6.10-               |
|    |                                                            | CO 4  |                         |
| 31 | Gaussian and Poisson random processes                      |       | 11:0.5,<br>B1:610       |
|    |                                                            |       | 6.12                    |
| 32 | Mean and mean square value of system Besponse              | CO 5  | T1.6.6                  |
| 02 | Weath and mean square value of system response             |       | R1: 6.10-               |
|    |                                                            |       | 6.12                    |
| 33 | Autocorrelation Function of Response, Cross- Correlation   | CO 5  | T1:8.2                  |
|    | between Input and Output                                   |       | ,R1:                    |
|    |                                                            |       | 8.2-8.3                 |
| 34 | Power density spectrum and properties                      | CO 6  | T1:7.1-                 |
|    |                                                            |       | 7.2, R1:                |
|    |                                                            |       | 7.2-7.5                 |
| 35 | Cross Power spectral density: definition and properties    | CO 6  | T1:7.3-                 |
|    |                                                            |       | 7.4, R1:                |
| 26 | Polationship between newer density spectrum and            | COG   | T.0-7.0<br>T1.7 1       |
| 30 | autocorrelation function                                   |       | $72 \text{ R}^{1.7.1-}$ |
|    |                                                            |       | 7.2-7.5                 |
| 37 | Relationship between Cross-power Spectrum and              | CO 6  | T1:7.3-                 |
|    | Cross-correlation function                                 |       | 7.4, R1:                |
|    |                                                            |       | 7.5-7.6                 |
| 38 | System evaluation using random noise                       | CO 6  | T1:8.3-                 |
|    |                                                            |       | 8.4, R1:                |
|    |                                                            |       | 8.3-8.4                 |
| 39 | Power density spectrum of response, Cross-power density    | CO 6  | T1:8.3-                 |
|    | spectra of input and output                                |       | 8.4, R1:                |
| 40 | Neize Dendmidth White and Coloned Neizer                   | COG   | 0.3-0.4                 |
| 40 | Noise Bandwidth, white and Colored Noises.                 | 0.0.0 | 11:8.5-<br>87 B1·       |
|    |                                                            |       | 8.8. 8.17               |
|    | PROBLEM SOLVING/ CASE STUDIES                              | S     | ,                       |
| 41 | Numerical problems on Probability, Total probability,      | CO 1  | T1:1                    |
|    | Posterior probability                                      |       |                         |
| 42 | Numerical problems on distribution and density function of | CO 2  | T1:2                    |
|    | random variable                                            |       |                         |
| 43 | Numerical problems on Mean ,variance and skew for the      | CO 3  | T1:3                    |
|    | given random variable.                                     |       |                         |
| 44 | Numerical problems on characteristic function and moment   | CO 3  | T1:3                    |
|    | generating function                                        |       |                         |
| 45 | Numerical problems on Transformation of random variables   | CO 3  | T1:3                    |
| 46 | Numerical problems on joint distribution and marginal      | CO 4  | T1:4                    |
|    | distribution                                               |       |                         |

| 47 | Numerical problems on joint density and marginal density function                                   | CO 4                  | T1:4     |
|----|-----------------------------------------------------------------------------------------------------|-----------------------|----------|
| 48 | Numerical problems on density function of sum of 2 random variables                                 | CO 5                  | T1:4     |
| 49 | Numerical problems on joint characteristic function and<br>joint moment generating function         | CO 6                  | T1:5     |
| 50 | Numerical problems on linear transformation of Gaussian<br>random variables                         | CO 7                  | T1:5     |
| 51 | Numerical problems on stationarity of random process                                                | CO 8                  | T1:6     |
| 52 | Numerical problems on Gaussian and Poisson random process                                           | CO 8                  | T1:6     |
| 53 | Numerical problems on correlation function and properties                                           | CO 9                  | T1:6     |
| 54 | Numerical problems on power spectral density calculation                                            | CO 10                 | T1:7     |
| 55 | Numerical problems on power spectral density of a system output                                     | CO 12                 | T1:8     |
|    | DISCUSSION OF DEFINITION AND TERMIN                                                                 | OLOGY                 |          |
| 56 | Probability and random variable                                                                     | CO 1,<br>CO 2,CO<br>3 | T1:1,2,3 |
| 57 | Multiple random variables                                                                           | CO 4,CO<br>5,CO 6     | T1:4,5   |
| 58 | Characteristic function and moment generating function for<br>single and multiple random variables. | CO 3,CO<br>6          | T1:3,5   |
| 59 | Random process and auto correlation function                                                        | CO 8,CO<br>9          | T1:6     |
| 60 | Power spectral density, output of linear system                                                     | CO<br>10,CO 11        | T1:7,8   |
|    | DISCUSSION OF QUESTION BANK                                                                         |                       |          |
| 61 | Probability and random variable                                                                     | CO 1,<br>CO 2,CO<br>3 | T1:1,2,3 |
| 62 | Multiple random variables                                                                           | CO 4,CO<br>5,CO 6     | T1:4,5   |
| 63 | Transformation of random variables                                                                  | CO 3,CO<br>6          | T1:3,5   |
| 64 | Stationarity and auto correlation function                                                          | CO 8,CO<br>9          | T1:6     |
| 65 | Power spectral density                                                                              | CO<br>10,CO 11        | T1:7,8   |

## ANNEXURE - I

## **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO   | NBA Statement / Key Competencies Features (KCF)                   | No.   |
|------|-------------------------------------------------------------------|-------|
| Num- |                                                                   | of    |
| ber  |                                                                   | KCF's |
| PO 1 | Apply the knowledge of mathematics science. Engineering           | 3     |
|      | fundamentals and an Engineering specialization to the solution of |       |
|      | complex Engineering problems (Engineering Knowledge)              |       |
|      | Knowledge understanding and application of                        |       |
|      | 1 Scientific principles and methodology                           |       |
|      | 2. Mathematical principles                                        |       |
|      | 2. Own and / or other engineering disciplines to integrate /      |       |
|      | 5. Own and / of other engineering disciplines to integrate /      |       |
|      | support study of their own engineering discipline.                |       |
| PO 2 | Identify, formulate, review research literature, and analyse      | 10    |
|      | complex Engineering problems reaching substantiated conclusions   |       |
|      | using first principles of mathematics natural sciences, and       |       |
|      | Engineering sciences (Problem Analysis).                          |       |
|      | 1. Problem or opportunity identification                          |       |
|      | 2. Problem statement and system definition                        |       |
|      | 3. Problem formulation and abstraction                            |       |
|      | 4. Information and data collection                                |       |
|      | 5. Model translation                                              |       |
|      | 6. Validation                                                     |       |
|      | 7. Experimental design                                            |       |
|      | 8. Solution development or experimentation / Implementation       |       |
|      | 9. Interpretation of results                                      |       |
|      | 10. Documentation                                                 |       |
| PO 3 | Design solutions for complex Engineering problems and design      | 10    |
|      | system components or processes that meet the specified needs      |       |
|      | with appropriate consideration for the public health and safety.  |       |
|      | and the cultural societal and Environmental considerations        |       |
|      | (Design/Development of Solutions).                                |       |
|      | 1 Investigate and define a problem and identify constraints       |       |
|      | including environmental and sustainability limitations health and |       |
|      | safety and risk assessment issues                                 |       |
|      | 2 Understand customer and user needs and the importance of        |       |
|      | considerations such as aesthetics                                 |       |
|      | 3 Identify and manage cost drivers                                |       |
|      | 4 Use creativity to establish innovative solutions                |       |
|      | 5. Ensure fitness for nurnose for all aspects of the problem      |       |
|      | including production operation maintenance and dispessal          |       |
|      | 6. Manage the design process and evaluate outcomes                |       |
|      | 7 Knowledge and understanding of commercial and concerning        |       |
|      | context of ongineering processos                                  |       |
|      | Context of engineering processes                                  |       |
|      | o. Knowledge of management techniques which may be used to        |       |
|      | achieve engineering objectives within that context                |       |
|      | 9. Understanding of the requirement for engineering activities to |       |
|      | promote sustainable development                                   |       |
|      | 10. Awareness of the framework of relevant legal requirements     |       |
|      | governing engineering activities, including personnel, health,    |       |
|      | satety, and risk (including environmental risk) issues            |       |

| PO 4. | <ul> <li>Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems).</li> <li>1. Knowledge of characteristics of particular materials, equipment, processes, or products</li> <li>2. Workshop and laboratory skills</li> <li>3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.)</li> <li>4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues</li> <li>5. Understanding of appropriate codes of practice and industry standards</li> <li>6. Awareness of quality issues</li> <li>7. Ability to work with technical uncertainty</li> <li>8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes</li> <li>9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques</li> <li>10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems</li> <li>11. Understanding of and ability to apply a systems approach to engineering problems.</li> </ul> | 11 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 5  | Create, select, and apply appropriate techniques, resources, and<br>modern Engineering and IT tools including prediction and<br>modelling to complex Engineering activities with an<br>understanding of the limitations (Modern Tool Usage).<br>1. Computer software / simulation packages / diagnostic<br>equipment / technical library resources / literature search tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  |
| PO 6  | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5  |

| PO 7 | <ul> <li>Understand the impact of the professional Engineering solutions<br/>in societal and Environmental contexts, and demonstrate the<br/>knowledge of, and need for sustainable development<br/>(Environment and Sustainability).</li> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>Socio economic</li> <li>Political</li> <li>Environmental</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3  |
| PO 9 | <ul> <li>Function effectively as an individual, and as a member or leader<br/>in diverse teams, and in multidisciplinary settings (Individual<br/>and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive<br/>their performance</li> <li>3. Self-direction (take a vaguely defined problem and<br/>systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on<br/>labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented</li> <li>Mini-Project, and for the seventeen -week design project.</li> <li>6. Instruction on effective teamwork and project management is<br/>provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know<br/>their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's<br/>performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the<br/>friendships and teamwork extends into the Junior years, and for<br/>some of those students, the friendships continue into the<br/>workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> | 12 |

| PO 10 | Communicate effectively on complex Engineering activities with<br>the Engineering community and with society at large, such as, | 5  |
|-------|---------------------------------------------------------------------------------------------------------------------------------|----|
|       | being able to comprehend and write effective reports and design                                                                 |    |
|       | documentation, make effective presentations, and give and receive                                                               |    |
|       | clear instructions (Communication).                                                                                             |    |
|       | "Students should demonstrate the ability to communicate                                                                         |    |
|       | effectively in writing / Orally"                                                                                                |    |
|       | 1. Clarity (Writing)                                                                                                            |    |
|       | 2. Grammar/Punctuation (Writing)                                                                                                |    |
|       | 3. References (Writing)                                                                                                         |    |
|       | 4. Speaking Style (Oral)                                                                                                        |    |
|       | 5. Subject Matter (Oral)                                                                                                        |    |
| PO11  | Demonstrate knowledge and understanding of the Engineering                                                                      | 12 |
|       | and management principles and apply these to one's own work, as                                                                 |    |
|       | a member and leader in a team, to manage projects and in                                                                        |    |
|       | multidisciplinary Environments (Project Management and                                                                          |    |
|       | Finance).                                                                                                                       |    |
|       | 1. Scope Statement                                                                                                              |    |
|       | 2. Critical Success Factors                                                                                                     |    |
|       | 3. Deliverables                                                                                                                 |    |
|       | 4. Work Breakdown Structure                                                                                                     |    |
|       | 5. Schedule                                                                                                                     |    |
|       | 6. Budget                                                                                                                       |    |
|       | 7. Quality                                                                                                                      |    |
|       | 8. Human Resources Plan                                                                                                         |    |
|       | 9. Stakeholder List                                                                                                             |    |
|       | 10. Communication                                                                                                               |    |
|       | 11. Risk Register                                                                                                               |    |
|       | 12. Procurement Plan                                                                                                            |    |
| PO12  | Recognize the need for and have the preparation and ability to                                                                  | 8  |
|       | engage in independent and life-long learning in the broadest                                                                    |    |
|       | context of technological change (Life - Long Learning).                                                                         |    |
|       | 1. Project management professional certification / MBA                                                                          |    |
|       | 2. Begin work on advanced degree                                                                                                |    |
|       | 3. Keeping current in CSE and advanced engineering concepts                                                                     |    |
|       | 4. Personal continuing education efforts                                                                                        |    |
|       | 5. Ongoing learning – stays up with industry trends/ new                                                                        |    |
|       | technology                                                                                                                      |    |
|       | 6. Continued personal development                                                                                               |    |
|       | 7. Have learned at least 2-3 new significant skills                                                                             |    |
|       | 8. Have taken up to 80 hours (2 weeks) training per year                                                                        |    |



## INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title       | ELECTRONIC DEVICES AND CIRCUITS LABORATORY        |           |         |            |         |  |  |  |
|--------------------|---------------------------------------------------|-----------|---------|------------|---------|--|--|--|
| Course Code        | AECB09                                            | AECB09    |         |            |         |  |  |  |
| Program            | B.Tech                                            | B.Tech    |         |            |         |  |  |  |
| Semester           | III ECE                                           |           |         |            |         |  |  |  |
| Course Type        | Core                                              |           |         |            |         |  |  |  |
| Regulation         | IARE - R18                                        |           |         |            |         |  |  |  |
|                    | Theory                                            |           |         | Practical  |         |  |  |  |
| Course Structure   | Lecture                                           | Tutorials | Credits | Laboratory | Credits |  |  |  |
|                    | -                                                 | -         | -       | 3          | 1.5     |  |  |  |
| Course Coordinator | rse Coordinator Mr. Naresh B, Assistant Professor |           |         |            |         |  |  |  |

## I COURSE OVERVIEW:

This course provides the hands-on experience by examining the electrical characteristics of various semiconductor devices and measuring instruments. Analyze the characteristics of semiconductor diodes, BJT, FET and its applications. Provides the capability to use simulation tools for performing various analysis of semiconductor devices applications.

## **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites       |
|--------|-------------|----------|---------------------|
| B.Tech | AHSB10      | Ι        | Engineering Physics |
|        |             |          | Laboratory          |

## **III MARKS DISTRIBUTION:**

| Subject               | SEE Examination | CIE Examination | Total Marks |
|-----------------------|-----------------|-----------------|-------------|
| Electonic Devices and | 70 Marks        | 30 Marks        | 100         |
| Circuits Laboratory   |                 |                 |             |

## IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Demo Video | ✓ | Lab<br>Worksheets | ✓ | Viva<br>Questions | ✓ | Probing further<br>Questions |
|--------------|------------|---|-------------------|---|-------------------|---|------------------------------|
| ·            |            |   | WOI KBIICCUB      |   | Questions         | - | Questions                    |

## **V** EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

|      | Experiment Based | Programming based |
|------|------------------|-------------------|
| 20 % | Objective        | Purpose           |
| 20 % | Analysis         | Algorithm         |
| 20 % | Design           | Programme         |
| 20 % | Conclusion       | Conclusion        |
| 20 % | Viva             | Viva              |

## **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Component          |             |                    | Total Marks |
|--------------------|-------------|--------------------|-------------|
| Type of Day to day |             | Final internal lab |             |
| Assessment         | performance | assessment         |             |
| CIA Marks          | 20          | 10                 | 30          |

## Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### 1. Experiment Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 2         | 2        | 2      | 2          | 2    | 10    |

#### 2. Programming Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| -         | -        | -      | _          | _    | _     |

## VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The engineering skills using breadboard circuit design with electronic devices and      |
|-----|-----------------------------------------------------------------------------------------|
|     | components.                                                                             |
| II  | The behavior and characteristics of basic electronic devices and semiconductors.        |
| III | The basic electronic devices necessary for construction of analog and digital circuits. |
## VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Demonstrate</b> electronic measuring instruments for measuring voltage,   | Understand |
|------|------------------------------------------------------------------------------|------------|
|      | current, frequency and phase of the various signals.                         |            |
| CO 2 | Apply the volt-ampere characteristics of pn junction diode, Zener diode      | Apply      |
|      | for finding cut-in voltage, static and dynamic resistances.                  |            |
| CO 3 | Apply the pn junction characteristics for the diode applications such as     | Apply      |
|      | half wave rectifier and full wave rectifier.                                 |            |
| CO 4 | Analyze the input and output characteristics of transistor configurations    | Analyze    |
|      | for determining the input - output resistances.                              |            |
| CO 5 | Analyze BJT and FET amplifiers for estimating the voltage gain and           | Analyze    |
|      | Current gain.                                                                |            |
| CO 6 | Calculate the intrinsic stand-off ratio of the uni junction transistor using | Apply      |
|      | volt – ampere characteristics.                                               |            |
| CO 7 | <b>Determine</b> holding, latching current and break over voltage of silicon | Apply      |
|      | controlled rectifier using volt – ampere characteristics.                    |            |
| CO 8 | <b>Examine</b> the V-I characteristics of FET for measuring the              | Analyze    |
|      | transconductance and drain resistance.                                       |            |
| CO 9 | <b>Design</b> basic electronic circuits using active transistors.            | Create     |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



## VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | Program                                              | Strength | Proficiency                                                  |
|-------|------------------------------------------------------|----------|--------------------------------------------------------------|
|       |                                                      |          | Assessed by                                                  |
| PO 2  | Problem analysis: Identify, formulate, review        | 3        | Lab exer-                                                    |
|       | research literature, and analyse complex engineering |          | $\operatorname{cises}/\operatorname{CIE}/\operatorname{SEE}$ |
|       | problems reaching substantiated conclusions using    |          |                                                              |
|       | first principles of mathematics, natural sciences,   |          |                                                              |
|       | and engineering sciences.                            |          |                                                              |
| PO 5  | Modern Tool Usage: Create, select, and apply         | 3        | Lab exer-                                                    |
|       | appropriate techniques, resources, and modern        |          | $\operatorname{cises}/\operatorname{CIE}/\operatorname{SEE}$ |
|       | Engineering and IT tools including prediction and    |          |                                                              |
|       | modelling to complex Engineering activities with an  |          |                                                              |
|       | understanding of the limitations                     |          |                                                              |
| PO 9  | Individual and team work: Function effectively       | 1        | Lab exercises                                                |
|       | as an individual, and as a member or leader in       |          |                                                              |
|       | diverse teams, and in multidisciplinary settings.    |          |                                                              |
| PO 10 | Design/Development of Solutions:                     | 2        | day-to-day                                                   |
|       | Communicate effectively on complex Engineering       |          | evaluation                                                   |
|       | activities with the Engineering community and with   |          |                                                              |
|       | society at large, such as, being able to comprehend  |          |                                                              |
|       | and write effective reports and design               |          |                                                              |
|       | documentation, make effective presentations, and     |          |                                                              |
|       | give and receive clear instructions                  |          |                                                              |

3 = High; 2 = Medium; 1 = Low

## IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                     | Strength | Proficiency                                                  |
|-------|---------------------------------------------|----------|--------------------------------------------------------------|
|       |                                             |          | Assessed by                                                  |
| PSO 1 | Build Embedded Software and Digital Circuit | 1        | Lab exer-                                                    |
|       | Development platform for Robotics, Embedded |          | $\operatorname{cises}/\operatorname{CIE}/\operatorname{SEE}$ |
|       | Systems and Signal Processing Applications. |          |                                                              |

3 = High; 2 = Medium; 1 = Low

## X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| Course   | PO'S  | Justification for mapping (Students will be able to)                                                                                                                                            | No. of Key   |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Outcomes | PSO'S |                                                                                                                                                                                                 | Competencies |
| CO 1     | PO 2  | Observe the functionality (knowledge) of electronic<br>instruments for calculating amplitude, current and<br>frequency using <b>principles of mathematics and</b><br><b>engineering science</b> | 1            |

| CO 2 | PO 2  | Understand the given <b>problem statement</b> and<br><b>formulate</b> the static and dynamic resistance from<br>the volt-ampere characteristics of the<br>semiconductor devices using <b>principles of</b><br><b>Mathematics, Science and Engineering</b>                                                                                        | 2 |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 10 | Communicate effectively on <b>complex</b><br><b>Engineering activities</b> with the Engineering<br>community and with society at large, such as,<br>being able to comprehend and <b>write effective</b><br><b>reports</b> and <b>design documentation</b> , make<br><b>effective presentations</b> , and give and receive<br>clear instructions. | 4 |
| CO 3 | PO 2  | Understand the given the diode application<br>problem statement and finding the solution<br>implementation of rectifier circuits by analyzing<br>complex engineering problems                                                                                                                                                                    | 3 |
|      | PO 10 | Communicate effectively on <b>complex</b><br><b>Engineering activities</b> with the Engineering<br>community and with society at large, such as,<br>being able to comprehend and <b>write effective</b><br><b>reports</b> and <b>design documentation</b> , make<br><b>effective presentations</b> , and give and receive<br>clear instructions. | 4 |
|      | PSO 1 | <b>Formulate</b> and <b>Evaluate</b> the rectifier circuits applications in the field of Intelligent Embedded and Semiconductor technologies                                                                                                                                                                                                     | 2 |
| CO 4 | PO 2  | Understand the input and output characteristics of<br>transistor configurations for <b>problem</b><br><b>formulation</b> to determine the transistor<br>characteristics parameters such as input - output<br>resistances, current gain and voltage gain <b>using</b><br><b>mathematics principles</b>                                            | 2 |
|      | PO 10 | Communicate effectively on <b>complex</b><br><b>Engineering activities</b> with the Engineering<br>community and with society at large, such as,<br>being able to comprehend and <b>write effective</b><br><b>reports</b> and <b>design documentation</b> , make<br><b>effective presentations</b> , and give and receive<br>clear instructions  | 4 |
| CO 5 | PO 2  | Analyze the BJT and FET amplifier using common<br>emitter , common collector, Common source and<br>Common Drain amplifier for <b>Problem</b><br>formulation to Estimate the voltage gain and<br>current gain of by applying the <b>principles of</b><br>mathematics                                                                              | 2 |

|      |       | Create colort and apply appropriate techniques                                                                                                                                                                                                                                                                                                  | 1 |
|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 5  | Create, select, and apply appropriate techniques,<br>resources, and modern Engineering and IT tools<br>including prediction and modelling the basic<br>electronic circuits using active transistors in<br><b>multisim simulation tool</b> to complex<br>Engineering activities with an understanding of the<br>limitations.                     | 1 |
|      | PO 10 | Communicate effectively on <b>complex</b><br><b>Engineering activities</b> with the Engineering<br>community and with society at large, such as,<br>being able to comprehend and <b>write effective</b><br><b>reports</b> and <b>design documentation</b> , make<br><b>effective presentations</b> , and give and receive<br>clear instructions | 4 |
| CO 6 | PO 2  | Illustrate the volt-ampere characteristics (knowledge) of uni junction transistor for calculating intrinsic standoff ratio by applying science for engineering problems.                                                                                                                                                                        | 1 |
|      | PO 10 | Communicate effectively on <b>complex</b><br><b>Engineering activities</b> with the Engineering<br>community and with society at large, such as,<br>being able to comprehend and <b>write effective</b><br><b>reports</b> and <b>design documentation</b> , make<br><b>effective presentations</b> , and give and receive<br>clear instructions | 4 |
| CO 7 | PO 2  | Illustrate the volt-ampere characteristics<br>(knowledge) of silicon controlled rectifier for<br>analyzing latching, holding currents and breakdown<br>voltage by applying science for engineering<br>problems.                                                                                                                                 | 2 |
|      | PO 10 | Communicate effectively on <b>complex</b><br><b>Engineering activities</b> with the Engineering<br>community and with society at large, such as,<br>being able to comprehend and <b>write effective</b><br><b>reports</b> and <b>design documentation</b> , make<br><b>effective presentations</b> , and give and receive<br>clear instructions | 4 |
| CO 8 | PO 2  | Understand the given <b>problem statement</b> and<br><b>formulate</b> the threshold voltage from the<br>volt-ampere characteristics of the FET devices<br>using principles of mathematics and engineering<br>science                                                                                                                            | 2 |

|      | PO 10 | Communicate effectively on <b>complex</b><br><b>Engineering activities</b> with the Engineering<br>community and with society at large, such as,<br>being able to comprehend and <b>write effective</b><br><b>reports</b> and <b>design documentation</b> , make<br><b>effective presentations</b> , and give and receive<br>clear instructions | 4 |
|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| CO 9 | PO 2  | Understand the <b>problem statement</b> of electronic circuits using active transistors in <b>complex problem analysis using mathematics.</b>                                                                                                                                                                                                   | 2 |
|      | PO 5  | Create, select, and apply appropriate techniques,<br>resources, and modern Engineering and IT tools<br>including prediction and modelling the basic<br>electronic circuits using active transistors in<br><b>multisim simulation tool</b> to complex<br>Engineering activities with an understanding of the<br>limitations.                     | 1 |
|      | PO 9  | Function effectively as an <b>individual</b> , and as a member or leader in diverse <b>teams</b> for Designing basic electronic circuits using active transistors.                                                                                                                                                                              | 8 |
|      | PO 10 | Communicate effectively on <b>complex</b><br><b>Engineering activities</b> with the Engineering<br>community and with society at large, such as,<br>being able to comprehend and <b>write effective</b><br><b>reports</b> and <b>design documentation</b> , make<br><b>effective presentations</b> , and give and receive<br>clear instructions | 4 |
|      | PSO 1 | <b>Formulate</b> and <b>Evaluate</b> basic electronic circuits<br>using active transistor applications in the field of<br>Intelligent Embedded and Semiconductor<br>technologies                                                                                                                                                                | 2 |

### XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| COURSE   |      | PSO'S |      |       |       |
|----------|------|-------|------|-------|-------|
| OUTCOMES | PO 2 | PO 5  | PO 9 | PO 10 | PSO 1 |
| CO 1     | 1    |       |      |       |       |
| CO 2     | 1    |       |      | 3     |       |
| CO 3     | 1    |       |      | 3     | 3     |

| CO 4 | 1 |   |   | 3 |   |
|------|---|---|---|---|---|
| CO 5 | 1 | 3 |   | 3 |   |
| CO 6 | 2 |   |   | 3 |   |
| CO 7 | 1 |   |   | 3 |   |
| CO 8 | 1 |   |   | 3 |   |
| CO 9 | 1 | 3 | 3 | 3 | 3 |

## XII ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               | PO 2, PO 5,<br>PO 10, PSO 1 | SEE Exams    | PO 2, PO 5,<br>PO 10, PSO 1 | Seminars      | - |
|-------------------------|-----------------------------|--------------|-----------------------------|---------------|---|
| Laboratory<br>Practices | PO 2, PO 5,<br>PO 10, PSO 1 | Student Viva | PO 2, PO 5,<br>PO 10, PSO 1 | Certification | - |
| Assignments             | -                           |              |                             |               |   |

## XIII ASSESSMENT METHODOLOGY INDIRECT:

| ✓ | Early Semester Feedback             | 1    | End Semester OBE Feedback |
|---|-------------------------------------|------|---------------------------|
| X | Assessment of Mini Projects by Expe | erts |                           |

## XIV SYLLABUS:

| WEEK I   | ELECTRONIC WORKSHOP PRACTICE                                                                                                                                                                                                                                                                                                                                             |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Identification, specifications, testing of R, L, C components (Color Codes),<br>potentiometers, switches (SPDT, DPDT and DIP), coils, gang condensers,<br>relays, bread boards, PCBs, identification, specifications and testing of active<br>devices, diodes, BJTs, low power JFETs, MOSFETs, power transistors, LEDs,<br>LCDs, optoelectronic devices, SCR, UJT, DIACs |
| WEEK II  | ELECTRONIC WORKSHOP PRACTICE                                                                                                                                                                                                                                                                                                                                             |
|          | Study and operation of a. Multimeters (Analog and Digital) b. Function<br>Generator c. Regulated Power Supplies d. Study and Operation of CRO                                                                                                                                                                                                                            |
| WEEK III | PN DIODE CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                 |
|          | Verification of V-I characteristics of PN diode and calculate static and<br>dynamic resistance using hardware and digital simulation.                                                                                                                                                                                                                                    |
| WEEK IV  | ZENER DIODE CHARACTERISTICS AND VOLTAGE<br>REGULATOR                                                                                                                                                                                                                                                                                                                     |
|          | Verification of V-I characteristics of Zener diode and perform Zener diode as a Voltage regulator using hardware and digital simulation.                                                                                                                                                                                                                                 |

| WEEK V    | HALF WAVE RECTIFIER                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------|
|           | Verification of half wave rectifier without and with filters using hardware and                             |
|           | digital simulation.                                                                                         |
| WEEK VI   | FULL WAVE RECTIFIER                                                                                         |
|           | Verification of Full Wave Rectifier without and with filters using hardware and                             |
|           | digital simulation.                                                                                         |
| WEEK VII  | TRANSISTOR CB CHARACTERISTICS                                                                               |
|           | Verification of Input and Output characteristics of CB configuration using hardware and digital simulation. |
| WEEK VIII | TRANSISTOR CE CHARACTERISTICS                                                                               |
|           | Verification of Input and Output Characteristics of CE configuration using                                  |
|           | hardware and digital simulation                                                                             |
| WEEK IX   | FREQUENCY RESPONSE OF CE AMPLIFIER                                                                          |
|           | Determine the Gain and Bandwidth of CE amplifier using hardware and                                         |
|           | digital simulation.                                                                                         |
| WEEK X    | FREQUENCY RESPONSE OF CC AMPLIFIER                                                                          |
|           | Determine the Gain and Bandwidth of CC amplifier using hardware and digital simulation.                     |
| WEEK XI   | UJT CHARACTERISTICS                                                                                         |
|           | Verification of V-I Characteristics of UJT using hardware and digital                                       |
|           | simulation                                                                                                  |
| WEEK XII  | SCR CHARACTERISTICS                                                                                         |
|           | Verification of V-I Characteristics of SCR using hardware and digital                                       |
|           | simulation.                                                                                                 |
| WEEK XIII | FET CHARACTERISTICS                                                                                         |
|           | Verification of V-I Characteristics of FET using digital simulation.                                        |
| WEEK XIV  | FREQUENCY RESPONSE OF CS AMPLIFIER                                                                          |
|           | Determine the Gain and Bandwidth of $\overline{\text{CS}}$ amplifier using digital simulation.              |
| WEEK XV   | FREQUENCY RESPONSE OF CD AMPLIFIER                                                                          |
|           | Determine the Gain and Bandwidth of CD amplifier using digital simulation.                                  |

#### **TEXTBOOKS**

- 1. J. Millman, C.C.Halkias, Millman's, "Integrated Electronics", Tata McGraw Hill, 2nd Edition, 2001.
- 2. J.Millman, C.C.Halkias and satyabrata Jit, "Millman's Electronic Devices and circuits", Tata McGraw Hill, 2nd edition, 1998

#### **REFERENCE BOOKS:**

- 1. Mohammad Rashid, "Electronic Devices and Circuits", Cengage learning, 1st Edition, 2014.
- 2. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2009.

## XV COURSE PLAN:

| S.No | Topics to be Covered                              | CO's | Reference |
|------|---------------------------------------------------|------|-----------|
| 1    | Electronic workshop practice.                     | CO 1 |           |
| 2    | pn diode characteristics.                         | CO 2 | T1: 3.1   |
| 3    | Zener diode characteristics and voltage regulator | CO 2 | T1: 3.11  |
| 4    | Half wave rectifier                               | CO 3 | T1: 4.6   |
| 5    | Full wave rectifier.                              | CO 3 | T1: 4.8   |
| 6    | Transistor CB characteristics                     | CO 4 | T1: 5.5   |
| 7    | Transistor CE characteristics                     | CO 4 | T1: 5.6   |
| 8    | Frequency response of CE amplifier.               | CO 5 | T1: 8.3   |
|      |                                                   | CO 9 |           |
| 9    | Frequency response of CE amplifier.               | CO 5 | T1: 8.3   |
|      |                                                   | CO 9 |           |
| 10   | UJT characteristics.                              | CO 6 | T1: 9.2   |
| 11   | SCR characteristics                               | CO 7 | T1:9.3    |
| 12   | FET characteristics                               | CO 8 | T1:10.6   |
| 13   | Frequency response of CS amplifier                | CO 5 | T1: 10.7  |
|      |                                                   | CO 9 |           |
| 14   | Frequency response of CD amplifier                | CO 5 | T1: 10.7  |
|      |                                                   | CO 9 |           |

The course plan is meant as a guideline. Probably there may be changes.

## XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Probing Further Experiments                                                            |
|------|----------------------------------------------------------------------------------------|
| 1    | Design high pass filter using bipolar junction transistor to produce the gain of 150.  |
| 2    | Construct and verify the JFET's ability to behave as a voltage-controlled current      |
|      | regulator.                                                                             |
| 3    | Design and verify the functionality of waveform clipper using Zener diode.             |
| 4    | Construct and verify Battery Charger using SCR                                         |
| 5    | Design the relaxation oscillator using Uni Junction Transistor.                        |
| 6    | Plot the V-I Characteristics of germanium diode and find the cut in voltage of diode.  |
| 7    | Design diode acts as switch and plot the switching times of diode.                     |
| 8    | Design a zener voltage regulator circuit to drive a load of 6V, 100mW from an          |
|      | unregulated input supply of $V_{\min} = 8V$ , $V_{\max} = 12V$ using a 6V zener diode? |
| 9    | Design square wave generator using zener diode.                                        |
| 10   | Design for a Zener Transistor series voltage regulator circuit to drive a load of 6V,  |
|      | 1W, from a supply of 10V with a $\pm 3V$ ripple voltage                                |
| 11   | Design half wave rectifier with an applied input a.c. power is 100 watts, and it is to |
|      | deliver an output power is 40 watts.                                                   |

| 12 | Design half wave rectifier with an a.c. supply of 230 V is applied through a transformer of turn ratio 10:1. Observe the output d.c. voltage, peak inverse voltage and identify dc output voltage if transformer turns ratio changed to 20:1.                                                                                                                                                                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | Design a full wave rectifier with step down transformer and center tapped transformer. Justify the operation.                                                                                                                                                                                                                                                                                                                           |
| 14 | Design Full wave rectifier with capacitive filter using 10uF and 1uF. Observe the ripple factor.                                                                                                                                                                                                                                                                                                                                        |
| 15 | Describe, based on your observations, the I-V curves of npn transistor. At approximately what collector-emitter voltage ( $V_{CE}$ ) does the transition from saturation to active region occur?                                                                                                                                                                                                                                        |
| 16 | Demonstrate the characteristics of Common base PNP transistor to determine the h parameters.                                                                                                                                                                                                                                                                                                                                            |
| 17 | Design a Sustainable Relay Driving Circuit Using BJT.                                                                                                                                                                                                                                                                                                                                                                                   |
| 18 | Design an electronic switch using CE configuration.                                                                                                                                                                                                                                                                                                                                                                                     |
| 19 | Measure the DC voltages to make sure the BJT is in the forward active region. If it's not in forward active, adjust your resistor values to compensate.                                                                                                                                                                                                                                                                                 |
| 20 | Measure the voltage gain. Adjust the input signal from your wavetek to approximately 10mV amplitude, with a frequency of 100 kHz. What is the voltage swing?                                                                                                                                                                                                                                                                            |
| 21 | Connect the common collector amplifier circuit you designed. Set the values of capacitors C1, C2, and C3 to 1uF each. Set $R_L$ to be 1 k $\Omega$ and the supply voltage to 15V DC. Measure the DC bias voltages on the base, emitter and the collector. Calculate the collector current. Compare the measured voltages with the design intent and calculation. Tabulate the measured versus the calculated bias voltages and current. |
| 22 | Measure the frequency response of the amplifier starting from 100 Hz. change the test frequency to cover the upper cut-off frequency of the amplifier. Throughout the measurement of the frequency response, apply low input signal levels (in the order of few milli-Volts) to ensure that the output signal is not distorted. Monitor both input and output waveforms on the oscilloscope.                                            |
| 23 | Design and observe the characteristics of relaxation oscillator using Uni-Junction<br>Transistor.                                                                                                                                                                                                                                                                                                                                       |
| 24 | Design Voltage sensing with a unijunction transistor and observe the characteristics.                                                                                                                                                                                                                                                                                                                                                   |
| 25 | Design battery charger circuit using silicon control rectifier.                                                                                                                                                                                                                                                                                                                                                                         |
| 26 | Observe the characteristics of RC half wave and full wave Firing Circuit using silicon control rectifier.                                                                                                                                                                                                                                                                                                                               |
| 27 | Obtain the transistor drain characteristics in the saturated region, by applying the $V_{MAX}$ is 40V, $I_{MAX}$ is 20 mA and $P_{MAX}$ is 0.4W.                                                                                                                                                                                                                                                                                        |
| 28 | Junction field-effect transistors (JFETs) are normally-on devices, the natural state of their channels being passable to electric currents. Thus, a state of cutoff will only occur on command from an external source. Explain what must be done to a JFET, specifically, to drive it into a state of cutoff.                                                                                                                          |
| 29 | Build the CS amplifier circuit using $V_{DD} = V_{SS} = 5$ V. Select 50 k $\Omega$ potentiometer<br>and adjust it to obtain 250 $\mu$ A bias current. Select $R_S = 10$ k $\Omega$ .                                                                                                                                                                                                                                                    |
| 30 | Obtain the frequency response of MOSFET amplifier in common source configuration.                                                                                                                                                                                                                                                                                                                                                       |
| 31 | Design and Plot the frequency response of single stage RC coupled amplifier using JFET.                                                                                                                                                                                                                                                                                                                                                 |

| 32 | Design a MOSFET amplifier and plot frequency response based on the given specifications. Both the input and the output should be AC coupled. |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|
|    | Dual Supply Voltage $= \pm 5$ V                                                                                                              |
|    | Load Resistance, $R_L = 100\Omega$                                                                                                           |
|    | 0-to-Peak Output Swing is gtreater than or equal to 2V                                                                                       |
|    | Voltage Gain $= 50$                                                                                                                          |
|    | Input Resistance= $10k\Omega$                                                                                                                |

Signature of Course Coordinator Mr. Naresh B, Assistant Professor

HOD,ECE



## INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

#### ELECTRONICS AND COMMUNICATION ENGINEERING Department Course Title DIGITAL SYSTEM DESIGN LABORATORY Course Code AECB10 Program B.Tech ECE III Semester Course Type Core Regulation **IARE - R18** Theory Practical Course Structure Tutorials Laboratory Credits Lecture Credits 21 --Course Ms C V P Supradeepthi, Assistant Professor Coordinator

## I COURSE PRE-REQUISITES:

| Level  | Course<br>Code | Semester | Prerequisites         | Credits |
|--------|----------------|----------|-----------------------|---------|
| B.Tech | AECB07         | III      | Digital System Design | 3       |

## **II** COURSE OVERVIEW:

The laboratory strives in exploring the logic design and related fields. Digital logic testers are used to provide students with practical training and familiarize themselves with the various functions of logic gates and using integrated components to complete circuitry functions and develop an interest in digital logic and enlighten them in the abilities of deduction. The lab allows students to conduct actual gate-level experiments on combinational and sequential circuits to increase student interest and develop skills to design digital gates using VHDL.

## **III MARKS DISTRIBUTION:**

| Subject                             | SEE<br>Examination | CIE<br>Examination | Total Marks |
|-------------------------------------|--------------------|--------------------|-------------|
| Digital System Design<br>Laboratory | 70 Marks           | 30 Marks           | 100         |

## **IV** DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| ✓ | Demo<br>Video | 1 | Lab Worksheets | 1 | Viva Questions | ~ | Probing Further<br>Experiments |
|---|---------------|---|----------------|---|----------------|---|--------------------------------|
|---|---------------|---|----------------|---|----------------|---|--------------------------------|

## **V** EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

| 20 % | To test the preparedness for the experiment.                           |
|------|------------------------------------------------------------------------|
| 20 % | To test the performance in the laboratory.                             |
| 20 % | To test the calculations and graphs related to the concern experiment. |
| 20 % | To test the results and the error analysis of the experiment.          |
| 20 % | To test the subject knowledge through viva – voce.                     |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

#### Table 1: Assessment pattern for CIA

| Component          | Lab                       |                                  |             |
|--------------------|---------------------------|----------------------------------|-------------|
| Type of Assessment | Day to day<br>Performance | Final Internal<br>Lab Assessment | Total Marks |
| CIA Marks          | 20 Marks                  | 10 Marks                         | 30          |

#### Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### A. Experiment Based:

| Preparation | Performance | Calculations<br>and Graph | Results and Er-<br>ror Analysis | Viva | Total |
|-------------|-------------|---------------------------|---------------------------------|------|-------|
| 2           | 2           | 2                         | 2                               | 2    | 10    |

## VI HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes (POs)                                                                                                                                                                                                                                                                                             | Strength | Proficiency<br>Assessed by     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review<br>research literature, and analyze complex<br>engineering problems reaching substantiated<br>conclusions using first principles of<br>mathematics, natural sciences, and engineering<br>sciences.                                                            | 3        | Lab Experiments<br>/ CIE / SEE |
| PO 3 | <b>Design/development of solutions:</b> Design<br>solutions for complex engineering problems and<br>design system components or processes that<br>meet the specified needs with appropriate<br>consideration for the public health and safety,<br>and the cultural, societal, and environmental<br>considerations. | 3        | Lab Experiments<br>/ CIE / SEE |

| PO 5 | Modern tool usage: Create, select, and<br>apply appropriate techniques, resources, and<br>modern engineering and IT tools including<br>prediction and modeling to complex<br>engineering activities with an understanding of<br>the limitations. | 1 | Lab Experiments<br>/ CIE / SEE |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------|
| PO 9 | <b>Individual and team work:</b> Function<br>effectively as an individual, and as a member<br>or leader in diverse teams, and in<br>multidisciplinary settings.                                                                                  | 3 | Lab Experiments<br>/ CIE / SEE |

#### 3 = High; 2 = Medium; 1 = Low

## VII HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                                                                                                                           | Strength | Proficiency<br>Assessed by     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|
| PSO 2 | Focus on the Application Specific Integrated<br>Circuit (ASIC) Prototype designs, Virtual<br>Instrumentation and System on Chip (SOC)<br>designs. | 2        | Lab Experiments<br>/ CIE / SEE |

## 3 =High; 2 =Medium; 1 =Low

#### VIII COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | Design and simulate the combinational logic circuits using HDL code.              |
|-----|-----------------------------------------------------------------------------------|
| II  | Model the sequential circuits and simulate using HDL code.                        |
| III | Implementation of basic real time applications and verify the outputs using FPGA. |

## IX COURSE OUTCOMES:

| CO No | Course Outcomes                                                               | Knowledge |
|-------|-------------------------------------------------------------------------------|-----------|
|       |                                                                               | Level     |
|       |                                                                               | (Bloom's  |
|       |                                                                               | Taxonomy) |
| CO 1  | Apply the concept of Boolean algebra to verify the truth table of             | Apply     |
|       | various expressions using logic gates in Hardware Description                 |           |
|       | Language                                                                      |           |
| CO 2  | Make use of dataflow, structural and behavioral modelling styles              | Apply     |
|       | of HDL for simulating the combinational logic circuits.                       |           |
| CO 3  | Analyze the SR flip flop, JK flip flop, D flip flop, T flip flops for         | analyze   |
|       | functional simulation and timing analysis.                                    |           |
| CO 4  | <b>Build</b> the universal shift registers, counters using the flip flops.    | Apply     |
| CO 5  | <b>Examine</b> a finite state machine for detection of sequence.              | Apply     |
| CO 6  | <b>Design</b> the real time applications like traffic light controller, chess | Create    |
|       | clock controller FSM, elevator operations using FPGA kit.                     |           |

After successful completion of the course, students should be able to:

#### COURSE KNOWLEDGE COMPETENCY LEVEL



| COURSE   |              | PROGRAM OUTCOMES |              |   |              |   |   |   |              |              |    |    |   | PSO'S        |   |  |
|----------|--------------|------------------|--------------|---|--------------|---|---|---|--------------|--------------|----|----|---|--------------|---|--|
| OUTCOMES | 1            | 2                | 3            | 4 | 5            | 6 | 7 | 8 | 9            | 10           | 11 | 12 | 1 | 2            | 3 |  |
| CO 1     | $\checkmark$ | $\checkmark$     | -            | - | $\checkmark$ | - | - | - | -            | $\checkmark$ | -  | -  | - | -            | - |  |
| CO 2     | $\checkmark$ | $\checkmark$     | $\checkmark$ | - | $\checkmark$ | - | - | - | -            | $\checkmark$ | -  | -  | - | -            | - |  |
| CO 3     | -            | $\checkmark$     | -            | - | $\checkmark$ | - | - | - | -            | $\checkmark$ | -  | -  | - | -            | - |  |
| CO 4     | ✓            | $\checkmark$     | -            | - | $\checkmark$ | - | - | - | -            | $\checkmark$ | -  | -  | - | -            | - |  |
| CO 5     | -            | $\checkmark$     | $\checkmark$ | - | $\checkmark$ | - | - | - | -            | $\checkmark$ | -  | -  | - | $\checkmark$ | - |  |
| CO 6     | -            | $\checkmark$     | $\checkmark$ | - | $\checkmark$ | - | - | - | $\checkmark$ | $\checkmark$ | -  | -  | - | $\checkmark$ | - |  |

## X MAPPING OF EACH CO WITH PO(s), PSO(s):

## XI JUSTIFICATIONS FOR CO – PO / PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                   | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Apply the knowledge of boolean algebra<br>(mathematics, science, engineering<br>fundamentals) to understand the function of logic<br>gates                                                                                                                                                                                             | 1                                      |
|                    | PO 2          | <b>Identify</b> the importance of basic gates in the optimization of <b>conventional Boolean</b> formulas in general and <b>digital circuits</b>                                                                                                                                                                                       | 3                                      |
|                    | PO 5          | <b>Create</b> a program for boolean expressions in VHDL and verify the outputs using the tool.                                                                                                                                                                                                                                         | 1                                      |
|                    | PO 10         | Able to communicate effectively on engineering activities                                                                                                                                                                                                                                                                              | 1                                      |
| CO 2               | PO 1          | Understand the knowledge of combinational<br>circuits (mathematics, science, engineering<br>fundamentals) for simulating circuits in data<br>flow, structural and behavioral modelling styles                                                                                                                                          | 1                                      |
|                    | PO 2          | Identify and analyse complex engineering the<br>combinational circuits like adders, encoder/decoders<br>multiplexers/demultiplexers, code converters, ALU<br>(complex engineering problems) using the<br>principles of dataflow, structural, behavioral modelling<br>style(science) and simulate the design to validate the<br>results | 5                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                     | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 3          | <b>Design</b> solutions for combinational circuits(complex<br>engineering problems) like adders, encoder/decoders<br>multiplexers/demultiplexers, code converters, ALU.                                                  | 3                                      |
|                    | PO 5          | <b>Simulate</b> the combinational circuits in VHDL using data flow or structural or behavioral models using <b>vivado tool</b>                                                                                           | 1                                      |
|                    | PO 10         | Able to communicate effectively on engineering activities                                                                                                                                                                | 1                                      |
| CO 3               | PO 2          | <b>Analyze(complex engineering)</b> bi-stable elements<br>flip-flops SR flipflop, JK flip flop, D flip dlop, T flip flop<br>and illustrate the excitation tables of different flip flops<br>for memory storage elements. | 3                                      |
|                    | PO 5          | Verify the functional simulation and timing analysis of different outputs using hard description language in Vivado tool.                                                                                                | 1                                      |
|                    | PO 10         | Able to communicate effectively on engineering activities                                                                                                                                                                | 1                                      |
| CO 4               | PO 1          | Apply the knowledge of mathematics, science,<br>engineering fundamentals to design universal shift<br>registers                                                                                                          | 1                                      |
|                    | PO 2          | Identify the functionality of (complex engineering<br>problems) to design shift registers and counters using<br>flip flops by applying engineering fundamentals<br>and science                                           | 4                                      |
|                    | PO 5          | <b>Analyze</b> the various flip flops for functional simulation<br>and timing analysis using hard ware description<br>language in <b>Vivado tool</b> .                                                                   | 1                                      |
|                    | PO 10         | Able to communicate effectively on engineering activities                                                                                                                                                                | 1                                      |
| CO 5               | PO 2          | <b>Illustrate</b> about finite state machine and design FSM for the given sequence by applying principles of mealy/moore machine concepts(science and engineering fundamentals).                                         | 3                                      |
|                    | PO 3          | <b>Design</b> finite state machine(complex engineering problems) using mealey and moore machines which will be used in real time applications.                                                                           | 3                                      |
|                    | PO 5          | Model the finite state machines and verify functional simulation using hard ware description language in Vivado tool                                                                                                     | 1                                      |
|                    | PO 10         | Able to communicate effectively on engineering activities                                                                                                                                                                | 1                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PSO 2         | Develop the finite state machine by applying the<br>fundamental of mealy and moore models                                                                                                                                                                                                                                                           | 1                                      |
| CO 6               | PO 2          | Identify and formulate for basic real time<br>applications of the digital circuits and design using<br>mathematical principles for solving complex<br>engineering problems                                                                                                                                                                          | 3                                      |
|                    | PO 3          | <b>Design</b> basic real time applications of the digital circuits like traffic light controller ,chess clock controller, elevator (complex engineering problems)                                                                                                                                                                                   | 2                                      |
|                    | PO 5          | <b>Build</b> the real time applications of digital circuits and simulate using hardware description language in <b>Vivado tool.</b>                                                                                                                                                                                                                 | 1                                      |
|                    | PO 9          | Function effectively as an <b>apply basic principles</b> to<br>create for apply appropriate techniques, resources, and<br>modern Engineering and IT tools including prediction<br>and modelling the digital circuits lifelong applications<br>such as digital equipment and in many applications<br>where signals are derived from digital circuits | 2                                      |
|                    | PO 10         | Able to communicate effectively on engineering activities                                                                                                                                                                                                                                                                                           | 1                                      |
|                    | PSO 2         | <b>Develop</b> basic real time applications of the digital circuits by applying the <b>fundamental blocks</b> of shift registers.                                                                                                                                                                                                                   | 2                                      |

### XII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| COURSE   |   | PROGRAM OUTCOMES |   |   |   |   |   |   |   |    |    |    | PSO'S |   |   |
|----------|---|------------------|---|---|---|---|---|---|---|----|----|----|-------|---|---|
| OUTCOMES | 1 | 2                | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1     | 2 | 3 |
| CO 1     | 1 | 3                | - | - | 1 | - | - | - | - | 1  | -  | -  | -     | - | - |
| CO 2     | 1 | 5                | 3 | - | 1 | - | - | - | - | 1  | -  | -  | -     | - | - |
| CO 3     | - | 3                | - | - | 1 | - | - | - | - | 1  | -  | -  | -     | - | - |
| CO 4     | 1 | 4                | - | - | 1 | - | - | - | - | 1  | -  | -  | -     | - | - |
| CO 5     | - | 3                | 3 | - | 1 | - | - | - | - | 1  | -  | -  | -     | 2 | - |
| CO 6     | - | 4                | 2 | - | 1 | - | - | - | 2 | 1  | -  | -  | -     | 2 | - |

| COURSE   |      | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |          |     |
|----------|------|------------------|----|----|----|----|----|----|----|----|----|----|-------|----------|-----|
| OUTCOMES | PO   | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO   | PSC      | PSC |
|          | 1    | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2        | 3   |
|          | 3    | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2     | <b>2</b> | 2   |
| CO 1     | 33.3 | 30               | -  | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -        | -   |
| CO 2     | 33.3 | 50               | -  | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -        | -   |
| CO 3     | -    | 30               | 30 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -        | -   |
| CO 4     | 33.3 | 40               | -  | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -        | -   |
| CO 5     | -    | 30               | 30 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | 50       | -   |
| CO 6     | -    | 40               | 20 | -  | -  | -  | -  | -  | 16 | 40 | -  | -  | -     | 50       | -   |

#### XIII PERCENTAGE OF KEY COMPETENCIES FOR CO-(PO / PSO):

#### XIV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$  -  $0 \leq C \leq 5\%$  – No correlation

1 -5 <C $\leq$  40% – Low/ Slight

 $\pmb{2}$  - 40 % < C < 60% – Moderate

 $\boldsymbol{3}$  -  $60\% \leq C < 100\%$  – Substantial /High

| COURSE   | PROGRAM OUTCOMES |     |    |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|------------------|-----|----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| OUTCOMES | PO               | PO  | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO    | PSO | PSO | PSO |
|          | 1                | 2   | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
| CO 1     | 1                | 1   | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 2     | 1                | 2   | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 3     | -                | 1   | 1  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 4     | 1                | 2   | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 5     | -                | 1   | 1  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | 2   | -   |
| CO 6     | -                | 2   | 1  | -  | -  | -  | -  | -  | 1  | 1  | -  | -     | -   | 2   | -   |
| TOTAL    | 3                | 9   | 3  | 0  | 0  | 0  | 0  | 0  | 1  | 6  | 0  | 0     | 0   | 4   | 0   |
| AVERAGE  | 1                | 1.5 | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 0     | 0   | 2   | 0   |

## XV ASSESSMENT METHODOLOGY DIRECT:

| CIE        | PO 1, | SEE       | PO 1, | Seminars | PO1, | Assignments   | 3 – |
|------------|-------|-----------|-------|----------|------|---------------|-----|
| Exams      | PO 2  | Exams     | PO 2, |          | PO12 |               |     |
|            |       |           | PO 5  |          |      |               |     |
| Laboratory | PO 2, | Student   |       | Mini     | -    | Certification |     |
| Prac-      | PO 3, | Viva      |       | Project  |      |               |     |
| tices      | PO 5  |           |       |          |      |               |     |
| Term       | -     | 5 Minutes | -     | Open     | -    | -             | -   |
| Paper      |       | Video     |       | Ended    |      |               |     |
|            |       |           |       | Experi-  |      |               |     |
|            |       |           |       | ments    |      |               |     |

## XVI ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               | ✓ | SEE Exams    | $\checkmark$ | Assignments  | _ | Seminars      | - |
|-------------------------|---|--------------|--------------|--------------|---|---------------|---|
| Laboratory<br>Practices | 1 | Student Viva | 1            | Mini Project | 1 | Certification | - |

## XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | $\checkmark$ Early Semester Feedback |  | End Semester OBE Feedback |
|--------------|--------------------------------------|--|---------------------------|
| X            | Assessment of Mini Projects by Expe  |  |                           |

## XVIII SYLLABUS:

| Week-1  | REALIZATION OF A BOOLEAN FUNCTION                                                     |
|---------|---------------------------------------------------------------------------------------|
|         | Design and simulate the HDL code to realize three and four variable Boolean func-     |
|         | tions.                                                                                |
| Week-2  | DESIGN OF DECODER AND ENCODER                                                         |
|         | Design and simulate the HDL code for the following combinational circuits (a) 3 to    |
|         | 8 Decoder 8 to 3 Encoder (With priority and without priority).                        |
| Week-3  | DESIGN OF MULTIPLEXER AND DE MULTIPLEXER                                              |
|         | Design and simulate the HDL code for the following combinational circuits (a) Mul-    |
|         | tiplexer (b) De-multiplexer                                                           |
| Week-4  | DESIGN OF CODE CONVERTERS                                                             |
|         | Design and simulate the HDL code for the following combinational circuits (a) 4- Bit  |
|         | binary to gray code converter (b) 4- Bit gray to binary code converter (c) Comparator |
| Week-5  | FULL ADDER AND FULL SUBTRACTOR DESIGN MODELLING                                       |
|         | Write a HDL code to describe the functions of a full Adder and subtractor Using       |
|         | three modeling styles                                                                 |
| Week-6  | DESIGN OF 8 BIT ALU                                                                   |
|         | Design a model to implement 8-bit ALU functionality.                                  |
| Week-7  | HDL MODEL FOR FLIP FLOPS                                                              |
|         | Write HDL codes for the flip-flops - SR, D, JK, T Flip flops.                         |
| Week-8  | DESIGN OF COUNTERS                                                                    |
|         | Write a HDL code for the following counters (a) Binary counter (b) BCD counter        |
|         | (Synchronous reset and asynchronous reset)                                            |
| Week-9  | HDL CODE FOR UNIVERSAL SHIFT REGISTER.                                                |
|         | Design and simulate the HDL code for universal shift register.                        |
| Week-10 | HDL CODE FOR CARRY LOOK AHEAD ADDER.                                                  |
|         | Design and simulate the HDL code for carry look ahead adder.                          |
| Week-11 | HDL CODE TO DETECT A SEQUENCE.                                                        |
|         | Write a HDL code to detect the sequence 1010101.                                      |
| Week-12 | CHESS CLOCK CONTROLLER FSM USING HDL                                                  |
|         | Design a chess clock controller FSM using HDL and simulate the code.                  |
| Week-13 | TRAFFIC LIGHT CONTROLLER USING HDL                                                    |
|         | Design a traffic light controller using HDL and simulate the code.                    |
| Week-14 | ELEVATOR DESIGN USING HDL CODE.                                                       |
|         | Write HDL code to simulate Elevator operations and simulate the code.                 |

**TEXT BOOKS** 1. Douglas Perry, "VHDL", Tata McGraw Hill, 4th Edition, 2002.

2. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd Edition,2006.

#### **REFERENCE BOOKS**

- 1. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989.
- 2. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd Edition 2012

## XIX COURSE PLAN:

| Week No | Topics to be covered                                                                                                                                                                | CO's | Reference        |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|
| 1       | Design and simulate the HDL code to realize three<br>and four variable Boolean functions                                                                                            | CO 1 | T1 13.2          |
| 2       | Design and simulate the HDL code for the following<br>combinational circuits (a) 3 to 8 Decoder (b) 8 to 3<br>Encoder (With priority and without priority)                          | CO 2 | T1 14.5          |
| 3       | Design and simulate the HDL code for the<br>following combinational circuits (a) Multiplexer (b)<br>De-multiplexer                                                                  | CO 2 | T1 14.8          |
| 4       | Design and simulate the HDL code for the<br>following combinational circuits (a) 4- Bit binary to<br>gray code converter (b) 4- Bit gray to binary code<br>converter (c) Comparator | CO 2 | T1 15.5 -15.9    |
| 5       | Write a HDL code to describe the functions of a full<br>Adder and subtractor Using three modeling styles                                                                            | CO 2 | T1 15.17         |
| 6       | Design a model to implement 8-bit ALU<br>functionality                                                                                                                              | CO 2 | T1 15.16         |
| 7       | Write HDL codes for the flip-flops - SR, D, JK, T                                                                                                                                   | CO 3 | T1 16.1, T1 16.8 |
| 8       | Write a HDL code for the following counters (a)<br>Binary counter (b) BCD counter (Synchronous<br>reset and asynchronous reset)                                                     | CO 4 | R1 4.1           |
| 9       | Design and simulate the HDL code for universal shift register                                                                                                                       | CO 4 | R1 4.2           |
| 10      | Design and simulate the HDL code for carry look ahead adder                                                                                                                         | CO 2 | R1 4.3           |
| 11      | Write a HDL code to detect the sequence 1010101                                                                                                                                     | CO 5 | R2 4.6           |
| 12      | Design a traffic light controller using HDL                                                                                                                                         | CO 6 | R2 4.10          |
| 13      | Design a chess clock controller FSM using HDL                                                                                                                                       | CO 6 | R2 5.6           |
| 14      | Write HDL code to simulate Elevator operations                                                                                                                                      | CO 6 | R2 5.9           |

The course plan is meant as a guideline. Probably there may be changes.

## XX EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Design Oriented Experiments                                            |
|------|------------------------------------------------------------------------|
| 1    | Implementation of binary multiplier and simulate using simulation tool |
| 2    | Design a stepper motor/lcd controller and implement                    |

#### Signature of Course Coordinator Ms. C V P Supradeepthi, Assistant Professor

HOD,ECE



#### **INSTITUTE OF AERONAUTICAL ENGINEERING** (Autonomous)

Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department         | Electronics and Communication Engineering |           |         |            |         |  |
|--------------------|-------------------------------------------|-----------|---------|------------|---------|--|
| Course Title       | Analog and Pulse Circuits                 |           |         |            |         |  |
| Course Code        | AECB11                                    |           |         |            |         |  |
| Program            | B.Tech                                    |           |         |            |         |  |
| Semester           | IV                                        |           |         |            |         |  |
| Course Type        | Core                                      |           |         |            |         |  |
| Regulation         | R-18                                      |           |         |            |         |  |
|                    | Theory Practical                          |           |         |            |         |  |
| Course Structure   | Lecture                                   | Tutorials | Credits | Laboratory | Credits |  |
|                    | 3                                         | 1         | 4       | -          | -       |  |
| Course Coordinator | Mr. S Lakshmanachari, Assistant Professor |           |         |            |         |  |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites                   |
|--------|-------------|----------|---------------------------------|
| B.Tech | AEEB03      | II       | Electrical Circuits             |
| B.Tech | AECB06      | III      | Electronic Devices and Circuits |

#### **II COURSE OVERVIEW:**

This course provides circuit analysis to design high frequency amplifiers and wave shaping circuits using discrete components. It covers on multistage amplifiers, power amplifiers, feedback concepts, sampling gates and multivibrators. Analog electronics are widely used in radio and audio equipment and in many applications where signals are derived from analog sensors and transducers.

#### **III MARKS DISTRIBUTION:**

| Subject                   | SEE Examination | CIE Examination | Total Marks |
|---------------------------|-----------------|-----------------|-------------|
| Analog and Pulse Circuits | 70 Marks        | 30 Marks        | 100         |

## IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | $\checkmark$ | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|---|--------|
| x            | Open Ended Experiments    | x            | Seminars     | x            | Mini Project | x | Videos |
| x            | Others                    |              |              |              |              |   |        |

## **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 10 %                          | Remember              |
| 50 %                          | Understand            |
| 25~%                          | Apply                 |
| 15 %                          | Analyze               |
| 0 %                           | Evaluate              |
| 0 %                           | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

| Component  |          | Total Marks |     |    |
|------------|----------|-------------|-----|----|
| Type of    | CIE Exam | Quiz        | AAT |    |
| Assessment |          |             |     |    |
| CIA Marks  | 20       | 05          | 05  | 30 |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

## VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The design and analysis of transistor amplifiers using low frequency and high frequency signals.     |
|-----|------------------------------------------------------------------------------------------------------|
| II  | The response for a linear wave shaping circuits of low pass filter and high pass filters.            |
| III | The generation of non-linear oscillations by using regenerative feedback circuit for multivibrators. |

## VII COURSE OUTCOMES:

| CO 1 | <b>Illustrate</b> Bipolar Junction Transistor (BJT) amplifier circuits and   | Understand |
|------|------------------------------------------------------------------------------|------------|
|      | their frequency responses at low, mid and high frequencies for               |            |
|      | determining amplifier characteristics.                                       |            |
| CO 2 | Summarize the concept of feedback in amplifiers for the distinction          | Understand |
|      | between negative and positive feedback.                                      |            |
| CO 3 | <b>Obtain</b> the expression to find frequency of oscillations for RC and    | Understand |
|      | LC type oscillator circuits.                                                 |            |
| CO 4 | <b>Identify</b> the suitable large signal amplifiers or power amplifiers for | Apply      |
|      | practical applications with given specifications.                            |            |
| CO 5 | Analyze the response of linear and non-linear wave shaping circuits          | Analyze    |
|      | for impulse and pulse inputs with different time constants.                  |            |
| CO 6 | Build bistable, monostable and astable multivibrator circuits using          | Apply      |
|      | transistors for real time applications.                                      |            |

### After successful completion of the course, students should be able to:

## COURSE KNOWLEDGE COMPETENCY LEVEL



### **BLOOMS TAXONOMY**

## VIII PROGRAM OUTCOMES:

| Program Outcomes |                                                                                       |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|
| PO 1             | Engineering knowledge: Apply the knowledge of mathematics, science,                   |  |  |  |  |  |  |
|                  | engineering fundamentals, and an engineering specialization to the solution of        |  |  |  |  |  |  |
|                  | complex engineering problems.                                                         |  |  |  |  |  |  |
| PO 2             | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze |  |  |  |  |  |  |
|                  | complex engineering problems reaching substantiated conclusions using first           |  |  |  |  |  |  |
|                  | principles of mathematics, natural sciences, and engineering sciences.                |  |  |  |  |  |  |

| Program Outcomes |                                                                                    |  |  |  |  |
|------------------|------------------------------------------------------------------------------------|--|--|--|--|
| PO 3             | <b>Design/Development of Solutions:</b> Design solutions for complex               |  |  |  |  |
|                  | Engineering problems and design system components or processes that meet the       |  |  |  |  |
|                  | specified needs with appropriate consideration for the public health and safety,   |  |  |  |  |
|                  | and the cultural, societal, and Environmental considerations                       |  |  |  |  |
| PO 4             | Conduct Investigations of Complex Problems: Use research-based                     |  |  |  |  |
|                  | knowledge and research methods including design of experiments, analysis and       |  |  |  |  |
|                  | interpretation of data, and synthesis of the information to provide valid          |  |  |  |  |
|                  | conclusions.                                                                       |  |  |  |  |
| PO 5             | Modern Tool Usage: Create, select, and apply appropriate techniques,               |  |  |  |  |
|                  | resources, and modern Engineering and IT tools including prediction and            |  |  |  |  |
|                  | modelling to complex Engineering activities with an understanding of the           |  |  |  |  |
|                  | limitations                                                                        |  |  |  |  |
| PO 6             | The engineer and society: Apply reasoning informed by the contextual               |  |  |  |  |
|                  | knowledge to assess societal, health, safety, legal and cultural issues and the    |  |  |  |  |
|                  | consequent responsibilities relevant to the professional engineering practice.     |  |  |  |  |
| PO 7             | Environment and sustainability: Understand the impact of the professional          |  |  |  |  |
|                  | engineering solutions in societal and environmental contexts, and demonstrate      |  |  |  |  |
|                  | the knowledge of, and need for sustainable development.                            |  |  |  |  |
| PO 8             | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and      |  |  |  |  |
|                  | responsibilities and norms of the engineering practice.                            |  |  |  |  |
| PO 9             | member or leader in diverse teams, and in multidisciplinary settings               |  |  |  |  |
| DO 10            | member of leader in diverse teams, and in mutual sciplinary settings.              |  |  |  |  |
| PO 10            | <b>Communication:</b> Communicate effectively on complex engineering activities    |  |  |  |  |
|                  | to comprehend and write effective reports and design documentation, make           |  |  |  |  |
|                  | effective presentations, and give and receive clear instructions                   |  |  |  |  |
| PO 11            | Project management and finance. Demonstrate knowledge and                          |  |  |  |  |
| 1011             | understanding of the engineering and management principles and apply these to      |  |  |  |  |
|                  | one's own work as a member and leader in a team to manage projects and in          |  |  |  |  |
|                  | multidisciplinary environments.                                                    |  |  |  |  |
| PO 12            | <b>Life-Long Learning:</b> Recognize the need for and having the preparation and   |  |  |  |  |
|                  | ability to engage in independent and life-long learning in the broadest context of |  |  |  |  |
|                  | technological change                                                               |  |  |  |  |

## IX HOW PROGRAM OUTCOMES ARE ASSESSED:

Г

|      | PROGRAM OUTCOMES                                   | Strength | Proficiency<br>Assessed by |
|------|----------------------------------------------------|----------|----------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge  | 3        | SEE / CIE /                |
|      | of mathematics, science, engineering               |          | AAT                        |
|      | fundamentals, and an engineering specialization    |          |                            |
|      | to the solution of complex engineering problems.   |          |                            |
| PO 2 | Problem analysis: Identify, formulate, review      | 2        | SEE / CIE /                |
|      | research literature, and analyze complex           |          | AAT                        |
|      | engineering problems reaching substantiated        |          |                            |
|      | conclusions using first principles of mathematics, |          |                            |
|      | natural sciences, and engineering sciences.        |          |                            |

-

|       | PROGRAM OUTCOMES                                    | Strength | Proficiency<br>Assessed by |
|-------|-----------------------------------------------------|----------|----------------------------|
| PO 3  | <b>Design / Development of Solutions:</b> Design    | 1        | SEE / CIE /                |
|       | solutions for complex engineering problems and      |          | AAT                        |
|       | design system components or processes that meet     |          |                            |
|       | the specified needs with appropriate consideration  |          |                            |
|       | for the public health and safety, and the cultural, |          |                            |
|       | societal, and environmental considerations          |          |                            |
| PO 10 | <b>Communication</b> : Communicate effectively on   | 1        | SEE / CIE /                |
|       | complex engineering activities with the             |          | AAT                        |
|       | engineering community and with society at large,    |          |                            |
|       | such as, being able to comprehend and write         |          |                            |
|       | effective reports and design documentation, make    |          |                            |
|       | effective presentations, and give and receive clear |          |                            |
|       | instructions.                                       |          |                            |

3 = High; 2 = Medium; 1 = Low

## X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| Р     | ROGRAM SPECIFIC OUTCOMES                                                                                                                          | ${f Strength}$ | Proficiency<br>Assessed<br>by |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|
| PSO 2 | Focus on the Application Specific Integrated<br>Circuit (ASIC) prototype designs, Virtual<br>Instrumentation and System on Chip (SOC)<br>designs. | 3              | ААТ                           |

3 = High; 2 = Medium; 1 = Low

## XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              | PROGRAM OUTCOMES |              |    |    |    |    |    |    |              |    |    | PSO'S |              |     |
|----------|--------------|------------------|--------------|----|----|----|----|----|----|--------------|----|----|-------|--------------|-----|
| COURSE   | PO           | PO               | PO           | PO | PO | PO | РО | РО | PO | PO           | РО | PO | PSO   | PSO          | PSO |
| OUTCOMES | 1            | 2                | 3            | 4  | 5  | 6  | 7  | 8  | 9  | 10           | 11 | 12 | 1     | 2            | 3   |
| CO 1     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -     | -            | -   |
| CO 2     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -     | -            | -   |
| CO 3     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -     | $\checkmark$ | -   |
| CO 4     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -     | -            | -   |
| CO 5     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -     | -            | -   |
| CO 6     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -     | $\checkmark$ | -   |

## XII JUSTIFICATIONS FOR CO – PO / PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                               | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | <b>Illustrate</b> Bipolar Junction Transistor (BJT) amplifier<br>circuits and their frequency responses at low, mid and<br>high frequencies for determining amplifier<br>characteristics by applying <b>engineering</b><br><b>fundamentals</b> to the solution of complex engineering<br>problems. | 1                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                    | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 2          | <b>Identify the problems</b> in Bipolar Junction<br>Transistor (BJT) amplifier circuits then <b>formulate</b><br><b>problem statement</b> based on the <b>Information</b><br><b>provided</b> to analyze complex engineering problems<br>using first principles of mathematics, natural sciences,<br>and engineering sciences.                                                           | 4                                      |
|                    | PO 10         | <b>Communication</b> : Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as, being<br>able to comprehend and <b>write effective reports</b> and<br>design documentation, <b>make effective</b><br><b>presentations</b> , and give and receive clear instructions.                                          | 2                                      |
| CO 2               | PO 1          | <b>Describe</b> various types of feedback amplifiers like<br>voltage series, voltage shunt, current series and current<br>shunt by applying <b>knowledge of mathematics</b> and<br><b>engineering fundamentals</b> to the solution of<br>complex engineering problems.                                                                                                                  | 2                                      |
|                    | PO 2          | Understand the given problem statement and<br>formulate the complex engineering problems of<br>feedback amplifiers from the provided information,<br>develop solutions based on the functionality of the<br>circuit, validate the output of the circuit in reaching<br>substantiated conclusions by the interpretation of<br>results.                                                   | 6                                      |
|                    | PO 10         | <b>Communication</b> : Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as, being<br>able to comprehend and <b>write effective reports</b> and<br>design documentation, <b>make effective</b><br><b>presentations</b> , and give and receive clear instructions.                                          | 2                                      |
| CO 3               | PO 1          | <b>Obtain</b> the expression to find frequency of oscillations<br>for different oscillator circuits by applying <b>knowledge</b><br><b>of mathematics</b> and <b>engineering fundamentals</b> to<br>the solution of complex engineering problems.                                                                                                                                       | 2                                      |
|                    | PO 2          | <b>Understand</b> the <b>problem statement</b> of RC<br>oscillators and <b>formulate</b> the complex engineering<br>problems of RC oscillators from the provided<br><b>information, develop solutions</b> based on the<br>functionality of the circuit, <b>validate</b> the output of the<br>circuit in reaching substantiated conclusions by the<br><b>interpretation of results</b> . | 6                                      |
|                    | PO 3          | <b>Design</b> solutions for complex engineering problems<br>and design system components of oscillators that <b>meet</b><br><b>the specified customer and user needs</b> with<br>appropriate consideration for the public health and<br>safety, and the cultural, societal, and environmental<br>considerations.                                                                        | 1                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                 | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 10         | <b>Communication</b> : Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as, being<br>able to comprehend and <b>write effective reports</b> and<br>design documentation, <b>make effective</b><br><b>presentations</b> , and give and receive clear instructions.                       | 2                                      |
|                    | PSO 2         | Focus on the Application Specific Integrated<br>Circuit (ASIC) prototype designs using analog<br>and pulse circuits in the field of analog electronics.                                                                                                                                                                                                              | 1                                      |
| CO 4               | PO 1          | <b>Identify</b> the suitable large signal amplifiers for<br>practical applications with given specifications by<br>applying the <b>knowledge of mathematics</b> and<br><b>engineering fundamentals</b> to the solution of<br>complex engineering problems.                                                                                                           | 2                                      |
|                    | PO 2          | <b>Understand</b> the <b>problems of power amplifiers</b><br>and <b>formulate</b> the solutions of power amplifiers for<br>practical applications with <b>given specifications</b> to<br>analyze complex engineering problems reaching<br>substantiated conclusions using first principles of<br>mathematics natural sciences, and engineering sciences.             | 4                                      |
|                    | PO 10         | <b>Communication</b> : Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as, being<br>able to comprehend and <b>write effective reports</b> and<br>design documentation, <b>make effective</b><br><b>presentations</b> , and give and receive clear instructions.                       | 2                                      |
| CO 5               | PO 1          | Analyze the response of linear and non-linear wave<br>shaping circuits for impulse and pulse inputs with<br>different time constants by applying the <b>knowledge of</b><br><b>mathematics</b> and <b>engineering fundamentals</b> , and<br>an engineering specialization to the solution of complex<br>engineering problems.                                        | 2                                      |
|                    | PO 2          | <b>Understand</b> the given <b>problem statement</b> and<br><b>formulate</b> the expression for percentage tilt from the<br>response of high pass RC circuit for square input using<br><b>principles of mathematics</b> and <b>engineering</b><br><b>science.</b>                                                                                                    | 4                                      |
|                    | PO 3          | <b>Design</b> solutions for <b>complex engineering</b><br><b>problems</b> and <b>design system components</b> of<br><b>linear and non-linear wave shaping circuit's</b><br><b>applications</b> that meet the specified needs with<br>appropriate consideration for the public health and<br>safety, and the cultural, societal, and environmental<br>considerations. | 5                                      |
|                    | PO 10         | <b>Communication</b> : Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as, being<br>able to comprehend and <b>write effective reports</b> and<br>design documentation, <b>make effective</b><br><b>presentations</b> , and give and receive clear instructions.                       | 2                                      |

| Course<br>Outcomes | PO'S<br>PSO'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Justification for mapping (Students will be able to) | No. of Key<br>competencies<br>matched. |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|--|--|
| CO 6               | D 6 PO 1 Design the basic electronic circuits using active transistors by applying mathematics, science and engineering fundamentals.                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                        |  |  |
|                    | PO 2Identifying the real time problems in<br>multivibrators then analyze the design process to<br>solve the real time problems and to find the<br>solution for various applications of multivibrators in<br>real time using first principles of mathematics, and<br>engineering sciences.PO 3Design solutions for complex engineering<br>problems and design system components of<br>multivibrators that meet the specified needs<br>with appropriate consideration for the public<br>health and safety, and the cultural, societal, and<br>environmental considerations. |                                                      |                                        |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                        |  |  |
|                    | PO 10Communication: Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as, being<br>able to comprehend and write effective reports and<br>design documentation, make effective<br>presentations, and give and receive clear instructions.                                                                                                                                                                                                                                                     |                                                      |                                        |  |  |
|                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                                        |  |  |

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO / PSO MAPPING:

|          | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    | PSO'S |    |    |     |     |     |
|----------|------------------|----|----|----|----|----|----|----|----|-------|----|----|-----|-----|-----|
| COURSE   | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO    | PO | PO | PSO | PSO | PSO |
| OUTCOMES | 1                | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10    | 11 | 12 | 1   | 2   | 3   |
| CO 1     | 1                | 4  | -  | -  | -  | -  | -  | -  | -  | 2     | -  | -  | -   | -   | -   |
| CO 2     | 2                | 6  | -  | -  | -  | -  | -  | -  | -  | 2     | -  | -  | -   | -   | -   |
| CO 3     | 2                | 6  | 1  | -  | -  | -  | -  | -  | -  | 2     | -  | -  | -   | 1   | -   |
| CO 4     | 2                | 4  | -  | -  | -  | -  | -  | -  | -  | 2     | -  | -  | -   | -   | -   |
| CO 5     | 2                | 4  | 5  | -  | -  | -  | -  | -  | -  | 2     | -  | -  | -   | -   | -   |
| CO 6     | 3                | 5  | 5  | -  | -  | -  | -  | -  | -  | 2     | -  | -  | -   | 2   | -   |

## XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO / PSO

|          |      | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    | PSO'S |    |     |     |     |
|----------|------|------------------|----|----|----|----|----|----|----|----|-------|----|-----|-----|-----|
| COURSE   | PO   | PO               | PO | PO | PO | PO | PO | РО | PO | PO | PO    | PO | PSO | PSO | PSO |
| OUTCOMES | 1    | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11    | 12 | 1   | 2   | 3   |
| CO 1     | 33.3 | 40               | -  | -  | -  | -  | -  | -  | -  | 40 | -     | -  | -   | -   | -   |
| CO 2     | 66.7 | 60               | -  | -  | -  | -  | -  | -  | -  | 40 | -     | -  | -   | -   | -   |
| CO 3     | 66.7 | 60               | 10 | -  | -  | -  | -  | -  | -  | 40 | -     | -  | -   | 50  | -   |
| CO 4     | 66.7 | 40               | -  | -  | -  | -  | -  | -  | -  | 40 | -     | -  | -   | -   | -   |
| CO 5     | 66.7 | 40               | 50 | -  | -  | -  | -  | -  | -  | 40 | -     | -  | -   | -   | -   |
| CO 6     | 100  | 50               | 50 | -  | -  | -  | -  | -  | -  | 40 | -     | -  | -   | 100 | -   |

## XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$   $0 \leq C \leq 5\%$  No correlation
- 1 5 < C< 40% – Low/ Slight
- $\pmb{2}$  40 % < C < 60% – Moderate
- $\boldsymbol{3}$  60%  $\leq$  C < 100% Substantial /High

|          |      | PROGRAM OUTCOMES |    |    |    |    |    |    |    | PSO'S |    |    |     |     |     |
|----------|------|------------------|----|----|----|----|----|----|----|-------|----|----|-----|-----|-----|
| COURSE   | PO   | PO               | PO | PO | PO | PO | PO | PO | РО | PO    | PO | PO | PSO | PSO | PSO |
| OUTCOMES | 1    | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10    | 11 | 12 | 1   | 2   | 3   |
| CO 1     | 1    | 1                | -  | -  | I  | I  | -  | -  | -  | 1     | -  | -  | -   | -   | -   |
| CO 2     | 3    | 3                | -  | -  | I  | I  | -  | -  | -  | 1     | -  | -  | -   | -   | -   |
| CO 3     | 3    | 3                | 1  | -  | -  | -  | -  | -  | -  | 1     | -  | -  | -   | 2   | -   |
| CO 4     | 3    | 1                | -  | -  | -  | -  | -  | -  | -  | 1     | -  | -  | -   | -   | -   |
| CO 5     | 3    | 1                | 2  | -  | -  | -  | -  | -  | -  | 1     | -  | -  | -   | -   | -   |
| CO 6     | 3    | 2                | 2  | -  | -  | -  | -  | -  | -  | 1     | -  | -  | -   | 3   | -   |
| TOTAL    | 16   | 11               | 5  | 0  | 0  | 0  | 0  | 0  | 0  | 6     | 0  | 0  | 0   | 6   | 0   |
| AVERAGE  | 2.66 | 1.83             | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1     | 0  | 0  | 0   | 2   | 0   |

## XVI ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams               | $\checkmark$ | SEE Exams       | $\checkmark$ | Seminars                  | -            |
|-------------------------|--------------|-----------------|--------------|---------------------------|--------------|
| Laboratory<br>Practices | -            | Student Viva    | -            | Certification             | -            |
| Term Paper              | -            | 5 Minutes Video | ~            | Open Ended<br>Experiments | $\checkmark$ |
| Assignments             | -            |                 |              |                           |              |

## XVII ASSESSMENT METHODOLOGY-INDIRECT:

| $\checkmark$ Assessment of mini projects by expert | 3 🗸 | End Semester OBE Feedback |
|----------------------------------------------------|-----|---------------------------|
|----------------------------------------------------|-----|---------------------------|

## XVIII SYLLABUS:

| MODULE I   | MULTISTAGE AMPLIFIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Classification of Amplifiers, Distortion in amplifiers, Different coupling<br>schemes used in amplifiers, Frequency response and Analysis of multistage<br>amplifiers, Cascade amplifier, Darlington pair. Transistor at High Frequency:<br>Hybrid - model of Common Emitter transistor model, $f_{\alpha}$ , $\beta$ and unity gain<br>bandwidth, Gain band width product.                                                                                                                                                                                                                                                                                                                             |
| MODULE II  | FEEDBACK AMPLIFIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | Concepts of feedback – Classification of feedback amplifiers – General characteristics of Negative feedback amplifiers – Effect of Feedback on Amplifier characteristics – Voltage series, Voltage shunt, Current series and Current shunt Feedback configurations .                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MODULE III | OSCILLATORS AND LARGE SIGNAL AMPLIFIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Condition for Oscillations, RC type Oscillators-RC phase shift and<br>Wien-bridge Oscillators, LC type Oscillators –Generalized analysis of LC<br>Oscillators, Hartley and Colpitts Oscillators, Frequency and amplitude<br>stability of Oscillators, Crystal Oscillator.<br>Class - A Power Amplifier- Series fed and Transformer coupled, Conversion<br>Efficiency, Class - B Power Amplifier- Push Pull and Complimentary<br>Symmetry configurations, Conversion Efficiency, Principle of operation of<br>Class - AB and Class - C Amplifiers. Tuned Amplifiers: Single Tuned<br>Amplifiers – Q-factor, frequency response of tuned amplifiers, Concept of<br>stagger tuning and synchronous tuning. |
| MODULE IV  | LINEAR WAVE SHAPING AND SAMPLING GATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Linear wave shaping circuits: High pass RC and low pass RC circuits, response to step and square inputs with different time constants, high pass RC circuit as a differentiator, low pass RC circuit as an integrator. Sampling gates: basic operating principle of sampling gate, uni and bi directional sampling gates.                                                                                                                                                                                                                                                                                                                                                                               |
| MODULE V   | MULTIVIBRATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Multivibrators: Bistable multivibrator, unsymmetrical triggering,<br>symmetricaltriggering; Schmitt trigger; Monostable multivibrator, Astable<br>multivibrator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### **TEXT BOOKS**

- 1. Jacob Millman, Christos C Halkias, "Integrated Electronics" McGraw Hill Education, 2ndEdition, 2010.
- 2. B.N.Yoganarasimhan, "Pulse and Digital Circuits", 2nd Edition, 2011.

#### **REFERENCE BOOKS:**

1. Robert L. Boylestead, Louis Nashelsky, "Electronic Devices and Circuits Theory", PearsonEducation, 11th Edition, 2009.

#### WEB REFERENCES:

1. https://nptel.ac.in/courses/108/108/108108111/

#### COURSE WEB PAGE:

1. https:://lms.iare.ac.in/index?route=course/details&course\_id=192

## XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                           | CO's  | Reference                                                                           |  |  |  |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|      | OBE DISCUSSION                                                                                                                                 |       |                                                                                     |  |  |  |  |  |  |  |  |
| 1    | Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes<br>(CO), Program Outcomes (PO) and CO-PO<br>Mapping | -     | https:<br>//lms.iare.<br>ac.in/index?<br>route=course/<br>details&<br>course_id=456 |  |  |  |  |  |  |  |  |
|      | CONTENT DELIVERY (TH                                                                                                                           | EORY) |                                                                                     |  |  |  |  |  |  |  |  |
| 2    | Classification of amplifiers                                                                                                                   | CO 1  | T1:1.1-1.4                                                                          |  |  |  |  |  |  |  |  |
| 3    | Distortions in amplifiers                                                                                                                      | CO 1  | T1:2.1                                                                              |  |  |  |  |  |  |  |  |
| 4    | Different coupling schemes used in amplifiers                                                                                                  | CO 1  | T1:2.4                                                                              |  |  |  |  |  |  |  |  |
| 5    | Frequency response of multistage amplifiers                                                                                                    | CO 1  | T1:2.4                                                                              |  |  |  |  |  |  |  |  |
| 6    | Analysis of multistage amplifiers                                                                                                              | CO 1  | T1:2.2                                                                              |  |  |  |  |  |  |  |  |
| 7    | Cascode amplifier                                                                                                                              | CO 1  | T1:3.2                                                                              |  |  |  |  |  |  |  |  |
| 8    | Darlington pair                                                                                                                                | CO 1  | T1:3.3                                                                              |  |  |  |  |  |  |  |  |
| 9    | Transistor at High Frequency: Hybrid - model of<br>common emitter transistor model                                                             | CO 1  | T1:4.1-4.3                                                                          |  |  |  |  |  |  |  |  |
| 10   | $f_{\alpha}, \beta$ and unity gain bandwidth, Gain band width product                                                                          | CO 1  | T1:4.4-4.7                                                                          |  |  |  |  |  |  |  |  |
| 11   | The CE current gain with Load, $R_L$                                                                                                           | CO 1  | T1:4.8-4.10                                                                         |  |  |  |  |  |  |  |  |
| 12   | Classification of feedback amplifiers                                                                                                          | CO 2  | T1:4.11,5.1-5.3                                                                     |  |  |  |  |  |  |  |  |
| 13   | General characteristics of negative feedback amplifiers                                                                                        | CO 2  | T1:6.1-6.3                                                                          |  |  |  |  |  |  |  |  |
| 14   | Effect of feedback on amplifier characteristics                                                                                                | CO 2  | T1:6.4                                                                              |  |  |  |  |  |  |  |  |
| 15   | Voltage series feedback amplifier                                                                                                              | CO 2  | T1:7.2                                                                              |  |  |  |  |  |  |  |  |
| 16   | Voltage shunt feedback amplifier                                                                                                               | CO 2  | T1:7.2                                                                              |  |  |  |  |  |  |  |  |
| 17   | Current series feedback amplifier                                                                                                              | CO 2  | T1:8.1-8.3                                                                          |  |  |  |  |  |  |  |  |
| 18   | Current shunt feedback amplifier                                                                                                               | CO 2  | T1:8.4-8.5                                                                          |  |  |  |  |  |  |  |  |
| 19   | Oscillations and condition for oscillations                                                                                                    | CO 3  | T1:9.1-9.3                                                                          |  |  |  |  |  |  |  |  |
| 20   | RC phase shift and wien-bridge oscillators                                                                                                     | CO 3  | T1:9.4-9.7                                                                          |  |  |  |  |  |  |  |  |
| 21   | LC type oscillators and generalized analysis of<br>LC oscillators                                                                              | CO 3  | T1:10.1                                                                             |  |  |  |  |  |  |  |  |
| 22   | Hartley and Colpits oscillators                                                                                                                | CO 3  | T1:10.2                                                                             |  |  |  |  |  |  |  |  |
| 23   | Frequency and amplitude stability of oscillators                                                                                               | CO 3  | T1:10.2                                                                             |  |  |  |  |  |  |  |  |
| 24   | Class A power amplifier- series fed and<br>transformer coupled, conversion efficiency                                                          | CO 4  | T1:10.3                                                                             |  |  |  |  |  |  |  |  |
| 25   | Class B power amplifier- push pull and<br>complimentary symmetry configurations                                                                | CO 4  | T1:10.3                                                                             |  |  |  |  |  |  |  |  |
| 26   | Principle of operation of Class AB and Class C amplifiers.                                                                                     | CO 4  | T1:10.4                                                                             |  |  |  |  |  |  |  |  |

| S.No                          | Topics to be covered                                                                        | CO's      | Reference      |  |  |  |  |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------|-----------|----------------|--|--|--|--|--|--|
| 27                            | Single tuned amplifiers – Q-factor, frequency response of tuned amplifiers                  | CO 4      | T4:10.1        |  |  |  |  |  |  |
| 28                            | Concept of stagger tuning and synchronous tuning                                            | CO 4      | T4:10.2        |  |  |  |  |  |  |
| 29                            | Response of High pass RC circuit to step and<br>square inputs with different time constants | CO 5      | T4:10.4        |  |  |  |  |  |  |
| 30                            | Response of Low pass RC circuit to step and<br>square inputs with different time constants  | CO 5      | T4:10.4        |  |  |  |  |  |  |
| 31                            | Sampling gates: basic operating principle of sampling gate.                                 | CO 5      | T4:10.5        |  |  |  |  |  |  |
| 32                            | High pass RC circuit as a differentiator and low<br>pass RC circuit as an integrator        | CO 5      | T4:10.5        |  |  |  |  |  |  |
| 33                            | Uni and bi-directional sampling gates                                                       | CO 5      | T4:10.6-10.7   |  |  |  |  |  |  |
| 34                            | Bistable multivibrator                                                                      | CO 6      | T4:10.8        |  |  |  |  |  |  |
| 35                            | Unsymmetrical triggering of Bistable<br>multivibrator                                       | CO 6      | T4:10.8        |  |  |  |  |  |  |
| 36                            | Symmetrical triggering of Bistable multivibrator                                            | CO 6      | T3:3.12        |  |  |  |  |  |  |
| 37                            | Monostable multivibrator                                                                    | CO 6      | T3:3.12        |  |  |  |  |  |  |
| 38                            | Triggering of Monostable multivibrator                                                      | CO 6      | T3:3.12        |  |  |  |  |  |  |
| 39                            | Astable multivibrator.                                                                      | CO 6      | T3:3.12        |  |  |  |  |  |  |
| 40                            | Schmitt trigger.                                                                            | CO 6      | T3:3.12        |  |  |  |  |  |  |
| PROBLEM SOLVING/ CASE STUDIES |                                                                                             |           |                |  |  |  |  |  |  |
| 41                            | Analysis of multistage amplifiers                                                           | CO 1      | T1:2.2         |  |  |  |  |  |  |
| 42                            | Cascode amplifier and Darlington pair                                                       | CO 1      | T2:1.12        |  |  |  |  |  |  |
| 43                            | Voltage series and voltage shunt feedback<br>amplifiers                                     | CO 2      | T1:3.2         |  |  |  |  |  |  |
| 44                            | Current series and current shunt feedback amplifiers                                        | CO 2      | T1:3.6         |  |  |  |  |  |  |
| 45                            | Oscillators designing and condition for<br>oscillations                                     | CO 3      | T1:3.6         |  |  |  |  |  |  |
| 46                            | Large signal amplifiers                                                                     | CO 4      | T1:4.1         |  |  |  |  |  |  |
| 47                            | Linear wave shaping circuits.                                                               | CO 4      | T1:4.1-4.8     |  |  |  |  |  |  |
| 48                            | Sampling gates.                                                                             | CO 5      | T1:5.8         |  |  |  |  |  |  |
| 49                            | Designing of Bistable, Monostable and Astable multivibrators.                               | CO 6      | T2:10.4 R2:7.2 |  |  |  |  |  |  |
| 50                            | Designing of Schmitt trigger circuit.                                                       | CO 6      | T2:10.4 R2:7.2 |  |  |  |  |  |  |
|                               | DISCUSSION ON DEFINITION AND                                                                | TERMINOLO | GY             |  |  |  |  |  |  |
| 51                            | Multistage amplifiers                                                                       | CO 1      | -              |  |  |  |  |  |  |
| 52                            | Feedback amplifiers                                                                         | CO 2      | -              |  |  |  |  |  |  |
| 53                            | Oscillators and large signal amplifiers                                                     | CO 3,CO 4 | -              |  |  |  |  |  |  |
| 54                            | Linear wave shaping and sampling gates                                                      | CO 5      | -              |  |  |  |  |  |  |
| 55                            | Multivibrators                                                                              | CO 6      | -              |  |  |  |  |  |  |
|                               | DISCUSSION ON QUESTION                                                                      | N BANK    |                |  |  |  |  |  |  |
| 56                            | Multistage amplifiers                                                                       | CO 1      | -              |  |  |  |  |  |  |

| S.No | Topics to be covered                    | CO's       | Reference |
|------|-----------------------------------------|------------|-----------|
| 57   | Feedback amplifiers                     | CO 2       | -         |
| 58   | Oscillators and large signal amplifiers | CO 3, CO 4 | -         |
| 59   | Linear wave shaping and sampling gates  | CO 5       | -         |
| 60   | Multivibrators                          | CO 6       | -         |

## Signature of Course Coordinator

## HOD, ECE



# **INSTITUTE OF AERONAUTICAL ENGINEERING** (Autonomous)

Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department         | Electronics and Communication Engineering |                            |         |            |         |  |  |  |
|--------------------|-------------------------------------------|----------------------------|---------|------------|---------|--|--|--|
| Course Title       | Analog Communications                     |                            |         |            |         |  |  |  |
| Course Code        | AECB12                                    | AECB12                     |         |            |         |  |  |  |
| Program            | B.Tech                                    |                            |         |            |         |  |  |  |
| Semester           | IV                                        |                            |         |            |         |  |  |  |
| Course Type        | Core                                      |                            |         |            |         |  |  |  |
| Regulation         | R-18                                      |                            |         |            |         |  |  |  |
|                    |                                           | Theory                     |         | Pract      | tical   |  |  |  |
| Course Structure   | Lecture                                   | Tutorials                  | Credits | Laboratory | Credits |  |  |  |
|                    | 3                                         | 1                          | 4       | -          | -       |  |  |  |
| Course Coordinator | Dr. P. M                                  | Dr. P. Munasamy, Professor |         |            |         |  |  |  |

#### I COURSE OVERVIEW:

Analog communications emphasizes on generation, transmission and reception of audio, video and telephony signals. The course covers representation of signals in time and frequency domain, need of modulation and an effect of noises on the performance of communication systems. Analog communication system principles are used for real world applications of Radio and TV broadcasting systems.

#### **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites                                |
|--------|-------------|----------|----------------------------------------------|
| B.Tech | AECB06      | III      | Electronic Devices and Circuits              |
| B.Tech | AECB08      | III      | Probability Theory and Stochastic<br>Process |

#### **III MARKS DISTRIBUTION:**

| Subject               | SEE Examination | <b>CIE</b> Examination | Total Marks |
|-----------------------|-----------------|------------------------|-------------|
| Analog Communications | 70 Marks        | 30 Marks               | 100         |

#### **IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:**

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | $\checkmark$ | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|---|--------|
| x            | Open Ended Experiments    | x            | Seminars     | x            | Mini Project | x | Videos |
| x            | Others                    |              |              |              |              |   |        |

## **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks.
There could be a maximum of two sub divisions in a question. The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 50 %                          | Understand            |
| 33 %                          | Apply                 |
| 17 %                          | Analyze               |
| 0%                            | Evaluate              |
| 0%                            | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 10 marks for Alternative Assessment Tool (AAT).

| Component          | The      | Total Marks |             |
|--------------------|----------|-------------|-------------|
| Type of Assessment | CIE Exam | AAT         | 100ai Marks |
| CIA Marks          | 20       | 10          | 30          |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table.

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| I   | The elementary signals, fundamental elements of analog communication systems.                       |
|-----|-----------------------------------------------------------------------------------------------------|
| II  | The need of modulation, generation and detection techniques of analog and pulse modulation systems. |
| III | The influence of external and internal noises on the performance of communication systems.          |

## VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

| CO 1 | <b>Illustrate</b> the fundamental equations, generation and detection | Understand |
|------|-----------------------------------------------------------------------|------------|
|      | techniques of amplitude modulations for video signal transmission     |            |
|      | systems                                                               |            |
| CO 2 | Compare bandwidth, power requirements, efficiency for AM and          | Analyze    |
|      | FM analog communication systems                                       |            |
| CO 3 | <b>Outline</b> the generation and detection techniques of frequency   | Understand |
|      | modulated waves used for audio signal transmission systems.           |            |
| CO 4 | Calculate Signal to Noise Ratio (SNR) and noise figure for            | Apply      |
|      | analysis of amplitude and frequency modulation techniques.            |            |
| CO 5 | Make use of the working principles of AM, FM receivers to             | Apply      |
|      | measure selectivity, sensitivity, fidelity and signal to noise ratio. |            |
| CO 6 | <b>Interpret</b> the generation and detection techniques of pulse     | Understand |
|      | modulations for introducing digital communications, A/D               |            |
|      | converters.                                                           |            |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



**BLOOMS TAXONOMY** 

## VIII PROGRAM OUTCOMES:

| <ul> <li>PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.</li> <li>PO 2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.</li> <li>PO 3 Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations</li> <li>PO 4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering activities with an understanding of the limitations</li> </ul>    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.</li> <li>PO 2</li> <li>Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.</li> <li>PO 3</li> <li>Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations</li> <li>PO 4</li> <li>Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</li> <li>PO 5</li> <li>Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering activities with an understanding of the limitations</li> </ul>                                         |
| <ul> <li>complex engineering problems.</li> <li>PO 2</li> <li>Problem analysis: Identify, formulate, review research literature, and<br/>analyze complex engineering problems reaching substantiated conclusions<br/>using first principles of mathematics, natural sciences, and engineering<br/>sciences.</li> <li>PO 3</li> <li>Design/Development of Solutions: Design solutions for complex<br/>Engineering problems and design system components or processes that meet<br/>the specified needs with appropriate consideration for the public health and<br/>safety, and the cultural, societal, and Environmental considerations</li> <li>PO 4</li> <li>Conduct Investigations of Complex Problems: Use research-based<br/>knowledge and research methods including design of experiments, analysis and<br/>interpretation of data, and synthesis of the information to provide valid<br/>conclusions.</li> <li>PO 5</li> <li>Modern Tool Usage: Create, select, and apply appropriate techniques,<br/>resources, and modern Engineering and IT tools including prediction and<br/>modelling to complex Engineering activities with an understanding of the<br/>limitations</li> </ul> |
| <ul> <li>PO 2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.</li> <li>PO 3 Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations</li> <li>PO 4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations</li> </ul>                                                                                                                            |
| <ul> <li>analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.</li> <li>PO 3 Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations</li> <li>PO 4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations</li> </ul>                                                                                                                                                                                                        |
| <ul> <li>vising first principles of mathematics, natural sciences, and engineering sciences.</li> <li>PO 3 Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations</li> <li>PO 4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations</li> </ul>                                                                                                                                                                                                                                                                               |
| <ul> <li>PO 3 Design/Development of Solutions: Design solutions for complex<br/>Engineering problems and design system components or processes that meet<br/>the specified needs with appropriate consideration for the public health and<br/>safety, and the cultural, societal, and Environmental considerations</li> <li>PO 4 Conduct Investigations of Complex Problems: Use research-based<br/>knowledge and research methods including design of experiments, analysis and<br/>interpretation of data, and synthesis of the information to provide valid<br/>conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques,<br/>resources, and modern Engineering and IT tools including prediction and<br/>modelling to complex Engineering activities with an understanding of the<br/>limitations</li> </ul>                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>PO 3 Design/Development of Solutions: Design solutions for complex<br/>Engineering problems and design system components or processes that meet<br/>the specified needs with appropriate consideration for the public health and<br/>safety, and the cultural, societal, and Environmental considerations</li> <li>PO 4 Conduct Investigations of Complex Problems: Use research-based<br/>knowledge and research methods including design of experiments, analysis and<br/>interpretation of data, and synthesis of the information to provide valid<br/>conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques,<br/>resources, and modern Engineering and IT tools including prediction and<br/>modelling to complex Engineering activities with an understanding of the<br/>limitations</li> </ul>                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations</li> <li>PO 4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>PO 4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>PO 4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>PO 4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Rhowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</li> <li>PO 5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PO 5       Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PO 5Modern Tool Usage: Create, select, and apply appropriate techniques,<br>resources, and modern Engineering and IT tools including prediction and<br>modelling to complex Engineering activities with an understanding of the<br>limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| resources, and modern Engineering and IT tools including prediction and<br>modelling to complex Engineering activities with an understanding of the<br>limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| modelling to complex Engineering activities with an understanding of the limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PO 6 <b>The engineer and society:</b> Apply reasoning informed by the contextual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| knowledge to assess societal, health, safety, legal and cultural issues and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| consequent responsibilities relevant to the professional engineering practice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PO 7 Environment and sustainability: Understand the impact of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| professional engineering solutions in societal and environmental contexts, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| demonstrate the knowledge of, and need for sustainable development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PO 8 <b>Ethics:</b> Apply ethical principles and commit to professional ethics and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| responsibilities and norms of the engineering practice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PO 9 Individual and team work: Function effectively as an individual, and as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PO 10 <b>Communication:</b> Communicate effectively on complex engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| activities with the engineering community and with society at large, such as,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| being able to comprehend and write effective reports and design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| documentation, make effective presentations, and give and receive clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Instructions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PO 11 <b>Project management and mance:</b> Demonstrate knowledge and understanding of the angineering and management principles and apply these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| to one's own work, as a member and leader in a team, to manage projects and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| in multidisciplinary environments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PO 12 Life-Long Learning: Becognize the need for and having the proparation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ability to engage in independent and life-long learning in the broadest context                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| of technological change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | PROGRAM OUTCOMES                                   | Strength | Proficiency<br>Assessed by |
|-------|----------------------------------------------------|----------|----------------------------|
| PO 1  | Engineering knowledge: Apply the                   | 3        | SEE / CIE /                |
|       | knowledge of mathematics, science, engineering     |          | AAT                        |
|       | fundamentals, and an engineering specialization    |          |                            |
|       | to the solution of complex engineering problems.   |          |                            |
| PO 2  | Problem analysis: Identify, formulate, review      | 2        | SEE / CIE /                |
|       | research literature, and analyze complex           |          | AAT                        |
|       | engineering problems reaching substantiated        |          |                            |
|       | conclusions using first principles of mathematics, |          |                            |
|       | natural sciences, and engineering sciences.        |          |                            |
| PO 3  | <b>Design/Development of Solutions:</b> Design     | 1        | SEE / CIE /                |
|       | solutions for complex Engineering problems and     |          | AAT                        |
|       | design system components or processes that         |          |                            |
|       | meet the specified needs with appropriate          |          |                            |
|       | consideration for the public health and safety,    |          |                            |
|       | and the cultural, societal, and Environmental      |          |                            |
|       | considerations                                     |          |                            |
| PO 10 | <b>Communication:</b> Communicate effectively on   | 1        | SEE / CIE /                |
|       | complex engineering activities with the            |          | AAT                        |
|       | engineering community and with society at          |          |                            |
|       | large, such as, being able to comprehend and       |          |                            |
|       | write effective reports and design                 |          |                            |
|       | documentation, make effective presentations,       |          |                            |
|       | and give and receive clear instructions            |          |                            |

3 = High; 2 = Medium; 1 = Low

## X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| Р     | ROGRAM SPECIFIC OUTCOMES                     | Strength | Proficiency<br>Assessed by |
|-------|----------------------------------------------|----------|----------------------------|
| PSO 3 | Make use of High Frequency Structure         | 2        | -                          |
|       | Simulator (HFSS) for modeling and evaluating |          |                            |
|       | the patch and smart antennas for wired and   |          |                            |
|       | wireless communication applications.         |          |                            |

3 = High; 2 = Medium; 1 = Low

## XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              | PROGRAM OUTCOMES |              |    |    |    |    |    |    |              | PSO'S |    |     |     |              |
|----------|--------------|------------------|--------------|----|----|----|----|----|----|--------------|-------|----|-----|-----|--------------|
| COURSE   | PO           | PO               | PO           | PO | PO | PO | PO | PO | PO | PO           | PO    | PO | PSO | PSO | PSO          |
| OUTCOMES | 1            | 2                | 3            | 4  | 5  | 6  | 7  | 8  | 9  | 10           | 11    | 12 | 1   | 2   | 3            |
| CO 1     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     |    | -   | -   | $\checkmark$ |
| CO 2     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     |    | -   | -   | $\checkmark$ |
| CO 3     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     |    | -   | -   | $\checkmark$ |
| CO 4     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     |    | -   | -   | -            |
| CO 5     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     |    | -   | -   | $\checkmark$ |
| CO 6     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     |    | -   | -   | -            |

# XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| (COs) | POs /<br>PSOs | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                            | No. of key<br>competen-<br>cies |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| CO 1  | PO 1          | <b>Explain</b> the basic concepts, need of modulation and fundamental elements i.e transmitter, receiver, channel by applying the <b>mathematical principles, science</b> and engineering fundamentals.                                                                                                                         | 3                               |
|       | PO 2          | <b>Identify, formulate, review research</b> literature for<br>generation and detection techniques of amplitude<br>modulations and <b>translate</b> the <b>information</b> into the<br><b>graphical form</b> from the provided information and<br>data, develop solutions based on inputs of analog<br>communication systems.    | 5                               |
|       | PO 3          | <b>Design</b> modulations required for 5g,6g technologies for<br><b>complex Engineering problems</b> and <b>customer</b><br><b>needs</b> design system components using <b>creativity</b> by<br><b>innovative solutions</b> ,and implementing them with<br>modern tools such as cadence software, mentor<br>graphics, synopsis. | 3                               |
|       | PO 10         | Students to communicate effectively with the<br>engineering community, <b>write</b> effective <b>reports</b> and<br>documentation, make effective presentations, and give<br>and receive clear instructions.                                                                                                                    | 2                               |
|       | PSO 3         | Develop modulator and demodulator for Wired and Wireless Communication Applications.                                                                                                                                                                                                                                            | 2                               |
| CO 2  | PO 1          | Compare AM and FM analog communication systems<br>and calculate bandwidth, power requirements,<br>efficiency and noise using <b>science and mathematical</b><br><b>principles</b> for solving complex <b>engineering</b><br><b>problems</b>                                                                                     | 3                               |
|       | PO 2          | Understand the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems of<br>power, bandwidth requirements of various modulated<br>waves translate the information into the required form<br>from the provided <b>information and data</b> , develop<br><b>solutions</b> based on inputs      | 5                               |
|       | PO 3          | <b>Design</b> orthogonal modulations schemes required for<br>5g,6g technologies in terms of bandwidth,<br>power,efficiency for <b>complex Engineering problems</b><br>and <b>customer needs</b> design system components using<br><b>creativity</b> by <b>innovative solutions</b> for modern<br>communication technologies     | 3                               |
|       | PO 10         | Students to communicate effectively with the<br>engineering community, <b>write</b> effective <b>reports</b> and<br>documentation, make effective presentations, and give<br>and receive clear instructions.                                                                                                                    | 2                               |
|       | PSO 3         | <b>Develop</b> modulator and demodulator for <b>Wired and</b><br><b>Wireless</b> Communication Applications.                                                                                                                                                                                                                    | 2                               |

| CO 3 | PO 1  | <b>Interpret</b> the generation and detection techniques of<br>frequency modulated waves by using<br><b>mathematical,science principles and engineering</b><br><b>problems</b>                                                                                                                                                                         | 3 |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 2  | Identify, formulate, review research literature for<br>generation and detection techniques of frequency<br>modulation techniques and translate the<br>information into the graphical form from the<br>provided information and data, develop solutions<br>based on inputs of analog communication systems.                                             | 5 |
|      | PO 3  | <b>Design</b> solutions for generation and detection of<br>present generation modulation schemes for <b>complex</b><br><b>Engineering problems</b> by doing <b>innovative</b><br><b>solution</b> and implementing them using <b>modern tools</b><br>such as cadence software, mentor graphics, synopsis<br>with reduction in <b>cost constraints</b> . | 3 |
|      | PO 10 | Students to communicate effectively with the<br>engineering community, <b>write</b> effective <b>reports</b> and<br>documentation, make effective presentations, and give<br>and receive clear instructions.                                                                                                                                           | 2 |
|      | PSO 3 | <b>Develop</b> modulator and demodulator for <b>Wired and</b><br><b>Wireless</b> Communication Applications.                                                                                                                                                                                                                                           | 2 |
| CO 4 | PO 1  | Interpret the internal and extrenal noise sources<br>which effects the communication system by using<br>mathematical principles and engineering<br>problems                                                                                                                                                                                            | 3 |
|      | PO 2  | <b>Understand</b> the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems of<br>noise effect for different modulations, <b>translate</b> the<br>information into calculation of signal to noise ratio<br>from the provided <b>information and data</b> , <b>develop</b><br>solutions based on inputs             | 5 |
|      | PO 10 | Students to communicate effectively with the<br>engineering community, <b>write</b> effective <b>reports</b> and<br>documentation, make effective presentations, and give<br>and receive clear instructions.                                                                                                                                           | 2 |
|      | PSO 3 | <b>Develop</b> smart antennas for 5g and 6g<br>communications , <b>disaster effected areas, miltary</b><br><b>applications</b>                                                                                                                                                                                                                         | 2 |
| CO 5 | PO 1  | Judge the performance of the working principles and<br>operations of TRF and super heterodyne receivers<br>using mathematics and scientific and engineering<br>methodologies.                                                                                                                                                                          | 3 |
|      | PO 2  | Understand the given problem statement and<br>formulate the complex engineering problems of<br>characteristics of a good receiver, translate the<br>information into various parameters from the provided<br>information and data, develop solutions based on<br>inputs                                                                                | 5 |

|      | PO 3  | <b>Design</b> solutions for <b>environmental constraints</b> for<br>communication systems by doing <b>innovative solution</b><br>and <b>implementing</b> them using modern tools such as<br>cadence software, mentor graphics, synopsis.                                                                   | 3 |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 10 | Students to communicate effectively with the<br>engineering community, <b>write</b> effective <b>reports</b> and<br>documentation, make effective presentations, and give<br>and receive clear instructions.                                                                                               | 2 |
|      | PSO 3 | <b>Develop</b> smart antennas for 5g and 6g<br>communications , <b>disaster effected areas, miltary</b><br><b>applications</b>                                                                                                                                                                             | 2 |
| CO 6 | PO 1  | Understand the generation and detection techniques<br>of pulse modulation techniques by using<br>mathematics,science and engineering<br>fundamentals                                                                                                                                                       | 3 |
|      | PO 2  | <b>Understand</b> the given <b>problem statement and</b><br><b>formulate</b> the (complex) <b>engineering problems</b> of<br>pulse modulations and <b>translate</b> the <b>information</b><br>into various parameters from the provided information<br>and data, <b>develop</b> solutions based on inputs. | 5 |
|      | PO 10 | Students to communicate effectively with the<br>engineering community, <b>write</b> effective <b>reports</b> and<br>documentation, make effective presentations, and give<br>and receive clear instructions.                                                                                               | 2 |

## Note: For Key Attributes refer Annexure - ${\bf I}$

## XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |  |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|--|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO   | PSO |  |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |  |
|          | 3  | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2     | 2   |  |
| CO 1     | 3  | 5                | 3  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -   | -     | 2   |  |
| CO 2     | 3  | 5                | 3  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -   | -     | 2   |  |
| CO 3     | 3  | 5                | 3  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -   | -     | 2   |  |
| CO 4     | 3  | 5                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -   | -     | -   |  |
| CO 5     | 3  | 5                | 3  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -   | -     | 2   |  |
| CO 6     | 3  | 5                | -  | -  | -  | -  | -  | -  | -  | 2  | -  |    | -   | -     | -   |  |

## XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |  |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|--|
| COURSE   | PO  | PO               | РО | PO | PO | PO | PO | РО | PO | PO | PO | PO | PSO | PSO   | PSO |  |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |  |
|          | 3   | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2     | 2   |  |
| CO 1     | 100 | 50               | 30 | -  | -  | -  | -  | -  | -  | 40 | -  |    | -   | -     | 100 |  |
| CO 2     | 100 | 50               | 30 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -   | -     | 100 |  |

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |  |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|--|
| COURSE   | PO  | PO               | PO | PO | PO | PO | PO | РО | PO | PO | PO | PO | PSO | PSO   | PSO |  |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |  |
|          | 3   | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2     | 2   |  |
| CO 3     | 100 | 50               | 30 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -   | -     | 100 |  |
| CO 4     | 100 | 50               | -  | -  | -  | -  | -  | -  | -  | 40 | -  |    | -   | -     | -   |  |
| CO 5     | 100 | $\overline{50}$  | 30 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -   | -     | 100 |  |
| CO 6     | 100 | 50               | -  | -  | -  | -  | -  | -  | -  | 40 | -  |    | -   | -     | -   |  |

**XV** COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$  -  $0 \leq C \leq 5\%$  – No correlation

- 1 -5 <C $\leq$  40% Low/ Slight
- $\pmb{2}$  40 % <C < 60% –Moderate

3 - 60% < C < 100% – Substantial /High

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO | PO               | PO | PO | РО | PO | PSO   | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 3  | 2                | 1  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 2   |
| CO 2     | 3  | 2                | 1  | -  | -  | -  | _  | -  | -  | 1  | -  | -  | -     | -   | 2   |
| CO 3     | 3  | 2                | 1  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 2   |
| CO 4     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | -   |
| CO 5     | 3  | 2                | 1  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 2   |
| CO 6     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | -   |
| TOTAL    | 18 | 12               | 4  | 0  | 0  | 0  | 0  | 0  | 0  | 6  | 0  | 0  | 0     | 0   | 8   |
| AVERAGE  | 3  | 2                | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0     | 0   | 2   |

## XVI ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams               | $\checkmark$ | SEE Exams                          | $\checkmark$ | Assignments               | $\checkmark$ |
|-------------------------|--------------|------------------------------------|--------------|---------------------------|--------------|
| Quiz                    | $\checkmark$ | Tech - Talk                        | $\checkmark$ | Certification             | -            |
| Term Paper              | -            | Seminars                           | -            | Student Viva              | -            |
| Laboratory<br>Practices | -            | 5 Minutes Video /<br>Concept Video | ~            | Open Ended<br>Experiments | -            |
| Micro Projects          | -            | -                                  | -            | -                         | -            |

## XVII ASSESSMENT METHODOLOGY-INDIRECT:

| $\checkmark$ | Early Semester Feedback               | $\checkmark$ | End Semester OBE Feedback                   |
|--------------|---------------------------------------|--------------|---------------------------------------------|
| $\checkmark$ | Assessment of activities / Modeling a | and E        | xperimental Tools in Engineering by Experts |

## **XVIII SYLLABUS:**

MODULE I AMPLITUDE MODULATION

|            | Introduction to communication system, Need for modulation, Frequency<br>Division Multiplexing, Amplitude Modulation, Definition, Time domain<br>and frequency domain description, single tone modulation, power relations<br>in AM waves, Generation of AM waves, square law Modulator, Switching<br>modulator, Detection of AM Waves; Square law detector, Envelope<br>detector, Double side band suppressed carrier modulators, time domain and<br>frequency domain description, Generation of DSBSC Waves, Balanced<br>Modulators, Ring Modulator, Coherent detection of DSB-SC Modulated<br>waves, COSTAS Loop. |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODULE II  | SSB MODULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | SSB Modulation: Frequency domain description, Frequency discrimination<br>method for generation of AM SSB Modulated Wave, Time domain<br>description, Phase discrimination method for generating AM SSB<br>Modulated waves. Demodulation of SSB Waves, Vestigial side band<br>modulation: Frequency description, Generation of VSB Modulated wave,<br>Time domain description, Envelop detection of a VSB Wave pulse Carrier,<br>Comparison of AM Techniques, Applications of different AM Systems.                                                                                                                 |
| MODULE III | ANGLE MODULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | <ul> <li>Basic concepts, Frequency Modulation: Single tone frequency modulation,</li> <li>Spectrum Analysis of Sinusoidal FM Wave, Narrow band FM, Wide band</li> <li>FM, Constant Average Power.</li> <li>Transmission bandwidth of FM Wave - Generation of FM Waves, Direct</li> <li>FM, Detection of FM Waves: Balanced Frequency discriminator, Zero</li> <li>crossing detector, Phase locked loop, Comparison of FM and AM.</li> </ul>                                                                                                                                                                         |
| MODULE IV  | NOISE IN ANALOG COMMUNICATION SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Types of Noise: Resistive (Thermal) Noise Source, Shot noise,<br>Extraterrestrial Noise, Arbitrary Noise Sources, White Noise, Narrowband<br>Noise- In phase and quadrature phase components and its Properties,                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | Modeling of Noise Sources, Average Noise Bandwidth, Effective Noise<br>Temperature, Average Noise Figures, Average Noise Figure of cascaded<br>networks.Noise in DSB and SSB System Noise in AM System, Noise in<br>Angle Modulation System, Noise Triangle in Angle Modulation System,<br>Pre-emphasis and de-emphasis.                                                                                                                                                                                                                                                                                            |
| MODULE V   | RECEIVERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Receiver Types -Tuned radio frequency receiver, Superhetrodyne receiver,<br>RF section and Characteristics - Frequency changing and tracking,<br>Intermediate frequency, AGC, FM Receiver, Comparison with AM<br>Receiver, Amplitude limiting. Pulse Modulation: Types of Pulse<br>modulation, PAM (Single polarity, double polarity) PWM: Generation and<br>demodulation of PWM, PPM, Generation and demodulation of PPM, Time<br>Division Multiplexing.                                                                                                                                                           |

### **TEXTBOOKS**

- 1. S. S. Haykin, "Communication Systems", Wiley Eastern, 2nd Edition, 2006.
- 2. Taub, Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 4th Edition, 2013.

## **REFERENCE BOOKS:**

- 1. B.P. Lathi, "Communication Systems, BS Publication", 2nd Edition, 2006.
- 2. John G. Proakis, Masond, Salehi, "Fundamentals of Communication Systems", PEA, 1st Edition,2006

3. George Kennedy, Bernard Davis, "Electronics and Communication System", Tata McGraw Hill, 5th Edition, 2011.

#### WEB REFERENCES:

1. https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-ee46

#### COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details&course\_id=73

## XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                        | CO's            | Reference                                                                                  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------|
|      | OBE DISCUSSION                                                                                                                              |                 |                                                                                            |
| 1    | Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes (CO),<br>Program Outcomes (PO) and CO-PO Mapping | -               | https://lms.<br>iare.ac.in/<br>index?route=<br>course/<br>details\$&<br>\$course_id=<br>73 |
|      | CONTENT DELIVERY (THEO                                                                                                                      | $\mathbf{RY}$ ) |                                                                                            |
| 2    | Introduction to communication system and need for<br>modulation                                                                             | CO 1            | T2 -2.1 to 2.2                                                                             |
| 3    | Time domain and frequency domain description of<br>amplitude modulation                                                                     | CO 1            | TI –1.1 to 2.5                                                                             |
| 4    | Power relations in AM waves                                                                                                                 | CO 1            | T3 –1.1 to<br>1.1.6                                                                        |
| 5    | Generation of AM waves, square law Modulator,<br>Switching modulator                                                                        | CO 1            | T3 -3.2 to<br>3.3.4                                                                        |
| 6    | Detection of AM Waves; Square law detector,<br>Envelope detector                                                                            | CO 1            | R1 -3.3, T3-<br>8.3 to 8.4                                                                 |
| 7    | Time domain and frequency domain description of DSBSC                                                                                       | CO 2            | T3 - 3.4                                                                                   |
| 8    | Generation of DSBSC Waves, Balanced<br>Modulators, Ring Modulator.                                                                          | CO 2            | T3 -3.4.1<br>to3.4.2, T3<br>-8.2.                                                          |
| 9    | Coherent detection of DSB-SC Modulated waves,<br>COSTAS Loop.                                                                               | CO 2            | T3 -3.5.1 to<br>3.5.2                                                                      |
| 10   | Time and frequency Division Multiplexing                                                                                                    | CO 3            | T3 - 4.1 to<br>4.3.4                                                                       |
| 11   | Time domain and frequency domain description of SSBSC                                                                                       | CO 3            | $\begin{array}{r} \hline T3 -4.4 \text{ to} \\ 4.4.5, T2 - 2.14 \end{array}$               |
| 12   | Frequency discrimination method for generation of SSBSC                                                                                     | CO 5            | T3 -9.1 to<br>9.5.2                                                                        |

| 13 | Phase discrimination method for generation of SSBSC                            | CO 4 | R3 –6.1                           |
|----|--------------------------------------------------------------------------------|------|-----------------------------------|
| 14 | Demodulation of SSB Waves                                                      | CO 4 | R3 -6.2 to<br>6.4.6               |
| 15 | Time domain and frequency domain description of VSBSC                          | CO 3 | T2 -6.2 to 6.3                    |
| 16 | Generation of VSB Modulated wave                                               | CO 4 | T3 - 1.2 to<br>1.2.3              |
| 17 | Envelop detection of a VSB Wave pulse Carrier                                  | CO 4 | T3 -1.2.4 to<br>1.4.8             |
| 18 | Comparison of AM techniques, applications of different AM Systems.             | CO 4 | TI –1.1 to 2.5                    |
| 19 | Frequency modulation basic concepts and Single<br>tone frequency modulation    | CO 4 | T3 -1.1 to<br>1.1.6               |
| 20 | Spectrum Analysis of Sinusoidal FM Wave                                        | CO 4 | T3 -3.2 to<br>3.3.4               |
| 21 | Narrow band FM, wide band FM, Constant<br>Average Power.                       | CO 4 | R1 -3.3, T3-<br>8.3 to 8.4        |
| 22 | Transmission bandwidth of FM Wave                                              | CO 4 | T3 - 3.4                          |
| 23 | Generation of FM Waves, Direct FM and indirect FM                              | CO 4 | T3 -3.4.1<br>to3.4.2, T3<br>-8.2. |
| 24 | Detection of FM waves :Balanced Frequency<br>discriminator                     | CO 4 | T3 -3.5.1 to<br>3.5.2             |
| 25 | Phase locked loop,                                                             | CO 4 | T3 - 4.1 to $4.3.4$               |
| 26 | Zero crossing detector, Comparison of FM and AM.                               | CO 4 | T3 -4.4 to<br>4.4.5, T2 $-$ 2.14  |
| 27 | Noise and different types of noise sources                                     | CO 5 | T3 -9.1 to<br>9.5.2               |
| 28 | Narrowband noise- In phase and quadrature phase components                     | CO 5 | R3 -6.1                           |
| 29 | Narrow band FM, wide band FM, Constant<br>Average Power.                       | CO 6 | R3 -6.2 to<br>6.4.6               |
| 30 | Average noise bandwidth, Effective noise<br>Temperature, Average noise figures | CO 5 | T2 -6.2 to 6.3                    |
| 31 | Average Noise Figure of cascaded networks                                      | CO 6 | T3 - 1.2 to 1.2.3                 |
| 32 | Noise in AM System                                                             | CO 6 | T3 -1.2.4 to<br>1.4.8             |
| 33 | Noise in DSB and SSB Systems.                                                  | CO 7 | TI -1.1 to 2.5                    |
| 34 | Noise in Angle Modulation System                                               | CO 7 | T3 -1.1 to<br>1.1.6               |
| 35 | Pre-emphasis and de-emphasis.                                                  | CO 8 | TI –1.1 to 2.5                    |
| 36 | Tuned radio frequency receiver,                                                | CO 8 | T3 -1.1 to<br>1.1.6               |
| 37 | Super hetrodyne receiver, RF section and<br>Characteristics                    | CO 9 | TI –1.1 to 2.5                    |

| 38 | Intermediate frequency, AGC circuits                                          | CO 9    | T3 -1.1 to<br>1.1.6            |
|----|-------------------------------------------------------------------------------|---------|--------------------------------|
| 39 | FM receiver, comparison with AM receiver                                      | CO 10   | T3 -3.5.1 to<br>3.5.2          |
| 40 | PAM generation and demodulation                                               | CO 10   | T3 - 4.1 to $4.3.4$            |
| 41 | Generation and demodulation of PWM                                            | CO 10   | T3 - 4.1 to $4.3.4$            |
| 42 | Generation and demodulation of PPM                                            | CO 10   | T3 - 4.1 to $4.3.4$            |
|    | PROBLEM SOLVING/ CASE ST                                                      | UDIES   |                                |
| 42 | Power, current, voltage relations in AM wave                                  | CO 1    | TI –1.1 to 2.5                 |
| 43 | Design of envelope detector circuit                                           | CO 1    | TI –1.1 to 2.5                 |
| 44 | Time domain and frequency domain equations of AM wave                         | CO 2    | T3 - 3.4                       |
| 45 | Time domain and frequency domain equations of DSBSC.                          | CO 5    | T3 -4.4 to<br>4.4.5, T2 - 2.14 |
| 46 | Time domain and frequency domain equations of SSBSC.                          | CO 4    | R3 -6.2 to<br>6.4.6            |
| 47 | Time domain and frequency domain equations of FM.                             | CO 4    | T2 -6.2 to 6.3                 |
| 48 | Bandwidth and power calculation of FM wave                                    | CO 4    | T2 -6.2 to 6.3                 |
| 49 | Resistive (Thermal) Noise Source, Shot noise                                  | CO 6    | T3 -9.1 to<br>9.5.2            |
| 50 | Average Noise Bandwidth, Effective Noise<br>Temperature, Average oise Figures | CO 5    | R3 -6.1                        |
| 51 | Average Noise Figure of cascaded networks                                     | CO 7    | TI –1.1 to 2.5                 |
| 52 | Noise in AM System, DSBSC, SSBSC                                              | CO 9    | T3 -3.5.1 to<br>3.5.2          |
| 53 | Noise in Angle Modulation System                                              | CO 10   | T3 - 4.1 to $4.3.4$            |
| 54 | Tuned radio frequency receiver                                                | CO 10   | T3 - 4.1 to $4.3.4$            |
| 55 | Super hetrodyne receiver                                                      | CO 10   | T3 - 4.1 to $4.3.4$            |
| 56 | Time Division Multiplexing.                                                   | CO 10   | T3 - 4.1 to<br>4.3.4           |
|    | DISCUSSION OF DEFINITION AND TE                                               | RMINOLO | OGY                            |
| 56 | Amplitude modulation generation and detection                                 | CO 4    | T3 -9.1 to<br>9.5.2            |
| 57 | DSBSC ,SSBSC generation and demodulation                                      | CO 4    | R3 -6.2 to<br>6.4.6            |
| 58 | Angle Modulation                                                              | CO 6    | $T3 - 3.5.1 \\ to 3.5.2$       |
| 59 | Receivers                                                                     | CO 9    | T3 - 4.1 to<br>4.3.4           |

|    | DISCUSSION OF QUESTION BANK                   |           |        |  |  |  |  |  |  |  |
|----|-----------------------------------------------|-----------|--------|--|--|--|--|--|--|--|
| 60 | Amplitude modulation generation and detection | CO 1,2, 3 | R4:2.1 |  |  |  |  |  |  |  |
| 61 | DSBSC ,SSBSC generation and demodulation      | CO 4,11   | T4:7.3 |  |  |  |  |  |  |  |
| 62 | Angle Modulation                              | CO 6,7    | R4:5.1 |  |  |  |  |  |  |  |
| 63 | Receivers                                     | CO 8,11   | T1:7.5 |  |  |  |  |  |  |  |

## Signature of Course Coordinator

## HOD,ECE

## ANNEXURE - I

## **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No.<br>of<br>KCF's |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PO 1         | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                                         | 3                  |
| PO 2         | <ul> <li>Identify, formulate, review research literature, and analyse complex<br/>Engineering problems reaching substantiated conclusions using first<br/>principles of mathematics natural sciences, and Engineering sciences</li> <li>(Problem Analysis).</li> <li>1. Problem or opportunity identification</li> <li>2. Problem statement and system definition</li> <li>3. Problem formulation and abstraction</li> <li>4. Information and data collection</li> <li>5. Model translation</li> <li>6. Validation</li> <li>7. Experimental design</li> <li>8. Solution development or experimentation / Implementation</li> <li>9. Interpretation of results</li> <li>10. Documentation</li> </ul>        | 10                 |
| PO 3         | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> </ul> | 10                 |

|      | <ul> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design process and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | <ul> <li>Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems).</li> <li>1. Knowledge of characteristics of particular materials, equipment, processes, or products</li> <li>2. Workshop and laboratory skills</li> <li>3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.)</li> <li>4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues</li> <li>5. Understanding of appropriate codes of practice and industry standards</li> <li>6. Awareness of quality issues</li> <li>7. Ability to work with technical uncertainty</li> <li>8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes</li> <li>9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques</li> <li>10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems</li> <li>11. Understanding of and ability to apply a systems approach to engineering problems</li> </ul> | 11 |
| PO 5 | engineering problems.<br>Create, select, and apply appropriate techniques, resources, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1  |
|      | <ul> <li>modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).</li> <li>1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŧ  |

| PO 6 | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> </ul> | 5  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 7 | Understand the impact of the professional Engineering solutions in<br>societal and Environmental contexts, and demonstrate the<br>knowledge of, and need for sustainable development (Environment<br>and Sustainability).<br>Impact of the professional Engineering solutions (Not technical)<br>1. Socio economic<br>2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3  |
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           | 3  |
| PO 9 | <ul> <li>Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive their performance</li> <li>3. Self-direction (take a vaguely defined problem and systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project.</li> </ul>                                                                                                                                                                                                                                                                          | 12 |

|       | <ul> <li>6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> |    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 10 | Communicate effectively on complex Engineering activities with the<br>Engineering community and with society at large, such as, being able<br>to comprehend and write effective reports and design documentation,<br>make effective presentations, and give and receive clear instructions<br>(Communication).<br>"Students should demonstrate the ability to communicate effectively<br>in writing / Orally"<br>1. Clarity (Writing)<br>2. Grammar/Punctuation (Writing)<br>3. References (Writing)<br>4. Speaking Style (Oral)<br>5. Subject Matter (Oral)                                                                                                                                                                                                                                                          | 5  |
| PO 11 | <ul> <li>Demonstrate knowledge and understanding of the Engineering and<br/>management principles and apply these to one's own work, as a<br/>member and leader in a team, to manage projects and in<br/>multidisciplinary Environments (Project Management and<br/>Finance).</li> <li>1. Scope Statement</li> <li>2. Critical Success Factors</li> <li>3. Deliverables</li> <li>4. Work Breakdown Structure</li> <li>5. Schedule</li> <li>6. Budget</li> <li>7. Quality</li> <li>8. Human Resources Plan</li> <li>9. Stakeholder List</li> <li>10. Communication</li> <li>11. Risk Register</li> <li>12. Procurement Plan</li> </ul>                                                                                                                                                                                 | 12 |

| PO 12 | <ul> <li>Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning).</li> <li>Project management professional certification / MBA</li> <li>Begin work on advanced degree</li> <li>Keeping current in CSE and advanced engineering concepts</li> <li>Personal continuing education efforts</li> <li>Ongoing learning – stays up with industry trends/ new technology</li> <li>Continued personal development</li> <li>Have learned at least 2-3 new significant skills</li> </ul> | 8 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|       | 8. Have taken up to 80 hours (2 weeks) training per year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |



#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

### **COURSE DESCRIPTION**

| Department         | Electronics and communication Engineering |                 |                 |            |         |
|--------------------|-------------------------------------------|-----------------|-----------------|------------|---------|
| Course Title       | Electrom                                  | agnetic Waves a | and Transmissio | on Lines   |         |
| Course Code        | AECB13                                    |                 |                 |            |         |
| Program            | B.Tech                                    |                 |                 |            |         |
| Semester           | IV                                        |                 |                 |            |         |
| Course Type        | Core                                      |                 |                 |            |         |
| Regulation         | R18                                       |                 |                 |            |         |
|                    |                                           | Theory          |                 | Pract      | tical   |
| Course Structure   | Lecture                                   | Tutorials       | Credits         | Laboratory | Credits |
|                    | 3                                         | 1               | 4               | -          | -       |
| Course Coordinator | Dr. D Srikar, Assistant Professor         |                 |                 |            |         |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites               |
|--------|-------------|----------|-----------------------------|
| B.Tech | AHSB02      | 1        | Linear Algebra and Calculus |
| B.Tech | AHSB03      | 1        | Engineering Physics         |

## **II COURSE OVERVIEW:**

Electromagnetic Waves and Transmission Lines gives the necessary information about the formation of magnetic fields when electric current flows and structures to conduct electromagnetic waves. It covers the fundamental concepts of electro-magnetic wave theory and introduces the basic laws of electromagnetic fields, time varying Maxwell's equations, wave propagation and transmission lines. It provides a platform for advanced courses such as antennas and wave propagation, microwave engineering, transmission via wired links and optical fiber networks.

#### **III MARKS DISTRIBUTION:**

| Subject                    | SEE Examination | CIE Examination | Total Marks |
|----------------------------|-----------------|-----------------|-------------|
| Electromagnetic Theory and | 70 Marks        | 30 Marks        | 100         |
| Transmission Lines         |                 |                 |             |

## IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point               | $\checkmark$ | Chalk & Talk | $\checkmark$ | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|---|--------|
|              | Presentations             |              |              |              |              |   |        |
| x            | Open Ended<br>Experiments | x            | Seminars     | x            | Mini Project | x | Videos |
| x            | Others                    |              |              |              | •            |   | •      |

## **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 10%                           | Remember              |
| 50%                           | Understand            |
| 25%                           | Apply                 |
| 15%                           | Analyze               |
| 0%                            | Evaluate              |
| 0%                            | Create                |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table.

| Concept Video | Tech-talk | Complex Problem Solving |  |
|---------------|-----------|-------------------------|--|
| 40%           | 40%       | 20%                     |  |

## VI COURSE OBJECTIVES:

The students will try to learn:

| Ι   | The basic concepts required to understand various engineering applications involving electromagnetic fields. |
|-----|--------------------------------------------------------------------------------------------------------------|
| II  | The wave propagation characteristics of electromagnetic wave in bounded and unbounded media.                 |
| III | The basic theory of transmission lines, appropriate tools (smith chart) to analyze transmission lines.       |

## VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Describe</b> fundamental laws (Coulomb's and Gauss's) of electrostatic    | Understand |
|------|------------------------------------------------------------------------------|------------|
|      | fields to evaluate the field intensity and flux density of continuous charge |            |
|      | distributions.                                                               |            |
| CO 2 | <b>Demonstrate</b> Biot-Savart's law and Ampere's circuit law to determine   | Understand |
|      | forces due to magnetic fields.                                               |            |
| CO 3 | Apply Maxwell's equations and their applications to time varying fields      | Apply      |
|      | and boundary conditions.                                                     |            |
| CO 4 | <b>Construct</b> the wave equations for both conducting and dielectric media | Apply      |
|      | to derive the relation between electric and magnetic field intensities.      |            |
| CO 5 | <b>Understand</b> the propagation of electromagnetic waves through different | Understand |
|      | media using the concept of uniform plane waves.                              |            |
| CO 6 | Make use of the smith chart as a graphical tool to solve impedance           | Apply      |
|      | matching issues in transmission lines.                                       |            |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



#### **BLOOMS TAXONOMY**

## VIII PROGRAM OUTCOMES:

|      | Program Outcomes                                                                   |
|------|------------------------------------------------------------------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science,         |
|      | engineering fundamentals, and an engineering specialization to the solution of     |
|      | complex engineering problems.                                                      |
| PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze     |
|      | complex engineering problems reaching substantiated conclusions using first        |
|      | principles of mathematics, natural sciences, and engineering sciences.             |
| PO 3 | <b>Design/Development of Solutions:</b> Design solutions for complex engineering   |
|      | problems and design system components or processes that meet the specified needs   |
|      | with appropriate consideration for the public health and safety, and the cultural, |
|      | societal, and environmental considerations                                         |

|       | Program Outcomes                                                                   |
|-------|------------------------------------------------------------------------------------|
| PO 4  | Conduct Investigations of Complex Problems: Use research-based                     |
|       | knowledge and research methods including design of experiments, analysis and       |
|       | interpretation of data, and synthesis of the information to provide valid          |
|       | conclusions.                                                                       |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques,               |
|       | resources, and modern engineering and IT tools including prediction and modelling  |
|       | to complex engineering activities with an understanding of the limitations         |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual               |
|       | knowledge to assess societal, health, safety, legal and cultural issues and the    |
|       | consequent responsibilities relevant to the professional engineering practice.     |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional   |
|       | engineering solutions in societal and environmental contexts, and demonstrate the  |
|       | knowledge of, and need for sustainable development.                                |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and      |
|       | responsibilities and norms of the engineering practice.                            |
| PO 9  | Individual and team work: Function effectively as an individual, and as a          |
|       | member or leader in diverse teams, and in multidisciplinary settings.              |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities    |
|       | with the engineering community and with society at large, such as, being able to   |
|       | comprehend and write effective reports and design documentation, make effective    |
|       | presentations, and give and receive clear instructions.                            |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding     |
|       | of the engineering and management principles and apply these to one's own work,    |
|       | as a member and leader in a team, to manage projects and in multidisciplinary      |
|       | environments.                                                                      |
| PO 12 | Life-Long Learning: Recognize the need for and having the preparation and          |
|       | ability to engage in independent and life-long learning in the broadest context of |
|       | technological change                                                               |

## IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | PROGRAM OUTCOMES                                     | Strength | Proficiency<br>Assessed by |
|------|------------------------------------------------------|----------|----------------------------|
| PO 1 | Engineering knowledge: Apply the knowledge of        | 3        | SEE/CIE/AAT                |
|      | mathematics, science, engineering fundamentals,      |          |                            |
|      | and an engineering specialization to the solution of |          |                            |
|      | complex engineering problems.                        |          |                            |
| PO 2 | Problem analysis: Identify, formulate, review        | 2        | SEE/CIE/AAT                |
|      | research literature, and analyze complex engineering |          |                            |
|      | problems reaching substantiated conclusions using    |          |                            |
|      | first principles of mathematics, natural sciences,   |          |                            |
|      | and engineering sciences.                            |          |                            |
| PO 3 | Design/Development of Solutions: Design              | 2        | SEE/CIE/AAT                |
|      | solutions for complex engineering problems and       |          |                            |
|      | design system components or processes that meet      |          |                            |
|      | the specified needs with appropriate consideration   |          |                            |
|      | for the public health and safety, and the cultural,  |          |                            |
|      | societal, and environmental considerations.          |          |                            |

3 = High; 2 = Medium; 1 = Low

## X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | PROGRAM SPECIFIC OUTCOMES                                                                                                                                                  | Strength | Proficiency<br>Assessed by |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PSO 3 | Make use of high frequency structure simulator<br>(HFSS) for modeling and evaluating the patch and<br>smart antennas for wired and wireless<br>communication applications. | 2        | -                          |

3 = High; 2 = Medium; 1 = Low

## XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              | PROGRAM OUTCOMES |              |    |    |    |    |    |    |    |    |    | PSO'S |     |              |
|----------|--------------|------------------|--------------|----|----|----|----|----|----|----|----|----|-------|-----|--------------|
| COURSE   | PO           | PO               | PO           | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO   | PSO | PSO          |
| OUTCOMES | 1            | 2                | 3            | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3            |
| CO 1     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | -  | -  |    | -     | -   | -            |
| CO 2     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -            |
| CO 3     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | $\checkmark$ |
| CO 4     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | -  | -  |    | -     | -   | -            |
| CO 5     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | $\checkmark$ |
| CO 6     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | -  | -  |    | -     | -   | $\checkmark$ |

## XII JUSTIFICATIONS FOR CO – PO / PSO MAPPING - DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                    | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | <b>Explain</b> fundamental laws of static electric fields to<br>evaluate the field intensity and flux density of various<br>charge distributions <b>by applying the knowledge of</b><br><b>mathematics and engineering fundamentals</b> | 3                                      |
|                    | PO 2          | <b>Identify</b> the fundamental laws of static electric fields to<br>evaluate the field intensity and flux density of various<br>charge distributions <b>by using principles of</b><br><b>mathematics.</b>                              | 2                                      |
| CO 2               | PO 1          | <b>Apply</b> the knowledge of mathematics, engineering<br>fundamentals to develop Biot-Savart's law and ampere's<br>circuit law <b>to determine forces due to magnetic</b><br><b>fields.</b>                                            | 3                                      |
|                    | PO 2          | <b>Demonstrate</b> Biot-Savart's law and Ampere's circuit law<br>to determine forces due to magnetic fields <b>by using the</b><br><b>principles of mathematics and engineering sciences.</b>                                           | 2                                      |
| CO 3               | PO 1          | Apply Maxwell's equations and their application to time<br>varying fields and boundary conditions to solve complex<br>engineering problems.                                                                                             | 3                                      |
|                    | PO 2          | Distinguish between homogeneous and isotropic<br>boundary conditions by using the principles of<br>mathematics and engineering sciences.                                                                                                | 2                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                            | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 3          | Analyze complex engineering problems reaching<br>substantiated conclusions by applying Maxwell's<br>equations and their application to time varying<br>fields and boundary conditions.                                          | 2                                      |
|                    | PSO 3         | Make use of High Frequency Structure Simulator (HFSS)<br>for modeling and evaluating the Patch and Smart<br>Antennas for Wired and Wireless Communication<br>Applications.                                                      | 2                                      |
| CO 4               | PO 1          | Apply the knowledge of mathematics, science, engineering<br>fundamentals to construct the wave equations for both<br>conducting and dielectric media to derive the relation<br>between Electric and Magnetic field intensities. | 3                                      |
|                    | PO 2          | <b>Construct</b> the wave equations for both conducting and dielectric media to derive the relation between Electric and Magnetic field intensities by using the principles of mathematics and engineering sciences.            | 2                                      |
|                    | PO 3          | Analyze complex engineering problems reaching<br>substantiated conclusions to construct the wave<br>equations for dielectric and conducting media.                                                                              | 1                                      |
| CO 5               | PO 1          | Understand the propagation of electromagnetic waves<br>through different media using the the knowledge of<br>mathematics, science and engineering<br>fundamentals.                                                              | 3                                      |
|                    | PO 2          | <b>Distinguish</b> wave propagation characteristics through different media <b>using complex engineering problems.</b>                                                                                                          | 2                                      |
|                    | PO 3          | Analyze complex engineering problems that meet the specified needs with appropriate consideration to describe the wave propagation characteristics.                                                                             | 1                                      |
|                    | PSO 3         | Make use of High Frequency Structure Simulator (HFSS)<br>for modeling and evaluating the Patch and Smart<br>Antennas for Wired and Wireless Communication<br>Applications.                                                      | 2                                      |
| CO 6               | PO 1          | <b>Describe</b> the transmission lines, its equivalent circuit and explain their characteristics for various wave lengths to solve complex engineering problems.                                                                | 3                                      |
|                    | PO 2          | Make use of principles of mathematics, natural sciences,<br>and engineering sciences to describe the transmission lines,<br>its equivalent circuit and explain their characteristics for<br>various wave lengths.               | 2                                      |
|                    | PSO 3         | Make use of High Frequency Structure Simulator (HFSS)<br>for modeling and evaluating the Patch and Smart<br>Antennas for Wired and Wireless Communication<br>Applications.                                                      | 2                                      |

Note: For Key Attributes refer Annexure -  ${\bf I}$ 

## XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO / PSO MAP-**PING:**

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | РО | PO | PO | PO | PO | PSO   | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
|          | 3  | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2     | 2   | 2   |
| CO 1     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 2     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 3     | 3  | 2                | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | 2   |
| CO 4     | 3  | 2                | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 5     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | -  | _  | -  | -     | -   | 2   |
| CO 6     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | 2   |

#### PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO XIV

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO  | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO   | PSO | PSO |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
|          | 3   | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2     | 2   | 2   |
| CO 1     | 100 | -                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 2     | 100 | 20               | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 3     | 100 | 20               | 20 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | 100 |
| CO 4     | 100 | 20               | 10 | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |
| CO 5     | 100 | 20               | -  | -  |    | -  | -  | -  | -  | -  | -  | -  | -     | -   | 100 |
| CO 6     | 100 | 100              | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | 100 |

**XV** COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- 1 -5 <C $\leq$  40% Low/ Slight
- ${\it 2}$  40 % < C < 60% Moderate

3 -  $60\% \leq C < 100\%$  – Substantial /High

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | РО | PO | PO | PO | PO    | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
| CO 1     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   | -   |
| CO 2     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   | -   |
| CO 3     | 3  | 2                | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   | 2   |
| CO 4     | 3  | 2                | 1  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   | -   |
| CO 5     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   | 2   |
| CO 6     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   | 2   |
| TOTAL    | 18 | 12               | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0   | 0   | 6   |
| AVERAGE  | 3  | 2                | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0   | 0   | 2   |

## XVI ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams      | $\checkmark$ | SEE Exams       | $\checkmark$ | Assignments   | $\checkmark$ |
|----------------|--------------|-----------------|--------------|---------------|--------------|
| Quiz           | $\checkmark$ | Tech - Talk     | -            | Certification | -            |
| Term Paper     | -            | Seminars        | -            | Student Viva  | -            |
| Laboratory     | -            | 5 Minutes Video | -            | Open Ended    | -            |
| Practices      |              | / Concept Video |              | Experiments   |              |
| Micro Projects | -            | -               | -            | -             | -            |

## XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback                         | $\checkmark$ | End Semester OBE Feedback      |
|--------------|-------------------------------------------------|--------------|--------------------------------|
| $\checkmark$ | Assessment of activities / Modeling and Experim | nental To    | ools in Engineering by Experts |

## XVIII SYLLABUS:

| MODULE I   | ELECTROSTATICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <b>Electrostatic fields:</b> Coulomb's law, electric field intensity, fields due to different charge distributions; Electric flux density, gauss law and its applications; Scalar electric potential; Energy density, illustrative problems; Convection and conduction currents; Dielectric constant, isotropic and homogeneous dielectrics; Continuity equation and relaxation time, conductivity, power absorbed in conductor, Poisson's and laplace's equations; Capacitance; Method of images; Illustrative problems.                                                                                                                                                     |
| MODULE II  | MAGNETOSTATICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | <ul> <li>Magneto statics: Biot-savart law; Ampere's circuital law and applications;</li> <li>Magnetic flux density; Magnetic scalar and vector potentials; Forces due to</li> <li>magnetic fields; Ampere's force law; Magnetic boundary conditions; Inductances</li> <li>and magnetic energy; Illustrative problems.</li> <li>Maxwell's Equations (Time Varying Fields): Faraday's law; Inconsistency of</li> <li>ampere's law for Time Varying Fields and definition for Displacement Current</li> <li>density; Maxwell's equations in differential form, integral form and word</li> <li>Statements; Conductors and dielectrics-characterization; Loss Tangent.</li> </ul> |
| MODULE III | UNIFORM PLANE WAVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | <ul> <li>Uniform plane waves: Wave equations for conducting and perfect dielectric media; Relation between E and H; Wave propagation in lossless and conducting media; Intrinsic Impedance; Skin Depth; Polarization, Illustrative Problems.</li> <li>Reflection/refraction of plane waves: Reflection and refraction at normal incidence, reflection and refraction at oblique incidence; Standing waves; Brewster angle, critical Angle, total internal reflection, surface impedance; Poynting vector &amp; poynting theorem-applications; Power Loss in plane conductor; Illustrative problems.</li> </ul>                                                                |
| MODULE IV  | TRANSMISSION LINES CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Transmission lines characteristics: Types; Transmission line Parameters;<br>Transmission line Equations; Characteristic Impedance, propagation constant;<br>Phase and group velocities; Infinite line concepts, Loss less /low loss transmission<br>line characterization; condition for distortion less and minimum attenuation in<br>transmission lines; Loading- types of loading; Illustrative problems.                                                                                                                                                                                                                                                                  |

| MODULE V | UHF TRANSMISSION LINES AND APPLICATIONS                                                           |
|----------|---------------------------------------------------------------------------------------------------|
|          | UHF Transmission Lines & Applications: Input impedance relations; SC and OC                       |
|          | Lines; Reflection coefficient, VSWR; UHF Lines as Circuit Elements, $\lambda/4$ , $\lambda/2$ and |
|          | $\lambda/8$ Lines- impedance transformations, significance of Zmin and Zmax ; Smith               |
|          | chart-configuration and applications; Single and double stub matching; Illustrative               |
|          | problems.                                                                                         |

#### **TEXTBOOKS**

- 1. Matthew N.O. Sadiku, "Elements of Electromagnetic", Oxford University Press, 4th Edition, 2009.
- 2. E.C. Jordan, K.G. Balmain, "Electromagnetic waves and Radiating Systems", PHIlearning, 2nd Edition, 2000.
- 3. Umesh Sinha, Satya Prakashan, "Transmission lines and Networks", Tech IndiaPublications, 1st Edition, 2010.

#### **REFERENCE BOOKS:**

- 1. Nathan Ida, "Engineering Electromagnetic", Springer (India) Pvt. Ltd, 2nd Edition, 2005
- 2. William H. Hayt Jr., John A. Buck, "Engineering electromagnetic", Tata McGraw Hill, 7th Edition, 2006.
- 3. G. Sashibushana Rao, "Electromagnetic Field theory and Transmission Lines, Wiley India, 2013.
- 4. John D. Ryder, "Networks, Lines and Fields", PHI learning, 2nd Edition,1999

#### WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

#### COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details&course\_id=75

#### XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                        | CO's  | Reference                                                                    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------|
|      | OBE DISCUSSION                                                                                                                              |       |                                                                              |
| 1    | Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes (CO),<br>Program Outcomes (PO) and CO-PO Mapping | -     | https://lms.iare.ac.in<br>/index?route=course<br>/details & course<br>_id=75 |
|      | CONTENT DELIVERY (THE                                                                                                                       | EORY) |                                                                              |
| 2    | Remember vector calculus: del operator;                                                                                                     | CO 1  | T1: 3.1 to 3.8                                                               |
| 3    | Gradient, divergence and curl of a vector.                                                                                                  | CO 1  | T1: 3.1 to 3.8                                                               |
| 4    | Illustrate the concepts of Coulomb's law and Gauss's law to point, line charges.                                                            | CO 1  | T1: 3.1 to 3.8,                                                              |
| 5    | Illustrate the concepts of coulomb's law to surface charges.                                                                                | CO 1  | T1: 4.3 to 4.4,4.6,4.7                                                       |
| 6    | Illustrate the concepts of gauss's law to surface charges.                                                                                  | CO 1  | T1: 4.3 to 4.4,4.6,4.7                                                       |

| 7  | Illustrate the concepts of coulomb's law to volume charges.                                                                                        | CO 1 | T1: 3.1 to 3.8                    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------|
| 8  | Illustrate the concepts of gauss's law to volume charges.                                                                                          | CO 1 | T1: 3.1 to 3.8                    |
| 9  | Understand the concepts of Electric flux density.                                                                                                  | CO 1 | T1: 3.1 to 3.8                    |
| 10 | Remember the concept of Scalar electric potential.                                                                                                 | CO 1 | T1: 3.1 to 3.8                    |
| 11 | Illustrate the concept of Energy density, problems;                                                                                                | CO 1 | T1: 3.1 to 3.8<br>R2: 1.8 to 1.9  |
| 12 | Understand the concepts of Conductors and dielectrics-characterization.                                                                            | CO 1 | T1: 3.1 to 3.8<br>R2: 1.8 to 1.9  |
| 13 | Convection and conduction currents;                                                                                                                | CO 1 | T1: 4.3 to 4.4,4.6,4.7            |
| 14 | Understand the concept of Dielectric constant,<br>isotropic and homogeneous dielectrics; Continuity<br>equation and relaxation time, conductivity. | CO 1 | T1: 3.1 to 3.8,<br>R2: 1.8 to 1.9 |
| 15 | Remember the concept of power absorbed in<br>conductor, Poisson's and Laplace's equations;                                                         | CO 1 | T1: 4.3 to 4.7,<br>R2: 7.1        |
| 16 | Remember the concept of Capacitance: Parallel plate, co axial, spherical capacitors                                                                | CO 1 | T1: 4.3 to 4.4,4.6,4.7,<br>R2-7.1 |
| 17 | Spherical capacitors                                                                                                                               | CO 1 | T1: 4.3 to 4.4,4.6,4.7            |
| 18 | Understand the concept of Method of images                                                                                                         | CO 1 | T1: 4.3 to 4.4,4.6,4.7            |
| 19 | Remember the concept of Magneto statics:<br>Biot-Savart's law;                                                                                     | CO 2 | T1: 4.3 to 4.4,4.6,4.7<br>R2: 7.1 |
| 20 | Ampere's circuital law and applications; Magnetic flux density;                                                                                    | CO 2 | T1: 4.3 to 4.4,4.6,4.7<br>R2: 7.1 |
| 21 | Remember the concept of Magnetic scalar and vector potentials; Forces due to magnetic fields;                                                      | CO 2 | T1: 4.3 to 4.4,4.6,4.7<br>R2: 7.1 |
| 22 | Ampere's force law; Boundary conditions:                                                                                                           | CO 2 | T1: 4.3 to 4.7 R2:7.1             |
| 23 | Remember the concept of Dielectric- dielectric, dielectric conductor interfaces;                                                                   | CO 3 | T1: 7.1 to<br>7.2,4.8,7.6,7.8     |
| 24 | Inductances and magnetic energy; Illustrative problems;                                                                                            | CO 2 | T1: 7.1 to<br>7.2,4.8,7.6,7.8     |
| 25 | Maxwell's equations (Time varying fields): Faraday's law;                                                                                          | CO 3 | T1: 7.1 to<br>7.2,4.8,7.6,7.8     |
| 26 | Inconsistency of ampere's law for time varying fields.                                                                                             | CO 3 | T1: 7.1 to<br>7.2,4.8,7.6,7.8     |
| 27 | Remember the concept of definition for displacement current density;                                                                               | CO 3 | T1: 7.1 to<br>7.2,4.8,7.6,7.8     |
| 28 | Maxwell's equations in differential form, integral form and word Statements.                                                                       | CO 3 | T1: 8.2 to 8.5                    |
| 29 | Uniform plane waves: Wave equations for conducting<br>and perfect dielectric media.                                                                | CO 4 | T1: 9.2 to 9.3                    |
| 30 | Remember the concept of Relation between E and H;<br>Wave propagation in lossless and conducting media.                                            | CO 4 | T1: 9.3 to 9.4                    |
| 31 | Loss tangent, Intrinsic impedance; Skin depth;<br>Polarization, Illustrative problems.                                                             | CO 4 | T1: 9.4 to 9.5                    |
| 32 | Reflection/refraction of plane waves: Reflection and<br>refraction at normal incidence, reflection and<br>refraction at oblique incidence;         | CO 5 | T1: 9.5 to 9.6                    |

| 33 | Standing waves; Brewster angle, critical angle, total internal reflection.   | CO 5    | T1: 9.6 to 9.7        |  |  |  |
|----|------------------------------------------------------------------------------|---------|-----------------------|--|--|--|
| 34 | Surface impedance                                                            | CO 5    | T1: 9.7 to 9.8        |  |  |  |
| 35 | Poynting vector and poynting theorem                                         | CO 5    | T1: 9.8 to 9.9        |  |  |  |
| 36 | Power loss in plane conductor;                                               | CO 5    | T1: 9.9 to 9.10       |  |  |  |
| 37 | Transmission line characteristics: Types;<br>Transmission line parameters;   | CO 6    | T3: 1.9 to1.12        |  |  |  |
| 38 | Transmission line equations; Characteristic impedance, propagation constant; | CO 6    | T3: 1.9 to1.15        |  |  |  |
| 39 | Understand the concept of phase and group velocities;                        | CO 6    | T3: 1.9 to1.17        |  |  |  |
| 40 | Understand the concept of infinite line concepts.                            | CO 6    | T3: 5.4 to 5.5        |  |  |  |
| 41 | Loss less transmission line characterization.                                | CO 6    | T3: 5.4 to 5.7        |  |  |  |
|    | PROBLEM SOLVING/ CASE                                                        | STUDIES | ·                     |  |  |  |
| 42 | Problems on gauss law                                                        | CO 1    | T1: 4.2-4.13.         |  |  |  |
| 43 | Problems on coulomb's law and E                                              | CO 1    | T1: 4.2-4.13.         |  |  |  |
| 44 | Problems on line charge                                                      | CO 1    | T1: 7.1-7.13          |  |  |  |
| 45 | Problems on surface and volume charge                                        | CO 1    | T1: 7.1-7.13          |  |  |  |
| 46 | Problems on magnetic energy                                                  | CO 2    | T1: 9.1-9.8,          |  |  |  |
| 47 | Problems on H and B                                                          | CO 2    | T1: 11.2 R2: 10.4     |  |  |  |
| 48 | Problems on displacement current density CO 3 T1:                            |         | T1: 11.3 R2: 10.5     |  |  |  |
| 49 | Problems on wave equations                                                   | CO 4    | T1: 11.11-11.12       |  |  |  |
| 50 | Problems on dielectrics                                                      | CO 3    | T1: 11.13-11.14       |  |  |  |
| 51 | Problems on intrinsic impedance                                              | CO 4    | T1: 11.18, R2: 10.13  |  |  |  |
| 52 | Problems on reflection and refraction                                        | CO 5    | T1: 11.2 R2: 10.4     |  |  |  |
| 53 | Problems on poynting theorem                                                 | CO 5    | T1: 11.3 R2: 10.5     |  |  |  |
| 54 | Problems on transmission lines                                               | CO 6    | T1 :13.6, R2: 12.6    |  |  |  |
| 55 | Problems on stub matching                                                    | CO 6    | T1: 13.11, R2: 12.10  |  |  |  |
| 56 | Problems on lossless transmission lines                                      | CO 6    | T1: 13.15, R2: 12.17  |  |  |  |
|    | DISCUSSION ON DEFINITION AND                                                 | TERMINO | LOGY                  |  |  |  |
| 57 | Electrostatics                                                               | CO 1    | T1: 1.1-19- 4.1-4.25  |  |  |  |
| 58 | Magnetostatics                                                               | CO 2    | T1: 7.1-7.32          |  |  |  |
| 59 | Uniform plane waves                                                          | CO 5    | T1: 8.1-8.10, 9.1-9.6 |  |  |  |
| 60 | Transmission line characteristicsCO 6T1: 11.1-1                              |         | T1: 11.1-11.18        |  |  |  |
| 61 | UHF Transmission line and applications                                       | CO 6    | T1: 13.1-13.25        |  |  |  |
|    | DISCUSSION ON QUESTION BANK                                                  |         |                       |  |  |  |
| 57 | Electrostatics                                                               | CO 1    | 1.1-19- 4.1-4.25      |  |  |  |
| 58 | Magnetostatics                                                               | CO 2    | T1: 7.1-7.32          |  |  |  |
| 59 | Uniform plane waves                                                          | CO 5    | T1: 8.1-8.10, 9.1-9.6 |  |  |  |
| 60 | Transmission line characteristics                                            | CO 6    | T1: 11.1-11.18        |  |  |  |
| 61 | UHF Transmission line and applications                                       | CO 6    | T1: 13.1-13.25        |  |  |  |

## ANNEXURE - I

## **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No.<br>of<br>KCF's |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PO 1         | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                  |
| PO 2         | Identify, formulate, review research literature, and analyse complexEngineering problems reaching substantiated conclusions using firstprinciples of mathematics natural sciences, and Engineering sciences(Problem Analysis).1. Problem or opportunity identification2. Problem statement and system definition3. Problem formulation and abstraction4. Information and data collection5. Model translation6. Validation7. Experimental design8. Solution development or experimentation / Implementation9. Interpretation of results10. Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                 |
| PO 3         | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design process and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> </ul> | 10                 |

| experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems).         1. Knowledge of characteristics of particular materials, equipment, processes, or products         2. Workshop and laboratory skills         3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.)         4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues         5. Understanding of engineering principles and the ability to apply them to analyze key engineering processes         9. Ability to work with technical uncertainty         8. Understanding of engineering principles and the ability to apply them to analyze key engineering processes         9. Ability to work with technical uncertainty         8. Understanding of engineering principles and the ability to apply them to analyze key engineering processes         9. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems         11. Understanding of and ability to apply a systems approach to engineering protivities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowhedge to assees societal, health, safety, legal and cultural issu                                                                                                                                                                              | PO 4 | Use research-based knowledge and research methods including design of                            | 11 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------|----|
| PO 6       Apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems       1         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and tothard subtanting of the regimering activities within the context of the solved groups and the solution of the regimering processes       1         PO 5       Create, select, and apply appropriate techniques resources and modeling techniques       1         PO 6       Apply reasoning informed by the context and knowledge to assess societal, health, safety, legal and cultural subsus and the context of congineering problems.       1         PO 7       Understanding of the requirement for engineering activities with an understanding of the limitations (Modern Tool Usage).       5         PO 7       Understanding of the requirement of regimeering activities within that context       3         and meta development       4. Awareness of the framework of relevant techniques in a diversities within that context of engineering activities within that context       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering activities within that context       5         Nordedge of management techniques which may be used to achieve engineering activitities witha that context       5                                                                                                                                                                                                   |      | experiments, analysis and interpretation of data, and synthesis of the                           |    |
| Complex Problems).       1. Knowledge of characteristics of particular materials, equipment, processes, or products         2. Workshop and laboratory skills       3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.)         4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues         5. Understanding of appropriate codes of practice and industry standards         6. Awareness of nature of intellectual property and contractual issues         7. Ability to work with technical uncertainty         8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes         9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling to complex Engineering activities with an understanding of and obelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         PO 5       Create, select, and apply appropriate techniques, resources, and modern technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and culturul issues and the consequent responsibilities relevant to the professional engineering activities and the contextual soveredge or ansignering processes       5         PO 6       Apply reasoning informed by the contextual knowledge to aschieve engineering objectives within that context                                                                                                                                                    |      | Information to provide valid conclusions (Conduct Investigations of                              |    |
| PO 6       Awareness of the advectorial materials, equipment, processes, or products         2. Workshop and laboratory skills       3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.)         4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues         5. Understanding of appropriate codes of practice and industry standards         6. Awareness of quality issues         7. Ability to work with technical uncertainty         8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes         9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques         10. Ability to apply quantitative methods and computer software relevant to their engineering groblems.         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering and IT tools including prediction and modelling to complex Engineering and T tools including practice (The Engineer and Society).         1. Knowledge of understanding of commercial and economic context of engineering in formed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering activities within that context       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societ                                                                                                                                            |      | Complex Problems).                                                                               |    |
| PD0 5       Create, select, and apply appropriate techniques, resources, and modern Engineering activities within an understanding of conservation and modeling to complex Engineering activities within that context and modeling to complex for the professional engineering processes.       1         PO 5       Create, select, and apply appropriate techniques which may be used to achieve engineering processes.       1         PO 5       Create, select, and apply appropriate techniques for an sources of systems and components through the use of analytical methods and modeling techniques.       1         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling techniques.       1         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering problems.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering processes.       5         PO 7       Understanding of the requirement for engineering activities on the application solutions (Not technical literature search tools.       5         PO 7       Understanding of the requirement for engineering activities in cluding precisional Engineering activities including personnel, health, safety, and risk (including environmental contexts, and demonstrate the knowledge of, and subjectives within that context       5 <tr< th=""><th></th><th>1. Knowledge of characteristics of particular materials, equipment,</th><th></th></tr<>                                              |      | 1. Knowledge of characteristics of particular materials, equipment,                              |    |
| PO 5       Create, select, and apply appropriate techniques, resources, and modern for a billity to apply quantitative methods and conducts of the imitations (Modern Tool Usage).       1         PO 5       Create, select, and apply appropriate techniques, resources, and modern techniques to the professional engineering practice and modeling techniques in the professional engineering practice and modeling techniques         PO 5       Create, select, and apply appropriate techniques, resources, and modern techniques in the professional engineering practice and modeling techniques       1         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering and Tt tools including prediction and modeling techniques in the professional engineering and the transmitter techniques in the professional engineering and the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         .       Nuderstanding of the requirement for engineering solutions in societal and moder requirement for engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       5         .       Nuderstanding of the requirement for engineering activities to promote sustainable development (Environment and Sustainability).       3         .                                                                                                                  |      | 2 Workshop and laboratory skills                                                                 |    |
| b. Observations of concernes in thick complexity technology development, etc.)         4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues         5. Understanding of appropriate codes of practice and industry standards         6. Awareness of quality issues         7. Ability to work with technical uncertainty         8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes         9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques         10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering processes       5         2. Knowledge of management techniques which may be                                                                                                                                                                                |      | 3. Understanding of contexts in which engineering knowledge can be                               |    |
| etc.)       4. Understanding use of technical literature and other information sources<br>Awareness of nature of intellectual property and contractual issues         5. Understanding of appropriate codes of practice and industry standards         6. Awareness of quality issues         7. Ability to work with technical uncertainty         8. Understanding of engineering principles and the ability to apply them<br>to analyse key engineering processes         9. Ability to identify, classify and describe the performance of systems<br>and components through the use of analytical methods and modeling<br>techniques         10. Ability to apply quantitative methods and computer software relevant<br>to their engineering discipline, in order to solve engineering problems       1         11. Understanding of and ability to apply a systems approach to<br>engineering activities with an understanding of the limitations (Modern<br>Tool Usage).       1         12. Computer software / simulation packages / diagnostic equipment /<br>technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal,<br>health, safety, legal and cultural issues and the consequent responsibilities<br>relevant to the professional engineering practice (The Engineer and<br>Society).       5         1. Knowledge and understanding of commercial and economic context of<br>engineering objectives within that context       3         3. Understanding of the requirement for engineering activities to promote<br>sustainable development       4. Awareness of the framework of relevant legal requirements governing<br>engineering activit                                                                                                                             |      | applied (example, operations and management, technology development,                             |    |
| 4. Understanding use of technical literature and other information sources<br>Awareness of nature of intellectual property and contractual issues         5. Understanding of appropriate codes of practice and industry standards         6. Awareness of quality issues         7. Ability to work with technical uncertainty         8. Understanding of engineering principles and the ability to apply them<br>to analyse key engineering processes         9. Ability to identify, classify and describe the performance of systems<br>and components through the use of analytical methods and modeling<br>techniques         10. Ability to apply quantitative methods and computer software relevant<br>to their engineering discipline, in order to solve engineering problems         11. Understanding of and ability to apply a systems approach to<br>engineering and IT tools including prediction and modelling to complex<br>Engineering activities with an understanding of the limitations (Modern<br>Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment /<br>technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal,<br>health, safety, legal and cultural issues and the consequent responsibilities<br>relevant to the professional engineering practice (The Engineer and<br>Society).       5         1. Knowledge of management techniques which may be used to achieve<br>engineering processes       2. Knowledge of management techniques which may be used to achieve<br>engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote<br>sustainable development                                                                                      |      | etc.)                                                                                            |    |
| Awareness of nature of intellectual property and contractual issues       5. Understanding of appropriate codes of practice and industry standards         6. Awareness of quality issues       7. Ability to work with technical uncertainty         8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes       9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques         10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems       1         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         I. Knowledge of management techniques which may be used to achieve engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development       4         A Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental contexts, and demonstrate the knowledge of, and heavenoty).       3         PO 7       Understanding of the need for a high level of professional and ethical conduct in engineering. </th <th></th> <th>4. Understanding use of technical literature and other information sources</th> <th></th>                  |      | 4. Understanding use of technical literature and other information sources                       |    |
| 5. Understanding of appropriate codes of practice and industry standards         6. Awareness of quality issues         7. Ability to work with technical uncertainty         8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes         9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques         10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems         11. Understanding of and ability to apply a systems approach to engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development       4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         7       Understanding of the need for a high level of professional and ethical conduct in engineering.<                                                                                                                                             |      | Awareness of nature of intellectual property and contractual issues                              |    |
| 6. Awareness of quality issues       7. Ability to work with technical uncertainty         8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes       9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques         10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems       1         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development       4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         PO 7       Understanding of the need for a high level of professional and ethical conduct in engineering.       3         PO 7       Understanding of the need                                                                                                                                                |      | 5. Understanding of appropriate codes of practice and industry standards                         |    |
| 7. Ability to work with technical uncertainty       8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes         9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques       10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems       11. Understanding of and ability to apply a systems approach to engineering problems.         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         Nowledge of management techniques which may be used to achieve engineering opicetives within that context       5         Nowledge of management techniques which may be used to achieve engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         PO 7       Understanding of the need for a high level of professional and ethical conduct in engineering.       3         PO 7       Understanding of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).<                                                                                                   |      | 6. Awareness of quality issues                                                                   |    |
| 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes       9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques         10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems       1         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering and T tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering policitives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development       4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         700 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for a high level of professional and ethical conduct in engineering.       3 <th></th> <th>7. Ability to work with technical uncertainty</th> <th></th>            |      | 7. Ability to work with technical uncertainty                                                    |    |
| to analyse key engineering processes       9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques       10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         Nowledge and understanding of commercial and economic context of engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development       4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         5. Understanding of the need for a high level of professional and ethical conduct in engineering.       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         PO 7       Un                                                                                                                     |      | 8. Understanding of engineering principles and the ability to apply them                         |    |
| 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques       10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems         10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems       1         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering processes       2. Knowledge of management techniques which may be used to achieve engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development       4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and                                                                          |      | to analyse key engineering processes                                                             |    |
| and components through the use of analytical methods and modeling techniques       10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems         11. Understanding of and ability to apply a systems approach to engineering problems.       1         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering processes       2. Knowledge of management techniques which may be used to achieve engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development         4. Awareness of the framework of relevant legal requirements governing engineering.       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         PO 7       Understand the impact of the profess                                                                                                                                      |      | 9. Ability to identify, classify and describe the performance of systems                         |    |
| techniques       10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems       11. Understanding of and ability to apply a systems approach to engineering problems.         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering processes       2. Knowledge of management techniques which may be used to achieve engineering processes       5. Understanding of the requirement for engineering activities to promote sustainable development         4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         5. Understanding of the need for a high level of professional and ethical conduct in engineering.       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sus                                                                                                   |      | and components through the use of analytical methods and modeling                                |    |
| 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems       11. Understanding of and ability to apply a systems approach to engineering problems.         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering objectives within that context       3       5         2. Knowledge of management techniques which may be used to achieve engineering objectives within that context       3       10. Understanding of the requirement for engineering activities to promote sustainable development       4         4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3       3         5. Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge                                                                                                                      |      | techniques                                                                                       |    |
| bit their engineering discipline, in order to solve engineering problems       11. Understanding of and ability to apply a systems approach to engineering problems.         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering processes       2. Knowledge of management techniques which may be used to achieve engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development         4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). <th></th> <th>10. Ability to apply quantitative methods and computer software relevant</th> <th></th> |      | 10. Ability to apply quantitative methods and computer software relevant                         |    |
| 11. Understanding of and ability to apply a systems approach to engineering problems.       1         PO 5       Create, select, and apply appropriate techniques, resources, and modern Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering processes       2. Knowledge of management techniques which may be used to achieve engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development       4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         5. Understanding of the need for a high level of professional and ethical conduct in engineering.       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         Impact of the professional Engineering solutions (Not technical)       1. Socio economic       2. Political       3                                                                                                                                                                      |      | to their engineering discipline, in order to solve engineering problems                          |    |
| PO 5       Create, select, and apply appropriate techniques, resources, and modern       1         Engineering and IT tools including prediction and modelling to complex       Engineering activities with an understanding of the limitations (Modern Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering objectives within that context       5         2. Knowledge of management techniques which may be used to achieve engineering objectives within that context       5         3. Understanding of the requirement for engineering activities to promote sustainable development       4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       5         5. Understanding of the need for a high level of professional and ethical conduct in engineering.       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         Impact of the professional Engineering solutions (Not technical)                                                                                                                                                                                         |      | 11. Understanding of and ability to apply a systems approach to                                  |    |
| PO 5       Create, select, and apply appropriate techniques, resources, and modern<br>Engineering and IT tools including prediction and modelling to complex<br>Engineering activities with an understanding of the limitations (Modern<br>Tool Usage).       1         1. Computer software / simulation packages / diagnostic equipment /<br>technical library resources / literature search tools.       5         PO 6       Apply reasoning informed by the contextual knowledge to assess societal,<br>health, safety, legal and cultural issues and the consequent responsibilities<br>relevant to the professional engineering practice (The Engineer and<br>Society).       5         1. Knowledge and understanding of commercial and economic context of<br>engineering processes       5         2. Knowledge of management techniques which may be used to achieve<br>engineering objectives within that context       5         3. Understanding of the requirement for engineering activities to promote<br>sustainable development       4. Awareness of the framework of relevant legal requirements governing<br>engineering activities, including personnel, health, safety, and risk<br>(including environmental risk) issues       3         5. Understanding of the need for a high level of professional and ethical<br>conduct in engineering.       3         PO 7       Understand the impact of the professional Engineering solutions in<br>societal and Environmental contexts, and demonstrate the knowledge of,<br>and need for sustainable development (Environment and<br>Sustainability).       3         Impact of the professional Engineering solutions (Not technical)       1. Socie economic         2. Political       3                                                                                                                               |      | engineering problems.                                                                            |    |
| Engineering and 11 tools including prediction and modeling to complex<br>Engineering activities with an understanding of the limitations (Modern<br>Tool Usage).         1. Computer software / simulation packages / diagnostic equipment /<br>technical library resources / literature search tools.         PO 6       Apply reasoning informed by the contextual knowledge to assess societal,<br>health, safety, legal and cultural issues and the consequent responsibilities<br>relevant to the professional engineering practice (The Engineer and<br>Society).       5         1. Knowledge and understanding of commercial and economic context of<br>engineering processes       5         2. Knowledge of management techniques which may be used to achieve<br>engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote<br>sustainable development         4. Awareness of the framework of relevant legal requirements governing<br>engineering activities, including personnel, health, safety, and risk<br>(including environmental risk) issues       3         5. Understanding of the need for a high level of professional and ethical<br>conduct in engineering.       3         PO 7       Understand the impact of the professional Engineering solutions in<br>societal and Environmental contexts, and demonstrate the knowledge of,<br>and need for sustainable development (Environment and<br>Sustainability).       3         Impact of the professional Engineering solutions (Not technical)       1. Socio economic         2. Political       3       Environmental                                                                                                                                                                                                                          | PO 5 | Create, select, and apply appropriate techniques, resources, and modern                          | 1  |
| Tool Usage).       1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering processes       2. Knowledge of management techniques which may be used to achieve engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development         4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3. Understanding of the nequirement for professional and ethical conduct in engineering.         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         Impact of the professional Engineering solutions (Not technical)       1. Socio economic         2. Political       3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Engineering and 11 tools including prediction and modelling to complex                           |    |
| 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.         PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering processes       2.         2. Knowledge of management techniques which may be used to achieve engineering objectives within that context       3.         3. Understanding of the requirement for engineering activities to promote sustainable development       4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         5. Understanding of the need for a high level of professional and ethical conduct in engineering.       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         Impact of the professional Engineering solutions (Not technical)       1. Socio economic         2. Political       3       Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Tool Usago)                                                                                      |    |
| PO 6       Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).       5         1. Knowledge and understanding of commercial and economic context of engineering processes       2. Knowledge of management techniques which may be used to achieve engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development         4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       3         5. Understanding of the need for a high level of professional and ethical conduct in engineering.       3         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         Impact of the professional Engineering solutions (Not technical)       1. Socie occonomic       2. Political                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 1 Computer software / simulation packages / diagnostic equipment /                               |    |
| PO 6Apply reasoning informed by the contextual knowledge to assess societal,<br>health, safety, legal and cultural issues and the consequent responsibilities<br>relevant to the professional engineering practice (The Engineer and<br>Society).51. Knowledge and understanding of commercial and economic context of<br>engineering processes52. Knowledge of management techniques which may be used to achieve<br>engineering objectives within that context<br>3. Understanding of the requirement for engineering activities to promote<br>sustainable development<br>4. Awareness of the framework of relevant legal requirements governing<br>engineering activities, including personnel, health, safety, and risk<br>(including environmental risk) issues<br>5. Understanding of the need for a high level of professional and ethical<br>conduct in engineering.3PO 7Understand the impact of the professional Engineering solutions in<br>societal and Environmental contexts, and demonstrate the knowledge of,<br>and need for sustainable development (Environment and<br>Sustainability).<br>Impact of the professional Engineering solutions (Not technical)<br>1. Socio economic<br>2. Political<br>3 Environmental3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | technical library resources / literature search tools.                                           |    |
| <ul> <li>PO 7</li> <li>PO 7</li> <li>Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).</li> <li>Inderstanding of the professional Engineering solutions in societal and Environmental Engineering solutions (Not technical)</li> <li>Societal and Environmental Engineering solutions (Not technical)</li> <li>Societal and Engineering activities</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO 6 | Apply reasoning informed by the contextual knowledge to assess societal                          | 5  |
| <ul> <li>relevant to the professional engineering practice (The Engineer and Society).         <ol> <li>Knowledge and understanding of commercial and economic context of engineering processes</li> <li>Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>Understanding of the requirement for engineering activities to promote sustainable development</li> <li>Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>Understanding of the need for a high level of professional and ethical conduct in engineering.</li> </ol> </li> <li>PO 7 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100  | health safety legal and cultural issues and the consequent responsibilities                      | 0  |
| <ul> <li>Society).         <ol> <li>Knowledge and understanding of commercial and economic context of engineering processes</li> <li>Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>Understanding of the requirement for engineering activities to promote sustainable development</li> <li>Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>Understanding of the need for a high level of professional and ethical conduct in engineering.</li> </ol> </li> <li>PO 7 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).             <ol> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>Socie economic</li> <li>Political</li> <li>Environmental</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | relevant to the professional engineering practice ( <b>The Engineer and</b>                      |    |
| <ul> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> <li>PO 7 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).</li> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>1. Socio economic</li> <li>2. Political</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | Society).                                                                                        |    |
| engineering processes       2. Knowledge of management techniques which may be used to achieve engineering objectives within that context       3. Understanding of the requirement for engineering activities to promote sustainable development         4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues       5. Understanding of the need for a high level of professional and ethical conduct in engineering.         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         Impact of the professional Engineering solutions (Not technical)       1. Socio economic         2. Political       3 Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 1. Knowledge and understanding of commercial and economic context of                             |    |
| <ul> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> <li>PO 7 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).</li> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>1. Socio economic</li> <li>2. Political</li> <li>3. Environmental</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | engineering processes                                                                            |    |
| engineering objectives within that context         3. Understanding of the requirement for engineering activities to promote sustainable development         4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues         5. Understanding of the need for a high level of professional and ethical conduct in engineering.         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         Impact of the professional Engineering solutions (Not technical)       1. Socio economic         2. Political       3 Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 2. Knowledge of management techniques which may be used to achieve                               |    |
| <ul> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> <li>PO 7 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).</li> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>1. Socio economic</li> <li>2. Political</li> <li>3. Environmental</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | engineering objectives within that context                                                       |    |
| sustainable development         4. Awareness of the framework of relevant legal requirements governing         engineering activities, including personnel, health, safety, and risk         (including environmental risk) issues         5. Understanding of the need for a high level of professional and ethical         conduct in engineering.         PO 7         Understand the impact of the professional Engineering solutions in         societal and Environmental contexts, and demonstrate the knowledge of,         and need for sustainable development (Environment and         Sustainability).         Impact of the professional Engineering solutions (Not technical)         1. Socio economic         2. Political         3 Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 3. Understanding of the requirement for engineering activities to promote                        |    |
| <ul> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> <li>PO 7 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical)         <ol> <li>Socio economic</li> <li>Political</li> <li>Environmental</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | sustainable development                                                                          |    |
| <ul> <li>engineering activities, including personnel, health, safety, and risk<br/>(including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical<br/>conduct in engineering.</li> <li>PO 7 Understand the impact of the professional Engineering solutions in<br/>societal and Environmental contexts, and demonstrate the knowledge of,<br/>and need for sustainable development (Environment and<br/>Sustainability).</li> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>1. Socio economic</li> <li>2. Political</li> <li>3 Environmental</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 4. Awareness of the framework of relevant legal requirements governing                           |    |
| Including environmental risk) issues         5. Understanding of the need for a high level of professional and ethical conduct in engineering.         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).         Impact of the professional Engineering solutions (Not technical)         1. Socio economic         2. Political         3 Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | engineering activities, including personnel, health, safety, and risk                            |    |
| 3. Understanding of the need for a high level of professional and ethical conduct in engineering.         PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         Impact of the professional Engineering solutions (Not technical)       1. Socio economic       2. Political         3. Environmental       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | (including environmental risk) issues                                                            |    |
| PO 7       Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).       3         Impact of the professional Engineering solutions (Not technical)       1. Socio economic         2. Political       3 Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 5. Understanding of the need for a high level of professional and ethical conduct in ongineering |    |
| <b>PO</b> 7 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).<br>Impact of the professional Engineering solutions (Not technical) <ol> <li>Socio economic</li> <li>Political</li> <li>Environmental</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | conduct in engineering.                                                                          | 0  |
| societal and Environmental contexts, and demonstrate the knowledge of,<br>and need for sustainable development (Environment and<br>Sustainability).<br>Impact of the professional Engineering solutions (Not technical)<br>1. Socio economic<br>2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PU 7 | Understand the impact of the professional Engineering solutions in                               | 3  |
| Sustainability).<br>Impact of the professional Engineering solutions (Not technical)<br>1. Socio economic<br>2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | societal and Environmental contexts, and demonstrate the knowledge of,                           |    |
| Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Sustainability)                                                                                  |    |
| 1. Socio economic<br>2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Impact of the professional Engineering solutions (Not technical)                                 |    |
| 2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1. Socio economic                                                                                |    |
| 3 Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2. Political                                                                                     |    |
| 0. Entrionnent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 3. Environmental                                                                                 |    |

| PO 8  | Apply ethical principles and commit to professional ethics and                 | 3  |
|-------|--------------------------------------------------------------------------------|----|
|       | 1. Comprises four components: ability to make informed ethical choices         |    |
|       | knowledge of professional codes of ethics, evaluates the ethical dimensions    |    |
|       | of professional practice, and demonstrates ethical behavior.                   |    |
|       | 2. Stood up for what they believed in                                          |    |
|       | 3. High degree of trust and integrity                                          |    |
| PO 9  | Function effectively as an individual, and as a member or leader in diverse    | 12 |
|       | 1 Independence                                                                 |    |
|       | 2. Maturity – requiring only the achievement of goals to drive their           |    |
|       | 2. Maturity requiring only the achievement of goals to drive their performance |    |
|       | 3 Self-direction (take a vaguely defined problem and systematically work       |    |
|       | to resolution)                                                                 |    |
|       | 4. Teams are used during the classroom periods, in the hands-on labs,          |    |
|       | and in the design projects.                                                    |    |
|       | 5. Some teams change for eight-week industry oriented Mini-Project, and        |    |
|       | for the seventeen -week design project.                                        |    |
|       |                                                                                |    |
|       | 6. Instruction on effective teamwork and project management is provided        |    |
|       | along with an appropriate textbook for reference                               |    |
|       | 7. Teamwork is important not only for helping the students know their          |    |
|       | classmates but also in completing assignments.                                 |    |
|       | 8. Students also are responsible for evaluating each other's performance,      |    |
|       | which is then reflected in the final grade.                                    |    |
|       | 9. Subjective evidence from senior students shows that the friendships         |    |
|       | and teamwork extends into the Junior years, and for some of those              |    |
|       | 10 Ability to work with all levels of people in an organization                |    |
|       | 10. Ability to work with an levels of people in an organization                |    |
|       | 12 Demonstrated ability to work well with a team                               |    |
| PO 10 | Communicate effectively on complex Engineering activities with the             | 5  |
| 1010  | Engineering community and with society at large such as being able to          | 0  |
|       | comprehend and write effective reports and design documentation, make          |    |
|       | effective presentations, and give and receive clear instructions               |    |
|       | (Communication).                                                               |    |
|       | "Students should demonstrate the ability to communicate effectively in         |    |
|       | writing / Orally"                                                              |    |
|       | 1. Clarity (Writing)                                                           |    |
|       | 2. Grammar/Punctuation (Writing)                                               |    |
|       | 3. References (Writing)                                                        |    |
|       | 4. Speaking Style (Oral)                                                       |    |
|       | 5. Subject Matter (Oral)                                                       |    |

| PO 11 | Demonstrate knowledge and understanding of the Engineering and              | 12 |
|-------|-----------------------------------------------------------------------------|----|
|       | management principles and apply these to one's own work, as a member        |    |
|       | and leader in a team, to manage projects and in multidisciplinary           |    |
|       | <b>Environments</b> ( <b>Project Management and Finance</b> ).              |    |
|       | 1. Scope Statement                                                          |    |
|       | 2. Critical Success Factors                                                 |    |
|       | 3. Deliverables                                                             |    |
|       | 4. Work Breakdown Structure                                                 |    |
|       | 5. Schedule                                                                 |    |
|       | 6. Budget                                                                   |    |
|       | 7. Quality                                                                  |    |
|       | 8. Human Resources Plan                                                     |    |
|       | 9. Stakeholder List                                                         |    |
|       | 10. Communication                                                           |    |
|       | 11. Risk Register                                                           |    |
|       | 12. Procurement Plan                                                        |    |
| PO 12 | Recognize the need for and have the preparation and ability to engage in    | 8  |
|       | independent and life-long learning in the broadest context of technological |    |
|       | change (Life - Long Learning).                                              |    |
|       | 1. Project management professional certification / MBA                      |    |
|       | 2. Begin work on advanced degree                                            |    |
|       | 3. Keeping current in CSE and advanced engineering concepts                 |    |
|       | 4. Personal continuing education efforts                                    |    |
|       | 5. Ongoing learning – stays up with industry trends/ new technology         |    |
|       | 6. Continued personal development                                           |    |
|       | 7. Have learned at least 2-3 new significant skills                         |    |
|       | 8. Have taken up to 80 hours $(2 \text{ weeks})$ training per year          |    |



#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

#### COURSE DESCRIPTION

| Department         | Electronics and Communication Engineering |                     |         |            |         |  |
|--------------------|-------------------------------------------|---------------------|---------|------------|---------|--|
| Course Title       | Signals                                   | Signals and Systems |         |            |         |  |
| Course Code        | AECB14                                    | AECB14              |         |            |         |  |
| Program            | B. Tech                                   |                     |         |            |         |  |
| Semester           | FOUR                                      |                     |         |            |         |  |
| Course Type        | CORE                                      |                     |         |            |         |  |
| Regulation         | R-18                                      |                     |         |            |         |  |
|                    | Theory Practical                          |                     |         |            | tical   |  |
| Course Structure   | Lecture                                   | Tutorials           | Credits | Laboratory | Credits |  |
|                    | 3                                         | -                   | 3       | -          | -       |  |
| Course Coordinator | Ms.V. Bindusree, Assistant professor.     |                     |         |            |         |  |

## I COURSE OVERVIEW:

This course integrates the basic concepts of both continuous and discrete time signals and systems. It covers the linear time invariant systems and their analysis in time and frequency domain, mathematical tools, correlation and convolution of signals, sampling techniques. It provides the necessary background needed for understanding the signal processing and communications.

## **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites                                |
|--------|-------------|----------|----------------------------------------------|
| B.Tech | AHSB11      | III      | Mathematical Transform Techniques            |
| B.Tech | AECB08      | III      | Probability Theory and Stochastic<br>Process |

#### **III MARKS DISTRIBUTION:**

| $\mathbf{Subject}$  | SEE Examination | <b>CIE Examination</b> | Total Marks |
|---------------------|-----------------|------------------------|-------------|
| Signals and Systems | 70 Marks        | 30 Marks               | 100         |

## IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | x | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|---|--------------|---|--------|
| $\checkmark$ | Open Ended Experiments    | $\checkmark$ | Tech talk    | x | Mini Project | x | Videos |
| x            | Others                    |              |              |   |              |   |        |

## **V EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could

be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 20%                           | Remember              |
| 30%                           | Understand            |
| 50 %                          | Apply                 |
| 0 %                           | Analyze               |

## Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

| Component          |          | Total Marks |     |             |  |
|--------------------|----------|-------------|-----|-------------|--|
| Type of Assessment | CIE Exam | Quiz        | AAT | 10tai marks |  |
| CIA Marks          | 20       | 05          | 05  | 30          |  |

## Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

## Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course. Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |  |
|---------------|-----------|-------------------------|--|
| 40%           | 40%       | 20%                     |  |

## VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The representation, classification and analysis of continuous, discrete time signals<br>in time and frequency domains. |
|-----|------------------------------------------------------------------------------------------------------------------------|
| II  | The Fourier transform, Laplace and Z- transforms and their properties to analyze the signals and systems               |
| III | The temporal and spectral characteristics of Random process and the extraction of Signal from noise by filtering.      |
| IV  | The sampling, quantization and reconstruction requirements for digital signal processing applications                  |

## VII COURSE OUTCOMES:

| After su | accessful completion of the course, students should be able to:             |            |
|----------|-----------------------------------------------------------------------------|------------|
| CO 1     | <b>Describe</b> the concept of signals and signal properties for performing | Understand |
|          | mathematical operations on signals.                                         |            |
| CO 2     | Make use of Fourier series and Fourier transforms for calculating           | Apply      |
|          | spectral characteristics of periodic and aperiodic signals.                 |            |
| CO 3     | Utilize the concept of convolution and correlation to determine the         | Apply      |
|          | response of an LTI system.                                                  |            |
| CO 4     | Classify the ideal lowpass, high pass, bandpass, ban stop filters for       | Remember   |
|          | obtaining the behaviour of linear time invariant system.                    |            |
|          |                                                                             |            |

|      | obtaining the behaviour of linear time invariant system.            |            |
|------|---------------------------------------------------------------------|------------|
| CO 5 | Apply the Laplace and Z-transforms . for analysing the frequency    | Apply      |
|      | domain representation of continuous and discrete time signals and   |            |
|      | systems respectively                                                |            |
| CO 6 | <b>Demonstrate</b> the procedure for sampling and reconstruction of | Understand |
|      | bandlimited signals by using various sampling techniques.           |            |

## COURSE KNOWLEDGE COMPETENCY LEVEL



**BLOOMS TAXONOMY**
# VIII PROGRAM OUTCOMES:

|       | Program Outcomes                                                                                                                                                                                                                                                                                          |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                   |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences                                                                   |
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex<br>engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and environmental considerations. |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                 |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                         |
| PO 6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                    |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                     |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                    |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.  |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and<br>understanding of the engineering and management principles and apply these<br>to one's own work, as a member and leader in a team, to manage projects<br>and in multidisciplinary environments.                                       |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                            |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | PROGRAM OUTCOMES                                   | $\mathbf{Strength}$ | Proficiency<br>Assessed by |
|------|----------------------------------------------------|---------------------|----------------------------|
| PO 1 | Engineering knowledge: Apply the                   | 3                   | SEE / CIE /                |
|      | knowledge of mathematics, science, engineering     |                     | AAT                        |
|      | fundamentals, and an engineering specialization    |                     |                            |
|      | to the solution of complex engineering problems.   |                     |                            |
| PO 2 | Problem analysis: Identify, formulate, review      | 2                   | SEE / CIE /                |
|      | research literature, and analyze complex           |                     | AAT                        |
|      | engineering problems reaching substantiated        |                     |                            |
|      | conclusions using first principles of mathematics, |                     |                            |
|      | natural sciences, and engineering sciences         |                     |                            |
| PO 3 | Design/Development of                              | 2                   | SEE / CIE /                |
|      | <b>Solutions:</b> Design/development of solutions: |                     | AAT                        |
|      | Design solutions for complex engineering           |                     |                            |
|      | problems and design system components or           |                     |                            |
|      | processes that meet the specified needs with       |                     |                            |
|      | appropriate consideration for the public health    |                     |                            |
|      | and safety, and the cultural, societal, and        |                     |                            |
|      | environmental considerations.                      |                     |                            |
| PO 5 | Conduct Investigations of Complex                  | 2                   | Lab related                |
|      | <b>Problems:</b> Create, select, and apply         |                     | Exercises                  |
|      | appropriate techniques, resources, and modern      |                     |                            |
|      | engineering and IT tools including prediction      |                     |                            |
|      | and modeling to complex engineering activities     |                     |                            |
|      | with an understanding of the limitations.          |                     |                            |

3 = High; 2 = Medium; 1 = Low

### X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| F     | PROGRAM SPECIFIC OUTCOMES                                                                                                                                                                | ${f Strength}$ | Proficiency<br>Assessed<br>by |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|
| PSO 1 | Synthesize and analyze aircraft structures,<br>propulsion, production technologies and<br>computer aided engineering in aeronautical<br>systems including air traffic controls standards | 2              | Quiz                          |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              | PROGRAM OUTCOMES |              |    |              |    |    |    |    |              |    | PSO'S |              |     |     |
|----------|--------------|------------------|--------------|----|--------------|----|----|----|----|--------------|----|-------|--------------|-----|-----|
| COURSE   | PO           | PO               | PO           | РО | PO           | PO | PO | PO | PO | PO           | PO | PO    | PSO          | PSO | PSO |
| OUTCOMES | 1            | 2                | 3            | 4  | 5            | 6  | 7  | 8  | 9  | 10           | 11 | 12    | 1            | 2   | 3   |
| CO 1     | $\checkmark$ | $\checkmark$     | -            | -  | -            | -  | -  | -  | -  | $\checkmark$ | -  |       | -            | -   | -   |
| CO 2     | -            | $\checkmark$     | -            | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  | -     | $\checkmark$ | -   | -   |
| CO 3     | $\checkmark$ | $\checkmark$     | -            | -  | -            | -  | -  | -  | -  | $\checkmark$ | -  | -     | -            | -   | -   |
| CO 4     | $\checkmark$ | -                | -            | -  | -            | -  | -  | -  | -  | $\checkmark$ | -  | -     | -            | -   | -   |
| CO 5     | -            | $\checkmark$     | $\checkmark$ | -  | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  |       | $\checkmark$ | -   | -   |
| CO 6     | $\checkmark$ | -                | -            | -  | -            | -  | -  | -  | -  | $\checkmark$ | -  | -     | -            | -   | -   |

# XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                        | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Classify (knowledge) basic concepts of signals such<br>as exponential, sinusoidal, impulse, unit step and<br>signum for performing mathematical operations on<br>signals mathematical operations on signals by<br>applying the principles of science for engineering<br>problems.           | 2                                      |
|                    | PO 2          | Understand the given problem statement and<br>formulate the orthogonal signals from the vector<br>algebra using principles of mathematics and<br>engineering science.                                                                                                                       | 4                                      |
|                    | PO 10         | Demonstrate the ablility to communicate effectively in <b>writing</b> design documentation and make effective presentation                                                                                                                                                                  | 1                                      |
| CO 2               | PO 2          | <b>Understand</b> the given <b>problem statement</b> and<br><b>identification</b> of the Fourier transform and apply the<br><b>problem formulation</b> of spectral characteristics of<br>continuous time aperiodic signals and <b>design</b> the<br>frequency response of the given system. | 4                                      |
|                    | PO 5          | <b>Develop</b> the Fourier transform of magnitude and<br>phase using <b>Modern tools and analyze to</b><br><b>complex engineering problems.</b>                                                                                                                                             | 1                                      |
|                    | PO 10         | Demonstrate the ablility to communicate effectively in <b>writing</b> design documentation and make effective presentation                                                                                                                                                                  | 1                                      |
|                    | PSO 1         | <b>Develop</b> the capability to <b>analyze</b> the Fourier transform properties of continuous time signals by <b>implementing</b> the frequency response.                                                                                                                                  | 2                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                           | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 3               | PO 1          | <b>Extend</b> (knowledge, understand, apply) the linearity<br>and time invariance concepts to linear time invariant<br>system for <b>analyzing</b> the behavior of LTI system in<br>both time and frequency domains by applying the<br><b>principles of mathematics</b> and <b>science for</b><br><b>engineering problems.</b> | 3                                      |
|                    | PO 2          | <b>Demonstrate</b> and <b>develop</b> the given problem<br>statement, <b>identification</b> and <b>formulate</b> to <b>design</b><br>simple LTI system in both time and frequency<br>domains. 5                                                                                                                                | 2                                      |
|                    | PO 10         | Demonstrate the ablility to communicate effectively in <b>writing</b> design documentation and make effective presentation                                                                                                                                                                                                     | 1                                      |
| CO 4               | PO 2          | Understand the given problem statement and<br>formulate the (Complex) engineering problems of<br>continuous time and discrete time systems such as<br>Laplace and Z transform from the provided<br>information and data.                                                                                                       | 2                                      |
|                    | PO 5          | <b>Design</b> various transform techniques like Laplace and Z transform using <b>modern tools</b> such as MATLAB software                                                                                                                                                                                                      | 1                                      |
|                    | PO 10         | Demonstrate the ablility to communicate effectively in <b>writing</b> design documentation and make effective presentation                                                                                                                                                                                                     | 1                                      |
|                    | PSO 1         | <b>Develop</b> the capability to <b>analyze</b> the continuous time and discrete signals by <b>implementing</b> the Region of convergence.                                                                                                                                                                                     | 2                                      |
| CO 5               | PO 1          | Understand the sampling theorem for band limited<br>and bandpass signals and reconstruction of samples by<br>filtering methods by applying the the <b>principles of</b><br><b>mathematics</b> and science for <b>engineering</b><br><b>problems</b> .                                                                          | 2                                      |
|                    | PO 10         | Demonstrate the ablility to communicate effectively in <b>writing</b> design documentation and make effective presentation                                                                                                                                                                                                     | 1                                      |
| CO 6               | PO 1          | <b>Understand</b> the sampling theorem for band limited<br>and bandpass signals and reconstruction of samples by<br>filtering methods by applying the the <b>principles of</b><br><b>mathematics</b> and science for <b>engineering</b><br><b>problems</b> .                                                                   | 2                                      |
|                    | PO 10         | Demonstrate the ablility to communicate effectively in <b>writing</b> design documentation and make effective presentation                                                                                                                                                                                                     | 1                                      |

Note: For Key Attributes refer Annexure -  ${\bf I}$ 

#### XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - (PO, PSO) MAP-**PING:**

|          |    |    |    | ]  | Prog | ram | Outc | ome | s  |    |    |    |     | PSO'S |     |
|----------|----|----|----|----|------|-----|------|-----|----|----|----|----|-----|-------|-----|
| COURSE   | PO | PO | PO | PO | PO   | PO  | PO   | РО  | PO | PO | РО | PO | PSO | PSO   | PSO |
| OUTCOMES | 1  | 2  | 3  | 4  | 5    | 6   | 7    | 8   | 9  | 10 | 11 | 12 | 1   | 2     | 3   |
|          | 3  | 10 | 10 | 11 | 1    | 5   | 3    | 3   | 12 | 5  | 12 | 8  | 2   | 2     | 2   |
| CO 1     | 2  | 4  | -  | -  | -    | -   | -    | _   | -  | 1  | _  |    | -   | -     | _   |
| CO 2     | -  | 4  | -  | -  | 1    | -   | _    | -   | -  | 1  | -  | -  | 2   | -     | -   |
| CO 3     | 3  | 2  | -  | -  | -    | -   | -    | -   | -  | 1  | -  | -  | -   | -     | -   |
| CO 4     | 2  | -  | -  | -  | -    | -   | -    | -   | -  | 1  | -  | -  | -   | -     | -   |
| CO 5     | -  | 2  | 2  | -  | 1    | -   | -    | -   | -  | 1  | -  |    | 2   | -     | -   |
| CO 6     | 2  | -  | -  | -  | -    | -   | -    | -   | -  | 1  | -  | -  | -   | -     | -   |

# XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          |      |    |    | I  | Prog | ram | Outc | ome | s  |    |    |    |     | PSO'S |     |
|----------|------|----|----|----|------|-----|------|-----|----|----|----|----|-----|-------|-----|
| COURSE   | PO   | РО | PO | РО | PO   | PO  | РО   | РО  | PO | PO | PO | PO | PSO | PSO   | PSO |
| OUTCOMES | 1    | 2  | 3  | 4  | 5    | 6   | 7    | 8   | 9  | 10 | 11 | 12 | 1   | 2     | 3   |
|          | 3    | 10 | 10 | 11 | 1    | 5   | 3    | 3   | 12 | 5  | 12 | 8  | 2   | 2     | 2   |
| CO 1     | 66.7 | 40 | -  | -  | -    | -   | -    | -   | -  | 10 | -  |    | -   | -     | -   |
| CO 2     | -    | 40 | -  | -  | 20   | -   | -    | -   | -  | 10 | -  | -  | 100 | -     | -   |
| CO 3     | 100  | 40 | -  | -  | -    | -   | -    | -   | -  | 10 | -  | -  | -   | -     | -   |
| CO 4     | 66.7 | -  | -  | I  | -    | -   | -    | -   | -  | 10 | -  | -  | -   | -     | -   |
| CO 5     | -    | 40 | 40 | -  | 100  | -   | -    | -   | -  | 10 | -  |    | 100 | -     | -   |
| CO 6     | 40   | -  | -  | -  | -    | -   | -    | -   | -  | 10 | -  | -  | -   | -     | _   |

**XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):** CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- $1 5 < C \le 40\% Low/$  Slight
- $\pmb{2}$  40 % < C < 60% Moderate
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

|          |     | Program Outcomes |    |    |    |    |    |    |    |    | PSO'S |    |     |     |     |
|----------|-----|------------------|----|----|----|----|----|----|----|----|-------|----|-----|-----|-----|
| COURSE   | PO  | PO               | PO | PO | PO | PO | PO | РО | PO | PO | PO    | PO | PSO | PSO | PSO |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11    | 12 | 1   | 2   | 3   |
| CO 1     | 3   | 2                | -  | -  | -  | -  | -  | -  | -  | 1  | -     | -  | -   | -   |     |
| CO 2     | -   | 2                | -  | -  | 1  | -  | -  | -  | -  | 1  | -     | -  | 3   | -   | -   |
| CO 3     | 3   | 2                | -  | -  | -  | -  | -  | -  | -  | 1  | -     | -  | -   | -   | -   |
| CO 4     | 3   | -                | -  | -  | -  | -  | -  | -  | -  | 1  | _     | -  | -   | -   | -   |
| CO 5     | -   | 2                | 2  | -  | 3  | -  | -  | -  | -  | 1  | -     | -  | 3   | -   | -   |
| CO 6     | 2   | -                | -  | -  | -  | -  | -  | -  | -  | 1  | -     | -  | -   | -   | -   |
| TOTAL    | 8   | 8                | 2  | -  | 4  | -  | -  | -  | -  | 6  | _     | -  | 6   | -   | -   |
| AVERAGE  | 2.6 | 2                | 2  | -  | 2  | -  | -  | -  | -  | 1  | -     | -  | 2   | -   | -   |

| CIE Exams               | $\checkmark$ | SEE Exams                          | $\checkmark$ | Assignments               | $\checkmark$          |
|-------------------------|--------------|------------------------------------|--------------|---------------------------|-----------------------|
| Quiz                    | -            | Tech - Talk                        | $\checkmark$ | Certification             | -                     |
| Term Paper              | -            | Seminars                           | -            | Student Viva              | -                     |
| Laboratory<br>Practices | -            | 5 Minutes Video /<br>Concept Video | ~            | Open Ended<br>Experiments | <ul> <li>✓</li> </ul> |
| Micro Projects          | -            | -                                  | _            | -                         | -                     |

## XVI ASSESSMENT METHODOLOGY DIRECT:

#### XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback               | $\checkmark$ | End Semester OBE Feedback                   |
|--------------|---------------------------------------|--------------|---------------------------------------------|
| $\checkmark$ | Assessment of activities / Modeling a | and E        | xperimental Tools in Engineering by Experts |

#### XVIII SYLLABUS:

| MODULE I   | SIGNAL ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal<br>Space, Signal approximation using Orthogonal functions, Mean Square<br>Error, Closed or complete set of Orthogonal functions, Orthogonally in<br>Complex functions, Exponential and Sinusoidal signals, Concepts of Impulse<br>function, Unit Step function, Signum function.                                                                                                                                                                                                                                                                     |
| MODULE II  | FOURIER SERIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Representation of Fourier series, Continuous time periodic signals,<br>Properties of Fourier Series, Dirichlet's conditions, Trigonometric Fourier<br>Series and Exponential Fourier Series, Complex Fourier spectrum. Fourier<br>Transforms: Deriving Fourier Transform from Fourier series, Fourier<br>Transform of arbitrary signal, Fourier Transform of standard signals, Fourier<br>Transform of Periodic Signals, Properties of Fourier Transform, Fourier<br>Transform involving Impulse function and Signum function, Introduction to<br>Hilbert Transforms.                                                        |
| MODULE III | SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | Linear System, Impulse response, Response of a Linear System, Linear Time<br>Invariant (LTI) System, Linear Time Variant (LTV) System, Transfer<br>function of a LTI System, Filter characteristic of Linear System, Distortion<br>less transmission through a system, Signal bandwidth, System Bandwidth,<br>Ideal LPF, HPF, and BPF characteristics. Causality and Paley-Wiener<br>criterion for physical realization, Relationship between Bandwidth and rise<br>time, Convolution and Correlation of Signals, Concept of convolution in<br>Time domain and Frequency domain, Graphical representation of<br>Convolution. |
| MODULE IV  | LAPLACE TRANSFORM AND Z-TRANSFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform,<br>Concept of Region of Convergence (ROC) for Laplace Transforms, Properties<br>of L.T, Relation between L.T and F.T of a signal, Laplace Transform of<br>certain signals using waveform synthesis. Z–Transforms: Concept of Z-<br>Transform of a Discrete Sequence, Distinction between Laplace, Fourier and<br>Z Transforms, Region of Convergence in Z-Transform, Constraints on ROC<br>for various classes of signals, Inverse Z-transform, Properties of Z-transforms                                                                          |

MODULE VSAMPLING THEOREMGraphical and analytical proof for Band Limited Signals, Impulse Sampling,<br/>Natural and Flat top Sampling, Reconstruction of signal from its samples,<br/>Effect of under sampling – Aliasing, Introduction to Band Pass Sampling.<br/>Correlation: Cross Correlation and Auto Correlation of Functions,<br/>Properties of Correlation Functions, Energy Density Spectrum, Parseval's<br/>Theorem, Power Density Spectrum, Relation between Autocorrelation<br/>Function and Energy/Power Spectral Density Function, Relation between<br/>Convolution and Correlation, Detection of Periodic Signals in the presence of<br/>Noise by Correlation, Extraction of Signal from Noise by filtering

#### TEXTBOOKS

- 1. Signals, Systems Communications, B.P. Lathi, BS Publications, 2009.
- 2. Signals and Systems, A.V. Oppenheim, A.S. Willsky and S.H. Nawab ,PHI, 2nd Edition 2009.
- 3. Digital Signal Processing, Principles, Algorithms, and Applications, John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI. 2007.

#### **REFERENCE BOOKS:**

- 1. Signals and Systems, Simon Haykin and Van Veen, Wiley, 2nd Edition, 2009.
- 2. Signals and Signals, Iyer and K. Satya Prasad, Cengage Learning, 2 nd Edition, 2009.
- 3. Discrete Time Signal Processing, A. V. Oppenheim and R.W. Schaffer, PHI, 2009.
- 4. Fundamentals of Digital Signal Processing, Loney Ludeman. John Wiley, PHI, 2009.

#### WEB REFERENCES:

1. https://nptel.ac.in/courses/117/101/117101055/

### XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                     | CO's | Reference |  |  |  |  |  |
|------|----------------------------------------------------------|------|-----------|--|--|--|--|--|
|      | OBE DISCUSSION                                           |      |           |  |  |  |  |  |
| 0    | Course Description on Outcome Based Education (OBE):     | CO 1 | T1:4.1    |  |  |  |  |  |
|      | Course Objectives, Course Outcomes (CO), Program         |      |           |  |  |  |  |  |
|      | Outcomes (PO) and CO-PO Mapping                          |      |           |  |  |  |  |  |
|      | CONTENT DELIVERY (THEORY)                                |      |           |  |  |  |  |  |
| 1    | Introduction to signals and systems                      | CO 1 | T1:4.2    |  |  |  |  |  |
| 2    | Concepts of Impulse function, Unit Step function, Signum | CO 1 | T1: 5.1   |  |  |  |  |  |
|      | function, in continuous time                             |      |           |  |  |  |  |  |
| 3    | Concepts of Impulse function, Unit Step function, Signum | CO 1 | R3: 1.7   |  |  |  |  |  |
|      | function, in continuous time                             |      |           |  |  |  |  |  |
| 4    | Analogy between Vectors and Signals.                     | CO 2 | T1:       |  |  |  |  |  |
|      |                                                          |      | 6.1-6.6   |  |  |  |  |  |

| 5   | Orthogonal Signal Space, Signal approximation using                                                                                       | CO 2              | T1:                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
|     | Orthogonal functions.                                                                                                                     |                   | 6.1-6.6             |
| 6   | Mean Square Error.                                                                                                                        | CO 2              | T1:                 |
|     |                                                                                                                                           |                   | 6.1-6.6             |
| 7   | Closed or complete set of Orthogonal functions.                                                                                           | CO 2              | T1:                 |
|     |                                                                                                                                           |                   | 6.1-6.6             |
| 11  | Orthogonally in Complex functions                                                                                                         | CO 3              | T1: 7.5             |
| 12  | Continuous time periodic signals.                                                                                                         | CO 3              | T1:                 |
| 1.0 | Continuous time a suis die sime le                                                                                                        | 00.2              | (.(-(.12<br>T1, 7.9 |
| 13  | Di i l l d'anne l'itime Trimenent in Francie Contra                                                                                       | $\frac{003}{004}$ | T1: 7.8             |
| 14  | Dirichlet's conditions, Trigonometric Fourier Series                                                                                      | CO 4              |                     |
| 15  | Exponential Fourier Series, Complex Fourier spectrum.                                                                                     | CO 4              | T1:7.7              |
| 16  | Deriving Fourier Transform from Fourier series, Fourier<br>Transform of arbitrary signal                                                  | CO 5              | T1:<br>7.8-7.10     |
| 17  | Fourier Transform of Periodic Signals, Properties of Fourier Transform                                                                    | CO 5              | T1: 7.12            |
| 20  | Linear System, Impulse response, Response of a Linear<br>System, Linear Time Invariant (LTI) System, Linear Time<br>Variant (LTV) System. | CO 7              | R4: 4.2             |
| 21  | Transfer function of a LTI System, Filter characteristic of<br>Linear System, Distortion less transmission through a<br>system .          | CO 7              | R4: 4.2             |
| 22  | Signal bandwidth, System Bandwidth,                                                                                                       | CO 8              | T1: 10.4            |
| 23  | Ideal LPF, HPF, and BPF characteristics.                                                                                                  | CO 8              | T1: 10.5            |
| 26  | Causality and Paley-Wiener criterion for physical realization,                                                                            | CO 9              | T3: 1.5             |
| 27  | Relationship between Bandwidth and rise time.                                                                                             | CO 9              | T3: 1.6             |
| 28  | Convolution and Correlation of Signals                                                                                                    | CO 6              | T3: 1.7             |
| 29  | Concept of convolution in Time domain and Frequency<br>domain, Graphical representation of Convolution                                    | CO 9              | T3:1.8              |
| 33  | Laplace Transforms (L.T Inverse Laplace Transform,                                                                                        | CO 10             | T3: 2.7<br>R3: 4.4  |
| 34  | Concept of Region of Convergence (ROC) for Laplace<br>Transforms.                                                                         | CO 10             | T3: 2.8<br>R3: 4.4  |
| 35  | Properties of L.T, Relation between L.T and F.T of a signal                                                                               | CO 10             | T3: 2.7<br>R3: 4.4  |
| 36  | Laplace Transform of certain signals using waveform synthesis.                                                                            | CO 10             | T3: 2.8<br>R3: 4.4  |
| 37  | Concept of Z- Transform of a Discrete Sequence.                                                                                           | CO 11             | T3: 8.9             |
| 38  | Distinction between Laplace, Fourier and Z Transforms.                                                                                    | CO 10             | T3: 2.7<br>R3: 4.4  |
| 39  | Region of Convergence in Z-Transform,                                                                                                     | CO 10             | T3: 2.8<br>R3: 4.4  |
| 40  | Constraints on ROC for various classes of signals, Inverse<br>Z-transform.                                                                | CO 11             | T3: 8.9             |
| 41  | Properties of Z-transforms                                                                                                                | CO 10             | T3: 2.7<br>R3: 4.4  |

| 45 | Graphical and analytical proof for Band Limited Signals,<br>Impulse Sampling                                                                      | CO 11 | T3:<br>8.12-8.13 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|
| 46 | Natural and Flat top Sampling.                                                                                                                    | CO 11 | T3:<br>9.1-9.2   |
| 47 | Reconstruction of signal from its samples, Effect of under<br>sampling – Aliasing, Introduction to Band Pass Sampling.                            | CO 11 | T3: 9.3.         |
| 48 | Cross Correlation and Auto Correlation of Functions,<br>Properties of Correlation Functions                                                       | CO 11 | T3:<br>8.12-8.13 |
| 49 | Energy Density Spectrum, Parseval's Theorem, Power<br>Density Spectrum                                                                            | CO 11 | T3:<br>9.1-9.2   |
| 50 | Relation between Autocorrelation Function and<br>Energy/Power Spectral Density Function,                                                          | CO 11 | T3: 9.3.         |
| 51 | Relation between Convolution and Correlation.                                                                                                     | CO 11 | T3:<br>8.12-8.13 |
| 52 | Detection of Periodic Signals in the presence of Noise by<br>Correlation, Extraction of Signal from Noise by filtering                            | CO 11 | T3:<br>9.1-9.2   |
|    | PROBLEM SOLVING/ CASE STUDIES                                                                                                                     | 5     |                  |
| 9  | Concepts of Impulse function, Unit Step function, Signum function, in continuous time                                                             | CO 1  | T1: 5.1          |
| 10 | Orthogonal Signal Space, Signal approximation using<br>Orthogonal functions, Mean Square Error.                                                   | CO 1  | R3: 1.7          |
| 18 | Exponential Fourier Series, Complex Fourier spectrum.                                                                                             | CO 2  | T1:<br>6.1-6.6   |
| 19 | Fourier Transform of Periodic Signals, Properties of Fourier Transform                                                                            | CO 2  | T1:<br>6.1-6.6   |
| 30 | Linear System, Impulse response, Response of a Linear<br>System, Linear Time Invariant (LTI) System, Linear Time<br>Variant (LTV) System.         | CO 3  | T1:<br>7.7-7.12  |
| 31 | Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics.                                                                      | CO 4  | T1:<br>7.7-7.12  |
| 32 | Convolution and Correlation of Signals, Concept of<br>convolution in Time domain and Frequency domain,<br>Graphical representation of Convolution | CO 5  | T1:<br>7.7-7.12  |
| 42 | Properties of L.T, Relation between L.T and F.T of a signal,<br>Laplace Transform of certain signals using waveform<br>synthesis.                 | CO 5  | T1:<br>7.7-7.12  |
| 43 | Laplace Transforms (L.T), Inverse Laplace Transform,<br>Concept of Region of Convergence (ROC) for Laplace<br>Transforms.                         | CO 6  | T3: 1.7          |
| 44 | Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse Z-transform, Properties of Z-transforms.         | CO 6  | T3: 1.7          |
| 51 | Cross Correlation and Auto Correlation of Functions,<br>Properties of Correlation Functions                                                       | CO 7  | R4: 4.2          |
|    | DISCUSSION OF DEFINITION AND TERMIN                                                                                                               | OLOGY |                  |
| 56 | Signal analysis                                                                                                                                   | CO 1  | T1:4.1           |
| 57 | Fourier series and Fourier transform                                                                                                              | CO 2  | T2:4.1           |
| 58 | signal transmission through linear systems                                                                                                        | CO 3  | T3:2.1           |

| 59 | Laplace and Z transform                                                                                                                                                                               | CO 4 | R4: 4.2 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 60 | sampling theorem and reconstruction of filters                                                                                                                                                        | CO 5 | T2:6.1  |
|    | DISCUSSION OF QUESTION BANK                                                                                                                                                                           |      | •       |
| 61 | Derive the expression for component vector of<br>approximating the function $f1(t)$ over $f2(t)$ and also prove<br>that the component vector becomes zero if the $f1(t)$ and<br>f2(t) are orthogonal. | CO 1 | T1:4.1  |
| 62 | Find the Fourier transform of the signal $x(t) = 5\cos 5t+10$<br>sin 15t and sketch its magnitude and phase spectra.                                                                                  | CO 2 | T2:4.1  |
| 63 | Compute the output $y(t)$ for a continuous LTI system whose<br>impulse response $h(t)$ and the input $x(t)$ are given by $h(t)$ =<br>e-at $u(t)$ and $x(t)$ = eat $u(-t)$ .                           | CO 3 | T3:2.1  |
| 64 | Determine the initial value and final value of Laplace<br>transform of signal                                                                                                                         | CO 4 | R4: 4.2 |
| 65 | A filter has an input $x(t) = u(t)$ and transfer function,<br>H(w)=1/(1+jw). Find the ESD of the output?                                                                                              | CO 5 | T2:6.1  |

Signature of Course Coordinator Ms.V.Bindusree,Assistant Professor HOD,ECE

# ANNEXURE - I

# **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO   | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No.   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Num- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of    |
| ber  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KCF's |
| PO 1 | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3     |
| PO 2 | Identify, formulate, review research literature, and analyse complex<br>Engineering problems reaching substantiated conclusions using first<br>principles of mathematics natural sciences, and Engineering sciences<br>( <b>Problem Analysis</b> ).<br>1. Problem or opportunity identification<br>2. Problem statement and system definition<br>3. Problem formulation and abstraction<br>4. Information and data collection<br>5. Model translation<br>6. Validation<br>7. Experimental design<br>8. Solution development or experimentation / Implementation<br>9. Interpretation of results<br>10. Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10    |
| PO 3 | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design process and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and</li> </ul> | 10    |

| PO 4. | Use research-based knowledge and research methods including design of                                                                      | 11 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|----|
|       | experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of |    |
|       | Complex Problems).                                                                                                                         |    |
|       | 1. Knowledge of characteristics of particular materials, equipment,                                                                        |    |
|       | processes, or products                                                                                                                     |    |
|       | 2. Workshop and laboratory skills                                                                                                          |    |
|       | 3. Understanding of contexts in which engineering knowledge can be                                                                         |    |
|       | applied (example, operations and management, technology                                                                                    |    |
|       | development, etc.)                                                                                                                         |    |
|       | 4. Understanding use of technical interature and other information<br>sources Awareness of nature of intellectual property and contractual |    |
|       | issues                                                                                                                                     |    |
|       | 5. Understanding of appropriate codes of practice and industry                                                                             |    |
|       | standards                                                                                                                                  |    |
|       | 6. Awareness of quality issues                                                                                                             |    |
|       | 7. Ability to work with technical uncertainty                                                                                              |    |
|       | 8. Understanding of engineering principles and the ability to apply                                                                        |    |
|       | them to analyse key engineering processes                                                                                                  |    |
|       | 9. Ability to identify, classify and describe the performance of systems                                                                   |    |
|       | and components through the use of analytical methods and modeling                                                                          |    |
|       | 10 Ability to apply quantitative methods and computer software                                                                             |    |
|       | relevant to their engineering discipline, in order to solve engineering                                                                    |    |
|       | problems                                                                                                                                   |    |
|       | 11. Understanding of and ability to apply a systems approach to                                                                            |    |
|       | engineering problems.                                                                                                                      |    |
| PO 5  | Create, select, and apply appropriate techniques, resources, and modern                                                                    | 1  |
|       | Engineering and IT tools including prediction and modelling to                                                                             |    |
|       | complex Engineering activities with an understanding of the limitations                                                                    |    |
|       | (Modern Tool Usage).                                                                                                                       |    |
|       | technical library resources / literature search tools.                                                                                     |    |
| PO 6  | Apply reasoning informed by the contextual knowledge to assess                                                                             | 5  |
|       | societal, health, safety, legal and cultural issues and the consequent                                                                     |    |
|       | responsibilities relevant to the professional engineering practice ( <b>The</b>                                                            |    |
|       | Engineer and Society).                                                                                                                     |    |
|       | 1. Knowledge and understanding of commercial and economic context                                                                          |    |
|       | of engineering processes                                                                                                                   |    |
|       | 2. Knowledge of management techniques which may be used to achieve                                                                         |    |
|       | 3 Understanding of the requirement for engineering activities to                                                                           |    |
|       | promote sustainable development                                                                                                            |    |
|       | 4. Awareness of the framework of relevant legal requirements governing                                                                     |    |
|       | engineering activities, including personnel, health, safety, and risk                                                                      |    |
|       | (including environmental risk) issues                                                                                                      |    |
|       | 5. Understanding of the need for a high level of professional and ethical                                                                  |    |
|       | conduct in onginooring                                                                                                                     |    |

| PO 7  | Understand the impact of the professional Engineering solutions in<br>societal and Environmental contexts, and demonstrate the knowledge<br>of, and need for sustainable development (Environment and<br>Sustainability).<br>Impact of the professional Engineering solutions (Not technical)<br>1. Socio economic<br>2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 8  | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3  |
| PO 9  | <ul> <li>Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive their performance</li> <li>3. Self-direction (take a vaguely defined problem and systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project.</li> <li>6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> | 12 |
| PO 10 | Communicate effectively on complex Engineering activities with the<br>Engineering community and with society at large, such as, being able to<br>comprehend and write effective reports and design documentation,<br>make effective presentations, and give and receive clear instructions<br>(Communication).<br>"Students should demonstrate the ability to communicate effectively in<br>writing / Orally"<br>1. Clarity (Writing)<br>2. Grammar/Punctuation (Writing)<br>3. References (Writing)<br>4. Speaking Style (Oral)<br>5. Subject Matter (Oral)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  |

| PO11 | <ul> <li>Demonstrate knowledge and understanding of the Engineering and<br/>management principles and apply these to one's own work, as a member<br/>and leader in a team, to manage projects and in multidisciplinary<br/>Environments (Project Management and Finance).</li> <li>1. Scope Statement</li> <li>2. Critical Success Factors</li> <li>3. Deliverables</li> <li>4. Work Breakdown Structure</li> <li>5. Schedule</li> <li>6. Budget</li> <li>7. Quality</li> <li>8. Human Resources Plan</li> <li>9. Stakeholder List</li> <li>10. Communication</li> <li>11. Risk Register</li> <li>12. Procurement Plan</li> </ul>                                               | 12 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO12 | <ul> <li>Recognize the need for and have the preparation and ability to engage<br/>in independent and life-long learning in the broadest context of<br/>technological change (Life - Long Learning).</li> <li>Project management professional certification / MBA</li> <li>Begin work on advanced degree</li> <li>Keeping current in CSE and advanced engineering concepts</li> <li>Personal continuing education efforts</li> <li>Ongoing learning – stays up with industry trends/ new technology</li> <li>Continued personal development</li> <li>Have learned at least 2-3 new significant skills</li> <li>Have taken up to 80 hours (2 weeks) training per year</li> </ul> | 8  |



# INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

#### COURSE DESCRIPTION

| Department                                           | ELECTRONICS AND COMMUNICATIONS ENGINEERING |           |         |            |         |  |  |
|------------------------------------------------------|--------------------------------------------|-----------|---------|------------|---------|--|--|
| Course Title                                         | CONTROL SYSTEMS                            |           |         |            |         |  |  |
| Course Code                                          | ode AEEB16                                 |           |         |            |         |  |  |
| Program B.Tech                                       |                                            |           |         |            |         |  |  |
| Semester                                             | IV                                         |           |         |            |         |  |  |
| Course Type                                          | CORE                                       |           |         |            |         |  |  |
| Regulation R-18                                      |                                            |           |         |            |         |  |  |
|                                                      | Theory Practical                           |           |         |            | actical |  |  |
| Course Structure                                     | Lecture                                    | Tutorials | Credits | Laboratory | Credits |  |  |
|                                                      | 3                                          | -         | 3       | -          | 1.5     |  |  |
| Course Coordinator Ms.L Babitha, Assistant Professor |                                            |           |         |            |         |  |  |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites                     |
|--------|-------------|----------|-----------------------------------|
| B.Tech | AHSB11      | II       | Mathematical Transform Techniques |
| B.Tech | AEEB11      | III      | Electrical Machines – I           |

#### **II COURSE OVERVIEW:**

This course deals with the basic concepts of block diagram reduction technique, time response analysis of first order and second order systems. It deals with various time and frequency domain analysis. It elaborates the concept of stability and its assessment for linear time invariant systems. This course address the various real time issues and how the control strategies are used in automation areas associates with variety of engineering streams.

#### **III MARKS DISTRIBUTION:**

| Subject         | SEE Examination | CIE Examination | Total Marks |  |
|-----------------|-----------------|-----------------|-------------|--|
| Control Systems | 70 Marks        | 30 Marks        | 100         |  |

### IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | $\checkmark$ | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|---|--------|
| $\checkmark$ | Open Ended Experiments    | x            | Seminars     | x            | Mini Project | x | Videos |
| x            | Others                    |              |              |              |              |   |        |

### **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 66.7 %                        | Understand            |
| 33.3%                         | Apply                 |
| 0 %                           | Analyze               |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

|     | Component                                      | Marks | Total Marks |  |
|-----|------------------------------------------------|-------|-------------|--|
|     | Continuous Internal Examination – 1 (Mid-term) | 10    |             |  |
| CIA | Continuous Internal Examination – 2 (Mid-term) | 10    | 30          |  |
|     | AAT-1                                          | 5     |             |  |
|     | AAT-2                                          | 5     |             |  |
| SEE | Semester End Examination (SEE)                 | 70    | 70          |  |
|     | 100                                            |       |             |  |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |  |  |
|---------------|-----------|-------------------------|--|--|
| 40%           | 40%       | 20%                     |  |  |

### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The mathematical models of dynamic systems using the concepts of basic sciences.                  |
|-----|---------------------------------------------------------------------------------------------------|
| II  | The system performance using time domain and frequency domain analysis for standard inputs.       |
| III | Classification of controllers and compensators as per the desired dynamic response of the system. |
| IV  | The different ways of system representation such as transfer function and state space.            |

### VII COURSE OUTCOMES:

| CO 1 | <b>Relate</b> the different physical and mechanical systems into        | Understand |
|------|-------------------------------------------------------------------------|------------|
|      | equivalent electrical analogies using the mathematical form of          |            |
|      | complex physical systems.                                               |            |
| CO 2 | <b>Utilize</b> various reduction techniques for developing the transfer | Apply      |
|      | function and steady state error with the standard input signals.        |            |
| CO 3 | Make use of the time domain analysis to predict transient               | Apply      |
|      | response specifications for analysing system's stability                |            |
| CO 4 | Infer the stability of a first and second order systems using           | Understand |
|      | frequency domain specifications.                                        |            |
| CO 5 | <b>Classify</b> the types of compensators in time domain and            | Understand |
|      | frequency domains specifications for increasing the steady state        |            |
|      | accuracy of the system.                                                 |            |
| CO 6 | <b>Interpret</b> linear system equations in state-variable form for the | Understand |
|      | analysis of system's dynamic behavior.                                  |            |

#### After successful completion of the course, students should be able to:

#### COURSE KNOWLEDGE COMPETENCY LEVEL



## **BLOOMS TAXONOMY**

#### VIII PROGRAM OUTCOMES:

| Program Outcomes |                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| PO 1             | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                  |  |  |  |  |  |  |
| PO 2             | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. |  |  |  |  |  |  |

| Program Outcomes |                                                                                 |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| PO 3             | <b>Design/Development of Solutions:</b> Design solutions for complex            |  |  |  |  |  |
|                  | the gradified needs with appropriate consideration for the public health and    |  |  |  |  |  |
|                  | safety, and the cultural, societal, and Environmental considerations            |  |  |  |  |  |
| PO 4             | Conduct Investigations of Complex Problems: Use research-based                  |  |  |  |  |  |
|                  | knowledge and research methods including design of experiments, analysis        |  |  |  |  |  |
|                  | and interpretation of data, and synthesis of the information to provide valid   |  |  |  |  |  |
|                  | conclusions.                                                                    |  |  |  |  |  |
| PO 5             | Modern Tool Usage: Create, select, and apply appropriate techniques,            |  |  |  |  |  |
|                  | resources, and modern Engineering and IT tools including prediction and         |  |  |  |  |  |
|                  | modelling to complex Engineering activities with an understanding of the        |  |  |  |  |  |
|                  | limitations                                                                     |  |  |  |  |  |
| PO 6             | The engineer and society: Apply reasoning informed by the contextual            |  |  |  |  |  |
|                  | knowledge to assess societal, health, safety, legal and cultural issues and the |  |  |  |  |  |
|                  | consequent responsibilities relevant to the professional engineering practice.  |  |  |  |  |  |
| PO 7             | <b>Environment and sustainability:</b> Understand the impact of the             |  |  |  |  |  |
|                  | professional engineering solutions in societal and environmental contexts, and  |  |  |  |  |  |
|                  | demonstrate the knowledge of, and need for sustainable development.             |  |  |  |  |  |
| PO 8             | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and   |  |  |  |  |  |
|                  | responsibilities and norms of the engineering practice.                         |  |  |  |  |  |
| PO 9             | Individual and team work: Function effectively as an individual, and as a       |  |  |  |  |  |
|                  | member or leader in diverse teams, and in multidisciplinary settings.           |  |  |  |  |  |
| PO 10            | Communication: Communicate effectively on complex engineering                   |  |  |  |  |  |
|                  | activities with the engineering community and with society at large, such as,   |  |  |  |  |  |
|                  | being able to comprehend and write effective reports and design                 |  |  |  |  |  |
|                  | documentation, make effective presentations, and give and receive clear         |  |  |  |  |  |
| DO 11            | Instructions.                                                                   |  |  |  |  |  |
| POII             | Project management and mance: Demonstrate knowledge and                         |  |  |  |  |  |
|                  | to one's own work as a member and leader in a team, to manage projects          |  |  |  |  |  |
|                  | and in multidisciplinary onvironments                                           |  |  |  |  |  |
| DO 19            | <b>Life Long Learning:</b> Decoming the need for and having the presention      |  |  |  |  |  |
| FU 12            | and ability to ongage in independent and life long learning in the breadest     |  |  |  |  |  |
|                  | context of technological change                                                 |  |  |  |  |  |
|                  | Context of technological change                                                 |  |  |  |  |  |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | PROGRAM OUTCOMES                                                                                                                                                                                                                                                                                                           | $\mathbf{Strength}$ | Proficiency<br>Assessed by |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                                    | 3                   | CIE/Quiz/AAT               |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review<br>research literature, and analyze complex<br>engineering problems reaching substantiated<br>conclusions using first principles of mathematics,<br>natural sciences, and engineering sciences.                                                                       | 2                   | CIE/Quiz/AAT               |
| PO 3  | <b>Design/Development of Solutions:</b> Design<br>solutions for complex Engineering problems and<br>design system components or processes that<br>meet the specified needs with appropriate<br>consideration for the public health and safety,<br>and the cultural, societal, and Environmental<br>considerations          | 2                   | CIE/Quiz/AAT               |
| PO 4  | Conduct Investigations of Complex<br>Problems: Use research-based knowledge and<br>research methods including design of<br>experiments, analysis and interpretation of data,<br>and synthesis of the information to provide valid<br>conclusions.                                                                          | 2                   | CIE/Quiz/AAT               |
| PO 6  | The engineer and society: Apply reasoning<br>informed by the contextual knowledge to assess<br>societal, health, safety, legal and cultural issues<br>and the consequent responsibilities relevant to<br>the professional engineering practice.                                                                            | 2                   | CIE/Quiz/AAT               |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                                      | 2                   | CIE/Quiz/AAT               |
| PO 10 | <b>Communication:</b> Communicate effectively on<br>complex engineering activities with the<br>engineering community and with society at<br>large, such as, being able to comprehend and<br>write effective reports and design<br>documentation, make effective presentations,<br>and give and receive clear instructions. | 1                   | CIE/Quiz/AAT               |
| PO 12 | Life-Long Learning: Recognize the need for<br>and having the preparation and ability to<br>engage in independent and life-long learning in<br>the broadest context of technological change                                                                                                                                 | 1                   | CIE/Quiz/AAT               |

3 = High; 2 = Medium; 1 = Low

#### X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| Р     | ROGRAM SPECIFIC OUTCOMES                           | $\mathbf{Strength}$ | Proficiency<br>Assessed<br>by |
|-------|----------------------------------------------------|---------------------|-------------------------------|
| PSO 1 | Professional Skills: An ability to understand      | 1                   | Research                      |
|       | the basic concepts in Electronics and              |                     | Paper /                       |
|       | Communication Engineering and to apply them        |                     | Quiz / AAI                    |
|       | Communications Signal processing VI SI             |                     |                               |
|       | Embedded systems atc. in the design and            |                     |                               |
|       | implementation of complex systems.                 |                     |                               |
| PSO 2 | <b>Problem-solving skills:</b> An ability to solve | 1                   | Research                      |
|       | complex Electronics and communication              |                     | Paper /                       |
|       | Engineering problems, using latest hardware and    |                     | Quiz / AAT                    |
|       | software tools, along with analytical skills to    |                     |                               |
|       | arrive cost effective and appropriate solutions.   |                     |                               |
| PSO 3 | Successful career and Entrepreneurship:            | 1                   | Research                      |
|       | An understanding of social-awareness and           |                     | Paper /                       |
|       | environmental-wisdom along with ethical            |                     | Quiz / AAT                    |
|       | responsibility to have a successful career and to  |                     |                               |
|       | sustain passion and zeal for real-world            |                     |                               |
|       | applications using optimal resources as an         |                     |                               |
|       | Entrepreneur.                                      |                     |                               |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |                                        | PROGRAM OUTCOMES |              |              |   |              |   |              |     |              |     | PSO'S        |              |              |              |
|----------|----------------------------------------|------------------|--------------|--------------|---|--------------|---|--------------|-----|--------------|-----|--------------|--------------|--------------|--------------|
| COURSE   | PO |                  |              |              |   |              |   |              | PSO | PSO          | PSO |              |              |              |              |
| OUTCOMES | 1                                      | 2                | 3            | 4            | 5 | 6            | 7 | 8            | 9   | 10           | 11  | 12           | 1            | 2            | 3            |
| CO 1     | $\checkmark$                           | $\checkmark$     | $\checkmark$ | $\checkmark$ | - | $\checkmark$ | - | -            | -   | $\checkmark$ | -   | <            | -            | -            | $\checkmark$ |
| CO 2     | $\checkmark$                           | $\checkmark$     | $\checkmark$ | $\checkmark$ | - | $\checkmark$ | - | <b>&gt;</b>  | -   | $\checkmark$ | -   | $\checkmark$ | $\checkmark$ | -            | -            |
| CO 3     | $\checkmark$                           | $\checkmark$     | $\checkmark$ | $\checkmark$ | - | $\checkmark$ | - | -            | -   | $\checkmark$ | -   | -            | $\checkmark$ | -            | -            |
| CO 4     | $\checkmark$                           | $\checkmark$     | $\checkmark$ | $\checkmark$ | - | $\checkmark$ | - | -            | -   | $\checkmark$ | -   | -            | -            | $\checkmark$ | -            |
| CO 5     | $\checkmark$                           | $\checkmark$     | $\checkmark$ | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | -   | $\checkmark$ | -   | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            |
| CO 6     | $\checkmark$                           | $\checkmark$     | $\checkmark$ | -            | - | $\checkmark$ | - | -            | -   | $\checkmark$ | -   | -            | -            | -            | -            |

# XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to) | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Understands the concept of control systems and its   | 3                                      |
|                    |               | types with the knowledge of mathematics, science and |                                        |
|                    |               | engineering fundamentals.                            |                                        |
|                    | PO 2          | Determine the mathematical model of complex systems  | 7                                      |
|                    |               | by analyze complex engineering problems using        |                                        |
|                    |               | principles of mathematics and engineering sciences.  |                                        |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                             | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 3          | Design the equivalent electrical models using<br>force-voltage and force-current analogy by analyze<br>complex engineering problems using principles of<br>mathematics and engineering sciences. | 7                                      |
|                    | PO 4          | Analyze the characteristics of Motors of Field and<br>Armature control by conducting some investigations<br>using technical literature and research based knowledge                              | 5                                      |
|                    | PO 6          | Understands the concept of open loop and closed loop<br>with examples informed by the contextual knowledge<br>to assess societal engineering practice.                                           | 3                                      |
|                    | PO 10         | Understands the basics of control systems and should<br>be able to communicate effectively on engineering<br>activities                                                                          | 2                                      |
|                    | PO 12         | Recognize the types of control systems is what we use<br>in daily life through the preparation and ability in<br>personal development.                                                           | 2                                      |
|                    | PSO 3         | Understands the operation of open and closed loop<br>control systems to meet the requirements of the<br>employer.                                                                                | 1                                      |
| CO 2               | PO 1          | Explain the different complex physical systems with<br>the knowledge of mathematics, science, and<br>engineering fundamentals.                                                                   | 3                                      |
|                    | PO 2          | Determine the mathematical model of complex systems<br>by analyze complex engineering problems using<br>principles of mathematics and engineering sciences.                                      | 6                                      |
|                    | PO 3          | Design the solution for analyze complex engineering<br>problems using principles of mathematics and<br>engineering sciences.                                                                     | 7                                      |
|                    | PO 4          | Analyze the behavior of first and second order system<br>with different standard inputs by conducting some<br>investigations using technical literature and research<br>based knowledge          | 5                                      |
|                    | PO 6          | Understands the concept of various controllers and how<br>they are applicable to the contextual knowledge to<br>assess societal engineering practice.                                            | 3                                      |
|                    | PO 8          | Knowledge of various controllers ability to use their<br>application to professional ethics and responsibilities<br>and norms of the Engineering practice                                        | 3                                      |
|                    | PO 10         | Understands the basics of controllers and various types<br>of system should be able to communicate effectively on<br>engineering activities                                                      | 2                                      |
|                    | PO 12         | Recognize the types of controllers is what we use in<br>daily life through the preparation and ability in<br>personal development.                                                               | 3                                      |
|                    | PSO 1         | Design and operate controllers in electrical systems in<br>order to protect the system.                                                                                                          | 1                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                  | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 3               | PO 1          | Understand the concept of stability of the system from<br>the characteristic equation using principles of<br>mathematics, science, and engineering fundamentals.      | 3                                      |
|                    | PO 2          | Formulate the mathematical equations for a system's<br>stability framed using basics of mathematics and<br>engineering sciences                                       | 5                                      |
|                    | PO 3          | Design the solution for a system of unity feedback by<br>analyze complex engineering problems using principles<br>of mathematics and engineering sciences.            | 5                                      |
|                    | PO 4          | Analyze the nature of stability of the type of system by<br>conducting some investigations using technical<br>literature and research based knowledge                 | 5                                      |
|                    | PO 6          | Understands the concept of stability of open and closed<br>loop system and type of feedback from the contextual<br>knowledge to assess societal engineering practice. | 3                                      |
|                    | PO 10         | Understands the basics of time domain analysis and<br>should be able to communicate effectively on<br>engineering activities                                          | 2                                      |
|                    | PSO 1         | Design and operate controllers in electrical systems in<br>order to protect the system.                                                                               | 1                                      |
| CO 4               | PO 1          | Understand the concept of frequency response of a system using principles of mathematics, science, and engineering fundamentals.                                      | 3                                      |
|                    | PO 2          | Derive frequency domain specifications and correlation<br>between time and frequency domain framed using<br>basics of mathematics and engineering sciences.           | 4                                      |
|                    | PO 3          | Determine the frequency response of a system by<br>analyze complex engineering problems using principles<br>of mathematics and engineering sciences.                  | 7                                      |
|                    | PO 4          | Analyze the magnitude and phase plot by conducting<br>some investigations using technical literature and<br>research based knowledge                                  | 7                                      |
|                    | PO 6          | Understands the concept of frequency response of a<br>system from the contextual knowledge to assess<br>societal engineering practice.                                | 3                                      |
|                    | PO 10         | Understands the basics of requency domain analysis<br>and various types of system should be able to<br>communicate effectively on engineering activities              | 2                                      |
|                    | PSO 2         | Understands frequency response of a system involving<br>transmission and distribution of Electrical Energy                                                            | 1                                      |
| CO 5               | PO 1          | Understands the concept of compensators and its types<br>using the fundamentals of mathematics, science, and<br>engineering fundamentals.                             | 3                                      |
|                    | PO 2          | Derive the equation for lead, lag, lead-lag<br>compensators to meet the specifications framed using<br>basics of mathematics and engineering sciences.                | 5                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                    | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 3          | Determine the frequency response of a system by<br>analyze complex engineering problems using principles<br>of mathematics and engineering sciences.                                    | 7                                      |
|                    | PO 4          | Analyze the behavior of types of compensators by<br>conducting some investigations using technical<br>literature and research based knowledge                                           | 7                                      |
|                    | PO 6          | Understands the concept of various compensators and<br>how they are applicable to the contextual knowledge to<br>assess societal engineering practice.                                  | 2                                      |
|                    | PO 8          | Knowledge of various compensators ability to use their<br>application to professional ethics and responsibilities<br>and norms of the Engineering practice                              | 3                                      |
|                    | PO 10         | Understands the basics of compensators and various<br>types of system should be able to communicate<br>effectively on engineering activities                                            | 2                                      |
|                    | PO 12         | Recognize the types of compensators is what we use in<br>daily life through the preparation and ability in<br>personal development.                                                     | 2                                      |
|                    | PSO 1         | Design and operate compensators in electrical systems<br>in order to protect the system.                                                                                                | 2                                      |
|                    | PSO 2         | Control the system's power utilization in electrical<br>systems in specific applications of industry and<br>sustainable rural development.                                              | 2                                      |
| CO 6               | PO 1          | Understands state model of control system using its<br>block diagram using basic knowledge of science and<br>engineering fundamentals.                                                  | 3                                      |
|                    | PO 2          | Formulate the state transmission matrix for<br>controllability and observability to evaluate stability of<br>the system framed using basics of mathematics and<br>engineering sciences. | 4                                      |
|                    | PO 3          | Determine the state of stability of a system or a<br>differential linear equation analyze complex engineering<br>problems using principles of mathematics and<br>engineering sciences.  | 7                                      |
|                    | PO 6          | Understands the concept of state of stability of a<br>system they are application to the contextual<br>knowledge to assess societal engineering practice.                               | 2                                      |
|                    | PO 10         | Understands the basics of state space analysis and<br>various types of system should be able to communicate<br>effectively on engineering activities                                    | 2                                      |

**Note**:Refer annexure to check the mapping of program outcomes.

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    | PROGRAM OUTCOMES                         |   |   |   |   |   |   |     |     |     | PSO'S |   |   |   |
|----------|----|------------------------------------------|---|---|---|---|---|---|-----|-----|-----|-------|---|---|---|
| COURSE   | PO | O PO |   |   |   |   |   |   | PSO | PSO | PSO |       |   |   |   |
| OUTCOMES | 1  | 2                                        | 3 | 4 | 5 | 6 | 7 | 8 | 9   | 10  | 11  | 12    | 1 | 2 | 3 |
| CO 1     | 3  | 7                                        | 7 | 5 | - | 3 | - | - | -   | 2   | -   | 2     | - | - | 1 |
| CO 2     | 3  | 3                                        | 7 | 5 | - | 3 | - | 3 | -   | 2   | -   | 3     | 2 | - | - |
| CO 3     | 3  | 5                                        | 5 | 5 | - | 3 | - | - | -   | 2   | -   | -     | 1 | - | - |
| CO 4     | 3  | 4                                        | 7 | 7 | - | 3 | - | - | -   | 2   | -   | -     | - | 1 | - |
| CO 5     | 3  | 5                                        | 7 | 7 | - | 2 | - | 3 | -   | 2   | -   | 2     | 2 | 2 | - |
| CO 6     | 3  | 4                                        | 7 | - | - | 2 | - | - | -   | 2   | -   | -     | - | - | - |

# XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          |                                          | PROGRAM OUTCOMES |      |     |   |    |   |     |     |      |     | PSO'S |      |      |      |
|----------|------------------------------------------|------------------|------|-----|---|----|---|-----|-----|------|-----|-------|------|------|------|
| COURSE   | E PO |                  |      |     |   |    |   |     | PSO | PSO  | PSO |       |      |      |      |
| OUTCOMES | 1                                        | 2                | 3    | 4   | 5 | 6  | 7 | 8   | 9   | 10   | 11  | 12    | 1    | 2    | 3    |
| CO 1     | 100                                      | 100              | 66   | 9   | - | 60 | - | -   | -   | 20   | -   | 8.3   | -    | -    | 14.2 |
| CO 2     | 100                                      | 100              | 66.7 | 9   | - | 60 | - | 100 | -   | 20.0 | -   | 8.3   | 40.0 | -    | -    |
| CO 3     | 100                                      | 100              | 50   | 9   | - | 60 | - | -   | -   | 20   | -   | -     | 20.0 | -    | -    |
| CO 4     | 100                                      | 66.7             | 66.7 | 100 | - | 60 | - | -   | -   | 20   | -   | -     | -    | 9.09 | -    |
| CO 5     | 100                                      | 66.7             | 66.7 | 100 | - | 40 | - | 100 | -   | 20.0 | -   | 8.3   | 40.0 | 18.2 | -    |
| CO 6     | 100                                      | 66.7             | 66.7 | -   | - | 40 | - | -   | -   | 20   | -   | -     | -    | -    | -    |

### XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$   $0 \leq C \leq 5\%$  No correlation
- 1 -5 <C $\leq$  40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

|          |    | PROGRAM OUTCOMES |     |     |    |    |    |    |    |    | PSO'S |    |     |     |     |
|----------|----|------------------|-----|-----|----|----|----|----|----|----|-------|----|-----|-----|-----|
| COURSE   | PO | PO               | PO  | PO  | PO | PO | PO | PO | PO | PO | PO    | PO | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3   | 4   | 5  | 6  | 7  | 8  | 9  | 10 | 11    | 12 | 1   | 2   | 3   |
| CO 1     | 3  | 3                | 2   | 1   | -  | 2  | -  | -  | -  | 1  | -     | 1  | -   | -   | 1   |
| CO 2     | 3  | 3                | 2   | 1   | -  | 2  | -  | 1  | -  | 1  | -     | 1  | 2   | -   | -   |
| CO 3     | 3  | 3                | 3   | 1   | -  | 3  | -  | -  | -  | 1  | -     | -  | 1   | -   | -   |
| CO 4     | 3  | 2                | 2   | 3   | -  | 3  | -  | -  | -  | 1  | -     | -  | -   | 1   | -   |
| CO 5     | 3  | 2                | 2   | 3   | -  | 1  | -  | 1  | -  | 1  | -     | 1  | 2   | 2   | -   |
| CO 6     | 3  | 2                | 2   | -   | -  | 1  | -  | -  | -  | 1  | -     | -  | -   | -   | -   |
| TOTAL    | 18 | 15               | 13  | 9   | -  | 12 | -  | 2  | -  | 6  | -     | 3  | 5   | 3   | 1   |
| AVERAGE  | 3  | 2.5              | 2.0 | 1.8 | -  | 2  | -  | 1  | -  | 1  | -     | 1  | 1.5 | 1.5 | 1   |

#### XVI ASSESSMENT METHODOLOGY-DIRECT: CIE Exams SEE Exams Seminars $\checkmark$ $\checkmark$ Laboratory Student Viva Certification \_ -Practices Term Paper 5 Minutes Video Open Ended $\checkmark$ -Experiments Assignments

 $\checkmark$ 

\_

 $\checkmark$ 

# XVII ASSESSMENT METHODOLOGY-INDIRECT:

|  |  | Assessment of mini projects by experts | $\checkmark$ | End Semester OBE Feedback |
|--|--|----------------------------------------|--------------|---------------------------|
|--|--|----------------------------------------|--------------|---------------------------|

#### XVIII SYLLABUS:

| MODULE I   | INTRODUCTION AND MODELING OF PHYSICAL SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Control systems: Introduction, open loop and closed loop systems, examples, comparison, mathematical modelling and differential equations of physical systems, concept of transfer function, translational and rotational mechanical systems, electrical systems, force, voltage and force, current analogy.                                                                                                                                                                                                                                                              |
| MODULE II  | BLOCK DIAGRAM REDUCTION AND TIME RESPONSE<br>ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | Block Diagrams: Block diagram representation of various systems, block<br>diagram algebra, characteristics of feedback systems, AC servomotor, signal<br>flow graph, Mason's gain formula; Time response analysis: Standard test<br>signals, shifted unit step, impulse response, unit step response of first and<br>second order systems, time response specifications, steady state errors and<br>error constants, dynamic error coefficients method, effects of proportional,<br>derivative and proportional derivative, proportional integral and PID<br>controllers. |
| MODULE III | CONCEPT OF STABILITY AND ROOT LOCUS TECHNIQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Concept of stability: Necessary and sufficient conditions for stability, Routh's<br>and Routh Hurwitz stability criterions and limitations. Root locus technique:<br>Introduction, root locus concept, construction of root loci, graphical<br>determination of 'k' for specified damping ratio, relative stability, effect of<br>adding zeros and poles on stability.                                                                                                                                                                                                    |
| MODULE IV  | FREQUENCY DOMAIN ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Frequency domain analysis: Introduction, frequency domain specifications, stability analysis from Bode plot, Nyquist plot, calculation of gain margin and phase margin, determination of transfer function, correlation between time and frequency responses.                                                                                                                                                                                                                                                                                                             |
| MODULE V   | STATE SPACE ANALYSIS AND COMPENSATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | State Space Analysis: Concept of state, state variables and state model,<br>derivation of state models from block diagrams, diagonalization, solving the<br>time invariant state equations, state transition matrix and properties, concept<br>of controllability and observability; Compensators: Lag, lead, lead - lag<br>networks.                                                                                                                                                                                                                                     |

#### **TEXTBOOKS**

- 1. I J Nagrath, M Gopal, "Control Systems Engineering", New Age International Publications, 3rd Edition, 2007.
- 2. K Ogata, "Modern Control Engineering", Prentice Hall, 4th Edition, 2003
- 3. N C Jagan, "Control Systems", BS Publications, 1st Edition, 2007.

#### **REFERENCE BOOKS:**

- 1. Anand Kumar, "Control Systems", PHI Learning, 1st Edition, 2007.
- 2. S Palani, "Control Systems Engineering", Tata McGraw-Hill Publications, 1st Edition, 2001.
- 3. N K Sinha, "Control Systems", New Age International Publishers, 1st Edition, 2002.

#### WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

#### COURSE WEB PAGE:

https://nptel.ac.in/courses/112105171/1

#### XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                        | CO's | Reference      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|
|      | OBE DISCUSSION                                                                                                                              |      |                |
| 1    | Course Description on Outcome Based Education (OBE):<br>Course Objectives, Course Outcomes (CO), Program<br>Outcomes (PO) and CO-PO Mapping | -    | -              |
|      | CONTENT DELIVERY (THEORY)                                                                                                                   |      |                |
| 1    | Introduction to Control systems                                                                                                             | CO 1 | T1:1.1         |
| 2    | Types of Control systems Open loop and Closed loop systems                                                                                  | CO 1 | T1:1.1         |
| 3    | Examples of closed control system and open loop system                                                                                      | CO 1 | T1:1.4-<br>1.6 |
| 4    | Concept of transfer function                                                                                                                | CO 1 | T1: 2.4        |
| 5    | Mechanical translational system, Force balance equations.                                                                                   | CO 1 | T1:2.2         |
| 6    | Mechanical rotational system, Torque balance equations.                                                                                     | CO 1 | T1:2.2         |
| 7    | Transfer function of Armature controlled and Field controlled of DC Motor.                                                                  | CO 1 | T1:2.4         |
| 8    | Force -Voltage and Force-Current Analogy                                                                                                    | CO 1 | T1:2.2         |
| 9    | Block Diagrams: Block diagram representation of various control systems                                                                     | CO 2 | T1:2.5         |
| 10   | Block diagram reduction and Rules of block diagram                                                                                          | CO 2 | T1:2.5         |
| 11   | Characteristics of feedback systems                                                                                                         | CO 2 | T1:<br>3.1-3.2 |
| 12   | AC Servomotor working and characteristics                                                                                                   | CO 2 | T1: 12         |
| 13   | Signal Flow Graph, properties and rules of signal flow graph                                                                                | CO 2 | T1 :2.6        |
| 14   | Step by step procedure of transfer function from signal flow<br>graph using Mason's Gain Formula                                            | CO 2 | T1 :2.6        |

| 15 | Time response analysis, Standard test signals                                           | CO 2 | T1<br>:5.1-5.2   |
|----|-----------------------------------------------------------------------------------------|------|------------------|
| 16 | Impulse response                                                                        | CO 2 | T1<br>:5.1-5.2   |
| 17 | Response of first order system for step input                                           | CO 2 | T1: 5.3          |
| 18 | Response of Un damped second order system for step input                                | CO 2 | T1: 5.3          |
| 19 | Response of Under damped and Over damped second order<br>system for step input          | CO 2 | T1: 5.3          |
| 20 | Time Domain specifications of second order system                                       | CO 2 | T1: 5.4          |
| 21 | Steady state errors and error constants                                                 | CO 2 | T1: 5.5          |
| 22 | Error constants for various inputs and for different Types of system                    | CO 2 | T1: 5.5          |
| 23 | PID Controllers                                                                         | CO 2 | T1:5.8           |
| 24 | Concept of stability Necessary and sufficient conditions for stability                  | CO 3 | T1: 6.1<br>-6.2  |
| 25 | Conditions and special cases for stability using Routh's Hurwitz method.                | CO 3 | T1: 6.3<br>-6.5  |
| 26 | Introduction to Root locus concept.                                                     | CO 3 | T1: 7.1<br>-7.2  |
| 27 | Step by step procedure for construction of root locus                                   | CO 3 | T1: 7.3          |
| 28 | Effect of adding zeros and poles on stability.                                          | CO 3 | T1: 5.6          |
| 29 | Frequency domain analysis Introduction                                                  | CO 4 | T1: 8.1<br>-8.2  |
| 30 | Frequency domain specifications, stability analysis                                     | CO 4 | T1: 8.2          |
| 31 | Procedure of Bode Plot for magnitude and phase plot.                                    | CO 4 | T1: 8.4          |
| 32 | Procedure for gain margin and phase margin                                              | CO 4 | T1: 8.4          |
| 33 | Procedure of Nyquist plot for magnitude and phase plot.                                 | CO 4 | T1: 9.1-<br>9.4  |
| 34 | Determination of transfer function, correlation between time<br>and frequency responses | CO 4 | T1: 8.1<br>-8.2  |
| 35 | State Space Analysis: Concept of state, state variables and state model                 | CO 6 | T1:<br>12.1-12.2 |
| 36 | Derivation of state models from block diagrams                                          | CO 6 | T1:<br>12.3-12.4 |
| 37 | State transition matrix and properties,                                                 | CO 6 | T1: 12.4         |
| 38 | Canonical Form of state variables                                                       | CO 6 | T1: 12.6         |
| 39 | Concept of controllability and observability                                            | CO 6 | T1:12.7          |
| 40 | Compensators: Lag, lead, lead - lag networks.                                           | CO 5 | T1:10.3          |
|    | PROBLEM SOLVING/ CASE STUDIES                                                           | 5    |                  |
| 41 | Determine transfer function from mechanical systems                                     | CO 1 | R1: 2.6          |
| 42 | Determine transfer function from electrical systems                                     | CO 1 | R1: 2.6          |
| 43 | Transfer function from Block diagram using reduction technique                          | CO 2 | R1: 3.2          |
| 44 | Transfer function from Signal Flow Graph using masons gain formula                      | CO 2 | R1: 3.2          |

| 45 | Problems on Error constants                                                                                   | CO 2          | R1: 4.4<br>Pg No<br>195-198  |
|----|---------------------------------------------------------------------------------------------------------------|---------------|------------------------------|
| 46 | Problems on time domain specifications                                                                        | CO 2          | R1: 4.4<br>Pg No<br>198-209  |
| 47 | Stability using Routh's Hurwitz method                                                                        | CO 3          | R1:5.3 Pg<br>No<br>285-292   |
| 48 | Problems on Root Locus for a given transfer function                                                          | CO 3          | R1:6.4 Pg<br>No<br>339-347   |
| 47 | Problems on Routh's Hurwitz method to find K                                                                  | CO 3          | R1:5.6 Pg<br>No<br>298-307   |
| 48 | Problems on Frequency domain specifications                                                                   | CO 4          | R1:7.2 Pg<br>No<br>413-416   |
| 49 | Sketch Bode Plot for stability                                                                                | CO 4          | R1:7.3 Pg<br>No<br>417-427   |
| 50 | Sketch Bode Plot for gain and phase margin                                                                    | CO 4          | R1:7.4 Pg<br>No<br>452-465   |
| 51 | Sketch Polar Plot for gain and phase margin                                                                   | CO 4          | R1:7.3 Pg<br>No<br>417-427   |
| 52 | Problems on state model to the canonical form                                                                 | CO 6          | R1:10.3<br>Pg No<br>594-597  |
| 53 | State controllability and observability of a system                                                           | CO 6          | R1: 10.4<br>Pg No<br>661-671 |
| 54 | Problems on Compensators                                                                                      | CO 5          | R1: 9.2                      |
| 55 | Problems on State Transition Matrix                                                                           | CO 6          | R1: 10.7<br>Pg No<br>630-639 |
|    | DISCUSSION OF DEFINITION AND TERMIN                                                                           | IOLOGY        |                              |
| 56 | Transfer function, components of feedback control system,<br>Automatic Controllers.                           | CO 1          | T1: 2.4                      |
| 57 | Basic elements in Block Diagram, signal flow graph,<br>transient response, transmittance, Masons Gain formula | CO 2          | T1:<br>3.1-3.2               |
| 58 | Stability, Routh stability criterion, Auxiliary polynomial,<br>Relative stability                             | CO 3          | T1: 6.3<br>-6.5              |
| 59 | Frequency response, Resonant frequency, Corner frequency, Polar plot.                                         | CO 4          | T1: 8.1<br>-8.2              |
| 60 | State variable, Controllability, Compensator, sampling theorem                                                | CO 5,<br>CO 6 | T1:<br>12.3-12.4             |
|    | DISCUSSION OF QUESTION BANK                                                                                   |               |                              |

| 61 | Mechanical Rotational System               | CO 1  | T1: 2.4   |
|----|--------------------------------------------|-------|-----------|
| 62 | Block Diagram, Signal flow graph           | CO 2  | T1:       |
|    |                                            |       | 3.1-3.2   |
| 63 | Root Locus and Routh's Hurwitz method      | CO 3  | T1: 6.3   |
|    |                                            |       | -6.5      |
| 64 | Bode plots, polar plot and Nyquist plot    | CO 4  | T1: 8.1   |
|    |                                            |       | -8.2      |
| 65 | State Transmission matrix and compensators | CO 5, | T1:       |
|    |                                            | CO 6  | 12.3-12.4 |

# Signature of Course Coordinator

# HOD,ECE

Ms. L Babitha, Assistant Professor

# ANNEXURE

# **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No. of<br>KCF's |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| PO 1         | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3               |
| PO 2         | Identify, formulate, review research literature, and analyse complex<br>Engineering problems reaching substantiated conclusions using first<br>principles of mathematics natural sciences, and Engineering sciences<br>( <b>Problem Analysis</b> ).<br>1. Problem or opportunity identification<br>2. Problem statement and system definition<br>3. Problem formulation and abstraction<br>4. Information and data collection<br>5. Model translation<br>6. Validation<br>7. Experimental design<br>8. Solution development or experimentation / Implementation<br>9. Interpretation of results<br>10. Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10              |
| PO 3         | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design processes and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> </ul> | 10              |

| PO 4. | Use research-based knowledge and research methods including design      | 11       |
|-------|-------------------------------------------------------------------------|----------|
|       | of experiments, analysis and interpretation of data, and synthesis of   |          |
|       | the information to provide valid conclusions (Conduct                   |          |
|       | Investigations of Complex Problems).                                    |          |
|       | 1. Knowledge of characteristics of particular materials, equipment,     |          |
|       | processes, or products                                                  |          |
|       | 2. Workshop and laboratory skills                                       |          |
|       | 3. Understanding of contexts in which engineering knowledge can be      |          |
|       | applied (example, operations and management, technology                 |          |
|       | development, etc.)                                                      |          |
|       | 4. Understanding use of technical literature and other information      |          |
|       | sources Awareness of nature of intellectual property and contractual    |          |
|       | issues                                                                  |          |
|       | 5. Understanding of appropriate codes of practice and industry          |          |
|       | standards                                                               |          |
|       | 6. Awareness of quality issues                                          |          |
|       | 7. Ability to work with technical uncertainty                           |          |
|       | 8. Understanding of engineering principles and the ability to apply     |          |
|       | them to analyse key engineering processes                               |          |
|       | 9. Ability to identify, classify and describe the performance of        |          |
|       | systems and components through the use of analytical methods and        |          |
|       | modeling techniques                                                     |          |
|       | 10. Ability to apply quantitative methods and computer software         |          |
|       | relevant to their engineering discipline, in order to solve engineering |          |
|       | problems                                                                |          |
|       | 11. Understanding of and ability to apply a systems approach to         |          |
|       | engineering problems.                                                   |          |
| PO 5  | Create, select, and apply appropriate techniques, resources, and        | 1        |
|       | modern Engineering and IT tools including prediction and modelling      |          |
|       | to complex Engineering activities with an understanding of the          |          |
|       | limitations (Modern Tool Usage).                                        |          |
|       | 1. Computer software / simulation packages / diagnostic equipment       |          |
|       | / technical library resources / literature search tools.                |          |
| PO 6  | Apply reasoning informed by the contextual knowledge to assess          | <b>5</b> |
|       | societal, health, safety, legal and cultural issues and the consequent  |          |
|       | responsibilities relevant to the professional engineering practice (The |          |
|       | Engineer and Society).                                                  |          |
|       | 1. Knowledge and understanding of commercial and economic               |          |
|       | context of engineering processes                                        |          |
|       | 2. Knowledge of management techniques which may be used to              |          |
|       | achieve engineering objectives within that context                      |          |
|       | 3. Understanding of the requirement for engineering activities to       |          |
|       | promote sustainable development                                         |          |
|       | 4. Awareness of the framework of relevant legal requirements            |          |
|       | governing engineering activities, including personnel, health, safety,  |          |
|       | and risk (including environmental risk) issues                          |          |
|       | 5. Understanding of the need for a high level of professional and       |          |
|       |                                                                         |          |

| PO 7 | <ul> <li>Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).</li> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>Socio economic</li> <li>Political</li> <li>Environmental</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3  |
| PO 9 | <ul> <li>Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive their performance</li> <li>3. Self-direction (take a vaguely defined problem and systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project.</li> <li>6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> | 12 |

| PO 10 | <ul> <li>Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication).</li> <li>"Students should demonstrate the ability to communicate effectively in writing / Orally"</li> <li>Clarity (Writing)</li> <li>Grammar/Punctuation (Writing)</li> <li>References (Writing)</li> <li>Speaking Style (Oral)</li> <li>Subject Matter (Oral)</li> </ul>                                                                                  | 5  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO11  | Demonstrate knowledge and understanding of the Engineering and<br>management principles and apply these to one's own work, as a<br>member and leader in a team, to manage projects and in<br>multidisciplinary Environments (Project Management and<br>Finance).1. Scope Statement2. Critical Success Factors3. Deliverables4. Work Breakdown Structure5. Schedule6. Budget7. Quality8. Human Resources Plan9. Stakeholder List10. Communication11. Risk Register12. Procurement Plan                                                                                                                                                                                   | 12 |
| PO12  | <ul> <li>Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning).</li> <li>Project management professional certification / MBA</li> <li>Begin work on advanced degree</li> <li>Keeping current in CSE and advanced engineering concepts</li> <li>Personal continuing education efforts</li> <li>Ongoing learning – stays up with industry trends/ new technology</li> <li>Continued personal development</li> <li>Have learned at least 2-3 new significant skills</li> <li>Have taken up to 80 hours (2 weeks) training per year</li> </ul> | 8  |



# INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING COURSE DESCRIPTION

| Course Title       | Analog and Pulse Circuits Laboratory   |           |         |            |         |
|--------------------|----------------------------------------|-----------|---------|------------|---------|
| Course Code        | AECB15                                 |           |         |            |         |
| Program            | B.Tech                                 |           |         |            |         |
| Semester           | IV ECE                                 |           |         |            |         |
| Course Type        | Core                                   |           |         |            |         |
| Regulation         | IARE - R18                             | 8         |         |            |         |
|                    |                                        | Theory    |         | Practi     | cal     |
| Course Structure   | Lecture                                | Tutorials | Credits | Laboratory | Credits |
|                    | -                                      | -         | -       | 3          | 1.5     |
| Course Coordinator | R. Venkata Sravya, Assistant Professor |           |         |            |         |

# I COURSE OVERVIEW:

The objective of this course is to meet the requirements of practical work meant for circuit designing, analysis and provides hands-on experience by examining the pulse circuits and measuring instruments. This lab covers the analysis of the linear, non-linear wave shaping circuits, oscillators and multivibrators. Students will professed with the capability to use simulation tools for performing analysis of various amplifer circuits, wave shaping circuits and multivibrator applications.

### **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites                   |
|--------|-------------|----------|---------------------------------|
| B.Tech | AECB06      | III      | Electronic Devices and Circuits |

### **III MARKS DISTRIBUTION:**

| Subject                                 | SEE Examination | CIE Examination | Total Marks |
|-----------------------------------------|-----------------|-----------------|-------------|
| Analog and Pulse Circuits<br>Laboratory | 70 Marks        | 30 Marks        | 100         |

### IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

|              | Demo Video |              | Lab        |              | Viva      |              | Probing further Questions |
|--------------|------------|--------------|------------|--------------|-----------|--------------|---------------------------|
| $\checkmark$ |            | $\checkmark$ | Worksheets | $\checkmark$ | Questions | $\checkmark$ |                           |

### **V** EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner,

|      | Experiment Based | Programming based |
|------|------------------|-------------------|
| 20 % | Objective        | Purpose           |
| 20 % | Analysis         | Algorithm         |
| 20 % | Design           | Programme         |
| 20 % | Conclusion       | Conclusion        |
| 20 % | Viva             | Viva              |

both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Component          | Labor                     | Total Marks                      |             |
|--------------------|---------------------------|----------------------------------|-------------|
| Type of Assessment | Day to day<br>performance | Final internal lab<br>assessment | 10tal Marks |
| CIA Marks          | 20                        | 10                               | 30          |

#### **Continuous Internal Examination (CIE):**

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### 1. Experiment Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 2         | 2        | 2      | 2          | 2    | 10    |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The basic amplifer circuits using common emitter and common base configurations.      |
|-----|---------------------------------------------------------------------------------------|
| II  | The multivibrator circuits using transistors for real time applications.              |
| III | The principle of oscillation and design of oscillators.                               |
| IV  | The response of linear and non linear wave shaping circuits for sinusoidal, pulse and |
|     | ramp inputs.                                                                          |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | Analyze the single stage and multistage Bipolar Junction Transistor     | Analyze |
|------|-------------------------------------------------------------------------|---------|
|      | (BJT) amplifers for determining the voltage gain and bandwidth          |         |
| CO 2 | Build linear and non-linear wave shaping circuits to obtain the         | Apply   |
|      | response for sine and square wave inputs.                               |         |
| CO 3 | Analyze voltage series and current shunt feedback amplifer circuits for | Analyze |
|      | determining amplifer characteristics.                                   |         |
| CO 4 | Apply the barkhausen criteria to oscillators for generating sine wave.  | Apply   |

| CO 5 | <b>Examine</b> the suitable multivibrator to generate non-sinusoidal        | Apply   |
|------|-----------------------------------------------------------------------------|---------|
|      | waveforms for real time applications                                        |         |
| CO 6 | <b>Examine</b> the frequency response of class-A power amplifers and single | Analyze |
|      | tuned voltage amplifer circuits using Bipolar Junction Transistor           |         |
|      | (BJT).                                                                      |         |

## COURSE KNOWLEDGE COMPETENCY LEVEL



**BLOOMS TAXONOMY** 

# VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program                                              | Strength | Proficiency   |
|------|------------------------------------------------------|----------|---------------|
|      |                                                      |          | Assessed by   |
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of | 2        | Lab Exercises |
|      | mathematics, science, engineering fundamentals,      |          |               |
|      | and an engineering specialization to the solution of |          |               |
|      | complex engineering problems.                        |          |               |
| PO 2 | Problem analysis: Identify, formulate, review        | 3        | Lab Experi-   |
|      | research literature, and analyze complex engineering |          | ments/CIE/SEE |
|      | problems reaching substantiated conclusions using    |          |               |
|      | first principles of mathematics, natural sciences,   |          |               |
|      | and engineering sciences                             |          |               |
| PO 3 | <b>Design/Development of Solutions:</b> Design       | 2        | CIA           |
|      | solutions for complex Engineering problems and       |          |               |
|      | design system components or processes that meet      |          |               |
|      | the specified needs with appropriate consideration   |          |               |
|      | for the public health and safety, and the cultural,  |          |               |
|      | societal, and Environmental considerations           |          |               |
| PO 4  | Conduct investigations of complex problems:         | 2 | Lab Experi-   |
|-------|-----------------------------------------------------|---|---------------|
|       | Use research-based knowledge and research methods   |   | ments/CIE/SEE |
|       | including design of experiments, analysis and       |   |               |
|       | interpretation of data, and synthesis of the        |   |               |
|       | information to provide valid conclusions.           |   |               |
| PO 5  | Modern Tool Usage: Create, select, and apply        | 2 | Lab Exercises |
|       | appropriate techniques, resources, and modern       |   |               |
|       | Engineering and IT tools including prediction and   |   |               |
|       | modelling to complex Engineering activities with an |   |               |
|       | understanding of the limitations                    |   |               |
| PO 9  | Individual and team work: Function effectively as   | 1 | Lab Experi-   |
|       | an individual, and as a member or leader in diverse |   | ments/CIE/SEE |
|       | teams, and in multidisciplinary settings.           |   |               |
| PO 10 | Communication: Communicate effectively on           | 1 | Lab Experi-   |
|       | complex engineering activities with the engineering |   | ments/CIE/SEE |
|       | community and with society at large, such as, being |   |               |
|       | able to comprehend and write effective reports and  |   |               |
|       | design documentation, make effective presentations, |   |               |
|       | and give and receive clear instructions.            |   |               |

3 = High; 2 = Medium; 1 = Low

# IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                     | Strength | Proficiency<br>Assessed<br>by |
|-------|---------------------------------------------|----------|-------------------------------|
| PSO 1 | Build Embedded Software and Digital Circuit | 2        | Lab                           |
|       | Development platform for Robotics, Embedded |          | Exercises                     |
|       | Systems and Signal Processing Applications. |          |                               |

3 = High; 2 = Medium; 1 = Low

# X MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              | PROGRAM OUTCOMES |              |              |              |    |    |    |              |              |    |    | PSO'S        |     |     |
|----------|--------------|------------------|--------------|--------------|--------------|----|----|----|--------------|--------------|----|----|--------------|-----|-----|
| COURSE   | PO           | PO               | PO           | PO           | PO           | PO | PO | PO | PO           | PO           | PO | PO | PSO          | PSO | PSO |
| OUTCOMES | 1            | 2                | 3            | 4            | 5            | 6  | 7  | 8  | 9            | 10           | 11 | 12 | 1            | 2   | 3   |
| CO 1     | $\checkmark$ | -                | -            | $\checkmark$ | $\checkmark$ | -  | -  | -  | -            | $\checkmark$ | -  | -  | $\checkmark$ | -   | -   |
| CO 2     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -            | -  | -  | -  | -            | $\checkmark$ | -  | -  | -            | -   | -   |
| CO 3     | $\checkmark$ | -                | -            | $\checkmark$ | $\checkmark$ | -  | -  | -  | $\checkmark$ | $\checkmark$ | -  | -  | -            | -   | -   |
| CO 4     | $\checkmark$ | -                | -            | $\checkmark$ | $\checkmark$ | -  | -  | -  | -            | $\checkmark$ | -  | -  | -            | -   | -   |
| CO 5     | $\checkmark$ | -                | $\checkmark$ | $\checkmark$ | -            | -  | -  | -  | $\checkmark$ | $\checkmark$ | -  | -  | -            | -   | -   |
| CO 6     | $\checkmark$ | $\checkmark$     | -            | $\checkmark$ | $\checkmark$ | -  | -  | -  | -            | $\checkmark$ | -  | -  | -            | -   | -   |

# XI JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S                                                                                                                                                                                                     | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                    | No. of Key<br>Competencies |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| CO 1               | PO 1                                                                                                                                                                                                              | Analyze the single stage and multistage Bipolar Junction<br>Transistor (BJT) amplifers for determining the voltage<br>gain and bandwidth by applying knowledge of<br><b>mathematics</b> and <b>engineering fundamentals</b>                                                                                             | 2                          |  |  |  |
|                    | PO 4                                                                                                                                                                                                              | Understand the (given problem statement) single stage and<br>multistage Bipolar Junction Transistor (BJT) amplifers for<br>analysis and interpretation of data, and synthesis of the<br>information to provide valid conclusions                                                                                        | 3                          |  |  |  |
|                    | PO 5 <b>Create</b> , select, and apply appropriate techniques to obtai<br>the frequency response of single and multi stage amplifer<br>circuits using <b>NI Multisim software</b> and calculate gain<br>bandwidth |                                                                                                                                                                                                                                                                                                                         |                            |  |  |  |
|                    | PO 10                                                                                                                                                                                                             | <b>Communication:</b> Communicate effectively on complex<br>engineering activities with the engineering community and<br>with society at large, such as, being able to comprehend<br>and write effective reports and design documentation,<br>make effective presentations, and give and receive clear<br>instructions. | 2                          |  |  |  |
|                    | PSO 1                                                                                                                                                                                                             | Formulate and Evaluate the amplifer applications in the<br>feld of Intelligent Embedded and Semiconductor<br>technologies                                                                                                                                                                                               | 1                          |  |  |  |
| CO 2               | PO 1                                                                                                                                                                                                              | Build wave shaping circuits to obtain the response for sine<br>and square wave inputs by applying knowledge of<br>mathematics and engineering fundamentals.                                                                                                                                                             | 2                          |  |  |  |
|                    | PO 2                                                                                                                                                                                                              | Understand the given the wave shaping circuit application<br>problem statement and finding the solution implementation<br>of wave shaping circuits by analyzing complex engineering<br>problems                                                                                                                         | 3                          |  |  |  |
|                    | PO 4                                                                                                                                                                                                              | Use research-based knowledge and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of the information of<br>the basic embedded modules using different electronic<br>circuits to provide valid conclusions.                                                    | 3                          |  |  |  |
|                    | PO 10                                                                                                                                                                                                             | Communication: Communicate effectively on complex<br>engineering activities with the engineering community and<br>with society at large, such as, being able to comprehend<br>and write effective reports and design documentation,<br>make effective presentations, and give and receive clear<br>instructions.        | 2                          |  |  |  |
| CO 3               | PO 1                                                                                                                                                                                                              | Make use of voltage series and current shunt feedback<br>amplifer circuits for determining amplifer characteristics by<br>applying knowledge of mathematics and engineering<br>fundamentals                                                                                                                             | 2                          |  |  |  |

|      | PO 4  | Use research-based knowledge and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of the information of<br>the basic embedded modules using different electronic<br>circuits to provide valid conclusions.                                             | 3 |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 5  | Create, select, and apply appropriate techniques to obtain<br>the frequency response of single and multi stage amplifer<br>circuits using NI Multisim software and calculate gain<br>bandwidth.                                                                                                                  | 1 |
|      | PO 9  | Individual and team work: Function effectively as an<br>individual, and as a member to obtain the readings.                                                                                                                                                                                                      | 3 |
|      | PO 10 | Communication: Communicate effectively on complex<br>engineering activities with the engineering community and<br>with society at large, such as, being able to comprehend<br>and write effective reports and design documentation,<br>make effective presentations, and give and receive clear<br>instructions. | 2 |
| CO 4 | PO 1  | Apply the barkhausen criteria to oscillators for generating<br>sine wave by applying knowledge of science, mathematics<br>and engineering fundamentals                                                                                                                                                           | 3 |
|      | PO 4  | Use research-based knowledge and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of the information of<br>the basic embedded modules using different electronic<br>circuits to provide valid conclusions                                              | 3 |
|      | PO 5  | Create, select, and apply appropriate techniques to obtain<br>the frequency response of single and multi stage amplifer<br>circuits using NI Multisim software and calculate gain<br>bandwidth.                                                                                                                  | 1 |
|      | PO 10 | Communication: Communicate effectively on complex<br>engineering activities with the engineering community and<br>with society at large, such as, being able to comprehend<br>and write effective reports and design documentation,<br>make effective presentations, and give and receive clear<br>instructions. | 2 |
| CO 5 | PO 1  | Identify the suitable multivibrator to generate<br>non-sinusoidal waveforms for real time applications by<br>applying knowledge of mathematics and engineering<br>fundamentals.                                                                                                                                  | 3 |
|      | PO 3  | Design solutions for multivibrator circuits to complex<br>engineering problems and design system components or<br>processes that meet the specifed needs with appropriate<br>consideration for the public health and safety, and the<br>cultural, societal, and environmental considerations                     | 3 |
|      | PO 4  | Use research-based knowledge and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of the information of<br>the basic embedded modules using different electronic<br>circuits to provide valid conclusions                                              | 3 |

|      | PO 9  | Individual and team work: Function effectively as an individual, and as a member to obtain the readings.                                                                                                                                                                                                         | 3 |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 10 | Communication: Communicate effectively on complex<br>engineering activities with the engineering community and<br>with society at large, such as, being able to comprehend<br>and write effective reports and design documentation,<br>make effective presentations, and give and receive clear<br>instructions. | 2 |
| CO 6 | PO 1  | Examine the frequency response of class-A power amplifers<br>and single tuned voltage amplifer circuits using Bipolar<br>Junction Transistor (BJT) by applying knowledge of<br>mathematics and engineering fundamentals.                                                                                         | 2 |
|      | PO 2  | Identify, formulate and analyze complex engineering<br>problems of power amplifers reaching substantiated<br>conclusions using frst principles of mathematics, natural<br>sciences, and engineering sciences.                                                                                                    | 3 |
|      | PO 4  | Use research-based knowledge and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of the information of<br>the basic embedded modules using different electronic<br>circuits to provide valid conclusions.                                             | 3 |
|      | PO 5  | Create, select, and apply appropriate techniques to obtain<br>the frequency response of single and multi stage amplifer<br>circuits using NI Multisim software and calculate gain<br>bandwidth                                                                                                                   | 1 |
|      | PO 10 | Communication: Communicate effectively on complex<br>engineering activities with the engineering community and<br>with society at large, such as, being able to comprehend<br>and write effective reports and design documentation,<br>make effective presentations, and give and receive clear<br>instructions  | 1 |

## XII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO | PO               | PO | PO | РО | PO | PSO   | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 2  | -                | -  | 3  | 1  | -  | -  | -  | -  | 2  | -  | -  | 1     | -   | -   |
| CO 2     | 2  | 3                | 3  | 2  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | -   |
| CO 3     | 2  | -                | -  | 3  | 1  | -  | -  | -  | 3  | 1  | -  | -  | -     | -   | -   |
| CO 4     | 3  | -                | -  | 3  | 1  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | -   |
| CO 5     | 3  | -                | 3  | 3  | -  | -  | -  | -  | 3  | 1  | -  | -  | -     | -   | -   |
| CO 6     | 2  | 3                | -  | 3  | 1  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | -   |

# XIII ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               | $\checkmark$ | SEE Exams    | $\checkmark$ | Seminars      | - |
|-------------------------|--------------|--------------|--------------|---------------|---|
| Laboratory<br>Practices | $\checkmark$ | Student Viva | $\checkmark$ | Certification | - |
| Assignments             | -            |              |              |               |   |

# XIV ASSESSMENT METHODOLOGY INDIRECT:

| <ul> <li>✓</li> </ul> | Early Semester Feedback               | √ | End Semester OBE Feedback |
|-----------------------|---------------------------------------|---|---------------------------|
| X                     | Assessment of Mini Projects by Expert | S |                           |

#### XV SYLLABUS:

| WEEK-1      | BASIC AMPLIFIERS/ LINEAR WAVESHAPING                                      |
|-------------|---------------------------------------------------------------------------|
|             | a. Simulate frequency response of common emitter amplifer and common      |
|             | base amplifer.                                                            |
|             | b. Design RC low pass and high pass circuit for different time constants. |
| WEEK-2      | BASIC AMPLIFIERS/ LINEAR WAVESHAPING                                      |
|             | a. Design RC low pass and high pass circuit for different time constants. |
|             | b. Simulate frequency response of common emitter amplifer and common      |
|             | base amplifer                                                             |
| WEEK-3      | TWO STAGE RC COUPLED AMPLIFIER / NON-LINEAR<br>WAVESHAPING                |
|             | a. Simulate frequency response of two stage BC coupled amplifer           |
|             | b. Design transfer characteristics of clippers and clampers               |
| WFFK A      | TWO STACE BC COULDED AMPLIEUED / NON LINEAD                               |
| VV 15151X-4 | WAVESHAPING                                                               |
|             | a. Design transfer characteristics of clippers and clampers.              |
|             | b. Simulate frequency response of two stage RC coupled amplifer.          |
| WEEK-5      | SINGLE TUNED AMPLIFIERS / TRANSISTOR AS A SWITCH                          |
|             | a. Simulate a single tuned amplifer.                                      |
|             | b. Design of transistor as a switch.                                      |
| WEEK-6      | SINGLE TUNED AMPLIFIERS / TRANSISTOR AS A SWITCH                          |
|             | a. Design of transistor as a switch.                                      |
|             | b. Simulate a single tuned amplifer.                                      |
| WEEK-7      | FEEDBACK AMPLIFIERS / COMPARATOR                                          |
|             | a. Simulate voltage series feedback amplifer and current shunt feedback   |
|             | amplifer.                                                                 |
|             | b. Design of comparator circuit                                           |
| WEEK-8      | FEEDBACK AMPLIFIERS / COMPARATOR                                          |
|             | a. Design of comparator circuit.                                          |
|             | b. Simulate voltage series feedback amplifer and current shunt feedback   |
|             | amplifer                                                                  |

| WEEK-9  | RC PHASE SHIFT OSCILLATOR USING TRANSISTOR /<br>MULTIVIBRATORS                                                                                                                                                                 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul><li>a. Simulate sine wave generated for a particular frequency by an RC phase shift oscillator.</li><li>b. Design different types of multivibrators and plot its waveforms.</li></ul>                                      |
| WEEK-10 | RC PHASE SHIFT OSCILLATOR USING TRANSISTOR /<br>MULTIVIBRATORS                                                                                                                                                                 |
|         | <ul><li>a. Design different types of multivibrators and plot its waveforms.</li><li>b. Simulate sine wave generated for a particular frequency by an RC phase shift oscillator.</li></ul>                                      |
| WEEK-11 | OSCILLATORS / SCHMIT TRIGGER                                                                                                                                                                                                   |
|         | <ul><li>a. Design a Schmitt trigger circuit.</li><li>b. Simulate sine wave generated for a particular frequency by Colpitts and<br/>Hartley oscillator.</li></ul>                                                              |
| WEEK-12 | OSCILLATORS / SCHMIT TRIGGER                                                                                                                                                                                                   |
|         | <ul><li>a. Design a Schmitt trigger circuit.</li><li>b. Simulate sine wave generated for a particular frequency by Colpitts and<br/>Hartley oscillator.</li></ul>                                                              |
| WEEK-13 | POWER AMPLIFIERS/ UJT AS A RELAXATION<br>OSCILLATOR                                                                                                                                                                            |
|         | <ul><li>a. Simulate class A power amplifer (transformer less) and class B power amplifer.</li><li>b. Design of UJT as a relaxation oscillator</li></ul>                                                                        |
| Week-14 | <ul> <li>POWER AMPLIFIERS/ UJT AS A RELAXATION</li> <li>OSCILLATOR</li> <li>a. Design of UJT as a relaxation oscillator.</li> <li>b. Simulate class A power amplifer (transformer less) and class B power amplifer.</li> </ul> |

#### **TEXTBOOKS**

- 1. Douglas Perry,"VHDL", Tata McGraw Hill,4th Edition,2002.
- 2. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd Edition,2006.

#### **REFERENCE BOOKS:**

- 1. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989.
- 2. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd Edition 2012.

## XVI COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                           | CO's | Reference           |
|------|------------------------------------------------------------------------------------------------|------|---------------------|
| 1    | Simulate frequency response of common emitter and common base amplifier.                       | CO 1 | T1-2.1 to 2.7       |
| 2    | Design RC low pass and high pass circuit for different time constants                          | CO 2 | T.20.1 to 20.2      |
| 3    | Simulate frequency response of two stage RC coupled amplifer                                   | CO 1 | T.8.1 to 8.2        |
| 4    | Design transfer characteristics of clippers and clampers                                       | CO 2 | T.8.3 to 8.7        |
| 5    | Simulate a single tuned amplifier                                                              | CO 6 | T.10.1 to<br>10.10  |
| 6    | Design of transistor as a switch.                                                              | CO 5 | T.10.11 to<br>10.13 |
| 7    | Simulate voltage series feedback amplifer and current shunt feedback amplifer                  | CO 3 | T.11.11 to<br>11.5  |
| 8    | Design of comparator circuit.                                                                  | CO 5 | T.11.6-11.12        |
| 9    | Simulate sine wave generated for a particular frequency by<br>an RC phase shift oscillator.    | CO 4 | T.17.1 to 17.6      |
| 10   | Design different types of multivibrators and plot its waveforms                                | CO 5 | T.14.1 to 14.3      |
| 11   | Simulate sine wave generated for a particular frequency by<br>Colpitts and Hartley oscillator. | CO 4 | T.14.2 to 14.9      |
| 12   | Design a Schmitt trigger circuit                                                               | CO 5 | T1.19.1 to<br>19.3  |
| 13   | Simulate class A power amplifer (transformer less) and class B power amplifer.                 | CO 6 | T1.6.1 to 6.5       |
| 14   | Design of UJT as a relaxation oscillator.                                                      | CO 4 | T1.7.1 to 7.3       |

# XVII EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Design Oriented Experiments        |
|------|------------------------------------|
| 1    | Design a Bootstrap sweep circuit   |
| 2    | Design a schmitt trigger circuit   |
| 3    | Design a UJT relaxation oscillator |

Signature of Course Coordinator R. Venkata Sravya, Assistant Professor



#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title       | ANALOG COMMUNICATIONS LABORATORY        |           |         |            |         |  |  |
|--------------------|-----------------------------------------|-----------|---------|------------|---------|--|--|
| Course Code        | AECB16                                  | AECB16    |         |            |         |  |  |
| Program            | B.Tech                                  | B.Tech    |         |            |         |  |  |
| Semester           | IV                                      | V ECE     |         |            |         |  |  |
| Course Type        | Core                                    |           |         |            |         |  |  |
| Regulation         | R-18                                    |           |         |            |         |  |  |
|                    | Theory Practical                        |           |         | ctical     |         |  |  |
| Course Structure   | Lecture                                 | Tutorials | Credits | Laboratory | Credits |  |  |
|                    | -                                       | -         | -       | 3          | 1.5     |  |  |
| Course Coordinator | Dr.V Siva Nagaraju, Associate Professor |           |         |            |         |  |  |

#### I COURSE PRE-REQUISITES:

| Level Course Code |        | Semester | Prerequisites         |  |
|-------------------|--------|----------|-----------------------|--|
| B.Tech            | AECB12 | IV       | Analog Communications |  |

#### **II COURSE OVERVIEW:**

Communications is a vital and rapidly expanding field. Students will familiarize with elements of communication. The lab course consists of analog communications in practice, time domain and the frequency domain. It covers the basic types of analog modulation (AM, DSBSC, and FM ...) from both MATLAB and equipment based.

#### **III MARKS DISTRIBUTION:**

| Subject        | SEE Examination | CIE Examination | Total Marks |
|----------------|-----------------|-----------------|-------------|
| Analog         | 70 Marks        | 30 Marks        | 100         |
| Communications |                 |                 |             |
| Laboratory     |                 |                 |             |

## IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

|                       | Demo Video |   | Lab Worksheets |                     | Viva Questions |   | Probing further |
|-----------------------|------------|---|----------------|---------------------|----------------|---|-----------------|
| <ul> <li>✓</li> </ul> |            | ✓ |                | <ul><li>✓</li></ul> |                | V | Questions       |

## **V EVALUATION METHODOLOGY:**

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

**Semester End Examination (SEE):**The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External

|      | Experiment Based | Programming based |
|------|------------------|-------------------|
| 20 % | Objective        | Purpose           |
| 20 % | Analysis         | Algorithm         |
| 20 % | Design           | Programme         |
| 20 % | Conclusion       | Conclusion        |
| 20 % | Viva             | Viva              |

Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Component  |                        |                    | Total Marks |
|------------|------------------------|--------------------|-------------|
| Type of    | Day to day performance | Final internal lab |             |
| Assessment |                        | assessment         |             |
| CIA Marks  | 20                     | 10                 | 30          |

#### **Continuous Internal Examination (CIE):**

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### 1. Experiment Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 2         | 2        | 2      | 2          | 2    | 10    |

#### 2. Programming Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 2         | 2        | 2      | 2          | 2    | 10    |

## VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The concepts like Amplitude modulation, Frequency modulation, demodulation,<br>Phase Locked Loop and multiplexing |
|-----|-------------------------------------------------------------------------------------------------------------------|
| II  | The generation, detection of pulse analog modulation techniques and receiver characteristics                      |
| III | The time and frequency domain analysis of the signals in communication system<br>by using MATLAB tools            |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Discriminate</b> the generation and detection of amplitude | Analyze |
|------|---------------------------------------------------------------|---------|
|      | modulated and frequency modulated signals to calculate the    |         |
|      | modulation index and frequency deviation                      |         |

| CO 2 | Analyze the working principle for generating and detecting               | Analyze |
|------|--------------------------------------------------------------------------|---------|
|      | DSBSC and SSBSC modulated wave                                           |         |
| CO 3 | <b>Distinguish</b> the time division and frequency division multiplexing | Analyze |
|      | techniques for transmitting multiple signals at a time in the            |         |
|      | communication system                                                     |         |
| CO 4 | <b>Examine</b> the mixer characteristics of super heterodyne receiver to | Analyze |
|      | verify the characteristics of automatic gain control unit                |         |
| CO 5 | Make use of phase locked loop to verify the operation of frequency       | Apply   |
|      | synthesizer                                                              |         |
| CO 6 | <b>Experiment</b> with the spectrum analyzer to calculate the            | Apply   |
|      | bandwidth of AM and FM waveforms from their frequency spectrum           |         |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



# VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program                                            | Strength | Proficiency         |
|------|----------------------------------------------------|----------|---------------------|
|      |                                                    |          | Assessed by         |
| PO 2 | Problem analysis: Identify, formulate, review      | 2        | Lab Exercises/ CIE/ |
|      | research literature, and analyze complex           |          | SEE                 |
|      | engineering problems reaching substantiated        |          |                     |
|      | conclusions using first principles of mathematics, |          |                     |
|      | natural sciences, and engineering sciences.        |          |                     |

| PO 5  | Modern Tool Usage: Create, select, and apply        | 3 | Lab Exercises/ CIE/ |
|-------|-----------------------------------------------------|---|---------------------|
|       | appropriate techniques, resources, and modern       |   | SEE                 |
|       | Engineering and IT tools including prediction and   |   |                     |
|       | modelling to complex Engineering activities with    |   |                     |
|       | an understanding of the limitations                 |   |                     |
| PO 9  | Individual and team work: Function                  | 2 | Lab Exercises/      |
|       | effectively as an individual, and as a member or    |   | Projects            |
|       | leader in diverse teams, and in multidisciplinary   |   |                     |
|       | settings.                                           |   |                     |
| PO 10 | <b>Communication:</b> Communicate effectively on    | 1 | Lab Exercises/      |
|       | complex engineering activities with the             |   | Projects            |
|       | engineering community and with society at large,    |   |                     |
|       | such as, being able to comprehend and write         |   |                     |
|       | effective reports and design documentation, make    |   |                     |
|       | effective presentations, and give and receive clear |   |                     |
|       | instructions.                                       |   |                     |
| PO 12 | Life-Long Learning: Recognize the need for          | 2 | Lab Exercises/      |
|       | and having the preparation and ability to engage    |   | Projects            |
|       | in independent and life-long learning in the        |   |                     |
|       | broadest context of technological change            |   |                     |

3 = High; 2 = Medium; 1 = Low

## IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                        | Strength | Proficiency    |
|-------|------------------------------------------------|----------|----------------|
|       |                                                |          | Assessed by    |
| PSO 3 | Make use of High Frequency Structure Simulator | 2        | Lab Exercises/ |
|       | (HFSS) for modeling and evaluating the Patch   |          | CIE/ SEE       |
|       | and Smart Antennas for Wired and Wireless      |          |                |
|       | Communication Applications                     |          |                |

3 = High; 2 = Medium; 1 = Low

# X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)     | No. of Key<br>Competencies |
|--------------------|---------------|----------------------------------------------------------|----------------------------|
| CO 1               | PO 2          | <b>Understand</b> the given problem statement and        | 4                          |
|                    |               | formulate the modulation index and frequency             |                            |
|                    |               | deviation from the amplitude modulated and               |                            |
|                    |               | frequency modulated waveforms using <b>principles of</b> |                            |
|                    |               | mathematics and engineering science                      |                            |
|                    | PO 5          | Use <b>MATLAB</b> tool to model the basic amplitude      | 1                          |
|                    |               | and frequency modulation techniques                      |                            |
|                    | PO 9          | Team work and as individual which will enable            | 6                          |
|                    |               | the student to become a <b>productive member</b> of a    |                            |
|                    |               | design team for completion of assignments,               |                            |
|                    |               | achieving of goals to drive their performance in         |                            |
|                    |               | the hands-on labs                                        |                            |

|      | PO 10 | Communicate <b>orally</b> on modulation and <b>write</b><br>effective reports on modulation index and frequency<br>deviation.                                                                                                                                                                                    | 2 |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| CO 2 | PO 2  | Identify the problem and make use of balance<br>modulator and synchronous detector to generate and<br>detect DSBSC modulated waveforms and interpret<br>the results for providing solution to the complex<br>engineering problems                                                                                | 4 |
|      | PO 5  | Make use of MATLAB software for writing,<br>simulating the code to generate and detect SSBSC<br>waveform to solve complex engineering activities.                                                                                                                                                                | 1 |
|      | PO 10 | Communicate <b>orally</b> on DSBSC and <b>write</b> effective reports on sideband suppression                                                                                                                                                                                                                    | 2 |
|      | PO 12 | The student will become aware of the need for<br>lifelong learning and the <b>upgrading of advanced</b><br><b>engineering concepts</b> by continuing <b>personal</b><br><b>development</b> and learning at least 2-3 <b>new</b><br><b>significant skills</b> for the beginning work on<br><b>advanced degree</b> | 4 |
| CO 3 | PO 2  | Identify and formulate the principle of<br>multiplexing and de multiplexing analyze complex<br>engineering problems in the design of transmitter<br>and receiver of a communication system by applying<br>the principles of mathematics, natural<br>sciences, and engineering sciences                           | 5 |
|      | PO 5  | Select <b>MATLAB</b> tools to simulate the code to<br>identify the differences between TDM and FDM                                                                                                                                                                                                               | 1 |
|      | PO 10 | <b>Communicate</b> orally on multiplexing and de<br>multiplexing and <b>write</b> effective reports on TDM<br>and FDM                                                                                                                                                                                            | 2 |
|      | PO 12 | The student will become aware of the need for<br>lifelong learning and the <b>upgrading of advanced</b><br><b>engineering concepts</b> by continuing <b>personal</b><br><b>development</b> and <b>earning at least 2-3 new</b><br><b>significant skills</b> for the beginning work on<br><b>advanced degree</b>  | 4 |
|      | PSO 3 | Make use of <b>HFSS Sim-tel tool</b> to analyze the<br>Frequency Division Multiplexing in wireless<br>communications                                                                                                                                                                                             | 1 |
| CO 4 | PO 2  | Analyze the super heterodyne receiver to estimate<br>the characteristics of automatic gain control unit by<br>applying the principles of mathematics,<br>natural sciences, and engineering sciences                                                                                                              | 4 |
|      | PO 5  | Use <b>MATLAB</b> software and write and simulate the code to verify the characteristics of mixer to provide solutions for complex Engineering activities with an understanding of the limitations                                                                                                               | 1 |

|      | PO 9  | Team work and as individual which will enable<br>the student to become a productive member of a<br>design team for completion of assignments,<br>achieving of goals to drive their performance in<br>the hands-on labs                                                                                          | 6 |
|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 10 | Communicate <b>orally</b> on heterodyning and <b>write</b><br>effective reports on characteristics of automatic gain<br>control                                                                                                                                                                                 | 2 |
|      | PO 12 | The student will become aware of the need for<br>lifelong learning and the <b>upgrading of advanced</b><br><b>engineering concepts</b> by continuing <b>personal</b><br><b>development</b> and <b>earning at least 2-3 new</b><br><b>significant skills</b> for the beginning work on<br><b>advanced degree</b> | 4 |
|      | PSO 3 | Make use of <b>HFSS Sim-tel tool</b> to to analyze the analyze the receiver characteristics in wireless communications                                                                                                                                                                                          | 1 |
| CO 5 | PO 2  | Analyze the phase locked loop circuit for Problem<br>formulation to understand the operation of<br>frequency synthesizer by applying the principles<br>of mathematics                                                                                                                                           | 4 |
|      | PO 5  | Use <b>MATLAB</b> software and simulate the code to<br>implement the frequency synthesizer using phase<br>locked loop to provide solutions for complex<br>Engineering activities with an understanding of the<br>limitations                                                                                    | 1 |
|      | PO 9  | Team work and as individual which will enable<br>the student to become a productive member of a<br>design team for completion of assignments,<br>achieving of goals to drive their performance in<br>the hands-on labs                                                                                          | 6 |
|      | PO 10 | <b>Communicate</b> effectively on complex Engineering<br>activities with the Engineering community and with<br>society at large, such as, being able to comprehend<br>and <b>write</b> effective reports on delta modulation                                                                                    | 2 |
|      | PSO 3 | Make use of <b>HFSS Sim-tel tool</b> to analyze the operation of frequency synthesizer in wireless communications                                                                                                                                                                                               | 1 |
| CO 6 | PO 2  | Understand the requirements (opportunity) of<br>spectrum analyzer in industrial applications (<br>problem statement) and calculation of bandwidth<br>from frequency spectrum (solution) to validate the<br>obtained results in real time environment                                                            | 4 |
|      | PO 9  | Team work and as individual which will enable<br>the student to become a productive member of a<br>design team for completion of assignments,<br>achieving of goals to drive their performance in<br>the hands-on labs                                                                                          | 6 |

| PO 10 | Communicate <b>orally</b> on spectrum analyzer and  | 2 |
|-------|-----------------------------------------------------|---|
|       | write effective reports on calculation of bandwidth |   |
|       | from frequency spectrum                             |   |

#### XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| COURSE   | PROGRAM | I OUTCOME | PSO'S |       |       |
|----------|---------|-----------|-------|-------|-------|
| OUTCOMES | PO 2    | PO 5      | PO 9  | PO 10 | PSO 3 |
| CO 1     | 1       | 3         | 2     | 1     | -     |
| CO 2     | 1       | 3         | -     | 1     | -     |
| CO 3     | 2       | 3         | -     | 1     | 2     |
| CO 4     | 1       | 3         | 2     | 1     | 2     |
| CO 5     | 1       | 3         | 2     | 1     | 2     |
| CO 6     | 1       | -         | 2     | 1     | -     |

#### XII ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               | $\checkmark$ | SEE Exams    | $\checkmark$ | Seminars      | - |
|-------------------------|--------------|--------------|--------------|---------------|---|
| Laboratory<br>Practices | $\checkmark$ | Student Viva | $\checkmark$ | Certification | - |
| Assignments             | -            |              |              |               |   |

#### XIII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback                 | ✓         | End Semester OBE Feedback              |
|--------------|-----------------------------------------|-----------|----------------------------------------|
| $\checkmark$ | Assessment of activities / Modeling and | l Experin | nental Tools in Engineering by Experts |

#### XIV SYLLABUS:

| WEEK I   | LTI SYSTEM AND ITS RESPONSE                                                                              |
|----------|----------------------------------------------------------------------------------------------------------|
|          | Verification of linearity, time invariance, stability properties of a given system                       |
| WEEK II  | AMPLITUDE MODULATION AND DEMODULATION                                                                    |
|          | Generation of amplitude modulation and demodulation using hardware and MATLAB                            |
| WEEK III | DSB-SC MODULATOR and DETECTOR                                                                            |
|          | Generation of AM-Double Side Band Suppressed Carrier (DSB-SC) signal using Balanced Modulator and MATLAB |
| WEEK IV  | SSB-SC MODULATOR and DETECTOR (PHASE SHIFT METHOD)                                                       |
|          | Generation of single side band suppressed carrier modulation and demodulation using hardware and MATLAB  |
| WEEK V   | FREQUENCY MODULATION AND DEMODULATION                                                                    |
|          | Generation of frequency modulation and demodulation using hardware and MATLAB                            |
| WEEK VI  | PRE-EMPHASIS and DE-EMPHASIS                                                                             |

|              | Verification of pre-emphasis and de-emphasis to boost high frequency modulating signal using hardware and MATLAB |
|--------------|------------------------------------------------------------------------------------------------------------------|
| WEEK VII     | FREQUENCY DIVISION MULTIPLEXING and DE MULTIPLEXING                                                              |
|              | Construct the frequency division multiplexing and demultiplexing circuit and to                                  |
| WEEKVIII     | TIME DIVISION MULTIDI EVINC and DE MULTIDI EVINC                                                                 |
| WEEKVIII     | TIME DIVISION MULTIPLEXING and DE MULTIPLEXING                                                                   |
|              | To study the operation of Time-Division multiplexing                                                             |
| WEEK IX      | AGC CHARACTERISTICS                                                                                              |
|              | To study the AGC Characteristics                                                                                 |
| WEEK X       | CHARACTERISTICS OF MIXER                                                                                         |
|              | To obtain the mixer characteristics of a super heterodyne receiver                                               |
| WEEK XI      | PHASE LOCKED LOOP                                                                                                |
|              | To compare the theoretical and practical values of capture range and lock range of phase locked loop             |
| WEEK XII     | GENERATION OF DSBSC USING RING MODULATION                                                                        |
|              | To generate AM-Double Side Band Suppressed Carrier (DSB-SC) signal using<br>Ring Modulator                       |
| WEEK<br>XIII | FREQUENCY SYNTHESIZER                                                                                            |
|              | To study the operation of frequency synthesizer using PLL                                                        |
| WEEK         | SPECTRAL ANALYSIS OF AM AND FM SIGNALS USING                                                                     |
| XIV          | SPECTRUM ANALYZER                                                                                                |
|              | To study the operation of spectrum analyzer                                                                      |

#### **TEXTBOOKS**

- 1. S. S. Haykin, "Communication Systems", Wiley Eastern, 3<sup>rd</sup> Edition, 2006.
- 2. Taub, Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 4<sup>th</sup> Edition, 2013.

#### **REFERENCE BOOKS:**

- 1. B.P. Lathi, "Communication Systems, BS Publication", 2<sup>nd</sup> Edition, 2006.
- 2. John G. Proakis, Masond, Salehi, "Fundamentals of Communication Systems", PEA, 1<sup>st</sup> Edition,2006
- 3. George Kennedy, Bernard Davis, "Electronics and Communication System", Tata McGraw Hill, 5<sup>th</sup> Edition, 2011.

## XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                  | CO's | Reference                                |
|------|---------------------------------------|------|------------------------------------------|
| 1    | LTI system and its response           | CO 1 | T1: 13.2                                 |
| 2    | Amplitude Modulation and Demodulation | CO 2 | T1: 1.2.4 to<br>1.4.8, T1:<br>1.1 to 2.5 |

| 3  | DSB-SC Modulator and Synchronous Detector                      | CO 2 | T1: 3.2 to<br>3.3.4, R1:<br>3.3 |
|----|----------------------------------------------------------------|------|---------------------------------|
| 4  | SSB-SC Modulator and Detector (Phase Shift Method)             | CO 2 | T1: 3.4.1 to 3.4.2              |
| 5  | Frequency modulation and demodulation                          | CO 1 | T1: 4.4 to<br>4.4.5             |
| 6  | Pre-emphasis and De-emphasis                                   | CO 1 | T1: 9.1 to<br>9.5.2             |
| 7  | Frequency Division Multiplexing and De multiplexing            | CO 3 | T1: 6.2 to<br>6.3               |
| 8  | Time Division Multiplexing and De multiplexing                 | CO 3 | T2: 6.2 to<br>6.3               |
| 9  | AGC Characteristics                                            | CO 4 | R3: 6.2 to<br>6.4.6             |
| 10 | Characteristics of mixer                                       | CO 5 | R3: 6.1                         |
| 11 | Phase locked loop                                              | CO 6 | R3: 6.2 to<br>6.4.6             |
| 12 | Frequency Synthesizer                                          | CO 5 | R3: 6.2 to<br>6.4.6             |
| 13 | Generation of DSBSC using ring modulation                      | CO 2 | T1: 3.2 to<br>3.3.4             |
| 14 | Spectral analysis of AM and FM signals using spectrum analyzer | CO 6 | R4: 5.9                         |

# XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Design Oriented Experiments                                                                                                        |
|------|------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Implement the modulation and demodulation of Quadrature Amplitude Modulation (QAM).                                                |
| 2    | Perform simple processes on speech signals (filtering, frequency translation), and examine their effect on the sound using MATLAB. |
| 3    | Design of FM receiver (90.4 MHz)                                                                                                   |
| 4    | Design a sampling circuit with 5 V p-p amplitude and 100 Hz sine wave and remove aliasing effect                                   |
| 5    | Design PAM transmission of voice signal with W = 3kHZ. Calculate transmission bandwidth if fs = 8Khz                               |
| 6    | SYSTEM NOISE CALCULATION: Signal to noise ratio of SSB, DSB, AM for<br>coherent and envelope and square law detection              |



#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

# ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title      | SIGNALS AND SYSTEMS LABORATORY       |           |         |            |         |  |
|-------------------|--------------------------------------|-----------|---------|------------|---------|--|
| Course Code       | AECB17                               |           |         |            |         |  |
| Program           | B.Tech                               |           |         |            |         |  |
| Semester          | IV                                   | ECE       |         |            |         |  |
| Course Type       | Core                                 |           |         |            |         |  |
| Regulation        | IARE - R18                           |           |         |            |         |  |
|                   | Theo                                 | ry        | Pr      | actical    |         |  |
| Course Structure  | Lecture                              | Tutorials | Credits | Laboratory | Credits |  |
|                   | -                                    | -         | -       | 2          | 1       |  |
| Chief Coordinator | Ms V. Bindusree, Assistant Professor |           |         |            |         |  |

## I COURSE OVERVIEW:

This course integrates about the generation of both continuous and discrete time signals, basic operations, and frequency transformations of signals and systems. It covers the linear time invariant systems and their analysis in time and frequency domain. It can apply the concepts to obtain the correlation and convolution between signals and sequences, to find distribution and density functions of random variables. It provides the necessary background needed for understanding the signal processing and communications. This lab provides hands-on experience on implementation of communication systems using MATLAB software.

# II COURSE PRE-REQUISITES:

| Level  | Course<br>Code | Semester | Prerequisites                                  | Credits |
|--------|----------------|----------|------------------------------------------------|---------|
| B.Tech | AHSB02         | Ι        | Linear algebra and claculas                    | 4       |
| B.Tech | AHSB11         | II       | Mathematical Transform                         | 4       |
| B.Tech | AECB08         | III      | Probability Theory and<br>Stochastic Processes | 4       |

# **III** MARKS DISTRIBUTION:

| Subject             | SEE<br>Examination | CIE Examination | Total Marks |
|---------------------|--------------------|-----------------|-------------|
| signals and systems | 70 Marks           | 30 Marks        | 100         |

# **IV DELIVERY** / **INSTRUCTIONAL METHODOLOGIES:**

| ~ | Demo<br>Video | ~ | Lab Worksheets | 1 | Viva Questions | ~ | Probing Further<br>Experiments |
|---|---------------|---|----------------|---|----------------|---|--------------------------------|
|---|---------------|---|----------------|---|----------------|---|--------------------------------|

# **V** EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

| 20 % | To test the preparedness for the experiment.                           |
|------|------------------------------------------------------------------------|
| 20 % | To test the performance in the laboratory.                             |
| 20 % | To test the calculations and graphs related to the concern experiment. |
| 20 % | To test the results and the error analysis of the experiment.          |
| 20 % | To test the subject knowledge through viva – voce.                     |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment. Table 1: Assessment pattern for CIA

| Component | Laboratory |  |
|-----------|------------|--|
|-----------|------------|--|

| Type of Assessment | Day to day<br>Performance | Final Internal<br>Lab<br>Assessment | Total Marks |
|--------------------|---------------------------|-------------------------------------|-------------|
| CIA Marks          | 20 Marks                  | 10 Marks                            | 30          |

#### Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### A. Experiment Based:

| Preparation | Performance | Calculations<br>and Graph | Results and Er-<br>ror Analysis | Viva | Total |
|-------------|-------------|---------------------------|---------------------------------|------|-------|
| -           | -           | -                         | -                               | -    | -     |

#### B. Programming Based:

| Preparation | Performance | Calculations<br>and Graph | Results and Er-<br>ror Analysis | Viva | Total |
|-------------|-------------|---------------------------|---------------------------------|------|-------|
| 2           | 2           | 2                         | 2                               | 2    | 10    |

## **VI** MARKS DISTRIBUTION:

| Subject             | SEE<br>Examination | CIE Examination | Total Marks |
|---------------------|--------------------|-----------------|-------------|
| signals and systems | 70 Marks           | 30 Marks        | 100         |

## VII DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| ✓ | Demo<br>Video | 1 | Lab Worksheets | ~ | Viva Questions | ✓ | Probing Further<br>Experiments |
|---|---------------|---|----------------|---|----------------|---|--------------------------------|
|---|---------------|---|----------------|---|----------------|---|--------------------------------|

#### VIII EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

| 20 % | To test the preparedness for the experiment.                           |
|------|------------------------------------------------------------------------|
| 20 % | To test the performance in the laboratory.                             |
| 20 % | To test the calculations and graphs related to the concern experiment. |
| 20 % | To test the results and the error analysis of the experiment.          |
| 20 % | To test the subject knowledge through viva – voce.                     |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment. Table 1: Assessment pattern for CIA

| Component          | Laboratory                |                                     |             |
|--------------------|---------------------------|-------------------------------------|-------------|
| Type of Assessment | Day to day<br>Performance | Final Internal<br>Lab<br>Assessment | Total Marks |
| CIA Marks          | 20 Marks                  | 10 Marks                            | 30          |

## Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

## A. Experiment Based:

| Preparation | Performance | Calculations<br>and Graph | Results and Er-<br>ror Analysis | Viva | Total |
|-------------|-------------|---------------------------|---------------------------------|------|-------|
| -           | -           | -                         | -                               | -    | -     |

## B. Programming Based:

| Preparation | Performance | Calculations<br>and Graph | Results and Er-<br>ror Analysis | Viva | Total |
|-------------|-------------|---------------------------|---------------------------------|------|-------|
| 2           | 2           | 2                         | 2                               | 2    | 10    |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | Program Outcomes (POs)                                                                                                                                                                                                                           | Strength | Proficiency<br>Assessed by     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|
| PO 2  | Problem analysis: Identify, formulate, review<br>research literature, and analyze complex<br>engineering problems reaching substantiated<br>conclusions using first principles of<br>mathematics, natural sciences, and engineering<br>sciences. | 2        | Lab Experiments<br>/ CIE / SEE |
| PO 5  | Modern tool usage: Create, select, and apply<br>appropriate techniques, resources, and modern<br>engineering and IT tools including prediction<br>and modeling to complex engineering activities<br>with an understanding of the limitations.    | 3        | Lab Experiments<br>/ CIE / SEE |
| PO 12 | Life-long learning: An ability to align with and<br>upgrade to higher learning and research<br>activities along with engaging in life-long<br>learning.                                                                                          | 1        | Self Learning                  |

#### 3 =High; 2 =Medium; 1 =Low

# **X** HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                                                                                                                   | Strength | Proficiency<br>Assessed by   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------|
| PSO 1 | Build Embedded Software and Digital Circuit<br>Development platform for Robotics, Embedded<br>Systems and Signal Processing Applications. | 2        | Lab Exercises /<br>CIE / SEE |

## 3 =High; 2 =Medium; 1 =Low

#### XI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The basic syntax of signals, generations and operations of signals and sequences using MATLAB. |
|-----|------------------------------------------------------------------------------------------------|
| II  | The spectral characteristics of signals using Fourier, laplace and z transform.                |
| III | The Implementation of convolution and correlation of signals and systems.                      |

# XII COURSE OUTCOMES:

| CO No | Course Outcomes                                                         | Knowledge |
|-------|-------------------------------------------------------------------------|-----------|
|       |                                                                         | Level     |
|       |                                                                         | (Bloom's  |
|       |                                                                         | Taxonomy) |
| CO 1  | <b>Realize</b> the tool basic operations addition, subtraction,         | Apply     |
|       | multiplication and division on matrices                                 |           |
| CO 2  | Generate standard signals and sequences for performing                  | Apply     |
|       | operations on various signals                                           |           |
| CO 3  | <b>Determine</b> Fourier transform, properties of Fourier transform and | Apply     |
|       | Inverse Fourier transform of signal and sequence                        |           |
| CO 4  | Locate the poles and zeros of transfer function using Laplace and       | Apply     |
|       | Z transforms.                                                           |           |
| CO 5  | <b>Determine</b> convolution and correlation between signals and        | Apply     |
|       | sequences for analyzing linear time-invariant systems.                  |           |
| CO 6  | <b>Compute</b> mean, mean square and power spectral density of signal   | Apply     |
|       | to calculate gaussian noise.                                            |           |

After successful completion of the course, students should be able to:

#### COURSE KNOWLEDGE COMPETENCY LEVEL



**BLOOMS TAXONOMY** 

# XIII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| Course   | PO'S  |                                                                                                                                                                                                                                            |              |
|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Outcomes | PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                       | Competencies |
| CO 1     | PO 2  | <b>Understand</b> the given problem statement and<br>formulate the <b>mathematical operations</b> on matrices<br>by applying the <b>mathematical principles</b> and<br>engineering science.                                                | 3            |
|          | PO 5  | Make use of MATLAB software to perform matrix manipulation operations.                                                                                                                                                                     | 1            |
| CO 2     | PO 2  | <b>Understand</b> the given problem statement and<br>formulate <b>mathematical operations</b> on signals and<br>sequences using principles of <b>mathematics and</b><br><b>engineering science.</b>                                        | 3            |
|          | PO 5  | <b>Utilize</b> software tool to generate and perform operations of signals and sequences.                                                                                                                                                  | 1            |
| CO 3     | PO 2  | <b>Understand</b> the given <b>problem statement</b> and<br><b>formulate</b> the Fourier transform problems of spectral<br>characteristics of continuous time aperiodic signals and<br>analyze the frequency response of the given system. | 3            |
|          | PO 5  | Make use of MATLAB software tool to perform the transform technique of Fourier transform and verify the properties of Fourier transform.                                                                                                   | 1            |
|          | PSO 1 | <b>Develop</b> the capability to <b>analyze</b> and apply Fourier<br>Transform and their properties on continuous signals<br>and applications by its <b>mathematical models</b>                                                            | 3            |
| CO 4     | PO 2  | <b>Identify</b> and <b>determine</b> the region of convergence of<br>the Laplace and z transform for given causal and<br>noncausal signals.                                                                                                | 2            |
|          | PO 5  | <b>Identify</b> and <b>determine</b> the Laplace and z transform for given causal and noncausal signals.                                                                                                                                   | 1            |
|          | PO 12 | <b>Ability</b> to <b>understand</b> the basic concepts of Laplace<br>and z transform apply them to various areas, like<br>Communications, Signal processing.                                                                               | 2            |
|          | PS01  | Ability to analyze and apply Laplace and Z<br>Transform and their properties on continuous and<br>discrete signals and applications by its<br>mathematical models.                                                                         | 3            |

| CO 5 | PO 2  | Explain (Knowledge) the correlation functions for<br>measuring the similarity of the signals in signal<br>detection for solving complex engineering<br>problems using auto and cross correlation functions<br>by applying mathematics, science and engineering<br>fundamentals. | 3 |
|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 5  | <b>Make use of</b> MATLAB software tool to perform the cross correlation and autocorrelation.                                                                                                                                                                                   | 1 |
|      | PO 12 | <b>Ability</b> to <b>understand</b> the basic concepts of<br>convolution apply them to various areas, like<br>Electronics, Communications, Signal processing.                                                                                                                   | 2 |
| CO 6 | PO 2  | <b>Develop</b> the capability <b>analyze</b> the spectral densities of a given signal using mathematical theorems.                                                                                                                                                              | 2 |
|      | PO 5  | <b>Utilize</b> the software tool to analyze the energy and power spectral density.                                                                                                                                                                                              | 1 |

#### XIV MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| COURSE   |   | PROGRAM OUTCOMES |   |   |   |   |   |   |   |    |    | PSO'S |   |   |   |
|----------|---|------------------|---|---|---|---|---|---|---|----|----|-------|---|---|---|
| OUTCOMES | 1 | 2                | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12    | 1 | 2 | 3 |
| CO 1     | - | 3                | - | - | 1 | - | - | - | - | -  | -  | -     | - | - | - |
| CO 2     | - | 3                | - | - | 1 | - | - | - | - | -  | -  | -     | - | - | - |
| CO 3     | - | 3                | - | - | 1 | - | - | - | - | -  | -  | -     | 2 | - | - |
| CO 4     | - | 2                | - | - | 1 | - | - | - | - | -  | -  | 2     | 2 | - | - |
| CO 5     | - | 3                | - | - | 1 | - | - | - | - | -  | -  | 2     | - | - | - |
| CO 6     | - | 2                | - | - | 1 | - | - | - | - | -  | -  | -     | - | - | - |

# XV PERCENTAGE OF KEY COMPETENCIES FOR CO-(PO / PSO):

| COURSE  |      | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |       |       |
|---------|------|------------------|----|----|----|----|----|----|----|----|----|----|-------|-------|-------|
| OUTCOME | s po | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSC   | ) PSC | ) PSC |
|         | 1    | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2     | 3     |
|         | 3    | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2     | 2     | 2     |
| CO 1    | -    | 30               | -  | -  | 10 | -  | -  | -  | -  | -  | -  | -  | -     | -     | -     |
| CO 2    | -    | 30               | -  | -  | 10 | -  | -  | -  | -  | -  | -  | -  | -     | -     | -     |
| CO 3    | -    | 30               | -  | -  | 10 | -  | -  | -  | -  | -  | -  | -  | 100   | -     | -     |
| CO 4    | -    | 20               | -  | -  | 10 | -  | -  | -  | -  | -  | -  | 25 | 100   | -     | -     |
| CO 5    | -    | 30               | -  | -  | 10 | -  | -  | -  | -  | -  | -  | 25 | -     | -     | -     |
| CO 6    | -    | 20               | -  | -  | 10 | -  | -  | -  | -  | -  | -  | -  | -     | -     | -     |

# XVI COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$  - 0  $\leq$  C  $\leq$  5% – No correlation

1 -5 <C $\leq$  40% - Low/ Slight

 $\pmb{2}$  - 40 % < C < 60% – Moderate

 $\boldsymbol{3}$  -  $60\% \leq C < 100\%$  – Substantial /High

| COURSE   |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |  |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|--|
| OUTCOMES | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO   | PSO | PSC |  |
|          | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |  |
| CO 1     | -  | 1                | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |  |
| CO 2     | -  | 1                | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |  |
| CO 3     | -  | 1                | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | 3     | -   | -   |  |
| CO 4     | -  | 1                | -  | -  | 1  | -  | -  | -  | -  | -  | -  | 1  | 3     | -   | -   |  |
| CO 5     | -  | 1                | -  | -  | 1  | -  | -  | -  | -  | -  | -  | 1  | -     | -   | -   |  |
| CO 6     | -  | 1                | -  | -  | 1  | -  | -  | -  | -  | -  | -  | -  | -     | -   | -   |  |
| TOTAL    | 0  | 6                | 0  | 0  | 6  | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 6     | 0   | 0   |  |
| AVERAGE  | 0  | 1                | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 3     | 0   | 0   |  |

# XVII ASSESSMENT METHODOLOGY DIRECT:

| CIE<br>Exams                 | $\checkmark$ | SEE<br>Exams       | $\checkmark$ | Seminars                          | - | Assignments - |
|------------------------------|--------------|--------------------|--------------|-----------------------------------|---|---------------|
| Laboratory<br>Prac-<br>tices | √            | Student<br>Viva    | √            | Mini<br>Project                   | - | Certification |
| Term<br>Paper                | -            | 5 Minutes<br>Video | -            | Open<br>Ended<br>Experi-<br>ments | √ |               |

## XVIII ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               | ✓ | SEE Exams    | ✓ | Assignments  | - | Seminars      | - |
|-------------------------|---|--------------|---|--------------|---|---------------|---|
| Laboratory<br>Practices | 1 | Student Viva | 1 | Mini Project | 1 | Certification | - |

# XIX ASSESSMENT METHODOLOGY INDIRECT:

| ✓ | Early Semester Feedback             | 1   | End Semester OBE Feedback |
|---|-------------------------------------|-----|---------------------------|
| X | Assessment of Mini Projects by Expe | rts |                           |

# XX MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| COURSE<br>OUTCOMES | Program Outcomes / No. of Key Competencies Matched |   |   |   |   |   |   |   |   |    | PF<br>SI<br>OU | ROGRA<br>PECIFI<br>ITCOM<br>(PSO'S | IM<br>IC<br>IES |   |   |
|--------------------|----------------------------------------------------|---|---|---|---|---|---|---|---|----|----------------|------------------------------------|-----------------|---|---|
|                    | 1                                                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11             | 12                                 | 1               | 2 | 3 |
| CO 1               | -                                                  | 3 | - | - | 1 | - | - | - | - | -  | -              |                                    | -               | - | - |
| CO 2               | -                                                  | 3 | - | - | 1 | - | - | - | - | _  | -              | -                                  |                 | - | - |
| CO 3               | -                                                  | 3 | - | - | 1 | - | - | - | - | -  | -              | 2                                  | 2               | - | - |
| CO4                | -                                                  | 2 | - | - | 1 | - | - | - | - | -  | -              | 2                                  | -               | - | - |
| CO 5               | -                                                  | 3 | - | - | 1 | - | - | - | - | _  | -              | -                                  | -               | - | - |
| CO 6               | -                                                  | 2 | - | - | 1 | - | - | - | - | _  | -              |                                    | -               | - | - |
| CO 7               | -                                                  | 2 | - | - | 1 | - | - | - | - | _  | -              |                                    | -               | - |   |

3 =High; 2 =Medium; 1 =Low

# XXI SYLLABUS:

| Week-1 | BASIC OPERATIONS ON MATRICES                                                            |
|--------|-----------------------------------------------------------------------------------------|
|        | Review basic operations on matrices by using MATLAB                                     |
| Week-2 | GENERATION OF VARIOUS SIGNALS AND SEQUENCES                                             |
|        | Generation of various signals and sequences such as unit impulse, sinc, gaussian,       |
|        | exponential, sawtooth, triangular and sinusoidal by using MATLAB.                       |
| Week-3 | OPERATIONS ON SIGNALS AND SEQUENCES                                                     |
|        | Operations and signals and sequences such as addition, subtraction, multiplication,     |
|        | scaling, shifting and folding by using MATLAB.                                          |
| Week-4 | GIBBS PHENOMENON                                                                        |
|        | Verification of Gibbs phenomenon by using MATLAB                                        |
| Week-5 | FOURIER TRANSFORMS AND INVERSE FOURIER TRANSFORM                                        |
|        | Finding the Fourier transform and inverse Fourier transform of given signal/sequence    |
|        | and plotting its magnitude and phase spectrum by using MATLAB.                          |
| Week-6 | PROPERTIES OF FOURIER TRANSFORMS                                                        |
|        | Verify time shifting and scaling, time and differentiation properties of Fourier trans- |
|        | forms by using MATLAB.                                                                  |
| Week-7 | LAPLACE TRANSFORMS                                                                      |
|        | Finding the Laplace transform of a given signal and locate its zeros and poles in       |
|        | s-plane.                                                                                |

| Week-8  | Z-TRANSFORMS                                                                           |
|---------|----------------------------------------------------------------------------------------|
|         | Finding the Z-transform of a given sequence and locate its zeros and poles in s-plane. |
| Week-9  | CONVOLUTION BETWEEN SIGNALS AND SEQUENCES                                              |
|         | Finding convolution between given two signals/sequences by using MATLAB.               |
| Week-10 | AUTO CORRELATION AND CROSS CORRELATION                                                 |
|         | Finding auto correlation and cross correlation between signals and sequences by        |
|         | using MATLAB.                                                                          |
| Week-11 | GAUSSIAN NOISE                                                                         |
|         | Generation of Gaussian noise, computation of its mean, M.S value and its Skew,         |
|         | kurtosis, and PSD, probability distribution function by using MATLAB.                  |
| Week-12 | WIENER -KHINCHINE RELATIONS                                                            |
|         | Verification of Wiener- Khinchine relations using MATLAB.                              |
| Week-13 | DISTRIBUTION AND DENSITY FUNCTIONS OF STANDARD                                         |
|         | RANDOM VARIABLES                                                                       |
|         | Finding distribution and density functions of standard random variables and plot       |
|         | them using MATLAB.                                                                     |
| Week-14 | WIDE SENSE STATIONARY RANDOM PROCESS                                                   |

**TEXTBOOKS** 1. Signals, Systems Communications, B.P. Lathi, BS Publications, 2009.

2. Signals and Systems, A.V. Oppenheim, A.S. Willsky and S.H. Nawab ,PHI, 2nd Edition 2009. Digital Signal Processing, Principles, Algorithms, and Applications, John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI. 2007..

#### **REFERENCE BOOKS:**

- 1. S.Varadarajan, M.M. Prasada Reddy, M.Jithender Reddy," Signals and Systems Introduces MATLAB Programs "I.K International Publishing House Pvt .Ltd, 2016.
- 2. Scott L. Miller, Donald G. Childers," Probability and Random Process: with Applications to Signal Processing and Communications", Elsevier ,2004
- 3. Krister Ahlersten,"An Introduction to Matlab".BookBoon,2012.

## XXII COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Week No | Topics to be covered                                                                                | CO's  | Reference       |
|---------|-----------------------------------------------------------------------------------------------------|-------|-----------------|
| 1       | Generate matrices and perform basic operations on<br>matrices using MATLAB.                         | C0 1  | T1-13.2         |
| 2       | Generate various signals and sequences such as unit<br>impulse, unit step, ramp, sinc and signum.   | C0 2  | T1 14.5         |
| 3       | Perform amplitude and time operations on signals<br>and sequences.                                  | C0 3  | T1 14.8         |
| 4       | Verify GIBBS phenomenon.                                                                            | C0 4  | T1 15.5 -15.9   |
| 5       | Calculate Fourier transform and inverse Fourier transform of given signal and sequence.             | C0 5  | T1 15.7         |
| 6       | Verify properties of Fourier transform.                                                             | CO 6  | T1-11.1 to 11.5 |
| 7       | Calculate Laplace transform of given signal and<br>locate poles and zeros on S-plane.               | CO 7  | T1-161 to 16.8  |
| 8       | Calculate Z transform of given sequence and locate poles and zeros on Z-plane.                      | CO 8  | R44.1           |
| 9       | Find convolution between given two signals and sequences.                                           | CO 9  | R44.2           |
| 10      | Calculate Auto correlation and Cross correlation<br>between signals and sequences.                  | CO 10 | R44.3           |
| 11      | Generate Gaussian noise and calculate its mean,<br>mean square, distribution and density functions. | CO 11 | R44.6           |
| 12      | Verify Wiener – Khinchine relationships using<br>MATLAB.                                            | CO 12 | R44.10          |
| 13      | Calculate probability density and distributions<br>functions of a given random variable.            | C0 13 | R45.6           |
| 14      | Verify a random process for stationary in wide sense<br>using MATLAB.                               | C0 14 | R45.6           |

# XXIII EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Design Oriented Experiments                                                                 |
|------|---------------------------------------------------------------------------------------------|
| 1    | Determine the array matrix using MATLAB software?                                           |
| 2    | Find the aperiodic signal if the given input signal is rectangular?                         |
| 3    | How to Add two signals X , Y where $X = [0 \ 1 \ 6 \ 5]$ and Y will be user defined.        |
| 4    | How to generate the fourier series coefficients when we are giving the half wave rectifier? |
| 5    | Determine the differentiation, integration of DTFT?                                         |
| 6    | Verify the frequency-shifting property of the DTFT.                                         |
| 7    | verify the transfer function using input and impulse response of the system?.               |
| 8    | perform convolution between the following signals 1. $X(n)=[1 -1 4], h(n)=[-1 2]$           |
|      | -3 1]                                                                                       |
| 9    | Determine the Auto Correlation and Cross Correlation                                        |
| 10   | Detrmine the conditions for Region of convergence in laplace transform?                     |
| 11   | How to add gaussian noise in 1D signal                                                      |

Signature of Course Coordinator

HOD, ECE



# INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

#### COURSE DESCRIPTION

| Department         | Electron  | Electronics and Communication Engineering    |  |      |        |  |  |  |  |  |  |
|--------------------|-----------|----------------------------------------------|--|------|--------|--|--|--|--|--|--|
| Course Title       | Antenna   | Antennas and wave propagation                |  |      |        |  |  |  |  |  |  |
| Course Code        | AECB18    | AECB18                                       |  |      |        |  |  |  |  |  |  |
| Program            | B.Tech    | B.Tech                                       |  |      |        |  |  |  |  |  |  |
| Semester           | Five      | Five                                         |  |      |        |  |  |  |  |  |  |
| Course Type        | Core      | Core                                         |  |      |        |  |  |  |  |  |  |
| Regulation         | R-18      |                                              |  |      |        |  |  |  |  |  |  |
|                    |           | Theory                                       |  | Prac | etical |  |  |  |  |  |  |
| Course Structure   | Lecture   | Lecture Tutorials Credits Laboratory Credits |  |      |        |  |  |  |  |  |  |
|                    | 2 1 3     |                                              |  |      |        |  |  |  |  |  |  |
| Course Coordinator | Dr. V.Kis | Dr. V.Kishen Ajay Kumar, Associate Professor |  |      |        |  |  |  |  |  |  |

#### **I** COURSE OVERVIEW:

This course will cover the fundamentals of antenna, radiation phenomenon, different types of antennas, antenna arrays, antenna measurements and wave propagation (influence of earth's atmosphere on radio waves). Antennas had wide range of application in government and commercial fields and able to design the antennas like Yagi-uda and micro strip

# **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites                                |
|--------|-------------|----------|----------------------------------------------|
| B.Tech | AECB13      | IV       | Electromagnetic waves and transmission lines |

# **III MARKS DISTRIBUTION:**

| Subject                          | SEE<br>Examination | CIE<br>Examination | Total Marks |
|----------------------------------|--------------------|--------------------|-------------|
| Antennas and Wave<br>Propagation | 70 Marks           | 30 Marks           | 100         |

| ~ | Power Point<br>Presentations | ~ | Chalk & Talk | x | Assignments  | x | MOOCs  |
|---|------------------------------|---|--------------|---|--------------|---|--------|
| ~ | Open Ended<br>Experiments    | ~ | Techtalk     | x | Mini Project | ~ | Videos |
| x | Others                       |   |              |   |              |   |        |

# IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

# **V EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0 %                           | Remember              |
| 33.33~%                       | Understand            |
| 33.33 %                       | Apply                 |
| 33.33 %                       | Analyze               |
| 0%                            | Evaluate              |
| 0%                            | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE) and 10 marks for Quiz / Alternative Assessment Tool (AAT).

| Component Theory   |          | Total Marks |             |
|--------------------|----------|-------------|-------------|
| Type of Assessment | CIE Exam | AAT         | 10tai Marks |
| CIA Marks          | 20       | 10          | 30          |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams

#### Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3. Table 3: Assessment pattern for AAT

| Concept Video | Tech-talk | Open Ended Experiment |
|---------------|-----------|-----------------------|
| 40%           | 40%       | 20%                   |

# VI COURSE OBJECTIVES:

The students will try to learn:

| Ι   | Principles of radiation, antenna parameters and working principle of VHF, UHF<br>and microwave antennas used in communications, broad casting, radar, navigation<br>and similar systems.         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | Familiarize with basic antenna types and common structures, measurement of antenna characteristics and application of antennas over the radio frequency (RF) to micro wave (MW) frequency range. |
| III | The applications of smart, wideband and ultra wideband antennas for wireless communications, satellite communication, and radar systems.                                                         |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Illustrate</b> the radiation mechanism in wire antennas and | Understand |
|------|----------------------------------------------------------------|------------|
|      | retarded potentials using Maxwell's equations.                 |            |
| CO 2 | Interpret the radiation characteristics of yagi-uda, horn and  | Understand |
|      | helical antennas using radiation pattern in far field region.  |            |
| CO3  | Analyze the radiation characteristics of micro strip and micro | Analyze    |
|      | wave antennas using electric field distribution.               |            |
| CO 4 | Identify the radiation patterns of arrays using principle of   | Apply      |
|      | pattern multiplication.                                        |            |

| CO 5 | <b>Examine</b> the performance of antennas using the radiation pattern, directivity and gain. | Analyze |
|------|-----------------------------------------------------------------------------------------------|---------|
| CO 6 | <b>Select</b> the modes of wave propagation using refraction and reflection concepts          | Apply   |

# COURSE KNOWLEDGE COMPETENCY LEVEL



# **BLOOMS TAXONOMY**

# VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

|     | Program Outcomes                                       | Strength | Proficiency |
|-----|--------------------------------------------------------|----------|-------------|
|     |                                                        |          | Assessed by |
| PO1 | Engineering knowledge: Apply the knowledge of          | 3        | SEE / CIE / |
|     | mathematics, science, engineering fundamentals, and    |          | AAT         |
|     | an engineering specialization to the solution of       |          |             |
|     | complex engineering problems.                          |          |             |
| PO2 | <b>Problem analysis:</b> Identify, formulate, review   | 3        | SEE / CIE / |
|     | research literature, and analyze complex engineering   |          | AAT         |
|     | problems reaching substantiated conclusions using      |          |             |
|     | first principles of mathematics, natural sciences, and |          |             |
|     | engineering sciences                                   |          |             |

| PO3   | Design/development of solutions: Design                | 2 | SEE / CIE / |
|-------|--------------------------------------------------------|---|-------------|
|       | solutions for complex engineering problems and         |   | AAT         |
|       | design system components or processes that meet the    |   |             |
|       | specified needs with appropriate consideration for the |   |             |
|       | public health and safety, and the cultural, societal,  |   |             |
|       | and environmental considerations.                      |   |             |
| PO 10 | <b>Communicate</b> effectively on complex engineering  | 1 | AAT         |
|       | activities with the engineering community and with     |   |             |
|       | society at large, such as, being able to comprehend    |   |             |
|       | and write effective reports and design                 |   |             |
|       | documentation, make effective presentations, and       |   |             |
|       | give and receive clear instructions                    |   |             |

3 = High; 2 = Medium; 1 = Low

## IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes                                                                                                                                                  | Strength | Proficiency<br>Assessed by |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PSO 3 | Make use of High Frequency Structure Simulator<br>(HFSS) for modeling and evaluating the patch and<br>smart antennas for wired and wireless<br>communication applications. | 1        | _                          |

3 = High; 2 = Medium; 1 = Low

# X MAPPING OF EACH CO WITH PO(s), PSO(s):

| COURSE   |              | PROGRAM OUTCOMES |              |    |    |    |    |    | PSO'S |              |    |    |     |     |              |
|----------|--------------|------------------|--------------|----|----|----|----|----|-------|--------------|----|----|-----|-----|--------------|
| OUTCOMES | PO           | PO               | PO           | PO | PO | PO | PO | PO | PO    | PO           | PO | PO | PSO | PSO | PSO          |
|          | 1            | 2                | 3            | 4  | 5  | 6  | 7  | 8  | 9     | 10           | 11 | 12 | 1   | 2   | 3            |
| CO 1     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -     | $\checkmark$ | -  | -  | -   | -   | -            |
| CO 2     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -     | $\checkmark$ | -  | -  | -   | -   | -            |
| CO 3     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -     | $\checkmark$ | -  | -  | -   | -   | $\checkmark$ |
| CO 4     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -     | $\checkmark$ | -  | -  | -   | -   | $\checkmark$ |
| CO 5     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -     | $\checkmark$ | -  | -  | -   | -   | -            |
| CO 6     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -     | $\checkmark$ | -  | -  | -   | -   | -            |

# XI JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| Course   | PO'S  | Institution for mapping (Students will be able to)      | No. of Key   |
|----------|-------|---------------------------------------------------------|--------------|
| Outcomes | PSO'S | Justification for mapping (Students will be able to)    | Competencies |
| CO 1     | PO 1  | <b>Understand</b> the basic parameters of an antenna by | 3            |
|          |       | applying the mathematical principles and own            |              |
|          |       | engineering discipline.                                 |              |

|      | PO 2  | Formulate the retarded potentials in radiation fields<br>and analyze the (potentials) complex engineering<br>problems using principles of mathematics and<br>engineering science.                                                                                                                                                                                              | 5 |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 10 | <b>Communicate orally</b> on basic antenna parameters and <b>write</b> effective reports on radiation pattern                                                                                                                                                                                                                                                                  | 2 |
| CO 2 | PO 1  | <b>Understand</b> the radiation pattern of Yagi-uda, horn<br>and helical antennas in far field region by <b>applying the</b><br>science for engineering problems                                                                                                                                                                                                               | 2 |
|      | PO 2  | <b>Identify</b> the given problem in direction finding and<br>formulate field components of wire antennas from the<br>provided <b>information and data collection</b> in<br>reaching sustained conclusions by the <b>interpretation of</b><br><b>results</b> into a new <b>model translation and validation</b>                                                                | 7 |
|      | PO 3  | <b>Design solutions</b> for <b>complex engineering</b><br><b>problems</b> in Yagi-uda and helical antenna that meet<br>the specified needs for the <b>public health</b> , <b>safety and</b><br><b>environmental considerations</b>                                                                                                                                             | 5 |
|      | PO 10 | <b>Communicate orally</b> on wire antennas and <b>write</b> effective reports on antenna design for public health, safety and environment conditions                                                                                                                                                                                                                           | 2 |
| CO 3 | PO 1  | <b>Analyze</b> the radiation properties of micro strip<br>antennas using <b>mathematical principles and own</b><br><b>engineering discipline</b> .                                                                                                                                                                                                                             | 2 |
|      | PO 2  | Identify the given problem of the adaptive beam<br>forming in smart antennas and formulate weights of<br>smart antennas from the provided information and<br>data collection in reaching sustained conclusions by<br>the interpretation of results into a new model<br>translation and validation                                                                              | 7 |
|      | PO 3  | Investigate and define radiation problems in<br>parabolic antennas and identify constraints including<br>environmental, health and safety understand<br>customer and user needs and the importance of<br>considerations, use creativity to establish innovative<br>solutions in dipole antennas design, manage the design<br>process of dipole antennas and evaluate outcomes. | 5 |
|      | PO 10 | <b>Communicate orally</b> on radiation properties of micro<br>strip antennas and <b>write</b> effective reports on smart<br>antennas                                                                                                                                                                                                                                           | 2 |
|      | PSO 3 | Make use of <b>High Frequency Structure Simulator</b><br>( <b>HFSS</b> ) for modeling the patch and microwave antennas<br>for wired and wireless communication applications                                                                                                                                                                                                    | 1 |

| CO 4 | PO 1  | Illustrate the multiplication of radiation patterns by<br>understanding the knowledge in solving (complex)<br>engineering problems related to antenna arrays by<br>applying scientific, mathematical principles and<br>own engineering discipline.                                                                                                                                                           | 3 |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 2  | Identify the given problem of the narrow beam<br>requirement in point to point communication at higher<br>frequencies and formulate the direction of arrival of the<br>incoming signals from the provided information and<br>data collection in reaching sustained conclusions by<br>the interpretation of results into a new model<br>translation and validation                                            | 7 |
|      | PO 3  | Investigate and define radiation problems for<br>complex engineering problems in array antennas,<br>and identify constraints including environmental, health<br>and safety, understand customer and user needs and<br>the importance of considerations, usecreativity to<br>establish innovative solutions in array antennas<br>design, manage the design process of array antennas<br>and evaluate outcomes | 5 |
|      | PO 10 | <b>Communicate orally</b> on radiation properties of micro<br>strip antennas and <b>write</b> effective reports on smart<br>antennas                                                                                                                                                                                                                                                                         | 2 |
|      | PSO 3 | Make use of <b>High Frequency Structure Simulator</b> ( <b>HFSS</b> ) for modeling the array antennas                                                                                                                                                                                                                                                                                                        | 1 |
| CO 5 | PO 1  | <b>Judge</b> the performance of antennas by measuring the parameters using <b>mathematical principles and own</b> engineering discipline                                                                                                                                                                                                                                                                     | 2 |
|      | PO 2  | Analyze the given problem of measuring the<br>characteristics of an antenna and formulate the<br>directivity and gain of antenna from the provided<br>information and data collection in reaching<br>sustained conclusions by the interpretation of<br>results into a new model translation and validation                                                                                                   | 7 |
|      | PO 3  | <b>Understand</b> the user needs of antennas for<br>working, <b>identify</b> the cost limitations for the selection of<br>parameters, use <b>creativity</b> in producing new antenna<br>designs for <b>innovative solutions</b> and manage the<br><b>design process of antennas and evaluate outcomes</b>                                                                                                    | 5 |
|      | PO 10 | <b>Communicate orally</b> on the performance of antennas<br>and <b>write</b> effective reports on characteristics of antennas                                                                                                                                                                                                                                                                                | 2 |
| CO 6 | PO 1  | Model the modes of wave propagation through the<br>earth's atmosphere by applying the scientific,<br>mathematical principles and own engineering                                                                                                                                                                       | 3 |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      |       | discipline                                                                                                                                                                                                                                                                                                             |   |
|      | PO 2  | <b>Identify</b> the importance of wave propagation in wireless<br>communication and <b>formulate</b> the maximum usable<br>frequency, virtual height and line of sight from the<br>provided <b>information</b> and <b>data collection</b> in reaching<br>sustained conclusions by the <b>interpretation of results</b> | 7 |
|      | PO 10 | <b>Communicate orally</b> on the modes of wave<br>propagation and <b>write</b> effective reports on maximum<br>usable frequency and line of sight                                                                                                                                                                      | 2 |

Note: For Key Attributes refer Annexure - I

### XII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

| COURSE   |    | PROGRAM OUTCOMES |    |    |    |    |    |    | PSO'S |    |    |    |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|-------|----|----|----|-----|-----|-----|
| OUTCOMES | PO | PO               | PO | PO | PO | PO | PO | PO | PO    | PO | PO | PO | PSO | PSO | PSO |
|          | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9     | 10 | 11 | 12 | 1   | 2   | 3   |
|          | 3  | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12    | 5  | 12 | 8  | 2   | 2   | 2   |
| CO 1     | 3  | 5                | -  | -  | -  | -  | -  | -  | -     | 2  | -  | -  | -   | -   | -   |
| CO 2     | 2  | 7                | 5  | -  | -  | -  | -  | -  | -     | 2  | -  | -  | -   | -   | -   |
| CO 3     | 2  | 7                | 5  | -  | -  | -  | -  | -  | -     | 2  | -  | -  | -   | -   | 1   |
| CO 4     | 2  | 7                | 5  | -  | -  | -  | -  | -  | -     | 2  | -  | -  | -   | -   | 1   |
| CO 5     | 2  | 7                | 5  | -  | -  | -  | -  | -  | -     | 2  | -  | -  | -   | -   | -   |
| CO 6     | 3  | 5                | -  | -  | -  | -  | -  | -  | -     | 2  | -  | -  | -   | -   | -   |

### XIII PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

| COURSE   |      | PROGRAM OUTCOMES |    |    |    |    |    |    |    | PSO'S |    |    |     |     |      |
|----------|------|------------------|----|----|----|----|----|----|----|-------|----|----|-----|-----|------|
| OUTCOMES | PO   | PO               | PO | PO | PO | PO | PO | PO | PO | PO    | PO | PO | PSO | PSO | PSO  |
|          | 1    | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10    | 11 | 12 | 1   | 2   | 3    |
|          | 3    | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5     | 12 | 8  | 2   | 2   | 2    |
| CO 1     | 100  | 50               | -  | -  | -  | -  | -  | -  | -  | 40    | -  |    | -   | -   | -    |
| CO 2     | 66.6 | 70               | 50 | -  | -  | -  | -  | -  | -  | 40    | -  | -  | -   | -   | -    |
| CO 3     | 66.6 | 70               | 50 | -  | -  | -  | -  | -  | -  | 40    | -  | -  | -   | -   | 33.3 |
| CO 4     | 66.6 | 70               | 50 | -  | -  | -  | -  | -  | -  | 40    | -  |    | -   | -   | 33.3 |
| CO 5     | 66.6 | 70               | 50 | -  | -  | -  | -  | -  | -  | 40    | -  | -  | -   | -   | -    |
| CO 6     | 100  | 50               | -  | -  | -  | -  | -  | -  | -  | 40    | -  |    | -   | -   | -    |

### XIV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$  -  $0 \leq C \leq 5\%$  – No correlation

1 - 5% <C $\leq$  40% – Low/ Slight

 $\pmb{2}$  - 40 % <C < 60% – Moderate

3 -  $60\% \leq C < 100\%$  – Substantial /High

| COURSE   |     | PROGRAM OUTCOMES |     |    |    |    |    |    | PSO'S |     |    |    |     |     |     |
|----------|-----|------------------|-----|----|----|----|----|----|-------|-----|----|----|-----|-----|-----|
| OUTCOMES | PO  | PO               | PO  | PO | PO | PO | PO | PO | PO    | PO  | PO | PO | PSO | PSO | PSO |
|          | 1   | 2                | 3   | 4  | 5  | 6  | 7  | 8  | 9     | 10  | 11 | 12 | 1   | 2   | 3   |
|          | 3   | 10               | 10  | 11 | 1  | 5  | 3  | 3  | 12    | 5   | 12 | 8  | 2   | 2   | 2   |
| CO 1     | 3   | 2                | -   | -  | -  | -  | -  | -  | -     | 1   | -  |    | -   | -   | -   |
| CO 2     | 3   | 3                | 2   | -  | -  | -  | -  | -  | -     | 1   | -  | -  | -   | -   | -   |
| CO 3     | 3   | 3                | 2   | -  | -  | -  | -  | -  | -     | 1   | -  | -  | -   | -   | 2   |
| CO 4     | 3   | 3                | 2   | -  | -  | -  | -  | -  | -     | 1   | -  |    | -   | -   | 2   |
| CO 5     | 3   | 3                | 2   | -  | -  | -  | -  | -  | -     | 1   | -  | -  | -   | -   | -   |
| CO 6     | 3   | 2                | -   | -  | -  | -  | -  | -  | -     | 1   | -  | -  | -   | -   | -   |
| TOTAL    | 18  | 16               | 8   | -  | -  | -  | -  | -  | -     | 6   | -  | -  | -   | -   | 4   |
| AVERAGE  | 3.0 | 2.6              | 2.0 | -  | -  | -  | -  | -  | -     | 1.0 | -  | -  | -   | -   | 2.0 |

### XV ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams      | $\checkmark$ | SEE Exams     | $\checkmark$ | Assignments   | -            |
|----------------|--------------|---------------|--------------|---------------|--------------|
| Quiz           | -            | Tech - Talk   | $\checkmark$ | Certification | -            |
| Term Paper     | -            | Seminars      | -            | Student Viva  | -            |
| Laboratory     | -            | 5 Minutes     | $\checkmark$ | Open Ended    | $\checkmark$ |
| Practices      |              | Video /       |              | Experiments   |              |
|                |              | Concept Video |              |               |              |
| Micro Projects | -            | -             | -            | -             | -            |

### XVI ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback          | $\checkmark$ | End Semester OBE Feedback                |
|--------------|----------------------------------|--------------|------------------------------------------|
| $\checkmark$ | Assessment of activities / Model | ing and Expe | rimental Tools in Engineering by Experts |

### XVII SYLLABUS:

| MODULE I   | ANTENNA BASICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Antenna fundamentals: Introduction, basic antenna parameters-patterns,<br>beam area, radiation intensity, beam efficiency, directivity-gain-resolution,<br>antenna apertures, effective height, illustrative problems, fields from oscillating<br>dipole, field zones, front-to-back ratio, antenna theorems, radiation, retarded<br>potentials, radiation from small electric dipole, quarter wave monopole and<br>half wave dipole, current distributions, field components, radiated power,<br>radiation resistance, loop antennas- introduction, small circular loop,<br>comparison of far fields of small loop and short dipole.                                                                            |
| MODULE II  | VHF,UHF AND MICROWAVE ANTENNAS-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Arrays with parasitic elements, Yagi-uda array, folded dipoles and their<br>characteristics, helical antennas-helical geometry, helix modes, practical design<br>considerations for monofilar helical antenna in axial and normal modes, horn<br>antennas- types, Fermat's principle, optimum horns, design considerations of<br>pyramidal horns, illustrative problems.                                                                                                                                                                                                                                                                                                                                         |
| MODULE III | VHF,UHF AND MICROWAVE ANTENNAS-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | <ul> <li>Micro strip Antennas-Introduction, basic characteristics of micro strip<br/>antennas, feeding methods, method of analysis, rectangular and circular micro<br/>strip antennas, basic concepts of Smart antennas, concepts and benefits of<br/>smart antennas, fixed weight beam forming, adaptive beam forming.</li> <li>Reflector Antennas- Introduction, paraboloidal reflectors- geometry, pattern<br/>characteristics, feed methods lens antennas: introduction, geometry of<br/>non-metallic dielectric lenses, zoning, tolerances, applications, slot antenna,<br/>Babinet's principle, applications.</li> </ul>                                                                                   |
| MODULE IV  | ANTENNA ARRAYS AND MEASUREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | <ul> <li>Antenna Arrays: Point sources- definition, patterns, arrays of 2 isotropic sources – different cases, principle of pattern multiplication, uniform linear arrays- broadside arrays, end-fire arrays, EFA with increased directivity, derivation of their characteristics and comparison, BSAs with Non-uniform amplitude distributions, general considerations and binomial arrays, illustrative problems</li> <li>Antenna Measurements: Introduction, concepts – Reciprocity, near and far fields, coordinate system, sources of errors patterns to be measured, pattern measurement arrangement directivity measurement, gain measurements (by Comparison, Absolute and 3-Antenna methods)</li> </ul> |

| MODULE V | RADIO WAVE PROPAGATION                                                             |
|----------|------------------------------------------------------------------------------------|
|          | Wave Propagation - I: Introduction, definitions, categorizations, different        |
|          | Modes of Wave Propagation; Ground wave propagation: Introduction, plane            |
|          | earth reflections, , wave tilt, curved earth reflections; Space wave propagation:  |
|          | Introduction, field strength variation with distance and height, effect of earth's |
|          | curvature, absorption, super refraction, M-curves, duct propagation, scattering    |
|          | phenomena, tropospheric propagation, fading and path loss calculations; Wave       |
|          | propagation – II: Sky wave propagation: Introduction, structure of ionosphere,     |
|          | refraction and reflection of sky waves by ionosphere; ray path, critical           |
|          | frequency, MUF, LUF, OF, virtual height and skip distance; relation between        |
|          | MUF and skip distance; multi-hop propagation                                       |

#### **TEXTBOOKS**

- 1. John D. Kraus, Ronald J. Marhefka, Ahmad S. Khan, "Antennas and Wave Propagation", TMH, 4th Edition, 2010.
- 2. C.A. Balanis, "Antenna Theory", John Wiley and Sons, 2nd Edition, 2001.

#### **REFERENCE BOOKS:**

- 1. E.C. Jordan, K.G. Balmain, "Electromagnetic Waves and Radiating Systems", PHI, 2nd Edition, 2000.
- 2. E.V.D. Glazier, H.R.L. Lamont, "Transmission and Propagation", Her Majesty's Stationery Office, 1958.
- 3. F.E. Terman, "Electronic and Radio Engineering", McGraw-Hill, 4th Edition, 1955.
- 4. K.D. Prasad, SatyaPrakashan, "Antennas and Wave Propagation", Tech India Publications, 1st Edition, 2001.

#### WEB REFERENCES:

1. https://nptel.ac.in/courses/117/107/117107035/

#### **COURSE WEB PAGE:**

1. https://lms.iare.ac.in/index?route=course/detailscourse<sub>i</sub>d = 181

# XVIII COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                         | CO's | Reference                                                                       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------|
|      | OBE DISCUSSION                                                                                                                               |      |                                                                                 |
| 1    | Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes (CO),<br>Program Outcomes (PO) and CO-PO Mapping. | -    | https://lms.iare.<br>ac.in/index?<br>route=course/<br>details&course<br>_id=181 |
|      | CONTENT DELIVERY (THEO                                                                                                                       | RY)  |                                                                                 |
| 2    | Antenna fundamentals: introduction                                                                                                           | CO 1 | T1: 2.1                                                                         |
| 3    | Basic antenna parameters-patterns, beam area,<br>radiation intensity, beam efficiency,<br>directivity-gain-resolution                        | CO 1 | T1: 2.2-2.8                                                                     |
| 4    | Antenna apertures, effective height, fields from<br>oscillating dipole                                                                       | CO 1 | T1: 2.9-2.10,<br>2.12                                                           |
| 6    | Field zones, front-to-back ratio, antenna theorems                                                                                           | CO 1 | T1:2.13,21,22                                                                   |
| 7    | Radiation, retarded potentials                                                                                                               | CO 1 | T1: 4.1-4.2                                                                     |
| 8    | Radiation from small electric dipole                                                                                                         | CO 1 | T1: 4.3                                                                         |
| 9    | Quarter wave monopole and half wave dipole, current distributions, field components                                                          | CO 1 | T1: 6.5                                                                         |
| 11   | Radiated power, radiation resistance                                                                                                         | CO 1 | T1: 6.6 R2-8.1                                                                  |
| 13   | Loop Antennas- introduction, small circular loop,<br>comparison of far fields of small loop and short dipole                                 | CO 1 | T1: 7.1-7.3                                                                     |
| 14   | Arrays with parasitic elements, Yagi -uda array                                                                                              | CO 2 | T1: 8.6                                                                         |
| 16   | Folded dipoles and their characteristics                                                                                                     | CO 2 | T1: 8.7                                                                         |
| 17   | Helical antennas-helical geometry, helix modes                                                                                               | CO 2 | T1: 8.1-8.4                                                                     |
| 18   | Practical design considerations for mono-filar helical<br>antenna in axial and normal modes, horn antennas-<br>types                         | CO 2 | T1: 8.5-8.9                                                                     |
| 20   | Fermat's principle, optimum horns, design<br>considerations of pyramidal horns                                                               | CO 2 | T1: 8.9-8.12                                                                    |
| 22   | Micro strip antennas-introduction, basic<br>characteristics of micro strip antennas                                                          | CO 3 | T1: 14.1-14.4                                                                   |
| 23   | Feeding methods, methods of analysis, rectangular<br>and circular micro strip antennas                                                       | CO 3 | T1: 14.5-14.6                                                                   |

| 24 | Basic concepts of smart antennas, concepts and<br>benefits of smart antennas, fixed weight beam<br>forming, adaptive beam forming | CO 3 | T1: 14.8       |
|----|-----------------------------------------------------------------------------------------------------------------------------------|------|----------------|
| 25 | Reflector Antennas- introduction                                                                                                  | CO 3 | T1: 9.1-9.3    |
| 26 | Paraboloidal reflectors- geometry, pattern<br>characteristics, feed methods                                                       | CO 3 | T1: 9.4-9.10   |
| 28 | Lens antennas: introduction, geometry of<br>non-metallic dielectric lenses, zoning, tolerances,<br>applications                   | CO 3 | T1: 10.1-10.3  |
| 30 | Slot antenna, Babinet's principle, applications.                                                                                  | CO 3 | T1: 10.4-10.6  |
| 31 | Antenna arrays: point sources- definition, patterns                                                                               | CO 4 | R3: 7.1        |
| 32 | Arrays of 2 isotropic sources – different cases                                                                                   | CO 4 | R3: 7.2-7.3    |
| 33 | Principle of pattern multiplication, uniform linear<br>arrays- broadside arrays                                                   | CO 4 | T1: 5.10-5.11  |
| 36 | End-fire arrays, EFA with increased directivity,<br>derivation of their characteristics and comparison                            | CO 4 | T1: 5.13       |
| 38 | BSAs with non-uniform amplitude distributions,<br>general considerations and binomial arrays                                      | CO 4 | T1: 5.15       |
| 39 | Antenna measurements: introduction, concepts<br>–Reciprocity, near and far fields, coordinate system,<br>sources of errors        | CO 5 | T1: 21.1-21.2  |
| 40 | Errors patterns to be measured, pattern<br>measurement arrangement, directivity measurement                                       | CO 5 | T1: 21.3, 21.5 |
| 41 | Gain measurements (by comparison, absolute and 3-antenna methods)                                                                 | CO 5 | T1: 21.5       |
| 42 | Wave propagation - I: introduction, definitions,<br>categorizations, different modes of wave propagation                          | CO 6 | R3:11.1-11.3   |
| 43 | Ground wave propagation: Introduction, plane earth reflections                                                                    | CO 6 | R3:11.4        |
| 44 | Wave tilt, curved earth reflections                                                                                               | CO 6 | R3:11.5        |
| 45 | Space wave propagation: introduction                                                                                              | CO 6 | R3:11.19       |
| 46 | Field strength variation with distance and height                                                                                 | CO 6 | R3:11.19       |
| 48 | Effect of earth's curvature, absorption, super refraction, M-curves                                                               | CO 6 | R4:11.41       |
| 49 | Duct propagation, scattering phenomena                                                                                            | CO 6 | R4:11.31       |
| 50 | Tropospheric propagation, fading and path loss calculations                                                                       | CO 6 | R4:11.32-33    |
| 51 | Wave propagation – II: sky wave propagation:<br>introduction, structure of ionosphere                                             | CO 6 | R4:11.34       |
| 52 | Refraction and reflection of sky waves by ionosphere                                                                              | CO 6 | R4:11.34       |

| 53 | Ray path, critical frequency                        | CO 6         | R4:11.35                                     |
|----|-----------------------------------------------------|--------------|----------------------------------------------|
| 55 | MUF, virtual height and skip distance               | CO 6         | R4:11.36                                     |
| 58 | Relation between MUF and skip distance              | CO 6         | R4:11.37                                     |
| 59 | LUF, OF, multi-hop propagation                      | CO 6         | R4:11.38                                     |
|    | PROBLEM SOLVING/ CASE ST                            | UDIES        |                                              |
| 5  | Problems on effective aperture                      | CO 1         | T1: 2.9-2.10                                 |
| 10 | Problems on power radiated by half wave dipole      | CO 1         | T1:6.5                                       |
| 12 | Problems on radiation resistance and radiated power | CO 1         | T1:6.6                                       |
| 15 | Problems on Yagi- uda antenna                       | CO 2         | T1: 8.6                                      |
| 19 | Problems on helical antenna                         | CO 2         | T1:8.1-8.4                                   |
| 21 | Problems on horn antenna                            | CO 2         | T1: 9.4-9.10                                 |
| 27 | Problems on parabolic reflector                     | CO 3         | T1: 9.4-9.10                                 |
| 29 | Problems on lens antenna                            | CO 3         | T1: 10.1-10.3                                |
| 34 | Problems on multiplication pattern                  | CO 4         | T1: 5.10-5.11                                |
| 35 | Problems on broadside array                         | CO 4         | T1: 5.12                                     |
| 37 | Problems on end fire array                          | CO 4         | T1: 5.13                                     |
| 47 | Problems on field strength                          | CO 6         | R4:11.36                                     |
| 54 | Problems on critical frequency                      | CO 6         | R4:11.36                                     |
| 56 | Problems on maximum usable frequency                | CO 6         | R4:11.36                                     |
| 57 | Problems on skip distance                           | CO 6         | R4:11.36                                     |
|    | DISCUSSION ON DEFINITION AND TE                     | RMINOLOG     | Y                                            |
| 60 | Definitions on antenna parameters                   | CO 1         | T1: 2.2-2.8                                  |
| 61 | Definitions on basic antennas                       | CO 2         | T1: 7.1-7.3                                  |
| 62 | Definitions on array antennas                       | CO 4         | R4:11.1-11.3                                 |
| 63 | Definitions on measurements of antenna              | CO 5         | T1: 2.9-2.10                                 |
| 64 | Definitions on modes of radio wave propagation      | CO 6         | R4:11.7                                      |
|    | DISCUSSION ON QUESTION E                            | ANK          |                                              |
| 65 | Gain and radiation intensity of a dipole antenna    | CO 1         | T1: 2.1-2.22,<br>T1:4.1-4.3,<br>T1:6.5-7.3   |
| 66 | Operation and working principle of helical antenna  | CO 2         | T1:8.1 - 8.12                                |
| 67 | Design of parabolic reflector antennas              | CO 3         | T1: 14.1-14.6,<br>T1:14.8,<br>T1:9.1-9.10    |
| 68 | Types of arrays and gain measurements               | CO 4,CO<br>5 | T1:10.1-10.6,<br>R3:7.1-7.3,<br>T1:21.1-21.6 |
| 69 | Parameters of sky wave propagation                  | CO 6         | R3:11.1-11.38                                |

# ANNEXURE - I

### KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

| РО     | NBA Statement / Key Competencies Features (KCF)                      | No.   |
|--------|----------------------------------------------------------------------|-------|
| Number |                                                                      | of    |
|        |                                                                      | KCF's |
| PO 1   | Apply the knowledge of mathematics, science, Engineering             | 3     |
|        | fundamentals, and an Engineering specialization to the solution of   |       |
|        | complex Engineering problems (Engineering Knowledge).                |       |
|        | Knowledge, understanding and application of                          |       |
|        | 1. Scientific principles and methodology.                            |       |
|        | 2. Mathematical principles.                                          |       |
|        | 3. Own and / or other engineering disciplines to integrate / support |       |
|        | study of their own engineering discipline.                           |       |
| PO 2   | Identify, formulate, review research literature, and analyse complex | 10    |
|        | Engineering problems reaching substantiated conclusions using first  |       |
|        | principles of mathematics natural sciences, and Engineering sciences |       |
|        | (Problem Analysis).                                                  |       |
|        | 1. Problem or opportunity identification                             |       |
|        | 2. Problem statement and system definition                           |       |
|        | 3. Problem formulation and abstraction                               |       |
|        | 4. Information and data collection                                   |       |
|        | 5. Model translation                                                 |       |
|        | 6. Validation                                                        |       |
|        | 7. Experimental design                                               |       |
|        | 8. Solution development or experimentation / Implementation          |       |
|        | 9. Interpretation of results                                         |       |
|        | 10. Documentation                                                    |       |

| РО     | NBA Statement / Key Competencies Features (KCF)                                                                                   |       |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| Number |                                                                                                                                   | of    |  |  |
|        |                                                                                                                                   | KCF's |  |  |
| PO 3   | Design solutions for complex Engineering problems and design system<br>components or processes that meet the specified needs with | 10    |  |  |
|        | appropriate consideration for the public health and safety, and the                                                               |       |  |  |
|        | cultural, societal, and Environmental considerations                                                                              |       |  |  |
|        | (Design/Development of Solutions).                                                                                                |       |  |  |
|        | 1. Investigate and define a problem and identify constraints including                                                            |       |  |  |
|        | environmental and sustainability limitations, health and safety and                                                               |       |  |  |
|        | risk assessment issues                                                                                                            |       |  |  |
|        | 2. Understand customer and user needs and the importance of                                                                       |       |  |  |
|        | considerations such as aesthetics                                                                                                 |       |  |  |
|        | 3. Identify and manage cost drivers                                                                                               |       |  |  |
|        | 4. Use creativity to establish innovative solutions                                                                               |       |  |  |
|        | 5. Ensure fitness for purpose for all aspects of the problem including                                                            |       |  |  |
|        | production, operation, maintenance and disposal                                                                                   |       |  |  |
|        | 6. Manage the design process and evaluate outcomes.                                                                               |       |  |  |
|        | 7. Knowledge and understanding of commercial and economic context                                                                 |       |  |  |
|        | of engineering processes                                                                                                          |       |  |  |
|        | 8. Knowledge of management techniques which may be used to achieve                                                                |       |  |  |
|        | engineering objectives within that context                                                                                        |       |  |  |
|        | 9. Understanding of the requirement for engineering activities to                                                                 |       |  |  |
|        | promote sustainable development                                                                                                   |       |  |  |
|        | 10. Awareness of the framework of relevant legal requirements                                                                     |       |  |  |
|        | governing engineering activities, including personnel, health, safety,                                                            |       |  |  |
|        | and risk (including environmental risk) issues                                                                                    |       |  |  |

| Number         K0           PO 4.         Use research-based knowledge and research methods including design<br>of experiments, analysis and interpretation of data, and synthesis of<br>the information to provide valid conclusions (Conduct<br>Investigations of Complex Problems).         1.           1.         Knowledge of characteristics of particular materials, equipment,<br>processes, or products         2.           2.         Workshop and laboratory skills         3.         Understanding of contexts in which engineering knowledge can be<br>applied (example, operations and management, technology<br>development, etc.)         4.         Understanding use of technical literature and other information<br>sources Awareness of nature of intellectual property and contractual<br>issues         5.         Understanding of appropriate codes of practice and industry<br>standards         6.           6.         Awareness of quality issues         7.         Ability to work with technical uncertainty         8.           8.         Understanding of engineering principles and the ability to apply<br>them to analyse key engineering processes         9.         Ability to identify, classify and describe the performance of systems<br>and components through the use of analytical methods and modeling | No.  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| PO 4.Use research-based knowledge and research methods including design<br>of experiments, analysis and interpretation of data, and synthesis of<br>the information to provide valid conclusions (Conduct<br>Investigations of Complex Problems).1.Knowledge of characteristics of particular materials, equipment,<br>processes, or products2.Workshop and laboratory skills3.Understanding of contexts in which engineering knowledge can be<br>applied (example, operations and management, technology<br>development, etc.)4.Understanding use of technical literature and other information<br>sources Awareness of nature of intellectual property and contractual<br>issues5.Understanding of appropriate codes of practice and industry<br>standards6.Awareness of quality issues<br>7.7.Ability to work with technical uncertainty<br>8.8.Understanding of engineering principles and the ability to apply<br>them to analyse key engineering processes<br>9.9.Ability to identify, classify and describe the performance of systems<br>and components through the use of analytical methods and modeling                                                                                                                                                                                                                                          | of   |
| <ul> <li>PO 4. Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems).</li> <li>1. Knowledge of characteristics of particular materials, equipment, processes, or products</li> <li>2. Workshop and laboratory skills</li> <li>3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.)</li> <li>4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues</li> <li>5. Understanding of appropriate codes of practice and industry standards</li> <li>6. Awareness of quality issues</li> <li>7. Ability to work with technical uncertainty</li> <li>8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes</li> <li>9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling</li> </ul>                                                                                                                                                                     | CF's |
| techniques<br>10. Ability to apply quantitative methods and computer software<br>relevant to their engineering discipline, in order to solve engineering<br>problems<br>11. Understanding of and ability to apply a systems approach to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11   |
| PO 5 Create select and apply appropriate techniques resources and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    |
| <ul> <li>and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).</li> <li>1. Computer software / simulation packages / diagnostic equipment /</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T    |

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No.<br>of<br>KCF's |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PO 6         | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> </ul> | 5                  |
| PO 7         | <ul> <li>Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).</li> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>1. Socio economic</li> <li>2. Political</li> <li>3. Environmental</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                  |
| PO 8         | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                  |

| РО     | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| Number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of    |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KCF's |  |  |  |
| PO 9   | <ul> <li>Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive their performance</li> <li>3. Self-direction (take a vaguely defined problem and systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project.</li> <li>6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> | 12    |  |  |  |
| PO 10  | Communicate effectively on complex Engineering activities with the<br>Engineering community and with society at large, such as, being able<br>to comprehend and write effective reports and design documentation,<br>make effective presentations, and give and receive clear instructions<br>(Communication).<br>"Students should demonstrate the ability to communicate effectively in<br>writing / Orally"<br>1. Clarity (Writing)<br>2. Grammar/Punctuation (Writing)<br>3. References (Writing)<br>4. Speaking Style (Oral)<br>5. Subject Matter (Oral)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5     |  |  |  |

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No.<br>of<br>KCF's |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PO11         | <ul> <li>Demonstrate knowledge and understanding of the Engineering and<br/>management principles and apply these to one's own work, as a<br/>member and leader in a team, to manage projects and in<br/>multidisciplinary Environments (Project Management and<br/>Finance).</li> <li>1. Scope Statement</li> <li>2. Critical Success Factors</li> <li>3. Deliverables</li> <li>4. Work Breakdown Structure</li> <li>5. Schedule</li> <li>6. Budget</li> <li>7. Quality</li> <li>8. Human Resources Plan</li> <li>9. Stakeholder List</li> <li>10. Communication</li> <li>11. Risk Register</li> <li>12. Procurement Plan</li> </ul>                                                                   | 12                 |
| PO12         | <ul> <li>Recognize the need for and have the preparation and ability to engage<br/>in independent and life-long learning in the broadest context of<br/>technological change (Life - Long Learning).</li> <li>1. Project management professional certification / MBA</li> <li>2. Begin work on advanced degree</li> <li>3. Keeping current in CSE and advanced engineering concepts</li> <li>4. Personal continuing education efforts</li> <li>5. Ongoing learning – stays up with industry trends/ new technology</li> <li>6. Continued personal development</li> <li>7. Have learned at least 2-3 new significant skills</li> <li>8. Have taken up to 80 hours (2 weeks) training per year</li> </ul> | 8                  |



### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title       | LINEAR AND DIGITAL IC APPLICATIONS |           |         |            |         |  |  |
|--------------------|------------------------------------|-----------|---------|------------|---------|--|--|
| Course Code        | AECB19                             |           |         |            |         |  |  |
| Program            | B.Tech                             |           |         |            |         |  |  |
| Semester           | V                                  | ECE       | ECE     |            |         |  |  |
| Course Type        | Core                               |           |         |            |         |  |  |
| Regulation         | IARE - R18                         |           |         |            |         |  |  |
|                    | Theory                             |           |         | Practical  |         |  |  |
| Course Structure   | Lecture                            | Tutorials | Credits | Laboratory | Credits |  |  |
|                    | 2                                  | -         | 3       | -          | -       |  |  |
| Course Coordinator | Dr. G Srihari, Associate Professor |           |         |            |         |  |  |

# I COURSE OVERVIEW:

This course deals with the fundamental concepts of operational amplifier, linear non linear application of op-amp and digital Integrated circuits. It covers design and analysis of frequency selective and tuning circuits like oscillators, active filters, Phase locked loops and its use for communication applications. Along with switching applications like that of comparators, learn IC based design of voltage regulators, digital IC's for combination and sequential circuit designs. This course forms the basis for the next level of course VLSI Design.

### **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites             |
|--------|-------------|----------|---------------------------|
| B.Tech | AECB11      | IV       | Analog and Pulse Circuits |
| B.Tech | AECB07      | III      | Digital System Design     |

### **III MARKS DISTRIBUTION:**

| Subject                 | SEE Examination | CIE Examination | Total Marks |
|-------------------------|-----------------|-----------------|-------------|
| Microwave and satellite | 70 Marks        | 30 Marks        | 100         |
| engineering             |                 |                 |             |

### IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

|              | PPT                       |              | Chalk & Talk |              | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|---|--------|
| $\checkmark$ |                           | $\checkmark$ |              | $\checkmark$ |              |   |        |
| x            | Open Ended<br>Experiments | x            | Seminars     | x            | Mini Project | x | Videos |
| x            | Others                    |              |              |              |              |   |        |

## **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table below.

| Percentage of Cognitive Level | Blooms Taxonomy Level |  |
|-------------------------------|-----------------------|--|
| 10%                           | Remember              |  |
| 60 %                          | Understand            |  |
| 20 %                          | Apply                 |  |
| 10 %                          | Analyze               |  |
| 0 %                           | Evaluate              |  |
| 0 %                           | Create                |  |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool

| Component                   | Theory | Total Marks |     |    |
|-----------------------------|--------|-------------|-----|----|
| Type of Assessment CIE Exam |        | Quiz        | AAT |    |
| CIA Marks                   | 20     | 05          | 05  | 30 |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz –Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| 5 Minutes Video | Assignment | Tech-talk | Seminar | Open Ended<br>Experiment |
|-----------------|------------|-----------|---------|--------------------------|
| 20%             | 30%        | 30%       | 10%     | 10%                      |

### VI COURSE OBJECTIVES:

### The students will try to learn:

| Ι   | The basic building blocks, characteristics and applications of operational amplifier.   |
|-----|-----------------------------------------------------------------------------------------|
| II  | The functional details of logic families, combinatorial and sequential digital circuits |
|     | (ICs) used in digital design.                                                           |
| III | Different IC models which are basic for Mixed signal integrated circuits in future.     |

### VII COURSE OUTCOMES:

### After successful completion of the course, students should be able to:

| CO 1  | <b>Interpret</b> the DC and AC analysis of differential amplifiers as a building block of operational amplifier                                                                   | Understand |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CO 2  | <b>Explain</b> the specifications of ideal and practical operational amplifier<br>and their DC, AC characteristics.                                                               | Understand |
| CO3   | <b>Build</b> various linear application circuits such as mathematical operation, wave shaping circuits using op-amp operating with negative feedbackin closed loop configuration. | Analyze    |
| CO 4  | <b>Experiment</b> with comparator (open loop configuration) and change<br>the characteristics of it by adding feedback to model multivibrators.                                   | Apply      |
| CO 5  | <b>Model</b> the function generator with variable amplitude and frequency modulation capability using IC 741 Op-amp.                                                              | Apply      |
| CO 6  | <b>Demonstrate</b> importance, types voltage regulators and their applications pulse width modulation, push pull bridges.                                                         | Remember   |
| CO 7  | <b>Design</b> frequency selective circuits using OPAMP for audio and radio frequency ranges.                                                                                      | Analyze    |
| CO 8  | <b>Determine</b> the function of Phase Locked Loop and their applications operational amplifier as IC565.                                                                         | Apply      |
| CO 9  | <b>Explain</b> the fundamental frequency of monostable and astable<br>Multivibrators using IC555 timer.                                                                           | Understand |
| CO 10 | <b>Choose</b> appropriate Analog to Digital and Digital to Analog converters<br>for data processing in Microprocessor, Digital signal processing and<br>Communication.            | Apply      |
| CO 11 | <b>Compare</b> the digital logic family circuits which are basics for digital gates along with the characteristics for digital design.                                            | Understand |
| CO 12 | Make use of commercially available sequential and combinational digital ICsto function as Latch, Flip flop, Registers and Counters.                                               | Apply      |

## COURSE KNOWLEDGE COMPETENCY LEVEL



BLOOMB TAXOTOMI

### VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program                                                                                                                                                                                                                                                                                                         | Strength | Proficiency<br>Assessed by |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals,                                                                                                                                                                                                            | 2        | CIE/Quiz/AAT               |
|      | and an engineering specialization to the solution of<br>complex engineering problems.                                                                                                                                                                                                                           |          |                            |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review<br>research literature, and analyze complex engineering<br>problems reaching substantiated conclusions using<br>first principles of mathematics, natural sciences,<br>and engineering sciences.                                                            | 3        | CIE/Quiz/AAT               |
| PO 3 | <b>Design/development of solutions:</b> Design<br>solutions for complex engineering problems and<br>design system components or processes that meet<br>the specified needs with appropriate consideration<br>for the public health and safety, and the cultural,<br>societal, and environmental considerations. | 1        | SEE /CIE,<br>AAT, QUIZ     |
| PO 4 | Conduct Investigations of Complex<br>Problems: Use research-based knowledge and<br>research methods including design of experiments,<br>analysis and interpretation of data, and synthesis of<br>the information to provide valid conclusions.                                                                  | 2        | SEE /CIE,<br>AAT, QUIZ     |

| PO 5 | Modern tool usage: Create, select, and apply       | 2 | SEE/ CIE, |
|------|----------------------------------------------------|---|-----------|
|      | appropriate techniques, resources, and modern      |   | AAT, QUIZ |
|      | engineering and IT tools including prediction and  |   |           |
|      | modeling to complex engineering activities with an |   |           |
|      | understanding of the limitations.                  |   |           |

# 3 =High; 2 =Medium; 1 =Low

## IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                               | Strength | Proficiency<br>Assessed |
|-------|-------------------------------------------------------|----------|-------------------------|
|       |                                                       |          | by                      |
| PSO 1 | Professional Skills: An ability to understand the     | 2        | Seminars                |
|       | basic concepts in Electronics and Communication       |          | and assign-             |
|       | Engineering and to apply them to various areas, like  |          | ments                   |
|       | Electronics, Communications, Signal processing,       |          |                         |
|       | VLSI, Embedded systems etc., in the design and        |          |                         |
|       | implementation of complex systems.                    |          |                         |
| PSO 2 | Problem-solving skills: An ability to solve complex   | -        | -                       |
|       | Electronics and communication Engineering             |          |                         |
|       | problems, using latest hardware and software tools,   |          |                         |
|       | along with analytical skills to arrive cost effective |          |                         |
|       | and appropriate solutions.                            |          |                         |
| PSO 3 | Successful career and Entrepreneurship: An            | -        | -                       |
|       | understanding of social-awareness and                 |          |                         |
|       | environmental-wisdom along with ethical               |          |                         |
|       | responsibility to have a successful career and to     |          |                         |
|       | sustain passion and zeal for real-world applications  |          |                         |
|       | using optimal resources as an Entrepreneur.           |          |                         |

3 = High; 2 = Medium; 1 = Low

# X MAPPING OF EACH CO WITH PO(s), PSO(s):

| COURSE   | PROGRAM OUTCOMES |              |              |              |              |   |   |   |   |    |    |    |              | PSO'S |   |  |
|----------|------------------|--------------|--------------|--------------|--------------|---|---|---|---|----|----|----|--------------|-------|---|--|
| OUTCOMES | 1                | 2            | 3            | 4            | 5            | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1            | 2     | 3 |  |
| CO 1     | $\checkmark$     | $\checkmark$ | -            | -            | -            | - | - | - | - | -  | -  | -  | -            | -     | - |  |
| CO 2     | $\checkmark$     | $\checkmark$ | -            | -            | -            | - | - | - | - | -  | -  | -  | -            | -     | - |  |
| CO 3     | $\checkmark$     | $\checkmark$ | -            | $\checkmark$ | -            | - | - | - | - | -  | -  | -  | -            | -     | - |  |
| CO 4     | $\checkmark$     | $\checkmark$ | -            | ✓            | -            | - | - | - | - | -  | -  | -  | $\checkmark$ | -     | - |  |
| CO 5     | $\checkmark$     | ✓            | -            | 1            | -            | - | - | - | - | -  | -  | -  | -            | -     | - |  |
| CO 6     | $\checkmark$     | -            | -            | 1            | -            | - | - | - | - | -  | -  |    | $\checkmark$ | -     | - |  |
| CO 7     | $\checkmark$     | 1            | $\checkmark$ | $\checkmark$ | -            | - | - | - | - | -  | -  | -  | $\checkmark$ | -     | - |  |
| CO 8     | $\checkmark$     | 1            | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - | -  | -  | -  | $\checkmark$ | -     | - |  |
| CO 9     | $\checkmark$     | $\checkmark$ | $\checkmark$ | ✓            | $\checkmark$ | - | - | - | - | -  | -  | -  | $\checkmark$ | -     | - |  |
| CO 10    | $\checkmark$     | ✓            | $\checkmark$ | 1            | ✓            | - | - | - | - | -  | -  | -  | $\checkmark$ | -     | - |  |
| CO 11    | $\checkmark$     | $\checkmark$ | -            | -            | -            | - | - | - | - | -  | -  | -  | -            | -     | - |  |
| CO 12    | $\checkmark$     | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | - | - | - | - | -  | -  | -  | $\checkmark$ | -     | - |  |

# XI JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| Course            |               |                                                                                                                                                                                                                                                                                                                                        |                                 |
|-------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Outcomes<br>(COs) | POs /<br>PSOs | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                   | No. of<br>key com-<br>petencies |
| CO1               | PO 1          | Recall the basic function of transistor and to an<br>extent appreciate the importance of differential<br>amplifier and the characteristics by applying the<br>own Engineering discipline, Science<br>principles and methodology.                                                                                                       | 2                               |
|                   | PO 2          | Calculate Calculate the AC and DC analysis of<br>differential amplifier in different mode of operations<br>using Engineering sciences and solution<br>development.                                                                                                                                                                     | 2                               |
| CO2               | PO 1          | <b>Recall</b> Discuss the drawback of using discrete<br>components for design of circuit and appreciate the<br>importance of Op-Amp IC ,its characteristics<br>,application of open loop Op-Amp <b>by applying</b><br><b>the own Engineering discipline</b> , <b>Science</b><br><b>principles and methodology.</b>                     | 2                               |
|                   | PO 2          | Categorize the DC, AC characteristics of an<br>operational amplifiers output and using<br>compensation techniques to reduce the effect using<br>Engineering science and solution<br>development.                                                                                                                                       | 2                               |
| CO3               | PO 1          | <b>Explain</b> the importance of feedback and realize<br>linear circuits such as the Inverting and<br>non-inverting amplifier, integrator, differentiator,<br>instrumentation amplifier, AC amplifier using<br>op-amp and the application of that model using<br>own Engineering discipline, scientific<br>principles and methodology. | 2                               |
|                   | PO 2          | Analyze various circuit parameters for linear<br>applications of 741 op-amps using first principle<br>of engineering sciences, experimental design.                                                                                                                                                                                    | 2                               |
|                   | PO4           | <b>Analyze</b> Distinguish various types Linear circuits<br>such as the Inverting and non-inverting amplifier,<br>integrator, differentiator, instrumentation amplifier<br>and AC amplifier <b>using design of experiments</b> ,<br><b>analysis and interpretation of data</b> .                                                       | 2                               |
| CO4               | PO 1          | <b>Develop</b> various time delay circuits; comparators,<br>logarithmic and anti logarithmic amplifier using 741<br>op-amp <b>by applying own Engineering</b><br><b>discipline, Science principles and</b><br><b>methodology.</b>                                                                                                      | 2                               |
|                   | PO 2          | Analyze the nonlinear circuits of op-amp such as<br>comparator and multivibrators using<br>experimental design and implementation.                                                                                                                                                                                                     | 2                               |

|     | PO 4  | <b>Distinguish</b> various types non Linear circuits such<br>as the comparator and multivibrators <b>using design</b><br>of experiments, analysis and interpretation of<br>data.                                                                               | 2 |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | PSO 1 | Make use of the basic concepts of nonlinear<br>circuits of op-amp to apply them to various areas,<br>like Communications, Signal processing,<br>VLSI in the design and implementation of<br>complex systems.                                                   | 2 |
| CO5 | PO 1  | Model different waveform generators such as<br>square, triangular and sawtooth using operational<br>amplifiers using the own Engineering<br>discipline, Science principles and<br>methodology.                                                                 | 2 |
|     | PO 2  | Interpret how to find frequency of oscillations,<br>pulse width and able to change these parameters<br>based on problem formulation and<br>abstraction.                                                                                                        | 2 |
|     | PO 4  | <b>Examine</b> various waveform generators such as<br>triangular, saw tooth and square wave generators<br>using design of experiments, analysis and<br>interpretation of data.                                                                                 | 2 |
| CO6 | PO 1  | <b>Define</b> how to get a stable dc voltage using voltage<br>regulator and also discuss about three terminal,<br>general purpose, adjustable voltage regulators<br><b>using the own Engineering discipline, Science</b><br><b>principles and methodology.</b> | 2 |
|     | PO 4  | <b>Design</b> low voltage regulator circuit which are<br>basic requirement of various system <b>using</b><br><b>experimental design and analysis.</b>                                                                                                          | 2 |
|     | PSO 1 | Apply voltage regulator circuits in various field<br>such as Electronics, Communications, Signal<br>processing, VLSI, Embedded systems etc., in the<br>design and implementation of complex<br>systems.                                                        | 2 |
| CO7 | PO 1  | Outline the operation of different types of active<br>filters by using own Engineering discipline,<br>Science principles and methodology.                                                                                                                      | 3 |
|     | PO 2  | <b>Determine</b> voltage gain expression and study the characteristics of filters using experimental design, validation and interpret the results.                                                                                                             | 3 |
|     | PO 3  | <b>Design</b> system components for frequency<br>selectivity over a wide range of frequency using<br>innovative solutions and can evaluate<br>outcomes of the circuit.                                                                                         | 2 |
|     | PO 4  | <b>Develop</b> filter designs based on frequency<br>specification requirement for filtering operation<br><b>using experiment and analysis.</b>                                                                                                                 | 2 |

|      | PSO 1 | <b>Extend</b> the focus to understand the innovative and dynamic challenges <b>involved in filters</b> .                                                                                                                                                               | 2 |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| CO8  | PO 1  | <b>Demonstrate</b> the phase locked loop using voltage<br>controlled oscillator, the applications of it <b>using</b><br><b>science, and engineering fundamentals.</b>                                                                                                  | 2 |
|      | PO 2  | <b>Examine</b> the lock range, capture range of phase<br>locked loop and able to vary these ranges in<br>communication application of basics of<br>mathematics and engineering sciences.                                                                               | 2 |
|      | PO 3  | <b>Develop</b> phase locked loop circuit for solving<br>complex Engineering problems such as tuners,<br>local oscillator, FM modulators.                                                                                                                               | 2 |
|      | PO 4  | <b>Illustrate</b> the working functionality of Phase locked loops <b>using complex problems.</b>                                                                                                                                                                       | 2 |
|      | PO 5  | <b>Design</b> PLL circuit using modern tools such as<br>cadence software, mentor graphics, synopsis and<br>take necessary steps <b>to improve the</b><br><b>performance of the device.</b>                                                                             | 2 |
|      | PSO 1 | Explain the application of PLL which is<br>contributing great role in advanced control<br>systems and communication systems.                                                                                                                                           | 2 |
| CO9  | PO 1  | Illustrate the operation of IC 555 timer and able<br>to calculate frequency of oscillation using basics<br>of mathematics and engineering sciences.                                                                                                                    | 2 |
|      | PO 2  | <b>Implement</b> the circuits of astable multivibrator<br>and monostable multivibrator using 555 timers, able<br>to do experimental design for the applications<br><b>using astable multivibrator and monostable</b><br><b>multivibrator and validate the results.</b> | 2 |
|      | PO 3  | Make use of 555 timer to get stable time delays or<br>oscillations In the design of system components<br>to establish innovative solutions.                                                                                                                            | 2 |
|      | PO 4  | <b>Design</b> various timer circuits using research-based knowledge and research methods <b>including design</b> of experiments.                                                                                                                                       | 2 |
|      | PO 5  | <b>Develop</b> timer circuits using Modern tools and<br>analyze to complex Engineering activities.                                                                                                                                                                     | 2 |
|      | PSO 1 | Identify the use of 555 timer circuits in like<br>Electronics, Communications, Signal<br>processing, VLSI, Embedded systems etc.                                                                                                                                       | 2 |
| CO10 | PO 1  | <b>Demonstrate</b> different data converters for<br>converting analog data to digital data and vice<br>versa <b>applying basic knowledge of science and</b><br><b>engineering fundamentals.</b>                                                                        | 2 |
|      | PO 2  | Illustrate performance parameter of data<br>converters which are important for design<br>solutions for complex engineering problems.                                                                                                                                   | 2 |

|      |       | 1                                                                                                                                                                                                                                                 |   |
|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 3  | <b>Develop</b> solution to manage data processing and<br>interfacing applications by establishing innovative<br>solutions using data converters and can<br>evaluate the outcomes of it.                                                           | 2 |
|      | PO 4  | <b>Design</b> data converters on requirement basis using<br>and find out the unknown parameter with<br>the given specifications.                                                                                                                  | 2 |
|      | PO 5  | Implement data converters to improve<br>performance using Modern tools and analyze<br>to complex Engineering activities.                                                                                                                          | 1 |
|      | PSO 1 | <b>Extend</b> the knowledge of data converter on the usage in signal processing and communication.                                                                                                                                                | 2 |
| CO11 | PO 1  | Build strong foundation of digital logic families in<br>design of digital ICs using knowledge of<br>mathematics, science and engineering<br>fundamentals.                                                                                         | 3 |
|      | PO 2  | <b>Compare</b> the characteristics of logic families and<br>performance parameters of the circuits realized<br><b>using them scientific principles and</b><br><b>methodology.</b>                                                                 | 2 |
| CO12 | PO 1  | <b>Build</b> strong foundation of digital logic families in<br>design of digital ICs using knowledge of<br>mathematics, science and engineering<br>fundamentals.                                                                                  | 2 |
|      | PO 2  | <b>Construct</b> digital system with sequential and<br>combinational digital ICs using science and<br>engineering fundamentals, for supporting<br>some VLSI System.                                                                               | 2 |
|      | PO 3  | <b>Design</b> solutions for complex Engineering problems<br>and design system components using digital system<br>by doing innovative solution and implementing<br>them using modern tools such as cadence<br>software, mentor graphics, synopsis. | 2 |
|      | PO 4  | <b>Examine</b> sequential and combinational logic<br>circuits design of experiments, analysis and<br>interpretation of data.                                                                                                                      | 2 |
|      | PO 5  | Inspect various digital circuits designs using<br>modern tools such as cadence software,<br>mentor graphics, synopsis.                                                                                                                            | 2 |
|      | PSO 1 | <b>Design</b> various digital circuits which are used in<br>various areas like Electronics, Communications,<br>Signal processing, VLSI, Embedded systems etc. in<br>the design and implementation of complex<br>systems.                          | 2 |

### XII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

| COURSE   | Pro | gram | o Out | come | es/ N | o. of | Key | Con | pete | ncies | Mat | ched | PSO'S |   |   |
|----------|-----|------|-------|------|-------|-------|-----|-----|------|-------|-----|------|-------|---|---|
| OUTCOMES | 1   | 2    | 3     | 4    | 5     | 6     | 7   | 8   | 9    | 10    | 11  | 12   | 1     | 2 | 3 |
| CO 1     | 2   | 2    | -     | -    | -     | -     | -   | -   | -    | -     | -   | -    | -     | - | - |
| CO 2     | 2   | 2    | -     | -    | -     | -     | -   | -   | -    | -     | -   | -    | -     | - | - |
| CO 3     | 2   | 2    | -     | 2    | -     | -     | -   | -   | -    | -     | -   | -    | -     | - | - |
| CO 4     | 2   | 2    | -     | 2    | -     | -     | -   | -   | -    | -     | -   | -    | 2     | - | - |
| CO 5     | 2   | 2    | -     | 2    | -     | -     | -   | -   | -    | -     | -   | -    | -     | - | - |
| CO 6     | 2   | -    | -     | 2    | -     | -     | -   | -   | -    | -     | -   | -    | 2     | - | - |
| CO 7     | 3   | 3    | 2     | 2    | -     | -     | -   | -   | -    | -     | -   | -    | 2     | - | - |
| CO 8     | 2   | 2    | 2     | 2    | 1     | -     | -   | -   | -    | -     | -   | -    | 2     | - | - |
| CO 9     | 3   | 2    | 1     | 2    | 1     | -     | -   | -   | -    | -     | -   | -    | 2     | - | - |
| CO 10    | 2   | 2    | 4     | 2    | 1     | -     | -   | -   | -    | -     | -   | -    | 2     | - | - |
| CO 11    | 2   | 2    | -     | -    | -     | -     | -   | -   | -    | -     | -   | -    | -     | - | - |
| CO 12    | 2   | 2    | 3     | 2    | 1     | -     | -   | -   | -    | -     | -   | -    | 2     | - | - |

### XIII PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

| COURSE   |      | PROGRAM OUTCOMES |    |       |   |   |   |   |   |    |    |    |     | PSO'S |   |  |
|----------|------|------------------|----|-------|---|---|---|---|---|----|----|----|-----|-------|---|--|
| OUTCOMES | 1    | 2                | 3  | 4     | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1   | 2     | 3 |  |
| CO 1     | 66.7 | 20               | -  | -     | - | - | - | - | - | -  | -  | -  | -   | -     | - |  |
| CO 2     | 66.7 | 20               | -  | -     | - | - | - | - | - | -  | -  | -  | -   | -     | - |  |
| CO 3     | 66.7 | 20               | -  | 18.18 | - | - | - | - | - | -  | -  | -  | -   | -     | - |  |
| CO 4     | 66.7 | 20               | -  | 18.18 | - | - | - | - | - | -  | -  | -  | 100 | -     | - |  |
| CO 5     | 66.7 | 20               | -  | 18.18 | - | - | - | - | - | -  | -  | -  | -   | -     | - |  |
| CO 6     | 66.7 | -                | -  | 18.18 | - | - | - | - | - | -  | -  | -  | 100 | -     | - |  |
| CO 7     | 100  | 30               | 20 | 18.18 | - | - | - | - | - | -  | -  | -  | 100 | -     | - |  |
| CO 8     | 66.7 | 20               | 20 | 18.18 | - | - | - | - | - | -  | -  | -  | 100 | -     | - |  |
| CO 9     | 100  | 20               | 10 | 18.18 | - | - | - | - | - | -  | -  | -  | 100 | -     | - |  |
| CO 10    | 66.7 | 20               | 40 | 18.18 | - | - | - | - | - | -  | -  | -  | 100 | -     | - |  |
| CO 11    | 66.7 | 20               | -  | -     | - | - | - | - | - | -  | -  | -  | -   | -     | - |  |
| CO 12    | 66.7 | 20               | 30 | 18.18 | - | - | - | - | - | -  | -  | -  | 100 | -     | - |  |

### XIV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$  -  $0 \leq C \leq 5\%$  – No correlation

 $\pmb{2}$  - 40 % < C < 60% – Moderate

 $1-5 < C \le 40\% - Low/$  Slight

 $\boldsymbol{3}$  -  $60\% \leq C < 100\%$  – Substantial /High

| COURSE   |      | PROGRAM OUTCOMES |     |     |     |   |   |   |   | 1  | PSO'S | 5  |     |   |   |
|----------|------|------------------|-----|-----|-----|---|---|---|---|----|-------|----|-----|---|---|
| OUTCOMES | 1    | 2                | 3   | 4   | 5   | 6 | 7 | 8 | 9 | 10 | 11    | 12 | 1   | 2 | 3 |
| CO 1     | 2    | 2                | -   | -   | -   | - | - | - | - | -  | -     | -  | -   | - | - |
| CO 2     | 2    | 2                | -   | -   | -   | - | - | - | - | -  | -     | -  | -   | - | - |
| CO 3     | 2    | 2                | -   | 2   | -   | - | - | - | - | -  | -     | -  | -   | - | - |
| CO 4     | 3    | 2                | -   | 2   | -   | - | - | - | - | -  | -     | -  | 2   | - | - |
| CO 5     | 2    | 2                | -   | 2   | -   | - | - | - | - | -  | -     | -  | -   | - | - |
| CO 6     | 2    | -                | -   | 2   | -   | - | - | - | - | -  | -     | -  | 2   | - | - |
| CO 7     | 3    | 3                | 2   | 2   | -   | - | - | - | - | -  | -     | -  | 2   | - | - |
| CO 8     | 2    | 2                | 2   | 2   | 1   | - | - | - | - | -  | -     | -  | 2   | - | - |
| CO 9     | 3    | 2                | 1   | 2   | 1   | - | - | - | - | -  | -     | -  | 2   | - | - |
| CO 10    | 2    | 2                | 4   | 2   | 1   | - | - | - | - | -  | -     | -  | 2   | - | - |
| CO 11    | 2    | 2                | -   | -   | -   | - | - | - | - | -  | -     | -  | -   | - | - |
| CO 12    | 2    | 2                | 3   | 2   | 1   | _ | - | _ | - | _  | _     | -  | 2   | - | - |
| TOTAL    | 27   | 23               | 12  | 18  | 4   |   | - | - | - | -  | -     | -  | 14  | - | - |
| AVERAGE  | 2.25 | 2.09             | 2.4 | 2.0 | 1.0 |   | - | - | - | -  | -     | -  | 2.0 | - | - |

# XV ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               | PO1,PO2          | SEE Exams       | PO1,PO2,<br>PO4 | Seminars                  | PO9,<br>PO10, |
|-------------------------|------------------|-----------------|-----------------|---------------------------|---------------|
|                         |                  |                 |                 |                           | PO12          |
| Laboratory<br>Practices | -                | Student Viva    | -               | Certification             | -             |
| Term Paper              | PO4              | 5 Minutes Video | PO5             | Open Ended<br>Experiments | PO 12         |
| Assignments             | PO1, PO2,<br>PO5 |                 |                 |                           |               |

# XVI ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback             | √    | End Semester OBE Feedback |
|--------------|-------------------------------------|------|---------------------------|
| X            | Assessment of Mini Projects by Expe | erts |                           |

## XVII SYLLABUS:

| MODULE I   | OPERATIONAL AMPLIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Operational Amplifier: Differential Amplifier, DC and AC analysis of dual<br>input balanced output configuration, dual input unbalanced output.<br>Characteristics of Op-amps, Op-amp block diagram, ideal and practical<br>Op-amp specifications. DC characteristics: Input output offset voltages<br>currents, drift. AC characteristics: Frequency response, slew rate, CMRR<br>and PSRR.                                                                                                                                           |
| MODULE II  | APPLICATIONS OF OPERATIONAL AMPLIFIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Linear applications of Op-amps: Inverting and non-inverting amplifier,<br>integrator, differentiator, instrumentation amplifier, AC amplifier. Non-linear<br>applications of Op-Amps: Comparators, multi vibrators, triangular, saw<br>tooth, square wave generators, log and anti-log amplifiers. Introduction to<br>voltage regulators, features of 723 Regulator, three terminal voltage<br>regulators.                                                                                                                             |
| MODULE III | ACTIVE FILTERS AND TIMERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Active Filters: Classification of filters, 1st order low pass and high pass<br>filters, 2nd order low pass, high pass, band pass, band reject and all pass<br>filters. Timers: Introduction to 555 timer, functional diagram, mono-stable,<br>astable operations and applications, schmitt trigger. PLL: Introduction,<br>block schematic, principles and description of individual blocks, 565 PLL.                                                                                                                                   |
| MODULE IV  | DATA CONVERTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Data converters: Introduction, classification and need of data converters.<br>DAC techniques: weighted resistor DAC, R-2R ladder DAC, inverted R-2R<br>DAC, and IC 1408 DAC. ADC techniques: Flash converters, successive<br>approximation, integrating ADC. DAC/ADC characteristics.                                                                                                                                                                                                                                                  |
| MODULE V   | DIGITAL IC APPLICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Study of digital logic families such as Resistor Transistor Logic (RTL), Diode<br>Transistor Logic (DTL), Transistor Logic (TTL), Emitter Coupled Logic and<br>CMOS. Characteristics of digital logic families containing fan-in, fan-out,<br>power dissipation, propagation delay and noise margin, Familiarity with<br>commonly available 74XX and CMOS 40XX series ICs-Flip Flops (IC 7474,<br>IC 7473), Shift Registers, Universal Shift Register(IC 74194), Synchronous<br>counters (74LS93,74HC163), Decade Counters, (74HC190). |

### **TEXTBOOKS**

- 1. D.RoyChowdhury, "Linear Integrated Circuits", New age international (p) Ltd, 2nd Edition, 2003.
- 2. Ramakanth A. Gayakwad, "Op-Amps linear ICs", PHI, 3rd Edition, 2003.
- 3. John F.Wakerly, "Digital Design Principles and Practices", Prentice Hall, 3rd Edition, 2005.
- 4. M. Morris Mano, Michael D. Ciletti, "Digital Design", Pearson Education/PHI, 3rd Edition, 2008.

#### **REFERENCE BOOKS:**

1. 1. Salivahanan, "Linear Integrated Circuits and Applications", TMH, 1st Edition, 2008.

# XVIII COURSE PLAN:

| Lecture<br>No | Topics to be covered                                                              | CO    | Reference      |
|---------------|-----------------------------------------------------------------------------------|-------|----------------|
|               | Discuss the classification of integrated circuits,                                |       |                |
| 1-3           | Package types, temperature ranges and Differential                                | CO 1  | T1:2.2         |
|               | amplifier configurations.                                                         |       | T2:1.2-1.7     |
| 4-6           | Analyze DC and AC analysis of various<br>configuration of Differential amplifier. | CO 1  | T1:2.5 R1:3.4  |
| 7-8           | Understand differential amplifier stages.                                         | CO 1  | T1:2.4         |
| 9-10          | Understand the DC characteristics of op-amp.                                      | CO 2  | T2:1.12-1.13   |
| 11-12         | Understand the AC characteristics of op-amp.                                      | CO 2  | T1:3.2         |
| 13-15         | Discuss op-amp parameters and measurements.                                       | CO 2  | T1:3.3-3.4     |
| 16-18         | Illustrate the linear applications of op-amp.                                     | CO 3  | T1:2.3         |
| 19-21         | Illustrate the non linear applications of op-amp.                                 | CO 4  | T1:11.1-11.5   |
| 22-24         | Voltage regulators, IC 723                                                        | CO 6  | T1:2.3         |
| 25-29         | Derive and analyze 1st order and 2nd order filters.                               | CO 7  | T1:4.8         |
| 29-31         | Derive and analyze various types of filters.                                      | CO 7  | T1:7.2         |
| 32-35         | Understand the operation of 555 timer and discuss the operation.                  | CO 8  | T1:7.2         |
| 36-40         | Summarize the operation and applications of multivibrators using 555 timer.       | CO 8  | T2:10.4 R2:7.2 |
| 40-44         | UUnderstand the operation of 565 PLL and discuss the operation.                   | CO 8  | T1:8.2-8.5     |
| 41            | Discuss the classifications of data converters.                                   | CO 9  | T1:9.2-9.7     |
| 42-43         | Discuss and Analyze DAC techniques and characteristics.                           | CO 10 | T1:10.1        |
| 44-47         | Discuss and Analyze ADC techniques and characteristics.                           | CO 10 | T1:10.2        |
| 48-49         | Design and analyze the combinational circuits using TTL/CMOS logic.               | CO 11 | T1:10.3 R2:5.4 |
| 50-52         | Design and analyze the sequential circuits using TTL/CMOS logic.                  | CO 11 | T1-9.1-9.2     |
| 53-55         | Design and analyze different types of counters.                                   | CO 12 | T3:7.2         |
| 56-60         | Design and analyze different types of registers.                                  | CO 12 | T3:8.4         |

Signature of Course Coordinator Dr. G Srihari, Associate Professor HOD,ECE



# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

### COURSE DESCRIPTION

| Department         | Electronics and Communication Engineering |           |         |            |         |  |  |  |
|--------------------|-------------------------------------------|-----------|---------|------------|---------|--|--|--|
| Course Title       | Digital Communications                    |           |         |            |         |  |  |  |
| Course Code        | AECB20                                    | AECB20    |         |            |         |  |  |  |
| Program            | B.Tech                                    |           |         |            |         |  |  |  |
| Semester           | V                                         |           |         |            |         |  |  |  |
| Course Type        | Core                                      |           |         |            |         |  |  |  |
| Regulation         | R-18                                      |           |         |            |         |  |  |  |
|                    |                                           | Theory    |         | Prac       | tical   |  |  |  |
| Course Structure   | Lecture                                   | Tutorials | Credits | Laboratory | Credits |  |  |  |
|                    | 3                                         | -         | 3       | -          | -       |  |  |  |
| Course Coordinator | Dr.S.China Venkateswarlu, Professor       |           |         |            |         |  |  |  |

### I COURSE OVERVIEW:

This course provides the constructional features of digital communication systems, coding and decoding algorithms. It intended to provide the various digital modulation and demodulation techniques for wired and wireless data transmission. Analytical skills to configure secure digital communications for signal and image processing applications.

### **II COURSE PRE-REQUISITES:**

| Level  | Course Code Semester |     | Prerequisites                             |  |  |
|--------|----------------------|-----|-------------------------------------------|--|--|
| B.Tech | AEC003               | III | Probability Theory and Stochastic Process |  |  |
| B.Tech | AEC005               | IV  | Analog Communications                     |  |  |

#### **III MARKS DISTRIBUTION:**

| Subject                | SEE         | CIE         | Total Marks |
|------------------------|-------------|-------------|-------------|
|                        | Examination | Examination |             |
| Digital Communications | 70 Marks    | 30 Marks    | 100         |

### IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| <ul> <li>Image: A start of the start of</li></ul> | Power Point               | 1 | Chalk & Talk | ✓ | Assignments  | x | MOOC   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---|--------------|---|--------------|---|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Presentations             |   |              |   |              |   |        |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Open Ended<br>Experiments | x | Seminars     | x | Mini Project | x | Videos |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Others                    |   |              |   |              |   |        |

### **V EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |  |  |
|-------------------------------|-----------------------|--|--|
| 10%                           | Remember              |  |  |
| 45%                           | Understand            |  |  |
| 18%                           | Apply                 |  |  |
| 27%                           | Analyze               |  |  |
| 0%                            | Evaluate              |  |  |
| 0%                            | Create                |  |  |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

| Component          | Theo     | Total Marks |    |  |
|--------------------|----------|-------------|----|--|
| Type of Assessment | CIE Exam | Quiz \AAT   |    |  |
| CIA Marks          | 25       | 05          | 30 |  |

### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $17^{th}$  week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

### Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes,

seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The building blocks of digital communication systems such as source coding, channel coding and modulation techniques. |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| II  | The error performance of digital communication system in the presence of noise<br>and other interferences.            |
| III | The applications of spread spectrum techniques in secured digital communication systems.                              |

### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Interpret</b> the concept of pulse code modulation, demodulation,  | Understand |
|------|-----------------------------------------------------------------------|------------|
|      | sampling, quantization and coding for obtaining of digital data       |            |
| CO 2 | <b>Identify</b> the pulse digital modulation and demodulation         | Apply      |
|      | techniques using signal space diagrams.                               |            |
| CO 3 | <b>Explain</b> pulse shaping of line codes to mitigate inter symbol   | Understand |
|      | interference, cross talk using optimum filter, raised cosine filters. |            |
| CO 4 | <b>Outline</b> the concept of information theory, source coding       | Understand |
|      | techniques for average information content in a message.              |            |
| CO 5 | Compare various spread spectrum techniques in terms of                | Understand |
|      | frequency hopping.                                                    |            |
| CO 6 | Apply the error detection and error correction technique for          | Apply      |
|      | digital transmission in noisy environment.                            |            |

# COURSE KNOWLEDGE COMPETENCY LEVEL



# **BLOOMS TAXONOMY**

# VIII PROGRAM OUTCOMES:

|      | Program Outcomes                                                                                                                                                                                                                                                                                         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3 | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |
| PO 4 | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5 | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |
| PO 6 | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7 | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and                                                                                                                                                                                                                            |
|       | responsibilities and norms of the engineering practice.                                                                                                                                                                                                                                                  |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and<br>understanding of the engineering and management principles and apply these<br>to one's own work, as a member and leader in a team, to manage projects<br>and in multidisciplinary environments.                                      |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                           |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | PROGRAM OUTCOMES                                   | $\mathbf{Strength}$ | Proficiency<br>Assessed by |
|-------|----------------------------------------------------|---------------------|----------------------------|
| PO 1  | Engineering knowledge: Apply the                   | 3                   | SEE / CIE /                |
|       | knowledge of mathematics, science, engineering     |                     | AAT                        |
|       | fundamentals, and an engineering specialization    |                     |                            |
|       | to the solution of complex engineering problems.   |                     |                            |
| PO 2  | Problem analysis: Identify, formulate, review      | 2                   | SEE / CIE /                |
|       | research literature, and analyze complex           |                     | AAT                        |
|       | engineering problems reaching substantiated        |                     |                            |
|       | conclusions using first principles of mathematics, |                     |                            |
|       | natural sciences, and engineering sciences.        |                     |                            |
| PO 3  | <b>Design/Development of Solutions:</b> Design     | 2                   | SEE / CIE /                |
|       | solutions for complex Engineering problems and     |                     | AAT                        |
|       | design system components or processes that         |                     |                            |
|       | meet the specified needs with appropriate          |                     |                            |
|       | consideration for the public health and safety,    |                     |                            |
|       | and the cultural, societal, and environmental      |                     |                            |
|       | considerations                                     |                     |                            |
| PO 10 | <b>Communication:</b> Communicate effectively on   | 1                   | SEE / CIE /                |
|       | complex engineering activities with the            |                     | AAT                        |
|       | engineering community and with society at          |                     |                            |
|       | large, such as, being able to comprehend and       |                     |                            |
|       | write effective reports and design                 |                     |                            |
|       | documentation, make effective presentations,       |                     |                            |
|       | and give and receive clear instructions.           |                     |                            |

3 = High; 2 = Medium; 1 = Low

# X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| P     | ROGRAM SPECIFIC OUTCOMES                                                                                                                                            | Strength | Proficiency<br>Assessed<br>by |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| PSO 3 | Make use of high frequency structure simulator<br>for modeling and evaluating the patch and smart<br>antennas for wired and wireless communication<br>applications. | 2        | _                             |

## 3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

| COURSE   |              | PROGRAM OUTCOMES |              |    |    |    |    |    |    |              |    |    |     |     | PSO'S        |  |  |  |
|----------|--------------|------------------|--------------|----|----|----|----|----|----|--------------|----|----|-----|-----|--------------|--|--|--|
| OUTCOMES | PO           | РО               | PO           | PO | PO | PO | PO | PO | PO | PO           | PO | PO | PSO | PSO | PSO          |  |  |  |
|          | 1            | 2                | 3            | 4  | 5  | 6  | 7  | 8  | 9  | 10           | 11 | 12 | 1   | 2   | 3            |  |  |  |
| CO 1     | $\checkmark$ | -                | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  |    | -   | -   | -            |  |  |  |
| CO 2     | $\checkmark$ | $\checkmark$     | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -   | -   | -            |  |  |  |
| CO 3     | $\checkmark$ | -                | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -   | -   | $\checkmark$ |  |  |  |
| CO 4     | $\checkmark$ | $\checkmark$     | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -   | -   | $\checkmark$ |  |  |  |
| CO 5     | $\checkmark$ | -                | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -   | -   | $\checkmark$ |  |  |  |
| CO 6     | $\checkmark$ | -                | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -   | -   | -            |  |  |  |

# XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)    | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|---------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Recall (knowledge) the concept of conventional          | 3                                      |
|                    |               | digital communication system and (understand)           |                                        |
|                    |               | various types of pulse analog modulation techniques for |                                        |
|                    |               | signals analysis by applying the principles of          |                                        |
|                    |               | mathematics, science, and engineering                   |                                        |
|                    |               | fundamentals.                                           |                                        |
|                    | PO 10         | Effective presentation and speaking style               | 1                                      |
|                    |               | (knowledge) the concept of pulse code modulation,       |                                        |
|                    |               | demodulation, sampling, quantization and coding         |                                        |
|                    |               | (understand) and write subject matter effectively on    |                                        |
|                    |               | coding mathematics, science, and for obtaining          |                                        |
|                    |               | of digital data.                                        |                                        |
| CO 2               | PO 1          | <b>Interpret</b> (understand) the process of analog to  | 3                                      |
|                    |               | digital conversion to obtain binary data by applying    |                                        |
|                    |               | the sampling, quantization (mathematics, science)       |                                        |
|                    |               | and principles of engineering fundamentals              |                                        |

|      | D.C   |                                                                                                                                                                                                                                                                                                                                                                        |   |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 2  | Understand binary code words in (problem<br>statement) and formulate (complex) transmission<br>bandwidth problems related to pulse code modulation<br>and delta modulations to implementation (Solution<br>development) differential pulse code modulation from<br>the provided information and substantiate with the<br>interpretation of variations in the results.  | 4 |
|      | PO 10 | Effective presentation and speaking style<br>(knowledge) the concept of pulse code modulation,<br>demodulation, sampling, quantization and coding<br>(understand) the pulse digital modulation and<br>demodulation techniques and write subject matter<br>effectively and using signal space diagrams.                                                                 | 1 |
| CO 3 | PO 1  | Identify(knowledge) pulse digital modulation and<br>demodulation techniques and (understand) signal<br>space diagrams analysis by applying the principles of<br>mathematics, science, engineering fundamentals                                                                                                                                                         | 3 |
|      | PO 3  | <b>Develop</b> pulse digital modulation and demodulation<br>system components, understand <b>customer and user</b><br><b>needs</b> and identify the <b>cost limitations</b> for the<br>selection of parameters, <b>use creativity</b> in applying<br>the methods of model analyss for <b>innovative</b><br><b>solutions</b> for the analysis of modulation techniques. | 4 |
|      | PO 10 | Effective presentation and speaking style<br>(knowledge) pulse shaping of line codes to mitigate<br>inter symbol interference, cross talk<br>and write subject matter effectively on cross<br>talk and using optimum filter, raised cosine<br>filters                                                                                                                  | 1 |
|      | PSO 3 | Solve the transmitter and receiver design<br>considerations for modeling and evaluating the patch<br>and smart antennas for wired and wireless<br>communication applications.                                                                                                                                                                                          | 1 |
| CO 4 | PO 1  | <b>Examine</b> probability of error for amplitude shift<br>keying and phase shift keying for solving (complex)<br>signal to noise ratio by applying the principles of<br><b>mathematics, science, engineering fundamentals</b>                                                                                                                                         | 3 |
|      | PO 2  | Analyze the signal power and noise power in digital<br>modulations (problem statement) and formulate<br>(complex) probability error problems related to<br>implementation (solution development) signal to<br>noise ratio from the provided information and<br>substantiate with the interpretation of variations in<br>the results.                                   | 5 |

|      | PO 3  | <b>Develop</b> pulse digital modulation and demodulation<br>system components, to understand signal power and<br>noise power for <b>customer and user needs</b> and<br>identify the <b>cost limitations</b> for the selection of<br>parameters, use <b>creativity</b> in applying the methods of<br>model analyses for <b>innovative solutions</b> for the<br>analysis of figure of merit. | 4 |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 10 | Effective presentation and speaking style<br>(knowledge) the concept of information theory, source<br>coding techniques and write subject matter<br>effectively and for average information content<br>in a message.                                                                                                                                                                       | 1 |
|      | PSO 3 | <b>Compare</b> (understand) pass band modulation<br>schemes with their signal to noise and figure of merit<br>for wired and <b>wireless communication</b> applications.                                                                                                                                                                                                                    | 1 |
| CO 5 | PO 1  | <b>Explain</b> (understand) various line encoding formats<br>for data transmission of a digital signal over a<br>transmission line by applying the principles of<br><b>mathematics, science, engineering fundamentals</b>                                                                                                                                                                  | 3 |
|      | PO 10 | Effective presentation and speaking style<br>(knowledge) various spread spectrum techniques and<br>write subject matter effectively and in terms of<br>Frequency hopping.                                                                                                                                                                                                                  | 1 |
|      | PSO 3 | <b>Summarize</b> power spectral densities of various line<br>encoding formats in the process of converting digital<br>data to digital signals for wired and <b>wireless</b><br><b>communication</b> applications.                                                                                                                                                                          | 1 |
| CO 6 | PO 1  | <b>Outline</b> (knowledge) the significance of pulse shaping<br>to reduce inter-symbol interference in digital<br>communications by applying the principles of<br><b>mathematics, science, engineering fundamentals</b>                                                                                                                                                                    | 3 |
|      | PO 10 | Effective presentation and speaking style<br>(knowledge) the error detection and error correction<br>technique technique and write subject matter<br>effectively on and for digital transmission in<br>noisy environment.                                                                                                                                                                  | 1 |
|      | PSO 3 | <b>Develop</b> tree diagrams, trellis diagrams and state diagram for the implementation of convolution codes in wired and <b>wireless communication</b> applications.                                                                                                                                                                                                                      | 1 |

### XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

| COURSE   | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|------------------|----|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| OUTCOMES | PO               | PO | PO | PO | PO | PO | PO | РО | PO | PO | PO | PO | PSO   | PSO | PSO |
|          | 1                | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
|          | 3                | 10 | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2     | 2   | 2   |
| CO 1     | 3                | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | -   |
| CO 2     | 3                | 4  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | -   |
| CO 3     | 3                | -  | 4  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 1   |
| CO 4     | 3                | 5  | 4  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 1   |
| CO 5     | 3                | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | 1   |
| CO 6     | 3                | -  | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -     | -   | -   |

### XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

| COURSE   | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|------------------|----|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| OUTCOMES | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO   | PSO | PSO |
|          | 1                | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
|          | 3                | 10 | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2     | 2   | 2   |
| CO 1     | 100              | -  | -  | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -   | -   |
| CO 2     | 100              | 40 | -  | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -   | -   |
| CO 3     | 100              | -  | 40 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -   | 50  |
| CO 4     | 100              | 50 | 40 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -   | 50  |
| CO 5     | 100              | -  | -  | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -   | 50  |
| CO 6     | 100              | -  | -  | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | -   | -   |

### XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$  -  $0 \leq C \leq 5\%$  – No correlation

- 1 -5 <C $\leq$  40% Low/ Slight
- $\pmb{\mathcal{2}}$  40 % < C < 60% – Moderate
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

| COURSE   |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    | PSO'S |    |    |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|-------|----|----|-----|-----|-----|
| OUTCOMES | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO    | PO | PO | PSO | PSO | PSO |
|          | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10    | 11 | 12 | 1   | 2   | 3   |
| CO 1     | 3  | -                | -  | -  | -  | -  | -  | -  | -  | 1     | -  | -  | -   | -   | -   |
| CO 2     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | 1     | -  | -  | -   | -   | -   |
| CO 3     | 3  | -                | 2  | -  | -  | -  | -  | -  | -  | 1     | -  | -  | -   | -   | 2   |
| CO 4     | 3  | 2                | 2  | I  | -  | -  | -  | -  | -  | 1     | -  | -  | -   | -   | 2   |
| CO 5     | 3  | -                | -  | _  | -  | -  | _  | -  | -  | 1     | -  | -  | -   | -   | 2   |

| CO 6    | 3  | - | _ | _ | _ | _ | - | _ | _ | 1 | _ | _ | - | - | -        |
|---------|----|---|---|---|---|---|---|---|---|---|---|---|---|---|----------|
| TOTAL   | 18 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 6        |
| AVERAGE | 3  | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | <b>2</b> |

### XVI ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               | $\checkmark$ | SEE Exams                          | $\checkmark$ | Assignments               | $\checkmark$ |
|-------------------------|--------------|------------------------------------|--------------|---------------------------|--------------|
| Quiz                    | $\checkmark$ | Tech - Talk                        | _            | Certification             | -            |
| Term Paper              | -            | Seminars                           | -            | Student Viva              | -            |
| Laboratory<br>Practices | _            | 5 Minutes Video<br>/ Concept Video | _            | Open Ended<br>Experiments | -            |
| Micro<br>Projects       | -            | -                                  | -            | -                         | -            |

### XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback                                                                    | $\checkmark$ | End Semester OBE Feedback |
|--------------|--------------------------------------------------------------------------------------------|--------------|---------------------------|
| <b>√</b>     | Assessment of activities / Modeling<br>and Experimental Tools in<br>Engineering by Experts | -            | -                         |

### XVIII SYLLABUS:

| MODULE I | PULSE DIGITAL MODULATION                                                  |
|----------|---------------------------------------------------------------------------|
|          | Pulse modulation: analog pulse modulation, types of pulse modulation;     |
|          | pulse amplitude modulation (single polarity, double polarity); generation |
|          | and demodulation of pulse width modulation; generation and                |
|          | demodulation of pulse position modulation. Introduction: elements of      |
|          | digital communication systems, advantages and disadvantages of digital    |
|          | communication systems, applications; pulse digital modulation: elements   |
|          | of pulse code modulation; sampling, quantization and coding;              |
|          | quantization error, non-uniform quantization and companding;              |
|          | differential pulse code modulation, adaptive differential pulse code      |
|          | modulation; delta modulation and its drawbacks; adaptive delta            |
|          | modulation; comparison of pulse code modulation and delta modulation      |
|          | systems; noise in pulse code modulation and delta modulation systems.     |
| MODULE II  | DIGITAL MODULATION TECHNIQUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Digital Modulation Techniques: Introduction, amplitude shift keying<br>modulator, coherent amplitude shift keying detector, non-coherent<br>amplitude shift keying detector, frequency shift keying, bandwidth and<br>frequency spectrum of frequency shift keying, non-coherent frequency<br>shift keying detector, coherent frequency shift keying detector; phase<br>shift keying, coherent phase shift keying detection; optimal reception of<br>digital signal: baseband signal receiver; probability of error; optimum<br>filter; matched filter, probability of error using matched filter; probability<br>of error for various line encoding formats; correlation receiver; calculation<br>of probability of error for amplitude shift keying, frequency shift keying,<br>phase shift keying. |
| MODULE III | BASE BAND TRANSMISSION AND PULSE SHAPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Base band transmission: requirements of a line-encoding format, various<br>line encoding formats: unipolar, polar, bipolar; scrambling techniques:<br>BZ8S, HDB3, computation of power spectral densities of various line<br>encoding formats. pulse shaping: inter symbol interference; pulse shaping<br>to reduce inter symbol interference; nyquist criterion; raised cosine filter;<br>equalization; correlative level coding; duo-binary encoding, modified duo<br>-binary coding; Eye diagrams for amplitude shift keying, frequency shift<br>keying; cross talk.                                                                                                                                                                                                                               |
| MODULE IV  | INFORMATION THEORY AND SOURCE CODING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Information theory: information, entropy, conditional entropy; mutual<br>information; channel capacity; various mathematical modeling of<br>communication channels and their capacities; hartley shannon law;<br>tradeoff between bandwidth and s/n ratio; source coding: fixed length<br>and variable length source coding schemes, huffman coding; source coding<br>to increase average information per bit; lossy source coding; spread<br>spectrum modulation: use of spread spectrum; direct sequence spread<br>spectrum ; code division multiple access using direct sequence spread<br>spectrum, frequency hopping spread spectrum; pn-sequences: generation<br>and characteristics; synchronization in spread spectrum systems                                                                |
| MODULE V   | LINEAR BLOCK CODES AND CONVOLUTION CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Linear block codes: introduction to error control coding; matrix<br>description of linear block codes, error detection and error correction<br>capabilities of linear block codes; hamming code; binary cyclic codes<br>algebraic structure, encoding, syndrome calculation and decoding;<br>convolution codes: introduction, encoding of convolution codes; time<br>domain approach; transform domain approach; general approach; state,<br>tree and trellis diagram; decoding using viterbi algorithm; burst error<br>correction: block interleaving and convolution interleaving.                                                                                                                                                                                                                  |

#### **TEXTBOOKS**

- 1. Herbert Taub, Donald L. Schilling , "Principles of Communication Systems", TMH,  $3^{rd}$  edition,2008
- 2. K. Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley and Sons,  $2^{rd}$  Edition, 2005.
- 3. Simon Haykin, "Digital communications", John Wiley,  $3^{rd}$  Edition, 2005.

#### **REFERENCE BOOKS:**

- 1. John Proakis, "Digital Communications", TMH, 2<sup>rd</sup> Edition 1983.
- 2. B.P.Lathi, "Modern Analog and Digital Communication", Oxford reprint,  $3^{rd}$  Edition, 2004.
- 3. Singh, Sapre, "Communication Systems Analog and Digital", TMH, 2<sup>rd</sup> Edition, 2004.

#### WEB REFERENCES:

- 1. http://www.igniteengineers.com
- 2. http://www.ocw.nthu.edu.tw
- 3. http://www.uotechnology.edu.iq

#### COURSE WEB PAGE:

 $1.\ https://www.iare.ac.in/?q=courses/electronics-and-communication-engineering-autonomous/digital-communications$ 

## XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                               | CO's | Reference                                                                               |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------|--|--|--|
|      | OBE DISCUSSION                                                                                                                                     |      |                                                                                         |  |  |  |
| 1    | 1 Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes<br>(CO), Program Outcomes (PO) and CO - PO<br>Mapping |      | https://lms.<br>iare.ac.in/<br>index?route=<br>course/<br>details&<br>course_id=<br>188 |  |  |  |
|      | CONTENT DELIVERY (THE                                                                                                                              | ORY) |                                                                                         |  |  |  |
| 2    | Pulse modulation, generation demodulation<br>of pulse amplitude modulation                                                                         | CO 1 | T1-5.2 to 5.3                                                                           |  |  |  |
| 3    | Generation demodulation of pulse width<br>modulation, pulse position modulation                                                                    | CO 1 | T1-5.4 to 5.5                                                                           |  |  |  |
| 4    | Elements of digital communication system                                                                                                           | CO 2 | T1-5.5 to 5.8                                                                           |  |  |  |
| 5    | Pulse code modulation generation and detection.                                                                                                    | CO 2 | T1-5.8 to $5.9$                                                                         |  |  |  |
| 6    | Quantization and companding                                                                                                                        | CO 2 | T1-5.11 to 5.12                                                                         |  |  |  |
| 9    | Differential pulse code modulation generation and<br>detection, adaptive differential pulse code<br>modulation generation and detection            |      | T1-5.14 to 5.15                                                                         |  |  |  |
| 10   | Delta modulation, adaptive delta modulation                                                                                                        | CO 2 | T1-5.16 to 5.16                                                                         |  |  |  |
| 11   | Comparison of pulse code modulation and delta<br>modulation, noise in pulse code modulation and<br>delta modulation systems.                       | CO 2 | T1-5.16 to 5.16                                                                         |  |  |  |

| 12 | Digital modulation techniques ,amplitude shift<br>keying modulator, detector                                                   | CO 3             | T1-6.1 to 6.3        |
|----|--------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| 13 | Frequency shift keying modulation and demodulation                                                                             | CO 3             | T1-6.8 to 6.9        |
| 15 | Binary phase shift keying generation and<br>detection, quadrature phase shift keying<br>modulation and demodulation.           | CO 3             | T1-6.2 to 6.3        |
| 16 | Differential phase shift keying transmitter and receiver , differentially encoded phase-shift keying,                          | CO 3             | T1-6.3 to 6.4        |
| 18 | Optimal reception of digital signal, baseband signal receiver;                                                                 | CO 3             | T1-11.1              |
| 19 | Probability of error, optimum filter, matched filter                                                                           | CO 3             | T1-11.2 to 11.3      |
| 20 | Calculation of probability of error for amplitude shift keying modulator.                                                      | CO 3             | T1-11.2 to 11.3      |
|    | CONTENT DELIVERY (THE                                                                                                          | ORY)             |                      |
| 21 | Calculation of probability of error for frequency<br>shift keying modulation, binary phase shift<br>keying modulation.         | CO 3             | T1-11.9 to<br>11.10  |
| 22 | Requirements of a line encoding format, unipolar, polar coding.                                                                | CO 4             | R2-7.1 to 7.2        |
| 23 | Scrambling techniques, binary 8-zero<br>substitution, high-density bipolar order 3.                                            | CO 4             | R2-7.4               |
| 25 | Inter symbol interference, pulse shaping to reduce<br>inter symbol interference                                                | CO 4             | R2-7.3               |
| 26 | Nyquist's criterion, raised cosine filter,<br>equalization;                                                                    | CO 4             | R2-7.3.1 to<br>7.3.2 |
| 27 | Duo-binary encoding, modified duo binary coding                                                                                | CO 4             | R2-7.3.3 to<br>7.3.6 |
| 28 | Eye diagrams, cross talk.                                                                                                      | CO 4             | R2-7.6               |
| 29 | Information theory, entropy, types of entropies                                                                                | CO 5             | T1-13.1 to 13.3      |
| 30 | Mutual information, channel capacity                                                                                           | CO 5             | T1-13.1 to 13.3      |
| 32 | Fixed length and variable length source coding schemes                                                                         | CO 5             | T1-13.5 to 13.6      |
| 33 | Huffman coding.                                                                                                                | CO 5             | T1-13.6 to 13.7      |
| 34 | Shannon fano coding                                                                                                            | $CO\overline{5}$ | T1-13.7 to 13.9      |
| 37 | Lossy source coding, channel coding theorem,<br>hartley shannon law, trade-off between<br>bandwidth and signal to noise ratio. | CO 5             | T1-13.8              |
| 39 | Spread spectrum modulation, direct sequence spread spectrum , frequency-hopping spread spectrum                                | CO 6             | T1-17.1 to 17.2      |
| 40 | Code division multiple access using direct<br>sequence spread spectrum                                                         | $CO\overline{6}$ | T1-17.3 to 17.4      |

| 41 | PN-sequences, generation and characteristics,<br>synchronization in spread spectrum systems.                  | CO 6    | T1-17.6 to 17.7      |  |
|----|---------------------------------------------------------------------------------------------------------------|---------|----------------------|--|
| 42 | Error control coding, linear block codes                                                                      | CO 6    | T1-13.11             |  |
| 44 | Matrix description of linear block codes                                                                      | CO 6    | T1-13.12             |  |
| 45 | Error detection and error correction capabilities<br>of linear block codes                                    | CO 6    | T1-13.13             |  |
| 46 | Hamming codes.                                                                                                | CO 6    | T1-13.14             |  |
| 48 | Cyclic codes, syndrome calculation                                                                            | CO 6    | T1-13.16 to<br>13.18 |  |
| 50 | Convolution codes                                                                                             | CO 6    | T1-13.19             |  |
| 52 | Time domain approach; transform domain approach                                                               | CO 6    | T1-13.19             |  |
| 53 | State diagram , tree diagram                                                                                  | CO 6    | T1-13.20             |  |
| 54 | Trellis diagram, Viterbi algorithm                                                                            | CO 6    | T1-13.20             |  |
|    | PROBLEM SOLVING/ CASE ST                                                                                      | TUDIES  |                      |  |
| 7  | Problems on pulse code modulation and delta modulation                                                        | CO 1    | T1-5.8 to 5.9        |  |
| 8  | Problems on sampling, quantization                                                                            | CO 1    | T1-5.5 to 5.8        |  |
| 14 | Problems on frequency shift keying                                                                            | CO 1    | T1-6.8 to 6.9        |  |
| 17 | Problems on phase shift keying CO 1 T1-6.2                                                                    |         |                      |  |
| 24 | Problems on line coding formats                                                                               | CO 1    | R2-7.1 to 7.2        |  |
| 31 | Problems on the entropy of the source                                                                         | CO 7    | T1-13.1 to 13.3      |  |
| 35 | Problems on source coding schemes CO                                                                          |         | T1-13.5 to 13.6      |  |
| 36 | Problems on Huffman coding schemes                                                                            | CO 2    | T1-13.6 to 13.7      |  |
| 38 | Problems on mutual information CO                                                                             |         | T1-13.1 to 13.3      |  |
| 43 | Problems on linear block codes                                                                                | CO 3    | T1-13.13             |  |
| 47 | Problems on hamming codes                                                                                     | CO 3    | T1-13.16 to<br>13.18 |  |
| 49 | Problems on syndrome decoding                                                                                 | CO 3    | T1-13.14             |  |
| 51 | Problems on cyclic codes                                                                                      | CO 3    | T1-13.16 to<br>13.18 |  |
| 55 | Problems on convolutional codes                                                                               | CO 3    | T1-13.19             |  |
| 56 | Problems on tree diagram, trellis diagram.                                                                    | CO 3    | T1-13.20             |  |
|    | DISCUSSION ON DEFINITION AND T                                                                                | ERMINOL | OGY                  |  |
| 57 | Definitions on pulse digital modulation                                                                       | CO 1    | T1-5.1 to 5.3        |  |
| 58 | Definitions on digital modulation techniques                                                                  | CO 2    | T1-6.1 to 6.3        |  |
| 59 | Definitions on base band transmission and pulse     CO 3     R2-7.1 to 7.2                                    |         |                      |  |
| 60 | Definitions on information theory and source coding                                                           | CO 4    | T1-13.1 to 13.3      |  |
| 61 | Definitions on linear block codes and convolution     CO 5     T1-13.1       codes     CO 5     CO 5     CO 5 |         |                      |  |

|    | DISCUSSION ON QUESTION BANK              |      |                 |  |  |  |
|----|------------------------------------------|------|-----------------|--|--|--|
| 62 | Pulse digital modulation                 | CO 1 | T1-5.1 to $5.3$ |  |  |  |
| 63 | Digital modulation techniques            | CO 2 | T1-6.1 to 6.3   |  |  |  |
| 64 | Base band transmission and pulse shaping | CO 5 | R2-7.1 to 7.2   |  |  |  |
| 65 | Information theory and source coding     | CO 6 | T1-13.1 to 13.3 |  |  |  |
| 66 | Linear block codes and convolution codes | CO 6 | T1-13.11        |  |  |  |

# Course Coordinator Dr.S.China Venkateswarlu, Professor

HOD,ECE

# ANNEXURE - I

# **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No.<br>of<br>KCF's |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PO 1         | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                                                  | 3                  |
| PO 2         | Identify, formulate, review research literature, and analyse complex<br>Engineering problems reaching substantiated conclusions using first<br>principles of mathematics natural sciences, and Engineering sciences<br>( <b>Problem Analysis</b> ).<br>1. Problem or opportunity identification<br>2. Problem statement and system definition<br>3. Problem formulation and abstraction<br>4. Information and data collection<br>5. Model translation<br>6. Validation<br>7. Experimental design<br>8. Solution development or experimentation / Implementation<br>9. Interpretation of results<br>10. Documentation                                                                                                | 10                 |
| PO 3         | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations</li> <li>(Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> </ul> | 10                 |

|      | <ul> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design process and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 4 | Use research-based knowledge and research methods including design<br>of experiments, analysis and interpretation of data, and synthesis of<br>the information to provide valid conclusions (Conduct<br>Investigations of Complex Problems).<br>1. Knowledge of characteristics of particular materials, equipment,<br>processes, or products<br>2. Workshop and laboratory skills<br>3. Understanding of contexts in which engineering knowledge can be<br>applied (example, operations and management, technology<br>development, etc.)<br>4. Understanding use of technical literature and other information<br>sources Awareness of nature of intellectual property and contractual<br>issues<br>5. Understanding of appropriate codes of practice and industry<br>standards<br>6. Awareness of quality issues<br>7. Ability to work with technical uncertainty<br>8. Understanding of engineering principles and the ability to apply<br>them to analyse key engineering processes<br>9. Ability to identify, classify and describe the performance of<br>systems and components through the use of analytical methods and<br>modeling techniques<br>10. Ability to apply quantitative methods and computer software<br>relevant to their engineering discipline, in order to solve engineering<br>problems<br>11. Understanding of and ability to apply a systems approach to<br>engineering problems. | 11 |
| PO 5 | Create, select, and apply appropriate techniques, resources, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  |
|      | <ul> <li>modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).</li> <li>1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -  |

| PO 6 | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety,</li> </ul> | 5  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | and risk (including environmental risk) issues<br>5. Understanding of the need for a high level of professional and<br>ethical conduct in engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| PO 7 | Understand the impact of the professional Engineering solutions in<br>societal and Environmental contexts, and demonstrate the<br>knowledge of, and need for sustainable development (Environment<br>and Sustainability).<br>Impact of the professional Engineering solutions (Not technical)<br>1. Socio economic<br>2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                      | 3  |
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                 | 3  |
| PO 9 | <ul> <li>Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive their performance</li> <li>3. Self-direction (take a vaguely defined problem and systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project.</li> </ul>                                                                                                                | 12 |

|       | <ul> <li>6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> |    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 10 | Communicate effectively on complex Engineering activities with the<br>Engineering community and with society at large, such as, being able<br>to comprehend and write effective reports and design documentation,<br>make effective presentations, and give and receive clear instructions<br>(Communication).<br>"Students should demonstrate the ability to communicate effectively<br>in writing / Orally"<br>1. Clarity (Writing)<br>2. Grammar/Punctuation (Writing)<br>3. References (Writing)<br>4. Speaking Style (Oral)<br>5. Subject Matter (Oral)                                                                                                                                                                                                                                                          | 5  |
| PO 11 | <ul> <li>Demonstrate knowledge and understanding of the Engineering and<br/>management principles and apply these to one's own work, as a<br/>member and leader in a team, to manage projects and in<br/>multidisciplinary Environments (Project Management and<br/>Finance).</li> <li>1. Scope Statement</li> <li>2. Critical Success Factors</li> <li>3. Deliverables</li> <li>4. Work Breakdown Structure</li> <li>5. Schedule</li> <li>6. Budget</li> <li>7. Quality</li> <li>8. Human Resources Plan</li> <li>9. Stakeholder List</li> <li>10. Communication</li> <li>11. Risk Register</li> <li>12. Procurement Plan</li> </ul>                                                                                                                                                                                 | 12 |

| PO 12 | Recognize the need for and have the preparation and ability to       | 8 |
|-------|----------------------------------------------------------------------|---|
|       | engage in independent and life-long learning in the broadest context |   |
|       | of technological change (Life - Long Learning).                      |   |
|       | 1. Project management professional certification / MBA               |   |
|       | 2. Begin work on advanced degree                                     |   |
|       | 3. Keeping current in CSE and advanced engineering concepts          |   |
|       | 4. Personal continuing education efforts                             |   |
|       | 5. Ongoing learning – stays up with industry trends/ new technology  |   |
|       | 6. Continued personal development                                    |   |
|       | 7. Have learned at least 2-3 new significant skills                  |   |
|       | 8. Have taken up to 80 hours (2 weeks) training per year             |   |



# INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

#### COURSE DESCRIPTION

| Department         | Electronics and Communication Engineering |                |                 |            |         |
|--------------------|-------------------------------------------|----------------|-----------------|------------|---------|
| Course Title       | Electroni                                 | c Measurements | s and Instrumer | ntation    |         |
| Course Code        | AECB32                                    |                |                 |            |         |
| Program            | B.Tech                                    |                |                 |            |         |
| Semester           | V                                         |                |                 |            |         |
| Course Type        | Professional Elective-I                   |                |                 |            |         |
| Regulation         | R-18                                      |                |                 |            |         |
|                    | Theory Practical                          |                |                 |            | tical   |
| Course Structure   | Lecture                                   | Tutorials      | Credits         | Laboratory | Credits |
|                    | 3                                         | -              | 3               | -          | -       |
| Course Coordinator | Mr.Mohd.Khadir, Assistant Prfoessor, ECE  |                |                 |            |         |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites                   |
|--------|-------------|----------|---------------------------------|
| B.Tech | AEEB03      | II       | Electrical Circuits             |
| B.Tech | AECB06      | III      | Electronic Devices and Circuits |

#### **II COURSE OVERVIEW:**

The purpose of this course is to design, realization and use of Electronic Systems for the measurement of electrical and non-electrical quantities. It gives an emphasis on analog and digital instruments, oscilloscopes, signal generators, signal analyzers, AC / DC bridges and transducers. The knowledge of measurements and instrumentation is used to test and analyze the performance of measuring instruments in the field of science, engineering and technology.

#### **III COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites                   |
|--------|-------------|----------|---------------------------------|
| B.Tech | AEEB03      | II       | Electrical Circuits             |
| B.Tech | AECB06      | III      | Electronic Devices and Circuits |

#### **IV MARKS DISTRIBUTION:**

| Subject          | SEE Examination | CIE Examination | Total Marks |
|------------------|-----------------|-----------------|-------------|
| Electronic       | 70 Marks        | 30 Marks        | 100         |
| Measurements and |                 |                 |             |
| Instrumentation  |                 |                 |             |

## V CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | x | Assignments  | x            | MOOC   |
|--------------|---------------------------|--------------|--------------|---|--------------|--------------|--------|
| $\checkmark$ | Open Ended Experiments    | x            | Seminars     | x | Mini Project | $\checkmark$ | Videos |
| x            | Others                    |              |              |   |              |              |        |

# VI EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two sessional examinations or the marks scored in the make-up examination conducted.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions wither with the or choice will be drawn from each unit. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 8%                            | Remember              |
| 33%                           | Understand            |
| 42 %                          | Apply                 |
| 17%                           | Analyze               |
| 0%                            | Create                |

#### Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty/teacher handling the course as given in Table-5. CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz / Alternative Assessment Tool (AAT).

| Component          | Theo     | Total Marks |    |  |
|--------------------|----------|-------------|----|--|
| Type of Assessment | CIE Exam | Quiz/AAT    |    |  |
| CIA Marks          | 25       | 05          | 30 |  |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $17^{th}$  week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams. The valuation and verification of answer scripts of CIE exams shall be completed within a week after the conduct of the Internal Examination.

#### Quiz/Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 20 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in the testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quizzes for every course.

In order to encourage innovative methods while delivering a course, the faculty members have been encouraged to use the Alternative Assessment Tool (AAT) in place of two quizzes. This AAT enables faculty to design own assessment patterns during the CIA. However, the usage of AAT is completely optional. The AAT enhances the autonomy (freedom and flexibility) of individual faculty and enables them to create innovative pedagogical practices. If properly applied, the AAT converts the classroom into an effective learning centre. The AAT may include seminars, assignments, term paper, open ended experiments, microprojects, five minutes video, MOOCs etc.

## VII COURSE OBJECTIVES:

#### The students will try to learn:

| I   | The performance characteristics and working principle of analog and digital       |
|-----|-----------------------------------------------------------------------------------|
|     | instruments for measuring electrical quantities.                                  |
| II  | The analysis of various signals by using oscilloscopes and signal analyzers which |
|     | have built in signal generators                                                   |
| III | The measurement of unknown resistive and reactive components by using various     |
|     | AC and DC bridge circuits.                                                        |
| IV  | The construction and working of transducers for the conversion of physical        |
|     | quantities into electrical quantities                                             |

#### VIII COURSE OUTCOMES:

# After successful completion of the course, students should be able to:

| CO 1 | <b>Illustrate</b> the fundamentals and working principle of analog and    | Understand |
|------|---------------------------------------------------------------------------|------------|
|      | digital instruments for measuring of electrical parameters.               |            |
| CO 2 | <b>Demonstrate</b> the building blocks and functionality of oscilloscopes | Understand |
|      | to display and measure the parameters of the signals.                     |            |
| CO 3 | Utilize the signal generators to produce various signals for design       | Apply      |
|      | and test the signal applications.                                         |            |
| CO 4 | Analyze the relative amplitude of the signal and its harmonic             | Analyze    |
|      | components in frequency domain by using Signal Analyzers                  |            |
| CO 5 | <b>Identify</b> appropriate bridge circuits tfor the measurement of       | Apply      |
|      | unknown electrical parameters.                                            |            |
| CO 6 | <b>Select</b> the suitable transducers for measuring electrical and       | Apply      |
|      | non-electrical parameters to resolve the real-world problem.              |            |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



## **BLOOMS TAXONOMY**

# IX PROGRAM OUTCOMES:

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |
| PO 6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                           |

#### X HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | PROGRAM OUTCOMES                                   | Strength | Proficiency<br>Assessed by |
|------|----------------------------------------------------|----------|----------------------------|
| PO 1 | Engineering knowledge: Apply the                   | 3        | SEE / CIE /                |
|      | knowledge of mathematics, science, engineering     |          | AAT                        |
|      | to the solution of complex engineering problems.   |          |                            |
| PO 2 | Problem analysis: Identify, formulate, review      | 2        | SEE / CIE /                |
|      | research literature, and analyze complex           |          | AAT                        |
|      | engineering problems reaching substantiated        |          |                            |
|      | conclusions using first principles of mathematics, |          |                            |
|      | natural sciences, and engineering sciences.        |          |                            |
| PO 3 | <b>Design/Development of Solutions:</b> Design     | 2        | SEE / CIE /                |
|      | solutions for complex Engineering problems and     |          | AAT                        |
|      | design system components or processes that         |          |                            |
|      | meet the specified needs with appropriate          |          |                            |
|      | consideration for the public health and safety,    |          |                            |
|      | and the cultural, societal, and Environmental      |          |                            |
|      | considerations                                     |          |                            |

#### XI HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| Р     | PROGRAM SPECIFIC OUTCOMES                                                                                                                     | Strength | Proficiency<br>Assessed by |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PSO 2 | Focus on the practical experience of ASIC<br>prototype designs, Virtual Instrumentation and<br>SOC designs                                    | 3        | SEE/ CIE /<br>AAT          |
| PSO 3 | Build the Embedded hardware design and<br>software programming skills for entry level job<br>positions to meet the requirements of employers. | 3        | AAT                        |

3 = High; 2 = Medium; 1 = Low

# XII MAPPING OF EACH CO WITH PO(s), PSO(s):

|          | PROGRAM OUTCOMES |              |              |    |    |    |    |    |    |              | PSO'S |    |     |              |              |
|----------|------------------|--------------|--------------|----|----|----|----|----|----|--------------|-------|----|-----|--------------|--------------|
| COURSE   | PO               | PO           | PO           | PO | PO | PO | PO | PO | PO | РО           | РО    | PO | PSO | PSO          | PSO          |
| OUTCOMES | 1                | 2            | 3            | 4  | 5  | 6  | 7  | 8  | 9  | 10           | 11    | 12 | 1   | 2            | 3            |
| CO 1     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | $\checkmark$ | -            |
| CO 2     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | $\checkmark$ | -            |
| CO 3     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | $\checkmark$ | -            |
| CO 4     | $\checkmark$     | $\checkmark$ | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | $\checkmark$ | -            |
| CO 5     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | $\checkmark$ | -            |
| CO 6     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -            | $\checkmark$ |

# XIII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT :

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                   | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO1                | PO 1          | <b>Examine</b> the schematics of measuring systems<br>and performance characteristics (knowledge) of<br>an instrument using the principles of science<br>and mathematics for the solution of complex<br>engineering problems.                                          | 3                                      |
|                    | PO 2          | Formulate and analyze (Problem analysis)<br>complex Engineering problems for<br>measurement of electrical parameters using first<br>principles of mathematics and Engineering<br>sciences                                                                              | 4                                      |
|                    | PO 3          | <b>Understand</b> the customer needs, use creativity<br>and manage design process in <b>realization of</b><br><b>measuring</b> instruments for measuring analog and<br>digital values and <b>evaluate outcomes</b> .                                                   | 3                                      |
|                    | PO 10         | <b>Effective presentation and speaking style</b> on<br>building blocks of an instrument and <b>write</b><br><b>subject matter effectively</b> on working principle<br>of D' Arsonvalmovement.                                                                          | 2                                      |
|                    | PSO 2         | <b>Illustrate</b> the concept analog and digital meters<br>to measure voltage, current and resistance by<br>using virtual instrumentation.                                                                                                                             | 1                                      |
| CO2                | PO 1          | <b>Understand</b> different blocks present in<br>Oscilloscopes (knowledge) and combine all the<br>blocks to get the appropriate output an<br>engineering specialization to the solution of<br>complex engineering problems.                                            | 3                                      |
|                    | PO 2          | Identify, Formulate and analyze (Problem<br>analysis)complex engineering problems for<br>the measurement using principles of electrostatic<br>deflection sensitivity in Oscilloscopes using<br>review research literature and mathematics<br>and Engineering sciences. | 6                                      |
|                    | PO 3          | Understand customer needs, manage the<br>design various Oscilloscopes for in realization of<br>measuring signal parameters and evaluate<br>outcomes of the circuit.                                                                                                    | 4                                      |
|                    | PO 10         | <b>Effective presentation and speaking style</b> on<br>building blocks of Oscilloscopes and <b>write</b><br><b>subject matter effectively</b> on working<br>functionality of Digital Oscilloscopes.                                                                    | 2                                      |
|                    | PSO 2         | <b>Develop</b> the model of oscilloscopes to <b>analyze</b> the real time signals.                                                                                                                                                                                     | 2                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 3               | PO 1          | <b>Understand</b> concept of multi-function signal<br>generators <b>analyze</b> the different blocks present in<br>generator <b>an engineering specialization to the</b><br><b>solution of complex engineering problems.</b>                        | 3                                      |
|                    | PO 2          | <b>Review research literature, conclusions</b><br>using first principles of engineering sciences<br>sciences Describe the working of multi-function<br>signal generators (Complex problem analysis).                                                | 4                                      |
|                    | PO 3          | <b>Develop</b> signal generator circuit <b>based on</b><br><b>customer needs for designg</b> of multi-function<br>signal generators and <b>evaluate outcomes of the</b><br><b>design.</b>                                                           | 3                                      |
|                    | PO 10         | <b>Effective presentation and speaking style</b> on<br>working of AF, RFSignal Generator and <b>write</b><br><b>subject matter effectively</b> on working<br>functionality of different blocks present in Signal<br>Generators.                     | 2                                      |
|                    | PSO 2         | <b>Develop the model</b> of signal generators to perform the real time signals.                                                                                                                                                                     | 2                                      |
| CO4                | PO 1          | <b>Understand(knowledge)</b> the concepts of<br>analyzers such as spectrum and wave analyzers<br>and <b>analyze</b> the blocks of wave analyzers an<br>engineering specialization to <b>the solution of</b><br><b>complex engineering problems.</b> | 3                                      |
|                    | PO 2          | <b>Compare</b> the working functionality of two<br>analyzers <b>by formulate, review research</b><br><b>literature</b>                                                                                                                              | 3                                      |
|                    | PO 10         | Effective presentation and speaking style on<br>concept of wave analyzer and write subject<br>matter effectively on on analysis of various<br>signal analyzers.                                                                                     | 2                                      |
|                    | PSO 2         | <b>Develop</b> the model of signal analyzers<br>to <b>examine</b> the real time signals with the<br>harmonic components.                                                                                                                            | 2                                      |
| CO5                | PO 1          | Understand (knowledge) the concept of bridges<br>in electronic measuring instruments an<br>engineering specialization to the solution of<br>complex engineering problems                                                                            | 3                                      |
|                    | PO 2          | Identify, formulate and Analyze AC and DC<br>bridge circuits and compare them by its<br>applications using first principles of<br>mathematics and Engineering sciences.                                                                             | 4                                      |
|                    | PO 3          | Understand customer needs, manage the<br>design AC and DC bridge circuits on<br>requirement and evaluate outcomes of the<br>circuit.                                                                                                                | 3                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                           | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 10         | Effective presentation and speaking style on<br>concept of AC and DC bridges and write subject<br>matter effectively on measurement of unknown<br>parameter using bridges.                                                                                     | 2                                      |
|                    | PSO2          | <b>Understand</b> the performance of a bridge using<br>practical experience to <b>analyze Virtual</b><br><b>Instrumentation</b>                                                                                                                                | 2                                      |
| CO 6               | PO 1          | Apply (understand) the knowledge of<br>engineering fundamentals to define transducer<br>and Understand the concepts of different types of<br>Transducers (Engineering knowledge)                                                                               | 3                                      |
|                    | PO 2          | Identify, formulate, review research<br>literature using first principles of engineering<br>sciences illustrate Transducers and classify them<br>according to their application) (complex<br>engineering problems).                                            | 5                                      |
|                    | PO 3          | Develop (Design/development of solutions)<br>an transducers like strain gauges, LVDT (in the<br>design of system components to establish<br>innovative solutions )to measure different<br>electrical and non-electrical parameters.                            | 4                                      |
|                    | PO 10         | Effective presentation and speaking style on<br>working principles of all various types of<br>Transducers and write subject matter<br>effectively to measure different electrical and<br>non-electrical parameters using all active and<br>passive Transducers | 2                                      |
|                    | PSO 3         | <b>Understand</b> the concepts of measuring instrument systems to measure different electrical parameters using <b>embedded hardware design</b> .                                                                                                              | 2                                      |

# Note:For Key Competencies refer Annexure - I

# XIV TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |  |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|--|
| COURSE   | PO | PO               | PO | PO | PO | PO | РО | PO | PO | РО | PO | PO | PSO   | PSO | PSO |  |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |  |
|          | 3  | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2     | 2   | 2   |  |
| CO 1     | 3  | 4                | 3  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -     | 1   | -   |  |
| CO 2     | 3  | 6                | 4  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -     | 2   | -   |  |
| CO 3     | 3  | 4                | 3  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -     | 2   | -   |  |
| CO 4     | 3  | 3                | I  | -  |    | -  | -  | -  | -  | 2  | -  |    | -     | 2   | -   |  |
| CO 5     | 3  | 4                | 3  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -     | 2   | -   |  |
| CO 6     | 3  | 5                | 4  | -  | -  | -  | -  | -  | -  | 2  | -  |    | -     | -   | 2   |  |

# XV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |      |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|------|
| COURSE   | PO  | PO               | PO | PO | PO | PO | PO | PO | PO | PO | РО | PO | PSO   | PSO | PSO  |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3    |
| CO 1     | 100 | 40               | 30 | -  | -  | -  | -  | -  | -  | 40 | -  |    | -     | 50  | -    |
| CO 2     | 100 | 60               | 40 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | 100 | -    |
| CO 3     | 100 | 40               | 30 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | 100 | -    |
| CO 4     | 100 | 30               | -  | -  |    | -  | -  | -  | -  | 40 | -  |    | -     | 100 | -    |
| CO 5     | 100 | 40               | 30 | -  | -  | -  | -  | -  | -  | 40 | -  | -  | -     | 100 | -    |
| CO 6     | 100 | 50               | 40 | -  | -  | -  | -  | -  | -  | 40 | -  |    | -     | -   | 66.7 |

# XVI COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$   $0 \leq C \leq 5\%$  No correlation
- 1 -5 <C $\leq$  40% Low/ Slight
- 2 40 % < C < 60% –Moderate
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

|          |    | PROGRAM OUTCOMES |     |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|----|------------------|-----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO | PO               | PO  | PO | PO | PO | РО | РО | PO | РО | РО | РО | PSO   | PSO | PSO |
| OUTCOMES | 1  | 2                | 3   | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 3  | 2                | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0     | 2   | 0   |
| CO 2     | 3  | 2                | 2   | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0     | 3   | 0   |
| CO 3     | 3  | 2                | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0     | 3   | 0   |
| CO 4     | 3  | 2                | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0     | 3   | 0   |
| CO 5     | 3  | 1                | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0     | 3   | 0   |
| CO 6     | 3  | 2                | 2   | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0     | 0   | 3   |
| TOTAL    | 18 | 11               | 8   | 0  | 0  | 0  | 0  | 0  | 0  | 12 | 0  | 0  | 0     | 14  | 3   |
| AVERAGE  | 3  | 1.8              | 1.4 | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0     | 2.8 | 3   |

# XVII ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams               | ~ | SEE Exams                                | $\checkmark$ | Assignments               | - |
|-------------------------|---|------------------------------------------|--------------|---------------------------|---|
| Quiz                    | - | Tech - Talk                              | $\checkmark$ | Certification             | - |
| Term Paper              | - | Seminars                                 | -            | Student Viva              | - |
| Laboratory<br>Practices | _ | 5 Minutes<br>Video /<br>Concept<br>Video | ~            | Open Ended<br>Experiments | ~ |
| Micro<br>Projects       | _ | _                                        | _            | _                         | - |

# XVIII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester<br>Feedback | ~        | End Semester<br>OBE Feedback                              |
|--------------|----------------------------|----------|-----------------------------------------------------------|
| $\checkmark$ | Assessment of activity     | ties / 1 | Modeling and Experimental Tools in Engineering by Experts |

# XIX SYLLABUS:

| MODULE I   | INTRODUCTION TO MEASURING INSTRUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Block schematics of measuring systems, performance characteristics, Static characteristics: Accuracy, resolution, precision, gross error, types of errors, Dynamic characteristics : Repeatability, reproducibility, fidelity, lag; Analog measuring instruments: D' Arsonval movement, DC voltmeters and ammeter, AC voltmeters and current meters, ohmmeters, multimeters, meter protection, extension of range, digital voltmeters: Ramp type, staircase, dual slope integrating type, successive approximation type, specifications of instruments. |
| MODULE II  | OSCILLOSCOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Oscilloscopes: CRT, block schematic of CRO, time base circuits, delay lines,<br>high frequency CRO considerations, applications, specifications, special<br>purpose oscilloscopes: Dual trace, dual beam CROs, sampling oscilloscopes,<br>storage oscilloscopes, digital storage CROs, Lissajous figures, frequency<br>measurement, phase measurement, CRO probes.                                                                                                                                                                                      |
| MODULE III | SIGNAL GENERATOR AND SIGNAL ANALYZERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | Signal Generators: AF and RF signal generators, sine and square wave<br>generators, function generators arbitrary waveform generator, sweep<br>frequency generators, video signal generators, and specifications.<br>Signal Analyzers: AF, HF wave analyzers, heterodyne wave analyzers,<br>harmonic distortion, spectrum analyzers, power analyzers                                                                                                                                                                                                    |
| MODULE IV  | AC AND DC BRIDGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Measurements using DC and AC bridges: Wheat stone bridge, Kelvin<br>bridge, AC bridges, Maxwell, Hay, Schering, Wien, Anderson bridges,<br>Wagner & ground connection.                                                                                                                                                                                                                                                                                                                                                                                  |
| MODULE V   | TRANSDUCERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Transducers: Classification, strain gauges, force and displacement,<br>transducers, resistance thermometers, hotwire anemometers, LVDT,<br>thermocouples, synchros; Piezoelectric transducers, variable capacitance<br>transducers; Magneto strictive transducers, measurement of physical<br>parameters: Flow measurement, displacement meters, liquid level<br>measurement, measurement of humidity and moisture, velocity, force,<br>pressure, high pressure, vacuum level, temperature measurements.                                                |

## TEXTBOOKS

- 1. A.K.Sawhney, "Electrical and electronics measurements and instrumentation", 19th Edition, 2011.
- 2. H.S.Kalsi, "Electronic Instrumentation", TMH, 2nd Edition, 2004.

3. K. Lal Kishore, "Electronic Measurements and Instrumentation", Pearson Education,2nd Edition,2010

#### **REFERENCE BOOKS:**

- 1. David A. Bell, "Electronic Instrumentation and Measurements", Oxford University Press, 1st Edition, 2007
- 2. A.D. Helbincs, W.D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", PHI, 56th Edition, 2003.

#### WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

#### COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details course id=356

## XX COURSE PLAN

The course plan is meant as a guideline. Probably there may be changes.

| S.No                      | Topics to be covered                                                                                                                           | CO's | Reference                          |  |  |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------|--|--|--|--|--|--|
|                           | OBE DISCUSSIO                                                                                                                                  | N    |                                    |  |  |  |  |  |  |
| 1                         | Course Description on Outcome Based<br>Education (OBE): Course Objectives, Course<br>Outcomes (CO), Program Outcomes (PO) and<br>CO-PO Mapping |      | W 1                                |  |  |  |  |  |  |
| CONTENT DELIVERY (THEORY) |                                                                                                                                                |      |                                    |  |  |  |  |  |  |
| 2                         | Block schematics of measuring systems,<br>performance characteristics                                                                          | CO 1 | T1:1.1, 1.2. T2:1.2-1.7<br>R2:2.10 |  |  |  |  |  |  |
| 3                         | Static and Dynamic characteristics, types of errors                                                                                            | CO 1 | T1:1.2.,T2:1.2-1.7<br>R2:2.10      |  |  |  |  |  |  |
| 4                         | D' Arsonval movement                                                                                                                           | CO 1 | T1: 2.2., T2:2.3-2.7<br>R2:3.3     |  |  |  |  |  |  |
| 5                         | DC voltmeters                                                                                                                                  | CO 1 | T1: 4.2,4.3. ,T2:4.3-4.7           |  |  |  |  |  |  |
| 6                         | DC ammeters                                                                                                                                    | CO 1 | T1: 3.2,3.3. T2:3.3-3.4            |  |  |  |  |  |  |
| 7                         | AC voltmeters                                                                                                                                  | CO 1 | T1: 4.7-4.17, T2:4.7-4.17          |  |  |  |  |  |  |
| 8                         | AC current meters (Ammeters)                                                                                                                   | CO 1 | T1: 3.5, 3.6., T2: 3.5-3.7         |  |  |  |  |  |  |
| 9                         | Ohmmeters ,Multimeters, meter protection,<br>extension of range                                                                                | CO 1 | T1: 4.4,4.6,T2:4.7-4.17            |  |  |  |  |  |  |
| 10                        | Digital voltmeters, Ramp type, staircase                                                                                                       | CO 1 | T1:5.1-5.10, R2:5.1                |  |  |  |  |  |  |
| 11                        | Digital voltmeters dual slope integrating type,<br>successive approximation type, specifications<br>of instruments.                            | CO 1 | T1:5.1-5.10, R2:5.3                |  |  |  |  |  |  |
| 12                        | Oscilloscopes: CRT, block schematic of CRO                                                                                                     | CO 2 | T1:7.1-7.13,R2:4.1-4.3             |  |  |  |  |  |  |
| 13                        | Time base circuits, delay lines                                                                                                                | CO 2 | T1:7.1-7.13,R2:4.1-4.3             |  |  |  |  |  |  |

| S.No | Topics to be covered                                               | CO's | Reference                       |
|------|--------------------------------------------------------------------|------|---------------------------------|
| 14   | high frequency CRO considerations,<br>applications, specifications | CO 2 | T1:7.1-7.13,R2:4.1-4.3          |
| 15   | special purpose oscilloscopes: Dual trace, dual beam CROs          | CO 2 | T1:7.14-7.18,R2:4.7-<br>4.13    |
| 16   | sampling oscilloscopes, storage oscilloscopes                      | CO 2 | T1:7.19-7.28,R2:4.7-<br>4.13    |
| 17   | Digital Storage CROs                                               | CO 2 | T1:7.19-7.28,R2:4.7-<br>4.13    |
| 18   | Lissajous figures, frequency measurement, phase measurement        | CO 2 | T1:7.19-7.28,R2:4.7-<br>4.13    |
| 19   | CRO probes                                                         | CO 3 | T1:7.19-7.28,R2:4.7-<br>4.13    |
| 20   | Signal Generators: standard signal generators                      | CO 3 | T1:8.1-8.2,R2:6.1-6.13          |
| 21   | AF sine and square wave generators                                 | CO 3 | T1:8.1-8.18,R2:6.1-6.13         |
| 22   | function generators, arbitrary waveform generator                  | CO 3 | T1:8.1-8.18,R2:6.1-6.13         |
| 23   | sweep frequency generators, video signal generators                | CO 3 | T1:8.1-8.18,R2:6.1-6.13         |
| 24   | Signal Analyzers: AF, HF wave analyzers                            | CO 4 | T1:9.1-9.8, R2:7.1-7.6          |
| 25   | heterodyne wave analyzers, harmonic distortion wave analyzers      | CO 4 | T1:9.1-9.8, R2:7.1-7.6          |
| 26   | spectrum analyzers, power analyzers                                | CO 4 | T1:9.1-9.8, R2:7.1-7.6          |
| 27   | Measurements using DC bridges: Wheat stone bridge                  | CO 5 | T1:11.2 R2:10.4                 |
| 28   | Measurements using DC bridges: Kelvin bridge                       | CO 5 | T1:11.3 R2:10.5                 |
| 29   | AC bridges: Maxwell bridge, Hay bridge                             | CO 5 | T1:11.11-11.12 R2:10.8          |
| 30   | AC bridges: Schering bridge, Wien bridge                           | CO 5 | T1:11.13-11.14<br>R2:10.9-10.10 |
| 31   | AC bridges: Anderson bridge                                        | CO 5 | T1:11.18,R2:10.13               |
| 32   | Wagner & ground connection                                         | CO 5 | T1:11.15,R2:10.16               |
| 33   | Transducers: Classification                                        | CO 6 | T1:13.1,R2:12.1                 |
| 34   | strain gauges                                                      | CO 6 | T1:13.6,R2:12.6                 |
| 35   | resistance thermometers                                            | CO 6 | T1:13.7,R2:12.7                 |
| 36   | hotwire anemometers, thermocouples                                 | CO 6 | T1:13.8,R2:12.9                 |
| 37   | LVDT                                                               | CO 6 | T1:13.11,R2:12.10               |
| 38   | Piezoelectric transducers                                          | CO 6 | T1:13.15,R2:12.17               |
| 39   | Magneto strictive transducers                                      | CO 6 | T1:13.16,R2:12.18               |

| S.No | Topics to be covered                                                                  | CO's    | Reference                                       |
|------|---------------------------------------------------------------------------------------|---------|-------------------------------------------------|
| 40   | measurement of physical parameters: force and displacement                            | CO 6    | T1:13.23-13.27,<br>R2:12.24-12.28               |
| 41   | measurement of physical parameters: Pressure, vacuum level, temperature measurements  | CO 6    | T1:13.23-13.27,<br>R2:12.24-12.28               |
| 42   | Problem solving on Voltmeters and ammeters                                            | CO 1    | T1: 4.2-4.13.                                   |
| 43   | Problem solving on series and shunt<br>ohmmeters, digital multimeters                 | CO 1    | T1: 4.2-4.13.R2:4.13                            |
| 44   | Problem solving on electrostatic deflection<br>sensitivity, Velocity of electron beam | CO 2    | T1:7.1-7.13,R2:4.1-4.3                          |
| 45   | Problem solving on frequency and phase<br>measurement                                 | CO 2    | T1:7.1-7.13,R2:4.1-4.3                          |
| 46   | Problem solving on minimum detectable signal<br>of spectrum analyzer                  | CO 4    | T1:9.1-9.8, R2:7.1-7.6                          |
| 47   | Problem solving on whetstone bridge                                                   | CO 5    | T1:11.2 R2:10.4                                 |
| 48   | Problem solving on Kelvin bridge                                                      | CO 5    | T1:11.3 R2:10.5                                 |
| 49   | Problem solving on wien bridge                                                        | CO 5    | T1:11.11-11.12 R2:10.8                          |
| 50   | Problem solving on Maxwell bridge                                                     | CO 5    | T1:11.13-11.14<br>R2:10.9-10.10                 |
| 51   | Problem solving on Schering bridge                                                    | CO 5    | T1:11.18,R2:10.13                               |
| 52   | Problem solving on Anderson bridge                                                    | CO 5    | T1:11.2 R2:10.4                                 |
| 53   | Problem solving on hay's bridge                                                       | CO 5    | T1:11.3 R2:10.5                                 |
| 54   | Problem solving on strain gauges                                                      | CO 6    | T1:13.6,R2:12.6                                 |
| 55   | Problem solving on LVDT                                                               | CO 6    | T1:13.11,R2:12.10                               |
| 56   | Problem solving on Thermistor                                                         | CO 6    | T1:13.15,R2:12.17                               |
|      | DISCUSSION OF DEFINITION AN                                                           | D TERMI | NOLOGY                                          |
| 57   | Module-I: Introduction to Measuring<br>Instruments                                    | CO 1    | T1:1.1-19,2.1-2.8,3.1-<br>3.8,4.1-4.25,5.1-5.10 |
| 58   | Module-II: Oscilloscopes                                                              | CO 2    | T1:7.1-7.32                                     |
| 59   | Module-III: Signal Generators and Wave<br>Analyzers                                   | CO 3,4  | T1:8.1-8.10,9.1-9.6                             |
| 60   | Module-IV: AC and DC Bridges                                                          | CO 5    | T1:11.111.18                                    |
| 61   | Module-V: Transducers                                                                 | CO 6    | T1:13.1-13.25                                   |
|      | DISCUSSION OF QUESTI                                                                  | ON BANH | K                                               |
| 62   | Module-I: Introduction to Measuring<br>Instruments                                    | CO 1    | T1:1.1-19,2.1-2.8,3.1-<br>3.8,4.1-4.25,5.1-5.10 |
| 63   | Module-II: Oscilloscopes                                                              | CO 2    | T1:7.1-7.32                                     |

| S.No | Topics to be covered                                | CO's   | Reference           |
|------|-----------------------------------------------------|--------|---------------------|
| 64   | Module-III: Signal Generators and Wave<br>Analyzers | CO 3,4 | T1:8.1-8.10,9.1-9.6 |
| 65   | Module-IV: AC and DC Bridges                        | CO 5   | T1:11.111.18        |
| 66   | Module-V: Transducers                               | CO 6   | T1:13.1-13.25       |

# Course Coordinator Mr.Mohd.Khadir, Assistant Prfoessor

# HOD,ECE

# ANNEXURE - I

#### **KEY COMPETENCIES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Num-<br>ber | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No.<br>of<br>KCF's |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PO 1              | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                          | 3                  |
| PO 2              | <ul> <li>Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and</li> <li>Engineering sciences (Problem Analysis).</li> <li>1. Problem or opportunity identification</li> <li>2. Problem statement and system definition</li> <li>3. Problem formulation and abstraction</li> <li>4. Information and data collection</li> <li>5. Model translation</li> <li>6. Validation</li> <li>7. Experimental design</li> <li>8. Solution development or experimentation / Implementation</li> <li>9. Interpretation of results</li> <li>10. Documentation</li> </ul> | 10                 |

| PO 3  | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design process and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> </ul> | 10 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 4. | Use research-based knowledge and research methods including<br>design of experiments, analysis and interpretation of data, and<br>synthesis of the information to provide valid conclusions<br>(Conduct Investigations of Complex Problems).<br>1. Knowledge of characteristics of particular materials,<br>equipment, processes, or products<br>2. Workshop and laboratory skills<br>3. Understanding of contexts in which engineering knowledge can<br>be applied (example, operations and management, technology<br>development, etc.)<br>4. Understanding use of technical literature and other information<br>sources Awareness of nature of intellectual property and<br>contractual issues<br>5. Understanding of appropriate codes of practice and industry<br>standards<br>6. Awareness of quality issues<br>7. Ability to work with technical uncertainty<br>8. Understanding of engineering principles and the ability to<br>apply them to analyse key engineering processes<br>9. Ability to identify, classify and describe the performance of<br>systems and components through the use of analytical methods<br>and modeling techniques<br>10. Ability to apply quantitative methods and computer software<br>relevant to their engineering discipline, in order to solve<br>engineering problems<br>11. Understanding of and ability to apply a systems approach to<br>engineering problems.                               | 11 |

| PO 5 | Create, select, and apply appropriate techniques, resources, and<br>modern Engineering and IT tools including prediction and<br>modelling to complex Engineering activities with an<br>understanding of the limitations (Modern Tool Usage).<br>1. Computer software / simulation packages / diagnostic<br>equipment / technical library resources / literature search tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| PO 6 | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> </ul> | 5 |
| PO 7 | Understand the impact of the professional Engineering solutions<br>in societal and Environmental contexts, and demonstrate the<br>knowledge of, and need for sustainable development<br>(Environment and Sustainability).<br>Impact of the professional Engineering solutions (Not technical)<br>1. Socio economic<br>2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 |
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 |

| PO 9  | <ul> <li>Function effectively as an individual, and as a member or leader<br/>in diverse teams, and in multidisciplinary settings (Individual<br/>and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive<br/>their performance</li> <li>3. Self-direction (take a vaguely defined problem and<br/>systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on<br/>labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented<br/>Mini-Project, and for the seventeen -week design project.</li> <li>6. Instruction on effective teamwork and project management is<br/>provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know<br/>their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's<br/>performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the<br/>friendships and teamwork extends into the Junior years, and for<br/>some of those students, the friendships continue into the<br/>workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> | 12 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 10 | Communicate effectively on complex Engineering activities with<br>the Engineering community and with society at large, such as,<br>being able to comprehend and write effective reports and design<br>documentation, make effective presentations, and give and receive<br>clear instructions (Communication).<br>"Students should demonstrate the ability to communicate<br>effectively in writing / Orally"<br>1. Clarity (Writing)<br>2. Grammar/Punctuation (Writing)<br>3. References (Writing)<br>4. Speaking Style (Oral)<br>5. Subject Matter (Oral)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  |

| PO11 | <ul> <li>Demonstrate knowledge and understanding of the Engineering<br/>and management principles and apply these to one's own work, as<br/>a member and leader in a team, to manage projects and in<br/>multidisciplinary Environments (Project Management and<br/>Finance).</li> <li>1. Scope Statement</li> <li>2. Critical Success Factors</li> <li>3. Deliverables</li> <li>4. Work Breakdown Structure</li> <li>5. Schedule</li> <li>6. Budget</li> <li>7. Quality</li> <li>8. Human Resources Plan</li> <li>9. Stakeholder List</li> <li>10. Communication</li> <li>11. Risk Register</li> <li>12. Procurement Plan</li> </ul>                                                           | 12 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO12 | <ul> <li>Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning).</li> <li>1. Project management professional certification / MBA</li> <li>2. Begin work on advanced degree</li> <li>3. Keeping current in CSE and advanced engineering concepts</li> <li>4. Personal continuing education efforts</li> <li>5. Ongoing learning – stays up with industry trends/ new technology</li> <li>6. Continued personal development</li> <li>7. Have learned at least 2-3 new significant skills</li> <li>8. Have taken up to 80 hours (2 weeks) training per year</li> </ul> | 8  |



## INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

| Department                                            | Electronics and Communication Engineering              |        |   |         |   |  |
|-------------------------------------------------------|--------------------------------------------------------|--------|---|---------|---|--|
| Course Title                                          | Digital Design Through Verilog                         |        |   |         |   |  |
| Course Code                                           | AECB44                                                 | AECB44 |   |         |   |  |
| Program                                               | B.Tech                                                 |        |   |         |   |  |
| Semester                                              | V                                                      |        |   |         |   |  |
| Course Type                                           | Professional Elective                                  |        |   |         |   |  |
| Regulation                                            | R18                                                    |        |   |         |   |  |
|                                                       | Theory Pract                                           |        |   | tical   |   |  |
| Course Structure                                      | urse Structure Lecture Tutorials Credits Laboratory Cr |        |   | Credits |   |  |
|                                                       | 3                                                      | -      | 3 | -       | - |  |
| Course Coordinator Ms. S. Swathi, Assistant Professor |                                                        |        |   |         |   |  |

## I COURSE OVERVIEW:

This course introduces the hardware description language for design and development of digital integrated circuits and field programmable devices. Provides hardware description language elements, synthesizable register transfer logic models in gate level, dataflow, behavioral, switch level modeling of combinational and sequential circuits. Allows to use computer aided design tools at the levels of system design, logic design and IC design.

## **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites         |
|--------|-------------|----------|-----------------------|
| B.Tech | AECB07      | III      | Digital System Design |

#### **III MARKS DISTRIBUTION:**

| Subject                           | SEE<br>Examination | CIE<br>Examination | Total Marks |
|-----------------------------------|--------------------|--------------------|-------------|
| Digital Design Through<br>Verilog | 70 Marks           | 30 Marks           | 100         |

## IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point               | $\checkmark$ | Chalk & Talk | x | Assignments  | x | MOOC              |
|--------------|---------------------------|--------------|--------------|---|--------------|---|-------------------|
|              | Presentations             |              |              |   |              |   |                   |
| x            | Open Ended<br>Experiments | 1            | Tech Talk    | x | Mini Project | 1 | Concept<br>Videos |
| x            | Others                    |              |              | • |              |   |                   |

# **V EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 20%                           | Understand            |
| 60 %                          | Apply                 |
| 20 %                          | Analyze               |
| 0 %                           | Evaluate              |
| 0 %                           | Create                |

Table 1: The expected percentage of cognitive level of questions in SEE.

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

| Table 2: | Assessment | pattern | $\mathbf{for}$ | $\operatorname{CIA}$ |
|----------|------------|---------|----------------|----------------------|
|----------|------------|---------|----------------|----------------------|

| Component          | The      | Total Marka |    |
|--------------------|----------|-------------|----|
| Type of Assessment | CIE Exam | AAT         |    |
| CIA Marks          | 20       | 10          | 30 |

#### Continuous Internal Examination (CIE):

Continuous Internal Examination (CIE): Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

| Table 3: A | Assessment | pattern | $\operatorname{for}$ | AAT |
|------------|------------|---------|----------------------|-----|
|------------|------------|---------|----------------------|-----|

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

# VI COURSE OBJECTIVES:

#### The students will try to learn:

| I   | The fundamental principles of the verilog hardware descriptive language and its constructs used in synthesizable register transfer level (RTL) design implementation of digital logic systems. |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | The concepts of gate level, behavioral, dataflow and switch level modeling of fundamental digital logic circuits using verilog hardware description language.                                  |
| III | The exposure to various stages of a typical state of the art CAD VLSI tool for simulation, synthesis, place and route, layout and power and clock routing modules.                             |
| IV  | The analytical skills needed to model finite state machines using field programmable gate arrays, fault-tolerant high-speed computer arithmetic circuits, built-in self-test circuit (BIST).   |

# VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

| CO 1 | <b>Describe</b> the basic language elements and data flow modelling       | Understand |
|------|---------------------------------------------------------------------------|------------|
|      | constructs to implement the combinational and sequential circuits in      |            |
|      | Verilog.                                                                  |            |
| CO 2 | Utilize the basic logic gate primitives and user defined primitives       | Apply      |
|      | for implementing digital circuits in gate level modelling.                |            |
| CO 3 | <b>Illustrate</b> the significance of structured procedures in behavioral | Understand |
|      | modeling using blocking and nonblocking procedural assignments.           |            |
| CO 4 | Make use of loop and conditional statements to describe the               | Apply      |
|      | digital circuits in behavioral modeling.                                  |            |
| CO 5 | <b>Identify</b> the methods to specify delays on switch primitives for    | Apply      |
|      | designing modules with time delays in switch level modeling.              |            |
| CO 6 | <b>Distinguish</b> the synchronous and asynchronous sequential state      | Analyze    |
|      | machines for synthesizing the sequential circuits.                        |            |

# COURSE KNOWLEDGE COMPETENCY LEVEL



# VIII PROGRAM OUTCOMES:

| PROGRAM OUTCOMES |                                                                                                                                                                                                                                            |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PO 1             | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering                                                             |  |  |  |
| - DO 0           |                                                                                                                                                                                                                                            |  |  |  |
| PO 2             | Problem analysis: Identify, formulate, review research literature, and analyze                                                                                                                                                             |  |  |  |
|                  | complex engineering problems reaching substantiated conclusions using first principles                                                                                                                                                     |  |  |  |
|                  | of mathematics, natural sciences, and engineering sciences.                                                                                                                                                                                |  |  |  |
| PO 3             | <b>Design/development of solutions</b> : Design solutions for complex engineering                                                                                                                                                          |  |  |  |
|                  | problems and design system components or processes that meet the specified needs                                                                                                                                                           |  |  |  |
|                  | with appropriate consideration for the public health and safety, and the cultural,                                                                                                                                                         |  |  |  |
|                  | societal, and environmental considerations.                                                                                                                                                                                                |  |  |  |
| PO 4             | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. |  |  |  |
| PO 5             | Modern tool usage: Create, select, and apply appropriate techniques, resources, and                                                                                                                                                        |  |  |  |
|                  | modern engineering and IT tools including prediction and modeling to complex                                                                                                                                                               |  |  |  |
|                  | engineering activities with an understanding of the limitations.                                                                                                                                                                           |  |  |  |
| PO 6             | The engineer and society: Apply reasoning informed by the contextual knowledge                                                                                                                                                             |  |  |  |
|                  | to assess societal, health, safety, legal and cultural issues and the consequent                                                                                                                                                           |  |  |  |
|                  | responsibilities relevant to the professional engineering practice.                                                                                                                                                                        |  |  |  |
| PO 7             | Environment and sustainability: Understand the impact of the professional                                                                                                                                                                  |  |  |  |
|                  | engineering solutions in societal and environmental contexts, and demonstrate the                                                                                                                                                          |  |  |  |
|                  | knowledge of, and need for sustainable development.                                                                                                                                                                                        |  |  |  |
| PO 8             | Ethics: Apply ethical principles and commit to professional ethics and responsibilities                                                                                                                                                    |  |  |  |
|                  | and norms of the engineering practice.                                                                                                                                                                                                     |  |  |  |

| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                 |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes (POs)                              | Strength | Proficiency     |
|------|-----------------------------------------------------|----------|-----------------|
|      |                                                     |          | Assessed by     |
| PO 1 | Engineering knowledge: Apply the knowledge          | 3        | SEE / CIE / AAT |
|      | of mathematics, science, engineering                |          |                 |
|      | fundamentals, and an engineering specialization     |          |                 |
|      | to the solution of complex engineering problems.    |          |                 |
| PO 2 | Problem analysis: Identify, formulate, review       | 2        | SEE / CIE / AAT |
|      | research literature, and analyze complex            |          |                 |
|      | engineering problems reaching substantiated         |          |                 |
|      | conclusions using first principles of mathematics,  |          |                 |
|      | natural sciences, and engineering sciences.         |          |                 |
| PO 3 | <b>Design/development of solutions</b> : Design     | 2        | SEE / CIE / AAT |
|      | solutions for complex engineering problems and      |          |                 |
|      | design system components or processes that meet     |          |                 |
|      | the specified needs with appropriate consideration  |          |                 |
|      | for the public health and safety, and the cultural, |          |                 |
|      | societal, and environmental considerations.         |          |                 |
| PO 4 | Conduct investigations of complex                   | 2        | SEE / CIE / AAT |
|      | <b>problems</b> : Use research-based knowledge and  |          |                 |
|      | research methods including design of experiments,   |          |                 |
|      | analysis and interpretation of data, and synthesis  |          |                 |
|      | of the information to provide valid conclusions.    |          |                 |
| PO 5 | Modern tool usage: Create, select, and apply        | 3        | SEE / CIE       |
|      | appropriate techniques, resources, and modern       |          |                 |
|      | engineering and IT tools including prediction and   |          |                 |
|      | modeling to complex engineering activities with     |          |                 |
|      | an understanding of the limitations.                |          |                 |

| PO 10 | <b>Communication</b> : Communicate effectively on   | 1 | SEE / CIE |
|-------|-----------------------------------------------------|---|-----------|
|       | complex engineering activities with the             |   |           |
|       | engineering community and with society at large,    |   |           |
|       | such as, being able to comprehend and write         |   |           |
|       | effective reports and design documentation, make    |   |           |
|       | effective presentations, and give and receive clear |   |           |
|       | instructions.                                       |   |           |

3 =High; 2 =Medium; 1 =Low

## X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                                                                               | Strength | Proficiency<br>Assessed<br>by |
|-------|-------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| PSO 2 | Focus on the practical experience of ASIC prototype designs, Virtual Instrumentation and SOC designs. | 2        |                               |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

| COURSE   |              |              |              | PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OGR          | $\mathbf{AM}$ | OUI | COI | MES |              |    |    |     | PSO'S        |     |
|----------|--------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-----|-----|-----|--------------|----|----|-----|--------------|-----|
| OUTCOMES | PO           | PO           | PO           | PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PO           | PO            | PO  | РО  | PO  | PO           | РО | PO | PSO | PSO          | PSO |
|          | 1            | 2            | 3            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5            | 6             | 7   | 8   | 9   | 10           | 11 | 12 | 1   | 2            | 3   |
| CO 1     | $\checkmark$ | -            | -            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -            | -             | -   | -   | -   | $\checkmark$ | -  | -  | -   | -            | -   |
| CO 2     | $\checkmark$ | -            | $\checkmark$ | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\checkmark$ | -             | -   | -   | -   | $\checkmark$ | -  | -  | -   | $\checkmark$ | -   |
| CO 3     | $\checkmark$ | $\checkmark$ | -            | <ul> <li>✓</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ✓            | -             | -   | -   | -   | $\checkmark$ | -  | -  | -   | $\checkmark$ | -   |
| CO 4     | $\checkmark$ | $\checkmark$ | $\checkmark$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\checkmark$ | -             | -   | -   | -   | $\checkmark$ | -  | -  | -   | $\checkmark$ | -   |
| CO 5     | $\checkmark$ | $\checkmark$ | $\checkmark$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ✓            | -             | -   | -   | -   | $\checkmark$ | -  | -  | -   | $\checkmark$ | -   |
| CO 6     | -            | ✓            | -            | <ul> <li>Image: A start of the start of</li></ul> | ✓            | -             | -   | -   | -   | $\checkmark$ | -  | -  | -   | $\checkmark$ | -   |

# XII JUSTIFICATIONS FOR CO – PO / PSO MAPPING -DIRECT:

| COURSE<br>OUT | PO'S<br>PSO'S | Justification for mapping (Students will be                                                                                                                                                                             | No. of<br>Key |
|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| COMES         |               |                                                                                                                                                                                                                         | Competencies  |
| CO 1          | PO 1          | Recall the basic constructs and conventions in<br>verilog and these constructs provide the necessary<br>framework for verilog HDL by applying the own<br>Engineering discipline, Science principles and<br>methodology. | 2             |
|               | PO 10         | Describe the basic language elements and data flow<br>modelling by <b>giving effective presentations and</b><br><b>take clear instructions</b> to implement the<br>combinational and sequential circuits in verilog.    | 2             |

| COURSE | PO'S  | Justification for mapping (Students will be                                                                                                                                                                                                                                                                                                                                                                                                                           | No. of       |
|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| COMES  | PSO'S | able to)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Competencies |
| CO 2   | PO 1  | <b>Explain</b> the logic value set and strengths to model<br>the functionality of real hardware supported by<br>verilog HDL and data types such as nets, registers,<br>vectors, numbers, simulation time, arrays,<br>parameters, memories, and strings in verilog model<br>actual data storage by applying the <b>mathematical</b><br><b>principles, Scientific principles and</b><br><b>methodology</b>                                                              | 2            |
|        | PO 3  | Understand the customer needs, use creativity<br>and manage design process to model the complex<br>digital circuits by using basic logic gate primitives<br>and user defined primitives provided in verilog with<br>the help of modern engineering tools.                                                                                                                                                                                                             | 4            |
|        | PO 4  | Understand the <b>complex engineering problems</b><br>Use appropriate logic gate primitives and user<br>defined primitives in the <b>design</b> of experiments for<br><b>analysis and interpretation of data, and</b><br><b>synthesis of the information</b> to provide valid<br>conclusions.                                                                                                                                                                         | 5            |
|        | PO 5  | Select and apply appropriate logic gate primitives<br>and user defined primitives to model the complex<br>digital circuits by making use of <b>modern</b><br><b>engineering tools</b> .                                                                                                                                                                                                                                                                               | 1            |
|        | PO 10 | <b>Describe</b> the basic logic gate primitives and user<br>defined primitives by <b>giving effective</b><br><b>presentations and take clear instructions</b> to<br>implement the digital circuits in gate level modelling.                                                                                                                                                                                                                                           | 2            |
|        | PSO 2 | Using the basic logic gate primitives and user defined primitives can design a <b>prototype of ASIC</b> , such as PLDs, memory and processors.                                                                                                                                                                                                                                                                                                                        | 1            |
| CO 3   | PO 1  | Define the syntax of blocking and non blocking<br>procedural constructs to build the digital circuits in<br>behavioral modeling with the knowledge of<br>mathematics, science and engineering<br>fundamentals.                                                                                                                                                                                                                                                        | 2            |
|        | PO 2  | Understand the given <b>problem statement and</b><br><b>formulate</b> the (complex) engineering problems of<br>digital circuits, <b>translate the information</b> into the<br>model and prototype systems from the provided<br><b>information and data</b> , <b>develop solutions</b> based<br>on the functionality of the data translation, validate<br>the output of the circuit in reaching substantiated<br>conclusions by the <b>interpretation of results</b> . | 7            |
| COURSE | DOVE          |                                                                                                                                                                                                                                                                                                                                                                                                                               | No. of       |
|--------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| OUT    | FU 5<br>PSO'S | Justification for mapping (Students will be                                                                                                                                                                                                                                                                                                                                                                                   | Key          |
| COMES  | 1505          | able to)                                                                                                                                                                                                                                                                                                                                                                                                                      | Competencies |
| CO 3   | PO 4          | Use appropriate procedural constructs in the design<br>of combinational and sequential logic circuits in<br>behavioral modeling for <b>analysis</b> and<br><b>interpretation</b> of data, and synthesis of the<br>information to provide valid conclusions.                                                                                                                                                                   | 4            |
|        | PO 5          | Select and apply appropriate procedural constructs<br>in behavioral modeling to model the complex digital<br>circuits by making use of <b>modern engineering</b><br><b>tools</b> .                                                                                                                                                                                                                                            | 1            |
|        | PO 10         | Describe the significance of procedural constructs in<br>behavioral modelling by <b>giving effective</b><br><b>presentations and take clear instructions</b> to<br>implement the digital circuits in verilog                                                                                                                                                                                                                  | 2            |
|        | PSO 2         | Using the loop, case and conditional statements can design a <b>prototype of ASIC</b> , such as PLDs, memory and processors.                                                                                                                                                                                                                                                                                                  | 1            |
| CO 4   | PO 1          | Define the syntax of loop, case and conditional<br>statements used to build the digital circuits in<br>behavioral modeling with <b>the knowledge of</b><br><b>mathematics, science and engineering</b><br><b>fundamentals</b> .                                                                                                                                                                                               | 2            |
|        | PO 2          | Demonstrate the significance of loop, case and<br>conditional statements in behavioral modeling and<br>develop the verilog description for the hardware from<br>the provided <b>information and data</b> , <b>develop</b><br><b>solutions</b> based on the functionality of the data<br>translation, validate the output of the circuit in<br>reaching substantiated conclusions by the<br><b>interpretation of results</b> . | 4            |
|        | PO 3          | Understand the customer needs, use<br>creativity and manage design process to model<br>the complex digital circuits making use of loop, case<br>and conditional statements provided in verilog with<br>the help of modern engineering tools in the design of<br>system components to establish innovative<br>solutions in digital system design.                                                                              | 4            |
|        | PO 5          | Select either loop or conditional statements and delays to model the <b>complex</b> digital circuits.                                                                                                                                                                                                                                                                                                                         | 1            |
|        | PO 10         | Describe the basic syntax of loop and conditional<br>statements by <b>giving effective presentations and</b><br><b>take clear instructions</b> to implement the digital<br>circuits in behavioral modelling.                                                                                                                                                                                                                  | 2            |
|        | PSO 2         | Using the loop, case and conditional statements can design a <b>prototype of ASIC</b> , such as PLDs, memory and processors.                                                                                                                                                                                                                                                                                                  | 1            |

| COURSE PO'S |             |                                                                                                                                                                                                                                                                                                              | No. of       |
|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| OUT         | PSO'S       | Justification for mapping (Students will be                                                                                                                                                                                                                                                                  | Key          |
| COMES       | <b>DO</b> 1 |                                                                                                                                                                                                                                                                                                              | Competencies |
| CO 5        | PO 1        | Define the types of delays on basic transistor switch<br>and CMOS switch for implementing digital circuits<br>in switch level modeling using knowledge of<br>mathematics, science and engineering<br>fundamentals.                                                                                           | 2            |
|             | PO 2        | Demonstrate the methods to specify delays on basic<br>MOS switches and bidirectional pass switches and<br>develop the verilog description with delays for the<br>hardware in switch level modeling to <b>identify</b> ,<br><b>formulate</b> and state a problem.                                             | 3            |
|             | PO 3        | Design solutions for complex Engineering problems<br>and design system components using digital system<br>by <b>innovative solution and implementing them</b><br><b>with modern tools</b> such as Xilinx and Vivado.                                                                                         | 2            |
|             | PO 5        | Select and apply appropriate basic transistor and MOS switches to model the complex digital circuits by making use of <b>modern engineering tools</b> .                                                                                                                                                      | 1            |
|             | PO 10       | Describe the basic switch primitives and delays by<br>giving effective presentations and take clear<br>instructions for designing the modules in switch<br>level modelling.                                                                                                                                  | 2            |
|             | PSO 2       | Using the basic transistor and MOS switches can design a <b>prototype of ASIC</b> , such as PLDs, memory and processors.                                                                                                                                                                                     | 1            |
| CO 6        | PO 2        | Demonstrate the methods to synthesize<br>asynchronous and synchronous circuits and compare<br>the verilog description to <b>identify</b> , <b>formulate and</b><br><b>state a problem</b> .                                                                                                                  | 3            |
|             | PO 4        | Understand the <b>complex engineering problems</b> ,<br>use appropriate verilog description in the synthesis of<br>asynchronous and synchronous sequential circuits for<br><b>analysis</b> , <b>interpretation of data</b> , <b>and synthesis</b><br><b>of the information</b> to provide valid conclusions. | 5            |
|             | PO 5        | Select and apply appropriate design style to model<br>the complex synchronous and asynchronous<br>sequential circuits by making use of <b>modern</b><br><b>engineering tools</b>                                                                                                                             | 1            |
|             | PO 10       | Describe the basic synchronous and asynchronous<br>sequential machines by <b>giving effective</b><br><b>presentations and take clear instructions</b> for<br>synthesizing the sequential circuits.                                                                                                           | 2            |
|             | PSO 2       | Using the synthesis of synchronous and asynchronous<br>sequential machines can design a <b>prototype of</b><br><b>ASIC</b> , such as PLDs, memory and processors.                                                                                                                                            | 1            |

Note: For Key Attributes refer Annexure - I

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO / PSO MAPPING:

| COURSE   |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| OUTCOMES | PO | PO               | РО | РО | PO | PO | РО | РО | РО | РО | РО | РО    | PSO | PSO | PSO |
|          | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
|          | 3  | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8     | 2   | 2   | 2   |
| CO 1     | 2  | -                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -     | -   | -   | -   |
| CO 2     | 2  | -                | 4  | 5  | 1  | -  | -  | -  | -  | 2  | -  | -     | -   | 1   | -   |
| CO 3     | 2  | 7                | -  | 4  | 1  | -  | -  | -  | -  | 2  | -  | -     | -   | 1   | -   |
| CO 4     | 2  | 4                | 4  | -  | 1  | -  | -  | -  | -  | 2  | -  | -     | -   | 1   | -   |
| CO 5     | 2  | 3                | 2  | -  | 1  | -  | -  | -  | -  | 2  | -  | -     | -   | 1   | -   |
| CO 6     | _  | 3                | -  | 5  | 1  | -  | -  | -  | -  | 2  | -  | -     | -   | 1   | -   |

#### XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO / PSO:

| COURSE   |      | PROGRAM OUTCOMES |    |      |     |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|------|------------------|----|------|-----|----|----|----|----|----|----|-------|-----|-----|-----|
| OUTCOMES | РО   | PO               | РО | PO   | РО  | PO | РО | РО | PO | РО | PO | РО    | PSO | PSO | PSO |
|          | 1    | 2                | 3  | 4    | 5   | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
|          | 3    | 10               | 10 | 11   | 1   | 5  | 3  | 3  | 12 | 5  | 12 | 8     | 2   | 2   | 2   |
| CO 1     | 66.7 | -                | -  | -    | -   | -  | -  | -  | -  | 40 | -  | -     | -   | -   | -   |
| CO 2     | 66.7 | -                | 40 | 45.5 | 100 | -  | -  | -  | -  | 40 | -  | -     | -   | 50  | -   |
| CO 3     | 66.7 | 70               | -  | 36.4 | 100 | -  | -  | -  | -  | 40 | -  | -     | -   | 50  | -   |
| CO 4     | 66.7 | 40               | 40 | -    | 100 | -  | -  | -  | -  | 40 | -  | -     | -   | 50  | -   |
| CO 5     | 66.7 | 30               | 20 | -    | 100 | -  | -  | -  | -  | 40 | -  | -     | -   | 50  | -   |
| CO 6     | -    | 30               | -  | 36.4 | 100 | -  | -  | -  | -  | 40 | -  | -     | -   | 50  | -   |

#### XV COURSE ARTICULATION MATRIX PO / PSO MAPPING:

CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $0 - 0 \le C \le 5\%$  – No correlation  $1 - 5 \le 40\%$  – Low/ Slight  $2\text{-}40 <\!\!\mathrm{C} \leq 60\%$  – Moderate.  $3\text{-}60 <\!\!\mathrm{C} \leq 100\%$  –Substantial /High

| COURSE   |    | PROGRAM OUTCOMES |      |      |    |    |    |    |    | PSO'S |    |    |     |     |     |
|----------|----|------------------|------|------|----|----|----|----|----|-------|----|----|-----|-----|-----|
| OUTCOMES | PO | PO               | РО   | РО   | РО | PO | РО | PO | РО | РО    | PO | РО | PSO | PSO | PSO |
|          | 1  | 2                | 3    | 4    | 5  | 6  | 7  | 8  | 9  | 10    | 11 | 12 | 1   | 2   | 3   |
| CO 1     | 3  | -                | -    | -    | -  | -  | -  | -  | -  | 1     | -  | -  | -   | -   | -   |
| CO 2     | 3  | -                | 2    | 2    | 3  | -  | -  | -  | -  | 1     | -  | -  | -   | 2   | -   |
| CO 3     | 3  | 3                | -    | 1    | 3  | -  | -  | -  | -  | 1     | -  | -  | -   | 2   | -   |
| CO 4     | 3  | 2                | 2    | -    | 3  | -  | -  | -  | -  | 1     | -  | -  | -   | 2   | -   |
| CO 5     | 3  | 1                | 1    | -    | 3  | -  | -  | -  | -  | 1     | -  | -  | -   | 2   | -   |
| CO 6     | -  | 1                | -    | 1    | 3  | -  | -  | -  | -  | 1     | -  | -  | -   | 2   | -   |
| TOTAL    | 27 | 7                | 5    | 4    | 15 | 0  | 0  | 0  | 0  | 6     | 0  | 0  | 0   | 10  | 0   |
| AVERAGE  | 3  | 1.75             | 1.67 | 1.33 | 3  | 0  | 0  | 0  | 0  | 1     | 0  | 0  | 0   | 2   | 0   |

# XVI ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams      | $\checkmark$ | SEE Exams       | $\checkmark$ | Assignments   | - |
|----------------|--------------|-----------------|--------------|---------------|---|
| Quiz           | -            | Tech - Talk     | $\checkmark$ | Certification | - |
| Term Paper     | -            | Seminars        | -            | Student Viva  | - |
| Laboratory     | -            | 5 Minutes Video | $\checkmark$ | Open Ended    | - |
| Practices      |              | / Concept Video |              | Experiments   |   |
| Micro Projects | -            | -               | -            | -             | - |

## XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback                    | <ul> <li>✓</li> </ul> | End Semester OBE Feedback           |
|--------------|--------------------------------------------|-----------------------|-------------------------------------|
| $\checkmark$ | Assessment of activities / Modeling and E: | xperimen              | tal Tools in Engineering by Experts |

#### XVIII SYLLABUS:

| MODULE I   | INTRODUCTION TO VERILOG HDL                                                                                                                                                                                                                                                                                                                               |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | History of HDL, Verilog HDL, Language Elements : Comments, Identifiers,<br>Keywords, Value Set, Data Types, Memory Element, Constant, Parameter,<br>Operators Dataflow Modeling: Continuous Assignment, Implicit Continuous<br>Assignment, Delays, Design examples using data flow modeling.                                                              |
| MODULE II  | GATE LEVEL MODELING                                                                                                                                                                                                                                                                                                                                       |
|            | Multiple-Input Gates, Gate Delays, Design Examples, User-Defined Primitives:<br>Combinational User Defined Primitives, Sequential User-Defined Primitives.                                                                                                                                                                                                |
| MODULE III | BEHAVIORAL MODELING                                                                                                                                                                                                                                                                                                                                       |
|            | <ul> <li>Procedural Constructs, Procedural Assignments, Conditional Statements, Case</li> <li>Statement Design examples using behavioral modeling.</li> <li>Loop Statements: For Loop, While Loop, Repeat Loop, Forever Loop, Block</li> <li>Statements4 Procedural Continuous Assignment, Design examples using</li> <li>behavioral modeling.</li> </ul> |
| MODULE IV  | SWITCH LEVEL MODELLING                                                                                                                                                                                                                                                                                                                                    |
|            | Basic Transistor Switches, CMOS Switch, Bi – directional Gates, Time Delays<br>with Switch Primitives, Instantiations with Strengths and Delays, Strength<br>Contention with Trireg Nets.                                                                                                                                                                 |
| MODULE V   | SEQUENTIAL LOGIC                                                                                                                                                                                                                                                                                                                                          |
|            | Analysis of Synchronous Sequential Machines, Synthesis of Synchronous<br>Sequential Machines, Analysis of Asynchronous Sequential Machines, Synthesis<br>of Asynchronous Sequential Machines                                                                                                                                                              |

#### TEXTBOOKS

- 1. Joseph Cavanagh, "Verilog HDL: Digital Design and Modeling", CRC Press, 1 st Edition, 2007.
- 2. Michael D. Ciletti, "Advanced Digital Design with Verilog HDL", PHI, 2005.
- 3. Joseph Cavanagh, "Digital Design and Verilog HDL Fundamentals", CRC Press, 1 st Edition, 2008

#### **REFERENCE BOOKS:**

1. Stephen Brown and Zvonko Vranesic, "Fundamentals of Digital Logic design with Verilog Design", TMH, 2nd Edition, 2010.

- 2. Sunggu Lee "Advanced Digital Logic Design using Verilog, State Machine & Synthesis for FPGA", Cengage Learning, 2012.
- 3. Samir Palnitkar, "Verilog HDL", Pearson Education, 2nd Edition, 2009.
- 4. T. R. Padmanabhan and B. Bala Tripura Sundari, "Design through Verilog HDL", Wiley, 2009.
- 5. Zainalabdien Navabi, "Verilog Digital System Design", TMH, 2nd Edition, 2009.

#### WEB REFERENCES:

1. https://nptel.ac.in/courses/108/108/108108111/

#### COURSE WEB PAGE:

https://lms.iare.ac.in/index?route=course/details&course\_id=184

#### XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                           | CO's | Reference                                                                       |  |  |  |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|      | OBE DISCUSSION                                                                                                                                 |      |                                                                                 |  |  |  |  |  |  |  |  |
| 1    | Course description on Outcome Based<br>Education (OBE): Course Objectives, Course<br>Outcomes (CO), Program Outcomes (PO) and<br>CO-PO Mapping | -    | https:<br>//lms.iare.ac.<br>in/index?route=<br>course/details&<br>course_id=184 |  |  |  |  |  |  |  |  |
|      | CONTENT DELIVERY (THEORY)                                                                                                                      |      |                                                                                 |  |  |  |  |  |  |  |  |
| 2    | Introduction to verilog HDL                                                                                                                    | C0 1 | T1:1                                                                            |  |  |  |  |  |  |  |  |
| 3    | Overview of digital design with verilog HDL.                                                                                                   | C0 1 | T1:2.1-2.2                                                                      |  |  |  |  |  |  |  |  |
| 4    | Hierarchical modeling concepts                                                                                                                 | C0 1 | T1: 2.3-2.10                                                                    |  |  |  |  |  |  |  |  |
| 5    | Lexical conventions                                                                                                                            | C0 1 | T1: $3.2 - 3.14$                                                                |  |  |  |  |  |  |  |  |
| 6    | Data types                                                                                                                                     | C0 1 | T1: $4.1 - 4.4$                                                                 |  |  |  |  |  |  |  |  |
| 7    | Modules and ports                                                                                                                              | C0 1 | T1: 4.5                                                                         |  |  |  |  |  |  |  |  |
| 8    | Gate-level modeling                                                                                                                            | C0 2 | T1: $4.6 - 4.7$                                                                 |  |  |  |  |  |  |  |  |
| 9    | Gate delays                                                                                                                                    | C0 2 | T1: 5.2                                                                         |  |  |  |  |  |  |  |  |
| 10   | Dataflow modeling                                                                                                                              | C0 1 | T1: 5.3- 5.5                                                                    |  |  |  |  |  |  |  |  |
| 11   | Continuous dataflow modeling assignments                                                                                                       | C0 1 | T1: 5.6                                                                         |  |  |  |  |  |  |  |  |
| 12   | Operator types                                                                                                                                 | C0 1 | T1: $6.2 - 6.5$                                                                 |  |  |  |  |  |  |  |  |
| 13   | Dataflow modeling examples                                                                                                                     | C0 1 | T1: 6.6                                                                         |  |  |  |  |  |  |  |  |
| 14   | Gate-level modeling examples                                                                                                                   | C0 2 | T1: $7.1 - 7.5$                                                                 |  |  |  |  |  |  |  |  |
| 15   | Behavioral modeling                                                                                                                            | C0 3 | T1: 7.6                                                                         |  |  |  |  |  |  |  |  |
| 16   | Structured procedures                                                                                                                          | C0 3 | T1: $7.7 - 7.9$                                                                 |  |  |  |  |  |  |  |  |
| 17   | Procedural assignments                                                                                                                         | C0 3 | T1: 7.10                                                                        |  |  |  |  |  |  |  |  |
| 18   | Timing controls                                                                                                                                | C0 3 | T1: 7.11                                                                        |  |  |  |  |  |  |  |  |
| 19   | Conditional statements                                                                                                                         | C0 4 | T1: 7.12                                                                        |  |  |  |  |  |  |  |  |
| 20   | Multi way branching                                                                                                                            | C0 4 | T1: 8.2 - 8.8                                                                   |  |  |  |  |  |  |  |  |
| 21   | Loops                                                                                                                                          | C0 4 | T1: 8.9 - 8.11                                                                  |  |  |  |  |  |  |  |  |
| 22   | Sequential and parallel blocks                                                                                                                 | C0 4 | T1: $10.2 - 10.7$                                                               |  |  |  |  |  |  |  |  |

| S.No | Topics to be covered                                                        | CO's    | Reference         |
|------|-----------------------------------------------------------------------------|---------|-------------------|
| 23   | Generate blocks                                                             | C0 4    | T1: $11.2 - 11.4$ |
| 24   | Tasks and functions                                                         | C0 3    | T2: 5.1           |
| 25   | Port connection rules                                                       | C0 3    | T2: 5.2           |
| 26   | Combinational user defined primitives                                       | C0 4    | T2: 5.3           |
| 27   | Sequential user-defined primitives                                          | C0 4    | T2: 5.4           |
| 28   | Behavioral modeling examples                                                | C0 4    | T1:1              |
| 29   | Switch-level modeling                                                       | C0 5    | T1:2.1-2.2        |
| 30   | Switch-modeling elements                                                    | C0 5    | T1: 2.3-2.10      |
| 31   | Delay specification on switches                                             | C0 5    | T1: $3.2 - 3.14$  |
| 32   | Switch-level modeling examples                                              | C0 5    | T1: $4.1 - 4.4$   |
| 33   | Guidelines for UDP design                                                   | C0 6    | T1: 4.5           |
| 34   | Sequential logic                                                            | C0 6    | T1: $4.6 - 4.7$   |
| 35   | Mealy machine                                                               | C0 6    | T1: 5.2           |
| 36   | Moore machine                                                               | C0 6    | T1: 5.3- 5.5      |
| 37   | Linear feedback shift register (LFSR)                                       | C0 6    | T1: 5.6           |
| 38   | Synthesis of synchronous sequential machines                                | C0 6    | T1: $6.2 - 6.5$   |
| 39   | Synthesis of asynchronous sequential machines                               | C0 6    | T1: 6.6           |
| 40   | Synchronous sequential machines examples                                    | C0 6    | T1: $7.1 - 7.5$   |
| 41   | Asynchronous sequential machines examples                                   | C0 6    | T1: 7.6           |
|      | PROBLEM SOLVING                                                             |         |                   |
| 42   | 8 to 1 multiplexer in dataflow modeling                                     | C0 1    | T1: 7.10          |
| 43   | 2 to 4 priority encoder dataflow modeling.                                  | C0 1    | T1: 7.11          |
| 44   | 1 to 8 de multiplexer using gate level modeling                             | C0 2    | T1: 7.12          |
| 45   | D flip flop using NAND gates in gate level<br>modeling                      | C0 2    | T1: 8.2 – 8.8     |
| 46   | BCD adder module using gate level modeling                                  | C0 2    | T1: 8.9 - 8.11    |
| 47   | Full adder using 2 half adders in gate level modeling                       | C0 2    | T1: 10.2 – 10.7   |
| 48   | 8 to 3 encoder using gate level modeling.                                   | C0 2    | T1: $11.2 - 11.4$ |
| 49   | 4-bit binary to gray code converter using gate level modeling.              | C0 2    | T2: 5.1           |
| 50   | 8-bit up-down counter using behavioral<br>modeling                          | C0 3    | T2: 5.2           |
| 51   | 3 to 8 decoder using behavioral modeling                                    | C0 3    | T2: 5.3           |
| 52   | 8 to 1 multiplexer using case statement.                                    | C0 4    | T2: 5.4           |
| 53   | 4-bit universal shift register in behavioral modeling using case statement. | C0 4    | T1:1              |
| 54   | 16-to-1 multiplexer using function                                          | C0 5    | T1:2.1-2.2        |
| 55   | Left/Right shifter.                                                         | C0 5    | T1: 2.3-2.10      |
| 56   | 101 Moore detectors and also obtain its test bench.                         | C0 6    | T1: 3.2 – 3.14    |
|      | DISCUSSION ON DEFINITIONS AND                                               | TERMINO | DLOGY             |

| S.No | Topics to be covered                 | CO's | Reference       |  |  |  |  |  |
|------|--------------------------------------|------|-----------------|--|--|--|--|--|
| 57   | Introduction to verilog HDL.         | C0 1 | T1: 4.5         |  |  |  |  |  |
| 58   | Gate level modeling                  | C0 2 | T1: $4.6 - 4.7$ |  |  |  |  |  |
| 59   | Behavioral modeling                  | C0 3 | T1: 5.2         |  |  |  |  |  |
| 60   | Switch level modelling               | C0 5 | T1: 5.3- 5.5    |  |  |  |  |  |
| 61   | Sequential logic                     | C0 6 | T1: 5.6         |  |  |  |  |  |
|      | DISCUSSION ON TUTORIAL QUESTION BANK |      |                 |  |  |  |  |  |
| 62   | Introduction to verilog HDL.         | C0 1 | T1: 6.6         |  |  |  |  |  |
| 63   | Gate level modeling                  | C0 2 | T1: $7.1 - 7.5$ |  |  |  |  |  |
| 64   | Behavioral modeling                  | C0 3 | T1: 7.6         |  |  |  |  |  |
| 65   | Switch level modelling               | C0~5 | T1: $7.7 - 7.9$ |  |  |  |  |  |
| 66   | Sequential logic                     | C0 6 | T1: 7.10        |  |  |  |  |  |

#### Course Coordinator Mrs. S. Swathi, Assistant Professor

# HOD,ECE

# ANNEXURE - I

# **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.<br>of<br>KCF's |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PO 1         | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                           | 3                  |
| PO 2         | Identify, formulate, review research literature, and analyse complex         Engineering problems reaching substantiated conclusions using first         principles of mathematics natural sciences, and Engineering sciences         (Problem Analysis).         1. Problem or opportunity identification         2. Problem statement and system definition         3. Problem formulation and abstraction         4. Information and data collection         5. Model translation         6. Validation         7. Experimental design         8. Solution development or experimentation / Implementation         9. Interpretation of results         10. Documentation | 10                 |

| PO 3  | Design solutions for complex Engineering problems and design system      | 10 |
|-------|--------------------------------------------------------------------------|----|
|       | components or processes that meet the specified needs with               |    |
|       | appropriate consideration for the public health and safety, and the      |    |
|       | cultural, societal, and Environmental considerations                     |    |
|       | (Design/Development of Solutions).                                       |    |
|       | 1. Investigate and define a problem and identify constraints including   |    |
|       | environmental and sustainability limitations, health and safety and      |    |
|       | risk assessment issues                                                   |    |
|       | 2. Understand customer and user needs and the importance of              |    |
|       | considerations such as aesthetics                                        |    |
|       | 3. Identify and manage cost drivers                                      |    |
|       | 4. Use creativity to establish innovative solutions                      |    |
|       | 5. Ensure fitness for purpose for all aspects of the problem including   |    |
|       | production, operation, maintenance and disposal                          |    |
|       | 6. Manage the design process and evaluate outcomes.9                     |    |
|       | 7. Knowledge and understanding of commercial and economic context        |    |
|       | of engineering processes                                                 |    |
|       | 8. Knowledge of management techniques which may be used to achieve       |    |
|       | engineering objectives within that context                               |    |
|       | 9. Understanding of the requirement for engineering activities to        |    |
|       | promote sustainable development                                          |    |
|       | 10. Awareness of the framework of relevant legal requirements            |    |
|       | governing engineering activities, including personnel, health, safety,   |    |
|       | and risk (including environmental risk) issues                           |    |
| PO 4. | Use research-based knowledge and research methods including design       | 11 |
|       | of experiments, analysis and interpretation of data, and synthesis of    |    |
|       | the information to provide valid conclusions (Conduct                    |    |
|       | Investigations of Complex Problems).                                     |    |
|       | 1. Knowledge of characteristics of particular materials, equipment,      |    |
|       | processes, or products                                                   |    |
|       | 2. Workshop and laboratory skills                                        |    |
|       | 3. Understanding of contexts in which engineering knowledge can be       |    |
|       | applied (example, operations and management, technology                  |    |
|       | development, etc.)                                                       |    |
|       | 4. Understanding use of technical literature and other information       |    |
|       | sources Awareness of nature of intellectual property and contractual     |    |
|       | issues                                                                   |    |
|       | 5. Understanding of appropriate codes of practice and industry           |    |
|       | standards                                                                |    |
|       | 6. Awareness of quality issues                                           |    |
|       | 7. Ability to work with technical uncertainty                            |    |
|       | 8. Understanding of engineering principles and the ability to apply      |    |
|       | them to analyse key engineering processes                                |    |
|       | 9. Ability to identify, classify and describe the performance of systems |    |
|       | and components through the use of analytical methods and modeling        |    |
|       | techniques                                                               |    |
|       | 10. Ability to apply quantitative methods and computer software          |    |
|       | relevant to their engineering discipline, in order to solve engineering  |    |
|       | problems                                                                 |    |
|       | 11. Understanding of and ability to apply a systems approach to          |    |
|       | engineering problems.                                                    |    |

| PO 5 | <ul> <li>Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).</li> <li>1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| PO 6 | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> </ul> | 5 |
| PO 7 | <ul> <li>Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).</li> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>Socio economic</li> <li>Political</li> <li>Environmental</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 |
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 |

| PO 9  | Function effectively as an individual, and as a member or leader in    | 12 |
|-------|------------------------------------------------------------------------|----|
|       | more teams, and in multidisciplinary settings (individual and          |    |
|       | Leamwork).                                                             |    |
|       | 1. Independence                                                        |    |
|       | 2. Maturity – requiring only the achievement of goals to drive their   |    |
|       | performance                                                            |    |
|       | 3. Self-direction (take a vaguely defined problem and systematically   |    |
|       | work to resolution)                                                    |    |
|       | 4. Teams are used during the classroom periods, in the hands-on labs,  |    |
|       | and in the design projects.                                            |    |
|       | 5. Some teams change for eight-week industry oriented Mini-Project,    |    |
|       | and for the seventeen -week design project.                            |    |
|       | 6. Instruction on effective teamwork and project management is         |    |
|       | provided along with an appropriate textbook for reference              |    |
|       | 7. Teamwork is important not only for helping the students know their  |    |
|       | classmates but also in completing assignments.                         |    |
|       | 8. Students also are responsible for evaluating each other's           |    |
|       | performance, which is then reflected in the final grade.               |    |
|       | 9. Subjective evidence from senior students shows that the friendships |    |
|       | and teamwork extends into the Junior years, and for some of those      |    |
|       | students, the friendships continue into the workplace after graduation |    |
|       | 10. Ability to work with all levels of people in an organization       |    |
|       | 11. Ability to get along with others                                   |    |
|       | 12. Demonstrated ability to work well with a team                      |    |
| PO 10 | Communicate effectively on complex Engineering activities with the     | 5  |
|       | Engineering community and with society at large, such as, being able   |    |
|       | to comprehend and write effective reports and design documentation,    |    |
|       | make effective presentations, and give and receive clear instructions  |    |
|       | (Communication).                                                       |    |
|       | "Students should demonstrate the ability to communicate effectively in |    |
|       | writing / Orally"                                                      |    |
|       | 1. Clarity (Writing)                                                   |    |
|       | 2. Grammar/Punctuation (Writing)                                       |    |
|       | 3. References (Writing)                                                |    |
|       | 4. Speaking Style (Oral)                                               |    |
|       | 5. Subject Matter (Oral)                                               |    |

| PO11 | Demonstrate knowledge and understanding of the Engineering and        | 12 |
|------|-----------------------------------------------------------------------|----|
|      | management principles and apply these to one's own work, as a         |    |
|      | member and leader in a team, to manage projects and in                |    |
|      | multidisciplinary Environments (Project Management and                |    |
|      | Finance).                                                             |    |
|      | 1. Scope Statement                                                    |    |
|      | 2. Critical Success Factors                                           |    |
|      | 3. Deliverables                                                       |    |
|      | 4. Work Breakdown Structure                                           |    |
|      | 5. Schedule                                                           |    |
|      | 6. Budget                                                             |    |
|      | 7. Quality                                                            |    |
|      | 8. Human Resources Plan                                               |    |
|      | 9. Stakeholder List                                                   |    |
|      | 10. Communication                                                     |    |
|      | 11. Risk Register                                                     |    |
|      | 12. Procurement Plan                                                  |    |
| PO12 | Recognize the need for and have the preparation and ability to engage | 8  |
|      | in independent and life-long learning in the broadest context of      |    |
|      | technological change (Life - Long Learning).                          |    |
|      | 1. Project management professional certification / MBA                |    |
|      | 2. Begin work on advanced degree                                      |    |
|      | 3. Keeping current in CSE and advanced engineering concepts           |    |
|      | 4. Personal continuing education efforts                              |    |
|      | 5. Ongoing learning – stays up with industry trends/ new technology   |    |
|      | 6. Continued personal development                                     |    |
|      | 7. Have learned at least 2-3 new significant skills                   |    |
|      | 8. Have taken up to 80 hours (2 weeks) training per year              |    |



#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

# ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Department         | Electron                          | Electronics and Communication Engineering |         |            |         |
|--------------------|-----------------------------------|-------------------------------------------|---------|------------|---------|
| Course Title       | Comput                            | ter Architecture                          |         |            |         |
| Course Code        | ACSB32                            |                                           |         |            |         |
| Program            | B.Tech                            |                                           |         |            |         |
| Semester           | V                                 |                                           |         |            |         |
| Course Type        | Open Elective                     |                                           |         |            |         |
| Regulation         | R-18                              |                                           |         |            |         |
|                    |                                   | Theory                                    |         | Prac       | tical   |
| Course Structure   | Lecture                           | Tutorials                                 | Credits | Laboratory | Credits |
|                    | 3                                 | -                                         | 3       | -          | -       |
| Course Coordinator | Mr A KARTHIK, Assistant Professor |                                           |         |            |         |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites         |
|--------|-------------|----------|-----------------------|
| B.Tech | AECB07      | III      | Digital System Design |

#### **II COURSE OVERVIEW:**

This course intended to provide the structure, internal working and implementation of a computer system. The fundamentals of various functional units of computer, computer instructions, addressing modes, computer arithmetic and logic unit, registers, data transfer, memory and input output system. It focuses on analysis of computer performance and functioning in modern computers.

#### **III MARKS DISTRIBUTION:**

| Subject               | SEE Examination | CIE Examination | Total Marks |
|-----------------------|-----------------|-----------------|-------------|
| Computer Architecture | 70 Marks        | 30 Marks        | 100         |

#### IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | x | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|---|--------------|---|--------|
| x            | Open Ended Experiments    | x            | Seminars     | x | Mini Project | x | Videos |
| x            | Others                    |              |              |   |              |   |        |

#### **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 70%                           | Understand            |
| 10%                           | Apply                 |
| 20%                           | Analyze               |
| 0%                            | Evaluate              |
| 0%                            | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

| Component          | Theo     | Total Marks |    |  |
|--------------------|----------|-------------|----|--|
| Type of Assessment | CIE Exam | Quiz \AAT   |    |  |
| CIA Marks          | 25       | 05          | 30 |  |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $17^{th}$  week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table.

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The basic concepts of the various functional units and characteristics of computer |
|-----|------------------------------------------------------------------------------------|
|     | systems.                                                                           |
| II  | The concepts of central processing unit design and perform basic operations with   |
|     | signed and unsigned integers in decimal and binary number systems.                 |
| III | The function of each element of a memory hierarchy and compare the different       |
|     | methods for computer input and output.                                             |

# VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Explain</b> the structure, characteristics of computer systems and the various functional units for understanding the components of computers. | Understand |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CO 2 | <b>Demonstrate</b> the computer languages, machine, symbolic and                                                                                  | Understand |
|      | assembly levels for understanding execution of program.                                                                                           |            |
| CO 3 | <b>Recall</b> the number system their representations and conversion for                                                                          | Remember   |
|      | the usage of instructions in digital computers.                                                                                                   |            |
| CO 4 | <b>Demonstrate</b> the register transfer language, represent memory and                                                                           | Understand |
|      | Arithmetic/ Logic/ Shift operations for implementation of micro                                                                                   |            |
|      | operations.                                                                                                                                       |            |
| CO 5 | <b>Illustrate</b> the basics of hardwired and micro-programmed control of                                                                         | Understand |
|      | the CPU which generates the control signals to fetch and execute                                                                                  |            |
|      | instructions.                                                                                                                                     |            |
| CO 6 | Compare different types of addressing modes for specifying the                                                                                    | Understand |
|      | location of an operand.                                                                                                                           |            |

# COURSE KNOWLEDGE COMPETENCY LEVEL



#### **BLOOMS TAXONOMY**

# VIII PROGRAM OUTCOMES:

|      | Program Outcomes                                                              |  |  |  |  |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science,    |  |  |  |  |  |  |  |  |  |  |
|      | engineering fundamentals, and an engineering specialization to the solution   |  |  |  |  |  |  |  |  |  |  |
|      | of complex engineering problems.                                              |  |  |  |  |  |  |  |  |  |  |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review research literature, and |  |  |  |  |  |  |  |  |  |  |
|      | analyze complex engineering problems reaching substantiated conclusions       |  |  |  |  |  |  |  |  |  |  |
|      | using first principles of mathematics, natural sciences, and engineering      |  |  |  |  |  |  |  |  |  |  |
|      | sciences.                                                                     |  |  |  |  |  |  |  |  |  |  |

|       | Program Outcomes                                                                                                                                                          |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that most                          |
|       | the specified needs with appropriate consideration for the public health and                                                                                              |
|       | safety and the cultural societal and Environmental considerations                                                                                                         |
| PO 4  | Conduct Investigations of Complex Problems: Use research-based                                                                                                            |
|       | knowledge and research methods including design of experiments, analysis<br>and interpretation of data, and synthesis of the information to provide valid<br>conclusions. |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques,                                                                                                      |
|       | resources, and modern Engineering and IT tools including prediction and                                                                                                   |
|       | modelling to complex Engineering activities with an understanding of the                                                                                                  |
|       | limitations                                                                                                                                                               |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual                                                                                                      |
|       | consequent responsibilities relevant to the professional engineering practice                                                                                             |
| PO 7  | Environment and sustainability: Understand the impact of the                                                                                                              |
| 107   | professional engineering solutions in societal and environmental contexts and                                                                                             |
|       | demonstrate the knowledge of, and need for sustainable development.                                                                                                       |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and                                                                                             |
|       | responsibilities and norms of the engineering practice.                                                                                                                   |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                    |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering                                                                                                      |
|       | activities with the engineering community and with society at large, such as,                                                                                             |
|       | being able to comprehend and write effective reports and design                                                                                                           |
|       | documentation, make effective presentations, and give and receive clear                                                                                                   |
| DO 11 | instructions.                                                                                                                                                             |
| PO II | <b>Project management and finance:</b> Demonstrate knowledge and                                                                                                          |
|       | to one's own work as a member and leader in a team, to manage projects                                                                                                    |
|       | and in multidisciplinary environments                                                                                                                                     |
| PO 19 | Life-Long Learning: Recognize the need for and having the propagation                                                                                                     |
|       | and ability to engage in independent and life-long learning in the broadest                                                                                               |
|       | context of technological change                                                                                                                                           |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program                                            | Strength | Proficiency |
|------|----------------------------------------------------|----------|-------------|
|      |                                                    |          | Assessed by |
| PO 1 | Engineering knowledge: Apply the                   | 3        | SEE / CIE / |
|      | knowledge of mathematics, science, engineering     |          | QUIZ / AAT  |
|      | fundamentals, and an engineering specialization    |          |             |
|      | to the solution of complex engineering problems.   |          |             |
| PO 2 | Problem analysis: Identify, formulate, review      | 1        | SEE / CIE / |
|      | research literature, and analyze complex           |          | QUIZ / AAT  |
|      | engineering problems reaching substantiated        |          |             |
|      | conclusions using first principles of mathematics, |          |             |
|      | natural sciences, and engineering sciences.        |          |             |

| PO 10 | <b>Communication:</b> Communicate effectively on | 1 | SEE / CIE / |
|-------|--------------------------------------------------|---|-------------|
|       | complex engineering activities with the          |   | QUIZ / AAT  |
|       | engineering community and with society at        |   |             |
|       | large, such as, being able to comprehend and     |   |             |
|       | write effective reports and design               |   |             |
|       | documentation, make effective presentations,     |   |             |
|       | and give and receive clear instructions.         |   |             |

3 = High; 2 = Medium; 1 = Low

# X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                            | Strength | Proficiency |
|-------|----------------------------------------------------|----------|-------------|
|       |                                                    |          | Assessed    |
|       |                                                    |          | by          |
| PSO 1 | Build embedded software and digital circuit        | 2        | Research    |
|       | development platform for robotics, embedded        |          | papers      |
|       | systems and digital signal processing applications |          | /Project    |
| PSO 2 | Focus on the Application Specific Integrated       | _        | _           |
|       | Circuits (ASIC) prototype designs, Virtual         |          |             |
|       | Instrumentation and System on Chip (SOC)           |          |             |
|       | designs.                                           |          |             |
| PSO 3 | Make use of High Frequency Structure               | -        | -           |
|       | Simulator (HFSS) for modeling and evaluating       |          |             |
|       | the patch and smart antennas for wired and         |          |             |
|       | wireless communication applications.               |          |             |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

| COURSE   |              |              | PSO'S |    |    |    |    |    |    |              |    |    |              |     |     |
|----------|--------------|--------------|-------|----|----|----|----|----|----|--------------|----|----|--------------|-----|-----|
| OUTCOMES | PO           | PO           | PO    | PO | PO | PO | PO | PO | PO | PO           | PO | PO | PSO          | PSO | PSO |
|          | 1            | 2            | 3     | 4  | 5  | 6  | 7  | 8  | 9  | 10           | 11 | 12 | 1            | 2   | 3   |
|          | 3            | 10           | 10    | 11 | 1  | 5  | 3  | 3  | 12 | 5            | 12 | 8  | 2            | 2   | 2   |
| CO 1     | $\checkmark$ | -            | -     | -  | -  | -  | -  | -  | -  | >            | -  | -  | -            | -   | -   |
| CO 2     | $\checkmark$ | -            | -     | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -   | -   |
| CO 3     | $\checkmark$ | $\checkmark$ | -     | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -   | -   |
| CO 4     | $\checkmark$ | $\checkmark$ | -     | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -   | -   |
| CO 5     | $\checkmark$ | $\checkmark$ | -     | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -   | -   |
| CO 6     | $\checkmark$ | -            | -     | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -   | -   |

# XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| COURSE | DO'S          |                                                                                                                                                                                                                                              | No. of       |
|--------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| OUT    | PO'S<br>PSO'S | Justification for mapping (Students will be                                                                                                                                                                                                  | Key          |
| COMES  | 1.00.0        | able to)                                                                                                                                                                                                                                     | Competencies |
| CO 1   | PO 1          | Understand the structure and characteristics<br>of computer system (knowledge) for<br>understanding components function of computer<br>by applying the principles of science to<br>engineering problems                                      | 1            |
|        | PO 10         | Communicate effectively on <b>complex</b><br><b>Engineering</b> activities with the Engineering<br>community and with society at large.                                                                                                      | 1            |
| CO 2   | PO 1          | Understand the concept (knowledge) of computer languages for execution of program.                                                                                                                                                           | 2            |
|        | PO 10         | Communicate effectively on <b>complex</b><br><b>Engineering</b> activities with the Engineering<br>community and with society at large.                                                                                                      | 1            |
| CO 3   | PO 1          | Illustrate the arithmetic formulate (knowledge) of<br>instructions used in digital computers by<br>applying the principles of mathematics and<br>science for solving complex engineering problems.                                           | 2            |
|        | PO 2          | Understand the given arithmetic functions and<br>formulate to the organization of computer using<br>principles of mathematics and engineering<br>science                                                                                     | 3            |
|        | PO 10         | Communicate effectively on <b>complex</b><br><b>Engineering</b> activities with the Engineering<br>community and with society at large.                                                                                                      | 1            |
|        | PSO1          | Illustrate the concept of number system for<br>obtaining of digital data to build the embedded<br>system                                                                                                                                     | 1            |
| CO 4   | PO 1          | Apply (knowledge) the register transfer language,<br>bus and memory transfer characteristics for<br>implement the micro operations by analyzing<br>complex engineering problems using the<br>principles of mathematics, engineering science. | 2            |
|        | PO 2          | Understand the register transfer language bus<br>and memory transfer problem statement and<br>finding the solution implementation of micro<br>operations by analyzing complex engineering<br>problems                                        | 2            |
|        | PO 10         | Communicate effectively on <b>complex</b><br><b>Engineering</b> activities with the Engineering<br>community and with society at large.                                                                                                      | 1            |
|        | PSO1          | Understanding the register transfer language<br>for developing the processor in embedded<br>technology                                                                                                                                       | 1            |

| CO 5 | PO 1  | Illustrate characteristics of hardwired and<br>micro-programmed control of the CPU for solving<br>complex engineering problems generates control<br>signals by applying mathematics, science and<br>engineering fundamentals. | 3 |
|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 2  | Analyze execute instruction problem statements<br>control signals using mathematics principles.                                                                                                                               | 1 |
|      | PO 10 | Communicate effectively on <b>complex</b><br><b>Engineering</b> activities with the Engineering<br>community and with society at large.                                                                                       | 1 |
| CO 6 | PO 1  | Discuss (Understand) different types of<br>addressing modes (knowledge) for specifying the<br>location of an operand.                                                                                                         | 2 |
|      | PO 10 | Communicate effectively on <b>complex</b><br><b>Engineering</b> activities with the Engineering<br>community and with society at large.                                                                                       | 1 |

#### XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

| COURSE   |    |    |    | PSO'S |    |    |    |    |    |    |    |    |     |     |     |
|----------|----|----|----|-------|----|----|----|----|----|----|----|----|-----|-----|-----|
| OUTCOMES | PO | PO | PO | PO    | PO | PO | РО | РО | РО | PO | PO | PO | PSO | PSO | PSO |
|          | 1  | 2  | 3  | 4     | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
|          | 3  | 10 | 10 | 11    | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2   | 2   |
| CO 1     | 1  | -  | -  | -     | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -   | -   |
| CO 2     | 2  | -  | -  | -     | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -   | -   |
| CO 3     | 2  | 3  | -  | -     | -  | -  | -  | -  | -  | 1  | -  | -  | 1   | -   | -   |
| CO 4     | 2  | 2  | -  | -     | -  | -  | -  | -  | -  | 1  | -  | -  | 1   | -   | -   |
| CO 5     | 3  | 1  | -  | -     | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -   | -   |
| CO 6     | 2  | -  | -  | -     | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -   | -   |

# XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

| COURSE   |      |      |    | PSO'S |    |    |    |    |    |    |    |    |     |     |     |
|----------|------|------|----|-------|----|----|----|----|----|----|----|----|-----|-----|-----|
| OUTCOMES | PO   | PO   | PO | PO    | PO | PO | РО | PO | PO | РО | PO | РО | PSO | PSO | PSO |
|          | 1    | 2    | 3  | 4     | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
|          | 3    | 10   | 10 | 11    | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2   | 2   |
| CO 1     | 33.3 | -    | -  | -     | -  | -  | -  | -  | -  | 20 | -  | -  | -   | -   | -   |
| CO 2     | 66.6 | -    | -  | -     | -  | -  | -  | -  | -  | 20 | -  | -  | -   | -   | -   |
| CO 3     | 66.6 | 30.0 | -  | -     | -  | -  | -  | -  | -  | 20 | -  | -  | 100 | -   | -   |
| CO 4     | 66.6 | 20.0 | -  | -     | -  | -  | -  | I  | -  | 20 | -  | -  | 100 | -   | -   |
| CO 5     | 100  | 10.0 | -  | -     | -  | -  | -  | -  | -  | 20 | -  | -  | -   | -   | -   |
| CO 6     | 66.6 | -    | -  | -     | -  | -  | -  | -  | -  | 20 | -  | -  | -   | -   | -   |

# XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$  -  $0 \leq C \leq 5\%$  – No correlation

 $\pmb{2}$  - 40 % < C < 60% – Moderate

 $1-5 < C \le 40\% - Low/Slight$ 

 $\boldsymbol{3}$  - 60%  $\leq$  C < 100% – Substantial /High

| COURSE   |     |   | PSO'S |   |   |   |   |   |   |    |    |    |   |   |   |
|----------|-----|---|-------|---|---|---|---|---|---|----|----|----|---|---|---|
| OUTCOMES | 1   | 2 | 3     | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
| CO 1     | 2   | - | -     | - | - | - | - | - | - | 1  | -  | -  | - | - | - |
| CO 2     | 3   | - | -     | - | - | - | - | - | - | 1  | -  | -  | - | - | - |
| CO 3     | 1   | 1 | -     | - | - | - | - | - | - | 1  | -  | -  | - | - | - |
| CO 4     | 3   | 1 | -     | - | - | - | - | - | - | 1  | -  | -  | 2 | - | - |
| CO 5     | 3   | 1 | -     | - | - | - | - | - | - | 1  | -  | -  | - | - | - |
| CO 6     | 3   | - | -     | - | - | - | - | - | - | 1  | -  | -  | 2 | - | - |
| TOTAL    | 15  | 3 | -     | - | - | - | - | - | - | 6  | -  | -  | 4 | - | - |
| AVERAGE  | 2.5 | 1 | -     | - | - | - | - | - | - | 1  | -  | -  | 2 | - | - |

#### XVI ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams  | ~            | SEE Exams       | <ul> <li>✓</li> </ul> | Assignments   | $\checkmark$ |
|------------|--------------|-----------------|-----------------------|---------------|--------------|
| Quiz       | $\checkmark$ | Tech - Talk     | -                     | Certification | -            |
| Term Paper | -            | Seminars        | -                     | Student Viva  | -            |
| Laboratory | -            | 5 Minutes Video | -                     | Open Ended    | -            |
| Fractices  |              | / Concept video |                       | Experiments   |              |
| Micro      | -            |                 |                       |               |              |
| Projects   |              |                 |                       |               |              |

#### XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback            | $\checkmark$ | End Semester OBE Feedback                    |
|--------------|------------------------------------|--------------|----------------------------------------------|
| Χ            | Assessment of activities / Modelin | g and        | Experimental Tools in Engineering by Experts |

#### XVIII SYLLABUS:

| MODULE I  | INTRODUCTION TO COMPUTER ORGANIZATION                                                                                                                                                                                                                                                      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Basic computer organization, CPU organization, memory subsystem<br>organization and interfacing, input or output subsystem organization and<br>interfacing, simple computer levels of programming languages, assembly<br>language instructions, and a simple instruction set architecture. |
| MODULE II | ORGANIZATION OF A COMPUTER                                                                                                                                                                                                                                                                 |
|           | Register transfer: Register transfer language, register transfer, bus and<br>memory transfers, arithmetic micro operations, logic micro operations,<br>and shift micro operations; Control memory.                                                                                         |

| MODULE III | CPU AND COMPUTER ARITHMETIC                                                                                                                                                                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | CPU design: Instruction cycle, data representation, memory reference<br>instructions, input- output, and interrupt, addressing modes, data<br>transfer and manipulation, program control.<br>Computer arithmetic: Addition and subtraction, floating point<br>arithmetic operations, decimal arithmetic unit. |
| MODULE IV  | INPUT-OUTPUT ORGANIZATION                                                                                                                                                                                                                                                                                     |
|            | Input or output organization: Input or output Interface, asynchronous data transfer, modes of transfer, priority interrupt, direct memory access.                                                                                                                                                             |
| MODULE V   | MEMORY ORGANIZATION                                                                                                                                                                                                                                                                                           |
|            | Memory organization: Memory hierarchy, main memory, auxiliary<br>memory, associative memory, cache memory, virtual memory; Pipeline:<br>Parallel processing, Instruction pipeline                                                                                                                             |

#### TEXTBOOKS

- 1. M. Morris Mano, "Computer Systems Architecture", Pearson, 3rd Edition, 2015
- 2. Patterson, Hennessy, "Computer Organization and Design: The Hardware/Software Interface", Morgan Kaufmann, 5th Edition, 2013.

#### **REFERENCE BOOKS:**

- 1. John. P. Hayes, "Computer System Architecture", McGraw-Hill, 3rd Edition, 1998.
- 2. Carl Hamacher, Zvonko G Vranesic, Safwat G Zaky, "Computer Organization", McGraw- Hill, 5 th Edition, 2002.
- 3. William Stallings, "Computer Organization and Architecture", Pearson Edition, 8th Edition,2010

#### COURSE WEB PAGE:

https://lms.iare.ac.in/index ?route=course/details& course id=137

#### XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                           | CO's   | Reference                                                               |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|
|      | OBE DISCUSS                                                                                                                                    | ION    |                                                                         |
| 1    | Course Description on Outcome Based<br>Education (OBE): Course Objectives,<br>Course Outcomes (CO), Program Outcomes<br>(PO) and CO-PO Mapping | -      | https://lms.iare.ac.in/index<br>?route=course/details&<br>course id_137 |
|      | CONTENT DELIVERY                                                                                                                               | (THEOR | CY)                                                                     |
| 2    | Introduction to Computer Organization                                                                                                          | CO 1   | T1-3.1-3.2                                                              |
| 3    | Basic Computer Organization and<br>Architecture                                                                                                | CO 1   | T1-3.3-3.4                                                              |
| 4    | CPU Organization                                                                                                                               | CO 1   | T1-3.3-3.4                                                              |
| 5    | Memory subsystem organization and<br>Interfacing                                                                                               | CO 1   | T1-3.5                                                                  |

| 6  | Input or output subsystem organization and<br>Interfacing | CO 1    | T1-4.2       |
|----|-----------------------------------------------------------|---------|--------------|
| 9  | Simple computer levels of programming languages           | CO2     | T1-4.4       |
| 10 | Assembly language instructions                            | CO 2    | T15.1,4.5.2  |
| 11 | A simple instruction set architecture                     | CO 2    | T1-4.6       |
| 12 | Register transfer language                                | CO 3    | T1-4.7       |
| 13 | Register transfer                                         | CO 3    | T1-4.10      |
| 15 | Bus and memory transfers                                  | CO 3    | T1-4.10.6    |
| 16 | Arithmetic micro operations                               | CO 3    | T1-4.11      |
| 18 | CPU and Computer Arithmetic                               | CO 3    | T1-4.2       |
| 19 | Instruction Cycle                                         | CO 3    | T1-5.1.1     |
| 20 | Data Representation                                       | CO 4    | T1-5.1.1     |
| 21 | Memory Reference Instructions                             | CO 4    | T1-5.1.1     |
| 22 | Input- Output, and Interrupt                              | CO 3    | T1-5.2       |
| 23 | Addressing Modes                                          | CO 3    | T1-5.3       |
| 25 | Data transfer and Manipulation                            | CO 4    | T1-5.3.2     |
| 26 | Program Control                                           | CO 4    | T1-5.3.3,5.4 |
| 27 | Computer Arithmetic                                       | CO 4    | T1-5.4.2     |
| 28 | Addition and Subtraction                                  | CO 4    | T1-5.5       |
| 29 | Floating point Arithmetic Operations                      | CO 7    | T1-5.11      |
| 30 | Multiplication Algorithm                                  | CO 3    | T1-5.11      |
| 32 | Decimal Arithmetic unit                                   | CO 6    | T1-5.11      |
| 33 | Input or Output Organization                              | CO 3    | T1-5.11      |
| 34 | Input or output Interface                                 | CO 5    | T1-7.1,7.2   |
| 37 | Asynchronous data transfer                                | CO 5    | T1-7.3,7.4   |
| 39 | Modes of transfer                                         | CO 5    | T1-7.6, 7.7  |
| 40 | Priority interrupt                                        | CO 5    | T1-7.7.2     |
| 41 | Direct memory access                                      | CO 5    | T1-7.8       |
| 42 | Memory Organization                                       | CO 5    | T1-7.8.1,8.2 |
| 43 | Memory hierarchy                                          | CO 5    | T1-7.10,11   |
| 44 | Pipeline: Parallel processing                             | CO 5    | T1-7.10.2-3  |
| 45 | Instruction pipeline                                      | CO 5    | T1-7.10.3    |
| 46 | I/O Processor                                             | CO 6    | R3-P184      |
| 47 | Characteristics of Multiprocessors                        | CO6     | R3-P185      |
| 48 | Serial Communication                                      | CO 6    | R3-P191      |
| 49 | RAM and its Organization                                  | CO 6    | R3-P190      |
| 50 | Reduced Instruction Set Computer                          | CO 6    | R3-P191      |
|    | PROBLEM SOLVING/ CA                                       | ASE STU | DIES         |
| 7  | Problems on Multiplication Algorithms                     | CO 1    | T1-3.1-3.2   |
| 8  | Problems on Restoring Division                            | CO 1    | T1-3.3-3.4   |
| 14 | Problems on Non- Restoring Division                       | CO 2    | T1-4.6       |
| 17 | Problems on BCD Addition                                  | CO 2    | T1-4.7       |
| 24 | Problems on BCD Subtraction                               | CO 2    | T1-5.1.1     |

| 31 | Problems on BCD Multiplication         | CO 2    | T1-4.6           |
|----|----------------------------------------|---------|------------------|
| 35 | Problems on computation of rms delay   | CO 2    | T1-5.3.2         |
| 36 | Problems on total power in the carrier | CO 2    | T1-5.1.1         |
|    | DISCUSSION ON DEFINITION A             | AND TER | MINOLOGY         |
| 51 | Introduction too Computer Organization | CO 1    | T1-3.1-3.24      |
| 52 | Organization of a Computer             | CO 2    | T1-4.1 to 4.9    |
| 53 | CPU and Computer Arithmetic            | CO 3    | T1-5.1 to 5.16   |
| 54 | Input-Output Organization              | CO 5    | T1-7.1 to 7.17   |
| 55 | Memory Organization                    | CO 6    | R3               |
|    | DISCUSSION ON QUES                     | TION BA | NK               |
| 56 | Introduction too Computer Organization | CO 1    | T1-3.1-3.24      |
| 57 | Organization of a Computer             | CO 2    | T1-4.1 to 4.9    |
| 58 | CPU and Computer Arithmetic            | CO3     | T1-5.1 to $5.16$ |
| 59 | Input-Output Organization              | CO 5    | T1-7.1 to 7.14   |
| 60 | Memory Organization                    | CO 6    | R3               |

Signature of Course Coordinator

HOD,ECE

# ANNEXURE

# **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No.<br>of |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KCF's     |
| PO 1         | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                                         | 3         |
| PO 2         | Identify, formulate, review research literature, and analyse complex<br>Engineering problems reaching substantiated conclusions using first<br>principles of mathematics natural sciences, and Engineering sciences<br>( <b>Problem Analysis</b> ).<br>1. Problem or opportunity identification<br>2. Problem statement and system definition<br>3. Problem formulation and abstraction<br>4. Information and data collection<br>5. Model translation<br>6. Validation<br>7. Experimental design<br>8. Solution development or experimentation / Implementation<br>9. Interpretation of results<br>10. Documentation                                                                                       | 10        |
| PO 3         | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> </ul> | 10        |

|      | <ul> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design process and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 4 | Use research-based knowledge and research methods including design<br>of experiments, analysis and interpretation of data, and synthesis of<br>the information to provide valid conclusions (Conduct<br>Investigations of Complex Problems).<br>1. Knowledge of characteristics of particular materials, equipment,<br>processes, or products<br>2. Workshop and laboratory skills<br>3. Understanding of contexts in which engineering knowledge can be<br>applied (example, operations and management, technology<br>development, etc.)<br>4. Understanding use of technical literature and other information<br>sources Awareness of nature of intellectual property and contractual<br>issues<br>5. Understanding of appropriate codes of practice and industry<br>standards<br>6. Awareness of quality issues<br>7. Ability to work with technical uncertainty<br>8. Understanding of engineering principles and the ability to apply<br>them to analyse key engineering processes<br>9. Ability to identify, classify and describe the performance of<br>systems and components through the use of analytical methods and<br>modeling techniques<br>10. Ability to apply quantitative methods and computer software<br>relevant to their engineering discipline, in order to solve engineering<br>problems<br>11. Understanding of and ability to apply a systems approach to<br>engineering problems | 11 |
| PO 5 | Create, select, and apply appropriate techniques, resources, and<br>modern Engineering and IT tools including prediction and modelling<br>to complex Engineering activities with an understanding of the<br>limitations (Modern Tool Usage).<br>1. Computer software / simulation packages / diagnostic equipment<br>/ technical library resources / literature search tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1  |

| PO 6        | Apply reasoning informed by the contextual knowledge to assess          | <b>5</b> |
|-------------|-------------------------------------------------------------------------|----------|
|             | societal, health, safety, legal and cultural issues and the consequent  |          |
|             | responsibilities relevant to the professional engineering practice (The |          |
|             | Engineer and Society).                                                  |          |
|             | 1. Knowledge and understanding of commercial and economic               |          |
|             | context of engineering processes                                        |          |
|             | 2. Knowledge of management techniques which may be used to              |          |
|             | achieve engineering objectives within that context                      |          |
|             | 3. Understanding of the requirement for engineering activities to       |          |
|             | promote sustainable development                                         |          |
|             | 4. Awareness of the framework of relevant legal requirements            |          |
|             | governing engineering activities, including personnel, health, safety,  |          |
|             | and risk (including environmental risk) issues                          |          |
|             | 5. Understanding of the need for a high level of professional and       |          |
|             | ethical conduct in engineering.                                         |          |
| <b>PO 7</b> | Understand the impact of the professional Engineering solutions in      | 3        |
|             | societal and Environmental contexts, and demonstrate the                |          |
|             | knowledge of, and need for sustainable development (Environment         |          |
|             | and Sustainability).                                                    |          |
|             | Impact of the professional Engineering solutions (Not technical)        |          |
|             | 1. Socio economic                                                       |          |
|             | 2. Political                                                            |          |
|             | 3. Environmental                                                        |          |
| <b>PO 8</b> | Apply ethical principles and commit to professional ethics and          | 3        |
|             | responsibilities and norms of the Engineering practice (Ethics).        |          |
|             | 1. Comprises four components: ability to make informed ethical          |          |
|             | choices, knowledge of professional codes of ethics, evaluates the       |          |
|             | ethical dimensions of professional practice, and demonstrates ethical   |          |
|             | behavior.                                                               |          |
|             | 2. Stood up for what they believed in                                   |          |
|             | 3. High degree of trust and integrity                                   |          |
| <b>PO 9</b> | Function effectively as an individual, and as a member or leader in     | 12       |
|             | diverse teams, and in multidisciplinary settings (Individual and        |          |
|             | Teamwork).                                                              |          |
|             | 1. Independence                                                         |          |
|             | 2. Maturity – requiring only the achievement of goals to drive their    |          |
|             | performance                                                             |          |
|             | 3. Self-direction (take a vaguely defined problem and systematically    |          |
|             | work to resolution)                                                     |          |
|             | 4. Teams are used during the classroom periods, in the hands-on         |          |
|             | labs, and in the design projects.                                       |          |
|             | 5. Some teams change for eight-week industry oriented Mini-Project,     |          |
|             | and for the seventeen -week design project.                             |          |

|       | <ul> <li>6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> |    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 10 | Communicate effectively on complex Engineering activities with the<br>Engineering community and with society at large, such as, being able<br>to comprehend and write effective reports and design documentation,<br>make effective presentations, and give and receive clear instructions<br>(Communication).<br>"Students should demonstrate the ability to communicate effectively<br>in writing / Orally"<br>1. Clarity (Writing)<br>2. Grammar/Punctuation (Writing)<br>3. References (Writing)<br>4. Speaking Style (Oral)<br>5. Subject Matter (Oral)                                                                                                                                                                                                                                                          | 5  |
| PO 11 | <ul> <li>Demonstrate knowledge and understanding of the Engineering and<br/>management principles and apply these to one's own work, as a<br/>member and leader in a team, to manage projects and in<br/>multidisciplinary Environments (Project Management and<br/>Finance).</li> <li>1. Scope Statement</li> <li>2. Critical Success Factors</li> <li>3. Deliverables</li> <li>4. Work Breakdown Structure</li> <li>5. Schedule</li> <li>6. Budget</li> <li>7. Quality</li> <li>8. Human Resources Plan</li> <li>9. Stakeholder List</li> <li>10. Communication</li> <li>11. Risk Register</li> <li>12. Procurement Plan</li> </ul>                                                                                                                                                                                 | 12 |

| PO 12 | <ul> <li>Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning).</li> <li>Project management professional certification / MBA</li> <li>Begin work on advanced degree</li> <li>Keeping current in CSE and advanced engineering concepts</li> <li>Personal continuing education efforts</li> <li>Ongoing learning – stays up with industry trends/ new technology</li> <li>Continued personal development</li> <li>Have learned at least 2-3 new significant skills</li> <li>Have taken up to 80 hours (2 weeks) training per year</li> </ul> | 8 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|



#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

# ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title         | LINEAR AND DIGITAL IC APPLICATIONS LABORATORY |                |           |            |          |
|----------------------|-----------------------------------------------|----------------|-----------|------------|----------|
| Course Code          | AECB21                                        |                |           |            |          |
| Program              | B.Tech                                        |                |           |            |          |
| Semester             | V                                             | ECE            |           |            |          |
| Course Type          | Core                                          |                |           |            |          |
| Regulation           | IARE - R18                                    |                |           |            |          |
|                      |                                               | Theory         |           | Р          | ractical |
| Course Structure     | Lecture                                       | Tutorials      | Credits   | Laboratory | Credits  |
|                      | -                                             | -              | -         | 2          | 1        |
| Chief<br>Coordinator | Ms M Sreevan                                  | i, Assistant F | Professor |            |          |

#### I COURSE OVERVIEW:

Linear and digital IC applications lab enables to learn design, testing and describing of circuit performance with digital and analog integrated circuits. It focuses on applications of special ICs and apply the techniques for the design of 741 ICs, applications of 555 timers, data converters and digital IC's for combination and sequential circuits design. This course provides practical hands-on experiments to analyze characteristics of commercially available digital integrated circuits.

# II COURSE PRE-REQUISITES:

| Level  | Course<br>Code | Semester | Prerequisites                         | Credits |
|--------|----------------|----------|---------------------------------------|---------|
| B.Tech | AECB19         | V        | Linear and Digital IC<br>Applications | 3       |

# **III MARKS DISTRIBUTION:**

| ${f Subject}$                                    | SEE<br>Examination | CIE<br>Examination | Total Marks |
|--------------------------------------------------|--------------------|--------------------|-------------|
| Linear and Digital IC<br>Applications Laboratory | 70 Marks           | 30 Marks           | 100         |

# IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| <ul> <li>✓</li> </ul> | Demo<br>Video | 1 | Lab Worksheets | ~ | Viva Questions | ~ | Probing Further<br>Experiments |
|-----------------------|---------------|---|----------------|---|----------------|---|--------------------------------|
|-----------------------|---------------|---|----------------|---|----------------|---|--------------------------------|

## **V EVALUATION METHODOLOGY:**

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

**Semester End Examination (SEE):** The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

| 20 % | To test the preparedness for the experiment.                           |
|------|------------------------------------------------------------------------|
| 20 % | To test the performance in the laboratory.                             |
| 20 % | To test the calculations and graphs related to the concern experiment. |
| 20 % | To test the results and the error analysis of the experiment.          |
| 20 % | To test the subject knowledge through viva – voce.                     |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Component          | Laboratory                |                                     |             |
|--------------------|---------------------------|-------------------------------------|-------------|
| Type of Assessment | Day to day<br>Performance | Final Internal<br>Lab<br>Assessment | Total Marks |
| CIA Marks          | 20 Marks                  | 10 Marks                            | 30          |

#### Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### A. Experiment Based:

| Preparation | Performance | Calculations<br>and Graph | Results and Er-<br>ror Analysis | Viva | Total |
|-------------|-------------|---------------------------|---------------------------------|------|-------|
| 2           | 2           | 2                         | 2                               | 2    | 10    |

# VI HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes (POs)                                                                                                                                                                                                                                          | Strength | Proficiency<br>Assessed by     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                         | 3        | Lab Experiments<br>/ CIE / SEE |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review<br>research literature, and analyze complex<br>engineering problems reaching substantiated<br>conclusions using first principles of<br>mathematics, natural sciences, and engineering<br>sciences.         | 3        | Lab Experiments<br>/ CIE / SEE |
| PO 4 | <b>Conduct investigations of complex</b><br><b>problems:</b> Use research-based knowledge and<br>research methods including design of<br>experiments, analysis and interpretation of<br>data, and synthesis of the information to<br>provide valid conclusions. | 2        | Lab Experiments<br>/ CIE / SEE |
| PO 5 | Modern Tool Usage: Create, select, and<br>apply appropriate techniques, resources, and<br>modern Engineering and IT tools including<br>prediction and modelling to complex<br>Engineering activities with an understanding of<br>the limitations.               | 3        | Lab Experiments<br>/ CIE / SEE |
| PO 9 | <b>Individual and team work:</b> Function<br>effectively as an individual, and as a member<br>or leader in diverse teams, and in<br>multidisciplinary settings.                                                                                                 | 3        | Lab Experiments<br>/ CIE / SEE |

3 = High; 2 = Medium; 1 = Low

# VII HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                                                                                                                           | Strength | Proficiency<br>Assessed by     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|
| PSO 2 | Focus on the Application Specific Integrated<br>Circuit (ASIC) Prototype designs, Virtual<br>Instrumentation and System on Chip (SOC)<br>designs. | 1        | Lab Experiments<br>/ CIE / SEE |

3 = High; 2 = Medium; 1 = Low

# VIII COURSE OBJECTIVES:

#### The students will try to perform:

| I   | The experiments on design of Linear and Digital Integrated circuits using operational amplifier and digital ICs.                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| II  | The design and implementation of analog circuits and gain the hands-on experience on the various building blocks of digital circuits. |
| III | The IC based real-time applications in the fields of communication systems and home-based automation systems.                         |

## IX COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO<br>No | Course Outcomes                                                        | Knowledge<br>Level<br>(Bloom's |
|----------|------------------------------------------------------------------------|--------------------------------|
|          |                                                                        | Taxonomy)                      |
| CO 1     | <b>Design</b> linear Integrated circuits to perform mathematical       | Create                         |
|          | operations and voltage gain calculations using IC741.                  |                                |
| CO 2     | Plot the frequency response of second order active filters using       | Apply                          |
|          | IC 741                                                                 |                                |
| CO 3     | <b>Determine</b> the frequency of oscillations of multi-vibrators      | Apply                          |
|          | using IC741 and IC555 timer.                                           |                                |
| CO 4     | <b>Obtain</b> the capture range and lock-in range of phase locked loop | Apply                          |
|          | circuit using IC565.                                                   |                                |
| CO 5     | <b>Construct</b> the low and high voltage regulators to find the       | Apply                          |
|          | percentage of regulation using IC723.                                  |                                |
| CO 6     | Implement combinational and sequential circuits using digital          | Apply                          |
|          | ICs to verify their functionality.                                     |                                |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



**BLOOMS TAXONOMY** 

# X JUSTIFICATIONS FOR CO – PO / PSO) MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                   | No. of Key<br>Competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | (Recall) the basic function of transistor, importance<br>of differential amplifier and the characteristics by<br>applying the own engineering discipline, science<br>principles and methodology.                                                                                                                                                                                                       | 2                                      |
|                    | PO 2          | Understand the given <b>problem statement</b> and<br>formulate the (complex) engineering problems of<br>improving dc, ac characteristics of an operational,<br>translate the information into the model from the<br>provided information and data, develop<br>solutions as compensation techniques ,validate the<br>frequency response , stability of the circuit by the<br>interpretation of results. | 7                                      |
|                    | PO 4          | Analyze and interpret the design of linear<br>Integrated circuits to perform mathematical<br>operations and voltage gain calculations.                                                                                                                                                                                                                                                                 | 2                                      |
|                    | PO5           | <b>Create, select and apply appropriate</b><br><b>techniques</b> to design the linear Integrated circuits to<br>perform mathematical operations and voltage gain<br>calculations.                                                                                                                                                                                                                      | 3                                      |
|                    | PO9           | To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects to design linear integrated circuits .                                                                                                                                                                                                                                        | 2                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                    | No. of Key<br>Competencies<br>matched. |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 2               | PO 1          | <b>Explain</b> the importance of feedback and realize linear<br>and non linear circuits using op-amp and the<br>application of that model using <b>own engineering</b><br><b>discipline, scientific principles and</b><br><b>methodology.</b>                                                                                                                                                                                                           | 2                                      |
|                    | PO 2          | Understand the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems of<br>applications of op-amp, <b>translate the information</b><br>into the model using IC741 from the provided<br><b>information and data, develop solutions</b> based on<br>the functionality of the circuit, <b>validate</b> the output of<br>the circuit in reaching substantiated conclusions by<br>the <b>interpretation of results</b> . | 7                                      |
|                    | PO 4          | <b>Analyze and interpret</b> the frequency response of active filter circuits to calculate different time constants.                                                                                                                                                                                                                                                                                                                                    | 2                                      |
|                    | PO5           | <b>Create, select and apply appropriate</b><br><b>techniques</b> to find the frequency response of active<br>filter circuits to calculate different time constants.                                                                                                                                                                                                                                                                                     | 3                                      |
|                    | PO9           | To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects by Analyzing the frequency selective circuits.                                                                                                                                                                                                                                                                                 | 2                                      |
|                    | PSO 2         | <b>Speaks fluently</b> about the importance of feeback<br>and applications of operational amplifier( <b>Subject</b><br><b>matter</b> ).                                                                                                                                                                                                                                                                                                                 | 2                                      |
| CO 3               | PO 1          | <ul> <li>Explain the importance of IC 555 timer,voltage regulators and realize multivibrator circuits using IC 555 and the application of that model using own engineering discipline, scientific principles and methodology.</li> </ul>                                                                                                                                                                                                                | 2                                      |
|                    | PO 2          | Interpret frequency of oscillations, pulse width and<br>able to change these parameters based on<br>information and data collection, model<br>translation and validate using experimental<br>design.                                                                                                                                                                                                                                                    | 4                                      |
|                    | PO 4          | <b>Analyze and interpret</b> the frequency of oscillations of multi-vibrators using IC741 and IC555 timer circuits.                                                                                                                                                                                                                                                                                                                                     | 2                                      |
|                    | PO5           | <b>Create, select and apply appropriate techniques</b><br>to calculate the frequency of oscillations of<br>multi-vibrators using IC741 and IC555 timer circuits.                                                                                                                                                                                                                                                                                        | 3                                      |
|                    | PO9           | To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects to calculate the frequency of oscillations of multi-vibrators using IC741 and IC555 timer circuits.                                                                                                                                                                                                                            | 2                                      |

| Course<br>Outcomes | PO'S<br>PSO'S                                                                                            | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                          | No. of Key<br>Competencies<br>matched. |  |
|--------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
|                    | PSO 2                                                                                                    | <b>Apply</b> data converters in the field of application<br>specific integrated circuit (ASIC) prototype designs<br>and system on chip (SOC) designs.                                                                                                                                                                                                                                                                                                         | 1                                      |  |
| CO 4               | PO 1                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |  |
|                    | PO 2                                                                                                     | Understand the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems of<br>data converters, <b>translate the information</b> into the<br>model and prototype systems from the provided<br><b>information and data, develop solutions</b> based<br>on the functionality of the data translation, <b>validate</b><br>the data converters in reaching substantiated<br>conclusions by the <b>interpretation of results</b> . | 7                                      |  |
|                    | PO 4 Analyze ans interpret the capture range and lock-in range of phase locked loop circuit using IC565. |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |  |
|                    | 3                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |  |
|                    | PO9                                                                                                      | To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects to find the capture range and lock-in range of phase locked loop circuit using IC565.                                                                                                                                                                                                                                                | 2                                      |  |
|                    | PSO 2                                                                                                    | <b>Apply</b> data converters in the field of application<br>specific integrated circuit (ASIC) prototype designs<br>and system on chip (SOC) designs.                                                                                                                                                                                                                                                                                                         | 1                                      |  |
| CO 5 PO 1          |                                                                                                          | Build digital logical design using digital ICs with the knowledge of mathematics, science and engineering fundamentals.                                                                                                                                                                                                                                                                                                                                       | 2                                      |  |
|                    | PO 2                                                                                                     | Understand the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems of<br>digital system design , <b>translate the information</b><br>into the model and prototype systems from the<br>provided <b>information and data</b> , <b>develop</b><br><b>solutions</b> digital design using equipment, <b>validate</b><br>the design in reaching substantiated conclusions by<br>the <b>interpretation of results</b> .        | 7                                      |  |
|                    | PO 4                                                                                                     | Analyze and interpret the low and high voltage regulators to find the percentage of regulation using IC723.                                                                                                                                                                                                                                                                                                                                                   | 2                                      |  |
|                    | PO5                                                                                                      | <b>Create, select and apply appropriate techniques</b><br>to design the low and high voltage regulators to find<br>the percentage of regulation using IC723.                                                                                                                                                                                                                                                                                                  | 3                                      |  |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                           | No. of Key<br>Competencies<br>matched. |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO9           | To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects to design the low and high voltage regulators to find the percentage of regulation using IC723.                                                                                                                                                                                                                       | 3                                      |
| CO 6               | PO 1          | <b>Build</b> digital logical design using digital ICs with the <b>knowledge of mathematics, science and engineering fundamentals.</b>                                                                                                                                                                                                                                                                                                          | 2                                      |
|                    | PO 2          | Understand the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems of<br>digital system design , <b>translate the information</b><br>into the model and prototype systems from the<br>provided <b>information and data, develop</b><br><b>solutions</b> digital design using equipment, <b>validate</b><br>the design in reaching substantiated conclusions by<br>the <b>interpretation of results</b> . | 7                                      |
|                    | PO5           | <b>Create, select and apply appropriate techniques</b> to verify the functionality of digital logic circuits.                                                                                                                                                                                                                                                                                                                                  | 3                                      |
|                    | PO9           | To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects to verify the functionality of digital logic circuits.                                                                                                                                                                                                                                                                | 3                                      |
|                    | PSO 2         | <b>Design</b> , various digital circuits in application secific integrated circuit (ASIC) and system on chip (SOC) designs.                                                                                                                                                                                                                                                                                                                    | 1                                      |

# XI ASSESSMENT METHODOLOGY DIRECT:

| CIE        | PO 1, | SEE     | PO 1, | Seminars | PO1, | Assignments   | - |
|------------|-------|---------|-------|----------|------|---------------|---|
| Exams      | PO 2  | Exams   | PO 2, |          | PO12 |               |   |
|            |       |         | PO 5  |          |      |               |   |
| Laboratory | PO 2, | Student |       | Mini     | -    | Certification |   |
| Practices  | PO 3, | Viva    |       | Project  |      |               |   |
|            | PO 5  |         |       |          |      |               |   |
| Term       | -     | 5 Min-  | -     | Open     | -    | -             | - |
| Paper      |       | utes    |       | Ended    |      |               |   |
|            |       | Video   |       | Experi-  |      |               |   |
|            |       |         |       | ments    |      |               |   |

# XII ASSESSMENT METHODOLOGY INDIRECT:

| ✓ | Early Semester Feedback                | $\checkmark$ | End Semester OBE Feedback |  |
|---|----------------------------------------|--------------|---------------------------|--|
| X | Assessment of Mini Projects by Experts |              |                           |  |
## XIII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| COURSE   | PROGR | PROGRAM OUTCOMES |      |      |      |       |  |
|----------|-------|------------------|------|------|------|-------|--|
| OUTCOMES | PO 1  | PO 2             | PO 4 | PO 5 | PO 9 | PSO 2 |  |
| CO 1     | 2     | 7                | 2    | 3    | 2    | -     |  |
| CO 2     | 2     | 7                | 2    | 3    | 2    | 2     |  |
| CO 3     | 2     | 4                | 2    | 3    | 2    | 1     |  |
| CO 4     | 2     | 7                | 2    | 3    | 3    | 1     |  |
| CO 5     | 2     | 7                | 2    | 3    | 3    | -     |  |
| CO 6     | 2     | 7                | -    | 3    | 3    | 1     |  |

## XIV SYLLABUS:

| Woolr 1 | INVEDTING NON INVEDTING AND DIFFEDENTIAL AMDIT                                |
|---------|-------------------------------------------------------------------------------|
| Week-1  | FIERS                                                                         |
|         | To construct and test the performance of an Inverting Non-inverting amplifier |
|         | and Differential amplifier using IC 741                                       |
| Weels 9 | INTECD ATOD AND DIFFEDENTIATOD                                                |
| Week-2  | INTEGRATOR AND DIFFERENTIATOR                                                 |
|         | To construct and test the performance of an Integrator and Differentiator     |
|         | using IC 741.                                                                 |
| Week-3  | SECOND ORDER ACTIVE LOWPASS, HIGHPASS AND BAND-                               |
|         | PASS FILTERS                                                                  |
|         | To design and verify the operation of the Active low pass and High pass using |
|         | IC 741.                                                                       |
| Week-4  | SECOND ORDER ACTIVE BAND PASS AND BANDREJECT                                  |
|         | FILTERS                                                                       |
|         | To design and verify the operation of the Band pass and Band reject filters   |
|         | using IC 741.                                                                 |
| Week-5  | ASTABLE MULTIVIBRATORS USING 555                                              |
|         | To design and construct an astablemultivibrator using IC 555.                 |
| Week-6  | MONOSTABLE MULTIVIBRATORS 555                                                 |
|         | To design and construct Monostable multivibrators using IC 555.               |
| Week-7  | SCHMITT TRIGGER USING 555                                                     |
|         | To design and construct Schmitt trigger using NE555 Timer                     |
| Week-8  | PLL USING IC 565                                                              |
|         | Verifying characteristics of PLL.                                             |
| Week-9  | INSTRUMENTATION AMPLIFIER                                                     |
|         | To design and verify the operation of instrumentation amplifier using IC 741. |
| Week-10 | DIGITAL TO ANALOG CONVERTER                                                   |
|         | To design and verify the operation of R-2R and Inverted R-2R DAC Converter    |
|         | using IC 741.                                                                 |
| Week-11 | IC 723                                                                        |
|         | To design and implement voltage regulator using IC 723.                       |
| Week-12 | RTL LOGIC                                                                     |
|         | Verify Functionality of NOR and NAND gate using RTL Logic.                    |
| Week-13 | DTL LOGIC                                                                     |
|         | Verify Functionality of NOR and NAND gate using DTL Logic                     |

#### **TEXTBOOKS**

- 1. D. Roy Chowdhury, "Linear Integrated Circuits", New age international (p) Ltd, 2nd Edition,2003
- 2. Ramakanth A. Gayakwad, "Op-Amps & linear ICs", PHI, 3rdEdition,2003.
- 3. John F. Wakerly, "Digital Design Principles and Practices", Prentice Hall, 3rdEdition, 2005.

#### **REFERENCE BOOKS:**

1. Salivahanan, "Linear Integrated Circuits and Applications", TMH, 1st Edition, 2008

#### XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Week No | Topics to be covered                                                                                              | CO's | Reference            |
|---------|-------------------------------------------------------------------------------------------------------------------|------|----------------------|
| 1       | To find voltage gain of inverting, Non-inverting and<br>Differential Amplifiers using IC 741.                     | CO 1 | T1:11.1-11.5         |
| 2       | To find the frequency response of integrator and differentiator for different inputs using IC741.                 | CO 1 | T1:11.1-11.5         |
| 3       | To find the frequency response of second order<br>Active Lowpass, High-pass And Bandpass Filters<br>using IC 741. | CO 2 | T1:4.8 ,<br>T1:7.2   |
| 4       | To find the frequency response of Second Order<br>Active Band Pass and Band-reject Filters using IC<br>741.       | CO 2 | T1:4.8 ,<br>T1:7.2   |
| 5       | To find the frequency of oscillations of Astable<br>Multivibrators Using 555timer.                                | CO 3 | T2:10.4 ,<br>R2:7.2  |
| 6       | To find the frequency of oscillations of Monostable<br>Multivibrators Using 555timer.                             | CO 3 | T2:10.4 ,<br>R1:7.2  |
| 7       | To find the hysteresis voltage of Schmitt Trigger<br>Using 555 timer.                                             | CO 7 | T2:10.4 ,<br>R1:7.2  |
| 8       | To find the capture range and lock-in range of PLL Using IC 565.                                                  | CO 4 | T1:8.2-8.5           |
| 9       | To find the voltage gain of Instrumentation<br>Amplifier using IC 741.                                            | CO 1 | T1:11.1-11.5         |
| 10      | To find the different analog outputs using Digital to<br>Analog Converter.                                        | CO 5 | T1:10.1 ,<br>T1:10.2 |
| 11      | To find the voltage regulation of small voltage regulator using IC 723.                                           | CO 4 | T1:11.1-11.5         |
| 12      | To verify the truth tables of RTL Logic using NAND<br>and NOR implementations.                                    | CO 6 | T3:3.12,<br>R1:12.7  |
| 13      | To verify the truth tables of DTL Logic using<br>NAND and NOR implementations.                                    | CO 6 | T3:3.12,<br>R1:12.7  |

# XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Design Oriented Experiments                                    |
|------|----------------------------------------------------------------|
| 1    | Design an automatic Street Light using 555 timer and LDR.      |
| 2    | Design an analog Temperature Sensor detector using IC 741.     |
| 3    | Design an Electronic Eye controlled security system using LDR. |
| 4    | Design PWM Based DC Fan Controller using IC 555 timer.         |
| 5    | Design an automatic Washroom Light Switch using IC741.         |

Signature of Course Coordinator

HOD, ECE



## INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title       | DIGITAL COMMUNICATIONS LABORATORY   |           |         |            |         |  |
|--------------------|-------------------------------------|-----------|---------|------------|---------|--|
| Course Code        | AECB22                              |           |         |            |         |  |
| Program            | B.Tech                              |           |         |            |         |  |
| Semester           | V ECE                               |           |         |            |         |  |
| Course Type        | Core                                |           |         |            |         |  |
| Regulation         | IARE - R18                          | RE - R18  |         |            |         |  |
|                    | Theory Practical                    |           |         |            | cal     |  |
| Course Structure   | Lecture                             | Tutorials | Credits | Laboratory | Credits |  |
|                    | -                                   | -         | -       | 2          | 1       |  |
| Course Coordinator | Mr K Chaitanya, Assistant Professor |           |         |            |         |  |

## I COURSE OVERVIEW:

This lab course gives the hands on experience in elements of digital communication systems. The design of various coding techniques, pulse analog and digital modulations to analyse signal to noise ratio, bit error rate, power and bandwidth for digital communication systems. This lab is useful in the digital signal processors in secured communication systems, multimedia communications and data storage applications.

## **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites          |
|--------|-------------|----------|------------------------|
| B.Tech | AECB20      | V        | Digital Communications |
| B.Tech | AECB12      | IV       | Analog Communications  |

## **III MARKS DISTRIBUTION:**

| Subject                           | SEE         | CIE         | Total |
|-----------------------------------|-------------|-------------|-------|
|                                   | Examination | Examination | Marks |
| Digital Communications Laboratory | 70 Marks    | 30 Marks    | 100   |

## IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

|              | Demo Video |              | Lab        |              | Viva      |              | Probing further |
|--------------|------------|--------------|------------|--------------|-----------|--------------|-----------------|
| $\checkmark$ |            | $\checkmark$ | Worksheets | $\checkmark$ | Questions | $\checkmark$ | Experiments     |

## **V EVALUATION METHODOLOGY:**

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

|      | Experiment Based Programming base |            |
|------|-----------------------------------|------------|
| 20 % | Objective Purpose                 |            |
| 20 % | Analysis                          | Algorithm  |
| 20 % | Design                            | Programme  |
| 20 % | Conclusion                        | Conclusion |
| 20 % | Viva                              | Viva       |

## Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Component  |             |                    | Total Marks |
|------------|-------------|--------------------|-------------|
| Type of    | Day to day  | Final internal lab | 10tal Marks |
| Assessment | performance | assessment         |             |
| CIA Marks  | 20          | 10                 | 30          |

#### Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### 1. Experiment Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 2         | 2        | 2      | 2          | 2    | 10    |

#### 2. Programming Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| -         | -        | -      | -          | -    | -     |

## VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The Elements of digital communication systems to convert continuous time signals into discrete time signals. |
|-----|--------------------------------------------------------------------------------------------------------------|
| II  | The pulse analog modulation techniques, generation and detection of digital modulation techniques.           |
| III | The time and frequency domain analysis of the signals in communication system by using MATLAB tools.         |

# VII COURSE OUTCOMES:

| After su | iccessful | completion | of the | course, | students | $\mathbf{should}$ | be able | to: |
|----------|-----------|------------|--------|---------|----------|-------------------|---------|-----|
|----------|-----------|------------|--------|---------|----------|-------------------|---------|-----|

| CO 1 | <b>Examine</b> sampling theorem for processing of different signals such    | Analyze |
|------|-----------------------------------------------------------------------------|---------|
|      | as low pass signals, band-limited signals and bandpass signals              |         |
| CO 2 | Classify the pulse modulation and demodulation methods for                  | Analyze |
|      | encoded data in analog to digital conversion.                               |         |
| CO 3 | Apply the concept of pulse code modulation and demodulation for             | Analyze |
|      | the equivalent sequence of binary code word data.                           |         |
| CO 4 | Categorize the digital modulation techniques used for transfer a            | Analyze |
|      | digital bit stream over an analog channel at a high frequency.              |         |
| CO 5 | <b>Determine</b> bit rate in delta modulation and demodulation process      | Apply   |
|      | for the no. of bits per sample are transmitted.                             |         |
| CO 6 | <b>Develop</b> frequency domain description of different digital modulation | Apply   |
|      | techniques for spectral characteristics analysis.                           |         |

## COURSE KNOWLEDGE COMPETENCY LEVEL



## VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | Program                                              | Strength | Proficiency   |
|-------|------------------------------------------------------|----------|---------------|
|       | 1                                                    |          | Assessed by   |
| PO 2  | Problem analysis: Identify, formulate, review        | 2        | Lab Experi-   |
|       | research literature, and analyse complex engineering |          | ments/CIE/SEE |
|       | problems reaching substantiated conclusions using    |          |               |
|       | first principles of mathematics, natural sciences,   |          |               |
|       | and engineering sciences                             |          |               |
| PO 5  | Modern Tool Usage: Create, select, and apply         | 1        | Lab Experi-   |
|       | appropriate techniques, resources, and modern        |          | ments/CIE/SEE |
|       | Engineering and IT tools including prediction and    |          |               |
|       | modelling to complex Engineering activities with an  |          |               |
|       | understanding of the limitations                     |          |               |
| PO 9  | Individual and team work: Function effectively       | 2        | Lab Experi-   |
|       | as an individual, and as a member or leader in       |          | ments/CIE/SEE |
|       | diverse teams, and in multidisciplinary settings     |          |               |
| PO 10 | Communication: Communicate effectively on            | 2        | Day -to- Day  |
|       | complex Engineering activities with the Engineering  |          | evaluation    |
|       | community and with society at large, such as, being  |          | sheets        |
|       | able to comprehend and write effective reports and   |          |               |
|       | design documentation, make effective presentations,  |          |               |
|       | and give and receive clear instructions              |          |               |

3 = High; 2 = Medium; 1 = Low

## IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                      | Strength | Proficiency                                                  |
|-------|----------------------------------------------|----------|--------------------------------------------------------------|
|       |                                              |          | Assessed by                                                  |
| PSO 3 | Make use of High Frequency Structure         | 1        | Lab Exer-                                                    |
|       | Simulator (HFSS) for modeling and evaluating |          | $\operatorname{cises}/\operatorname{CIE}/\operatorname{SEE}$ |
|       | the Patch and Smart Antennas for Wired and   |          |                                                              |
|       | Wireless Communication Applications.         |          |                                                              |

3 = High; 2 = Medium; 1 = Low

## X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to) | No. of Key<br>Competencies |
|--------------------|---------------|------------------------------------------------------|----------------------------|
| CO 1               | PO 2          | Oldentify (Problem analysis) sampling rate and       | 2                          |
|                    |               | sampling time interval in analog to digital signal   |                            |
|                    |               | conversion using principles of mathematics, natural  |                            |
|                    |               | sciences, and engineering sciences                   |                            |

|      | PO 10 | <b>Communication:</b> Communicate effectively on <b>complex</b><br><b>Engineering activities</b> with the Engineering community<br>and with society at large, such as, being able to                                                                                                                             | 4 |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      |       | documentation, make effective presentations, and<br>give and receive clear instructions                                                                                                                                                                                                                          |   |
| CO 2 | PO 2  | Identify (Problem analysis) pulse modulation techniques<br>and convert analog signal into discrete signals using<br>principles of mathematics, natural sciences, and<br>engineering sciences.                                                                                                                    | 2 |
|      | PO 10 | Communication:Communicate effectively on complex<br>Engineering activities with the Engineering community<br>and with society at large, such as, being able to<br>comprehend and write effective reports and design<br>documentation, make effective presentations, and<br>give and receive clear instructions   | 4 |
| CO 3 | PO 5  | Create, select, and <b>apply</b> appropriate techniques to<br>modelling the pulse code modulation and demodulation<br>using serial to parallel and parallel to serial data<br>transmission ( <b>Modern Tool Usage</b> ) to complex<br>Engineering activities with an understanding of the<br>limitations in PCM. | 2 |
|      | PO 10 | Communication:Communicate effectively on complex<br>Engineering activities with the Engineering community<br>and with society at large, such as, being able to<br>comprehend and write effective reports and design<br>documentation, make effective presentations, and<br>give and receive clear instructions   | 4 |
| CO 4 | PO 2  | Identify ( <b>Problem analysis</b> ) digital modulation<br>techniques with reference to o and 1 as binary input and to<br>reduce ambiguity using <b>principles of mathematics</b> ,<br><b>natural sciences</b> , and engineering sciences                                                                        | 2 |
|      | PO 9  | Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings                                                                                                                                                                   | 2 |
|      | PO 10 | Communication:Communicate effectively on complex<br>Engineering activities with the Engineering community<br>and with society at large, such as, being able to<br>comprehend and write effective reports and design<br>documentation, make effective presentations, and<br>give and receive clear instructions   | 4 |
| CO 5 | PO 2  | Identify (Problem analysis) the bit rate of delta<br>modulation and demodulation with reference to o and 1 as<br>binary input using principles of mathematics, natural<br>sciences, and engineering sciences                                                                                                     | 2 |
|      | PO 9  | Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings                                                                                                                                                                   | 2 |

|      | PO 10 | Communication:Communicate effectively on complex<br>Engineering activities with the Engineering community<br>and with society at large, such as, being able to<br>comprehend and write effective reports and design<br>documentation, make effective presentations, and<br>give and receive clear instructions | 4 |
|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PSO 3 | Make use of High Frequency Structure Simulator<br>(HFSS) to design DPSK for Wired and Wireless<br>Communication Applications.                                                                                                                                                                                  | 1 |
| CO 6 | PO 2  | Identify (Problem analysis) spectrum analysis for<br>different modulations using principles of mathematics,<br>natural sciences, and engineering sciences.                                                                                                                                                     | 2 |
|      | PO 10 | Communication:Communicate effectively on complex<br>Engineering activities with the Engineering community<br>and with society at large, such as, being able to<br>comprehend and write effective reports and design<br>documentation, make effective presentations, and<br>give and receive clear instructions | 4 |

## XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| COURSE   | PROGRAM | PROGRAM OUTCOMES |      |       |       |  |  |
|----------|---------|------------------|------|-------|-------|--|--|
| OUTCOMES | PO 2    | PO 5             | PO 9 | PO 10 | PSO 3 |  |  |
| CO 1     | 2       |                  |      | 3     |       |  |  |
| CO 2     | 2       |                  |      | 3     |       |  |  |
| CO 3     |         | 2                |      | 3     |       |  |  |
| CO 4     | 2       |                  | 2    | 3     |       |  |  |
| CO 5     | 2       |                  | 2    | 3     | 1     |  |  |
| CO 6     | 2       |                  |      | 3     |       |  |  |

## XII ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams   | PO 2, PO 5, | SEE Exams    | PO 2, PO 5, | Seminars      | - |
|-------------|-------------|--------------|-------------|---------------|---|
|             | PO 9, PSO 3 |              | PO 9, PSO 3 |               |   |
| Laboratory  | PO 2, PO 5, | Student Viva | PO 2, PO 5, | Certification | - |
| Practices   | PO 9, PSO 3 |              | PO 9, PSO 3 |               |   |
| Assignments | -           |              |             |               |   |

## XIII ASSESSMENT METHODOLOGY INDIRECT:

| ✓ | Early Semester Feedback                | $\checkmark$ | End Semester OBE Feedback |  |
|---|----------------------------------------|--------------|---------------------------|--|
| X | Assessment of Mini Projects by Experts |              |                           |  |

# XIV SYLLABUS:

| WEEK I    | SAMPLING THEOREM – VERIFICATION                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
|           | Verification of sampling theorem for under, perfect, over sampling cases.                                                          |
| WEEK II   | PULSE AMPLITUDE MODULATION AND DEMODULATION                                                                                        |
|           | Generation of Pulse Amplitude modulation and demodulation using hardware and matlab.                                               |
| WEEK III  | PULSE WIDTH MODULATION AND DEMODULATION                                                                                            |
|           | Generation of Pulse width modulation and demodulation using hardware and matlab.                                                   |
| WEEK IV   | PULSE POSITION MODULATION AND DEMODULATION                                                                                         |
|           | Generation of pulse position modulation and demodulation using hardware and matlab.                                                |
| WEEK V    | PULSE CODE MODULATION AND DEMODULATION                                                                                             |
|           | Generation of pulse code modulation and demodulation using hardware and<br>understanding the concept analog to digital conversion. |
| WEEK VI   | DIFFERENTIAL PULSE CODE MODULATION AND<br>DEMODULATION                                                                             |
|           | Generation of differential pulse code modulation and demodulation using hardware.                                                  |
| WEEK VII  | DELTA MODULATION AND DEMODULATION                                                                                                  |
|           | Generation of delta modulation and demodulation using hardware.                                                                    |
| WEEK VIII | FREQUENCY SHIFT KEYING                                                                                                             |
|           | Generation of Frequency shift keying modulation and demodulation using hardware.                                                   |
| WEEK IX   | PHASE SHIFT KEYING                                                                                                                 |
|           | Generation of Phase shift keying modulation and demodulation using hardware.                                                       |
| WEEK X    | DIFFERENTIAL PHASE SHIFT KEYING                                                                                                    |
|           | Generation of Differential Phase shift keying modulation and demodulation<br>using hardware                                        |
| WEEK XI   | AMPLITUDE SHIFT KEYING                                                                                                             |
|           | Generation of Amplitude Shift Key modulation and demodulation using hardware.                                                      |
| WEEK XII  | QUADRATURE PHASE SHIFT KEYING                                                                                                      |
|           | Generation of QPSK modulation and demodulation using hardware                                                                      |
| WEEK XIII | MATLAB for QPSK and SIMULINK for DPSK.                                                                                             |
|           | Understand frequency domain description of Quadrature Phase Shift Keying<br>and Differential Phase shift keying.                   |
| WEEK XIV  | STUDY OF THE SPECTRAL CHARACTERISTICS OF<br>AMPLITUDE MODULATION                                                                   |
|           | Understand frequency domain description of Amplitude Modulation.                                                                   |

#### **TEXTBOOKS**

- 1. 1. Herbert Taub, Donald L. Schilling , "Principles of Communication Systems", TMH,  $3^{rd}$  edition,2008
- 2. 2. K. Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley and Sons,  $2^{nd}$  Edition, 2005.

#### **REFERENCE BOOKS:**

- 1. John Proakis, "Digital Communications", TMH, 2<sup>nd</sup> Edition 1983.
- 2. B.P.Lathi, "Modern Analog and Digital Communication", Oxford reprint, 3<sup>rd</sup> Edition, 2004.
- 3. Singh, Sapre, "Communication Systems Analog and Digital", TMH, 2<sup>nd</sup> Edition, 2004.

#### XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                  | CO's  | Reference |
|------|---------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 1    | Verification of sampling theorem for under, perfect, over<br>sampling cases.                                                          | CO 1  | T1: 2.3   |
| 2    | Generation of Pulse Amplitude modulation and demodulation<br>using hardware and matlab.                                               | CO 2  | T1: 3.1   |
| 3    | Generation of Pulse width modulation and demodulation using hardware and matlab.                                                      | CO 3  | T1: 3.11  |
| 4    | Generation of pulse position modulation and demodulation using hardware and matlab.                                                   | CO 4  | T1: 4.8   |
| 5    | Generation of pulse code modulation and demodulation using<br>hardware and understanding the concept analog to digital<br>conversion. | CO 5  | T2: 2.8   |
| 6    | Generation of differential pulse code modulation and<br>demodulation using hardware.                                                  | CO 6  | T2: 3.5   |
| 7    | Generation of delta modulation and demodulation using hardware.                                                                       | CO 7  | T2: 4.6   |
| 8    | Generation of Frequency shift keying modulation and demodulation using hardware.                                                      | CO 8  | R1: 2.1   |
| 9    | Generation of Phase shift keying modulation and demodulation<br>using hardware.                                                       | CO 9  | R1: 2.8   |
| 10   | Generation of Differential Phase shift keying modulation and demodulation using hardware.                                             | CO 10 | R1: 3.1   |
| 11   | Generation of Amplitude Shift Key modulation and<br>demodulation using hardware.                                                      | CO 11 | R2:2.1    |
| 12   | Generation of QPSK modulation and demodulation using<br>hardwarer                                                                     | CO 12 | R2:2.6    |
| 13   | Understand frequency domain description of Quadrature Phase<br>Shift Keying and Differential Phase shift keying                       | CO 12 | R2:3.2    |
| 14   | Understand frequency domain description of Amplitude<br>Modulation                                                                    | CO 11 | R2:4.1    |

# XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Design Oriented Experiments                                                                                                                                                                                                                                          |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Design a sampling circuit with 5 V p-p amplitude and 100 Hz sine wave and remove aliasing effect                                                                                                                                                                     |
| 2    | Design PAM transmission of voice signal with $W = 3KHz$ . Calculate transmission bandwidth if $f_s = 8KHz$ and $\tau = 8KHz$ .                                                                                                                                       |
| 3    | Design adaptive delta modulator and find the maximum amplitude of a 1 KHz sinusoidal signal input to a delta modulator that will prevent slope overload, when the sampling rate is 10,000 samples/sec and the step size is $\Delta = 0.1$ .                          |
| 4    | Design a PCM circuit with IC CD4016, LM324, 7493, 7400 and Feed 2Vpp, 100Hz unipolar sine wave as the analog input (Set dc level at 2V to obtain a signal that varies between +1V and +3V). Make sure that the input peak voltage never exceeds the peak DAC output. |
| 5    | Design differential phase shift keying modulator using XOR gate with bit stream 11011100101. Draw the encoded sequence and the transmitted phase sequence.                                                                                                           |

Signature of Course Coordinator Mr. K Chaitanya, Assistant Professor HOD,ECE



## **INSTITUTE OF AERONAUTICAL ENGINEERING** (Autonomous)

Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department         | Electronics and Communication Engineering      |           |         |            |         |  |  |
|--------------------|------------------------------------------------|-----------|---------|------------|---------|--|--|
| Course Title       | Digital Signal Processing                      |           |         |            |         |  |  |
| Course Code        | AECB23                                         |           |         |            |         |  |  |
| Program            | B.Tech                                         |           |         |            |         |  |  |
| Semester           | SIX                                            |           |         |            |         |  |  |
| Course Type        | Core                                           |           |         |            |         |  |  |
| Regulation         | IARE - R18                                     |           |         |            |         |  |  |
|                    | Theory Practical                               |           |         | etical     |         |  |  |
| Course Structure   | Lecture                                        | Tutorials | Credits | Laboratory | Credits |  |  |
|                    | 3                                              | -         | 3       | -          | -       |  |  |
| Course Coordinator | e Coordinator Ms.S Sushma, Assistant Professor |           |         |            |         |  |  |

## **I** COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites                     |
|--------|-------------|----------|-----------------------------------|
| B.Tech | AHSB11      | III      | Mathematical Transform Techniques |
| B.Tech | AECB14      | IV       | Signals and systems               |

## **II COURSE OVERVIEW:**

This course provides the design of discrete-time systems and analytical tools to analyze the discrete signals and systems. It focuses on the classification of discrete-time signals and systems, linear time-invariant systems, discrete fourier transform, fast fourier transform algorithms, digital filter design and multi rate signal processing. Digital signal processing applications are used in speech processing, image processing, audio and video data compression, communication systems.

## **III MARKS DISTRIBUTION:**

| Subject        | SEE Examination | CIE Examination | Total Marks |
|----------------|-----------------|-----------------|-------------|
| Digital Signal | 70 Marks        | 30 Marks        | 100         |
| Processing     |                 |                 |             |

## IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | x | Assignments  | x | MOOC              |
|--------------|---------------------------|--------------|--------------|---|--------------|---|-------------------|
|              | Open Ended Experiments    | ~            | Tech talk    | х | Mini Project | ~ | Concept<br>Videos |
| x            | Others                    | 1            |              |   |              |   |                   |

## **V EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 36 %                          | Understand            |
| 54 %                          | Apply                 |
| 10 %                          | Analyze               |
| 0 %                           | Evaluate              |
| 0 %                           | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

| Table 2: | Assessment | pattern | $\mathbf{for}$ | CIA |  |
|----------|------------|---------|----------------|-----|--|
|----------|------------|---------|----------------|-----|--|

| Component          | The      | Total Marks |    |
|--------------------|----------|-------------|----|
| Type of Assessment | CIE Exam |             |    |
| CIA Marks          | 20       | 10          | 30 |

## Continuous Internal Examination (CIE):

Continuous Internal Examination (CIE): Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

| Table 3: A | Assessment | pattern | $\operatorname{for}$ | AAT |  |
|------------|------------|---------|----------------------|-----|--|
|------------|------------|---------|----------------------|-----|--|

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

## VI COURSE OBJECTIVES:

#### The students will try to learn:

| I   | The classification and analysis of discrete time signals and systems in time and frequency domain.            |
|-----|---------------------------------------------------------------------------------------------------------------|
| II  | The design and realization structures of finite and infinite impulse response filters and multi rate filters. |
| III | The implementation of digital filter algorithms using MATLAB tool                                             |

## VII COURSE OUTCOMES:

|      | ÷                                                                                     |            |
|------|---------------------------------------------------------------------------------------|------------|
| CO 1 | <b>Illustrate</b> the concept of discrete time signals and systems for analysing the  | Understand |
|      | response of LTI system in time domain and frequency domain.                           |            |
| CO 2 | <b>Construct</b> the Decimation-in-time fast fourier transform and                    | Apply      |
|      | decimation-in-frequency fast fourier transform for reducing computational             |            |
|      | complexity of DFT                                                                     |            |
| CO 3 | <b>Implement</b> the digital filters and their realization structures using various   | Apply      |
|      | transformation technique.                                                             |            |
| CO 4 | Analyze the performance characteristics of digital filters to meet expected           | Analyze    |
|      | system specifications using MATLAB                                                    |            |
| CO 5 | <b>Interpret</b> the efficient implementation of sample rate conversion of digital    | Understand |
|      | signals to interface the digital systems with different sampling rates.               |            |
| CO 6 | <b>Identify</b> the errors in analog to digital conversion for tolerating finite word | Apply      |
|      | length effects.                                                                       |            |

After successful completion of the course, students should be able to:

## COURSE KNOWLEDGE COMPETENCY LEVEL



## BLOOMS TAXONOMY

## VIII PROGRAM OUTCOMES:

|      | Program Outcomes                                                               |  |  |  |  |  |  |  |  |  |  |
|------|--------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,            |  |  |  |  |  |  |  |  |  |  |
|      | engineering fundamentals, and an engineering specialization to the solution of |  |  |  |  |  |  |  |  |  |  |
|      | complex engineering problems.                                                  |  |  |  |  |  |  |  |  |  |  |
| PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze |  |  |  |  |  |  |  |  |  |  |
|      | complex engineering problems reaching substantiated conclusions using first    |  |  |  |  |  |  |  |  |  |  |
|      | principles of mathematics, natural sciences, and engineering sciences.         |  |  |  |  |  |  |  |  |  |  |

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations          |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                      |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                 |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | PROGRAM OUTCOMES                                     | Strength | Proficiency<br>Assessed by |
|------|------------------------------------------------------|----------|----------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of | 3        | CIE/ AAT /                 |
|      | mathematics, science, engineering fundamentals,      |          | SEE                        |
|      | and an engineering specialization to the solution of |          |                            |
|      | complex engineering problems.                        |          |                            |
| PO 2 | Problem analysis: Identify, formulate, review        | 3        | CIE / AAT /                |
|      | research literature, and analyze complex engineering |          | SEE                        |
|      | problems reaching substantiated conclusions using    |          |                            |
|      | first principles of mathematics, natural sciences,   |          |                            |
|      | and engineering sciences.                            |          |                            |
| PO 3 | <b>Design/Development of Solutions:</b> Design       | 2        | CIE / AAT /                |
|      | solutions for complex Engineering problems and       |          | SEE / Projects             |
|      | design system components or processes that meet      |          |                            |
|      | the specified needs with appropriate consideration   |          |                            |
|      | for the public health and safety, and the cultural,  |          |                            |
|      | societal, and Environmental considerations           |          |                            |

|       | PROGRAM OUTCOMES                                      | Strength | Proficiency<br>Assessed by |
|-------|-------------------------------------------------------|----------|----------------------------|
| PO 4  | Conduct Investigations of Complex                     | 2        | AAT / Projects             |
|       | <b>Problems:</b> Use research-based knowledge and     |          |                            |
|       | research methods including design of experiments,     |          |                            |
|       | analysis and interpretation of data, and synthesis of |          |                            |
|       | the information to provide valid conclusions.         |          |                            |
| PO 5  | Modern Tool Usage: Create, select, and apply          | 3        | SEE / CIE                  |
|       | appropriate techniques, resources, and modern         |          |                            |
|       | Engineering and IT tools including prediction and     |          |                            |
|       | modelling to complex Engineering activities with an   |          |                            |
|       | understanding of the limitations                      |          |                            |
| PO 10 | <b>Communication:</b> Communicate effectively on      | 1        | CIE/ AAT .                 |
|       | complex engineering activities with the engineering   |          |                            |
|       | community and with society at large, such as, being   |          |                            |
|       | able to comprehend and write effective reports and    |          |                            |
|       | design documentation, make effective presentations,   |          |                            |
|       | and give and receive clear instructions               |          |                            |

3 = High; 2 = Medium; 1 = Low

## X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| :     | PROGRAM SPECIFIC OUTCOMES                   | ${f Strength}$ | Proficiency<br>Assessed<br>by |
|-------|---------------------------------------------|----------------|-------------------------------|
| PSO 1 | Build embedded software and digital circuit | 2              | -                             |
|       | development platform for robotics, embedded |                |                               |
|       | systems and signal processing applications. |                |                               |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          | PROGRAM OUTCOMES |              |              |              |              |    |    |    |    |              |    |    |              | PSO'S |     |  |
|----------|------------------|--------------|--------------|--------------|--------------|----|----|----|----|--------------|----|----|--------------|-------|-----|--|
| COURSE   | PO               | PO           | PO           | PO           | PO           | PO | PO | PO | PO | PO           | PO | PO | PSO          | PSO   | PSO |  |
| OUTCOMES | 1                | 2            | 3            | 4            | 5            | 6  | 7  | 8  | 9  | 10           | 11 | 12 | 1            | 2     | 3   |  |
| CO 1     | $\checkmark$     | $\checkmark$ | -            | -            | -            | -  | -  | -  | -  | $\checkmark$ | -  |    | -            | -     | -   |  |
| CO 2     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -            | -            | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -     | -   |  |
| CO 3     | $\checkmark$     | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -     | -   |  |
| CO 4     | $\checkmark$     | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  |    | $\checkmark$ | -     | -   |  |
| CO 5     | $\checkmark$     | $\checkmark$ | -            | -            | -            | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -     | -   |  |
| CO 6     | $\checkmark$     | $\checkmark$ | -            | -            | -            | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -     | -   |  |

## XII JUSTIFICATIONS FOR CO – PO / PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)      | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-----------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Explain(knowledge) the classification and properties of   | 3                                      |
|                    |               | discrete time signals and systems to analyze the response |                                        |
|                    |               | of linear time invariant systems(complex) in time and     |                                        |
|                    |               | frequency domain by applying the fundamental concepts of  |                                        |
|                    |               | mathematical principles and engineering and               |                                        |
|                    |               | science.                                                  |                                        |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                                                           | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 2          | <b>Understand</b> the given <b>problem statement and</b><br><b>formulate (complex)</b> to analyze the response of LTI<br>system in the time domain and frequency domain from<br>provided <b>information and data</b> .                                                                                                                                                                                                                                                                         | 6                                      |
|                    | PO 10         | <b>Demonstrate</b> the ability to communicate effectively on discrte signals and systems.                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                      |
| CO 2               | PO 1          | Apply the knowledge of mathematics, science,<br>engineering fundamentals to solve the fast fourier<br>transform of discrete signals.                                                                                                                                                                                                                                                                                                                                                           | 3                                      |
|                    | PO 2          | Formulate and analyze (problem analysis) complex<br>engineering problems for fast fourier transform of<br>discrete sigals using first principles of mathematics and<br>engineering sciencesto analyze spectral characteristics<br>of given signal and validate the results of decimation in<br>time fast fourier transform and decimation in frequency<br>fast fourier transform with discrete fourier transform in<br>reaching substantiated conclusions by the interpretation<br>of results. | 7                                      |
|                    | PO 3          | Understand the customer needs, use creativity and<br>manage design process to apply fast fourier transform<br>algorithms for the given signal to evaluate outcomes.                                                                                                                                                                                                                                                                                                                            | 5                                      |
|                    | PO 10         | <b>Demonstrate</b> the ability to communicate effectively on discrte fourier transform.                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                      |
|                    | PSO 1         | <b>Develop</b> the capability to <b>analyze and apply FFT</b> on discrete signals and applications by its <b>mathematical models.</b>                                                                                                                                                                                                                                                                                                                                                          | 1                                      |
| CO 3               | PO 1          | Apply the knowledge of mathematics, science,<br>engineering fundamentals to understand finite impulse<br>response and infinite impulse filters.                                                                                                                                                                                                                                                                                                                                                | 3                                      |
|                    | PO 2          | Understand the given problem statement and<br>formulate the design (complex) digital filters from the<br>provided information and data in reaching substantiated<br>conclusions by the interpretation of results.                                                                                                                                                                                                                                                                              | 7                                      |
|                    | PO 3          | <b>Design</b> IIR and FIR filters for determining magnitude and<br>phase response by applying the principles of<br>mathematics, science to the solutions of complex<br>engineering problems and design system<br>components.                                                                                                                                                                                                                                                                   | 6                                      |
|                    | PO 4          | <b>Design</b> FIR and IIR filters from the provided<br><b>information and data</b> in reaching substantiated<br>conclusions by the <b>interpretation of results</b> .                                                                                                                                                                                                                                                                                                                          | 5                                      |
|                    | PO 10         | <b>Demonstrate</b> the ability to communicate effectively on digital filters.                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                      |
|                    | PSO 1         | <b>Apply</b> filter transformation methods to convert digital filters from analog filters                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                      |
| CO 4               | PO 1          | Simulate the FIR and IIR filters using MATLAB tool to<br>analyze performance parameters the knowledge of<br>mathematics, science, engineering fundamentals.                                                                                                                                                                                                                                                                                                                                    | 3                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                               | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 2          | Understand the given problem statement and<br>formulate the design (complex) digital filters from the<br>provided information and data in reaching<br>substantiated conclusions by the interpretation of<br>results by simulating in MATLAB.                       | 7                                      |
|                    | PO 3          | <b>Develop</b> the MATLAB program to design IIR and FIR<br>filters for determining magnitude and phase response by<br>applying the principles of <b>mathematics</b> , science to the<br>solutions of complex engineering problems and<br>design system components. | 6                                      |
|                    | PO 4          | <b>Apply (knowledge)</b> MATLAB code for designing digital filers and properties corresponding context of the engineering knowledge to given signal for spectral analysis of given signal.                                                                         | 5                                      |
|                    | PO 5          | <b>Analyze</b> the performance parameters of IIR and FIR filters using MATLAB to meet system specifications including prediction and modeling to <b>complex engineering</b> activities with an understanding of the limitations.                                   | 1                                      |
|                    | PO 10         | <b>Demonstrate</b> the ability to communicate effectively on MATLAB programs.                                                                                                                                                                                      | 1                                      |
|                    | PSO 1         | <b>Understand</b> the analog and digital filters and apply transformation formulas to convert digital filters in MATLAB tool.                                                                                                                                      | 1                                      |
| CO 5               | PO 1          | <b>Understand</b> the concept of multi rate signal processing<br>which by applying the fundamental concepts of<br>mathematical principles and <b>engineering and science</b>                                                                                       | 3                                      |
|                    | PO 2          | Illustrate multi rate signal processing which are<br>important for design solutions for complex<br>engineering problems.                                                                                                                                           | 5                                      |
|                    | PO 10         | <b>Demonstrate</b> the ability to communicate effectively on multi rate signal processing                                                                                                                                                                          | 1                                      |
| CO 6               | PO 1          | Understand (knowledge) concept of finite word length<br>effects which by applying the fundamental concepts of<br>mathematical principles and engineering and science of<br>mathematical principles.                                                                | 3                                      |
|                    | PO 2          | Identify the finite word length effects while<br>implementing signal processing techniques(analyze<br>complex engineering problems) on digital signal<br>processor(engineering sciences).                                                                          | 5                                      |
|                    | PO 10         | <b>Demonstrate</b> the ability to communicate effectively on multi rate signal processing                                                                                                                                                                          | 1                                      |

Note: For Key Attributes refer Annexure -  ${\bf I}$ 

#### TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-XIII **PING:**

|          | PROGRAM OUTCOMES |                                        |    |    |   |   |   |   |    |    |    |    | PSO'S |          |          |  |
|----------|------------------|----------------------------------------|----|----|---|---|---|---|----|----|----|----|-------|----------|----------|--|
| COURSE   | PO               | PO |    |    |   |   |   |   |    |    |    | PO | PSO   | PSO      | PSO      |  |
| OUTCOMES | 1                | 2                                      | 3  | 4  | 5 | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 1     | 2        | 3        |  |
|          | 3                | 10                                     | 10 | 11 | 1 | 5 | 3 | 3 | 12 | 5  | 12 | 8  | 2     | <b>2</b> | <b>2</b> |  |
| CO 1     | 3                | 6                                      | -  | -  | - | - | - | - | -  | 1  | -  | -  | -     | -        | -        |  |
| CO 2     | 3                | 7                                      | 5  | -  | - | - | - | - | -  | 1  | -  | -  | 1     | -        | -        |  |
| CO 3     | 3                | 7                                      | 6  | 5  | - | - | - | - | -  | 1  | -  | -  | 1     | -        | -        |  |
| CO 4     | 3                | 7                                      | 6  | 5  | 1 | - | - | - | -  | 1  | -  | -  | 1     | -        | -        |  |
| CO 5     | 3                | 5                                      | -  | -  | - | - | - | - | -  | 1  | -  | -  | 1     | -        | -        |  |
| CO 6     | 3                | 5                                      | -  | -  | - | - | - | - | -  | 1  | -  | -  | -     | -        | -        |  |

## XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          | PROGRAM OUTCOMES |                                     |     |    |     |   |   |   |    |    |    |     | PSO'S    |          |          |  |
|----------|------------------|-------------------------------------|-----|----|-----|---|---|---|----|----|----|-----|----------|----------|----------|--|
| COURSE   | PO               | PO |     |    |     |   |   |   |    |    | PO | PSO | PSO      | PSO      |          |  |
| OUTCOMES | 1                | 2                                   | 3   | 4  | 5   | 6 | 7 | 8 | 9  | 10 | 11 | 12  | 1        | 2        | 3        |  |
|          | 3                | 10                                  | 10  | 11 | 1   | 5 | 3 | 3 | 12 | 5  | 12 | 8   | <b>2</b> | <b>2</b> | <b>2</b> |  |
| CO 1     | 100              | 60                                  | -   | -  | -   | - | - | - | -  | 20 | -  | -   | -        | -        | -        |  |
| CO 2     | 100              | 70                                  | 50  | -  | -   | - | - | - | -  | 20 | -  | -   | 50       | -        | -        |  |
| CO 3     | 100              | 70                                  | 6 0 | 45 | -   | - | - | - | -  | 20 | -  | -   | 50       | -        | -        |  |
| CO 4     | 100              | 70                                  | 60  | 45 | 100 | - | - | - | -  | 20 | -  |     | 50       | -        | -        |  |
| CO 5     | 100              | 50                                  | -   | -  | -   | - | - | - | -  | 20 | -  | -   | 50       | -        | -        |  |
| CO 6     | 100              | 50                                  | -   | -  | -   | - | - | - | -  | 20 | -  | -   | -        | -        | -        |  |

**XV** COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{0}$   $0 \leq C \leq 5\%$  No correlation
- **1** -5 <C $\leq$  40% Low/ Slight
- $\pmb{2}$  40 % < C < 60% Moderate

3 -  $60\% \leq C < 100\%$  – Substantial /High

|          |    |      |      | PR  | OGR | AM | OUT | COM | 1ES |    |    |    |     | PSO'S |     |
|----------|----|------|------|-----|-----|----|-----|-----|-----|----|----|----|-----|-------|-----|
| COURSE   | PO | PO   | PO   | РО  | PO  | PO | PO  | PO  | PO  | PO | PO | PO | PSO | PSO   | PSO |
| OUTCOMES | 1  | 2    | 3    | 4   | 5   | 6  | 7   | 8   | 9   | 10 | 11 | 12 | 1   | 2     | 3   |
| CO 1     | 3  | 3    | -    | -   | -   | -  | -   | -   | -   | 1  | -  | -  | -   | -     |     |
| CO 2     | 3  | 3    | -    | -   | -   | -  | -   | -   | -   | 1  | -  | -  | 2   | -     | -   |
| CO 3     | 3  | 3    | 1    | -   | -   | -  | -   | -   | -   | 1  | -  | -  | 2   | -     | -   |
| CO 4     | 3  | 3    | 2    | 1   | 3   | -  | -   | -   | -   | 1  | -  | -  | 2   | -     | -   |
| CO 5     | 3  | 2    | 2    | 2   | -   | -  | -   | -   | -   | 1  | -  | -  | 2   | -     | -   |
| CO 6     | 3  | 2    | -    | -   | -   | -  | -   | -   | -   | 1  | -  | -  | -   | -     | -   |
| TOTAL    | 18 | 14   | 5    | 3   | 3   | -  | -   | -   | -   | 6  | -  | -  | 8   | -     | -   |
| AVERAGE  | 3  | 2.67 | 1.66 | 1.5 | 3   | -  | -   | -   | -   | 1  | -  | -  | 2   | -     | -   |

| CIE Exams      | $\checkmark$ | SEE Exams       | $\checkmark$ | Assignments   | - |
|----------------|--------------|-----------------|--------------|---------------|---|
| Quiz           | -            | Tech - Talk     | $\checkmark$ | Certification | - |
| Term Paper     | -            | Seminars        | -            | Student Viva  | - |
| Laboratory     | -            | 5 Minutes Video | $\checkmark$ | Open Ended    | - |
| Practices      |              | / Concept Video |              | Experiments   |   |
| Micro Projects | -            | -               | -            | -             | - |

## XVI ASSESSMENT METHODOLOGY DIRECT:

## XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$          | Early Semester Feedback               | $\checkmark$ | End Semester OBE Feedback              |
|-----------------------|---------------------------------------|--------------|----------------------------------------|
| <ul> <li>✓</li> </ul> | Assessment of activities / Modeling a | and Experin  | nental Tools in Engineering by Experts |

## XVIII SYLLABUS:

| MODULE I   | <b>REVIEW OF DISCRETE TIME SIGNALS AND SYSTEMS:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Discrete time signal definition; Signal classification; Elementary signals;<br>Transformation of elementary signals; Concept of digital frequency; Discrete<br>time system definition; System classification; Linear time invariant (LTI)<br>system; Properties of the LTI system; Time domain analysis of discrete time<br>systems; Impulse response; The convolution sum; Methods of evaluating the<br>convolution sum; Filtering using overlap-save and overlap-add method;<br>Realization of digital filters: Concept of IIR and FIR filters; Realization<br>structures for IIR and FIR filters using direct form-I and direct form-II,<br>cascade, lattice and parallel. |
| MODULE II  | DISCRETE FOURIER TRANSFORM AND EFFICIENT<br>COMPUTATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | Introduction to discrete time Fourier transform (DTFT); Discrete Fourier transform (DFT) definition; Properties of DFT; Linear and circular convolution using DFT; Fast-Fourier-Transform (FFT): Direct computation of DFT; Need for efficient computation of the DFT (FFT algorithms); Radix-2 FFT algorithm for the computation of DFT and IDFT using decimation-in-time and decimation-in-frequency algorithms; General Radix-N FFT.                                                                                                                                                                                                                                       |
| MODULE III | STRUCUTRE OF IIR FILTERS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | Analog filters: Butterworth filters; Chebyshev type-1 and type-2 filters;<br>Analog transformation of prototype LPF to HPF/BPF/BSF. Transformation<br>of analog filters into equivalent digital filters using impulse invariant method<br>and bilinear transform method; Matlab programs of IIR filters.                                                                                                                                                                                                                                                                                                                                                                      |
| MODULE IV  | SYMMETRIC AND ANTISYMMETRIC FIR FILTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Design of linear phase FIR filters windowing and frequency sampling<br>methods; Equiripple linear phase FIR filters; Parks-McClellan algorithm and<br>remez algorithm; Least-mean-square error filter design; Design of FIR<br>differentiators; Matlab programs of FIR filters; Comparison of FIR and IIR.                                                                                                                                                                                                                                                                                                                                                                    |

| MODULE V | APPLICATIONS OF DSP:                                                             |
|----------|----------------------------------------------------------------------------------|
|          | Multirate signal processing; Decimation; Interpolation; Polyphase structures     |
|          | for decimation and interpolation filters; Structures for rational sampling rate  |
|          | conversion; Applications of multirate signal processing for design of phase      |
|          | shifters, interfacing of digital systems with different sampling rates, sub band |
|          | coding of speech signals. Analysis of finite word length effects:                |
|          | Representation of numbers; ADC quantization noise, coefficient quantization      |
|          | error, product quantization error, truncation and rounding errors; Limit cycle   |
|          | due to product round-off error; Round-off noise power; Limit cycle oscillations  |
|          | due to overflow in digital filters; Principle of scaling; Dead band effects.     |

#### **TEXTBOOKS**

- 1. John G. Proakis, Dimitris G. Manolakis, Digital signal processing, Principles, Algorithms and Applications, Prentice Hall, 4th Edition, 2007
- 2. Sanjit K Mitra, Digital signal processing, A computer base approach, McGraw-Hill Higher Education, 4th Edition, 2011.
- 3. Emmanuel C, Ifeacher, Barrie. W. Jervis, DSP-A Practical Approach, Pearson Education, 2nd Edition, 2002.
- 4. A.V. Oppenheim, R.W. Schaffer, Discrete Time Signal Processing, PHI, 2nd Edition, 2006.

## **REFERENCE BOOKS:**

- 1. Li tan, Digital signal processing: fundamentals and applications, Elsevier Science and. Technology Books, 2nd Edition, 2008.
- 2. Robert J.schilling, Sandra. L.harris, Fundamentals of Digital signal processing using Matlab, Thomson Engineering, 2nd Edition, 2005.
- 3. Salivahanan, Vallavaraj, Gnanapriya, Digital signal processing ||, McGraw-Hill Higher Education, 2nd Edition, 2009.

#### WEB REFERENCES:

1.https://lms.iare.ac.in/index?route=course/details&course\_id=128
2. https://nptel.ac.in/courses/117/102/117102060/
COURSE WEB PAGE:
https://lms.iare.ac.in/index?route=course/details&course\_id=128

## XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                         | CO's | Reference  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|------|------------|--|--|--|--|
|      | OBE DISCUSSION                                                                                                                               |      |            |  |  |  |  |
| 1    | Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes (CO),<br>Program Outcomes (PO) and CO-PO Mapping. | _    | -          |  |  |  |  |
|      | CONTENT DELIVERY (THEORY)                                                                                                                    |      |            |  |  |  |  |
| 2    | Introduction to DSP                                                                                                                          | CO 1 | T1:2.1-2.2 |  |  |  |  |
| 3    | Discrete time signal definition; Elementary signals;<br>Signal classification                                                                | CO 1 | T1:2.1-2.2 |  |  |  |  |
| 4    | Transformation of elementary signals;                                                                                                        | CO 1 | T1:2.1-2.2 |  |  |  |  |
| 5    | Discrete time system definition; System classification;                                                                                      | CO 1 | T1:2.3-2.4 |  |  |  |  |

| 7  | Linear time invariant (LTI) system; Properties of the LTI system;Impulse response;                 | CO 1 | T1:2.3-2.4    |
|----|----------------------------------------------------------------------------------------------------|------|---------------|
| 8  | Time domain analysis of discrete time systems;                                                     | CO 1 | T1: 2.3.3     |
| 10 | The convolution sum; Methods of evaluating the convolution sum;                                    | CO 2 | T1: 2.3.4     |
| 12 | Filtering using overlap-save method                                                                | CO 1 | T1: 2.3.4     |
| 13 | Filtering using overlap-add method                                                                 | CO 1 | T1: 2.3.4     |
| 15 | Realization of digital filters: Concept of IIR and FIR filters;                                    | CO 3 | T1: 9.2-9.3   |
| 16 | Realization structures for IIR and FIR filters using direct form-I and direct form-II.             | CO 3 | T1: 9.2-9.3   |
| 17 | Realization structures for IIR and FIR filters using cascade, lattice and parallel.                | CO 3 | T1: 7.1       |
| 20 | Introduction to DTFT,DFT                                                                           | CO 2 | T1: 7.3       |
| 21 | Properties of DFT                                                                                  | CO 2 | T1: 7.3       |
| 22 | Linear and circular convolution using DFT                                                          | CO 2 | T1: 8.1       |
| 23 | Fast-Fourier-transform (FFT): Direct computation of DFT                                            | CO 2 | T1: 8.1       |
| 24 | DIT FFT Algorithm                                                                                  | CO 2 | T1: 8.2       |
| 26 | DIF FFT Algorithm                                                                                  | CO 2 | T1: 10.3      |
| 27 | IDFT using decimation-in-time and<br>decimation-in-frequency algorithms; General<br>Radix-N FFT.   | CO 2 | T1: 10.3      |
| 28 | Introduction to digital filters                                                                    | CO 3 | T1: 10.3      |
| 29 | Analog filters: Butterworth filters                                                                | CO 3 | T1: 10.3      |
| 31 | Design Chebyshev type-1 and type-2 filters;                                                        | CO 3 | T1: 10.3      |
| 33 | Analog transformation of prototype LPF to HPF/BPF/BSF.                                             | CO 3 | T1: 10.2      |
| 34 | Transformation of analog filters into equivalent<br>digital filters using impulse invariant method | CO 3 | T1: 10.2      |
| 35 | Bilinear transform method                                                                          | CO 3 | T1: 10.2      |
| 38 | Matlab programs of IIR filters.                                                                    | CO 4 | T1: 10.2      |
| 39 | Linear phase FIR filters                                                                           | CO 3 | T1: 10.2      |
| 40 | Symmetric and asymmetric FIR filters                                                               | CO 3 | T1: 10.2      |
| 41 | Design of linear phase FIR filters using windowing method                                          | CO 3 | T1: 10.2      |
| 44 | Design of linear phase FIR filters using Frequency<br>sampling method                              | CO 3 | T1: 10.2      |
| 46 | Equiripple linear phase FIR filters                                                                | CO 3 | T1: 10.2      |
| 47 | Parks-McClellan algorithm and remez algorithm;                                                     | CO 3 | T3:6.6        |
| 48 | Least-mean-square error filter design                                                              | CO 3 | T1: 11.1-11.3 |
| 49 | Design of FIR differentiators                                                                      | CO 3 | T1: 11.1-11.3 |
| 50 | Matlab programs of FIR filters; Comparison of FIR and IIR.                                         | CO 4 | T1: 11.6      |
| 51 | Multirate signal processing; Decimation;<br>Interpolation                                          | CO 5 | T1: 11.6      |

| 52 | Polyphase structures for decimation and<br>interpolation filters                                      | CO 5     | T1: 11.6               |
|----|-------------------------------------------------------------------------------------------------------|----------|------------------------|
| 53 | Structures for rational sampling rate conversion                                                      | CO 5     | T1: 11.6               |
| 54 | Applications of multirate signal processing for design<br>of phase shifters                           | CO 5     | T1: 11.6               |
| 55 | Interfacing of digital systems with different sampling<br>rates Sub band coding of speech signals     | CO 5     | T1: 11.6               |
| 56 | Analysis of finite word length effects: Representation<br>of numbers; ADC quantization noise          | CO 6     | T1: 11.7               |
| 57 | coefficient quantization error, product quantization<br>error, truncation and rounding errors         | CO 6     | T1: 11.7               |
| 58 | Limit cycle due to product round-off error; Round-off noise power                                     | CO 6     | T1: 11.7               |
| 61 | Limit cycle oscillations due to overflow in digital filters; Principle of scaling; Dead band effects. | CO 6     | T1: 11.7               |
|    | PROBLEM SOLVING/ CASE ST                                                                              | UDIES    |                        |
| 9  | Operation on signals, System characteristics                                                          | CO 1     | T2:1.12                |
| 11 | Time domain analysis of discrete time systems                                                         | CO 1     | T1:1.2                 |
| 13 | Linear convolution and circular convolution                                                           | CO 1     | T1:3.2                 |
| 14 | Overlap add method, Overlap save method                                                               | CO 1     | T1:3.2                 |
| 18 | Realization structures of digital filters direct form I<br>and II                                     | CO 3     | T1: 9.2-9.3            |
| 19 | Realization structures of digital filters cascade and paralle form                                    | CO 3     | T1: 9.2-9.3            |
| 25 | DFT Properties problems                                                                               | CO 2     | T1: 8.1                |
| 30 | DIT FFT                                                                                               | CO 2     | T1: 8.1                |
| 32 | DIF FFT                                                                                               | CO 2     | T1: 8.1                |
| 36 | IIR Filters-butterworth filters                                                                       | CO 3     | T1: 10.3               |
| 38 | IIR Filters- Chebyshev type-1 filters                                                                 | CO 36    | T1: 10.3               |
| 42 | Impulse invariant method and bilinear<br>transformation                                               | CO 3     | T1: 10.3               |
| 45 | FIR filters -windowing method                                                                         | CO 3     | T1: 10.2               |
| 47 | FIR filters -frequency sampling method                                                                | CO 3     | T1: 10.2               |
| 59 | Finite word length effects                                                                            | CO 6     | T1: 9.4-9.5,<br>T1:9.6 |
|    | DISCUSSION OF DEFINITION AND TE                                                                       | RMINOLO  | GY                     |
| 61 | System characteristics, impulse response                                                              | CO 1     | T2:1.12                |
| 62 | DFT and FFT                                                                                           | CO 2     | T1: 7.2, T1: 8.1       |
| 63 | IIR and FIR filters                                                                                   | CO 3     | T1: 10.2, T1:<br>10.3  |
| 64 | Multi rate signal processing                                                                          | CO 5     | T1: 11.6               |
| 65 | Finite word length effects                                                                            | CO 6     | T1: 9.4-9.5,<br>T1:9.6 |
|    | DISCUSSION OF QUESTION B                                                                              | ANK      |                        |
| 66 | System characteristics, Time domain<br>analysis, convolution sum                                      | CO1, CO2 | T1:1.12                |
| 67 | Realization structures                                                                                | CO 3     | T1: 9.2-9.3            |
|    |                                                                                                       |          |                        |

| 68 | DFT and FFT                 | CO 2         | T1: 8.1               |
|----|-----------------------------|--------------|-----------------------|
| 69 | IIR and FIR filters         | CO 3         | T1: 10.3, T1:<br>10.2 |
| 70 | Multirate signal processing | CO 5,<br>CO6 | T1: 9.4-9.5,          |

Signature of Course Coordinator Ms. S Sushma, Assistant professor HOD,ECE

# ANNEXURE - I

## **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO     | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No.   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KCF's |
| PO 1   | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3     |
| PO 2   | Identify, formulate, review research literature, and analyse complex<br>Engineering problems reaching substantiated conclusions using first<br>principles of mathematics natural sciences, and Engineering sciences<br>( <b>Problem Analysis</b> ).<br>1. Problem or opportunity identification<br>2. Problem statement and system definition<br>3. Problem formulation and abstraction<br>4. Information and data collection<br>5. Model translation<br>6. Validation<br>7. Experimental design<br>8. Solution development or experimentation / Implementation<br>9. Interpretation of results<br>10. Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10    |
| PO 3   | <ul> <li>Design solutions for complex Engineering problems and design system</li> <li>components or processes that meet the specified needs with appropriate</li> <li>consideration for the public health and safety, and the cultural, societal, and</li> <li>Environmental considerations (Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including</li> <li>environmental and sustainability limitations, health and safety and risk</li> <li>assessment issues</li> <li>2. Understand customer and user needs and the importance of</li> <li>considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> <li>5. Ensure fitness for purpose for all aspects of the problem including</li> <li>production, operation, maintenance and disposal</li> <li>6. Manage the design process and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of</li> <li>engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve</li> <li>engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote</li> <li>sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing</li> </ul> | 10    |
|        | 10. Awareness of the framework of relevant legal requirements governing<br>engineering activities, including personnel, health, safety, and risk (including<br>environmental risk) issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

| PO 4. | <ul> <li>Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems).</li> <li>1. Knowledge of characteristics of particular materials, equipment, processes, or products</li> <li>2. Workshop and laboratory skills</li> <li>3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.)</li> <li>4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues</li> <li>5. Understanding of appropriate codes of practice and industry standards</li> <li>6. Awareness of quality issues</li> <li>7. Ability to work with technical uncertainty</li> <li>8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes</li> <li>9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques</li> <li>10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems</li> <li>11. Understanding of and ability to apply a systems approach to engineering problems.</li> </ul> | 11 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 5  | Create, select, and apply appropriate techniques, resources, and modern<br>Engineering and IT tools including prediction and modelling to complex<br>Engineering activities with an understanding of the limitations (Modern<br>Tool Usage).<br>1. Computer software / simulation packages / diagnostic equipment /<br>technical library resources / literature search tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  |
| PO 6  | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5  |
| PO 7  | Understand the impact of the professional Engineering solutions in societal<br>and Environmental contexts, and demonstrate the knowledge of, and need<br>for sustainable development (Environment and Sustainability).<br>Impact of the professional Engineering solutions (Not technical)<br>1. Socio economic<br>2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3  |

| PO 8  | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 9  | <ul> <li>Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive their performance</li> <li>3. Self-direction (take a vaguely defined problem and systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project.</li> <li>6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> | 12 |
| PO 10 | <ul> <li>Communicate effectively on complex Engineering activities with the<br/>Engineering community and with society at large, such as, being able to<br/>comprehend and write effective reports and design documentation, make<br/>effective presentations, and give and receive clear instructions<br/>(Communication).</li> <li>"Students should demonstrate the ability to communicate effectively in<br/>writing / Orally"</li> <li>Clarity (Writing)</li> <li>Grammar/Punctuation (Writing)</li> <li>References (Writing)</li> <li>Speaking Style (Oral)</li> <li>Subject Matter (Oral)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  |

| PO11 | Demonstrate knowledge and understanding of the Engineering and              | 12 |
|------|-----------------------------------------------------------------------------|----|
|      | management principles and apply these to one's own work, as a member and    |    |
|      | leader in a team, to manage projects and in multidisciplinary Environments  |    |
|      | (Project Management and Finance).                                           |    |
|      | 1. Scope Statement                                                          |    |
|      | 2. Critical Success Factors                                                 |    |
|      | 3. Deliverables                                                             |    |
|      | 4. Work Breakdown Structure                                                 |    |
|      | 5. Schedule                                                                 |    |
|      | 6. Budget                                                                   |    |
|      | 7. Quality                                                                  |    |
|      | 8. Human Resources Plan                                                     |    |
|      | 9. Stakeholder List                                                         |    |
|      | 10. Communication                                                           |    |
|      | 11. Risk Register                                                           |    |
|      | 12. Procurement Plan                                                        |    |
| PO12 | Recognize the need for and have the preparation and ability to engage in    | 8  |
|      | independent and life-long learning in the broadest context of technological |    |
|      | change (Life - Long Learning).                                              |    |
|      | 1. Project management professional certification / MBA                      |    |
|      | 2. Begin work on advanced degree                                            |    |
|      | 3. Keeping current in CSE and advanced engineering concepts                 |    |
|      | 4. Personal continuing education efforts                                    |    |
|      | 5. Ongoing learning – stays up with industry trends/ new technology         |    |
|      | 6. Continued personal development                                           |    |
|      | 7. Have learned at least 2-3 new significant skills                         |    |
|      | 8. Have taken up to 80 hours (2 weeks) training per year                    |    |



# INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department         | Electronics and Communication Engineering |           |         |            |         |  |  |
|--------------------|-------------------------------------------|-----------|---------|------------|---------|--|--|
| Course Title       | Microprocessors and Microcontrollers      |           |         |            |         |  |  |
| Course Code        | AECB24                                    |           |         |            |         |  |  |
| Program            | B.Tech                                    |           |         |            |         |  |  |
| Semester           | VI                                        |           |         |            |         |  |  |
| Course Type        | Core                                      |           |         |            |         |  |  |
| Regulation         | R-18                                      |           |         |            |         |  |  |
|                    | Theory Practical                          |           |         | tical      |         |  |  |
| Course Structure   | Lecture                                   | Tutorials | Credits | Laboratory | Credits |  |  |
|                    | 2                                         | 1         | 3       | -          | -       |  |  |
| Course Coordinator | Mr V.R.Seshagiri Rao, Associate Professor |           |         |            |         |  |  |

## I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites         |
|--------|-------------|----------|-----------------------|
| B.Tech | AECB07      | III      | Digital System Design |
| B.Tech | AECB32      | V        | Computer Architecture |

## **II COURSE OVERVIEW:**

Processor and controller cores are the key components in most of the modern embedded and systemon-chip designs. This course outlines the architecture and signal description of Intel microprocessor and microcontrollers. The instruction set and assembly language programming along with I/O and memory interfacing techniques are covered. The knowledge acquired from this course will enable the students in development of embedded hardware projects and models for engineering and scientific applications.

## **III MARKS DISTRIBUTION:**

| Subject                                 | SEE Examination | CIE Examination | Total Marks |
|-----------------------------------------|-----------------|-----------------|-------------|
| Microprocessors and<br>Microcontrollers | 70 Marks        | 30 Marks        | 100         |

## IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | x | Assignments  | x            | MOOC   |
|--------------|---------------------------|--------------|--------------|---|--------------|--------------|--------|
| x            | Open Ended Experiments    | $\checkmark$ | Tech talk    | x | Mini Project | $\checkmark$ | Videos |
| x            | Others                    |              |              |   |              |              |        |

## **V EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with either or choice will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 50 %                          | Understand            |
| 50 %                          | Apply                 |
| 0 %                           | Analyze               |
| 0 %                           | Evaluate              |
| 0 %                           | Create                |

## Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 10 marks for Alternative Assessment Tool (AAT).

| Component          | Theory   |     | Total Marks |
|--------------------|----------|-----|-------------|
| Type of Assessment | CIE Exam | AAT |             |
| CIA Marks          | 20       | 10  | 30          |

## Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

## Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours / classes, techtalk, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), concept video, MOOCs etc. The AAT chosen for this course is given in table .

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

## VI COURSE OBJECTIVES:

## The students will try to learn:

| Ι   | The signal descriptions along with functional architecture and hardware interfacing skills using microprocessors and micro controllers.      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| II  | The instruction set and logic to build assembly language programs for arithmetic, logic and automated electronic systems.                    |
| III | The essential concepts of development through a practical hands-on approach on advanced ARM processors and Internet of Things based systems. |

## VII COURSE OUTCOMES:

| After  | successful | completion | of the  | e course. | students | should  | be | able to: |
|--------|------------|------------|---------|-----------|----------|---------|----|----------|
| 111001 | Successiui | completion | 01 0110 |           | buddenus | Silouiu | DC |          |

| CO 1 | <b>Describe</b> the features of intel processors and micro controllers for  | Understand |
|------|-----------------------------------------------------------------------------|------------|
|      | signal description and architecture.                                        |            |
| CO 2 | Make use of addressing modes and instruction set of target                  | Apply      |
|      | microprocessors and micro controllers for writing efficient assembly        |            |
|      | language programs.                                                          |            |
| CO 3 | <b>Demonstrate</b> the internal architecture and modes of operation of      | Understand |
|      | peripheral devices for interfacing memory and I/O devices.                  |            |
| CO 4 | <b>Illustrate</b> the interrupt handling mechanism in microprocessors and   | Understand |
|      | micro controllers using interrupt controller.                               |            |
| CO 5 | Choose an appropriate data transfer scheme and hardware for data            | Apply      |
|      | transfer between the devices.                                               |            |
| CO 6 | <b>Develop</b> microprocessor and micro controller based applications using | Apply      |
|      | appropriate input and output devices.                                       |            |

# COURSE KNOWLEDGE COMPETENCY LEVEL



# **BLOOMS TAXONOMY**

# VIII PROGRAM OUTCOMES:

|      | Program Outcomes                                                              |  |  |  |  |
|------|-------------------------------------------------------------------------------|--|--|--|--|
| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science,           |  |  |  |  |
|      | engineering fundamentals, and an engineering specialization to the solution   |  |  |  |  |
|      | of complex engineering problems.                                              |  |  |  |  |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review research literature, and |  |  |  |  |
|      | analyze complex engineering problems reaching substantiated conclusions       |  |  |  |  |
|      | using first principles of mathematics, natural sciences, and engineering      |  |  |  |  |
|      | sciences.                                                                     |  |  |  |  |

| Program Outcomes |                                                                                                                                                           |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PO 3             | <b>Design/Development of Solutions:</b> Design solutions for complex                                                                                      |  |  |  |  |  |
|                  | Engineering problems and design system components or processes that meet                                                                                  |  |  |  |  |  |
|                  | the specified needs with appropriate consideration for the public health and                                                                              |  |  |  |  |  |
|                  | safety, and the cultural, societal, and Environmental considerations                                                                                      |  |  |  |  |  |
| PO 4             | knowledge and research methods including design of experiments, analysis<br>and interpretation of data, and synthesis of the information to provide valid |  |  |  |  |  |
|                  | conclusions.                                                                                                                                              |  |  |  |  |  |
| PO 5             | Modern Tool Usage: Create, select, and apply appropriate techniques,                                                                                      |  |  |  |  |  |
|                  | resources, and modern Engineering and IT tools including prediction and                                                                                   |  |  |  |  |  |
|                  | modelling to complex Engineering activities with an understanding of the                                                                                  |  |  |  |  |  |
|                  | limitations                                                                                                                                               |  |  |  |  |  |
| PO 6             | The engineer and society: Apply reasoning informed by the contextual                                                                                      |  |  |  |  |  |
|                  | knowledge to assess societal, health, safety, legal and cultural issues and the                                                                           |  |  |  |  |  |
|                  | consequent responsibilities relevant to the professional engineering practice.                                                                            |  |  |  |  |  |
| PO 7             | Environment and sustainability: Understand the impact of the                                                                                              |  |  |  |  |  |
|                  | professional engineering solutions in societal and environmental contexts, and<br>demonstrate the knowledge of, and need for sustainable development.     |  |  |  |  |  |
| PO 8             | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and                                                                             |  |  |  |  |  |
|                  | responsibilities and norms of the engineering practice.                                                                                                   |  |  |  |  |  |
| PO 9             | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.    |  |  |  |  |  |
| PO 10            | <b>Communication:</b> Communicate effectively on complex engineering                                                                                      |  |  |  |  |  |
|                  | activities with the engineering community and with society at large, such as,                                                                             |  |  |  |  |  |
|                  | being able to comprehend and write effective reports and design                                                                                           |  |  |  |  |  |
|                  | documentation, make effective presentations, and give and receive clear                                                                                   |  |  |  |  |  |
|                  | instructions.                                                                                                                                             |  |  |  |  |  |
| PO 11            | <b>Project management and finance:</b> Demonstrate knowledge and                                                                                          |  |  |  |  |  |
|                  | understanding of the engineering and management principles and apply these                                                                                |  |  |  |  |  |
|                  | to one's own work, as a member and leader in a team, to manage projects                                                                                   |  |  |  |  |  |
| DO 12            | and in multidisciplinary environments.                                                                                                                    |  |  |  |  |  |
| PO 12            | Life-Long Learning: Recognize the need for and having the preparation                                                                                     |  |  |  |  |  |
|                  | and ability to engage in independent and life-long learning in the broadest                                                                               |  |  |  |  |  |
|                  | context of technological change                                                                                                                           |  |  |  |  |  |

## IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | PROGRAM OUTCOMES                                 | $\mathbf{Strength}$ | Proficiency<br>Assessed by |
|------|--------------------------------------------------|---------------------|----------------------------|
| PO 1 | Engineering knowledge: Apply the                 | 3                   | SEE, CIE, AAT              |
|      | knowledge of mathematics, science,               |                     |                            |
|      | engineering fundamentals, and an engineering     |                     |                            |
|      | specialization to the solution of complex        |                     |                            |
|      | engineering problems.                            |                     |                            |
| PO 2 | Problem analysis: Identify, formulate,           | 2                   | SEE, CIE, AAT              |
|      | review research literature, and analyze          |                     |                            |
|      | complex engineering problems reaching            |                     |                            |
|      | substantiated conclusions using first principles |                     |                            |
|      | of mathematics, natural sciences, and            |                     |                            |
|      | engineering sciences.                            |                     |                            |

|       | PROGRAM OUTCOMES                                                                                                                                                                                                                                                                                                           | Strength | Proficiency<br>Assessed by |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 3  | <b>Design/Development of Solutions:</b> Design<br>solutions for complex Engineering problems<br>and design system components or processes<br>that meet the specified needs with appropriate<br>consideration for the public health and safety,<br>and the cultural, societal, and Environmental<br>considerations          | 2        | SEE, CIE, AAT              |
| PO 10 | <b>Communication:</b> Communicate effectively<br>on complex Engineering activities with the<br>Engineering community and with society at<br>large, such as, being able to comprehend and<br>write effective reports and design<br>documentation, make effective presentations,<br>and give and receive clear instructions. | 1        | SEE, CIE, AAT              |

3 = High; 2 = Medium; 1 = Low

# X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| P     | ROGRAM SPECIFIC OUTCOMES                    | $\mathbf{Strength}$ | Proficiency<br>Assessed by |
|-------|---------------------------------------------|---------------------|----------------------------|
| PSO 1 | Build embedded software and digital circuit | 3                   | AAT                        |
|       | development platform for robotics, embedded |                     |                            |
|       | systems and signal processing applications. |                     |                            |
|       |                                             |                     |                            |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          | PROGRAM OUTCOMES |              |              |    |    |    |    |    |    | PSO'S        |    |    |              |     |     |
|----------|------------------|--------------|--------------|----|----|----|----|----|----|--------------|----|----|--------------|-----|-----|
| COURSE   | PO               | PO           | PO           | PO | PO | PO | PO | PO | PO | PO           | PO | PO | PSO          | PSO | PSO |
| OUTCOMES | 1                | 2            | 3            | 4  | 5  | 6  | 7  | 8  | 9  | 10           | 11 | 12 | 1            | 2   | 3   |
|          | 3                | 10           | 10           | 11 | 1  | 5  | 3  | 3  | 12 | 5            | 12 | 8  | 2            | 2   | 2   |
| CO 1     | $\checkmark$     | -            | -            | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  |    | -            | -   | -   |
| CO 2     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -   | -   |
| CO 3     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -   | -   |
| CO 4     | -                | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -   | -   |
| CO 5     | -                | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -   | -   |
| CO 6     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -   | -   |

## XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                           | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Describe the features and architectures of Intel 8086<br>processor and Intel 8051 microcontroller (knowledge)<br>by applying the knowledge of <b>mathematics</b> ,<br><b>Engineering fundamentals</b> ,and electronics<br><b>engineering specialization</b> for understanding the<br>operation | 3                                      |

| Course<br>Outcomes | PO'S<br>PSO'S      | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                        | No. of Key<br>competencies<br>matched. |
|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 10              | Explain the functional components of microprocessors<br>and microcontrollers by <b>giving effective</b><br><b>presentations and clear instructions</b> for<br>understanding the operation of architectures.                                                                                                                                 | 1                                      |
| CO 2               | PO 1               | Illustrate instructions from the set library (knowledge)<br>for efficient assembly level programming by applying<br>the knowledge of science, engineering<br>fundamentals and mathematics.                                                                                                                                                  | 3                                      |
|                    | PO 2               | Select proper instructions from the instruction set by<br>Information and data collection for Solution<br>development by writing assembly language level<br>programming efficient and Interpretation of results                                                                                                                             | 3                                      |
|                    | PO 3               | Manage the design process and make use of<br>creativity to establish solutions by selecting<br>proper mnemonics to write the assembly language level<br>programming by Understanding of the<br>requirement for engineering activities to<br>promote sustainable development.                                                                | 3                                      |
|                    | PO 10              | Utilize addressing modes and instruction set of target<br>microprocessors and micro controllers micro controllers<br>by with clarity.                                                                                                                                                                                                       | 1                                      |
|                    | PSO 1              | Develop software program skills to write efficient<br>programs by <b>understanding the performance</b><br><b>parameters</b> of software/ Hardware systems for<br><b>robotics, embedded systems and signal</b><br><b>processing applications</b>                                                                                             | 2                                      |
| CO 3               | PO 1               | Illustrate the internal architecture and modes of<br>operation of peripheral devices like PPI, DMA<br>controller, PIC, USART by applying the principles of<br><b>mathematics, engineering fundamentals,</b><br><b>electronics engineering specialization</b> for the<br>solution of complex engineering problems.                           | 3                                      |
|                    | PO 2               | Explain the <b>Problem statement and system</b><br>definition for interfacing devices with microprocessor<br>and microcontroller by <b>Information and data</b><br>collection using peripheral devices like PPI, DMA<br>controller, PIC, USART for Solution development<br>and <b>Interpret the results</b>                                 | 4                                      |
|                    | PO 3               | Manage the design process and evaluate<br>outcomes by interfacing devices with microprocessor<br>and microcontroller using Programmable Peripheral<br>Interface (PPI) and Interrupt Controllers to establish<br>innovative solutions byUnderstanding of the<br>requirement for engineering activities to<br>promote sustainable development | 3                                      |
|                    | PO $\overline{10}$ | Describe the internal architecture and modes of operation of peripheral devices by <b>giving effective presentations.</b> for interfacing memory and I/O devices.                                                                                                                                                                           | 1                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                         | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 4               | PO 2          | Explain the functionality of various types of interrupts<br>and their structure with <b>Information and data</b><br><b>collection</b> for controlling the processor or controller<br>with program execution flow and <b>Interpret the</b><br><b>results</b> for <b>solution development</b> using interrupt<br>controller.   | 3                                      |
|                    | PO 3          | Understand the requirement for engineering<br>activities to promote sustainable development<br>in Interrupt handling and use creativity to<br>establish innovative solutions using interrupt<br>controller by Managing the design process and<br>evaluate outcomes                                                           | 3                                      |
|                    | PO 10         | Explain the interrupt handling mechanism in microprocessors and micro controllers with <b>clarity</b> .                                                                                                                                                                                                                      | 1                                      |
| CO 5               | PO 2          | Formulate and analyze (Problem analysis) complex<br>Engineering problems by differentiating<br>synchronous & asynchronous communication with<br>Information and data collection for data transfer<br>between the devices using first principles of<br>mathematics and Engineering sciences and then<br>Interpret the results | 4                                      |
|                    | PO 3          | understand the customer and user needs and<br>select an appropriate data transfer scheme and<br>hardware by Managing the design process and<br>evaluate outcomes to promote sustainable<br>development for data transfer between the devices<br>using creativity to establish innovative solutions                           | 4                                      |
|                    | PO 10         | Select an appropriate data transfer scheme and<br>hardware by <b>giving effective presentations and</b><br><b>receive clear instructions</b> for data transfer between<br>the devices.                                                                                                                                       | 1                                      |
| CO 6               | PO 1          | Build (Apply)necessary hardware and software<br>interface using microcomputer based systems to<br>provide solution for real world problems by applying<br>knowledge of mathematics, engineering<br>fundamentals, engineering specialization.                                                                                 | 3                                      |
|                    | PO 2          | Identify problem and Choose necessary hardware<br>and software interface (information and data<br>collection) and conduct experimental design with<br>model translation to provide solution<br>development for real world problems by<br>interpreting results.                                                               | 6                                      |
| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                    | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 3          | Organize necessary hardware and software interface<br>based on user needs and importance of<br>considerations for innovative solutions, of the<br>problem including all aspects to manage design<br>process, in microcomputer based systems by<br>applying different techniques, to achieve<br>required sustained development, with legal<br>requirements governing engineering activities,<br>including personnel, health, safety, and risk<br>issues. | 6                                      |
|                    | PO 10         | Build micro processor and micro controller based<br>applications using necessary input and output devices<br>and <b>give effective oral presentations and</b><br><b>instructions.</b>                                                                                                                                                                                                                                                                   | 1                                      |
|                    | PSO 1         | Develop microprocessor and microcontroller based<br>applications in the fields of robotics and embedded<br>systems using embedded software and necessary<br>input output devices.                                                                                                                                                                                                                                                                       | 2                                      |

#### Note: For Key Attributes refer Annexure - ${\bf I}$

## XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |     | PSO'S |     |  |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|--|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | РО | PO | PO | PO | PO | PSO | PSO   | PSO |  |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |  |
|          | 3  | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2     | 2   |  |
| CO 1     | 3  | -                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 2     | 3  | 3                | 3  | -  | -  | -  | -  | -  | -  | 1  |    | -  | 2   | -     | -   |  |
| CO 3     | 3  | 4                | 3  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 4     | -  | 3                | 3  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 5     | -  | 4                | 4  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 6     | 3  | 6                | 6  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | 2   | -     | -   |  |

#### XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO  | PO               | РО | PO | PO | PO | PO | РО | PO | PO | РО | PO | PSO   | PSO | PSO |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
|          | 3   | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2     | 2   | 2   |
| CO 1     | 100 | -                | -  | -  | -  | -  | -  | -  | -  | 20 | -  | -  | -     | -   | -   |
| CO 2     | 100 | 30               | 30 | -  | -  | -  | _  | -  | -  | 20 | -  | -  | 100   | -   | -   |
| CO 3     | 100 | 40               | 30 | -  | -  | -  | -  | -  | -  | 20 | -  | -  | -     | -   | -   |
| CO 4     | -   | 30               | 30 | -  | -  | -  | -  | -  | -  | 20 | -  | -  | -     | -   | -   |

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | PO  | PO               | PO | PO | PO | PO | PO | РО | РО | PO | PO | РО    | PSO | PSO | PSO |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
|          | 3   | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8     | 2   | 2   | 2   |
| CO 5     | -   | 40               | 40 | -  | -  | -  | -  | -  | -  | 20 | -  | -     | -   | -   | -   |
| CO 6     | 100 | 60               | 60 | -  | -  | -  | -  | -  | -  | 20 | -  | -     | 100 | -   | -   |

#### XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$   $0 \leq C \leq 5\%$  No correlation
- $1 5 < C \le 40\% Low/$  Slight
- $\pmb{2}$  40 % < C < 60% – Moderate
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

|          |    | PROGRAM OUTCOMES |     |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|----|------------------|-----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | PO | PO               | PO  | РО | PO | PO | PO | РО | PO | PO | PO | PO    | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3   | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
| CO 1     | 3  | -                | -   | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 2     | 3  | 1                | 1   | -  | -  | -  | -  | -  | -  | 1  | -  | -     | 3   | -   | -   |
| CO 3     | 3  | 2                | 1   | -  | -  | -  | -  | -  | -  | 1  | -  | -     | _   | -   | _   |
| CO 4     | -  | 1                | 1   | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 5     | -  | 2                | 2   | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 6     | 3  | 3                | 3   | -  | -  | -  | -  | -  | -  | 1  | -  | -     | 3   | -   | -   |
| TOTAL    | 12 | 9                | 8   | -  | -  | -  | -  | -  | -  | 6  | -  | -     | 6   | -   | -   |
| AVERAGE  | 3  | 1.8              | 1.6 | -  | -  | -  | -  | -  | -  | 1  | -  | -     | 3   | -   | -   |

#### XVI ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams  | <ul> <li>✓</li> </ul> | SEE Exams       | <ul> <li>✓</li> </ul> | Assignments   | - |
|------------|-----------------------|-----------------|-----------------------|---------------|---|
| Quiz       | -                     | Tech - Talk     | $\checkmark$          | Certification | - |
| Term Paper | -                     | Seminars        | -                     | Student Viva  | - |
| Laboratory | -                     | 5 Minutes Video | $\checkmark$          | Open Ended    | - |
| Practices  |                       | / Concept Video |                       | Experiments   |   |
| Micro      | -                     | -               | -                     | -             | - |
| Projects   |                       |                 |                       |               |   |

#### XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback             | $\checkmark$ | End Semester OBE Feedback                   |
|--------------|-------------------------------------|--------------|---------------------------------------------|
| $\checkmark$ | Assessment of activities / Modeling | and E        | xperimental Tools in Engineering by Experts |

#### XVIII SYLLABUS:

| MODULE I   | 8086 MICROPROCESSORS                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Register organization of 8086, Architecture, signal description of 8086,<br>physical memory organization, general bus operation, I/O addressing<br>capability, special purpose activities Minimum mode, maximum mode of 8086<br>system and timings, machine language instruction formats, addressing mode<br>of 8086, instruction set of 8086, assembler directives and operators.                       |
| MODULE II  | PROGRAMMING WITH 8086 MICROPROCESSOR                                                                                                                                                                                                                                                                                                                                                                     |
|            | Machine level programs, programming with an assembler, Assembly language programs, introduction to stack, stack structure of 8086/8088, interrupts and interrupt service routines. Interrupt cycle of 8086, non-mask able interrupt and mask able interrupts, interrupt programming.                                                                                                                     |
| MODULE III | INTERFACING WITH 8086/88                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Semiconductor memory interfacing, dynamic RAM interfacing, interfacing i/o<br>ports, PIO 8255 modes of operation of 8255,interfacing to D/A and A/D<br>converters, stepper motor interfacing, control of high power devices using<br>8255.<br>Programmable interrupt controller 8259A, the keyboard /display<br>controller8279, programmable communication interface 8251 USART, DMA<br>Controller 8257. |
| MODULE IV  | 8051 MICROCONTROLLER                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 8051 Microcontroller – Internal architecture and pin configuration, 8051<br>addressing modes, instruction set, Bit addressable features. I/O Port<br>structures, assembly language programming using data transfer, arithmetic,<br>logical and branch instructions.                                                                                                                                      |
| MODULE V   | SYSTEM DESIGN USING MICROCONTROLLER                                                                                                                                                                                                                                                                                                                                                                      |
|            | 8051 Timers/Counters, Serial data communication and its programming, 8051 interrupts, Interrupt vector table, Interrupt programming. Real world interfacing of 8051 with external memory, expansion of I/O ports, LCD, ADC, DAC, stepper motor interfacing.                                                                                                                                              |

#### **TEXTBOOKS**

- 1. D. V. Hall, "Microprocessors and Interfacing", Tata McGraw-Hill Education, 3rd Edition 2013.
- 2. A.K Ray, K. M. Bhurchandani, "Advanced Microprocessors and Peripherals" Tata McGraw-Hill Education, 2nd Edition, 2006.
- Savaliya M. T, "8086 Programming and Advance Processor Architecture", Wiley India Pvt., 1st Edition, 2012.

#### **REFERENCE BOOKS:**

- 1. N. Senthil Kumar, M. Saravanan, S. Jeevanathan, S. K. Shah, "Microprocessors and Interfacing", Oxford University, 1st Edition, 2012.
- 2. Lyla B. Das, "The x86 Microprocessors", Pearson India, 2nd Edition, 2014.

#### WEB REFERENCES:

- 1. http://www.daenotes.com/electronics/digital-electronics/Intel-8085 8 bit microprocessor axzz2I9yUSe7I
- 2. https://www.smartzworld.com/notes/microprocessors-and-microcontrollers-mpmc/

#### 3. http://www.iare.ac.in

#### COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details&course\_id=135

#### XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                        | CO's | Reference                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------|
|      | OBE DISCUSSION                                                                                                                              |      |                                                                                     |
| 1    | Course Description on Outcome Based Education (OBE):<br>Course Objectives, Course Outcomes (CO), Program<br>Outcomes (PO) and CO-PO Mapping | -    | https://lms.<br>iare.ac.in/<br>index?route=<br>course/details<br>&course_id=<br>135 |
|      | CONTENT DELIVERY (THEORY)                                                                                                                   |      |                                                                                     |
| 2    | Register organization of 8086 microprocessor                                                                                                | CO 1 | T1:1.1<br>R2:1.3                                                                    |
| 3    | Flag Register of 8086 Microprocessor                                                                                                        | CO 1 | T1:1.1<br>R2:1.2.2                                                                  |
| 4    | Architecture and signal description of 8086 microprocessor                                                                                  | CO 1 | T1:1.2<br>R2:1.1,6.1                                                                |
| 5    | Physical memory organization of 8086 microprocessor                                                                                         | CO 1 | T1:1.4<br>R2:2.3                                                                    |
| 7    | General bus operation, I/O addressing capability and special purpose activities                                                             | CO 1 | T1:1.5,1.6,1.7                                                                      |
| 8    | Operation of 8086 microprocessor in minimum mode with<br>read nd write timing diagrams                                                      | CO 1 | T1:1.8<br>R2:6.3                                                                    |
| 9    | Operation of 8086 microprocessor in maximum mode with<br>read nd write timing diagrams                                                      | CO 1 | T1:1.9<br>R2:6.4                                                                    |
| 10   | Machine language instruction formats                                                                                                        | CO 2 | T1:2.1<br>R2:3.1                                                                    |
| 11   | Addressing modes of 8086 Microprocessor                                                                                                     | CO 2 | T1:2.2<br>R2:1.4                                                                    |
| 12   | Instruction Set Of 8086 Microprocessor: Data transfer instructions                                                                          | CO 2 | T1:2.3<br>R2:3.2                                                                    |
| 13   | Instruction Set Of 8086 Microprocessor: Arithmetic and<br>Logical instructions                                                              | CO 2 | T1: 2.3<br>R2:3.4,3.5                                                               |
| 14   | Instruction Set Of 8086 Microprocessor: Program control transfer instructions                                                               | CO 2 | T1: 2.3<br>R2:3.3                                                                   |
| 15   | Instruction Set Of 8086 Microprocessor: Machine Control<br>Instructions and Flag manipulation instructions                                  | CO 2 | T1: 2.3<br>R2:3.7                                                                   |
| 16   | Instruction Set Of 8086 Microprocessor: Shift and rotate instructions                                                                       | CO 2 | T1: 2.3<br>R2:3.6                                                                   |

| 17 | Instruction Set Of 8086 Microprocessor: String<br>instructions                            | CO 2 | T1: 2.3<br>R2:4.1        |
|----|-------------------------------------------------------------------------------------------|------|--------------------------|
| 18 | Assembler Directives and operators                                                        | CO 2 | T1:2.4<br>R2:2.2         |
| 19 | Machine level programs, programming with an assembler                                     | CO 2 | T1:3.1,3.2,3.3<br>R2:2.1 |
| 24 | Introduction to stack and stack structure of 8086/8088<br>microprocessor                  | CO 1 | T1:4.1,4.2               |
| 25 | Interrupts and Interrupt service routines                                                 | CO 4 | T1:4.3<br>R2:8.1         |
| 26 | Interrupt cycle of 8086 microprocessor, non- mask able interrupt and mask able interrupts | CO 4 | T1:4.4,4.5,4.6<br>R2:8.2 |
| 27 | Interrupt programming                                                                     | CO 4 | T1:4.7                   |
| 28 | Interfacing I/O ports                                                                     | CO 3 | T1:5.3                   |
| 29 | Pin diagram and Architecture 8255 PPI                                                     | CO 3 | T1:5.4<br>R2:9.2         |
| 30 | Operating modes of 8255 PPI                                                               | CO 3 | T1:5.5<br>R2:9.3         |
| 31 | A/D and D/A converters                                                                    | CO 6 | T1:5.6,5.7<br>R2:9.8,9.9 |
| 33 | Stepper motor interfacing                                                                 | CO 6 | T1:5.8<br>R2:9.11        |
| 34 | Control of high power devices using 8255 PPI                                              | CO 6 | T1:5.9                   |
| 35 | Pin configuration of 8259 PIC                                                             | CO 4 | T1:6.2<br>R2:10.3        |
| 36 | Architecture of 8259 PIC                                                                  | CO 4 | T1:6.2<br>R2:10.3        |
| 38 | Keyboard /display controller 8279                                                         | CO 6 | T1:6.3<br>R2:10.2        |
| 40 | Programmable communication interface 8251 USART                                           | CO 5 | T1:6.4<br>R2:11.3        |
| 42 | DMA Controller 8257                                                                       | CO 3 | T1:7.1<br>R2:11.6        |
| 43 | Internal architecture and pin configuration of 8051<br>microcontroller                    | CO 1 | T1:17.2<br>R2:20.1       |
| 44 | Addressing modes of 8051 microcontroller                                                  | CO 2 | T1:17.3                  |
| 45 | Instruction set of 8051 microcontroller                                                   | CO 2 | T1:17.8<br>R2:19.9       |
| 46 | Bit addressable features and I/O Port structures                                          | CO 1 | T1:17.4<br>R2:19.10      |
| 48 | 8051 Timers/Counters                                                                      | CO 1 | T1:17.5<br>R2:20.3,20.4  |
| 49 | Serial data communication and its programming                                             | CO 5 | T1:17.6<br>R2:20.6       |
| 50 | 8051 interrupts, Interrupt vector table                                                   | CO 4 | T1:17.7<br>R2:20.5       |

|    | PROBLEM SOLVING/ CASE STUDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ES                                                          |                               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|
| 6  | Physical address calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 1                                                        | T1:1.1                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | R2:1.1                        |
| 20 | Assembly language programs For Sorting of numbers using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 2                                                        | T1:3.4                        |
|    | 8086 microprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | R2:4.7                        |
| 21 | Assembly language programs for multibyte addition and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO 2                                                        | T1:3.4                        |
|    | A second by the second se | CO 2                                                        | R2:4.7                        |
|    | using 8086 microprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | 11:3.4<br>R2·4 1              |
| 23 | Assembly language programs for Code conversions using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO 2                                                        | $\frac{112.4.1}{T1\cdot 3.4}$ |
| 20 | 8086 microprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 002                                                         | R2:4.4.4.5                    |
| 28 | Memory interfacing to 8086 microprocessor (Static RAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO 3                                                        | T1:5.1                        |
| _  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | R2:12.2,12.3                  |
| 29 | Memory interfacing to 8086 microprocessor (EPROM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO 3                                                        | T1:5.2                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | R2:12.4                       |
| 32 | Interfacing A/D and D/A converters with 8086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 6                                                        | T1:5.6,5.7                    |
|    | microprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             | R2:9.8,9.9                    |
| 34 | Assembly language programs to rotate stepper motor in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO 2                                                        | T1:5.8                        |
|    | clockwise and anticlock wise direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | R2:9.11                       |
| 37 | Cascading of Interrupt Controller and its importance,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO 4                                                        | T1:6.2                        |
|    | interfacing 8259 PIC with 8086 microprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                    | R2:10.3,10.4                  |
| 39 | Interfacing keyboard /display controller 8279 to 8086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO 6                                                        | T1:6.3                        |
| 41 | Interoprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COF                                                         | T1.6.4                        |
| 41 | USABT to 8086 microprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00.5                                                        | 11:0.4<br>R2.11.3             |
| 47 | Assembly language programming using data transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO 2                                                        | T1.17.8                       |
| 1  | arithmetic, logical and branch instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 002                                                         | R2:19.3                       |
| 51 | Real world interfacing of 8051 microcontroller with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO 6                                                        | T1:17.6                       |
|    | external memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | R2:20.2                       |
| 52 | Interfacing 8051 microcontroller with LCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 6                                                        | T1:17.9                       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | R2:21.3                       |
| 53 | Interfacing 8051 microcontroller with ADC and DAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO 6                                                        | T1:17.9                       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | R2:21.1                       |
|    | DISCUSSION OF DEFINITION AND TERMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INOLOGY                                                     | (                             |
| 54 | 8086 Microprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO 1,                                                       | T1, R2                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 2                                                        |                               |
| 55 | Programming with 8086 microprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{CO 1},\\ \text{CO 2} \end{array}$   | T1, R2                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 2,                                                       |                               |
| 56 | Interfacing with 8086/88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO 4                                                        | T1 R9                         |
| 00 | mornacing with 0000/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \text{CO } 2,\\ \text{CO } 3.\end{array}$ | 11, 102                       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 4,                                                       |                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 5,                                                       |                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 6                                                        |                               |
| 57 | 8051 microcontroller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO 1,                                                       | T1, R2                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO 2,                                                       |                               |

| 58 | System design using microcontroller     | CO 3,<br>CO 4,<br>CO 5,<br>CO 6 | T1, R2 |
|----|-----------------------------------------|---------------------------------|--------|
|    | DISCUSSION OF QUESTION BANI             | X                               |        |
| 59 | 8086 Microprocessor                     | CO 1,<br>CO 2                   | T1, R2 |
| 60 | Programming with 8086 microprocessor    | CO 1,<br>CO 2,<br>CO 4          | T1, R2 |
| 61 | Interfacing with 8086/88 microprocessor | CO 2,<br>CO 3,<br>CO 4,<br>CO 5 | T1, R2 |
| 62 | 8051 microcontroller                    | CO 1,<br>CO 2                   | T1, R2 |
| 63 | System design using microcontroller     | CO 3,<br>CO 4,<br>CO 5          | T1, R2 |

#### Signature of Course Coordinator Mr. V.R.Seshagiri Rao, Associate Professor

HOD, ECE

#### ANNEXURE - I

#### **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.<br>of<br>KCF's |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PO 1         | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                  |
| PO 2         | Identify, formulate, review research literature, and analyse complex<br>Engineering problems reaching substantiated conclusions using first<br>principles of mathematics natural sciences, and Engineering sciences<br>( <b>Problem Analysis</b> ).<br>1. Problem or opportunity identification<br>2. Problem statement and system definition<br>3. Problem formulation and abstraction<br>4. Information and data collection<br>5. Model translation<br>6. Validation<br>7. Experimental design<br>8. Solution development or experimentation / Implementation<br>9. Interpretation of results<br>10. Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                 |
| PO 3         | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design processes and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> </ul> | 10                 |

| PO 4 | Use research-based knowledge and research methods including design                                                             | 11 |
|------|--------------------------------------------------------------------------------------------------------------------------------|----|
|      | of experiments, analysis and interpretation of data, and synthesis of<br>the information to provide valid conclusions (Conduct |    |
|      | Investigations of Complex Broblems)                                                                                            |    |
|      | 1 Knowledge of characteristics of particular materials, equipment                                                              |    |
|      | rocesses or products                                                                                                           |    |
|      | 2. Workshop and laboratory skills                                                                                              |    |
|      | 3. Understanding of contexts in which engineering knowledge can be                                                             |    |
|      | applied (example, operations and management, technology                                                                        |    |
|      | development, etc.)                                                                                                             |    |
|      | 4. Understanding use of technical literature and other information                                                             |    |
|      | sources Awareness of nature of intellectual property and contractual                                                           |    |
|      | issues                                                                                                                         |    |
|      | 5. Understanding of appropriate codes of practice and industry                                                                 |    |
|      | standards                                                                                                                      |    |
|      | 6. Awareness of quality issues                                                                                                 |    |
|      | 7. Ability to work with technical uncertainty                                                                                  |    |
|      | 8. Understanding of engineering principles and the ability to apply                                                            |    |
|      | them to analyse key engineering processes                                                                                      |    |
|      | 9. Ability to identify, classify and describe the performance of                                                               |    |
|      | systems and components through the use of analytical methods and                                                               |    |
|      | modeling techniques                                                                                                            |    |
|      | 10. Ability to apply quantitative methods and computer software                                                                |    |
|      | problems                                                                                                                       |    |
|      | 11 Understanding of and ability to apply a systems approach to                                                                 |    |
|      | engineering problems.                                                                                                          |    |
| PO 5 | Create select and apply appropriate techniques resources and                                                                   | 1  |
| 100  | modern Engineering and IT tools including prediction and modelling                                                             | 1  |
|      | to complex Engineering activities with an understanding of the                                                                 |    |
|      | limitations (Modern Tool Usage).                                                                                               |    |
|      | 1. Computer software / simulation packages / diagnostic equipment                                                              |    |
|      | / technical library resources / literature search tools.                                                                       |    |
| PO 6 | Apply reasoning informed by the contextual knowledge to assess                                                                 | 5  |
|      | societal, health, safety, legal and cultural issues and the consequent                                                         |    |
|      | responsibilities relevant to the professional engineering practice (The                                                        |    |
|      | Engineer and Society).                                                                                                         |    |
|      | 1. Knowledge and understanding of commercial and economic                                                                      |    |
|      | context of engineering processes                                                                                               |    |
|      | 2. Knowledge of management techniques which may be used to                                                                     |    |
|      | achieve engineering objectives within that context                                                                             |    |
|      | 3. Understanding of the requirement for engineering activities to                                                              |    |
|      | promote sustainable development                                                                                                |    |
|      | 4. Awareness of the framework of relevant legal requirements                                                                   |    |
|      | governing engineering activities, including personnel, health, safety,                                                         |    |
|      | 5 Understanding of the need for a high level of professional and                                                               |    |
|      | o. Understanding of the need for a high level of professional and                                                              |    |
| 1    | connear conduct in engineering.                                                                                                |    |

| PO 7 | Understand the impact of the professional Engineering solutions in<br>societal and Environmental contexts, and demonstrate the<br>knowledge of, and need for sustainable development (Environment<br>and Sustainability).<br>Impact of the professional Engineering solutions (Not technical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | 2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3  |
| PO 9 | <ul> <li>Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive their performance</li> <li>3. Self-direction (take a vaguely defined problem and systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project.</li> <li>6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> | 12 |

| PO 10        | Communicate effectively on complex Engineering activities with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|              | Engineering community and with society at large, such as, being able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|              | to comprehend and write effective reports and design documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|              | make affective presentations, and give and receive clear instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|              | (Communication)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|              | "Students should demonstrate the ability to communicate effectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|              | in writing / Orolly?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|              | 1 Clarity (Writing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|              | 1. Charley (Writing)<br>$2 - C = \sqrt{D} + \frac{1}{2} + \frac{1}{2}$ |    |
|              | 2. Grammar/Punctuation (Writing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|              | 3. References (Writing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|              | 4. Speaking Style (Oral)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|              | 5. Subject Matter (Oral)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| PO 11        | Demonstrate knowledge and understanding of the Engineering and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 |
|              | management principles and apply these to one's own work, as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|              | member and leader in a team, to manage projects and in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|              | multidisciplinary Environments (Project Management and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|              | Finance).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|              | 1. Scope Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|              | 2. Critical Success Factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|              | 3. Deliverables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|              | 4. Work Breakdown Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|              | 5. Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|              | 6 Budget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|              | 7 Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|              | 8 Human Resources Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|              | 9 Stakeholder List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|              | 10 Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|              | 11 Bisk Bogister                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|              | 12 Procurement Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <b>DO 10</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0  |
| PO 12        | Recognize the need for and have the preparation and ability to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8  |
|              | engage in independent and life-long learning in the broadest context                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|              | of technological change (Life - Long Learning).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|              | 1. Project management professional certification / MBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|              | 2. Begin work on advanced degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|              | 3. Keeping current in CSE and advanced engineering concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|              | 4. Personal continuing education efforts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|              | 5. Ongoing learning – stays up with industry trends/ new technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|              | 6. Continued personal development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|              | 7. Have learned at least 2-3 new significant skills                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|              | 8. Have taken up to 80 hours $(2 \text{ weeks})$ training per year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |



### INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

#### ELECTRONICS AND COMMUNICATIONENGINEERING COURSE DESCRIPTION

| Department         | Electronics and Communication Engineering |                              |         |            |         |  |
|--------------------|-------------------------------------------|------------------------------|---------|------------|---------|--|
| Course Title       | Radar syste                               | Radar systems and processing |         |            |         |  |
| Course Code        | AECB50                                    |                              |         |            |         |  |
| Program            | B.Tech                                    |                              |         |            |         |  |
| Semester           | VI                                        | I                            |         |            |         |  |
| Course Type        | Elective                                  |                              |         |            |         |  |
| Regulation         | R-18                                      |                              |         |            |         |  |
|                    |                                           | Theory                       |         | Prac       | tical   |  |
| Course Structure   | Lecture                                   | Tutorials                    | Credits | Laboratory | Credits |  |
|                    | 3                                         | -                            | 3       | -          | -       |  |
| Course Coordinator | Ms P. Annapurna, Assistant Professor      |                              |         |            |         |  |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites                               |
|--------|-------------|----------|---------------------------------------------|
| B.Tech | AEC003      | III      | Probability Theory and Stochastic Processes |
| B.Tech | AEC005      | IV       | Analog Communications                       |

#### **II COURSE OVERVIEW:**

This course introduces the Transmission of electromagnetic and radio waves to detect the range and velocity of targets. It covers the digital techniques that allow complicated signal processing in moving target indicator radar, pulse Doppler radars and digital data processing to perform automatic detection and tracking. It focuses on several ranging applications such as electronic warfare, navigation systems, missile terminal guidance and landing systems of air and space vehicles.

#### **III MARKS DISTRIBUTION:**

| $\mathbf{Subject}$ | SEE Examination | CIE Examination | Total Marks |
|--------------------|-----------------|-----------------|-------------|
| Radar Systems and  | 70 Marks        | 30 Marks        | 100         |
| Processing         |                 |                 |             |

#### IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | $\checkmark$ | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|---|--------|
| x            | Open Ended Experiments    | x            | Seminars     | x            | Mini Project | x | Videos |
| x            | Others                    |              |              |              |              |   |        |

#### **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 50 %                          | Understand            |
| 40 %                          | Apply                 |
| 10 %                          | Analyze               |
| 0 %                           | Evaluate              |
| 0 %                           | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

| Component                   |    | Total Marks |     |    |
|-----------------------------|----|-------------|-----|----|
| Type of Assessment CIE Exam |    | Quiz        | AAT |    |
| CIA Marks                   | 20 | 05          | 05  | 30 |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The principle and operation of radar systems and radar range equation for communication.                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| II  | The use of Doppler frequency shift to detect moving target in stationary clutter , continuous wave radar system in altimeter applications. |
| III | The types of radar receivers, transmitter systems and effect of noise on radar signal detection.                                           |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Demonstrate</b> the principle and operation of Radar using Radar Range      | Understand |
|------|--------------------------------------------------------------------------------|------------|
|      | Equation to calculate transmitted power.                                       |            |
| CO 2 | Analyze the principle of FM-CW radar and use it in FM- CW                      | Analyze    |
|      | altimeter to measure range and Doppler frequency of the target                 |            |
| CO 3 | <b>Illustrate</b> the concept of blind speeds, range gated Doppler filters and | Understand |
|      | moving target indicator with Pulse Doppler radar for detection of              |            |
|      | moving targets.                                                                |            |
| CO 4 | <b>Choose</b> the appropriate matched filters in Radars receivers to           | Apply      |
|      | maximize signal to noise ratio                                                 |            |
| CO 5 | <b>Describe</b> Radar displays and duplexers for transmission and display      | Understand |
|      | the data on the screen                                                         |            |
| CO 6 | <b>Examine</b> the detection techniques of target echo signal reflected back   | Analyze    |
|      | to the radar antenna for obtaining the location and distance of the            |            |
|      | reflecting object.                                                             |            |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



#### **BLOOMS TAXONOMY**

#### VIII PROGRAM OUTCOMES:

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |
| PO 6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | Life-Long Learning: Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                                  |

#### IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | PROGRAM OUTCOMES                                   | $\mathbf{Strength}$ | Proficiency<br>Assessed by |
|-------|----------------------------------------------------|---------------------|----------------------------|
| PO 1  | Engineering knowledge: Apply the                   | 2                   | CIE/Quiz/AAT               |
|       | knowledge of mathematics, science, engineering     |                     |                            |
|       | fundamentals, and an engineering specialization    |                     |                            |
| DO 9  | to the solution of complex engineering problems.   | 0                   | CIE /Oniz / A AT           |
| 102   | research literature and analyze complex            | 2                   | GIE/ Quiz/ AA1             |
|       | engineering problems reaching substantiated        |                     |                            |
|       | conclusions using first principles of mathematics, |                     |                            |
|       | natural sciences, and engineering sciences.        |                     |                            |
| PO 3  | Design/Development of Solutions: Design            | 1                   | CIE/Quiz/AAT               |
|       | solutions for complex Engineering problems and     |                     |                            |
|       | design system components or processes that         |                     |                            |
|       | meet the specified needs with appropriate          |                     |                            |
|       | and the cultural societal and Environmental        |                     |                            |
|       | considerations                                     |                     |                            |
| PO 4  | Conduct Investigations of Complex                  | 1                   | CIE/Quiz/AAT               |
| _     | <b>Problems:</b> Use research-based knowledge and  |                     | - / - /                    |
|       | research methods including design of               |                     |                            |
|       | experiments, analysis and interpretation of data,  |                     |                            |
|       | and synthesis of the information to provide valid  |                     |                            |
|       | conclusions.                                       |                     |                            |
| PO 10 | <b>Communication:</b> Communicate effectively on   | 1                   | CIE/Quiz/AAT               |
|       | complex engineering activities with the            |                     |                            |
|       | large such as being able to comprehend and         |                     |                            |
|       | write effective reports and design                 |                     |                            |
|       | documentation, make effective presentations.       |                     |                            |
|       | and give and receive clear instructions.           |                     |                            |

3 = High; 2 = Medium; 1 = Low

#### X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| P     | ROGRAM SPECIFIC OUTCOMES                                                                                                                                                   | ${f Strength}$ | Proficiency<br>Assessed<br>by |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|
| PSO 3 | Make use of High frequency structure simulator<br>(HFSS) for modeling and evaluating the patch<br>and smart antennas for wired and wireless<br>communication applications. | 1              | -                             |

3 = High; 2 = Medium; 1 = Low

#### XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              | PROGRAM OUTCOMES |              |              |    |    |    |    |    |              | PSO'S |    |     |     |              |
|----------|--------------|------------------|--------------|--------------|----|----|----|----|----|--------------|-------|----|-----|-----|--------------|
| COURSE   | PO           | PO               | PO           | PO           | PO | PO | PO | PO | PO | PO           | PO    | PO | PSO | PSO | PSO          |
| OUTCOMES | 1            | 2                | 3            | 4            | 5  | 6  | 7  | 8  | 9  | 10           | 11    | 12 | 1   | 2   | 3            |
| CO 1     | $\checkmark$ | -                | -            | -            | -  | -  | -  | -  | -  | $\checkmark$ | -     |    | -   | -   | -            |
| CO 2     | $\checkmark$ | $\checkmark$     | -            | -            | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -   | -            |
| CO 3     | $\checkmark$ | -                | -            | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -   | -            |
| CO 4     |              | -                | -            | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -     |    | -   | -   | $\checkmark$ |
| CO 5     | $\checkmark$ | -                | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -     | -  | -   | -   | $\checkmark$ |
| CO 6     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -     |    | -   | -   | $\checkmark$ |

#### XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                               | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | <b>Demonstrate</b> the basic principle of radar System<br>with the help of Block diagram (knowledge) <b>using the</b><br><b>principles of science</b> and <b>mathematics</b> for<br><b>engineering problems</b> .  | 3                                      |
|                    | PO 10         | <b>Communicate effectively</b> on the factors affecting<br>the radar performance using radar range equation to<br>calculate Transmitter power.                                                                     | 2                                      |
| CO 2               | PO 1          | <b>Understand</b> the principle of frequency modulated<br>–continuous wave radar using the <b>principles of</b><br><b>science</b> and <b>mathematics</b> for <b>engineering</b><br><b>problems</b> .               | 2                                      |
|                    | PO 2          | Analyze the concept and apply it for altimeter<br>applications Use research-based knowledge and<br>of data to provide valid conclusions.                                                                           | 2                                      |
|                    | PO 10         | <b>Communicate effectively</b> the concept using effective presentations                                                                                                                                           | 2                                      |
| CO 3               | PO 1          | understand the principle of moving target indicator<br>radar and Pulse Doppler radar using the principles<br>of science and mathematics for engineering<br>problems                                                | 2                                      |
|                    | PO 4          | Differentiate the two radars for moving target<br>indication and clutter rejection <b>Design solutions for</b><br><b>complex engineering problems for the public</b><br><b>safety environmental considerations</b> | 1                                      |
|                    | PO 10         | <b>Communicate effectively</b> the concept of moving target indicator using effective presentations                                                                                                                | 2                                      |
| CO 4               | PO 1          | Understand the concept of matched filters in Radars<br>receivers using the principles of science and<br>mathematics for engineering problems)                                                                      | 2                                      |
|                    | PO 4          | Explain the concept of matched filters in Radars<br>receivers <b>Identify</b> , <b>formulate</b> , <b>review research</b><br><b>using first principles of engineering sciences</b> .                               | 3                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                           | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 10         | <b>Communicate effectively</b> the concept of matched filters in Radars receivers                                                                                              | 2                                      |
|                    | PSO 3         | Analyze the concept to measure received signal power<br>using High frequency structure simulator Use<br>research-based knowledge and of data to<br>provide valid conclusions.  | 2                                      |
| CO 5               | PO 1          | Understand (knowledge) the concepts display devices<br>and duplexers by applying the principles of<br>mathematics, science to the solutions of<br>complex engineering problems | 3                                      |
|                    | PO 3          | <b>Desin</b> display devices and receviers usin complex<br>engineering solutions to meet specified needs with<br>appropriate consideration for the public health and<br>safety | 1                                      |
|                    | PO 10         | <b>Communicate effectively</b> the concept of display devices and duplexers using effective presentations                                                                      | 2                                      |
|                    | PSO 3         | <b>Analyze</b> the concept of display devices and duplexers for <b>wireless communication applications</b>                                                                     | 2                                      |
| CO 6               | PO 1          | (Understand) the concept of target echo signal<br>reflected back to the radar antenna using the<br>principles of science and mathematics for<br>engineering problems)          | 2                                      |
|                    | PO 2          | Adentify, formulate, review research target echo<br>signal for obtaining the location and distance of the<br>reflecting object                                                 | 2                                      |
|                    | PO 4          | Use research-based knowledge analysis and<br>interpretation of data of target echo signal for<br>obtaining the location and distance of the reflecting<br>object               | 2                                      |
|                    | PO 10         | <b>Communicate effectively</b> the concept of antennas using effective presentations                                                                                           | 1                                      |
|                    | PSO 3         | Make use of High frequency structure simulator<br>(HFSS) for evaluating the antennas for wired and<br>wireless communication applications                                      | 2                                      |

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO    | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
| CO 1     | 3  | -                | -  | -  | -  | -  | -  | -  | -  | 2  | -  |       | -   | -   | -   |
| CO 2     | 2  | 2                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -     | -   | -   | -   |
| CO 3     | 2  | -                | -  | 1  | -  | -  | -  | -  | -  | 2  | -  | -     | -   | -   | -   |
| CO 4     | 2  | -                | -  | 3  | -  | -  | -  | -  | -  | 2  | -  |       | -   | -   | 2   |
| CO 5     | 3  | -                | 1  | -  | -  | -  | -  | -  | -  | 2  | -  | -     | -   | -   | 2   |
| CO 6     | 2  | 2                | -  | 2  | -  | -  | -  | -  | -  | 1  | -  |       | -   | -   | 2   |

#### XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          |      | PROGRAM OUTCOMES |    |      |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|------|------------------|----|------|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | PO   | РО               | PO | PO   | PO | PO | РО | РО | PO | PO | РО | PO    | PSO | PSO | PSO |
| OUTCOMES | 1    | 2                | 3  | 4    | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
| CO 1     | 100  | -                | -  | -    | -  | -  | -  | -  | -  | -  | 30 |       | -   | -   | -   |
| CO 2     | 66.7 | 20               | -  | -    | -  | -  | -  | -  | -  | -  | 40 | -     | -   | -   | -   |
| CO 3     | 66.7 | -                | 10 | -    | -  | -  | -  | -  | -  | -  | 30 | -     | -   | -   | -   |
| CO 4     | 66.7 | -                | -  | 27.3 | -  | -  | -  | -  | -  | -  | 30 |       | -   | -   | 100 |
| CO 5     | 100  | -                | 10 | -    | -  | -  | -  | -  | -  | -  | 30 | -     | -   | -   | 100 |
| CO 6     | 66.7 | 20               | -  | 18.2 | -  | -  | -  | -  | -  | -  | 40 |       | -   | -   | 100 |

**XV** COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- **1** -5 < C  $\leq$  40% Low/ Slight

 $\pmb{2}$  - 40 % <C < 60% – Moderate

 $\boldsymbol{3}$ - 60%  $\leq$  C < 100% – Substantial /High

|          |      | PROGRAM OUTCOMES |     |     |    |    |    |    |    |     | PSO'S |    |     |     |     |
|----------|------|------------------|-----|-----|----|----|----|----|----|-----|-------|----|-----|-----|-----|
| COURSE   | PO   | РО               | PO  | PO  | PO | PO | РО | РО | PO | PO  | PO    | PO | PSO | PSO | PSO |
| OUTCOMES | 1    | 2                | 3   | 4   | 5  | 6  | 7  | 8  | 9  | 10  | 11    | 12 | 1   | 2   | 3   |
| CO 1     | 3    | -                | -   | -   | -  | -  | -  | -  | -  | 1   | -     |    | -   | -   | -   |
| CO 2     | 2    | 2                | -   | -   | -  | -  | -  | -  | -  | 1   | -     | -  | -   | -   | -   |
| CO 3     | 2    | -                | -   | 1   | -  | -  | -  | -  | -  | 1   | -     | -  | -   | -   | -   |
| CO 4     | 2    | -                | -   | 3   | -  | -  | -  | -  | -  | 1   | -     |    | -   | -   | 3   |
| CO 5     | 3    | -                | 1   | -   | -  | -  | -  | -  | -  | 1   | -     | -  | -   | -   | 3   |
| CO 6     | 2    | 2                | -   | 2   | -  | -  | -  | -  | -  | 1   | -     |    | -   | -   | 3   |
| TOTAL    | 14   | 4                | 1   | 6   | 0  | 0  | 0  | 0  | 0  | 6   | 0     | 0  | 0   | 0   | 9   |
| AVERAGE  | 2.11 | 2.0              | 1.0 | 2.0 | 0  | 0  | 0  | 0  | 0  | 1.0 | 0     | 0  | 0   | 0   | 3   |

#### XVI ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams      | $\checkmark$ | SEE Exams       | $\checkmark$ | Assignments   | -            |
|----------------|--------------|-----------------|--------------|---------------|--------------|
| Quiz           | -            | Tech - Talk     | $\checkmark$ | Certification | -            |
| Term Paper     | -            | Seminars        | -            | Student Viva  | -            |
| Laboratory     | -            | 5 Minutes Video | $\checkmark$ | Open Ended    | $\checkmark$ |
| Practices      |              | / Concept Video |              | Experiments   |              |
| Micro Projects | -            | -               | -            | -             | -            |

#### XVII ASSESSMENT METHODOLOGY-INDIRECT:

| $\checkmark$ | Early Semester Feedback          | $\checkmark$ | End Semester OBE Feedback                    |
|--------------|----------------------------------|--------------|----------------------------------------------|
| $\checkmark$ | Assessment of activities / Model | ing and      | Experimental Tools in Engineering by Experts |

#### XVIII SYLLABUS:

| MODULE I   | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Introduction to Radar - Radar frequency bands and Applications; Radar<br>Range equation; Pulse Radar: Block diagram and Operation; Maximum<br>unambiguous range; Radar wave forms; Prediction of Target range; Minimum<br>detectable signal; Receiver noise, Receiver Bandwidth, SNR; Probability of<br>False alarm, Probability of Target Detection, Integration of echo pulses- SNR<br>improvement; Radar Cross Section (RCS) of targets; RCS fluctuation models,<br>transmitter power, PRF and Range ambiguities; system losses.                                                                                                                                                                                                        |
| MODULE II  | CW AND FREQUENCY MODULATED RADAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Moving Targets and Doppler Frequency; CW Radar: Introduction, Block<br>Diagram, Isolation between transmitter and receiver, Non-zero IF receiver,<br>Receiver bandwidth requirements, Applications; Frequency Modulated CW<br>radar: Range and Doppler measurement, Mathematical Analysis, Block<br>Diagram and characteristics, FM-CW altimeter, multiple frequency CW<br>radar, Ambiguity Diagram and its application, Concept of pulse compression,<br>Pulse Compression Radars: FM and Phase Coded Radars.                                                                                                                                                                                                                             |
| MODULE III | MOVING TARGET INDICATION AND PULSE DOPPLER<br>RADAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Moving target indication (MTI) on A scope, butterfly effect, MTI using delay<br>line canceller (DLC), Doppler measurement using Pulse radar, MTI radar<br>(with power amplifier transmitter), MTI radar (with power oscillator<br>transmitter), filter characteristics of DLC, blind speeds, double DLCs, Blind<br>speeds, Staggered PRFs. Range gated doppler filters, MTI radar parameters,<br>moving target detector; MTI radar performance: Parameter Definitions,<br>limitations to MTI performance, non-coherent MTI. Pulse doppler radar;<br>MTI radar versus Pulse Doppler radar                                                                                                                                                   |
| MODULE IV  | TRACKING RADAR AND RADAR DETECTION IN NOISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Search and Tracking radars, track while scan (TWS) radar, Angle/Bearing<br>Tracking: Sequential Lobing, Conical scan, Monopulse methods; Monopulse<br>Tracking: Amplitude comparison (1D, 2D), Phase comparison, Bearing errors<br>(without mathematical treatment), Glint Noise and Frequency Agility,<br>Tracking in range, Acquisition, Comparison of trackers, Tracking with<br>Surveillance Radar. Matched Filter (MF) receiver, MF response<br>characteristics; Correlation Receiver, Efficiency of non matched filters,<br>Matched filter with non-white noise, Automatic Detection of radar signals:<br>Tapped Delay Line (TDL) detection, CFAR receiver, Radar Clutter: Land<br>and Sea clutter (without mathematical treatment). |

# MODULE VRADAR TRANSMITTERS AND RECEIVERSAdvantages and Disadvantages of Magnetron Oscillator, Klystron Amplifier,<br/>Traveling wave tube (TWT) Amplifier, Hybrid Linear-Beam Amplifier and<br/>Crossed-Field Amplifiers, Solid State Sources and Amplifiers, Methods for<br/>employing solid-state transmitters. Receiver Noise Figure (NF) - Noise<br/>Temperature; Measurement of NF, NF of Mixers, Basics of Radar Displays<br/>and Duplexers; Phased array antennas: Current and Radiation pattern, Beam<br/>steering and effects, Basics of Antenna feeds and Phase shifters

#### TEXTBOOKS

1. Merrill I Skolnik, "Introduction to Radar Systems", TMH Special Indian Edition, 2nd Edition, 2007.

#### **REFERENCE BOOKS:**

1. Merrill I Skolnik , "Radar Handbook", McGraw-Hill Professional Publishing, 3nd Edition, 2008

#### XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                          | CO's | Reference   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
|      | OBE DISCUSSION                                                                                                                                |      |             |
| 1    | Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes (CO),<br>Program Outcomes (PO) and CO - PO Mapping | -    | W1          |
|      | CONTENT DELIVERY (THEO                                                                                                                        | RY)  |             |
| 2    | Radar frequency bands and Applications; Radar Range equation                                                                                  | CO 1 | T1: 1.1-1.3 |
| 3    | Pulse Radar: Block diagram and Operation;<br>Maximum unambiguous range                                                                        | CO 1 | T1: 1.4-1.6 |
| 4    | Receiver Bandwidth, SNR; Probability of False alarm                                                                                           | CO 2 | T1:2.1-2.2  |
| 5    | Probability of Target Detection, Integration of echo<br>pulses- SNR improvement                                                               | CO 2 | T1:2.3-2.4  |
| 6    | Radar Cross Section (RCS) of targets                                                                                                          | CO 1 | T1:2.7-2.12 |
| 7    | RCS fluctuation models, transmitter power, PRF and Range ambiguities; system losses                                                           | CO 1 | T1:2.7-2.12 |
| 8    | system losses                                                                                                                                 | CO 1 | T1:2.7-2.12 |
| 9    | Moving Targets and Doppler Frequency                                                                                                          | CO 4 | T1:3.1-3.2  |
| 10   | CW Radar: Introduction, Block Diagram, Isolation<br>between transmitter and receiver, Non-zero IF<br>receiver,                                | CO 4 | T1:3.3-3.4  |
| 11   | Non-zero IF receiver                                                                                                                          | CO 4 | T1:3.5-3.6  |
| 12   | Frequency Modulated CW radar: Range and<br>Doppler measurement, Mathematical Analysis,                                                        | CO 4 | T1:3.7-3.8  |
| 13   | Block Diagram and characteristics, FM-CW altimeter                                                                                            | CO 4 | T1:3.6-3.7  |
| 14   | multiple frequency CW radar                                                                                                                   | CO 4 | T1:3.8-3.9  |

|    |                                                                                                                 |      | I                         |
|----|-----------------------------------------------------------------------------------------------------------------|------|---------------------------|
| 15 | Moving target indication (MTI) on A scope                                                                       | CO 5 | T1:4.1-4.4                |
| 16 | butterfly effect, MTI using delay line canceller<br>(DLC) Doppler measurement using Pulse radar,<br>MTI radar . | CO 5 | T1:4.5-4.8                |
| 17 | Doppler measurement using Pulse radar, MTI radar                                                                | CO 5 | T1:4.9-4.10               |
| 18 | Range gated doppler filters, MTI radar parameters                                                               | CO 6 | T1:5.1-5.3                |
| 19 | moving target detector; MTI radar performance:<br>Parameter Definitions,                                        | CO 6 | T1:4.1-4.10               |
| 19 | limitations to MTI performance                                                                                  | CO 6 | T1:4.1-4.10               |
| 20 | Search and Tracking radars, track while scan<br>(TWS) radar, Angle/Bearing Tracking: Sequential<br>Lobing       | CO 6 | T1:5.1-5.2                |
| 21 | Conical scan, Monopulse methods; Monopulse<br>Tracking                                                          | CO 6 | T1:5.3-5.4                |
| 22 | Amplitude comparison, Phase comparison, Bearing errors                                                          | CO 6 | T1:5.5-5.6                |
| 23 | Glint Noise and Frequency Agility, Tracking in range, Acquisition,                                              | CO 6 | T1:5.7-5.8                |
| 24 | Comparison of trackers                                                                                          | CO 6 | T1:5.8-5.10               |
| 25 | Tracking with Surveillance Radar                                                                                | CO 6 | T1:5.9-5.10               |
| 26 | MF response characteristics; Correlation Receiver                                                               | CO 3 | T1:10.1- 10.3             |
| 27 | Efficiency of non matched filters,                                                                              | CO 3 | T1:10.4- 10.5             |
| 28 | Matched filter with non-white noise                                                                             | CO 6 | T1:10.6- 10.7             |
| 29 | Automatic Detection of radar signals                                                                            | CO 6 | T1:10.8- 10.9             |
| 30 | Tapped Delay Line (TDL) detection, CFAR receiver                                                                | CO 6 | T1: 10.8 T1:<br>13.1-13.2 |
| 31 | Radar Clutter: Land and Sea clutter                                                                             | CO 5 | T1: 10.8 T1:<br>13.3-13.4 |
| 32 | Advantages and Disadvantages of Magnetron<br>Oscillator                                                         | CO 5 | T1:6.1-6.3                |
| 33 | Klystron Amplifier, Traveling wave tube (TWT)<br>Amplifier                                                      | CO 5 | T1:6.4-6.6                |
| 34 | SHybrid Linear-Beam Amplifier                                                                                   | CO 5 | T1:6.1-6.6                |
| 35 | Crossed-Field Amplifiers                                                                                        | CO 5 | T1:6.1-6.6                |
| 36 | Receiver Noise Figure (NF)                                                                                      | CO 5 | T1:9.1-9.5 T1:<br>8.1-8.3 |
| 37 | NF of Mixers                                                                                                    | CO 6 | T1:9.1-9.5                |
| 38 | Basics of Radar Displays and Duplexers                                                                          | CO 4 | T1:9.1-9.5                |
| 39 | Phased array antennas: Current and Radiation pattern                                                            | CO 4 | T1:9.1-9.3 T1:<br>8.1-8.3 |
| 40 | Beam steering and effects                                                                                       | CO 4 | T1:9.4-9.5 T1:<br>8.3-8.4 |
| 41 | Basics of Antenna feeds and Phase shifters                                                                      | CO 5 | T1:9.6-9.7 T1:<br>8.5-8.8 |

|                             | PROBLEM SOLVING/ CASE STUDIES                    |         |                 |  |
|-----------------------------|--------------------------------------------------|---------|-----------------|--|
| 42                          | Radar Range equation                             | CO 2    | T1-4.3.1-4.3.1  |  |
| 43                          | Maximum unambiguous range                        | CO 2    | R4- 6.8-6.9 R4- |  |
|                             |                                                  |         | 6.14- 6.15      |  |
| 44                          | Pulse Radar                                      | CO 2    | T1-4.4- 4.5     |  |
| 45                          | Cut off frequency of rectangular waveguide       | CO 3    | T1 -4.6         |  |
| 46                          | CW Radar                                         | CO 4    | T1-10.1.1-      |  |
|                             |                                                  |         | 10.1.2          |  |
| 47                          | FM-CW Radar                                      | CO 4    | T1-7.1-7.3      |  |
| 48                          | Doppler measurement using Pulse radar            | CO 4    | T1-8.1-8.3      |  |
| 49                          | MTI Radar                                        | CO 5    | R4-7.2          |  |
| 50                          | delay line canceller (DLC)                       | CO 5    | R4- 7.13        |  |
| 51                          | Tracking radars                                  | CO 5    | T1-8.5-8.6      |  |
| 52                          | Klystron Amplifier                               | CO 5    | T1-8.6-8.7      |  |
| 53                          | Receiver Noise Figure (NF)                       | CO 6    | T1-9.1-9.3      |  |
| 54                          | Crossed-Field Amplifiers                         | CO 5    | T1-11.4         |  |
| 55                          | Phased array antennas                            | CO 5    | T1-11.5         |  |
| 56                          | Antenna feeds and Phase shifters                 | CO 6    | T1-11.5         |  |
|                             | DISCUSSION OF DEFINITION AND TE                  | RMINOLO | DGY             |  |
| 57                          | Introduction                                     | CO 2    | T1-4.3.1-4.3.1  |  |
| 58                          | CW and frequency modulated radar                 | CO 5    | R4- 7.13        |  |
| 59                          | Moving Target Indication and Pulse Doppler radar | CO 6    | T1-9.1-9.3      |  |
| 60                          | Tracking radar and radar detection in noise      | CO 6    | T1-9.4-9.6      |  |
| 61                          | Radar Transmitters and Receivers                 | CO 6    | T1-11.5         |  |
| DISCUSSION OF QUESTION BANK |                                                  |         |                 |  |
| 62                          | Introduction lines                               | CO 2    | T1-4.3.1-4.3.1  |  |
| 63                          | CW and frequency modulated radar                 | CO 5    | R4- 7.13        |  |
| 64                          | Moving Target Indication and Pulse Doppler radar | CO 6    | T1-9.1-9.3      |  |
| 65                          | Tracking radar and radar detection in noise      | CO 6    | T1-9.4-9.6      |  |
| 66                          | Radar Transmitters and Receivers                 | CO 6    | T1-11.5         |  |

Signature of Course Coordinator Ms P.Annapurna Assistant Professor HOD,ECE



#### **INSTITUTE OF AERONAUTICAL ENGINEERING** (Autonomous)

Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department         | eartment ELECTRONICS AND COMMUNICATI |           |         | ICATION EN | GINEERING |
|--------------------|--------------------------------------|-----------|---------|------------|-----------|
| Course Title       | WIRELESS COMMUNICATIONS AND NETWORKS |           |         | ORKS       |           |
| Course Code        | AECB42                               |           |         |            |           |
| Program            | B.Tech                               |           |         |            |           |
| Semester           | VI                                   |           |         |            |           |
| Course Type        | Professional Elective                |           |         |            |           |
| Regulation         | R-18                                 |           |         |            |           |
|                    |                                      | Theory    |         | Pra        | ctical    |
| Course Structure   | Lecture                              | Tutorials | Credits | Laboratory | Credits   |
|                    | 3                                    | -         | 3       | -          | -         |
| Course Coordinator | Mr. A Prashanth, Assistant Professor |           |         |            |           |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites          |
|--------|-------------|----------|------------------------|
| B.Tech | AEC005      | IV       | Analog Communications  |
| B.Tech | AEC009      | V        | Digital Communications |

#### **II COURSE OVERVIEW:**

This course is intended to provide an overview of transmitting information from one point to another without using any connection like wires, cables or any physical medium. It covers the fundamentals of cellular communications, radio propagation, equalization, diversity and wireless networks. It focuse on performance analysis and design of a wireless communication system such as mobile telephone, satellite communication, TV and radio transmissions.

#### **III MARKS DISTRIBUTION:**

| Subject                                 | SEE Examination | CIE Examination | Total Marks |
|-----------------------------------------|-----------------|-----------------|-------------|
| Wireless Communications<br>and Networks | 70 Marks        | 30 Marks        | 100         |

#### IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | $\checkmark$ | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|---|--------|
| x            | Open Ended Experiments    | x            | Seminars     | x            | Mini Project | x | Videos |
| x            | Others                    |              |              |              |              |   |        |

#### **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with

"either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 70%                           | Understand            |
| 10%                           | Apply                 |
| 20%                           | Analyze               |
| 0%                            | Evaluate              |
| 0%                            | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

| Component          |          | Total Marks |     |    |
|--------------------|----------|-------------|-----|----|
| Type of Assessment | CIE Exam | Quiz        | AAT |    |
| CIA Marks          | 20       | 05          | 05  | 30 |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The concepts of frequency reuse, handoff, multipath channels and multiple access techniques used in wireless communication systems. |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| II  | The process of fading mechanism, types of equalizers and diversity techniques.                                                      |
| III | The wireless network standards together with network protocols.                                                                     |

#### VII COURSE OUTCOMES:

| After | successful | completion | of | the | course, | students | should | $\mathbf{be}$ | able to: |  |
|-------|------------|------------|----|-----|---------|----------|--------|---------------|----------|--|
|       |            | 1          |    |     |         |          |        |               |          |  |

| CO 1 | <b>Demonstrate</b> the functioning of a cellular system for implementing | Understand |
|------|--------------------------------------------------------------------------|------------|
|      | technical challenges.                                                    |            |
| CO 2 | Summarize the propagation mechanisms and radio wave propagation          | Understand |
|      | to know the behavior of radio waves                                      |            |
| CO 3 | Apply the channel path loss models for the reduction in power density    | Apply      |
|      | (attenuation) of an electromagnetic wave.                                |            |
| CO 4 | <b>Identify</b> the multiple access schemes and techniques for providing | Apply      |
|      | multiple users on a single channel.                                      |            |
| CO 5 | Analyze the process of equalization and diversity schemes carried out    | Analyze    |
|      | in mobile devices for reduced distortion of received signals.            |            |
| CO 6 | Classify the types of wireless local area networks and networking        | Understand |
|      | standards for implementing the network of computing devices.             |            |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



#### **BLOOMS TAXONOMY**

#### VIII PROGRAM OUTCOMES:

|      | Program Outcomes                                                              |  |  |  |  |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science,    |  |  |  |  |  |  |  |  |  |  |
|      | engineering fundamentals, and an engineering specialization to the solution   |  |  |  |  |  |  |  |  |  |  |
|      | of complex engineering problems.                                              |  |  |  |  |  |  |  |  |  |  |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review research literature, and |  |  |  |  |  |  |  |  |  |  |
|      | analyze complex engineering problems reaching substantiated conclusions       |  |  |  |  |  |  |  |  |  |  |
|      | using first principles of mathematics, natural sciences, and engineering      |  |  |  |  |  |  |  |  |  |  |
|      | sciences.                                                                     |  |  |  |  |  |  |  |  |  |  |
| PO 3 | <b>Design/Development of Solutions:</b> Design solutions for complex          |  |  |  |  |  |  |  |  |  |  |
|      | Engineering problems and design system components or processes that meet      |  |  |  |  |  |  |  |  |  |  |
|      | the specified needs with appropriate consideration for the public health and  |  |  |  |  |  |  |  |  |  |  |
|      | safety, and the cultural, societal, and Environmental considerations          |  |  |  |  |  |  |  |  |  |  |

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis                                                                                                                                                           |
|       | conclusions.                                                                                                                                                                                                                                                                                             |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |
| PO 6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | Life-Long Learning: Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                                  |

#### IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | PROGRAM OUTCOMES                                   | Strength | Proficiency<br>Assessed by |
|------|----------------------------------------------------|----------|----------------------------|
| PO 1 | Engineering knowledge: Apply the                   | 2        | SEE / CIE /                |
|      | knowledge of mathematics, science, engineering     |          | QUIZ / AAT                 |
|      | fundamentals, and an engineering specialization    |          |                            |
|      | to the solution of complex engineering problems.   |          |                            |
| PO 2 | Problem analysis: Identify, formulate, review      | 1        | SEE / CIE /                |
|      | research literature, and analyze complex           |          | QUIZ / AAT                 |
|      | engineering problems reaching substantiated        |          |                            |
|      | conclusions using first principles of mathematics, |          |                            |
|      | natural sciences, and engineering sciences.        |          |                            |
| PO 4 | Conduct Investigations of Complex                  | 2        | SEE / CIE /                |
|      | <b>Problems:</b> Use research-based knowledge and  |          | QUIZ / AAT                 |
|      | research methods including design of               |          |                            |
|      | experiments, analysis and interpretation of data,  |          |                            |
|      | and synthesis of the information to provide valid  |          |                            |
|      | conclusions.                                       |          |                            |

3 = High; 2 = Medium; 1 = Low

| I     | PROGRAM SPECIFIC OUTCOMES                          | $\mathbf{Strength}$ | Proficiency<br>Assessed<br>by |
|-------|----------------------------------------------------|---------------------|-------------------------------|
| PSO 1 | Build embedded software and digital circuit        | —                   |                               |
|       | development platform for robotics, embedded        |                     |                               |
|       | systems and digital signal processing applications |                     |                               |
| PSO 2 | Focus on the Application Specific Integrated       | _                   | _                             |
|       | Circuits (ASIC) prototype designs, Virtual         |                     |                               |
|       | Instrumentation and System on Chip (SOC)           |                     |                               |
|       | designs.                                           |                     |                               |
| PSO 3 | Make use of High Frequency Structure Simulator     | 2                   | Research                      |
|       | (HFSS) for modeling and evaluating the patch and   |                     | papers                        |
|       | smart antennas for wired and wireless              |                     | /Project                      |
|       | communication applications.                        |                     |                               |

3 = High; 2 = Medium; 1 = Low

#### XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              |              | PSO'S |              |    |    |    |    |    |    |    |    |     |     |              |
|----------|--------------|--------------|-------|--------------|----|----|----|----|----|----|----|----|-----|-----|--------------|
| COURSE   | PO           | PO           | PO    | PO           | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO | PSO          |
| OUTCOMES | 1            | 2            | 3     | 4            | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3            |
| CO 1     | $\checkmark$ | -            | -     | -            | -  | -  | -  | -  | -  | -  | -  |    | -   | -   | -            |
| CO 2     | $\checkmark$ | $\checkmark$ | -     | $\checkmark$ | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | $\checkmark$ |
| CO 3     | $\checkmark$ | $\checkmark$ | -     | -            | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | $\checkmark$ |
| CO 4     | $\checkmark$ | $\checkmark$ | -     | -            |    | -  | -  | -  | -  | -  | -  |    | -   | -   | -            |
| CO 5     | $\checkmark$ | -            | -     | -            | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -            |
| CO 6     | $\checkmark$ | $\checkmark$ | -     | -            |    | -  | -  | -  | -  | -  | -  | -  | -   | -   | $\checkmark$ |

#### XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                          | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Understand the cell structure and handoff (knowledge)<br>for understanding wireless system by applying the<br>principles of science to engineering problems.  | 1                                      |
| CO 2               | PO 1          | Understand the concept (knowledge) of channel capacity and co-channel interference for considering design parameters.                                         | 2                                      |
|                    | PO 2          | Finding the channel interfernce and review the fading operations by analyzing complex engineering problems                                                    | 3                                      |
|                    | PO 4          | Knowledge of the channel interfernce<br>characteristics and ability to apply modeling<br>techniques of fading operations by analyzing<br>engineering problems | 5                                      |
|                    | PSO 3         | Illustrate the concept of channel capacity for <b>wireless</b> communication.                                                                                 | 1                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                           | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 3               | PO 1          | Illustrate the radio wave propagation (knowledge)<br>used in propagation mechanisms by applying the<br>principles of mathematics and science for<br>solving complex engineering problems.                      | 2                                      |
|                    | PO 2          | Understand the radio wave propagation and <b>formulate</b><br>to the propagation mechanisms using principles of<br><b>mathematics and engineering science.</b>                                                 | 3                                      |
|                    | PSO 3         | Illustrate the concept of radio wave propagation for <b>wireless communication.</b>                                                                                                                            | 1                                      |
| CO 4               | PO 1          | Analyze (knowledge) the channel path loss models and<br>transmission operations by <b>analyzing complex</b><br><b>engineering problems</b> using the principles of<br><b>mathematics, engineering science.</b> | 2                                      |
|                    | PO 2          | Understand the channel path loss models problem<br>statement and finding the solution<br>implementation of fading operations by analyzing<br>complex engineering problems                                      | 3                                      |
| CO 5               | PO 1          | Identify parameters of mobile multipath channels<br>forsolvingcomplex engineeringproblemsgenerates<br>by applyingmathematics, scienceandengineering<br>fundamentals.                                           | 3                                      |
| CO 6               | PO 1          | Discuss (Understand) different types of multiple access <b>(knowledge)</b> for specifying multiple users over a single channel.                                                                                | 2                                      |
|                    | PO 2          | Identify the parameters of multiple access schemes<br>problem statements using mathematics<br>principles.                                                                                                      | 2                                      |
|                    | PSO 3         | Illustrate the concept of channel capacity for <b>wireless</b> communication.                                                                                                                                  | 1                                      |

## XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    |                                     | PSO'S |   |   |   |   |   |   |    |    |    |     |     |     |
|----------|----|-------------------------------------|-------|---|---|---|---|---|---|----|----|----|-----|-----|-----|
| COURSE   | PO | PO |       |   |   |   |   |   |   |    |    |    | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                                   | 3     | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1   | 2   | 3   |
| CO 1     | 1  | -                                   | -     | - | - | - | - | - | - | -  | -  |    | -   | -   | -   |
| CO 2     | 2  | 3                                   | -     | 5 | - | - | - | - | - | -  | -  | -  | -   | -   | 1   |
| CO 3     | 2  | 3                                   | -     | - | - | - | - | - | - | -  | -  | -  | -   | -   | 1   |
| CO 4     | 2  | 3                                   | -     | 5 |   | - | - | - | - | -  | -  |    | -   | -   | -   |
| CO 5     | 3  | -                                   | -     | - | - | - | - | - | - | -  | -  | -  | -   | -   | -   |
| CO 6     | 2  | 2                                   | -     | - | - | - | - | - | - | -  | -  |    | -   | -   | 1   |

#### XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          |      |      | PSO'S |      |    |    |    |    |    |    |    |    |     |     |     |
|----------|------|------|-------|------|----|----|----|----|----|----|----|----|-----|-----|-----|
| COURSE   | PO   | РО   | PO    | PO   | РО | PO | PSO | PSO | PSO |
| OUTCOMES | 1    | 2    | 3     | 4    | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO 1     | 33.3 | -    | -     | -    | -  | -  | -  | -  | -  | -  | -  |    | -   | -   | -   |
| CO 2     | 66.6 | 30.0 | -     | 45.5 | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 50  |
| CO 3     | 66.6 | 30.0 | -     | -    | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 50  |
| CO 4     | 66.6 | 30.0 | -     | 45.5 |    | -  | -  | -  | -  | -  | -  |    | -   | -   | -   |
| CO 5     | 100  | -    | -     | -    | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 6     | 66.6 | 30.0 | -     | -    |    | -  | -  | -  | -  | -  | -  |    | _   | -   | 50  |

**XV** COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- **1** -5 <C $\leq$  40% Low/ Slight
- $\pmb{2}$  40 % < C < 60% Moderate
- 3 60% < C < 100% Substantial /High

|          |     |    | PSO'S |    |    |    |    |    |    |    |    |    |     |     |     |
|----------|-----|----|-------|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| COURSE   | PO  | PO | PO    | PO | PO | PO | РО | РО | PO | PO | PO | PO | PSO | PSO | PSO |
| OUTCOMES | 1   | 2  | 3     | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
| CO 1     | 1   | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 2     | 2   | 1  | -     | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 2   |
| CO 3     | 2   | 1  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 2   |
| CO 4     | 2   | 1  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 5     | 3   | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 6     | 2   | 1  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 2   |
| TOTAL    | 12  | 4  | -     | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 6   |
| AVERAGE  | 1.2 | 1  | -     | 2  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 2   |

#### XVI ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams      | $\checkmark$ | SEE Exams       | $\checkmark$ | Assignments   | $\checkmark$ |
|----------------|--------------|-----------------|--------------|---------------|--------------|
| Quiz           | $\checkmark$ | Tech - Talk     | -            | Certification | -            |
| Term Paper     | -            | Seminars        | -            | Student Viva  | -            |
| Laboratory     | -            | 5 Minutes Video | -            | Open Ended    | -            |
| Practices      |              | / Concept Video |              | Experiments   |              |
| Micro Projects | -            |                 |              |               |              |

#### XVII ASSESSMENT METHODOLOGY-INDIRECT:

| ~ | Early Semester Feedback            | $\checkmark$ | End Semester OBE<br>Feedback                 |
|---|------------------------------------|--------------|----------------------------------------------|
| X | Assessment of activities / Modelin | g and        | Experimental Tools in Engineering by Experts |

#### XVIII SYLLABUS:

| MODULE I   | THE CELLULAR CONCEPT SYSTEM DESIGN<br>FUNDAMENTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Introduction, frequency reuse, channel assignment strategies, handoff<br>strategies; Prioritizing handoffs, practical handoff considerations, interference<br>and system capacity; Co-channel interference and system capacity, channel<br>planning for wireless systems, adjacent channel interference, power control for<br>reducing interference, trunking and grade of service, improving coverage and<br>capacity in cellular systems; Cellsplitting, sectoring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MODULE II  | MOBILE RADIO PROPAGATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Large-Scale Path Loss: Introduction to radio wave propagation, free space<br>propagation model, relating power to electric field, the three basic<br>propagation mechanisms; Reflection: Reflection from dielectrics, Brewster<br>angle, reflection from prefect conductors, ground reflection (Two-Ray) mode;<br>Diffraction Fresnel zone geometry, knife-edge diffraction model, multiple<br>knife-edge diffraction, scattering, outdoor propagation models; Longley-Ryce<br>model, Okumura Model, HataModel, PCS extension to hata Model, Walfisch<br>and Bertoni model, wideband PCS microcell model, indoor propagation<br>models-partition losses (Same Floor), partition losses between floors,<br>log-distance path loss model, ericsson multiple breakpointmodel, attenuation<br>factor model, signal penetration into buildings, ray tracing and site specific<br>modeling.                                                                                                                  |
| MODULE III | CELLULAR SYSTEM DESIGN FUNDAMENTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | Small-scale fading and multipath: Small scale multipath propagation; Factors<br>influencing small scale fading, Doppler shift, impulse response model of a<br>multipath channel; Relationship between bandwidth and received power,<br>small; Scale multipath measurements; Direct RF pulse system, spread<br>spectrum sliding correlator channel sounding, frequency domain channels<br>sounding, parameters of mobile multipath channels; Time dispersion<br>parameters. Coherence Bandwidth, Doppler spread and coherence time, types<br>of small - Scale fading; Fading effects due to multipath time delay spread, flat<br>fading, frequency selective fading, fading effects due to Doppler Spread-Fast<br>fading, slow fading, statistical models for multipath fading channels; Clarkes<br>model for flatfading, spectral shape due to Doppler spread in Clarkes model,<br>simulation of Clarke and Gans Fading model, level crossing and fading<br>statistics, two-ray Rayleigh fading model. |
| MODULE IV  | EQUALIZATION AND DIVERSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Introduction, fundamentals of equalization, training a generic adaptive<br>equalizer, equalizers in a communication receiver, linear equalizers, non-linear<br>equalization; Decision feedback equalization (DFE), maximum likelihood<br>sequence estimation (MLSE) equalizer, algorithms for adaptive equalization;<br>Zero forcing algorithm, least mean square algorithm, recursive least squares<br>algorithm; Diversity techniques; Derivation of selection diversity<br>improvement, derivation of maximal ratio combining improvement, practical<br>space diversity consideration; Selection diversity, feedback or scanning<br>diversity, maximal ratio combining, equal gain combining, polarization<br>diversity, frequencydiversity, time diversity, RAKE receiver.                                                                                                                                                                                                                         |

MODULE VWIRELESS NETWORKSIntroduction to wireless networks, advantages and disadvantages of wireless<br/>local area networks, WLAN topologies, WLAN standard IEEE 802.11, IEEE<br/>802.11 medium access control, comparison of IEEE802.11 a,b,g and n<br/>standards, IEEE 802.16 and its enhancements, wireless PANs, Hipper LAN,<br/>WLL.

#### **TEXTBOOKS**

- 1. Theodore.S. Rapport, —Wireless Communications  $\|\,,$  Pearson Education, 2nd Edition, 2010.
- 2. UpenDalal, "Wireless communication", oxford University press.
- 3. KavehPahlvan, Prashant Krishnamurthy, "Principle of wireless networks", A United Approach<sup>||</sup>, Pearson Education, 2004.
- 4. Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2005.

#### **REFERENCE BOOKS:**

- 1. P.Nicopolitidis, M.S. Obaidat, G.I.Papadimitria, A.S. Pomportsis," Wireless Networks" John Wiley and sons, 1st Edition, 2003.
- 2. Vijay K Garg,"Wireless Communications and Networks", Morgan Kaufmann Publishers an Imprint of Elsevier, USA 2009 (Indian Reprint).
- 3. Mark Ciampa Jorge Olenewa, "wireless communication and Networking", IE, 2009.
- 4. X.Wang, H.V.Poor, Wireless communication system, Pearson Education, 2004.
- 5. JochenSchiller," Mobile Communication", Pearson Education, 2nd Edition, 2003.

#### WEB REFERENCES:

1. https://lms.iare.ac.in/index ?route=course/details& course id\_137

#### COURSE WEB PAGE: XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                          | CO's | Reference T1: 4.1 |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|--|--|--|--|--|
|      | OBE DISCUSSION                                                                                                                                |      |                   |  |  |  |  |  |
| 1    | Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes<br>(CO), Program Outcomes (PO)and CO-PO<br>Mapping | _    |                   |  |  |  |  |  |
|      | CONTENT DELIVERY (THEORY)                                                                                                                     |      |                   |  |  |  |  |  |
| 2    | Frequency reuse and channel assignment strategies.                                                                                            | CO 1 | T1-3.1-3.2        |  |  |  |  |  |
| 3    | Handoff strategies: Prioritizing handoffs,<br>practical handoff considerations.                                                               | CO 1 | T1-3.3-3.4        |  |  |  |  |  |
| 4    | Co-channel interference and system capacity                                                                                                   | CO 1 | T1-3.3-3.4        |  |  |  |  |  |
| 5    | Trunking and grade of service                                                                                                                 | CO 1 | T1-3.5            |  |  |  |  |  |

| C  | T · 1 · · 11 1                                                                                         | 00.1 | <b>T</b> 1 4 9 |
|----|--------------------------------------------------------------------------------------------------------|------|----------------|
| 6  | Improving coverage and capacity in cellular systems: Cell splitting, sectoring.                        | COI  | 11-4.2         |
| 9  | Introduction to radio wave propagation                                                                 | CO2  | T1-4.4         |
| 10 | Free space propagation model and relating power<br>to electric field                                   | CO 2 | T15.1,4.5.2    |
| 11 | Reflection: Reflection from dielectrics                                                                | CO 2 | T1-4.6         |
| 12 | Diffraction Fresnel zone geometry and knife-edge diffraction                                           | CO 3 | T1-4.7         |
| 13 | Scattering and outdoor propagation models                                                              | CO 3 | T1-4.10        |
| 15 | Longley-Ryce model and okumura Model,                                                                  | CO 3 | T1-4.10.6      |
| 16 | Indoor propagation models-partition losses (Same Floor) and partition losses between floors            | CO 3 | T1-4.11        |
| 18 | Ericsson multiple break point model and attenuation factor model,                                      | CO 3 | T1-4.2         |
| 19 | Small-scale fading and multipath                                                                       | CO 3 | T1-5.1.1       |
| 20 | Factors influencing small scale fading                                                                 | CO 3 | T1-5.1.1       |
| 21 | Relationship between bandwidth and received power                                                      | CO3  | T1-5.1.1       |
| 22 | Spread spectrum sliding correlator channel<br>sounding and parameters of mobile multipath<br>channels  | CO 4 | T1-5.2         |
| 23 | Coherence bandwidth and doppler spread and coherence time, types of small - Scale fading.              | CO 4 | T1-5.3         |
| 25 | Fading effects due to multipath time delay spread                                                      | CO 3 | T1-5.3.2       |
| 26 | Slow fading, statistical models for multipath fading channels                                          | CO 3 | T1-5.3.3,5.4   |
| 27 | Clarkes model for flat fading                                                                          | CO 4 | T1-5.4.2       |
| 28 | Simulation of clarke and gans fading model                                                             | CO 3 | T1-5.5         |
| 29 | Level crossing and fading statistics, two-ray<br>Rayleigh fading model.                                | CO 3 | T1-5.11        |
| 30 | Small scale multipath measurements                                                                     | CO 3 | T1-5.11        |
| 32 | Fading effects due to Doppler Spread-Fast fading                                                       | CO 3 | T1-5.11        |
| 33 | Two-ray Rayleigh fading model                                                                          |      | T1-5.11        |
| 34 | Fundamentals of equalization                                                                           | CO 5 | T1-7.1,7.2     |
| 37 | Training a generic adaptive equalizer                                                                  | CO 5 | T1-7.3,7.4     |
| 39 | Non-linear equalization                                                                                | CO5  | T1-7.6,7.7     |
| 40 | Decision feedback equalization (DFE) and<br>maximum likelihood sequence estimation<br>equalizer (MLSE) | CO 5 | T1-7.7.2       |
| 41 | Algorithms for adaptive equalization                                                                   | CO 5 | T1-7.8         |
| 42 | Derivation of selection diversity improvement                                                          | CO 5 | T1-7.8.1,8.2   |
| 43 | Derivation of maximal ratio combining<br>improvement, practical space diversity<br>consideration       | CO 5 | T1-7.10,11     |
| 44 | Diversity techniques                                                                                   | CO 5 | T1-7.10.2-3    |
| 45 | Polarization diversity and RAKE receiver.                                                              | CO5  | T1-7.10.3      |

| 46 | Introduction to wireless networks               | CO 6    | R3-P184        |  |  |  |  |  |
|----|-------------------------------------------------|---------|----------------|--|--|--|--|--|
| 47 | WLAN topologies and WLAN standard IEEE 802.11   | CO6     | R3-P185        |  |  |  |  |  |
| 48 | Comparison of IEEE802.11 a,b,g and n standards  | CO 6    | R3-P191        |  |  |  |  |  |
| 49 | IEEE 802.16 and its enhancements                | CO 6    | R3-P190        |  |  |  |  |  |
| 50 | Wireless PANs, Hipper LAN, WLL.                 | CO 6    | R3-P191        |  |  |  |  |  |
|    | PROBLEM SOLVING/ CAS                            | E STUDI | ES             |  |  |  |  |  |
| 7  | Problems on grade of service                    | CO 1    | T1-3.1-3.2     |  |  |  |  |  |
| 8  | Problems on probability of cell system          | CO 1    | T1-3.3-3.4     |  |  |  |  |  |
| 14 | Problems on effective aperture                  | CO 2    | T1-4.6         |  |  |  |  |  |
| 17 | Problems on diffraction loss                    | CO 3    | T1-4.7         |  |  |  |  |  |
| 24 | Problems on received power                      | CO 4    | T1-5.1.1       |  |  |  |  |  |
| 31 | Problems on Brewster angle                      | CO 4    | T1-4.6         |  |  |  |  |  |
| 35 | Problems on computation of rms delay            | CO 4    | T1-5.3.2       |  |  |  |  |  |
| 36 | Problems on total power in the carrier          |         | T1-5.1.1       |  |  |  |  |  |
|    | DISCUSSION ON DEFINITION AN                     | D TERM  | INOLOGY        |  |  |  |  |  |
| 51 | Interference in communication                   | CO 1    | T1-3.1-3.24    |  |  |  |  |  |
| 52 | Cluster in a cellular system                    | CO2     | T1-4.1 to 4.9  |  |  |  |  |  |
| 53 | Knife edge diffraction                          | CO3     | T1-5.1 to 5.16 |  |  |  |  |  |
| 54 | Topology                                        | CO 5    | T1-7.1 to 7.17 |  |  |  |  |  |
| 55 | 55 Significance of Equalization                 |         | R3             |  |  |  |  |  |
|    | DISCUSSION ON QUESTION BANK                     |         |                |  |  |  |  |  |
| 56 | The cellular concept system design fundamentals | CO 1    | T1-3.1-3.24    |  |  |  |  |  |
| 57 | Mobile radio propagation                        | CO 2    | T1-4.1 to 4.9  |  |  |  |  |  |
| 58 | Cellular system design fundamentals             | CO3     | T1-5.1 to 5.16 |  |  |  |  |  |
| 59 | Equalization and diversity                      | CO5     | T1-7.1 to 7.14 |  |  |  |  |  |
| 60 | Wireless networks                               | CO 6    | R3             |  |  |  |  |  |

Signature of Course Coordinator

HOD,ECE



## INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department         | Electronnics and Communication Engineering   |              |                 |        |         |  |
|--------------------|----------------------------------------------|--------------|-----------------|--------|---------|--|
| Course Title       | Cellular and Mobile Communications           |              |                 |        |         |  |
| Course Code        | AECB39                                       | I            |                 |        |         |  |
| Program            | B.Tech                                       |              |                 |        |         |  |
| Semester           | VI                                           |              |                 |        |         |  |
| Course Type        | Professional Elective-III                    |              |                 |        |         |  |
| Regulation         | R-18                                         |              |                 |        |         |  |
|                    |                                              | Theory       |                 | Prac   | etical  |  |
| Course Structure   | Lecture Tutorials Credits Laboratory Credits |              |                 |        | Credits |  |
|                    | 3 - 3                                        |              |                 |        |         |  |
| Course Coordinator | Mr B.Sa                                      | nthosh Kumar | , Assistant Pro | fessor |         |  |

#### I COURSE OVERVIEW:

The cellular mobile communication allows the users to communicate with others in different locations without the use of any physical connection. It covers the operation, performance criteria, handoff mechanism and channel assignments of the cellular system. The applications include Wi-Fi, Bluetooth, cell phones and wireless power transfer.

#### **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites          |
|--------|-------------|----------|------------------------|
| B.Tech | AEC005      | IV       | Analog Communications  |
| B.Tech | AEC009      | V        | Digital Communications |

#### **III MARKS DISTRIBUTION:**

| Subject                               | SEE Examination | CIE<br>Examination | Total Marks |
|---------------------------------------|-----------------|--------------------|-------------|
| Cellular and Mobile<br>Communications | 70 Marks        | 30 Marks           | 100         |

#### IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | x | Assignments  | x            | MOOC   |
|--------------|---------------------------|--------------|--------------|---|--------------|--------------|--------|
| $\checkmark$ | Open Ended Experiments    | $\checkmark$ | Techtalk     | x | Mini Project | $\checkmark$ | Videos |
| x            | Others                    |              |              |   |              |              |        |

#### **V EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 10%                           | Remember              |
| 60%                           | Understand            |
| 30%                           | Apply                 |
| 0%                            | Analyze               |
| 0%                            | Evaluate              |
| 0%                            | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

| Component          | Theo               | Total Marks |             |
|--------------------|--------------------|-------------|-------------|
| Type of Assessment | CIE Exam Quiz \AAT |             | 100al Marks |
| CIA Marks          | 25                 | 05          | 30          |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $17^{th}$  week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes,
seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The cellular mobile system, cell coverage, cell site and mobile antennas system for interference reduction.                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | The wireless system standard applications for the Global System for Mobile<br>Communications, Code Division Multiple Access and Time Division Multiple<br>Access technologies. |
| III | The advanced intelligent network for wireless communications and future public land mobile telecommunications.                                                                 |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Demonstrate</b> the cellular mobile system design concepts to<br>improve the Signal to noise ratio and cell coverage                                            | Understand |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CO 2 | <b>Utilize</b> the omni directional and directional antennas to improve<br>the channel capacity and interference reduction for improving the<br>design parameters. | Apply      |
| CO 3 | <b>Find</b> the Co-channel and non co-channel interferences and their parameters to improve the system capacity.                                                   | Remember   |
| CO 4 | <b>Illustrate</b> the importance of Handoff for preventing loss of interruption of services to a caller.                                                           | Understand |
| CO 5 | Make use of the Numbering and grouping, setup access and paging channels for low traffic in the mobile and land originating calls.                                 | Apply      |
| CO 6 | <b>Infer</b> the Intelligent cell concept and advanced intelligent<br>networkfor advanced land mobile telecommunication system.                                    | Understand |

# COURSE KNOWLEDGE COMPETENCY LEVEL



# **BLOOMS TAXONOMY**

# VIII PROGRAM OUTCOMES:

|      | Program Outcomes                                                                                                                                                                                                                                                                                         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2 | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3 | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |
| PO 4 | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5 | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |
| PO 6 | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |

|       | Program Outcomes                                                               |
|-------|--------------------------------------------------------------------------------|
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the            |
|       | professional engineering solutions in societal and environmental contexts, and |
|       | demonstrate the knowledge of, and need for sustainable development.            |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and  |
|       | responsibilities and norms of the engineering practice.                        |
| PO 9  | Individual and team work: Function effectively as an individual, and as a      |
|       | member or leader in diverse teams, and in multidisciplinary settings.          |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering           |
|       | activities with the engineering community and with society at large, such as,  |
|       | being able to comprehend and write effective reports and design                |
|       | documentation, make effective presentations, and give and receive clear        |
|       | instructions.                                                                  |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and               |
|       | understanding of the engineering and management principles and apply these     |
|       | to one's own work, as a member and leader in a team, to manage projects        |
|       | and in multidisciplinary environments.                                         |
| PO 12 | Life-Long Learning: Recognize the need for and having the preparation          |
|       | and ability to engage in independent and life-long learning in the broadest    |
|       | context of technological change                                                |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program                                            | Strength | Proficiency  |
|------|----------------------------------------------------|----------|--------------|
|      |                                                    |          | Assessed by  |
| PO 1 | Engineering knowledge: Apply the                   | 3        | CIE/Quiz/AAT |
|      | knowledge of mathematics, science, engineering     |          |              |
|      | fundamentals, and an engineering specialization    |          |              |
|      | to the solution of complex engineering problems.   |          |              |
| PO 2 | Problem analysis: Identify, formulate, review      | 2        | CIE/Quiz/AAT |
|      | research literature, and analyze complex           |          |              |
|      | engineering problems reaching substantiated        |          |              |
|      | conclusions using first principles of mathematics, |          |              |
|      | natural sciences, and engineering sciences.        |          |              |
| PO 3 | Design/Development of Solutions: Design            | 1        | CIE/Quiz/AAT |
|      | solutions for complex engineering problems and     |          |              |
|      | design system components or processes that         |          |              |
|      | meet the specified needs with appropriate          |          |              |
|      | consideration for the public health and safety,    |          |              |
|      | and the cultural, societal, and Environmental      |          |              |
|      | considerations.                                    |          |              |

3 = High; 2 = Medium; 1 = Low

# X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                                                                                                                                           | Strength | Proficiency                    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|
|       |                                                                                                                                                                   |          | by                             |
| PSO 1 | <b>Build</b> Embedded software and digital circuit<br>development platform for robotics, embedded<br>systems and digital signal processing applications           | _        | _                              |
| PSO 2 | <b>Focus</b> on the Application specific Integrated<br>circuits (ASIC) prototype designs, Virtual<br>Instrumentation and System on Chip (SOC)<br>designs.         |          |                                |
| PSO 3 | Make use of High frequency structure simulator (HFSS) for modeling and evaluating the patch and smart antennas for wired and wireless communication applications. | 3        | Research<br>papers<br>/Project |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

| COURSE   |              |              | PSO'S        |    |    |    |    |    |    |    |    |    |     |     |              |
|----------|--------------|--------------|--------------|----|----|----|----|----|----|----|----|----|-----|-----|--------------|
| OUTCOMES | PO           | PO           | PO           | PO | PO | PO | PO | PO | PO | РО | PO | PO | PSO | PSO | PSO          |
|          | 1            | 2            | 3            | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3            |
| CO 1     | $\checkmark$ | $\checkmark$ | -            | -  | -  | -  | -  | -  | -  | -  | -  |    | -   | -   | -            |
| CO 2     | $\checkmark$ | -            | $\checkmark$ | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -            |
| CO 3     | $\checkmark$ | $\checkmark$ | -            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | $\checkmark$ |
| CO 4     | $\checkmark$ | -            | -            | -  | -  | -  | -  | -  | -  | -  | -  |    | -   | -   | -            |
| CO 5     | $\checkmark$ | -            | $\checkmark$ | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | $\checkmark$ |
| CO 6     | $\checkmark$ | $\checkmark$ | -            | -  | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | $\checkmark$ |

# XII JUSTIFICATIONS FOR CO - (PO, PSO) MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to) | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|------------------------------------------------------|----------------------------------------|
| CO 1               | PO1           | Identify the basic mobile telephone Systems by       | 3                                      |
|                    |               | applying the mathematics, science and                |                                        |
|                    |               | engineering fundamentals to solve the limitations    |                                        |
|                    |               | of the conventional system.                          |                                        |
|                    | P02           | <b>Understand</b> the cellular mobile system design  | 4                                      |
|                    |               | concepts ( <b>problem statement</b> ) and            |                                        |
|                    |               | implementation (solution development) of the         |                                        |
|                    |               | information and general description and              |                                        |
|                    |               | interpretation of the problem.                       |                                        |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                  | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 2               | PO1           | <b>Understand</b> the concept of frequency reuse channels, deduce the co-channel interference reduction factor.                                       | 3                                      |
|                    | PO3           | <b>Outline</b> the concept of frequency channels and desired C/I in an omni directional antenna system.                                               | 2                                      |
| CO 3               | PO1           | <b>Remember</b> concepts of cell coverage for signal and traffic.                                                                                     | 2                                      |
|                    | PO2           | <b>Compare</b> the co-channel and non co-channel interferences, antenna system and their parameters.                                                  | 5                                      |
|                    | PSO3          | <b>Understand</b> impairments due to multipath fading<br>channel and be able simulate standard stochastic<br>channel models for various environments. | 2                                      |
| CO 4               | PO1           | <b>Illustrate</b> the concepts of signal reflects in flat and hilly terrain and phase difference between direct and reflected paths.                  | 2                                      |
| CO 5               | PO1           | Interpret current and proposed cellular technologies                                                                                                  | 2                                      |
|                    | PO3           | <b>Analyze</b> various methodologies to improve the channel capacity and reduce the interferences                                                     | 2                                      |
|                    | PSO3          | Interpret current and proposed cellular technologies                                                                                                  | 2                                      |
| CO 6               | PO1           | <b>Utilize</b> the advanced wireless technologies for future wireless networks .                                                                      | 3                                      |
|                    | PO2           | <b>Illustrate</b> the concepts of signal reflects in flat and hilly terrain and phase difference between direct and reflected paths.                  | 5                                      |
|                    | PSO3          | Able to work in advanced research wireless and mobile cellular networks.                                                                              | 1                                      |

Note: For Key Attributes refer Annexure -  ${\bf I}$ 

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

| COURSE   |    |    |    | PSO'S |    |    |    |    |    |    |    |    |     |     |     |
|----------|----|----|----|-------|----|----|----|----|----|----|----|----|-----|-----|-----|
| OUTCOMES | PO | PO | PO | PO    | PO | PO | PO | РО | PO | РО | PO | PO | PSO | PSO | PSO |
|          | 1  | 2  | 3  | 4     | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
|          | 3  | 10 | 10 | 11    | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2   | 2   |
| CO 1     | 3  | 4  | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 2     | 3  | -  | 2  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 3     | 2  | 5  | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 2   |
| CO 4     | 2  | -  | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 5     | 2  | -  | 2  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 2   |
| CO 6     | 3  | 5  | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 1   |

# XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

| COURSE   |     |    |    | PSO'S |    |    |    |    |    |    |    |    |     |     |     |
|----------|-----|----|----|-------|----|----|----|----|----|----|----|----|-----|-----|-----|
| OUTCOMES | PO  | PO | PO | PO    | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO | PSO |
|          | 1   | 2  | 3  | 4     | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3   |
|          | 3   | 10 | 10 | 11    | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2   | 2   |
| CO 1     | 100 | 40 | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 2     | 100 | -  | 20 | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 3     | 67  | 50 | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 100 |
| CO 4     | 67  | -  | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | -   |
| CO 5     | 67  | -  | 20 | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 100 |
| CO 6     | 100 | 50 | -  | -     | -  | -  | -  | -  | -  | -  | -  | -  | -   | -   | 50  |

# XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- 1- 5<C $\leq$  40% Low/ Slight
- $\pmb{2}$  40 % < C < 60% – Moderate
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

| COURSE   |    |      | ]    | PRO | GR | AM | OUI | [CO] | MES | 5  |    |    | PSO'S |     |      |
|----------|----|------|------|-----|----|----|-----|------|-----|----|----|----|-------|-----|------|
| OUTCOMES | PO | PO   | PO   | PO  | PO | PO | PO  | PO   | PO  | PO | PO | PO | PSO   | PSO | PSO  |
|          | 1  | 2    | 3    | 4   | 5  | 6  | 7   | 8    | 9   | 10 | 11 | 12 | 1     | 2   | 3    |
| CO 1     | 3  | 1    | -    | -   | -  | -  | -   | -    | -   | -  | -  | -  | -     | -   | -    |
| CO 2     | 3  | -    | 1    | -   | -  | -  | -   | -    | -   | -  | -  | -  | -     | -   | -    |
| CO 3     | 3  | 2    | -    | -   | -  | -  | -   | -    | -   | -  | -  | -  | -     | -   | 3    |
| CO 4     | 3  | -    | -    | -   | -  | -  | -   | -    | -   | -  | -  |    | I     | -   | -    |
| CO 5     | 3  | -    | 1    | -   | -  | -  | -   | -    | -   | -  | -  | -  | -     | -   | 3    |
| CO 6     | 3  | 2    | -    | -   | -  | -  | -   | -    | -   | -  | -  | -  | -     | -   | 2    |
| TOTAL    | 18 | 5    | 2    | -   | -  | -  | -   | -    | -   | -  | -  | -  | -     | -   | 8    |
| AVERAGE  | 3  | 1.66 | \$ 1 | -   | -  | -  | _   | -    | -   | _  | _  | -  | -     | -   | 2.66 |

# XVI ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               | $\checkmark$ | SEE Exams                          | $\checkmark$ | Assignments               | $\checkmark$ |
|-------------------------|--------------|------------------------------------|--------------|---------------------------|--------------|
| Quiz                    | $\checkmark$ | Tech - Talk                        | $\checkmark$ | Certification             | -            |
| Term Paper              | -            | Seminars                           | -            | Student Viva              | -            |
| Laboratory<br>Practices | -            | 5 Minutes Video /<br>Concept Video | $\checkmark$ | Open Ended<br>Experiments | $\checkmark$ |
| Micro Projects          | -            | -                                  | -            | -                         | -            |

# XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback               | $\checkmark$ | End Semester OBE Feedback                   |
|--------------|---------------------------------------|--------------|---------------------------------------------|
| $\checkmark$ | Assessment of activities / Modeling a | and E        | xperimental Tools in Engineering by Experts |

# XVIII SYLLABUS:

| MODULE I   | CELLULAR MOBILE RADIO SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Introduction to cellular mobile System, performance criteria, uniqueness<br>of mobile radio environment, operation of cellular systems, hexagonal<br>shaped cells, analog and digital Cellular systems, General description of<br>the problem, concept of frequency channels, Co-channel Interference<br>Reduction Factor, desired C/I from a normal case in a omni directional<br>Antenna system, Cell splitting, consideration of the components of<br>Cellular system.                                                                                                                                                                                                                                                                            |
| MODULE II  | INTERFERENCE AND CELL COVERAGE FOR SIGNAL<br>AND TRAFFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | Introduction to Co-Channel Interference, real time Co-Channel<br>interference, Co-Channel measurement, design of Antenna system,<br>Antenna parameters and their effects, diversity receiver, non-cochannel<br>interference-different types, Signal reflections in flat and hilly terrain,<br>effect of human made structures, phase difference between direct and<br>reflected paths, constant standard deviation, straight line path loss slope,<br>general formula for mobile propagation over water and flat open area,<br>near and long distance propagation antenna height gain, form of point to<br>point model.                                                                                                                              |
| MODULE III | CELL SITE AND MOBILE ANTENNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Sum and difference patterns and their synthesis, omni directional<br>antennas, directional antennas for interference reduction, space diversity<br>antennas, umbrella pattern antennas, minimum separation of cell site<br>antennas, high gain antennas, Numbering and grouping, setup access and<br>paging channels channel assignments to cell sites and mobile units,<br>channel sharing and borrowing, sectorization, overlaid cells, non-fixed<br>channel assignment, Handoff, dropped calls and cell splitting, types of<br>handoff, handoff invitation, delaying handoff, forced handoff, mobile<br>assigned handoff. Intersystem handoff, cell splitting, micro cells, vehicle<br>locating methods, dropped call rates and their evaluation. |
| MODULE IV  | WIRELESS SYSTEMS AND STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Second generation and Third generation Wireless Networks and<br>Standards, WLL, Bluetooth, GSM, IS95, DECT, GSM architecture, GSM<br>channels, multiplex access scheme, TDMA, CDMA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MODULE V   | INTELLIGENT NETWORK FOR WIRELESS<br>COMMUNICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|  | Intelligent cell concept, advanced intelligent network, SS7 network and |
|--|-------------------------------------------------------------------------|
|  | ISDN for AIN, AIN for mobile communication, asynchronous transfer       |
|  | mode technology, future public land mobile telecommunication system,    |
|  | wireless information superhighway                                       |

#### **TEXTBOOKS**

- 1. W.C.Y. Lee, "Mobile Cellular Telecommunications", Tata McGraw-Hill, 2nd Edition, 2006.
- 2. Gordon L. Stuber, "Principles of Mobile Communications", Springer International, 2nd Edition, 2007.
- 3. Yi-Bing Lin and Imrich chlantae, "Wireless and Mobile Network Architecture", John Wiley, 1st Edition, 2006.

#### **REFERENCE BOOKS:**

- 1. Theodore. S. Rapport, "Wireless Communications", 3rd Edition, Pearson Education, 2003.
- 2. Lee, "Wireless and Mobile Communications", McGraw Hill, 3rd Edition, 2006.
- 3. Jon W. Mark and Weihua Zhqung, "Wireless Communication and Networking", PHI, 1st Edition, 2005.
- 4. R. Blake, "Wireless Communication Technology", Thompson Asia Pvt. Ltd., 1st Edition 2004.

#### COURSE WEB PAGE:

https://lms.iare.ac.in/index ?route=course/details course id 127

#### XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                                                           | CO's   | Reference                                                               |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|
|      | OBE DISCUSS                                                                                                                                    | ION    |                                                                         |
| 1    | Course Description on Outcome Based<br>Education (OBE): Course Objectives,<br>Course Outcomes (CO), Program Outcomes<br>(PO) and CO-PO Mapping | -      | https://lms.iare.ac.in/index<br>?route=course/details&<br>course id_127 |
|      | CONTENT DELIVERY                                                                                                                               | (THEOR | (Y)                                                                     |
| 2    | Introduction, Frequency Reuse.                                                                                                                 | CO 1   | T1-3.2-3.3                                                              |
| 3    | Channel Assignment Strategies, Handoff<br>Strategies.                                                                                          | CO 1   | T1-3.3-3.4                                                              |
| 4    | Prioritizing Handoffs, Practical Handoff<br>Considerations                                                                                     | CO 2   | T1-3.3-3.4                                                              |
| 5    | Interference and system capacity -Co<br>channels Interference and system capacity                                                              | CO 2   | T1-3.5                                                                  |
| 6    | Channel planning for Wireless Systems.                                                                                                         | CO 1   | T1-4.2                                                                  |

| 7  | Trunking and Grade of Service                                                                          | CO2  | T1-4.4       |
|----|--------------------------------------------------------------------------------------------------------|------|--------------|
| 8  | Brewster Angle, Reflection from prefect                                                                | CO 2 | T1-4.2       |
|    | conductors                                                                                             |      |              |
| 9  | Reflection: Reflection from dielectrics                                                                | CO 1 | T1-4.6       |
| 10 | The Three Basic Propagation Mechanisms,<br>Reflection-Reflection from Dielectrics                      | CO 3 | T1-4.7       |
| 11 | Scattering and outdoor propagation models                                                              | CO 2 | T1-4.10      |
| 12 | Longley-Ryce model and okumura Model,                                                                  | CO 1 | T1-4.10.6    |
| 13 | Indoor propagation models-partition losses<br>(Same Floor) and partition losses between<br>floors      | CO 3 | T1-4.11      |
| 14 | Ericsson multiple break point model and attenuation factor model,                                      | CO 3 | T1-4.2       |
| 15 | Small-scale fading and multipath                                                                       | CO 2 | T1-5.1.1     |
| 16 | Factors influencing small scale fading                                                                 | CO2  | T1-5.1.1     |
| 17 | Relationship between bandwidth and received power                                                      | CO 2 | T1-5.1.1     |
| 18 | Spread spectrum sliding correlator channel<br>sounding and parameters of mobile<br>multipath channels  | CO 4 | T1-5.2       |
| 19 | Coherence bandwidth and doppler spread<br>and coherence time, types of small - Scale<br>fading.        | CO 4 | T1-5.3       |
| 20 | Fading effects due to multipath time delay spread                                                      | CO 2 | T1-5.3.2     |
| 21 | Slow fading, statistical models for multipath fading channels                                          | CO 3 | T1-5.3.3,5.4 |
| 21 | Clarkes model for flat fading                                                                          | CO 3 | T1-5.4.2     |
| 22 | Ground Reflection (Two-Ray) Model,<br>Diffraction-Fresnel Zone Geometry                                | CO 5 | T1-5.5       |
| 23 | Level crossing and fading statistics, two-ray<br>Rayleigh fading model.                                | CO 5 | T1-5.11      |
| 24 | Small scale multipath measurements                                                                     | CO 3 | T1-5.11      |
| 25 | Fading effects due to Doppler Spread-Fast fading                                                       | CO 6 | T1-5.11      |
| 26 | Two-ray Rayleigh fading model                                                                          | CO 3 | T1-5.11      |
| 27 | Fundamentals of equalization                                                                           | CO 4 | T1-7.1,7.2   |
| 28 | Training a generic adaptive equalizer                                                                  | CO 4 | T1-7.3,7.4   |
| 29 | Non-linear equalization                                                                                | CO 4 | T1-7.6,7.7   |
| 30 | Decision feedback equalization (DFE) and<br>maximum likelihood sequence estimation<br>equalizer (MLSE) | CO 4 | T1-7.7.2     |
| 31 | Algorithms for adaptive equalization                                                                   | CO 5 | T1-7.8       |

| 32 | Derivation of selection diversity<br>improvement                                                 | CO 4    | T1-7.8.1,8.2   |
|----|--------------------------------------------------------------------------------------------------|---------|----------------|
| 33 | Derivation of maximal ratio combining<br>improvement, practical space diversity<br>consideration | CO 5    | T1-7.10,11     |
| 34 | Diversity techniques                                                                             | CO 4    | T1-7.10.2-3    |
| 35 | Polarization diversity and RAKE receiver.                                                        | CO 4    | T1-7.10.3      |
| 36 | Introduction to wireless networks                                                                | CO 5    | R3-P184        |
| 37 | WLAN topologies and WLAN standard<br>IEEE 802.11                                                 | CO 4    | R3-P185        |
| 38 | Comparison of IEEE802.11 a,b,g and n standards                                                   | CO 4    | R3-P191        |
| 39 | IEEE 802.16 and its enhancements                                                                 | CO 4    | R3-P190        |
| 40 | Wireless PANs, Hipper LAN, WLL.                                                                  | CO 5    | R3-P191        |
|    | PROBLEM SOLVING/ C.                                                                              | ASE STU | DIES           |
| 41 | Problems on Signal reflections in flat and<br>hilly terrain                                      | CO 2    | T1-3.1-3.2     |
| 42 | Problems on probability of cell system                                                           | CO 3    | T1-3.3-3.4     |
| 43 | Problems on effective aperture                                                                   | CO 4    | T1-4.6         |
| 44 | Problems on diffraction loss                                                                     | CO 3    | T1-4.7         |
| 45 | Problems on received power                                                                       | CO 4    | T1-5.1.1       |
| 46 | Problems on grade of service                                                                     | CO 6    | T1-4.6         |
| 47 | Problems on phase difference between direct<br>and reflected paths                               | CO 4    | T1-5.3.2       |
| 48 | Problems on path loss slope                                                                      | CO 5    | T1-5.1.1       |
|    | DISCUSSION ON DEFINITION A                                                                       | AND TER | MINOLOGY       |
| 49 | The cellular concept system design<br>fundamentals                                               | CO 1    | T1-3.1-3.24    |
| 50 | Mobile radio propagation                                                                         | CO 3    | T1-4.1 to 4.9  |
| 51 | Cellular system design fundamentals                                                              | CO 5    | T1-5.1 to 5.16 |
| 52 | Equalization and diversity                                                                       | CO 4    | T1-7.1 to 7.17 |
| 53 | Asynchronous transfer mode technology                                                            | CO 3    | R3 7.4-7.8     |
|    | DISCUSSION ON QUES                                                                               | TION BA | NK             |
| 54 | The cellular concept system design<br>fundamentals                                               | CO 2    | T1-3.1-3.24    |
| 55 | Mobile radio propagation                                                                         | CO 3    | T1-4.1 to 4.9  |
| 56 | Channel sharing, borrowing, sectorization<br>and overlaid cells                                  | CO 5    | T1-5.1 to 5.16 |
| 57 | WLL, Bluetooth, GSM, IS95, DECT                                                                  | CO 4    | T1-7.1 to 7.14 |
| 58 | Wireless networks and standards                                                                  | CO 5    | R3-8.6-8.9     |
| 59 | SS7 network and ISDN for AIN, AIN for mobile communication                                       | CO 6    | T2-9.9 to 9.12 |

| 60 | Intelligent cell concept, advanced intelligent | CO 6 | T2-9.3 to 9.7 |
|----|------------------------------------------------|------|---------------|
|    | network                                        |      |               |

# Course Coordinator Mr B.Santhosh Kumar, Assistant Professor

# HOD,ECE

# ANNEXURE - I

# **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| PO<br>Number | NBA Statement / Key Competencies Features (KCF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No.<br>of<br>KCF's |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PO 1         | <ul> <li>Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge).</li> <li>Knowledge, understanding and application of</li> <li>Scientific principles and methodology.</li> <li>Mathematical principles.</li> <li>Own and / or other engineering disciplines to integrate / support study of their own engineering discipline.</li> </ul>                                                                                                                                                                                                                                                  | 3                  |
| PO 2         | Identify, formulate, review research literature, and analyse complex<br>Engineering problems reaching substantiated conclusions using first<br>principles of mathematics natural sciences, and Engineering sciences<br>( <b>Problem Analysis</b> ).<br>1. Problem or opportunity identification<br>2. Problem statement and system definition<br>3. Problem formulation and abstraction<br>4. Information and data collection<br>5. Model translation<br>6. Validation<br>7. Experimental design<br>8. Solution development or experimentation / Implementation<br>9. Interpretation of results<br>10. Documentation                                                                                                | 10                 |
| PO 3         | <ul> <li>Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations</li> <li>(Design/Development of Solutions).</li> <li>1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues</li> <li>2. Understand customer and user needs and the importance of considerations such as aesthetics</li> <li>3. Identify and manage cost drivers</li> <li>4. Use creativity to establish innovative solutions</li> </ul> | 10                 |

|      | <ul> <li>5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal</li> <li>6. Manage the design process and evaluate outcomes.</li> <li>7. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>8. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>9. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 4 | Use research-based knowledge and research methods including design<br>of experiments, analysis and interpretation of data, and synthesis of<br>the information to provide valid conclusions (Conduct<br>Investigations of Complex Problems).<br>1. Knowledge of characteristics of particular materials, equipment,<br>processes, or products<br>2. Workshop and laboratory skills<br>3. Understanding of contexts in which engineering knowledge can be<br>applied (example, operations and management, technology<br>development, etc.)<br>4. Understanding use of technical literature and other information<br>sources Awareness of nature of intellectual property and contractual<br>issues<br>5. Understanding of appropriate codes of practice and industry<br>standards<br>6. Awareness of quality issues<br>7. Ability to work with technical uncertainty<br>8. Understanding of engineering principles and the ability to apply<br>them to analyse key engineering processes<br>9. Ability to identify, classify and describe the performance of<br>systems and components through the use of analytical methods and<br>modeling techniques<br>10. Ability to apply quantitative methods and computer software<br>relevant to their engineering discipline, in order to solve engineering<br>problems<br>11. Understanding of and ability to apply a systems approach to<br>engineering problems. | 11 |
| PO 5 | Create, select, and apply appropriate techniques, resources, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  |
|      | <ul> <li>modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage).</li> <li>1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -  |

| PO 6 | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety,</li> </ul> | 5  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | and risk (including environmental risk) issues<br>5. Understanding of the need for a high level of professional and<br>ethical conduct in engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| PO 7 | Understand the impact of the professional Engineering solutions in<br>societal and Environmental contexts, and demonstrate the<br>knowledge of, and need for sustainable development (Environment<br>and Sustainability).<br>Impact of the professional Engineering solutions (Not technical)<br>1. Socio economic<br>2. Political<br>3. Environmental                                                                                                                                                                                                                                                                                                                                                                                      | 3  |
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                 | 3  |
| PO 9 | <ul> <li>Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive their performance</li> <li>3. Self-direction (take a vaguely defined problem and systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project.</li> </ul>                                                                                                                | 12 |

|       | <ul> <li>6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> |    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 10 | Communicate effectively on complex Engineering activities with the<br>Engineering community and with society at large, such as, being able<br>to comprehend and write effective reports and design documentation,<br>make effective presentations, and give and receive clear instructions<br>(Communication).<br>"Students should demonstrate the ability to communicate effectively<br>in writing / Orally"<br>1. Clarity (Writing)<br>2. Grammar/Punctuation (Writing)<br>3. References (Writing)<br>4. Speaking Style (Oral)<br>5. Subject Matter (Oral)                                                                                                                                                                                                                                                          | 5  |
| PO 11 | <ul> <li>Demonstrate knowledge and understanding of the Engineering and<br/>management principles and apply these to one's own work, as a<br/>member and leader in a team, to manage projects and in<br/>multidisciplinary Environments (Project Management and<br/>Finance).</li> <li>1. Scope Statement</li> <li>2. Critical Success Factors</li> <li>3. Deliverables</li> <li>4. Work Breakdown Structure</li> <li>5. Schedule</li> <li>6. Budget</li> <li>7. Quality</li> <li>8. Human Resources Plan</li> <li>9. Stakeholder List</li> <li>10. Communication</li> <li>11. Risk Register</li> <li>12. Procurement Plan</li> </ul>                                                                                                                                                                                 | 12 |

| PO 12 | Recognize the need for and have the preparation and ability to       | 8 |
|-------|----------------------------------------------------------------------|---|
|       | engage in independent and life-long learning in the broadest context |   |
|       | of technological change (Life - Long Learning).                      |   |
|       | 1. Project management professional certification / MBA               |   |
|       | 2. Begin work on advanced degree                                     |   |
|       | 3. Keeping current in CSE and advanced engineering concepts          |   |
|       | 4. Personal continuing education efforts                             |   |
|       | 5. Ongoing learning – stays up with industry trends/ new technology  |   |
|       | 6. Continued personal development                                    |   |
|       | 7. Have learned at least 2-3 new significant skills                  |   |
|       | 8. Have taken up to 80 hours (2 weeks) training per year             |   |



# INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title     | MICROPROCESSORS AND MICROCONTROLLERS        |           |         |            |         |  |  |  |
|------------------|---------------------------------------------|-----------|---------|------------|---------|--|--|--|
| Course Title     | LABORATORY                                  |           |         |            |         |  |  |  |
| Course Code      | AECB26                                      |           |         |            |         |  |  |  |
| Program          | B.Tech                                      |           |         |            |         |  |  |  |
| Semester         | VI                                          | ECE       |         |            |         |  |  |  |
| Course Type      | Core                                        |           |         |            |         |  |  |  |
| Regulation       | IARE - R18                                  |           |         |            |         |  |  |  |
|                  |                                             | Theory    |         | Prac       | tical   |  |  |  |
| Course Structure | Lecture                                     | Tutorials | Credits | Laboratory | Credits |  |  |  |
|                  | -                                           | -         | -       | 3          | 1       |  |  |  |
| Course           | Ms. B Lakshmi Prasanna, Assistant Professor |           |         |            |         |  |  |  |
| Coordinator      |                                             |           |         |            |         |  |  |  |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites         |
|--------|-------------|----------|-----------------------|
| B.Tech | AECB07      | III      | Digital System Design |

#### **II COURSE OVERVIEW:**

This laboratory course will facilitates the students to program 8086 microprocessor and 8051 microcontroller. Win862 software will be used for writing and debugging assembly language programs. The course includes performing arithmetic and logical operations, string manipulations, code conversions and interfacing of I/O devices to processor/controller. The hands-on experience acquired by the student's during the course makes them to carry out processor/controller based projects and extend their knowledge on the latest trends and technologies in the field of embedded system.

#### **III MARKS DISTRIBUTION:**

| Subject                                            | SEE Examination | CIE Examination | Total Marks |
|----------------------------------------------------|-----------------|-----------------|-------------|
| Microprocessors and<br>Microcontrollers Laboratory | 70 Marks        | 30 Marks        | 100         |

# IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| ✓ | Demo Video | ✓ | Lab Worksheets | ~ | Viva Questions | 1 | Probing further<br>Questions |
|---|------------|---|----------------|---|----------------|---|------------------------------|
|---|------------|---|----------------|---|----------------|---|------------------------------|

# **V EVALUATION METHODOLOGY:**

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

**Semester End Examination (SEE):**The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner,

Experiment Based Programming based 20 %Objective Purpose 20~%Algorithm Analysis 20 %Design Programme 20 %Conclusion Conclusion 20 %Viva

both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Viva

| Component             |                                                   |    | Total Marks |
|-----------------------|---------------------------------------------------|----|-------------|
| Type of<br>Assessment | Day to dayFinal internal lalperformanceassessment |    | 10tal Marks |
| CIA Marks             | 20                                                | 10 | 30          |

#### Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 1         | 1        | 1      | 1          | 1    | 05    |

#### 2. Programming Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 1         | 1        | 1      | 1          | 1    | 05    |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | Assembly language programming skills ranging from simple arithmetic operations to    |
|-----|--------------------------------------------------------------------------------------|
|     | interfacing real time systems.                                                       |
| II  | The usage of software tools to design, debug and test microprocessor/microcontroller |
|     | based projects using assembly language programming.                                  |
| III | The design of microcomputer and microcontroller based real-time applications in the  |
|     | fields of communication systems, home based automation systems, automobiles and      |
|     | unmanned applications.                                                               |

#### **COURSE OUTCOMES:** VII

#### After successful completion of the course, students should be able to:

| CO 1 | Make use of emulators and assemblers for writing, compiling and   | Apply |
|------|-------------------------------------------------------------------|-------|
|      | running an assembly language programs on training boards.         |       |
| CO 2 | <b>Develop</b> Assembly language programs for accomplishing code  | Apply |
|      | conversions, string manipulations and sorting of numbers.         |       |
| CO 3 | Choose serial or parallel communication for transmitting the data | Apply |
|      | between microprocessor or microcontroller and peripherals.        |       |

| CO 4 | Utilize Analog to Digital and Digital to Analog converters with              | Apply |
|------|------------------------------------------------------------------------------|-------|
|      | processor or controller for data conversion.                                 |       |
| CO 5 | Select suitable registers of microcontroller and write assembly              | Apply |
|      | language program to verify timer or counter operations.                      |       |
| CO 6 | <b>Build</b> an interface between processor or controller and peripherals to | Apply |
|      | provide solutions to the real world problems.                                |       |

# COURSE KNOWLEDGE COMPETENCY LEVEL



# **BLOOMS TAXONOMY**

# VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program                                              | Strength | Proficiency |
|------|------------------------------------------------------|----------|-------------|
|      |                                                      |          | Assessed by |
| PO 1 | Engineering Knowledge: Apply the knowledge           | 3        | Day to Day  |
|      | of mathematics, science, Engineering fundamentals,   |          | Evaluation/ |
|      | and an Engineering specialization to the solution of |          | CIE/SEE     |
|      | complex Engineering problems.                        |          |             |
| PO 2 | Problem analysis: Identify, formulate, review        | 2        | Day to Day  |
|      | research literature, and analyze complex engineering |          | Evaluation/ |
|      | problems reaching substantiated conclusions using    |          | CIE/SEE     |
|      | first principles of mathematics, natural sciences,   |          |             |
|      | and engineering sciences.                            |          |             |
| PO 3 | <b>Design/Development of Solutions:</b> Design       | 2        | Day to Day  |
|      | solutions for complex Engineering problems and       |          | Evaluation/ |
|      | design system components or processes that meet      |          | CIE/SEE     |
|      | the specified needs with appropriate consideration   |          |             |
|      | for the public health and safety, and the cultural,  |          |             |
|      | societal, and Environmental considerations           |          |             |

| PO 5  | Modern Tool Usage:Create, select, and apply<br>appropriate techniques, resources, and modern<br>Engineering and IT tools including prediction and<br>modelling to complex Engineering activities with an<br>understanding of the limitations                                                                            | 3 | Day to Day<br>Evaluation/<br>CIE/SEE |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------|
| PO 9  | <b>Individual and Teamwork:</b> Function effectively<br>as an individual, and as a member or leader in<br>diverse teams, and in multidisciplinary settings                                                                                                                                                              | 2 | Day to Day<br>Evaluation/<br>CIE/SEE |
| PO 10 | <b>Communication:</b> Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as, being<br>able to comprehend and write effective reports and<br>design documentation, make effective presentations,<br>and give and receive clear instructions. | 1 | Day to Day<br>Evaluation/<br>CIE/SEE |

#### 3 = High; 2 = Medium; 1 = Low

# IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                     | Strength | Proficiency |
|-------|---------------------------------------------|----------|-------------|
|       |                                             |          | Assessed by |
| PSO 1 | Build embedded software and digital circuit | 3        | Day to Day  |
|       | development platform for robotics, embedded |          | Evaluation/ |
|       | systems and signal processing applications. |          | CIE/SEE     |

3 = High; 2 = Medium; 1 = Low

# X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                              | No. of Key<br>Competencies |
|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 1          | Make use of emulators and assemblers for writing,<br>compiling and running an assembly language programs<br>with the <b>knowledge of science</b> , <b>Engineering</b><br><b>fundamentals</b> , and an <b>Engineering specialization</b> on<br>training boards to the solution of complex Engineering<br>problems. | 3                          |
|                    | PO 2          | Make use of emulators and assemblers for writing,<br>compiling and running an assembly language programs<br>with <b>information and data collection</b> for <b>developing</b><br><b>solutions</b> on training boards and <b>interpret the results</b> .                                                           | 3                          |
|                    | PO 3          | <b>Understand customer needs</b> and make use of emulators<br>and assemblers for <b>managing design process</b> and <b>use</b><br><b>creativity to establish innovative solutions</b> by<br>writing, compiling and running an assembly language<br>programs on training boards                                    | 3                          |
|                    | PO 5          | Make use of emulators and assemblers for writing,<br>compiling and running an assembly language program on<br>training boards using <b>Computer software</b> .                                                                                                                                                    | 1                          |

|      | PO 9  | Make use of emulators and assemblers for writing,<br>compiling and running an assembly language programs by<br>referring textbooks on training boards in hands-on<br>labs and build an ability to work with all levels of<br>people in an organization                                                      | 3 |
|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 10 | Make use of emulators and assemblers for writing,<br>compiling and running an assembly language programs on<br>training boards and <b>write effective reports</b> .                                                                                                                                         | 1 |
|      | PSO 1 | Make use of emulators and assemblers(embedded<br>software) for writing, compiling and running an assembly<br>language programs on training boards to build<br>embedded system applications.                                                                                                                 | 2 |
| CO 2 | PO 1  | write Assembly language programs for accomplishing code<br>conversions, string manipulations and sorting of numbers<br>by <b>applying the knowledge of mathematics</b> ,<br><b>Engineering fundamentals, and an Engineering</b><br><b>specialization</b> to the solution of complex Engineering<br>problems | 3 |
|      | PO 2  | Understand the given <b>problem statement</b> and develop<br>assembly language program for accomplishing sorting of<br>numbers, code conversions and string manipulation to<br>provide processor/controller based <b>solution</b> and <b>validate</b><br>the obtained <b>results</b> .                      | 4 |
|      | PO 3  | Develop <b>design process</b> for accomplishing code<br>conversions, string manipulations and sorting of numbers<br>and establish <b>innovative solutions</b> to meet the<br><b>requirements of user</b> .                                                                                                  | 3 |
|      | PO 5  | Use <b>computer software</b> and write Assembly language<br>programs for accomplishing code conversions, string<br>manipulations and sorting of numbers to provide solutions<br>for complex Engineering activities with an understanding<br>of the limitations.                                             | 1 |
|      | PO 9  | Take a defined problem and refer appropriate<br>textbook, use hands-on labs and develop the<br>solutions for code conversions, string manipulations and<br>sorting of numbers.                                                                                                                              | 4 |
|      | PO 10 | Develop Assembly language program for accomplishing<br>code conversions, string manipulations and sorting of<br>numbers <b>and write effective reports and design</b><br><b>documentation.</b>                                                                                                              | 1 |
|      | PSO   | Utilize <b>embedded software and digital circuit</b><br><b>platforms</b> perform code conversions which are commonly<br>used in various <b>embedded applications</b> .                                                                                                                                      | 2 |
| CO 3 | PO 1  | Perform serial or parallel communication by applying the<br>knowledge of mathematics, Engineering<br>fundamentals, and an Engineering specialization for<br>transmitting the data between microprocessor or<br>microcontroller and peripherals.                                                             | 3 |

|      | PO 2  | Understand the given data transfer schemes (problem statement) and interface microprocessor with serial I/O ports and developexperimental design to establish data transfer (solution) and validate the obtained results.                                                                                                           | 5 |
|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 3  | Develop processor or controller based systems by<br>managing the designing process to establish serial/<br>parallel communication based on customer needs with<br>appropriate consideration for the public health and<br>safety, and Environmental considerations and provide the<br>innovative solutions                           | 4 |
|      | PO 5  | Make use of <b>software and hardware tools</b> to perform data transfer between processor and I/O devices.                                                                                                                                                                                                                          | 1 |
|      | PO 9  | Focus on working as a <b>member or leader</b> in designing<br>the processor based data transfer schemes in <b>hands-on</b><br><b>labs</b> by <b>referring appropriate textbooks</b> and<br><b>evaluate their performance.</b>                                                                                                       | 4 |
|      | PO 10 | Recognize the role of microprocessors and controllers in<br>performing the data transfer by <b>communicating</b><br><b>effectively and write effective reports.</b>                                                                                                                                                                 | 1 |
|      | PSO 1 | Utilize embedded software and digital circuit<br>platforms to perform data transfer in various<br>Embedded applications.                                                                                                                                                                                                            | 2 |
| CO 4 | PO 1  | Utilize Analog to Digital and Digital to Analog converters<br>by the <b>knowledge of mathematics,Engineering</b><br><b>fundamentals, and an Engineering specialization</b><br>with processor or controller for data conversion.                                                                                                     | 3 |
|      | PO 2  | Identify the problem and conduct experimental<br>design using Analog to Digital and Digital to Analog<br>converters with processor or controller with Information<br>and data collection for data conversion(Solution<br>development) and Interpretation of results.                                                                | 5 |
|      | PO 3  | Design processor or controller based systems to perform<br>analog to digital conversion or digital to analog conversion<br>based on <b>customer needs</b> and use <b>creativity</b> in<br>designing solution with appropriate consideration for<br>the <b>public health and safety, and Environmental</b><br><b>considerations.</b> | 4 |
|      | PO 5  | Utilize <b>software and hardware tools</b> to perform data conversion between processor and ADC/DAC.                                                                                                                                                                                                                                | 1 |
|      | PO 9  | Focus on working as a <b>member or leader</b> in designing<br>the processor based data conversion techniques in<br><b>hands-on labs</b> by <b>referring appropriate textbooks</b><br>and <b>evaluate their performance</b>                                                                                                          | 4 |
|      | PO 10 | Identify the role of microprocessors, ADC and DAC devices in performing the data conversion and write effective reports.                                                                                                                                                                                                            | 1 |
|      | PSO 1 | Make use of <b>embedded software</b> to perform data conversion in various <b>embedded applications.</b>                                                                                                                                                                                                                            | 2 |

| CO 5 | PO 1  | Make use of suitable registers of microcontroller and write<br>assembly language program to verify timer or counter<br>operations by applying the knowledge of<br>mathematics, Engineering fundamentals, and an<br>Engineering specialization.                                                                                    | 3 |
|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 2  | Understand the requirements ( <b>opportunity</b> ) of<br>timer/counters in industrial applications( <b>problem</b><br><b>statement</b> ) and design controller based<br>solution( <b>solution</b> ) to perform given job and <b>validate</b> the<br>obtained <b>results</b> in real time environment.                             | 5 |
|      | PO 3  | Design microcontroller based systems to perform<br>timer/counter operations which is necessary in automated<br>industries based on <b>customer needs</b> and use <b>creativity</b><br>in designing solution with appropriate consideration for<br>the <b>public health and safety, and Environmental</b><br><b>considerations</b> | 4 |
|      | PO 5  | Make use of <b>software and hardware tools</b> for effective implementation of timer/counter applications.                                                                                                                                                                                                                        | 1 |
|      | PO 9  | Work effectively as a <b>member or leader</b> in designing the controller based timer/ counter operations in <b>hands-on labs</b> by <b>referring appropriate textbooks</b> and <b>evaluate their performance</b>                                                                                                                 | 4 |
|      | PO 10 | Identify the role of microcontrollers in performing the timer/ counter operations by <b>writing effective reports.</b>                                                                                                                                                                                                            | 1 |
|      | PSO 1 | Utilize <b>embedded software and digital circuit</b><br><b>platforms</b> to build <b>robotic applications</b> where<br>timer/counter operations are required.                                                                                                                                                                     | 2 |
| CO 6 | PO 1  | Develop an interface between processor or controller and<br>peripherals by applying <b>the knowledge of</b><br><b>mathematics,Engineering fundamentals, and an</b><br><b>Engineering specialization</b> to provide solutions to the<br>real world problems.                                                                       | 3 |
|      | PO 2  | Understand the requirements ( <b>opportunity</b> ) of industrial applications ( <b>problem statement</b> ) and design processor or controller based solution ( <b>solution</b> ) to perform given job and <b>validate</b> the obtained <b>results</b> in real time environment.                                                   | 5 |
|      | PO 3  | Develop processor or controller based systems by<br>managing the designing process to establish<br>innovative solutions based oncustomer needs with<br>appropriate consideration for the public health and<br>safety, and Environmental considerations.                                                                           | 4 |
|      | PO 5  | Make use of <b>software and hardware tools</b> for effective design of processor or controller based applications.                                                                                                                                                                                                                | 1 |
|      | PO 9  | Focus on working as a <b>member or leader</b> in designing<br>the processor and controller based solutions in <b>hands-on</b><br><b>labs</b> by <b>referring appropriate textbooks</b> and <b>evaluate</b><br><b>their performance</b>                                                                                            | 4 |

| PO 10 | Recognize the role microprocessors and controllers in<br>providing the solutions to real-time systems by <b>writing</b><br><b>effective reports.</b> | 1 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| PSO 1 | Utilize embedded software and digital circuit<br>platforms to create processor or controller based                                                   | 2 |
|       | solutions in Embedded applications.                                                                                                                  |   |

#### XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| COURSE   |      | PROGRAM OUTCOMES |      |      |      |       |       |
|----------|------|------------------|------|------|------|-------|-------|
| OUTCOMES | PO 1 | PO 2             | PO 3 | PO 5 | PO 9 | PO 10 | PSO 1 |
| CO 1     | 3    | 3                | 3    | 1    | 3    | 1     | 2     |
| CO 2     | 3    | 4                | 3    | 1    | 4    | 1     | 2     |
| CO 3     | 3    | 5                | 4    | 1    | 4    | 1     | 2     |
| CO 4     | 3    | 5                | 4    | 1    | 4    | 1     | 2     |
| CO 5     | 3    | 5                | 4    | 1    | 4    | 1     | 2     |
| CO 6     | 3    | 5                | 4    | 1    | 4    | 1     | 2     |

# XII ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               |   | SEE Exams    |   | Seminars      | - |
|-------------------------|---|--------------|---|---------------|---|
|                         | ✓ |              | ✓ |               |   |
| Laboratory<br>Practices | ✓ | Student Viva | ~ | Certification | - |
| Assignments             | - |              |   |               |   |

#### XIII ASSESSMENT METHODOLOGY INDIRECT:

| ✓ | Early Semester Feedback                | ✓ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| X | Assessment of Mini Projects by Experts |   |                           |

# XIV SYLLABUS:

| WEEK I   | DESIGN A PROGRAM USING WIN862                                                                                                                         |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Design and develop an Assembly language program using 8086 microprocessor                                                                             |
|          | and to show the following aspects.                                                                                                                    |
|          | (a)Programming                                                                                                                                        |
|          | (b)Execution                                                                                                                                          |
|          | (c)Debugging                                                                                                                                          |
|          | To Demonstrate the win 862 software and Trainer kit for 8086 Microprocessor                                                                           |
| WEEK II  | 16 BIT ARITHMETIC AND LOGICAL OPERATIONS                                                                                                              |
|          | Write an ALP program to perform 16 Bit arithmetic and logical operations                                                                              |
|          | using WIN862 software                                                                                                                                 |
| WEEK III | MULTIBYTE ADDITION AND SUBTRACTION                                                                                                                    |
|          | (a) Write an ALP program to perform multi byte addition and subtraction<br>(b) Write an ALP program to perform 3*3 matrix multiplication and addition |
|          | (b) white an risk program to perform 5 5 matrix multiplication and addition                                                                           |

| WEEK IV   | PROGRAMS TO SORT NUMBERS                                                                                                                                                                                                                                                                                                                  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <ul><li>(a)Write an ALP program to perform ascending order using 8086</li><li>(b)Write an ALP program to perform descending order using 8086</li></ul>                                                                                                                                                                                    |
| WEEK V    | PROGRAMS FOR STRING MANIPULATIONS OPERATIONS                                                                                                                                                                                                                                                                                              |
|           | <ul> <li>(a)Write an ALP program to insert or delete a byte in the given string</li> <li>(b)Write an ALP program to search a number/character in a given string</li> <li>(c)Write an ALP program to move a block of data from one memory location to the other</li> <li>(d)Write an ALP program for reverse of a given string.</li> </ul> |
| WEEK VI   | CODE CONVERSIONS                                                                                                                                                                                                                                                                                                                          |
|           | <ul><li>(a) Write an ALP program to convert packed BCD to Unpacked BCD</li><li>(b) Write an ALP program to convert packed BCD to ASCII</li><li>(c) Write an ALP program to convert hexadecimal to ASCII</li></ul>                                                                                                                         |
| WEEK VII  | INTERFACING STEPPER MOTOR                                                                                                                                                                                                                                                                                                                 |
|           | <ul><li>(a) Write an ALP program to rotate stepper motor in clockwise direction</li><li>(b) Write an ALP program to rotate stepper motor in anti clockwise directio</li></ul>                                                                                                                                                             |
| WEEK VIII | INTERFACING ADC and DAC DEVICES                                                                                                                                                                                                                                                                                                           |
|           | <ul><li>(a) Write an ALP program to convert analog to digital using 8086</li><li>(b) Write an ALP program to convert digital to analog using 8086</li></ul>                                                                                                                                                                               |
| WEEK IX   | INTERFACING KEYBOARD TO 8086                                                                                                                                                                                                                                                                                                              |
|           | Write an ALP program to interface keyboard to 8086                                                                                                                                                                                                                                                                                        |
| WEEK X    | SERIAL AND PARALLEL COMMUNICATION                                                                                                                                                                                                                                                                                                         |
|           | <ul><li>(a) Parallel communication between two microprocessors using 8255</li><li>(b) Serial communication between two microprocessor kits using 8251</li></ul>                                                                                                                                                                           |
| WEEK XI   | INTERFACING TRAFFIC LIGHT CONTROLLER AND TONE<br>GENERATOR                                                                                                                                                                                                                                                                                |
|           | <ul><li>(a) Write a program to interface traffic light controller</li><li>(b) Write an ALP program to interface tone generator</li></ul>                                                                                                                                                                                                  |
| WEEK XII  | ARITHMETIC AND LOGICAL OPERATIONS USING 8051                                                                                                                                                                                                                                                                                              |
|           | Write an ALP program to perform 16 Bit arithmetic and logical operations using 8051 microcontroller                                                                                                                                                                                                                                       |
| WEEK XIII | TIMER/COUNTER                                                                                                                                                                                                                                                                                                                             |
|           | Write an ALP Program and verify Timer/Counter using 8051                                                                                                                                                                                                                                                                                  |
| WEEK XIV  | INTERFACING KEYBOARD TO 8051                                                                                                                                                                                                                                                                                                              |
|           | Write an ALP program to interface keyboard to 8051                                                                                                                                                                                                                                                                                        |

#### **TEXTBOOKS**

- 1. Ray A.K, Bhurchandi K.M, "Advanced Microprocessor and Peripherals", TMH, 2nd Edition, 2012
- 2. Muhammad Ali Mazidi, J.G. Mazidi, R.D McKinlay," The 8051 Microcontroller and Embedded systems using Assembly and C", Pearson education, 2nd Edition, 2009.
- 3. Douglas V. Hall, "Microprocessors and Interfacing Programming and Hardware", TMGH, 2nd Edition, 1994.

#### **REFERENCE BOOKS:**

- 1. Kenneth J. Ayala, "The 8051 Microcontroller", Thomson Learning, 3rd edition, 2005.
- 2. Manish K. Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 1st Edition, 2014.
- 3. Ajay V Deshmukh, "Microcontrollers", TATA McGraw Hill publications, 2nd Edition, 2012.

#### XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                            | CO's        | Reference   |
|------|-----------------------------------------------------------------|-------------|-------------|
| 1    | Design a program using WIN862                                   | CO 1/       | T1: 3.3     |
|      |                                                                 | CO 2        |             |
| 2    | 16 bit arithmetic and logical operations                        | CO1/        | T1: 3.4     |
|      |                                                                 | CO2         |             |
| 3    | Multibyte addition and subtraction                              | CO1/        | T1: 3.4     |
|      |                                                                 | CO2         |             |
| 4    | Programs to sort numbers                                        | CO1/        | T1: 3.4     |
|      |                                                                 | CO2         |             |
| 5    | Programs for string manipulations operations                    | CO1/        | T1: 3.4     |
|      |                                                                 | CO2/        |             |
|      |                                                                 | CO3         |             |
| 6    | Code conversions.                                               | CO1/        | T1: 3.4     |
|      |                                                                 | CO2         |             |
| 7    | Interfacing stepper motor to 8086 microprocessor                | CO1/        | T1: 5.8     |
|      |                                                                 | CO6         |             |
| 8    | Interfacing ADC and DAC devices                                 | CO1/        | T1: $5.6$ , |
|      |                                                                 | CO4/        | 5.7         |
|      |                                                                 | CO6         |             |
| 9    | Interfacing keyboard to 8086 microprocessor                     | CO1/        | T1: 6.3     |
|      |                                                                 | CO6         |             |
| 10   | Serial and Parallel communication                               | CO1/        | T1: 6.4     |
|      |                                                                 | CO3/        |             |
|      |                                                                 | CO6         |             |
| 11   | Interfacing traffic light controller and tone Generator to 8086 | CO1/        | T1: $6.5$ , |
|      | microprocessor                                                  | CO6         | 6.6         |
| 12   | Arithmetic and logical operations using 8051 microcontroller    | CO1/        | R1: 4,5     |
|      |                                                                 | CO2         |             |
| 13   | Timer/Counter operations                                        | CO1/        | R1: 2       |
|      |                                                                 | CO5/        |             |
|      |                                                                 | 006         |             |
| 14   | Interfacing keyboard to 8051 microcontroller                    | CO1/        | R1: 8       |
|      |                                                                 | $\perp$ CO6 |             |

# XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Design Oriented Experiments                                                                                                                                                                                                                                                                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Write an Assembly Language Program to rotate a 200 teeth, 4 phase stepper motor with 5 rotations clockwise and then 5 rotations anticlockwise, Rotate through angle 1350 in 2 sec, rotate the shaft at a speed of 10 rotations per minute.                                                                                                              |
| 2    | Develop an Assembly Language program to interface 8251 with 8086 at an address 80H, initialize it in asynchronous transmit mode, with 7 bits character size, baud factor 16, one start bit and 1 stop bit, even parity enabled and then transmit a message "HAPPY NEW YEAR" in ASCII form to a modem.                                                   |
| 3    | Interface ADC 0808 with 8086 using 8255 ports. Use Port A of 8255 for transferring digital data output of ADC to the CPU and Port C for control signals. Assume that an analog input is present at I/P2 of the ADC and a clock input of suitable frequency is available for ADC. Draw the schematic and timing diagram of different signals of ADC0808. |
| 4    | Interface 12-bit DAC with 8086 and develop the Assembly Language program to generate the step waveform of duration 1sec, maximum voltage 3 volts and determine the duration of each step.                                                                                                                                                               |
| 5    | Write a program to initialize 8251 in synchronous mode with even parity, single SYNCH character, 7-bit data character. Then receive FFH bytes of data from a remote terminal and store it in the memory at address 5000H: 2000H.                                                                                                                        |
| 6    | A switch is connected to pin P1.2. Write an 8051 Assembly Language program to monitor SW and create the following frequencies on pin P1.7. SW=0: 500Hz, SW=1: 750Hz, use Timer 0, mode 1 for both of them.                                                                                                                                              |
| 7    | Write an Assembly Language program for 8051 Microcontroller to count number of interrupts arriving on external interrupt pin INT1. Stop when counter overflows and disable the interrupt. Give the indication on pin P0.0                                                                                                                               |

#### Signature of Course Coordinator Ms. B Lakshmi Prasanna, Assistant Professor

HOD,ECE



# INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title       | DIGITAL SIGNAL PROCESSING LABORATORY |           |         | RATORY     |         |
|--------------------|--------------------------------------|-----------|---------|------------|---------|
| Course Code        | AECB25                               |           |         |            |         |
| Program            | B.Tech                               |           |         |            |         |
| Semester           | VI                                   | ECE       |         |            |         |
| Course Type        | Core                                 |           |         |            |         |
| Regulation         | IARE - R18                           |           |         |            |         |
|                    |                                      | Theory    |         | Pract      | tical   |
| Course Structure   | Lecture                              | Tutorials | Credits | Laboratory | Credits |
|                    | -                                    | -         | -       | 2          | 1       |
| Course Coordinator | Dr.S.China Venkateswarlu, Professor  |           |         |            |         |

# I COURSE OVERVIEW:

This course is concerned with the implementation of digital signal processing algorithms using different computational platforms such as MATLAB and DSP tools that give core knowledge to develop the real time applications in the area of DSP. It focuses on the convolution, discrete Fourier transform, fast Fourier transform algorithms, digital filter design and multi rate signal processing. Digital signal processing applications are used in speech processing, image processing, audio and video data compression, communication systems.

#### **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites                  |
|--------|-------------|----------|--------------------------------|
| B.Tech | AECB17      | IV       | Signals and systems laboratory |

# **III MARKS DISTRIBUTION:**

| Subject                                | SEE Examination | CIE Examination | Total Marks |
|----------------------------------------|-----------------|-----------------|-------------|
| Digital signal processig<br>laboratory | 70 Marks        | 30 Marks        | 100         |

# IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

|              | Demo Video |                       | Lab Worksheets |                       | Viva Questions |              | Probing further |
|--------------|------------|-----------------------|----------------|-----------------------|----------------|--------------|-----------------|
| $\checkmark$ |            | <ul> <li>✓</li> </ul> |                | <ul> <li>✓</li> </ul> |                | $\checkmark$ | Questions       |

# **V EVALUATION METHODOLOGY:**

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

|      | Experiment Based | Programming based |
|------|------------------|-------------------|
| 20 % | Objective        | Purpose           |
| 20 % | Analysis         | Algorithm         |
| 20 % | Design           | Programme         |
| 20 % | Conclusion       | Conclusion        |
| 20 % | Viva             | Viva              |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Component  |                        |                    | Total Marks |
|------------|------------------------|--------------------|-------------|
| Type of    | Day to day performance | Final internal lab |             |
| Assessment |                        | assessment         |             |
| CIA Marks  | 20                     | 10                 | 30          |

#### Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### 1. Experiment Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 2         | 2        | 2      | 2          | 2    | 10    |

#### 2. Programming Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 2         | 2        | 2      | 2          | 2    | 10    |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The behavior of discrete time signals and systems in time and frequency domain.                                      |
|-----|----------------------------------------------------------------------------------------------------------------------|
| II  | The analysis of IIR, FIR digital filters and multi rate signal processing systems.                                   |
| III | The implementation of real time digital signal processing algorithms using MATLAB tool and TI TMSC67XX target board. |

# VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Apply</b> discrete Fourier transform for spectral analysis of discrete signals.                                                                        | Apply    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CO 2 | <b>Apply</b> fast Fourier transform algorithms for reducing computational complexity of discrete Fourier transform.                                       | Apply    |
| CO 3 | <b>Compare</b> IIR digital filter and FIR Digital filters using different methods.                                                                        | Evaluate |
| CO 4 | <b>Analyze</b> the Goertzel algorithm for the generation and detection of dual-tone multi-frequency (DTMF) signaling.                                     | Analyze  |
| CO 5 | <b>Apply</b> multi-rate signal processing methods such as decimation and interpolation for interfacing the digital systems with different sampling rates. | Apply    |
| CO 6 | <b>Apply</b> the digital signal processing algorithms for designing real time embedded signal processing applications.                                    | Apply    |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



# VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | Program                                              | Strength | Proficiency         |
|-------|------------------------------------------------------|----------|---------------------|
|       |                                                      |          | Assessed by         |
| PO 2  | Problem analysis: Identify, formulate, review        | 2        | Lab Exercises/ CIE/ |
|       | research literature, and analyze complex engineering |          | SEE                 |
|       | problems reaching substantiated conclusions using    |          |                     |
|       | first principles of mathematics, natural sciences,   |          |                     |
|       | and engineering sciences.                            |          |                     |
| PO 3  | <b>Design/Development of Solutions:</b> Design       | 3        | Lab Exercises/ CIE/ |
|       | solutions for complex Engineering problems and       |          | SEE                 |
|       | design system components or processes that meet      |          |                     |
|       | the specified needs with appropriate consideration   |          |                     |
|       | for the public health and safety, and the cultural,  |          |                     |
|       | societal, and Environmental considerations           |          |                     |
| PO 5  | Modern Tool Usage: Create, select, and apply         | 3        | Lab Exercises/ CIE/ |
|       | appropriate techniques, resources, and modern        |          | SEE                 |
|       | Engineering and IT tools including prediction and    |          |                     |
|       | modelling to complex Engineering activities with an  |          |                     |
|       | understanding of the limitations                     |          |                     |
| PO 9  | Individual and team work: Function effectively       | 1        | Lab Exercises/      |
|       | as an individual, and as a member or leader in       |          | Projects            |
|       | diverse teams, and in multidisciplinary settings.    |          |                     |
| PO 10 | <b>Communication:</b> Communicate effectively on     | 1        | Lab Exercises/      |
|       | complex engineering activities with the engineering  |          | Projects            |
|       | community and with society at large, such as, being  |          |                     |
|       | able to comprehend and write effective reports and   |          |                     |
|       | design documentation, make effective presentations,  |          |                     |
|       | and give and receive clear instructions.             |          |                     |

3 = High; 2 = Medium; 1 = Low

# IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                     | Strength | Proficiency<br>Assessed by |
|-------|---------------------------------------------|----------|----------------------------|
| PSO 1 | Build Embedded Software and Digital Circuit | 2        | Lab Exercises/             |
|       | Development platform for Robotics, Embedded |          | CIE/ SEE                   |
|       | Systems and Signal Processing Applications. |          |                            |

3 = High; 2 = Medium; 1 = Low

# X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S                                                                                                                                                                                                  | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                        | No. of Key<br>Competencies |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | CO 1 PO 2 Understand the given <b>problem statement and</b><br><b>formulate</b> to analyze the response of LTI system in the<br>time domain and frequency domain from provided<br><b>information and data.</b> |                                                                                                                                                                                                                                                                                                             | 3                          |
|                    | PO 5                                                                                                                                                                                                           | <b>Apply</b> the concept of convolution for finding the response of LTI system using MATLAB tool.                                                                                                                                                                                                           | 1                          |
|                    | PO 10                                                                                                                                                                                                          | <b>Demonstrate</b> the ability to communicate effectively in<br>Design and implementation for spectral analysis of discrete<br>signals and make effective Interpretation.                                                                                                                                   | 1                          |
| CO 2               | PO 2                                                                                                                                                                                                           | Understand the given <b>problem statement and</b><br><b>formulate</b> the design (complex) engineering problems of<br>spectral characteristics of discrete time signals from the<br>provided <b>information and data</b> in reaching substantiated<br>conclusions by the <b>interpretation of results</b> . | 4                          |
|                    | PO 5                                                                                                                                                                                                           | Select MATLAB tool for analyzing the discrete signals and<br>systems in frequency domain to meet system specifications<br>including <b>prediction and modeling to complex</b><br><b>engineering activities</b> with an understanding of the<br>limitations.                                                 | 1                          |
|                    | PO 10                                                                                                                                                                                                          | <b>Demonstrate</b> the ability to communicate effectively in<br>Design and implementation for reducing computational<br>complexity of discrete Fourier transform and make effective<br>Interpretation.                                                                                                      | 1                          |
|                    | PSO 1                                                                                                                                                                                                          | Develop the capability to (analyze and apply DFT and<br>their properties on discrete signals in applications by its<br>mathematical models                                                                                                                                                                  | 1                          |
| CO 3               | PO 2                                                                                                                                                                                                           | Understand the given ( <b>problem statement and</b><br><b>formulate</b> )(complex) convolution sum by using overlap<br>add and overlap save method from provided <b>information</b><br><b>and data</b> in reaching substantiated conclusions by the<br><b>interpretation of results.</b>                    | 4                          |
|                    | PO 5                                                                                                                                                                                                           | Apply overlap add method and overlap save methods for<br>filtering of long duration of sequences using MATLAB to<br>meet system specifications including prediction and<br>modeling to <b>complex engineering activities</b> with an<br>understanding of the limitations.                                   | 1                          |
|                    | PO 10                                                                                                                                                                                                          | <b>Demonstrate</b> the ability to communicate effectively in<br>Design and implementation using different methods and<br>make effective Interpretation.                                                                                                                                                     | 1                          |
| CO 4               | PO 2                                                                                                                                                                                                           | Formulate and analyze (Problem analysis) complex<br>Engineering problems for fast Fourier transform of<br>discrete signals using first principles of mathematics and<br>Engineering sciences.                                                                                                               | 3                          |

|      | PO 5  | Apply fast Fourier transform algorithms for reducing<br>computational complexity using MATLAB to meet system<br>specifications including prediction and modeling to<br><b>complex engineering activities</b> with an understanding<br>of the limitations.                                                | 1 |
|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | PO 10 | <b>Demonstrate</b> the ability to communicate effectively in<br>Design and implementation for the generation and<br>detection of dual-tone multi-frequency (DTMF) signaling<br>and make effective Interpretation.                                                                                        | 1 |
|      | PSO 1 | Develop the capability to analyze the spectral characteristics by applying fast Fourier transform(FFT) algorithms on discrete signals and systems applications by its <b>mathematical models</b> .                                                                                                       | 1 |
| CO 5 | PO 2  | Understand the given <b>problem statement and</b><br><b>formulate</b> for designing the (complex) infinite impulse<br>response(IIR)digital filters from the provided <b>information</b><br><b>and data</b> in reaching substantiated conclusions by the<br><b>interpretation of results.</b>             | 4 |
|      | PO 3  | Design infinite impulse response(IIR) digital filters using<br>Butterworth and chebyshev for determining magnitude and<br>phase response by applying the principles of<br><b>mathematics, science to the solutions of complex</b><br><b>engineering problems and design system</b><br><b>components.</b> | 3 |
|      | PO 5  | Analyze the performance parameters of IIR filters using<br>chebyshev in MATLAB to meet system specifications<br>including <b>prediction and modeling to complex</b><br><b>engineering activities</b> with an understanding of the<br>limitations.                                                        | 1 |
|      | PO 10 | <b>Demonstrate</b> the ability to communicate effectively in<br>Design and implementation for interfacing the digital<br>systems with different sampling rates and make effective<br>Interpretation.                                                                                                     | 1 |
| CO 6 | PO 2  | Understand the given <b>problem statement and</b><br><b>formulate</b> for designing the (complex) engineering<br>problems of FIR filters from the provided <b>information</b><br><b>and data</b> in reaching substantiated conclusions by the<br><b>interpretation of results.</b>                       | 4 |
|      | PO 3  | Design FIR filters using windows and frequency sampling<br>methods using <b>principles of mathematics and</b><br><b>engineering sciences.</b>                                                                                                                                                            | 2 |
|      | PO 5  | Analyze the performance parameters of FIR filters using<br>chebyshev in MATLAB to meet system specifications<br>including <b>prediction and modeling to complex</b><br><b>engineering activities</b> with an understanding of the<br>limitations.                                                        | 1 |
|      | PO 10 | <b>Demonstrate</b> the ability to communicate effectively in<br>Design and implementation for designing real time<br>embedded signal processing applications and make effective<br>Interpretation.                                                                                                       | 1 |

| PSO 1 | Develop the capability to <b>analyze and apply</b> windows | 2 |
|-------|------------------------------------------------------------|---|
|       | and frequency sampling methods for designing of FIR        |   |
|       | filters by its mathematical models.                        |   |

#### XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| COURSE   | PROGRAM OUTCOMES |      |      |       | PSO'S |
|----------|------------------|------|------|-------|-------|
| OUTCOMES | PO 2             | PO 3 | PO 5 | PO 10 | PSO 1 |
| CO 1     | 3                |      |      | 1     |       |
| CO 2     | 4                |      | 1    | 1     | 1     |
| CO 3     | 4                |      | 1    | 1     |       |
| CO 4     | 3                |      | 1    | 1     | 1     |
| CO 5     | 4                | 3    | 1    | 1     |       |
| CO 6     | 4                | 2    | 1    | 1     | 2     |

# XII ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               | $\checkmark$ | SEE Exams    | $\checkmark$ | Seminars      | - |
|-------------------------|--------------|--------------|--------------|---------------|---|
| Laboratory<br>Practices | $\checkmark$ | Student Viva | $\checkmark$ | Certification | - |
| Assignments             | -            |              |              |               |   |

# XIII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback                | 1 | End Semester OBE Feedback |
|--------------|----------------------------------------|---|---------------------------|
| X            | Assessment of Mini Projects by Experts | 5 |                           |

#### XIV SYLLABUS:

| WEEK I  | LINEAR CONVOLUTION VS CIRCULAR CONVOLUTION                                                                                                                                           |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Generation of linear convolution without using built in function and the function<br>conv in MATLAB Generation of circular convolution without using built in function<br>in MATLAB. |
| WEEK II | DFT AND IDFT                                                                                                                                                                         |
|         | Compute the Discrete Fourier Transform and IDFT with and without fft and ifft in MATLAB.                                                                                             |

| WEEK III  | OVERLAPADD AND OVERLAP-SAVE METHODS                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------|
|           | Implementation of Linear convolution using DFT (Overlapadd and Overlap-Save methods).                       |
| WEEK IV   | DIT-FFT ALGORITHM                                                                                           |
|           | Implementation of Decimation-in-time radix-2 FFT algorithm.                                                 |
| WEEK V    | DIF-FFT ALGORITHM                                                                                           |
|           | Implementation of Decimation-in-frequency radix-2 FFT algorithm.                                            |
| WEEK VI   | IIR DIGITAL FILTERUSING BUTTERWORTH METHOD AND<br>BILINEAR TRANSFORMATION                                   |
|           | Implementation of IIR digital filter using Butterworth method and bilinear transformation.                  |
| WEEK VII  | IIR Digital Filter Using Chebyshev (Type I And II) Method                                                   |
|           | Implementation of IIR digital filter using Chebyshev (Type I and II) method.                                |
| WEEK VIII | FIR DIGITAL FILTER USING WINDOWS                                                                            |
|           | Implementation of FIR digital filter using window (Rectangular, Hamming, Hanning, Bartlett) methods.        |
| WEEK IX   | FIR DIGITAL FILTER USING FREQUENCY SAMPLING METHOD                                                          |
|           | Implementation of FIR digital filter using frequency sampling method.                                       |
| WEEK X    | OPTIMUM EQUIRIPPLE FIR DIGITAL FILTER                                                                       |
|           | Implementation of optimum equiripple FIR digital filter using window methods.                               |
| WEEK XI   | DTMF TONE GENERATION AND DETECTION                                                                          |
|           | DTMF Tone Generation and Detection Using Goertzel Algorithm.                                                |
| WEEK XII  | SAMPLING RATE CONVERSION                                                                                    |
|           | Implementation of sampling rate conversion by decimation, interpolation and a rational factor using MATLAB. |
| WEEK XIII | SINE WAVE GENERATION                                                                                        |
|           | a) Implementation of DFT b) Sine wave generation using lookup table with values generated from MATLAB.      |
| WEEK XIV  | IIR AND FIR FILTERS USING DSP KITS                                                                          |
|           | IIR and FIR Filter Implementation using DSP Kits.                                                           |

#### **TEXTBOOKS**

- 1. John G. Proakis, Dimitris G. Manolakis, Digital signal processing, Principles, Algorithms and Applications, Prentice Hall, 4<sup>th</sup> Edition, 2007.
- 2. Sanjit K Mitra, Digital signal processing, A computer base approach, McGraw-Hill Higher Education, 4<sup>th</sup> Edition, 2011.
- 3. Emmanuel C, Ifeacher, Barrie. W. Jervis, DSP-A Practical Approach, Pearson Education, 2<sup>nd</sup> Edition, 2002.
- 4. A.V. Oppenheim, R.W. Schaffer, Discrete Time Signal Processing, PHI, 2<sup>nd</sup> Edition, 2006.

- **REFERENCE BOOKS:** 1. RobertJ.schilling,Sandra.L.harris, "Fundamentals of Digital Signal Processing using MATlab", Thomson Engineering, 2<sup>nd</sup> Edition,2005.
  - 2. Vinay K. Ingle, John G. Proakis, "Digital Signal Processing Using MATlab", Cengage 4<sup>th</sup> Edition, 2009.

3. DSK Donald Reay, Rulph Chassaing, "Digital Signal Processing and Applications with the TMS 320C6713 and TMS 320C6416" Wiley 2<sup>nd</sup> Edition.

#### XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                      | CO's | Reference  |
|------|-----------------------------------------------------------|------|------------|
| 1    | Linear convolution vs circular convolution                | CO 1 | T1: 2.3.3  |
| 2    | DFT and IDFT                                              | CO 1 | T1: 7.2    |
| 3    | Overlap-add and overlap-save methods                      | CO 1 | T1: 2.3.4  |
| 4    | DIT-FFT algorithm                                         | CO 2 | T1: 8.1    |
| 5    | DIT-FFT algorithm                                         | CO 2 | T1: 8.2    |
| 6    | IIR digital filter using Butterworth method and bilinear  | CO 3 | T1: 10.3   |
|      | transformation                                            |      |            |
| 7    | IIR digital filter using Chebyshev (Type I and II) method | CO 3 | T1: 10.3   |
| 8    | FIR digital filter using windows                          | CO 4 | T1: 10.2   |
| 9    | FIR digital filter using frequency sampling method        | CO 4 | T1: 10.3   |
| 10   | Optimum equiripple FIR digital filter                     | CO 4 | T1: 10.4   |
| 11   | DTMF tone generation and detection                        | CO 5 | T3:6.6     |
| 12   | Sampling rate conversion                                  | CO 5 | T1: 11.6   |
| 13   | Sine wave generation                                      | CO 5 | T1:2.1-2.2 |
| 14   | IIR and FIR filters using DSP kits                        | CO 6 | T1: 10.3   |

# XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Design Oriented Experiments                                                                                                  |
|------|------------------------------------------------------------------------------------------------------------------------------|
| 1    | Design an audio application such as to plot a time and frequency display of microphone plus a cosine using DSP chip .        |
| 2    | Develop compressors and expanders to decrease and increase the dynamic range of audio signals in computer music.             |
| 3    | Converting CD DATA TO DVD DATA.                                                                                              |
| 4    | Design Vocoders (voice coder) to reduce the bandwidth requirements of normal voice signal using analysis-synthesis sections. |
| 5    | Noise removal: Add noise above 3 KHz and then remove interference suppression using 400 Hz tone.                             |

Signature of Course Coordinator Dr.S.China Venkateeswarlu, Professor of ECE

#### HOD,ECE


# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department         | ELECT                                    | ELECTRONICS AND COMMUNICATION ENGINEERING |         |            |         |  |
|--------------------|------------------------------------------|-------------------------------------------|---------|------------|---------|--|
| Course Title       | VLSI D                                   | VLSI Design                               |         |            |         |  |
| Course Code        | AECB27                                   | AECB27                                    |         |            |         |  |
| Program            | B.Tech                                   |                                           |         |            |         |  |
| Semester           | VII ECE                                  |                                           |         |            |         |  |
| Course Type        | Core                                     |                                           |         |            |         |  |
| Regulation         | IARE-R18                                 |                                           |         |            |         |  |
|                    |                                          | Theory                                    |         | Pra        | ctical  |  |
| Course Structure   | Lecture                                  | Tutorials                                 | Credits | Laboratory | Credits |  |
|                    | 3                                        | -                                         | -       | -          | -       |  |
| Course Coordinator | Ms K.S.Indrani, Assistant Professor, ECE |                                           |         |            |         |  |

#### I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites                    |
|--------|-------------|----------|----------------------------------|
| B.Tech | AECB07      | III      | Digital System Design            |
| B.Tech | AECB19      | V        | Integrated Circuits Applications |

#### **II COURSE OVERVIEW:**

This course introduces the students the fabrication techniques of design and implementation of very large scale (VLSI) circuits. Specific topics include: CMOS logic, MOSFET theory, design rules & layout procedures and logic and circuit simulations. The course further gives information on data path subsystems, PLD's performance parameters and testing approaches for the circuits.

#### **III MARKS DISTRIBUTION:**

| Subject     | SEE Examination | CIE Examination | Total Marks |
|-------------|-----------------|-----------------|-------------|
| VLSI design | 70 Marks        | 30 Marks        | 100         |

#### IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | x | Assignments  | x            | MOOC   |
|--------------|---------------------------|--------------|--------------|---|--------------|--------------|--------|
| $\checkmark$ | Open Ended Experiments    | $\checkmark$ | Seminars     | x | Mini Project | $\checkmark$ | Videos |
| x            | Others                    |              |              |   |              |              |        |

# **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage

in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 50%                           | Understand            |
| 15 %                          | Apply                 |
| 35%                           | Analyze               |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

| Component                   | Theory |      |     | Total Marks |
|-----------------------------|--------|------|-----|-------------|
| Type of Assessment CIE Exam |        | Quiz | AAT |             |
| CIA Marks                   | 20     | 05   | 05  | 30          |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |
|---------------|-----------|-------------------------|
| 40%           | 40%       | 20%                     |

# VI COURSE OBJECTIVES:

# The students will try to learn:

| Ι   | The aspects of hierarchical VLSI design from the metal oxide semiconductor transistor up to the system level, fabrication and testing.      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| II  | The subsystem design incorporating into a VLSI chip with contemporary techniques for achieving high-speed, low-power and low area overhead. |
| III | Advanced modern tools such as vivado and cadence for front end and back end for<br>chip design through a practical approach.                |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Summarize</b> the MOSFET fabrication process, electrical properties, scaling for analyzing reliability issues and understanding latest trends in VLSI.      | Understand |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CO 2 | <b>Develop</b> the stick diagrams, layouts of MOS circuits using lambda, absolute and Euler physical design rules.                                             | Apply      |
| CO 3 | <b>Describe</b> inverters, complex gates and dynamic CMOS circuits<br>interms of power consumption, distortion and speed of operation                          | Understand |
| CO 4 | <b>Explain</b> data path subsystems and array subsystemsusing stick diagrams and layouts.                                                                      | Apply      |
| CO 5 | <b>Outline</b> the role of Programmable logic devices for realization of complex boolean functions.                                                            | Understand |
| CO 6 | <b>Examine</b> the test strategies, implementation approach on full custom and semi custom design for speed, cost, reconfiguration and reliability parameters. | Analyze    |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



**BLOOMS TAXONOMY** 

# VIII PROGRAM OUTCOMES:

| Program Outcomes |                                                                                                                                                                                                                                                                                                          |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PO 1             | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |  |  |
| PO 2             | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |  |  |
| PO 3             | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and environmental considerations |  |  |
| PO 4             | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |  |  |
| PO 5             | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations                                                                        |  |  |
| PO 6             | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |  |  |
| PO 7             | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |  |  |
| PO 8             | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |  |  |
| PO 9             | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |  |  |
| PO 10            | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |  |  |
| PO 11            | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |  |  |
| PO 12            | Life-Long Learning: Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                                  |  |  |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | PROGRAM OUTCOMES                                                                                       | Strength | Proficiency<br>Assessed by |
|-------|--------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 1  | Engineering knowledge: Apply the                                                                       | 3        | SEE, CIE,                  |
|       | knowledge of mathematics, science, engineering                                                         |          | AAT, QUIZ                  |
|       | to the solution of complex engineering problems.                                                       |          |                            |
| PO 2  | Problem analysis: Identify, formulate, review                                                          | 2        | SEE, CIE,                  |
|       | research literature, and analyze complex                                                               |          | AAT, QUIZ                  |
|       | engineering problems reaching substantiated                                                            |          |                            |
|       | conclusions using first principles of mathematics,                                                     |          |                            |
| DO 2  | Design / Development of Solutions: Design                                                              | 1        | SEE CIE                    |
| 103   | solutions for complex engineering problems and                                                         | 1        | AAT OUIZ                   |
|       | design system components or processes that                                                             |          | 11111, @012                |
|       | meet the specified needs with appropriate                                                              |          |                            |
|       | consideration for the public health and safety,                                                        |          |                            |
|       | and the cultural, societal, and environmental                                                          |          |                            |
|       | considerations                                                                                         |          |                            |
| PO 4  | Conduct Investigations of Complex                                                                      | 2        | AAT                        |
|       | <b>Problems:</b> Use research-based knowledge and                                                      |          |                            |
|       | research methods including design of                                                                   |          |                            |
|       | experiments, analysis and interpretation of data,<br>and synthesis of the information to provide valid |          |                            |
|       | conclusions.                                                                                           |          |                            |
| PO 10 | <b>Communication:</b> Communicate effectively on                                                       | 1        | Discussions                |
|       | complex Engineering activities with the                                                                |          |                            |
|       | Engineering community and with society at                                                              |          |                            |
|       | large, such as, being able to comprehend and                                                           |          |                            |
|       | write effective reports and design                                                                     |          |                            |
|       | documentation, make effective presentations,                                                           |          |                            |
|       | and give and receive clear instructions                                                                |          |                            |

3 = High; 2 = Medium; 1 = Low

## X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| PROGRAM SPECIFIC OUTCOMES |                                                                                                                                                   | ${f Strength}$ | Proficiency<br>Assessed<br>by |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|
| PSO 1                     | Build embedded Software and digital circuit<br>development platform for robotics, embedded                                                        | -              | -                             |
|                           | Systems and signal processing applications.                                                                                                       |                |                               |
| PSO 2                     | Focus on the application specific integrated<br>circuit (ASIC) prototype designs, virtual<br>instrumentation and system on chip (SoC)<br>designs. | 3              | SEE, CIE,<br>AAT              |

| Р     | ROGRAM SPECIFIC OUTCOMES                                                                                                                                                   | Strength | Proficiency<br>Assessed<br>by |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| PSO 3 | Make use of high frequency structure simulator<br>(HFSS) for modeling and evaluating the patch<br>and smart antennas for wired and wireless<br>communication applications. | _        | -                             |

# 3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              | PROGRAM OUTCOMES |              |              |    |    |    |    |    |              |    | PSO'S |     |              |     |
|----------|--------------|------------------|--------------|--------------|----|----|----|----|----|--------------|----|-------|-----|--------------|-----|
| COURSE   | PO           | PO               | PO           | PO           | PO | PO | PO | РО | PO | PO           | PO | PO    | PSO | PSO          | PSO |
| OUTCOMES | 1            | 2                | 3            | 4            | 5  | 6  | 7  | 8  | 9  | 10           | 11 | 12    | 1   | 2            | 3   |
| CO 1     | $\checkmark$ | $\checkmark$     | -            | -            | -  | -  | -  | -  | -  | $\checkmark$ | -  | -     | -   | -            | -   |
| CO 2     | $\checkmark$ | $\checkmark$     | -            | -            | -  | -  | -  | -  | -  | $\checkmark$ | -  | -     | -   | -            | -   |
| CO 3     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -  | -     | -   | -            | -   |
| CO 4     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ |    | -  | -  | -  | -  | $\checkmark$ | -  | -     | -   | $\checkmark$ | -   |
| CO 5     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -  | -     | -   | -            | -   |
| CO 6     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -  | -     | -   | $\checkmark$ | -   |

# XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                              | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Relate the fabrication process (knowledge)<br>,occurrence of latch up by applying the principles of<br>mathematics, science and engineering<br>fundamentals                                                                                                                       | 3                                      |
|                    | PO 2          | Formulate and analyze (problem analysis)<br>complex Engineering problems for MOSFET<br>scaling and its effect using the first principles of<br>mathematics and engineering sciences                                                                                               | 3                                      |
|                    | PO 10         | Describe the effects of scaling on MOS circuits for area, delay, power with <b>clarity</b>                                                                                                                                                                                        | 1                                      |
| CO 2               | PO 1          | Build the stick diagrams, layouts of MOS circuits<br>(knowledge) by following design rules with<br>mathematics, science and engineering<br>fundamentals                                                                                                                           | 3                                      |
|                    | PO 2          | Understand the given <b>problem statement</b> and<br>formulate the circuit design, translate the<br>information into the model using stick diagram and<br>layout validate the output of the circuit in reaching<br>substantiated conclusions by the interpretation of<br>results. | 5                                      |
|                    | PO 4          | <b>Design</b> layout of transistors from stick diagram<br>using experimental design and analyze the<br>characteristics of circuit                                                                                                                                                 | 2                                      |
|                    | PO 10         | Explain the stick diagrams, layouts of MOS circuits<br>using lambda, absolute and Euler physical design rules<br>with <b>clarity</b>                                                                                                                                              | 1                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                 | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PSO 2         | Design any type of ASIC ,SOC designs using cadence<br>tools and analyze the speed, area and delay with the<br>knowledge of layout.                                                                                                                                                                                                                   | 2                                      |
| CO 3               | PO 1          | Examine the conditions mathematically for improved<br>performance of inverters, static and dynamic gates<br>regarding symmetry of transfer characteristics, rise, fall<br>times (knowledge) by applying the field effect<br>transistor fundamentals with support from other<br>engineering disciplines, mathematics, and<br>scientific methodologies | 2                                      |
|                    | PO 2          | Understand the given <b>problem statement and</b><br><b>formulate</b> conditions for improved performance of<br>inverters, static and dynamic gates from the given<br><b>information and data</b> in reaching substantiated<br>conclusions by the <b>interpretation of results</b>                                                                   | 4                                      |
|                    | PO 4          | <b>Design</b> the circuit using various CMOS logics <b>using</b><br><b>experimental design and analyze</b> the features of<br>circuit in terms of area ,delay                                                                                                                                                                                        | 2                                      |
|                    | PO 10         | Describe inverters, complex gates and dynamic CMOS circuits for power consumption, distortion and speed of operation with <b>clarity</b>                                                                                                                                                                                                             | 1                                      |
| CO 4               | PO 1          | Describe data path subsystems (knowledge)<br>consisting of shifters, adders, multipliers, ALUs, parity<br>generators, counters and comparators with the support<br>of VLSI engineering tools such as stick<br>diagrams and layouts, mathematics, science and<br>engineering fundamentals                                                             | 3                                      |
|                    | PO 2          | Formulate and analyze (problem analysis) complex<br>Engineering problems for data path subsystems<br>consisting of shifters, adders, multipliers, ALUs, parity<br>generators, counters and comparators using first<br>principles of mathematics and engineering<br>sciences                                                                          | 5                                      |
|                    | PO 4          | <b>Design</b> various data path subsystems using<br>research-based knowledge and research methods<br>including design of experiments.                                                                                                                                                                                                                | 2                                      |
|                    | PO 10         | Explain data path subsystems containing arithmetic logic units, parity generators, comparators and memories using stick diagrams and layouts. with <b>clarity</b>                                                                                                                                                                                    | 1                                      |
|                    | PSO 2         | Focus on the data path subsystems and array<br>subsystems these type of system are prototype for<br>ASIC and SOC designs                                                                                                                                                                                                                             | 2                                      |
| CO 5               | PO 1          | <b>Design</b> the boolean functions with the <b>(knowledge)</b><br>of programmable logic devices, choose appropriate<br>logic device with the <b>engineering fundamentals</b>                                                                                                                                                                        | 3                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                           | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 2          | Understand the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems,<br><b>translate the information</b> into the model using<br>boolean function from the provided <b>information and</b><br><b>data</b> based on the functionality of the circuit, <b>validate</b><br>the output of the circuit in reaching substantiated<br>conclusions by the <b>interpretation of results</b> with<br>help of CPLD and FPGA devices. | 7                                      |
|                    | PO 3          | <b>Design solutions</b> using programmable logic devices<br>with <b>innovative solution</b> and implementing them<br>using modern tools such as cadence software, verilog<br>and VHDLtools.                                                                                                                                                                                                                                                                    | 3                                      |
|                    | PO 4          | Examine any logic function using <b>design of</b><br><b>experiments, analysis and interpretation of data</b><br>with cadence or verilog tools                                                                                                                                                                                                                                                                                                                  | 2                                      |
|                    | PO 10         | Describe implementation approaches on boolean<br>functions on FPGA with <b>clarity</b>                                                                                                                                                                                                                                                                                                                                                                         | 1                                      |
| CO 6               | PO 1          | Discuss importance of full custom and semi custom<br>designs with <b>(knowledge) using</b> scientific principles<br>and methodology <b>of VLSI design</b>                                                                                                                                                                                                                                                                                                      | 2                                      |
|                    | PO 2          | Understand the given <b>problem statement</b> and<br><b>formulate</b> the (complex) engineering problems of<br>VLSI systems, <b>translate the information</b> into the<br>model using cadence software <b>develop</b><br><b>solutions</b> based on the functionality of the<br>circuit, <b>validate</b> the output of the circuit by applying<br>various testing methods and <b>interpret the results</b> .                                                    | 7                                      |
|                    | PO 3          | Design solutions for complex engineering<br>problems and design system components using<br>full custom or semi custom designs innovative<br>solution and implementing them using modern tools<br>and verify the results using testing methods                                                                                                                                                                                                                  | 3                                      |
|                    | PO 4          | Examine sequential and combinational logic circuits<br>with <b>design of experiments</b> , analysis and<br>interpretation of data using various test procedures.                                                                                                                                                                                                                                                                                               | 2                                      |
|                    | PO 10         | Prepare for Tech talks and concept video presentations keeping in view of latest trends in technology with <b>clarity.</b>                                                                                                                                                                                                                                                                                                                                     | 1                                      |
|                    | PSO 2         | Focus on testing of application specific<br>integrated circuit (ASIC) prototype designs,<br>virtual instrumentation designs and system on<br>chip (SOC) designs appropriate for entry level job<br>positions in front end or back end to meet the<br>requirements of employers.                                                                                                                                                                                | 2                                      |

Note: For Key Attributes refer Annexure -  ${\bf I}$ 

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    | PO's / NO. OF VITAL FEATURES |    |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|----|------------------------------|----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | PO | PO                           | PO | PO | PO | PO | PO | РО | PO | РО | PO | PO    | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                            | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
|          | 3  | 10                           | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8     | 2   | 2   | 2   |
| CO 1     | 3  | 3                            | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 2     | 3  | 5                            | -  | 2  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 3     | 3  | 4                            | -  | 2  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 4     | 3  | 5                            | 2  | 2  |    | -  | -  | -  | -  | 1  | -  | -     | -   | 2   | -   |
| CO 5     | 3  | 7                            | 3  | 2  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 6     | 2  | 7                            | 3  | 2  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | 2   | -   |

#### XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          |     | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|-----|------------------|----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | PO  | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO    | PSO | PSO | PSO |
| OUTCOMES | 1   | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
| CO 1     | 100 | 30               | -  | -  | -  | -  | -  | -  | -  | 20 | -  | -     | -   | -   | -   |
| CO 2     | 66  | 50               | -  | 18 | -  | -  | _  | -  | -  | 20 | -  | -     | -   | -   | -   |
| CO 3     | 100 | 40               | -  | 18 | -  | -  | -  | -  | -  | 20 | -  | -     | -   | -   | -   |
| CO 4     | 100 | 50               | 20 | 18 | -  | -  | -  | -  | -  | 20 | -  | -     | -   | 100 | -   |
| CO 5     | 100 | 70               | 30 | 18 | -  | -  | -  | -  | -  | 20 | -  | -     | -   | -   | -   |
| CO 6     | 66  | 70               | 30 | 18 | -  | -  | -  | -  | -  | 20 | -  | -     | -   | 100 | -   |

# XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$   $0 \leq C \leq 5\%$  No correlation
- 1 -5 <C $\leq$  40% Low/ Slight
- $\pmb{2}$  40 % < C < 60% – Moderate
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | PO | PO               | PO | PO | PO | PO | РО | РО | PO | PO | PO | PO    | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
| CO 1     | 3  | 1                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 2     | 3  | 2                | -  | 1  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 3     | 3  | 1                | -  | 1  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 4     | 3  | 2                | 1  | 1  | -  | -  | I  | I  | -  | 1  | -  | -     | -   | 3   | -   |
| CO 5     | 3  | 2                | 1  | 1  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 6     | 3  | 3                | 1  | 1  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | 3   | -   |
| TOTAL    | 18 | 11               | 3  | 5  | -  | -  | -  | -  | -  | 6  | -  | -     | -   | 6   | -   |

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | РО | PO               | РО | PO | PO | PO | РО | РО | РО | РО | РО | PO    | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
| AVERAGE  | 3  | 1.8              | 1  | 1  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | 3   | -   |

# XVI ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams               | <ul> <li>✓</li> </ul> | SEE Exams                          | $\checkmark$ | Assignments               | <ul> <li>✓</li> </ul> |
|-------------------------|-----------------------|------------------------------------|--------------|---------------------------|-----------------------|
| Quiz                    | $\checkmark$          | Tech - Talk                        | $\checkmark$ | Certification             | -                     |
| Term Paper              | -                     | Seminars                           | -            | Student Viva              | -                     |
| Laboratory<br>Practices | -                     | 5 Minutes Video /<br>Concept Video | ~            | Open Ended<br>Experiments | ~                     |
| Micro Projects          | -                     | -                                  | -            | -                         | -                     |

# XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback               | $\checkmark$ | End Semester OBE Feedback                   |
|--------------|---------------------------------------|--------------|---------------------------------------------|
| $\checkmark$ | Assessment of activities / Modeling a | and E        | xperimental Tools in Engineering by Experts |

# XVIII SYLLABUS:

| MODULE I   | MOSFETS                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Introduction to IC Technology: MOS; PMOS; NMOS, CMOS and BiCMOS,<br>Fabrication Flow; Basic electrical Properties of MOS and BiCMOS Circuits:<br>Ids-Vds relationships in saturation and ohmic regions, MOS transistor<br>threshold Voltage, gm, gds, Figure of merit, Pass transistor; NMOS Inverter;<br>Various pull ups; CMOS Inverter analysis and design; Bi-CMOS Inverters;<br>Latchup.                                                                 |
| MODULE II  | VLSI DESIGN STYLES                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | VLSI Design Flow; MOS Layers; Stick Diagrams; Physical layout design rules:<br>Absolute and lambda based CMOS design rules for wires, contacts and<br>transistors, Euler's rule for physical design with examples; Transistors Layout<br>Diagrams for NMOS and CMOS Inverters; Scaling of MOS circuits; Trends<br>and projections in VLSI design and technology; CMOS nanotechnology                                                                          |
| MODULE III | BASIC CIRCUIT CONCEPTS AND GATE LEVEL DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Sheet Resistance and area capacitance of layers; Inverter Time delays; Driving<br>large capacitive loads; Propagation Delays; Wiring capacitances; Fan-in and<br>Fan-out; Choice of layers; VLSI Interconnects; Reliability issues in CMOS<br>VLSI; Latching; Electro-migration. Gate Level Design: Complex gates,<br>Switch logic; Transmission gates; Other forms of CMOS logic such as Pseudo<br>-nMOS; Dynamic CMOS; Clocked CMOS; CMOS domino; n-p CMOS. |

| MODULE IV | DATA PATH SUBSYSTEMS                                                                                                                                                                                                                                                                                                                                                     |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Data Path Sub Systems: Sub system design; Barrel shifters; Ripple carry,<br>Carry Look Ahead, Carry select Adders, Manchester carry chain ; ALUs;<br>Multipliers; Parity generators; Comparators; Zero/one detectors;<br>Asynchronous and Synchronous Counters; Array Subsystems: SRAM, DRAM,<br>ROM, Floating gate concepts and Flash Memories, Serial access Memories. |
| MODULE V  | LOGIC DESIGN AND TESTING STRATEGIES                                                                                                                                                                                                                                                                                                                                      |
|           | Programmable Logic Devices: Design Approach – PROM, PLA and PAL;<br>FPGAs; CPLDs; FPGA building block architectures; FPGA interconnect<br>routing procedures; Speed and area tradeoff; Implementation strategies: Full<br>custom and semi custom design; CMOS Testing; Built-in Self –Test Strategies                                                                    |

# TEXTBOOKS

- 1. A. Pucknell, Kamran Eshraghian, "BASIC VLSI Design," Third Edition, Prentice Hall of India, 2007. ISBN: 978-81-203-0986-9
- 2. R. Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation," Wiley-IEEE Press, USA, 2005. ISBN: 978-0-470-88132-3
- 3. Jan Rabaey, Anantha Chandrakasan, B.Nikolic, "Digital Integrated Circuits: A Design Perspective," Second Edition, Phi Learning, 2009. ISBN: 97881203225789

# **REFERENCE BOOKS:**

- 1. N. Weste, K. Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision Wesley, 1993. ISBN: 978-81-317-1942-8
- 2. M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, First edition, 1997. ISBN-13: 978-0321602756
- John P. Uyemura, "CMOS Logic Circuit Design," Springer, USA, 2007. ISBN: 0-7923-8452-0 Yuan S W, "Foundations of fluid Mechanics", Prentice-Hall, 2nd Edition, 1987.

# WEB REFERENCES:

 $1. \ https://https://lms.iare.ac.in/index?route=course/details \ \& course\_id=361$ 

# XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No           | Topics to be covered                                                                                      | CO's | Reference                                                                                           |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------|--|--|--|
| OBE DISCUSSION |                                                                                                           |      |                                                                                                     |  |  |  |
| 1              | Course Overview, Elaboration of Objectives and Outcomes.                                                  |      | https:<br>//lms.<br>iare.ac.<br>in/<br>index?<br>route=<br>course/<br>details&<br>course_<br>id=361 |  |  |  |
|                | CONTENT DELIVERY (THEORY)                                                                                 |      |                                                                                                     |  |  |  |
| 2              | Importance of IC technology and basics of MOSFETs                                                         | CO1  | T1-1.1-<br>1.3,1.4                                                                                  |  |  |  |
| 3              | NMOS, PMOS and CMOS fabrication Flow and twintub                                                          | CO1  | T1-<br>1.7,1.8                                                                                      |  |  |  |
| 4              | Process flow of BiCMOS- Latch up problem in CMOS                                                          | CO1  | R1-2.1-<br>2.2                                                                                      |  |  |  |
| 5              | Different Current - voltage characteristics of a MOSFET,<br>Threshold voltage concept in MOSFETs.         | CO 1 | T1-2.2                                                                                              |  |  |  |
| 5              | Effect of transconductance, output conductance and figure of merit on performance characteristics of MOS. | CO 1 | T1-2.12                                                                                             |  |  |  |
| 6              | PASS transistors , NMOS inverter design and impedance ratios of Nmos inverter.                            | CO 3 | R1-4.7                                                                                              |  |  |  |
| 7              | Alternative forms of Pull –up's, CMOS inverter design and properties                                      | CO 3 | R1-2.5.3                                                                                            |  |  |  |
| 8              | Various forms of Bi-CMOS inverters                                                                        | CO 3 | T1-2.6                                                                                              |  |  |  |
| 9              | Processing steps of VLSI Design                                                                           | CO 1 | T1-3.1,<br>3.2.                                                                                     |  |  |  |
| 10             | Introduction to Stick Diagrams; Physical design rules                                                     | CO 2 | T1-<br>3.4,3.5                                                                                      |  |  |  |
| 11             | Introduction to Lambda based design rules                                                                 | CO 2 | T1-3.3                                                                                              |  |  |  |
| 12             | Double metal MOS process rules, 2µm design rules, Contact cuts                                            | CO 2 | T1-<br>3.4,3.5                                                                                      |  |  |  |
| 13             | Euler's rule for physical design                                                                          | CO 2 | T1-3.3                                                                                              |  |  |  |
| 14             | Scaling in MOS circuits                                                                                   | CO 1 | R1-4.8                                                                                              |  |  |  |
| 15             | Model and effects of scaling                                                                              | CO 1 | R1-4.8                                                                                              |  |  |  |
| 16             | VLSI Interconnects, Reliability issues in CMOS VLSI                                                       | CO 1 | R1-4.5                                                                                              |  |  |  |
| 17             | Trends and projections in VLSI design and technology,<br>CMOS Nano technology                             | CO 1 | R1-4.7                                                                                              |  |  |  |
| 18             | Sheet Resistance and area capacitance of MOS layers                                                       | CO 3 | T1-2.13,                                                                                            |  |  |  |
| 19             | Inverter Time delays, Driving large capacitive loads                                                      | CO 3 | T1-6.3                                                                                              |  |  |  |

| 20 | Propagation Delays, Wiring capacitances; Fan-in and Fan-out                            | CO1  | T1-6.2                 |
|----|----------------------------------------------------------------------------------------|------|------------------------|
| 21 | Gate level design: complex gates, Switch logic-                                        | CO 3 | T1-4.11                |
| 22 | Transmission gates ,Other forms of CMOS logic such as                                  | CO 3 | T1-4.10,               |
|    | Pseudo –nMOS                                                                           |      | 4.11                   |
| 23 | Architecture Dynamic CMOS, clocked CMOS                                                | CO 3 | R1-6.3.7               |
| 24 | Architecture of CMOS domino; n-p CMOS                                                  | CO 3 | R1-6.3.2               |
| 25 | Design Approach – PROM, PLA and PAL                                                    | CO 5 | T3 -7.7                |
| 26 | Internal block description of FPGA                                                     | CO 5 | Τ3                     |
| 27 | Internal block description of CPLD                                                     | CO 5 | Τ3                     |
| 28 | Different types FPGA interconnect routing procedures;<br>Performance tradeoff          | CO4  | R1-6.3.4               |
| 29 | implementation strategies: full custom                                                 | CO 6 | R1-6.6.7               |
| 30 | implementation strategies: semi custom design                                          | CO 6 | R1-<br>8.1,8.2         |
| 31 | Comparison of FPGA and CPLD                                                            | CO 5 | Τ3                     |
| 32 | Comparison of Full custom and semi custom designs                                      | CO 6 | R1-6.6.7               |
| 33 | Design modules in subsystems , basics of shifters                                      | CO 4 | R1-6.3.4               |
| 34 | Architecture of Ripple carry, Carry Look Ahead, Carry select Adders                    | CO 4 | R1-6.6.7               |
| 35 | Architecture of Manchester carry chain ,ALUs.                                          | CO 4 | R1-<br>8.1,8.2         |
| 36 | Architectures of Multipliers                                                           | CO 4 | R1-8.9                 |
| 37 | Architectures of Parity generators; Comparators; Zero/one detectors;                   | CO 4 | R1-8.4                 |
| 38 | Design of Asynchronous and Synchronous Counters                                        | CO 4 | R1-<br>8.3,8.5         |
| 39 | Memory operation of SRAM, DRAM, ROM                                                    | CO 4 | R1-<br>9.1,9.2,<br>9.3 |
| 40 | Memory operation of Floating gate concepts and Flash<br>Memories.CMOS Testing and BIST | CO 6 | T3-<br>7.2,7.3         |
|    | PROBLEM SOLVING/ CASE STUDIES                                                          | 5    |                        |
| 41 | Finding drain current, drain to source resistance, transconductance                    | CO 1 | R1-2.5.3               |
| 42 | Finding electrical properties of MOS based on different parameters                     | CO 1 | T1-2.6                 |
| 43 | Finding the shift in characteristics based on impedance ratio<br>and beta ratios       | CO 1 | T1-2.10                |
| 44 | Design of stick diagrams                                                               | CO 2 | T1-3.1,<br>3.2.        |
| 45 | Design of Layout of MOS transistor                                                     | CO 2 | T1-<br>3.4,3.5         |
| 46 | Design using Euler's physical design                                                   | CO 2 | T1-3.3                 |
| 47 | Calculation of resistance and capacitance of layers                                    | CO 3 | T1-1.1-<br>1.3,1.4     |

| 48 | Calculation of Delay with respect to circuit                       | CO 3  | T1-      |
|----|--------------------------------------------------------------------|-------|----------|
|    |                                                                    |       | 1.7,1.8  |
| 49 | Design of complex gate and transmission gate designs               | CO 3  | T1-      |
|    |                                                                    |       | 2.5,2.9  |
| 50 | Design of shifter circuits                                         | CO 4  | R1-      |
|    |                                                                    |       | 8.1,8.2  |
| 51 | Design of adders                                                   | CO 4  | R1-8.9   |
| 52 | Design of multipliers                                              | CO 4  | R1-8.4   |
| 53 | Look up tables and FPGA design                                     | CO 5  | R1-6.3.2 |
| 54 | Design of PROM                                                     | CO 5  | R1-6.3.4 |
| 55 | Design of PLA,PAL                                                  | CO 5  | R1-6.6.7 |
|    | DISCUSSION OF DEFINITION AND TERMIN                                | OLOGY |          |
| 56 | MOS transistor fundamental and basic electrical properties         | CO 1  | T1-1.1-  |
|    |                                                                    |       | 1.3,1.4  |
| 57 | Stick diagram ,layout, scaling of MOS circuits                     | CO 2  | T1-3.1,  |
|    |                                                                    |       | 3.2      |
| 58 | Delay of MOS circuits, gate level circuit design                   | CO 3  | T1-4.6   |
| 59 | Adders, multipliers, memory units                                  | CO 4  | R1-      |
|    |                                                                    |       | 8.1,8.2  |
| 60 | Architectures of Programmable logical devices and testing          | CO 5, | R1-6.3.2 |
|    |                                                                    | CO 6  |          |
|    | DISCUSSION OF QUESTION BANK                                        |       |          |
| 61 | MOS transistor fundamental and basic electrical properties         | CO 1  | T1       |
| 62 | VLSI design styles, Stick diagram ,layout, scaling of MOS circuits | CO 2  | T1       |
| 63 | Basic circuit concepts and gate level design                       | CO 3  | R1       |
| 64 | Data path subsystems                                               | CO 4  | R2       |
| 65 | Programmable logical devices                                       | CO 5  | R1       |

Signature of Course Coordinator

HOD, ECE

# ANNEXURE - I

# **KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES**

| РО   | NBA Statement / Key Competencies Features (KCF)                    | No.   |
|------|--------------------------------------------------------------------|-------|
| Num- |                                                                    | of    |
| ber  |                                                                    | KCF's |
| PO 1 | Apply the knowledge of mathematics, science, Engineering           | 3     |
|      | fundamentals, and an Engineering specialization to the solution of |       |
|      | complex Engineering problems (Engineering Knowledge).              |       |
|      | Knowledge, understanding and application of                        |       |
|      | 1. Scientific principles and methodology.                          |       |
|      | 2. Mathematical principles.                                        |       |
|      | 3. Own and / or other engineering disciplines to integrate /       |       |
|      | support study of their own engineering discipline.                 |       |
| PO 2 | Identify formulate review research literature and analyse          | 10    |
|      | complex Engineering problems reaching substantiated conclusions    | 10    |
|      | using first principles of mathematics natural sciences, and        |       |
|      | Engineering sciences (Problem Analysis).                           |       |
|      | 1. Problem or opportunity identification                           |       |
|      | 2. Problem statement and system definition                         |       |
|      | 3. Problem formulation and abstraction                             |       |
|      | 4. Information and data collection                                 |       |
|      | 5. Model translation                                               |       |
|      | 6. Validation                                                      |       |
|      | 7. Experimental design                                             |       |
|      | 8. Solution development or experimentation / Implementation        |       |
|      | 9. Interpretation of results                                       |       |
|      | 10. Documentation                                                  |       |
| PO 3 | Design solutions for complex Engineering problems and design       | 10    |
|      | system components or processes that meet the specified needs       | 10    |
|      | with appropriate consideration for the public health and safety.   |       |
|      | and the cultural, societal, and Environmental considerations       |       |
|      | (Design/Development of Solutions).                                 |       |
|      | 1. Investigate and define a problem and identify constraints       |       |
|      | including environmental and sustainability limitations, health and |       |
|      | safety and risk assessment issues                                  |       |
|      | 2. Understand customer and user needs and the importance of        |       |
|      | considerations such as aesthetics                                  |       |
|      | 3. Identify and manage cost drivers                                |       |
|      | 4. Use creativity to establish innovative solutions                |       |
|      | 5. Ensure fitness for purpose for all aspects of the problem       |       |
|      | including production, operation, maintenance and disposal          |       |
|      | 6. Manage the design process and evaluate outcomes.                |       |
|      | 7. Knowledge and understanding of commercial and economic          |       |
|      | context of engineering processes                                   |       |
|      | 8. Knowledge of management techniques which may be used to         |       |
|      | achieve engineering objectives within that context                 |       |
|      | 9. Understanding of the requirement for engineering activities to  |       |
|      | promote sustainable development                                    |       |
|      | 10. Awareness of the framework of relevant legal requirements      |       |
|      | governing engineering activities, including personnel, health,     |       |
|      | safety, and risk (including environmental risk) issues             |       |

| PO 4. | <ul> <li>Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems).</li> <li>1. Knowledge of characteristics of particular materials, equipment, processes, or products</li> <li>2. Workshop and laboratory skills</li> <li>3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.)</li> <li>4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues</li> <li>5. Understanding of appropriate codes of practice and industry standards</li> <li>6. Awareness of quality issues</li> <li>7. Ability to work with technical uncertainty</li> <li>8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes</li> <li>9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques</li> <li>10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems</li> <li>11. Understanding of and ability to apply a systems approach to engineering problems.</li> </ul> | 11 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 5  | Create, select, and apply appropriate techniques, resources, and<br>modern Engineering and IT tools including prediction and<br>modelling to complex Engineering activities with an<br>understanding of the limitations (Modern Tool Usage).<br>1. Computer software / simulation packages / diagnostic<br>equipment / technical library resources / literature search tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  |
| PO 6  | <ul> <li>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).</li> <li>1. Knowledge and understanding of commercial and economic context of engineering processes</li> <li>2. Knowledge of management techniques which may be used to achieve engineering objectives within that context</li> <li>3. Understanding of the requirement for engineering activities to promote sustainable development</li> <li>4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues</li> <li>5. Understanding of the need for a high level of professional and ethical conduct in engineering.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5  |

| PO 7 | <ul> <li>Understand the impact of the professional Engineering solutions<br/>in societal and Environmental contexts, and demonstrate the<br/>knowledge of, and need for sustainable development<br/>(Environment and Sustainability).</li> <li>Impact of the professional Engineering solutions (Not technical)</li> <li>Socio economic</li> <li>Political</li> <li>Environmental</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PO 8 | <ul> <li>Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics).</li> <li>1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior.</li> <li>2. Stood up for what they believed in</li> <li>3. High degree of trust and integrity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3  |
| PO 9 | <ul> <li>Function effectively as an individual, and as a member or leader<br/>in diverse teams, and in multidisciplinary settings (Individual<br/>and Teamwork).</li> <li>1. Independence</li> <li>2. Maturity – requiring only the achievement of goals to drive<br/>their performance</li> <li>3. Self-direction (take a vaguely defined problem and<br/>systematically work to resolution)</li> <li>4. Teams are used during the classroom periods, in the hands-on<br/>labs, and in the design projects.</li> <li>5. Some teams change for eight-week industry oriented</li> <li>Mini-Project, and for the seventeen -week design project.</li> <li>6. Instruction on effective teamwork and project management is<br/>provided along with an appropriate textbook for reference</li> <li>7. Teamwork is important not only for helping the students know<br/>their classmates but also in completing assignments.</li> <li>8. Students also are responsible for evaluating each other's<br/>performance, which is then reflected in the final grade.</li> <li>9. Subjective evidence from senior students shows that the<br/>friendships and teamwork extends into the Junior years, and for<br/>some of those students, the friendships continue into the<br/>workplace after graduation</li> <li>10. Ability to work with all levels of people in an organization</li> <li>11. Ability to get along with others</li> <li>12. Demonstrated ability to work well with a team</li> </ul> | 12 |

| PO 10    | Communicate effectively on complex Engineering activities with    | <b>5</b> |
|----------|-------------------------------------------------------------------|----------|
|          | the Engineering community and with society at large such as       | -        |
|          | being able to comprehend and write effective reports and design   |          |
|          | decumentation make effective presentations and give and receive   |          |
|          | documentation, make ellective presentations, and give and receive |          |
|          | clear instructions (Communication).                               |          |
|          | "Students should demonstrate the ability to communicate           |          |
|          | effectively in writing / Orally"                                  |          |
|          | 1. Clarity (Writing)                                              |          |
|          | 2. Grammar/Punctuation (Writing)                                  |          |
|          | 3. References (Writing)                                           |          |
|          | 4. Speaking Style (Oral)                                          |          |
|          | 5. Subject Matter (Oral)                                          |          |
| <br>DO11 | Demonstrate Imeniedra and understanding of the Engineering        | 10       |
| POII     | Demonstrate knowledge and understanding of the Engineering        | 14       |
|          | and management principles and apply these to one's own work, as   |          |
|          | a member and leader in a team, to manage projects and in          |          |
|          | multidisciplinary Environments (Project Management and            |          |
|          | Finance).                                                         |          |
|          | 1. Scope Statement                                                |          |
|          | 2. Critical Success Factors                                       |          |
|          | 3. Deliverables                                                   |          |
|          | 4. Work Breakdown Structure                                       |          |
|          | 5. Schedule                                                       |          |
|          | 6. Budget                                                         |          |
|          | 7 Quality                                                         |          |
|          | 8 Human Resources Plan                                            |          |
|          | 9. Stakeholder List                                               |          |
|          | 10 Communication                                                  |          |
|          | 10. Communication                                                 |          |
|          | 11. RISK Register                                                 |          |
|          | 12. Procurement Plan                                              |          |
| PO12     | Recognize the need for and have the preparation and ability to    | 8        |
|          | engage in independent and life-long learning in the broadest      |          |
|          | context of technological change (Life - Long Learning).           |          |
|          | 1. Project management professional certification / MBA            |          |
|          | 2. Begin work on advanced degree                                  |          |
|          | 3. Keeping current in CSE and advanced engineering concepts       |          |
|          | 4. Personal continuing education efforts                          |          |
|          | 5 Ongoing learning – stays up with industry trends/ new           |          |
|          | technology                                                        |          |
|          | 6 Continued personal development                                  |          |
|          | 7 Have learned at least 2.2 new significant skills                |          |
|          | (1) Have learned at least 2-5 new significant skills              |          |
|          | 8. nave taken up to 80 nours (2 weeks) training per year          |          |



# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title       | MICROWAVE AND SATELLITE ENGINEERING |           |         |            |         |  |
|--------------------|-------------------------------------|-----------|---------|------------|---------|--|
| Course Code        | AECB28                              |           |         |            |         |  |
| Program            | B.Tech                              |           |         |            |         |  |
| Semester           | VII ECE                             |           |         |            |         |  |
| Course Type        | Core                                |           |         |            |         |  |
| Regulation         | IARE - R18                          | R18       |         |            |         |  |
|                    |                                     | Theory    |         | Practical  |         |  |
| Course Structure   | Lecture                             | Tutorials | Credits | Laboratory | Credits |  |
|                    | 3                                   | -         | 3       | -          | -       |  |
| Course Coordinator | Ms P Annapurna, Assistant Professor |           |         |            |         |  |

# I COURSE PRE-REQUISITES:

| Level  | Course Code | Semester | Prerequisites                                 |
|--------|-------------|----------|-----------------------------------------------|
| B.Tech | AEC007      | IV       | Electromagnetic Theory and Transmission Lines |
| B.Tech | AEC011      | V        | Antennas and Propagation                      |

# II COURSE OVERVIEW:

This course allows students to study and analyze microwave systems at high frequencies, typically in the MHz and GHz range where lumped elements (e.g., resistors, capacitors, inductors) are no longer appropriate. It introduces passive and active microwave devices that constitute wireless communication systems between the antenna and the signal processor. It deals with the concepts of satellite communication and the principles to design of global satellite systems for communication. The main applications are cellular communications, high-speed digital and analog circuits, wireless networks and radar.

# **III MARKS DISTRIBUTION:**

| Subject                 | SEE Examination | CIE Examination | Total Marks |
|-------------------------|-----------------|-----------------|-------------|
| Microwave and satellite | 70 Marks        | 30 Marks        | 100         |
| engineering             |                 |                 |             |

# IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

|              | PPT         |              | Chalk & Talk |              | Assignments  | x | MOOC   |
|--------------|-------------|--------------|--------------|--------------|--------------|---|--------|
| $\checkmark$ |             | $\checkmark$ |              | $\checkmark$ |              |   |        |
| x            | Open Ended  | x            | Seminars     | x            | Mini Project | x | Videos |
|              | Experiments |              |              |              |              |   |        |
| x            | Others      |              |              |              |              |   |        |

# **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 16 %                          | Remember              |
| 49~%                          | Understand            |
| 33 %                          | Apply                 |
| 0 %                           | Analyze               |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

| Component          | Theo     | Total Marks |    |
|--------------------|----------|-------------|----|
| Type of Assessment | CIE Exam | Quiz $AAT$  |    |
| CIA Marks          | 25       | 05          | 30 |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $17^{th}$  week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |  |  |
|---------------|-----------|-------------------------|--|--|
| 40%           | 40%       | 20%                     |  |  |

# VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The concepts of wave guide components and electromagnetic wave propagation for microwave communication using Maxwell's equations. |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| II  | The generation of microwave signals to measure different parameters using microwave test bench.                                   |
| III | TheConcept of Satellite communication and understand placement of communication satellite in Geostationary-Earth-Orbit.           |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Recall</b> the concepts of transmission lines and waveguides to derive the   | Remember    |
|------|---------------------------------------------------------------------------------|-------------|
|      | field components of wave equations rectangular modes.                           |             |
| CO 2 | <b>Illustrate</b> the principle of waveguide components which are used to       | Understand  |
|      | couple microwave power from the waveguide system to make the                    |             |
|      | relation between input and output power.                                        |             |
| CO 3 | Apply the concept of S-Matrix to measure output power in microwave              | Apply       |
|      | junctions and directional couplers                                              |             |
| CO 4 | <b>Demonstrate</b> the operation of microwave tubes, solid state devices        | Understand. |
|      | for the generation and transmission of the microwave frequencies.               |             |
| CO 5 | <b>Describe</b> the satellite subsystem to control the altitude and position of | Understand  |
|      | a complete space vehicle / satellite                                            |             |
| CO 6 | Identify an appropriate modulation, multiplexing and multiple access            | Apply       |
|      | schemes for a satellite communication link to improve the link                  |             |
|      | performance.                                                                    |             |

# COURSE KNOWLEDGE COMPETENCY LEVEL



#### **BLOOMS TAXONOMY**

# VIII PROGRAM OUTCOMES:

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                      |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                           |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | PROGRAM OUTCOMES                                   | Strength | Proficiency<br>Assessed by |
|-------|----------------------------------------------------|----------|----------------------------|
| PO 1  | Engineering knowledge: Apply the                   | 3        | SEE/ CIE,                  |
|       | knowledge of mathematics, science, engineering     |          | AAT, QUIZ                  |
|       | fundamentals, and an engineering specialization    |          |                            |
|       | to the solution of complex engineering problems.   |          |                            |
| PO 2  | Problem analysis: Identify, formulate, review      | 2        | SEE/CIE,                   |
|       | research literature, and analyze complex           |          | AAT, QUIZ                  |
|       | engineering problems reaching substantiated        |          |                            |
|       | conclusions using first principles of mathematics, |          |                            |
|       | natural sciences, and engineering sciences.        |          |                            |
| PO 4  | Conduct Investigations of Complex                  | 1        | SEE/CIE,                   |
|       | <b>Problems:</b> Use research-based knowledge and  |          | AAT, QUIZ                  |
|       | research methods including design of               |          |                            |
|       | experiments, analysis and interpretation of data,  |          |                            |
|       | and synthesis of the information to provide valid  |          |                            |
|       | conclusions.                                       |          |                            |
| PO 10 | <b>Communication:</b> Communicate effectively on   | 1        | SEE/CIE,                   |
|       | complex engineering activities with the            |          | AAT, QUIZ                  |
|       | engineering community and with society at          |          |                            |
|       | large, such as, being able to comprehend and       |          |                            |
|       | write effective reports and design                 |          |                            |
|       | documentation, make effective presentations,       |          |                            |
|       | and give and receive clear instructions.           |          |                            |

3 = High; 2 = Medium; 1 = Low

# X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| Р     | PROGRAM SPECIFIC OUTCOMES                      | ${f Strength}$ | Proficiency<br>Assessed<br>by |
|-------|------------------------------------------------|----------------|-------------------------------|
| PSO 3 | Make use of High Frequency Structure           | 3              | -                             |
|       | Simulator(HFSS) for modeling and evaluating    |                |                               |
|       | patch and smart antennas for wire and wireless |                |                               |
|       | communication applications                     |                |                               |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              | PROGRAM OUTCOMES |    |              |    |    |    |    |    |              |    | PSO'S |     |       |       |
|----------|--------------|------------------|----|--------------|----|----|----|----|----|--------------|----|-------|-----|-------|-------|
| COURSE   | PO           | PO               | PO | PO           | РО | PO | PO | PO | РО | PO           | PO | PO    | PSC | ) PSC | ) PSC |
| OUTCOMES | 1            | 2                | 3  | 4            | 5  | 6  | 7  | 8  | 9  | 10           | 11 | 12    | 1   | 2     | 3     |
| CO 1     | $\checkmark$ | -                | -  | -            | -  | -  | -  | -  | -  | $\checkmark$ | -  |       | -   | -     | -     |
| CO 2     | $\checkmark$ | $\checkmark$     | -  | -            | -  | -  | -  | -  | -  | $\checkmark$ | -  | -     | -   | -     | -     |
| CO 3     | $\checkmark$ | $\checkmark$     | -  | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -  | -     | -   | -     | -     |

| CO 4 | $\checkmark$ | $\checkmark$ | - | $\checkmark$ | - | - | - | - | - | $\checkmark$ | - |   | - | - | -            |
|------|--------------|--------------|---|--------------|---|---|---|---|---|--------------|---|---|---|---|--------------|
| CO 5 | $\checkmark$ | $\checkmark$ | - | -            | - | - | - | - | - | $\checkmark$ | - | - | - | - | -            |
| CO 6 | $\checkmark$ | $\checkmark$ | - | -            | - | - | - | - | - | $\checkmark$ | - |   | - | - | $\checkmark$ |

# XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| Course   |       |                                                                                                 |           |
|----------|-------|-------------------------------------------------------------------------------------------------|-----------|
| Outcomes | POs / | Justification for mapping (Students will be                                                     | No. of    |
| (COs)    | PSOs  | able to)                                                                                        | key com-  |
|          |       |                                                                                                 | petencies |
| CO1      | PO 1  | <b>Recall</b> the concepts of transmission lines and                                            | 2         |
|          |       | waveguides (knowledge) to derive the field                                                      |           |
|          |       | TEM by applying the principles of science                                                       |           |
|          |       | to complex engineering problems                                                                 |           |
|          | PO 10 | <b>Communicate effectively on</b> the concepts of                                               | 1         |
|          |       | transmission lines and waveguides (knowledge)                                                   |           |
|          |       | to derive the field components of wave equations                                                |           |
|          |       | i.e TE,TM and TEM modes                                                                         |           |
|          | PO 1  | <b>Recall</b> the concepts of power dividers and                                                | 2         |
| CO2      |       | couplers (knowledge) and obtain the expressions                                                 |           |
|          |       | engineering science for complex                                                                 |           |
|          |       | engineering problems.                                                                           |           |
|          | PO 2  | Formulate and analyze (Problem analysis)                                                        | 2         |
|          |       | complex Engineering problems for                                                                |           |
|          |       | Determining the s-parameters on power dividers                                                  |           |
|          |       | using first principles of mathematics and                                                       |           |
|          |       | Engineering sciences                                                                            | 2         |
|          | PO 4  | Analyze the microwave components to evaluate<br>the s parameters on power dividers and couplers | 2         |
|          |       | (knowledge) methods including <b>design of</b>                                                  |           |
|          |       | experiments, analysis of complex problems                                                       |           |
|          | PO 10 | Communicate effectively on the concepts of                                                      | 2         |
|          |       | measuring different wave guide parameters                                                       |           |
|          | PO 1  | Understand the performance characteristics of                                                   | 2         |
| CO3      |       | a Reflex klystron and two-cavity (knowledge) for                                                |           |
|          |       | efficiency by applying the principles of                                                        |           |
|          |       | mathematics, science to the solutions of                                                        |           |
|          |       | complex engineering problems.                                                                   |           |
|          | PO 2  | Formulate and analyze (Problem analysis)                                                        | 2         |
|          |       | complex Engineering problems to evaluate the                                                    |           |
|          |       | performance of microwave sources using first                                                    |           |
|          |       | sciences                                                                                        |           |
|          | PO4   | Analyze the microwave power sources                                                             | 2         |
|          |       | (knowledge) including design of experiments,                                                    | _         |
|          |       | analysis of complex problems                                                                    |           |

|     | PO 10 | <b>Communicate effectively on</b> the concepts of micrwave power for Determining the s-parameters on power dividers                                                                                                                                                         | 3 |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| CO4 | PO 1  | Extend the concept of limitations of conventional<br>tubes to microwave tubes for analyzing the<br>microwave solid state devices (Knowledge) by<br>applying the principles of mathematics,<br>engineering science for complex<br>engineering problems.                      | 2 |
|     | PSO 3 | Apply the concept of microwave tubes to develop<br>klystron amplifierand oscillator which are used in<br>microwave engineering lab for amplifying<br>microwave signals by <b>applying the principles</b><br><b>of of science to complex engineering</b><br><b>problems.</b> | 2 |
|     | PO 10 | <b>Communicate effectively on</b> the concepts of detection, generation and amplification of solid state microwave devices.                                                                                                                                                 | 2 |
| CO5 | PO 1  | Interpret the operating principle of satellite<br>subsystems <b>applying mathematics</b> ,<br><b>engineering fundamentals for complex</b><br><b>engineering problems</b> .                                                                                                  | 2 |
|     | PSO 3 | Understand the different types of sub<br>systems by applying mathematics,<br>engineering fundamentals for complex<br>engineering problems.                                                                                                                                  | 2 |
|     | PO 10 | <b>Communicate effectively on</b> the concepts of satellite subsystems .                                                                                                                                                                                                    | 2 |
| CO6 | PO 1  | identify different types of modulation,<br>multiplexing and multiple access schemes<br><b>applying mathematics and engineering</b><br>science for engineering problems.                                                                                                     | 2 |
|     | PO 10 | <b>Communicate effectively on</b> the concepts of<br>modulation, multiplexing and multiple access<br>schemes                                                                                                                                                                | 2 |

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | PSO'S |     |       |       |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|-------|-----|-------|-------|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO    | PSC | ) PSC | ) PSC |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2     | 3     |
| CO 1     | 2  | -                | -  | -  | -  | -  | -  | -  |    | 2  | -  |       | -   | -     | -     |
| CO 2     | 3  | 3                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -     | -   | -     | -     |
| CO 3     | 2  | 4                | -  | 4  | -  | -  | -  | -  | -  | 3  | -  | -     | -   | -     | -     |
| CO 4     | 2  | 4                | -  | 4  | -  | -  | -  | -  | -  | 2  | -  |       | -   | -     | 2     |
| CO 5     | 2  | 3                | -  | -  | -  | -  | -  | -  | -  | 3  | -  | -     | -   | -     | 2     |
| CO 6     | 2  | 3                | -  | -  | -  | -  | -  | -  | -  | 3  | -  |       | -   | -     | -     |

# XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

|          |      | PROGRAM OUTCOMES |    |      |    |    |    |    |    |    | PSO'S |    |     |       |       |
|----------|------|------------------|----|------|----|----|----|----|----|----|-------|----|-----|-------|-------|
| COURSE   | РО   | PO               | PO | РО   | РО | PO | PO | PO | РО | РО | PO    | PO | PSC | ) PSC | ) PSC |
| OUTCOMES | 1    | 2                | 3  | 4    | 5  | 6  | 7  | 8  | 9  | 10 | 11    | 12 | 1   | 2     | 3     |
| CO 1     | 66.6 | -                | -  | -    | -  | -  | -  | -  | -  | 20 | -     |    | -   | -     | -     |
| CO 2     | 100  | 30               | -  | -    | -  | -  | -  | -  | -  | 20 | -     | -  | -   | -     | -     |
| CO 3     | 66.6 | 40               | -  | 36.4 | -  | -  | -  | -  | -  | 30 | -     | -  | -   | -     | -     |
| CO 4     | 66.6 | 40               | -  | 36.4 | -  | -  | -  | -  | -  | 20 | -     |    | -   | -     | 100   |
| CO 5     | 66.6 | 30               | -  | -    | -  | -  | -  | -  | -  | 30 | -     | -  |     | -     | 100   |
| CO 6     | 66.6 | 30               | -  | -    | -  | -  | -  | -  | -  | 30 | -     |    | -   | -     | -     |

# XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- $\pmb{2}$  40 % < C < 60% – Moderate
- $1-5 < C \le 40\% Low/$  Slight
- $\boldsymbol{3}$   $60\% \leq C < 100\%$  Substantial /High

|          |     | PROGRAM OUTCOMES |    |     |    |    |    |    |    |     | PSO'S |    |     |       |       |
|----------|-----|------------------|----|-----|----|----|----|----|----|-----|-------|----|-----|-------|-------|
| COURSE   | РО  | PO               | PO | PO  | РО | PO | PO | PO | PO | PO  | PO    | РО | PSC | ) PSC | ) PSC |
| OUTCOMES | 1   | 2                | 3  | 4   | 5  | 6  | 7  | 8  | 9  | 10  | 11    | 12 | 1   | 2     | 3     |
| CO 1     | 1   | -                | -  | -   | -  | -  | -  | -  | -  | 1   | -     |    | -   | -     | -     |
| CO 2     | 3   | 1                | -  | -   | -  | -  | -  | -  | -  | 1-  | -     | -  | -   | -     | -     |
| CO 3     | 3   | 2                | -  | 1   | -  | -  | -  | -  | -  | 1   | -     | -  | -   | -     | -     |
| CO 4     | 3   | 2                | -  | 1   | -  | -  | -  | -  | -  | 1   | -     | -  | -   | -     | 3     |
| CO 5     | 3   | 1                | -  | -   | -  | -  | -  | -  | -  | 1   | -     | -  | -   | -     | 3     |
| CO 6     | 3   | 1                | -  | -   | -  | -  | -  | -  | -  | 1   | -     |    | -   | -     | -     |
| TOTAL    | 16  | 7                | 0  | 2   | 0  | 0  | 0  | 0  | 0  | 6   | 0     | 0  | 0   | 0     | 6     |
| AVERAGE  | 2.3 | 1.4              | 0  | 1.0 | 0  | 0  | 0  | 0  | 0  | 2.0 | 0     | 0  | 0   | 0     | 3     |

# XVI ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams               | $\checkmark$ | SEE Exams                          | ✓            | Assignments               | - |
|-------------------------|--------------|------------------------------------|--------------|---------------------------|---|
| Quiz                    | -            | Tech - Talk                        | $\checkmark$ | Certification             | - |
| Term Paper              | -            | Seminars                           | -            | Student Viva              | - |
| Laboratory<br>Practices | -            | 5 Minutes Video<br>/ Concept Video | ~            | Open Ended<br>Experiments | ~ |
| Micro<br>Projects       | _            | -                                  | -            | -                         | - |

# XVII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback           | $\checkmark$ | End Semester OBE Feedback |
|--------------|-----------------------------------|--------------|---------------------------|
| X            | Assessment of Mini Projects by Ex | xperts       |                           |

# XVIII SYLLABUS:

| MODULE I   | MICROWAVE TRANSMISSION LINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Introduction, Microwave Spectrum and Bands, Applications of<br>Microwaves. Rectangular Waveguides – Solution of Wave Equations in<br>Rectangular Coordinates, TE/TM mode analysis, Expressions for<br>Fields, Characteristic Equation and Cut-off Frequencies Waveguide<br>Multiport Junctions – E plane and H plane Tees, Magic Tee. Directional<br>Couplers – 2 Hole, Bethe Hole types, Illustrative Problems.                                                                                                                                                                                                                                                                       |
| MODULE II  | MICROWAVE TUBES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Microwave Tubes – O Type and M Type Classifications, O-type Tubes :<br>2 Cavity Klystrons – Structure, Reentrant Cavities, Velocity Modulation<br>Process and Applegate Diagram, Bunching Process,Reflex Klystrons –<br>Structure, Velocity Modulation and Applegate Diagram, Mathematical<br>Theory of Bunching, Power Output, Efficiency,Helix TWTs:<br>Significance, Types and Characteristics of Slow Wave Structures;<br>Structure of TWT and Amplification Process. M-Type Tubes:<br>Introduction, Cross-field Effects, Magnetrons – Different Types,<br>Cylindrical Traveling Wave Magnetron – Hull Cut-off and Hartree<br>Conditions, Modes of Resonance and PI-Mode Operation |
| MODULE III | MICROWAVE SOLID STATE DEVICES MICROWAVE<br>MEASUREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Liquid propellant rockets, classification and components, thrust<br>chamber, feed systems, propellant tanks, turbo-pumps, types of valves<br>and applications, design considerations. Different bipropellant systems<br>like cryogenics and their characteristics, pogo and slosh engine gimbal<br>systems and thrusters for control; Spacecraft propulsion and control<br>systems design problems.                                                                                                                                                                                                                                                                                    |
| MODULE IV  | ORBITAL MECHANICS, LAUNCHERS AND SATELLITE<br>SUBSYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Basic Concepts of Satellite Communications, Orbital Mechanics and<br>Launchers: Orbital Mechanics, Look Angle determination, Orbital<br>Perturbations, Orbit determination, Launches and Launch vehicles,<br>Orbital Effects in Communication Systems Performance.Satellite<br>Subsystems: Attitude and Orbit Control System, Telemetry, Tracking,<br>Command and Monitoring, Power Systems, Communication<br>Subsystems, Satellite Antennas.                                                                                                                                                                                                                                          |

| MODULE V | SATELLITE LINK DESIGN AND MULTIPLE ACCESS                        |
|----------|------------------------------------------------------------------|
|          | Satellite Link Design: Basic Transmission Theory, System Noise   |
|          | Temperature and G/T Ratio, Design of Down Links, Up Link Design, |
|          | Design Of Satellite Links For Specified C/N. Multiple Access:    |
|          | Frequency Division Multiple Access (FDMA), Intermediation,       |
|          | Calculation of C/N, Time Division Multiple Access (TDMA), Frame  |
|          | Structure, Examples, Satellite Switched TDMA Onboard Processing, |
|          | DAMA, Code Division Multiple Access (CDMA), Spread Spectrum      |
|          | Transmission and Reception.                                      |

## TEXTBOOKS

- 1. Microwave and radar engineering by Kulakrni
- 2. SamuelY.Liao, "MicrowaveDevicesandCircuits", Pearson, 3rdEdition, 2003.
- 3. Dennisroddy, "SatelliteCommunications", 4thEdition, 2004.
- 4. Pratt.Bostian,Allnutt, "SatelliteCommunications",WileyIndia,2ndEdition,2006.

#### **REFERENCE BOOKS:**

- 1. Microwave engineering by R.E.Collins.
- $2.\ MRichharia, ``SatelliteCommunicationSystems", R.E. CollinMacMillan, 2nd Edition, 2005$

# XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No                      | Topics to be covered                                                                                                                          | CO's | Reference                     |  |  |  |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------|--|--|--|--|--|
|                           | OBE DISCUSSION                                                                                                                                |      |                               |  |  |  |  |  |
| 1                         | Course Description on Outcome Based Education<br>(OBE): Course Objectives, Course Outcomes (CO),<br>Program Outcomes (PO) and CO - PO Mapping | _    | W1                            |  |  |  |  |  |
| CONTENT DELIVERY (THEORY) |                                                                                                                                               |      |                               |  |  |  |  |  |
| 2                         | Introduction to microwave spectrum and bands and<br>Applications of microwaves                                                                | CO 1 | T1-1.0-1.4                    |  |  |  |  |  |
| 3                         | rectangular waveguides-TEmodes, expressions for<br>fields, characteristic equation and cutoff frequencies                                     | CO 1 | T1-4.1.1-4.1.3                |  |  |  |  |  |
| 4                         | rectangular waveguides-TM modes, expressions for fields, characteristic equation and cutoff frequencies                                       | CO 1 | T1-4.1.1-4.1.3                |  |  |  |  |  |
| 5                         | filter characteristics, dominant and degenerate<br>modes, sketches of TE and TM mode fields in the<br>cross-section                           | CO 1 | T1-4.1.6-4.1.7                |  |  |  |  |  |
| 6                         | mode characteristics, phase and group velocities & wavelengths and impedance relations                                                        | CO 1 | T1-4.1.8-4.1.11               |  |  |  |  |  |
| 7                         | power transmission and power losses in rectangular guide, related problems                                                                    | CO 1 | T1-4.1.12                     |  |  |  |  |  |
| 8                         | resonant cavities, mode characteristics, and coupling coefficients                                                                            | CO 1 | T1-6.3.1-6.3.1                |  |  |  |  |  |
| 9                         | coupling mechanisms, waveguide discontinuities, various attenuators, and phase shifters                                                       | CO 1 | R1- 6.8-6.9 R1-<br>6.14- 6.15 |  |  |  |  |  |

| 10 | waveguide multiport junctions such as E-Plane,<br>H-plane tees, magic tee, hybrid ring.                                                                              | CO 2 | T1-5.4- 5.5      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|
| 11 | waveguide multiport junctions such as E-Plane,<br>H-plane tees, magic tee, hybrid ring.                                                                              | CO 2 | T1-5.4- 5.5      |
| 12 | waveguide multiport junctions such as E-Plane,<br>H-plane tees, magic tee, hybrid ring.                                                                              | CO 2 | T1-5.4- 5.5      |
| 10 | Faraday rotation of ferrite components such as<br>gyrator, isolator, and circulators                                                                                 | CO 2 | T1 -5.6          |
| 13 | waveguide multiport junctions such as E-Plane,<br>H-plane tees, magic tee, hybrid ring.                                                                              | CO 2 | T1-5.4- 5.5      |
| 14 | Limitations and Losses of conventional tubes at<br>Microwave frequencies over microwave tubes and<br>categorize the different types of microwave tubes.              | CO 3 | T1 - 6.1         |
| 15 | two cavity klystrons<br>structure Reentrant cavities, velocity modulation<br>process and Applegate diagram                                                           | CO 3 | T1 - 6.2- 6.3    |
| 16 | reflex klystron operation-structure, Applegate<br>diagram and principle of working, mathematical<br>theory of bunching, power output, efficiency                     | CO 3 | T1 - 6.4.1       |
| 17 | oscillating modes and o/p characteristics, effect of repeller voltage on power o/p                                                                                   | CO 3 | T1 - 6.4.2-6.4.3 |
| 18 | the significance, types and characteristics of slow<br>wave structures, structure of TWT and<br>Amplification process(qualitative treatment),gain<br>considerations. | CO 3 | T1-7.5           |
| 16 | classification of magnetrons and cross field Effects                                                                                                                 | CO 3 | T1-7.6           |
| 19 | eight-cavity cylindrical travelling wave magnetron<br>Hull cut-off and Hartree conditions                                                                            | CO 4 | T1-7.1.1-7.1.2   |
| 20 | RWH Theory, characteristics, and operation of GUNN diode                                                                                                             | CO 4 | T1-7.3-7.3       |
| 21 | avalanche transit time devices, basic modes of operation                                                                                                             | CO 4 | T1-8.1-8.3       |
| 22 | microwave bench setup different blocks and their features precautions                                                                                                | CO 4 | T1-9.1-9.2       |
| 23 | Measurement of VSWR                                                                                                                                                  | CO 4 | T1-9.1-9.2       |
| 24 | Measurement of Power                                                                                                                                                 | CO 4 | T1-9.1-9.2       |
| 25 | Measurement of Attenuation                                                                                                                                           | CO 4 | T1-9.1-9.2       |
| 26 | Understand the various types of microwave parameter<br>measurement techniques                                                                                        | CO 4 | R1 -7.5-7.9      |
| 27 | Basic Concepts of Satellite Communications,<br>Orbital Mechanics and Launchers: Orbital<br>Mechanics, Look Angle determination                                       | CO 5 | T3-2.1-2.2       |
| 28 | Orbital Perturbations, Orbit determination,<br>Launches and Launch vehicles, Orbital Effects in<br>Communication Systems Performance                                 | CO 5 | T3-2.3-2.3       |
| 29 | Satellite Subsystems: Attitude and Orbit Control<br>System, Telemetry.                                                                                               | CO 5 | T3-2.4-2.4       |

| 30                            | Tracking, Command and Monitoring, Power<br>Systems,                   | CO 6    | T3-2.5-2.8                    |  |  |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------|---------|-------------------------------|--|--|--|--|--|--|
| 31                            | Communication Subsystems, Satellite Antennas                          | CO 6    | T3-2.5-2.8                    |  |  |  |  |  |  |
| 32                            | Satellite Link Design: Basic Transmission Theory                      | CO 6    | T3-3.1-3.2                    |  |  |  |  |  |  |
| 33                            | System Noise Temperature and G/T Ratio                                | CO 6    | T3-3.1-3.2                    |  |  |  |  |  |  |
| 34                            | Design of Down Links, Up Link Design                                  | CO 6    | T3-3.4-3.5                    |  |  |  |  |  |  |
| 35                            | Design Of Satellite Links For Specified C/N                           | CO6     | T3-3.4-3.5                    |  |  |  |  |  |  |
| 36                            | Multiple Access: Frequency Division Multiple<br>Access (FDMA), I      | CO 6    | T3-3.6-3.9                    |  |  |  |  |  |  |
| 37                            | Intermediation, Calculation of C/N                                    | CO 6    | T3-3.6-3.9                    |  |  |  |  |  |  |
| 38                            | Time Division Multiple Access (TDMA)                                  | CO 6    | T3-4.1-4.3                    |  |  |  |  |  |  |
| 39                            | Time Division Multiple Access (TDMA)                                  | CO 6    | T3-4.1-4.3                    |  |  |  |  |  |  |
| 40                            | DAMA, Code Division Multiple Access (CDMA)                            | CO 6    | T3-4.3-4.5                    |  |  |  |  |  |  |
| 41                            | Spread Spectrum Transmission and Reception.                           | CO 6    | T3-4.3-4.5                    |  |  |  |  |  |  |
| PROBLEM SOLVING/ CASE STUDIES |                                                                       |         |                               |  |  |  |  |  |  |
| 42                            | Phase velocity, group velocity, wavelength and<br>impedance relations | CO 2    | T1-4.3.1-4.3.1                |  |  |  |  |  |  |
| 43                            | Field components of TM waves for rectangular waveguide                | CO 2    | R4- 6.8-6.9 R4-<br>6.14- 6.15 |  |  |  |  |  |  |
| 44                            | Field components of TE waves for rectangular waveguide                | CO 2    | T1-4.4- 4.5                   |  |  |  |  |  |  |
| 45                            | Cut off frequency of rectangular waveguide                            | CO 3    | T1 -4.6                       |  |  |  |  |  |  |
| 46                            | Waveguide multiport junctions- E plane Tee<br>Junction                | CO 4    | T1-10.1.1-<br>10.1.2          |  |  |  |  |  |  |
| 47                            | Waveguide multiport junctions- H plane Tee<br>Junction                | CO 4    | T1-7.1-7.3                    |  |  |  |  |  |  |
| 48                            | Waveguide multiport junctions- E-H plane Tee<br>Junction              | CO 4    | T1-8.1-8.3                    |  |  |  |  |  |  |
| 49                            | Ferrites: Faraday rotation principle                                  | CO 5    | R4-7.2                        |  |  |  |  |  |  |
| 50                            | Output power in Klystron                                              | CO 5    | R4- 7.13                      |  |  |  |  |  |  |
| 51                            | Output power in Reflex Klystron                                       | CO 5    | T1-8.5-8.6                    |  |  |  |  |  |  |
| 52                            | Helix Traveling Wave tube: Slow wave structures                       | CO 5    | T1-8.6-8.7                    |  |  |  |  |  |  |
| 53                            | Microwave cross field tubes (M type)- Magnetrons                      | CO 6    | T1-9.1-9.3                    |  |  |  |  |  |  |
| 54                            | Microwave measurements                                                | CO 6    | T1-11.4                       |  |  |  |  |  |  |
| 55                            | TDMA,FDMA,CDMA                                                        | CO 6    | T1-11.5                       |  |  |  |  |  |  |
| 56                            | Spread spectrum                                                       | CO 6    | T1-11.5                       |  |  |  |  |  |  |
|                               | DISCUSSION OF DEFINITION AND TE                                       | RMINOLO | DGY                           |  |  |  |  |  |  |
| 57                            | Microwave Transmission lines                                          | CO 1    | T1-4.3.1-4.3.1                |  |  |  |  |  |  |
| 58                            | Microwave tubes                                                       | CO 3    | R4- 7.13                      |  |  |  |  |  |  |
| 59                            | Microwave solid-state devices and Microwave measurements              | CO 4    | T1-9.1-9.3                    |  |  |  |  |  |  |
| 60                            | Orbital mechanics, Launchers and satellite sub<br>systems             | CO 5    | T1-9.4-9.6                    |  |  |  |  |  |  |
| 61                            | Satellite link devices and multiple access                            | CO 6    | T1-11.5                       |  |  |  |  |  |  |

|    | DISCUSSION OF QUESTION BANK                               |      |                |  |  |  |  |  |
|----|-----------------------------------------------------------|------|----------------|--|--|--|--|--|
| 62 | Microwave Transmission lines                              | CO 1 | T1-4.3.1-4.3.1 |  |  |  |  |  |
| 63 | Microwave tubes                                           | CO 3 | R4- 7.13       |  |  |  |  |  |
| 64 | Microwave solid-state devices and Microwave measurements  | CO 4 | T1-9.1-9.3     |  |  |  |  |  |
| 65 | Orbital mechanics, Launchers and satellite sub<br>systems | CO 5 | T1-9.4-9.6     |  |  |  |  |  |
| 66 | Satellite link devices and multiple access                | CO 6 | T1-11.5        |  |  |  |  |  |

# Signature of Course Coordinator Ms P Annapurna, Assistant Professor

# HOD,ECE



#### **INSTITUTE OF AERONAUTICAL ENGINEERING** (Autonomous)

Dundigal, Hyderabad - 500 043

#### **COURSE DESCRIPTION**

| Department         | Electronics and Communication Engineering |                                            |         |            |         |  |  |  |
|--------------------|-------------------------------------------|--------------------------------------------|---------|------------|---------|--|--|--|
| Course Title       | Embedo                                    | Embedded Systems                           |         |            |         |  |  |  |
| Course Code        | AECB58                                    | AECB58                                     |         |            |         |  |  |  |
| Program            | B. Tech                                   | B. Tech                                    |         |            |         |  |  |  |
| Semester           | VII                                       |                                            |         |            |         |  |  |  |
| Course Type        | Open Elective                             |                                            |         |            |         |  |  |  |
| Regulation         | R-18                                      |                                            |         |            |         |  |  |  |
|                    |                                           | Theory                                     |         | Pract      | tical   |  |  |  |
| Course Structure   | Lecture                                   | Tutorials                                  | Credits | Laboratory | Credits |  |  |  |
|                    | 3                                         | -                                          | 3       | -          | -       |  |  |  |
| Course Coordinator | Mrs. P. 0                                 | Mrs. P. Ganga Bhavani, Assistant Professor |         |            |         |  |  |  |

#### I COURSE PRE-REQUISITES:

| Level  | Course<br>Code | Semester | Prerequisites                        | Credits |
|--------|----------------|----------|--------------------------------------|---------|
| B.Tech | ACSB32         | V        | Computer Architecture                | 4       |
| B.Tech | AECB24         | VI       | Microprocessors and Microcontrollers | 4       |

#### **II COURSE OVERVIEW:**

This course allows students to learn the fundamentals of embedded system hardware and firmware design. It focusses on embedded system design process, embedded C, interfacing modules, software development tools for debugging and testing of embedded applications, ARM and SHARC processor architectures and memory organization. It provides hands-on experience on implementation of embedded application prototype design using embedded C.

#### **III MARKS DISTRIBUTION:**

| Subject          | SEE Examination | CIE Examination | Total Marks |  |
|------------------|-----------------|-----------------|-------------|--|
| Embedded Systems | 70 Marks        | 30 Marks        | 100         |  |

# IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | $\checkmark$ | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|---|--------|
| $\checkmark$ | Open Ended Experiments    | $\checkmark$ | Seminars     | x            | Mini Project | x | Videos |
| x            | Others                    |              |              |              |              |   |        |

# **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 50%                           | Understand            |
| 42 %                          | Apply                 |
| 8 %                           | Analyze               |
| 0%                            | Evaluate              |
| 0%                            | Create                |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

| Component          |          | Total Marks |     |    |
|--------------------|----------|-------------|-----|----|
| Type of Assessment | CIE Exam | Quiz        | AAT |    |
| CIA Marks          | 20       | 05          | 05  | 30 |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept<br>Videos | Assignment | Tech-talk | Seminar | Open Ended<br>Experiment |
|-------------------|------------|-----------|---------|--------------------------|
| 20%               | 30%        | 30%       | 10%     | 10%                      |

# VI COURSE OBJECTIVES:

# The students will try to learn:

| Ι   | The fundamental concepts of embedded computing, embedded C, RTOS and embedded software tools for implementing embedded systems.    |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| II  | Embedded software development tools for debugging and testing of embedded applications, architectures of ARM and SHARC processors. |
| III | Interfacing with external environments using sensors, actuators and communication in distributed embedded systems.                 |

# VII COURSE OUTCOMES:

# After successful completion of the course, students will be able to:

| CO 1 | Summarize the concepts of Embedded Systems and formalisms for                 | Understand |
|------|-------------------------------------------------------------------------------|------------|
|      | system design with examples.                                                  |            |
| CO 2 | Analyze the Embedded Systems programming in C with Keil                       | Analyze    |
|      | Integrated Development Environment (IDE).                                     |            |
| CO 3 | <b>Demonstrate</b> the principles of RTOS and the methods used for saving     | Understand |
|      | memory and power in real time environments.                                   |            |
| CO 4 | Make use of embedded software development tools for debugging and             | Apply      |
|      | testing of embedded applications.                                             |            |
| CO 5 | <b>Illustrate</b> the architecture, memory organization and instruction level | Understand |
|      | parallelism of ARM and SHARC processors used in Embedded                      |            |
|      | Systems.                                                                      |            |
| CO 6 | Interpret the concepts of Internet of Things used in the embedded             | Understand |
|      | systems applications.                                                         |            |

# COURSE KNOWLEDGE COMPETENCY LEVEL



# **BLOOMS TAXONOMY**

# VIII PROGRAM OUTCOMES:

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |  |  |  |  |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |  |  |  |  |
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |  |  |  |  |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |  |  |  |  |
| PO 5  | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |  |  |  |  |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                      |  |  |  |  |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |  |  |  |  |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |  |  |  |  |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |  |  |  |  |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |  |  |  |  |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |  |  |  |  |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                           |  |  |  |  |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | PROGRAM OUTCOMES                                                                                                                                                                                                                                                                                                           | Strength | Proficiency<br>Assessed by |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                                    | 2        | SEE/CIE/AAT                |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review<br>research literature, and analyze complex<br>engineering problems reaching substantiated<br>conclusions using first principles of mathematics,<br>natural sciences, and engineering sciences.                                                                       | 3        | SEE/CIE/AAT                |
| PO 3  | <b>Design/Development of Solutions:</b> Design<br>solutions for complex Engineering problems and<br>design system components or processes that<br>meet the specified needs with appropriate<br>consideration for the public health and safety,<br>and the cultural, societal, and Environmental<br>considerations          | 3        | SEE/CIE/AAT                |
| PO 4  | <b>Conduct Investigations of Complex</b><br><b>Problems:</b> Use research-based knowledge and<br>research methods including design of<br>experiments, analysis and interpretation of data,<br>and synthesis of the information to provide valid<br>conclusions.                                                            | 2        | SEE/CIE/AAT                |
| PO 5  | Modern Tool Usage: Create, select, and<br>apply appropriate techniques, resources, and<br>modern Engineering and IT tools including<br>prediction and modelling to complex<br>Engineering activities with an understanding of<br>the limitations                                                                           | 3        | SEE/CIE/AAT                |
| PO 10 | <b>Communication:</b> Communicate effectively on<br>complex engineering activities with the<br>engineering community and with society at<br>large, such as, being able to comprehend and<br>write effective reports and design<br>documentation, make effective presentations,<br>and give and receive clear instructions. | 1        | SEE/CIE/AAT                |

3 = High; 2 = Medium; 1 = Low

# X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| P     | PROGRAM SPECIFIC OUTCOMES                   | ${ m Strength}$ | Proficiency<br>Assessed<br>by |
|-------|---------------------------------------------|-----------------|-------------------------------|
| PSO 1 | Build Embedded Software and Digital Circuit | 3               | AAT /                         |
|       | Development platform for Robotics, Embedded |                 | Projects                      |
|       | Systems and Signal Processing Applications. |                 |                               |
| Р     | ROGRAM SPECIFIC OUTCOMES                                                                                                                         | Strength | Proficiency<br>Assessed<br>by |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| PSO 2 | Focus on the Application Specific Integrated<br>Circuit (ASIC) Prototype designs, Virtual<br>Instrumentation and System on Chip (SOC)<br>designs | 2        | Seminars /<br>Projects        |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          | PROGRAM OUTCOMES |              |              |              |              |    |    |    |    |              |    |    |              | PSO'S        |     |  |
|----------|------------------|--------------|--------------|--------------|--------------|----|----|----|----|--------------|----|----|--------------|--------------|-----|--|
| COURSE   | PO               | PO           | РО           | PO           | PO           | PO | PO | PO | PO | PO           | PO | PO | PSO          | PSO          | PSO |  |
| OUTCOMES | 1                | 2            | 3            | 4            | 5            | 6  | 7  | 8  | 9  | 10           | 11 | 12 | 1            | 2            | 3   |  |
| CO 1     | $\checkmark$     | -            | -            | -            | -            | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -            | -   |  |
| CO 2     | $\checkmark$     | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -            | -   |  |
| CO 3     | $\checkmark$     | -            | -            | -            | -            | -  | -  | -  | -  | $\checkmark$ | -  | -  | $\checkmark$ | -            | -   |  |
| CO 4     | $\checkmark$     | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -            | -   |  |
| CO 5     | $\checkmark$     | -            | -            | -            | -            | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | $\checkmark$ | -   |  |
| CO 6     | $\checkmark$     | $\checkmark$ | $\checkmark$ | -            | -            | -  | -  | -  | -  | $\checkmark$ | -  | -  | -            | -            | -   |  |

# XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                             | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO1                | PO 1          | Illustrate the concepts (knowledge) of embedded<br>systems using their architectures by using<br>mathematics, science, engineering fundamentals to the<br>solution of complex engineering problems.                                                                              | 3                                      |
|                    | PO 10         | Describe the concepts of Embedded Systems and<br>formalisms by giving effective presentations and take<br>clear instructions for system design with examples.                                                                                                                    | 1                                      |
|                    | PSO1          | Build Embedded Software and Digital Circuit<br>Development platform for Robotics, Embedded<br>Systems and Signal Processing Applications.                                                                                                                                        | 2                                      |
| CO2                | PO 1          | Apply the integration of sensors, actuators and on-chip<br>peripherals of microcontroller architectures for<br>prototype design by applying engineering<br>fundamentals.                                                                                                         | 1                                      |
|                    | PO 2          | Understand the given the embedded application<br>problem statement and finding the solution<br>implementation of prototype embedded system design<br>by analyzing complex engineering problems.                                                                                  | 6                                      |
|                    | PO 3          | Design solutions for complex Engineering problems and<br>design system components of embedded applications<br>that meet the specified needs with appropriate<br>consideration for the public health and safety, and the<br>cultural, societal, and Environmental considerations. | 6                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                            | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO2                | PO 4          | Use research-based knowledge and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of the information<br>of the basic embedded modules using different<br>electronic circuits to provide valid conclusions.                            | 6                                      |
|                    | PO 5          | Use research-based knowledge and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of the information<br>of the basic embedded modules using different<br>electronic circuits to provide valid conclusions.                            | 1                                      |
|                    | PO 10         | Use Keil Integrated Development Environment by<br>giving effective presentations and take clear<br>instructions for analyzing the Embedded Systems<br>programming in C.                                                                                                                         | 1                                      |
| CO3                | PO 1          | Demonstrate (knowledge) the principles of RTOS such<br>as interrupt latency and context switching in hard real<br>time environments by applying the knowledge of<br>science, engineering fundamentals, and an engineering<br>specialization to the solution of complex engineering<br>problems. | 1                                      |
|                    | PO 10         | Describe the principles of RTOS and the methods used<br>for saving memory and power giving effective<br>presentations and take clear instructions Use Keil<br>Integrated Development Environment by giving<br>effective presentations and take clear instructions in<br>real time environments. | 1                                      |
|                    | PSO1          | Formulate and Evaluate the embedded applications in<br>the field of Intelligent Embedded and Semiconductor<br>technologies.                                                                                                                                                                     | 2                                      |
| CO4                | PO 1          | Make use of embedded software development tools<br>(knowledge) for debugging and testing of embedded<br>applications to the solution of complex engineering<br>problems using mathematics, science, engineering<br>fundamentals.                                                                | 3                                      |
|                    | PO 2          | Understand the given the embedded application<br>problem statement and finding the solution<br>implementation of embedded applications using tools<br>by analyzing complex engineering problems.                                                                                                | 5                                      |
|                    | PO 3          | Design solutions for complex Engineering problems and<br>design system components of embedded applications<br>that meet the specified needs with appropriate<br>consideration for the public health and safety, and the<br>cultural, societal, and Environmental considerations.                | 5                                      |
|                    | PO 4          | Use research-based knowledge and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of the information<br>of the embedded software development tools to provide<br>valid conclusions.                                                   | 6                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                             | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 4               | PO 5          | Create, select, and apply appropriate techniques,<br>resources, and modern Engineering tools including<br>prediction and modelling the embedded circuits using<br>Keil integrated development environment tool to<br>complex Engineering activities with an understanding<br>of the limitations. | 1                                      |
|                    | PO 10         | Use embedded software development tools by giving<br>effective presentations and take clear instructions for<br>debugging and testing of embedded applications.                                                                                                                                  | 1                                      |
| CO5                | PO 1          | Understand (knowledge) the architecture, memory<br>management and application development using ARM<br>and SHARC processors by applying engineering<br>fundamentals.                                                                                                                             | 1                                      |
|                    | PO 10         | Explain the architecture, memory organization and<br>instruction level parallelism of ARM and SHARC<br>processors by giving effective presentations and taking<br>clear instructions.                                                                                                            | 1                                      |
|                    | PSO2          | Focus on the Application Specific Integrated Circuit<br>(ASIC) Prototype designs, Virtual Instrumentation<br>and System on Chip (SOC) designs.                                                                                                                                                   | 1                                      |
| CO6                | PO 1          | Model a embedded application prototype using<br>embedded C by applying engineering fundamentals.                                                                                                                                                                                                 | 1                                      |
|                    | PO 2          | Understand the problem statement of embedded<br>prototype design in global engineering applications in<br>complex problem analysis using mathematics.                                                                                                                                            | 5                                      |
|                    | PO 3          | Design solutions of embedded applications in global<br>engineering applications for complex Engineering<br>problems that meet the specified needs with<br>appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental<br>considerations.        | 6                                      |
|                    | PO 10         | Describe the concepts of Internet of Things used in<br>embedded systems applications by giving effective<br>presentations and taking clear instructions.                                                                                                                                         | 1                                      |

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    |     |     | PSO'S |  |  |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-----|-----|-------|--|--|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO | PSO   |  |  |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   | 3     |  |  |
|          | 3  | 10               | 10 | 11 | 1  | 5  | 3  | 3  | 12 | 5  | 12 | 8  | 2   | 2   | 2     |  |  |
| CO 1     | 3  | -                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | 2   | -   | -     |  |  |
| CO 2     | 1  | 6                | 6  | 6  | 1  | -  | -  | -  | -  | 1  | -  | -  | -   | -   | -     |  |  |
| CO 3     | 1  | -                | -  | -  | -  | -  | _  | -  | -  | 1  | -  | -  | 2   | -   | -     |  |  |
| CO 4     | 3  | 5                | 5  | 6  | 1  | -  | -  | -  | -  | 1  | -  | -  | -   | -   | -     |  |  |
| CO 5     | 1  | -                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | 1   | -     |  |  |
| CO 6     | 1  | 5                | 6  | -  | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -   | -     |  |  |

# XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          | PROGRAM OUTCOMES |                                     |    |      |     |   |   |   |   |    |     |     |     | PSO'S |   |  |
|----------|------------------|-------------------------------------|----|------|-----|---|---|---|---|----|-----|-----|-----|-------|---|--|
| COURSE   | PO               | PO |    |      |     |   |   |   |   |    | PSO | PSO | PSO |       |   |  |
| OUTCOMES | 1                | 2                                   | 3  | 4    | 5   | 6 | 7 | 8 | 9 | 10 | 11  | 12  | 1   | 2     | 3 |  |
| CO 1     | 100              | -                                   | -  | -    | -   | - | - | - | - | 20 | -   | -   | 100 | -     | - |  |
| CO 2     | 33.3             | 60                                  | 60 | 54.5 | 100 | - | - | - | - | 20 | -   | -   | -   | -     | - |  |
| CO 3     | 33.3             | -                                   | -  | -    | -   | - | - | - | - | 20 | -   | -   | 100 | -     | - |  |
| CO 4     | 100              | 50                                  | 50 | 54.5 | 100 | - | - | I | - | 20 | -   | -   | -   | -     | - |  |
| CO 5     | 33.3             | -                                   | -  | -    | -   | - | - | - | - | 20 | -   | -   | -   | 50    | - |  |
| CO 6     | 33.3             | 50                                  | 60 | -    | -   | - | - | - | - | 20 | -   | -   | -   | -     | - |  |

# XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- 1 -5 <C $\leq$  40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- $3 60\% \le C < 100\%$  Substantial /High

|          | PROGRAM OUTCOMES |      |      |      |    |    |    |    |    |    |    |    |     | PSO'S |     |  |
|----------|------------------|------|------|------|----|----|----|----|----|----|----|----|-----|-------|-----|--|
| COURSE   | PO               | РО   | PO   | PO   | РО | PSO | PSO   | PSO |  |
| OUTCOMES | 1                | 2    | 3    | 4    | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2     | 3   |  |
| CO 1     | 3                | -    | -    | -    | -  | -  | -  | -  | -  | 1  | -  | -  | 3   | -     | -   |  |
| CO 2     | 1                | 3    | 3    | 3    | 3  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 3     | 1                | -    | -    | -    | -  | -  | -  | -  | -  | 1  | -  | -  | 3   | -     | -   |  |
| CO 4     | 3                | 2    | 2    | 2    | 3  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| CO 5     | 1                | -    | -    | -    | -  | -  | -  | -  | -  | 1  | -  | -  | -   | 2     | -   |  |
| CO 6     | 1                | 2    | 3    | -    | -  | -  | -  | -  | -  | 1  | -  | -  | -   | -     | -   |  |
| TOTAL    | 10               | 7    | 8    | 5    | 6  | -  | -  | -  | -  | 6  | -  | -  | 6   | 2     | 0   |  |
| AVERAGE  | 1.66             | 1.16 | 1.33 | 0.83 | 1  | -  | -  | -  | -  | 1  | -  | -  | 1   | 0.33  | 0   |  |

| CIE Exams  | $\checkmark$ | SEE Exams       | $\checkmark$ | Assignments   | $\checkmark$ |
|------------|--------------|-----------------|--------------|---------------|--------------|
| Quiz       | $\checkmark$ | Student Viva    | -            | Certification | -            |
| Term Paper | -            | 5 Minutes Video | -            | Open Ended    | -            |
|            |              |                 |              | Experiments   |              |
| Seminars   | -            | Laboratory      | -            | ·             |              |
|            |              | Practices       |              |               |              |

# XVI ASSESSMENT METHODOLOGY-DIRECT:

# XVII ASSESSMENT METHODOLOGY-INDIRECT:

| $\checkmark$ | Early Semester Feedback            | $\checkmark$ | End Semester OBE Feedback                   |
|--------------|------------------------------------|--------------|---------------------------------------------|
| $\checkmark$ | Assessment of activities / Modelin | g and E      | xperimental Tools in Engineering by Experts |

#### XVIII SYLLABUS:

| MODULE I   | EMBEDDED COMPUTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Definition of embedded system, embedded systems vs. general computing<br>systems, history of embedded systems, complex systems and microprocessor,<br>classification, major application areas, the embedded system design process,<br>characteristics and quality attributes of embedded systems, formalisms for<br>system design, design examples.                                                                                                                                                                                                                                                                                          |
| MODULE II  | INTRODUCTION TO EMBEDDED C AND APPLICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | C looping structures, register allocation, function calls, pointer aliasing,<br>structure arrangement, bit fields, unaligned data and endianness, inline<br>functions and inline assembly, portability issues; Embedded systems<br>programming in C, binding and running embedded C program in Keil IDE,<br>dissecting the program, building the hardware; Basic techniques for reading<br>and writing from I/O port pins, switch bounce; Applications: Switch bounce,<br>LED interfacing, interfacing with keyboards, displays, D/A and A/D<br>conversions, multiple interrupts, serial data communication using embedded<br>C interfacing. |
| MODULE III | RTOS FUNDAMENTALS AND PROGRAMMING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Operating system basics, types of operating systems, tasks and task states,<br>process and threads, multiprocessing and multitasking, how to choose an<br>RTOS ,task scheduling, semaphores and queues, hard real-time scheduling<br>considerations, saving memory and power. Task communication: Shared<br>memory, message passing, remote procedure call and sockets; Task<br>synchronization: Task communication synchronization issues, task<br>synchronization techniques, device drivers.                                                                                                                                              |
| MODULE IV  | EMBEDDED SOFTWARE DEVELOPMENT TOOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Host and target machines, linker/locators for embedded software, getting<br>embedded software into the target system; Debugging techniques: Testing on<br>host machine, using laboratory tools, an example system.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MODULE V   | MODULE V INTRODUCTION TO ADVANCED PROCESSOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Introduction to advanced architectures: ARM and SHARC, processor and<br>memory organization and instruction level parallelism; Networked embedded<br>systems: Bus protocols, I2C bus and CAN bus; Internet-Enabled systems,<br>design example-Elevator controller.                                                                                                                                                                                                                                                                                                                                                                           |

### **TEXTBOOKS**

- 1. Shibu K.V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2nd Edition, 2009.
- 2. Raj Kamal, "Embedded Systems: Architecture, Programming and Design", Tata McGraw-Hill Education, 2nd Edition, 2011.
- 3. Andrew Sloss, Dominic Symes, Wright, "ARM System Developer's Guide Designing and Optimizing System Software", 1st Edition, 2004.

### **REFERENCE BOOKS**:

- 1. Wayne Wolf, Computers as Components, Principles of Embedded Computing Systems Design, Elsevier, 2 nd Edition, 2009
- 2. Dr. K. V. K. K. Prasad, Embedded / Real-Time Systems: Concepts, Design & Programming, dreamtech publishers, 1 st Edition, 2003.
- 3. Frank Vahid, Tony Givargis, —Embedded System Design<br/>[], John Wiley & Sons, 3 rd Edition, 2006
- 4. Lyla B Das, "Embedded Systems", Pearson Education, 1st Edition, 2012.
- 5. David E. Simon, "An Embedded Software Primer", Addison-Wesley, 1st Edition, 1999.
- 6. Michael J.Pont, "Embedded C", Pearson Education, 2nd Edition, 2008.

#### WEB REFERENCES:

1. https://lms.iare.ac.in/index?route=course/detailscourseid = 228

#### COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/playercourseid = 228sectionid = 729lessonid = 7135

# XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No           | Topics to be covered                                                                                                                        | CO's | Reference                                                                                     |  |  |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| OBE DISCUSSION |                                                                                                                                             |      |                                                                                               |  |  |  |  |  |  |  |
| 1              | Course Description on Outcome Based Education (OBE):<br>Course Objectives, Course Outcomes (CO), Program<br>Outcomes (PO) and CO-PO Mapping | -    | https://lms<br>iare.<br>ac.in/<br>index?<br>route=<br>course/<br>details&<br>courseid<br>=228 |  |  |  |  |  |  |  |
|                | CONTENT DELIVERY (THEORY)                                                                                                                   |      |                                                                                               |  |  |  |  |  |  |  |
| 2              | Definition of embedded system, embedded systems vs.<br>general computing systems.                                                           | CO 1 | T1-1.1                                                                                        |  |  |  |  |  |  |  |
| 3              | History of Embedded systems                                                                                                                 | CO 1 | T1-1.                                                                                         |  |  |  |  |  |  |  |

| 4  | Complex systems and microprocessor, classification, major application areas.             | CO 1             | T1-1.3 |
|----|------------------------------------------------------------------------------------------|------------------|--------|
| 5  | The embedded system design process                                                       | CO 1             | T2-1.4 |
| 6  | Characteristics and quality attributes of embedded systems                               | CO 1             | T2-1.5 |
| 7  | Formalisms for system design, design examples.                                           | CO1              | R2-1.2 |
| 10 | Introduction to embedded C,C looping structures.                                         | CO 2             | T3-1.3 |
| 11 | Register allocation, Function calls, and pointer aliasing.                               | CO 2             | T3-2.4 |
| 12 | Structure arrangement, Bit fields, unaligned data and endianness.                        | CO 2             | T3-2.5 |
| 13 | Inline functions and inline assembly, portability issues.                                | CO 2             | T3-2.6 |
| 14 | Embedded systems programming in C, binding and running<br>embedded C program in Keil IDE | CO 2             | T3-2.7 |
| 15 | Embedded C program in Keil IDE, dissecting the program, building the hardware            | CO 2             | T3-2.8 |
| 16 | Basic techniques for reading and writing from I/O port pins, switch bounce               | CO 2             | T3-2.9 |
| 17 | Applications: Switch bounce, LED interfacing.                                            | CO 2             | R2-3.1 |
| 18 | Interfacing with keyboards, displays                                                     | CO 2             | R2-3.2 |
| 19 | D/A and A/D conversions, multiple interrupts.                                            | CO 2             | R2-3.3 |
| 20 | Serial data communication using embedded C interfacing.                                  | CO 2             | R2-3.4 |
| 28 | RTOS Fundamentals, Operating system basics, types of operating systems                   | CO 3             | R2-3.5 |
| 29 | Tasks and task states, process and threads                                               | CO 3             | R2-3.6 |
| 30 | Multiprocessing and multitasking, how to choose an RTOS                                  | CO 3             | R3-3.7 |
| 31 | Task scheduling, semaphores and queues                                                   | CO 3             | R3-3.8 |
| 32 | Hard real-time scheduling considerations, saving memory and power.                       | CO 3             | R3-4.1 |
| 33 | Task communication: Shared memory, message passing                                       | CO 3             | R3-4.1 |
| 34 | Remote procedure call and sockets                                                        | CO 3             | R3-4.2 |
| 35 | Task synchronization: Task communication synchronization issues                          | CO 3             | R3-4.2 |
| 36 | Task synchronization techniques, device drivers.                                         | CO 3             | R3-4.3 |
| 37 | Host and target machines                                                                 | CO 4             | R3-4.3 |
| 38 | Linker for embedded software                                                             | CO 4             | R3-4.4 |
| 39 | Locators for embedded software                                                           | CO 4             | R3-4.4 |
| 40 | Getting embedded software into the target system                                         | CO 4             | R3-4.5 |
| 41 | Debugging techniques: Testing on host machine                                            | CO 4             | R3-4.5 |
| 44 | Debugging techniques using laboratory tools, an example system.                          | CO 4             | R3-4.5 |
| 47 | Introduction to advanced architectures: ARM                                              | CO 5             | T2-8.1 |
| 48 | Introduction to advanced architectures: SHARC                                            | CO 5             | T2-8.1 |
| 49 | Processor and memory organization                                                        | CO 5             | T2-8.2 |
| 50 | Instruction level parallelism                                                            | CO 5             | T2-8.2 |
| 51 | Networked embedded systems: Bus protocols                                                | CO 6             | T2-8.3 |
| 52 | Networked embedded systems: I2C bus and CAN bus                                          | $CO\overline{6}$ | T2-8.3 |

| 53 | Internet-Enabled systems                                            | CO 6          | T2-8.4 |
|----|---------------------------------------------------------------------|---------------|--------|
| 54 | Design example-Elevator controller.                                 | CO 6          | T2-8.4 |
|    | PROBLEM SOLVING/ CASE STUDIES                                       | 5             |        |
| 8  | BMW 850i brake and stability control system                         | CO 1          | T2-1.4 |
| 9  | Design example of model train controller                            | CO 1          | T3-2.7 |
| 21 | Embedded C program for Switch bounce                                | CO 2          | R2-3.2 |
| 22 | Embedded C program for LED interface                                | CO 2          | R3-4.5 |
| 23 | Embedded C program for Interfacing with keyboards                   | CO 2          | T2-8.2 |
| 24 | Embedded C program for Interfacing with displays                    | CO 2          | T2-1.4 |
| 25 | Embedded C program for 7 Segment Display Interfacing                | CO 2          | T3-2.7 |
| 26 | Embedded C program for ADC Interfacing with 8051 microcontroller    | CO 2          | R2-3.2 |
| 27 | Embedded C program for DAC Interfacing with 8051<br>microcontroller | CO 2          | R3-4.5 |
| 45 | Design of Digital camera                                            | CO 4          | T2-8.2 |
| 46 | Design of Microwave oven                                            | CO 4          | T2-1.4 |
| 55 | Design of Elevator controller                                       | CO 6          | T3-2.7 |
|    | DISCUSSION OF DEFINITION AND TERMIN                                 | OLOGY         |        |
| 56 | Embedded computing                                                  | CO 1          | T1-1.3 |
| 57 | Introduction to embedded c and applications                         | CO 2          | T3-2.4 |
| 58 | RTOS fundamentals and programming                                   | CO 3          | R3-4.2 |
| 59 | Embedded software development tools                                 | CO 4          | R3-4.4 |
| 60 | Introduction to advanced processors                                 | CO 5,<br>CO 6 | T2-8.3 |
|    | DISCUSSION OF QUESTION BANK                                         |               |        |
| 61 | Embedded computing                                                  | CO 1          | T1-1.3 |
| 62 | Introduction to embedded c and applications                         | CO 2          | T3-2.4 |
| 63 | RTOS fundamentals and programming                                   | CO 3          | R3-4.2 |
| 64 | Embedded software development tools                                 | CO 4          | R3-4.4 |
| 65 | Introduction to advanced processors                                 | CO 5,<br>CO 6 | T2-8.3 |

Course Coordinator Mrs. P. Ganga Bhavani, Assistant Professor HOD,ECE



# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

#### COURSE DESCRIPTION

| Department                                       | ELECTRONICS AND COMMUNICATION ENGINEERING |                  |         |            |         |  |  |
|--------------------------------------------------|-------------------------------------------|------------------|---------|------------|---------|--|--|
| Course Title                                     | DIGITAL IMAGE PROCESSING                  |                  |         |            |         |  |  |
| Course Code                                      | AECB35                                    |                  |         |            |         |  |  |
| Program                                          | B.Tech                                    |                  |         |            |         |  |  |
| Semester                                         | VI                                        | VI               |         |            |         |  |  |
| Course Type                                      | PROFESSIONAL ELECTIVE - II                |                  |         |            |         |  |  |
| Regulation                                       | R-18                                      |                  |         |            |         |  |  |
|                                                  | Theory                                    |                  |         | Practical  |         |  |  |
| Course Structure                                 | Lecture                                   | Tutorials        | Credits | Laboratory | Credits |  |  |
|                                                  |                                           |                  |         |            |         |  |  |
| Course Coordinator Dr. B. Surekha Reddy, Assista |                                           | Assistant Profes | sor     |            |         |  |  |

#### I COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites                     |
|-------|-------------|----------|-----------------------------------|
| UG    | AEC003      | III      | Probability Theory and Stochastic |
|       |             |          | Process                           |
| UG    | AEC009      | V        | Digital Communications            |

#### **II COURSE OVERVIEW:**

The course is intended to provide image processing fundamentals, representation, sampling, quantization, image acquisition and imaging geometry. Transform techniques including two dimensional Fourier transforms, Walsh, Hotelling, Haar and Slant transforms. Analyze image processing filters and techniques for the applications of enhancement, segmentation and compression.

### **III MARKS DISTRIBUTION:**

| Subject          | SEE Examination | CIE Examination | Total Marks |
|------------------|-----------------|-----------------|-------------|
| Image Processing | 70 Marks        | 30 Marks        | 100         |

### IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| $\checkmark$ | Power Point Presentations | $\checkmark$ | Chalk & Talk | $\checkmark$ | Assignments  | x | MOOC   |
|--------------|---------------------------|--------------|--------------|--------------|--------------|---|--------|
| x            | Open Ended Experiments    | x            | Seminars     | x            | Mini Project | x | Videos |
| x            | Others                    |              |              |              |              |   |        |

# **V** EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 10%                           | Remember              |
| 70%                           | Understand            |
| 20%                           | Apply                 |
| 0 %                           | Analyze               |

#### Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

| Component                   |    | Total Marks |     |    |
|-----------------------------|----|-------------|-----|----|
| Type of Assessment CIE Exam |    | Quiz        | AAT |    |
| CIA Marks                   | 20 | 05          | 05  | 30 |

#### Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the  $8^{th}$  and  $16^{th}$  week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### **Quiz - Online Examination**

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

| Concept Video | Tech-talk | Complex Problem Solving |  |
|---------------|-----------|-------------------------|--|
| 40%           | 40%       | 20%                     |  |

### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | The fundamental concepts of digital image processing methods and techniques.       |
|-----|------------------------------------------------------------------------------------|
| II  | The image enhancement, image segmentation and compression techniques in            |
|     | spatial and frequency domains.                                                     |
| III | The algorithms to solve image processing problems to meet design specifications of |
|     | various applications of image processing in industry, medicine and defense.        |
| IV  | Fundamentals of image representation and processing in MATLAB.                     |

#### VII COURSE OUTCOMES:

#### After successful completion of the course, students should be able to:

| CO 1 | <b>Interpret</b> the principles and terminology of digital image processing  | Understand |
|------|------------------------------------------------------------------------------|------------|
|      | for describing the features of image.                                        |            |
| CO 2 | Make use of image transform techniques for analyzing images in               | Apply      |
|      | transformation domain for image pre-processing.                              |            |
| CO 3 | <b>Construct</b> image intensity transformation and filtering techniques for | Apply      |
|      | image enhancement in the spatial and frequency domain.                       |            |
| CO 4 | Analyze the image restoration in the spatial and frequency domains           | Analyze    |
|      | to deal with noise models for removing degradation from given image.         |            |
| CO 5 | Apply region-based morphological operations and edge-based image             | Apply      |
|      | segmentation techniques for detection of objects in images to remove         |            |
|      | the imperfections in the structure of the image.                             |            |
| CO 6 | Compare the lossy and lossless compression models for achieving              | Analyze    |
|      | image compression.                                                           |            |

#### COURSE KNOWLEDGE COMPETENCY LEVEL



**BLOOMS TAXONOMY** 

# VIII PROGRAM OUTCOMES:

| Program Outcomes |                                                                                                                                                                                                                                                                                                          |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PO 1             | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |  |  |  |
| PO 2             | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |  |  |  |
| PO 3             | <b>Design/Development of Solutions:</b> Design solutions for complex<br>Engineering problems and design system components or processes that meet<br>the specified needs with appropriate consideration for the public health and<br>safety, and the cultural, societal, and Environmental considerations |  |  |  |
| PO 4             | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |  |  |  |
| PO 5             | Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                        |  |  |  |
| PO 6             | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |  |  |  |
| PO 7             | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |  |  |  |
| PO 8             | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |  |  |  |
| PO 9             | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |  |  |  |
| PO 10            | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |  |  |  |
| PO 11            | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |  |  |  |
| PO 12            | <b>Life-Long Learning:</b> Recognize the need for and having the preparation<br>and ability to engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                           |  |  |  |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | PROGRAM OUTCOMES                                   | $\mathbf{Strength}$ | Proficiency<br>Assessed by |
|-------|----------------------------------------------------|---------------------|----------------------------|
| PO 1  | Engineering knowledge: Apply the                   | 3                   | SEE/CIE/                   |
|       | knowledge of mathematics, science, engineering     |                     | Quiz/AAT                   |
|       | fundamentals, and an engineering specialization    |                     |                            |
|       | to the solution of complex engineering problems.   |                     |                            |
| PO 2  | Problem analysis: Identify, formulate, review      | 3                   | SEE/CIE,                   |
|       | research literature, and analyze complex           |                     | Quiz/AAT                   |
|       | engineering problems reaching substantiated        |                     |                            |
|       | conclusions using first principles of mathematics, |                     |                            |
|       | natural sciences, and engineering sciences.        |                     |                            |
| PO 3  | Design/Development of Solutions: Design            | 1                   | SEE/CIE,                   |
|       | solutions for complex Engineering problems and     |                     | Quiz/AAT                   |
|       | design system components or processes that         |                     |                            |
|       | meet the specified needs with appropriate          |                     |                            |
|       | consideration for the public health and safety,    |                     |                            |
|       | and the cultural, societal, and Environmental      |                     |                            |
|       | Considerations                                     | 0                   | CEE /CIE                   |
| PO 4  | <b>Droblems</b> , Use research based knowledge and | 2                   | SEE / CIE,                 |
|       | <b>Problems:</b> Use research-based knowledge and  |                     | Quiz/AA1                   |
|       | experiments, analysis and interpretation of data   |                     |                            |
|       | and synthesis of the information to provide valid  |                     |                            |
|       | conclusions.                                       |                     |                            |
| PO 10 | <b>Communication:</b> Communicate effectively on   | 1                   | TECH TALK/                 |
|       | complex engineering activities with the            |                     | CONCEPT                    |
|       | engineering community and with society at          |                     | VIDEOS                     |
|       | large, such as, being able to comprehend and       |                     |                            |
|       | write effective reports and design                 |                     |                            |
|       | documentation, make effective presentations,       |                     |                            |
|       | and give and receive clear instructions.           |                     |                            |
| PO 12 | Life-long learning: Recognize the need for,        |                     |                            |
|       | and have the preparation and ability to engage     |                     |                            |
|       | in independent and life-long learning in the       |                     |                            |
|       | broadest context of technological change.          |                     |                            |

3 = High; 2 = Medium; 1 = Low

### X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

| P     | ROGRAM SPECIFIC OUTCOMES                        | ${f Strength}$ | Proficiency<br>Assessed<br>by |
|-------|-------------------------------------------------|----------------|-------------------------------|
| PSO 1 | Build the Embedded software and digital circuit | 2              | SEE,                          |
|       | development platform for robotics, embedded     |                | PROJECTS                      |
|       | systems and signal processing applications.     |                |                               |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

|          |              | PROGRAM OUTCOMES |              |              |    |    |    |    |    |              |    |              | PSO'S        |     |     |
|----------|--------------|------------------|--------------|--------------|----|----|----|----|----|--------------|----|--------------|--------------|-----|-----|
| COURSE   | PO           | PO               | PO           | PO           | PO | PO | PO | РО | PO | PO           | РО | PO           | PSO          | PSO | PSO |
| OUTCOMES | 1            | 2                | 3            | 4            | 5  | 6  | 7  | 8  | 9  | 10           | 11 | 12           | 1            | 2   | 3   |
| CO 1     | $\checkmark$ | -                | -            | -            | -  | -  | -  | -  | -  | $\checkmark$ | -  | -            | -            | -   | -   |
| CO 2     | $\checkmark$ | $\checkmark$     | -            | -            | -  | -  | -  | -  | -  | $\checkmark$ | -  | -            | $\checkmark$ | -   | -   |
| CO 3     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -  | $\checkmark$ | $\checkmark$ | -   | -   |
| CO 4     | $\checkmark$ | $\checkmark$     | $\checkmark$ | $\checkmark$ | -  | -  | -  | -  | -  | $\checkmark$ | -  | -            | $\checkmark$ | -   | -   |
| CO 5     | $\checkmark$ | $\checkmark$     | -            | -            | -  | -  | -  | -  | -  | $\checkmark$ | -  | $\checkmark$ | $\checkmark$ | -   | -   |
| CO 6     | $\checkmark$ | $\checkmark$     | -            | -            | -  | -  | -  | -  | -  | $\checkmark$ | -  | $\checkmark$ | -            | -   | -   |

# XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                             | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CO 1               | PO 1          | Illustrate the principles of the Digital Image Processing<br>terminology (knowledge) for understanding image<br>and its representation, pixel, intensity, gray level,<br>relationship between the pixels by applying the<br>principles of engineering science to complex<br>engineering problems | 2                                      |
|                    | PO 10         | Effective presentation and Speaking Style on<br>sampling and quantization and write Subject<br>Matter Effectively the difference between analog<br>and digital images.                                                                                                                           | 4                                      |
| CO 2               | PO 1          | Develop a image with various image transform<br>properties types and its types using Scientific<br>principles and methodology fundamental<br>mathematics.                                                                                                                                        | 3                                      |
|                    | PO 2          | Formulate and analyze (Problem analysis)<br>complex Engineering problems for image<br>transforms using first principles of mathematics<br>and Engineering sciences.                                                                                                                              | 5                                      |
|                    | PO 10         | Effective presentation and Speaking Style on<br>properties of transforms and write Subject Matter<br>Effectively on types of transforms.                                                                                                                                                         | 4                                      |
|                    | PSO 1         | <b>Design of experiments</b> on image transforms with<br>project development and execution process of<br>modern tools such as MATLAB with image<br>processing tool box, python, CV2.                                                                                                             | 2                                      |
| CO 3               | PO 1          | Illustrate the principles of an image find by<br>using engineering techniques for image enhancement<br>by using mathematical methods.                                                                                                                                                            | 2                                      |
|                    | PO 2          | <b>Illustrate</b> the filter processing <b>model translation</b> for spatial domain and <b>formulate</b> the time domain filter.                                                                                                                                                                 | 2                                      |
|                    | PO 3          | <b>Develop</b> a histogram techniques <b>complex</b><br><b>engineering problem with appropriate</b><br><b>considerations</b> and environmental considerations for<br>image enhancement.                                                                                                          | 5                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                   | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 4          | Demonstrate the Use image enhancement analyze<br>and interpretation and Ability to apply<br>quantitative methods in frequency domain<br>processing technique to provide valid digital image.                                           | 7                                      |
|                    | PO 10         | Effective presentation and Speaking Style on<br>histogram processing Write Subject Matter<br>Effectively on manipulation technique of an digital<br>image.                                                                             | 4                                      |
|                    | PO 12         | <b>Recognize the need for</b> the image segmentation in different image applications and <b>ability to improve</b> the enhancement algorithms in the broadest context of <b>technological advancements</b> .                           | 6                                      |
|                    | PSO 1         | <b>Design of experiments with project</b><br><b>development and execution</b> modern tools such as<br>MATLAB with image processing tool box, python,<br>CV2.                                                                           | 6                                      |
| CO 4               | PO 1          | Distinguish the image restoration in the spatial and<br>frequency domains (knowledge) to remove the noise<br>present the image by applying the principles of<br>(mathematics, engineering science for complex<br>engineering problems. | 2                                      |
|                    | PO 2          | Formulate and analyze (Problem analysis) complex<br>Engineering problems for image restoration using<br>first principles of mathematics and Engineering<br>sciences                                                                    | 5                                      |
|                    | PO 3          | (Develop spatial and frequency domain techniques<br>complex engineering problem with appropriate<br>considerations and environmental considerations<br>for image restoration.                                                          | 4                                      |
|                    | PO 4          | Understand the image restoration in the spatial and<br>frequency domains (knowledge) methods including<br>design of experiments, analysis of complex<br>problems.                                                                      | 4                                      |
|                    | PO 10         | Effective presentation and Speaking Style and<br>write on degradation models and noise sources for<br>image restoration of digital images                                                                                              | 3                                      |
|                    | PSO 1         | <b>Design of experiments with project</b><br><b>development and execution</b> image restoration with<br>modern tools such as MATLAB with image processing<br>tool box, python, CV2.                                                    | 2                                      |
| CO 5               | PO 1          | Interpret Image Segmentation and formulate<br>representation techniques to apply Mathematical<br>principles fundamental mathematics.                                                                                                   | 3                                      |
|                    | PO 2          | Apply Problem statement the segmentation<br>techniques for edge linking and boundaries by using<br>principles of mathematics and formulate<br>segmentation techniques.                                                                 | 3                                      |
|                    | PO 10         | Effective presentation and Speaking Style and write on image segmentation techniques.                                                                                                                                                  | 3                                      |

| Course<br>Outcomes | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                       | No. of Key<br>competencies<br>matched. |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    | PO 12         | <b>Recognize</b> the <b>need</b> for image Segmentation<br>technique, and <b>broadest context of technological</b>                                                                                                                                         | 6                                      |
|                    |               | engineering concepts.                                                                                                                                                                                                                                      |                                        |
|                    | PSO1          | <b>Design of experiments with project</b><br><b>development and execution</b> image segmentation<br>with modern tools such as MATLAB with image<br>processing tool box, python, CV2.                                                                       | 2                                      |
| CO6                | PO 1          | Understand the various source coding techniques<br>and Interpret Image Compression standards using<br>engineering science and mathematical models.                                                                                                         | 3                                      |
|                    | PO 2          | Identify and analyze fidelity criteria, image<br>compression models implement using engineering<br>science, design system components for source<br>Encoder and decoder, error free compression and<br>model translation using principal of<br>mathematics. | 5                                      |
|                    | PO 10         | <b>Present effectively</b> and <b>Clarity</b> source encoder and <b>write effectively subject matter</b> on decoder techniques.                                                                                                                            | 4                                      |
|                    | PO 12         | <b>Recognize the ability</b> of image restoration<br>algorithms for <b>life-long learning in the broadest</b><br><b>context of</b> image processing.                                                                                                       | 4                                      |

# XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    |    | PSO'S |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|----|-------|-----|-----|
| COURSE   | PO | PO               | PO | PO | PO | PO | PO | РО | PO | PO | PO | PO | PSO   | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1     | 2   | 3   |
| CO 1     | 2  | -                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | -     | -   | -   |
| CO 2     | 3  | 5                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | -  | 2     | -   | -   |
| CO 3     | 2  | 2                | 5  | 7  | -  | -  | -  | -  | -  | 2  | -  | 6  | 2     | -   | -   |
| CO 4     | 2  | 5                | 5  | 4  | -  | -  | -  | -  | -  | 2  | -  | -  | 2     | -   | -   |
| CO 5     | 3  | 3                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | 6  | 2     | -   | -   |
| CO 6     | 3  | 5                | -  | -  | -  | -  | -  | -  | -  | 2  | -  | 4  | -     | -   | _   |

# XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

|          |      | PROGRAM OUTCOMES |      |      |     |     |     |     |     |      |     |      | PSO'S |     |     |
|----------|------|------------------|------|------|-----|-----|-----|-----|-----|------|-----|------|-------|-----|-----|
| COURSE   | PO   | РО               | РО   | PO   | РО  | РО  | РО  | РО  | PO  | PO   | РО  | PO   | PSO   | PSO | PSO |
| OUTCOMES | 1    | 2                | 3    | 4    | 5   | 6   | 7   | 8   | 9   | 10   | 11  | 12   | 1     | 2   | 3   |
| CO 1     | 66.6 | 0.0              | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0  | 0.0   | 0.0 | 0.0 |
| CO 2     | 100  | 50.0             | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0  | 100   | 0.0 | 0.0 |
| CO 3     | 66.6 | 20.0             | 50.0 | 63.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 50.0 | 100   | 0.0 | 0.0 |
| CO 4     | 66.6 | 50.0             | 50.0 | 36.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0  | 100   | 0.0 | 0.0 |

|          |     | PROGRAM OUTCOMES |     |     |     |     |     |     |     |      |     | PSO'S |     |     |     |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|-----|-------|-----|-----|-----|
| COURSE   | PO  | PO               | PO  | PO  | PO  | PO  | PO  | PO  | PO  | PO   | РО  | PO    | PSO | PSO | PSO |
| OUTCOMES | 1   | 2                | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10   | 11  | 12    | 1   | 2   | 3   |
| CO 5     | 100 | 30.0             | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 50.0  | 100 | 0.0 | 0.0 |
| CO 6     | 100 | 50.0             | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 33.3  | 0.0 | 0.0 | 0.0 |

**XV** COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$   $0 \leq C \leq 5\%$  No correlation
- $1 5 < C \le 40\% Low/$  Slight
- $\pmb{2}$  40 % < C < 60% Moderate
- $3 60\% \leq C < 100\%$  Substantial /High

|          |    | PROGRAM OUTCOMES |    |    |    |    |    |    |    |    |    | PSO'S |     |     |     |
|----------|----|------------------|----|----|----|----|----|----|----|----|----|-------|-----|-----|-----|
| COURSE   | РО | PO               | PO | PO | PO | PO | PO | РО | PO | PO | PO | PO    | PSO | PSO | PSO |
| OUTCOMES | 1  | 2                | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12    | 1   | 2   | 3   |
| CO 1     | 3  | -                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | -   | -   | -   |
| CO 2     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | -     | 3   | -   | -   |
| CO 3     | 3  | 1                | 2  | 3  | -  | -  | -  | -  | -  | 1  | -  | 2     | 3   | -   | -   |
| CO 4     | 3  | 2                | 2  | 1  | -  | -  | -  | -  | -  | 1  | -  | -     | 3   | -   | -   |
| CO 5     | 3  | 1                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | 2     | 3   | -   | -   |
| CO 6     | 3  | 2                | -  | -  | -  | -  | -  | -  | -  | 1  | -  | 1     | -   | -   | -   |
| TOTAL    | 18 | 8                | 4  | 4  | -  | -  | -  | -  | -  | 6  | -  | 5     | 12  | -   | -   |
| AVERAGE  | 3  | 1.6              | 2  | 2  | -  | -  | -  | -  | -  | 1  | -  | 1.6   | 3   | -   | -   |

### XVI ASSESSMENT METHODOLOGY-DIRECT:

| CIE Exams               | $\checkmark$ | SEE Exams       | $\checkmark$ | Seminars                  | - |
|-------------------------|--------------|-----------------|--------------|---------------------------|---|
| Laboratory<br>Practices | -            | Student Viva    | -            | Certification             | - |
| Term Paper              | _            | 5 Minutes Video | ~            | Open Ended<br>Experiments | - |
| Assignments             | -            | Tech-Talk       | ~            |                           |   |

### XVII ASSESSMENT METHODOLOGY-INDIRECT:

| - | Assessment of mini projects by experts | $\checkmark$ | End Semester OBE Feedback |
|---|----------------------------------------|--------------|---------------------------|

#### **XVIII SYLLABUS:**

| MODULE I | INTRODUCTION                                                                                                                                          |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Digital image fundamentals and image transforms digital image fundamentals, sampling and quantization, relationship between pixels; Image transforms: |
|          | 2-D FFT, properties, Walsh transform, Hadamard transform, discrete cosine transform, Haar transform, Slant transform, Hoteling transform.             |

| MODULE II  | IMAGE ENHANCEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Introduction, image enhancement in spatial domain, enhancement through<br>point processing, types of point processing, histogram manipulation, linear<br>and non-linear gray level transformation, local or neighborhood operation,<br>median filter processing; Spatial domain high pass filtering, filtering in<br>frequency domain, obtaining frequency domain filters from spatial filters,<br>generating filters directly in the frequency domain, low pass (smoothing) and<br>high pass (sharpening) filters in frequency domain. |
| MODULE III | IMAGE RESTORATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Image restoration degradation model, algebraic approach to restoration.<br>Inverse filtering, least mean square filters, constrained least square<br>restoration, interactive restoration.                                                                                                                                                                                                                                                                                                                                              |
| MODULE IV  | IMAGE SEGMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | Image segmentation detection of discontinuities, edge linking and boundary<br>detection, threshold, region oriented segmentation morphological image<br>processing dilation and erosion, structuring element decomposition, the Strel<br>function, erosion; Combining dilation and erosion: Opening and closing the<br>hit and miss transformation.                                                                                                                                                                                     |
| MODULE V   | IMAGE COMPRESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Image compression: Redundancies and their removal methods, fidelity criteria, image compression models, source encoder and decoder, error free compression, lossy compression, JPEG 2000 standard.                                                                                                                                                                                                                                                                                                                                      |

- **TEXR.BOGM25** lez & R.E. Woods, —Digital Image Processing ||, Addison Wesley/ Pearson education, 2nd Education, 2002.
  - 2. S. Jayaraman, S. Esakkirajan, T. Veerakumar, "Digital Image Processing", TMH, 3rd Edition, 2010.

#### **REFERENCE BOOKS:**

- 1. A.K.Jain, —Fundamentals of Digital Image Processing, PHI. 3RD Edition, 2003.
- 2. Rafael C. Gonzalez, Richard E Woods and Steven, —Digital Image Processing using MATLAB L. Edition, PEA, 2004.
- 3. William K. Pratt, John, —Digital Image Processing, Wilely, 3rd Edition, 2004.
- 4. Somka, Hlavac, Boyle, "Digital Image Processing and Computer Vision", Cengage Learning, 1st Edition, 2008.
- 5. Adrain Low, "Introductory Computer vision Imaging Techniques and Solutions", Tata McGraw-Hill, 2nd Edition, 2008.
- John C. Russ, J. Christian Russ, "Introduction to Image Processing & Analysis", CRC Press, 1st Edition, 2010.

#### WEB REFERENCES:

1. https://nptel.ac.in/courses/117105135

COURSE WEB PAGE: 1. https://akanksha.iare.ac.in/index?route=course/details&course\_id=129

#### **COURSE PLAN:** XIX

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                             | CO's | Reference                         |  |  |  |  |  |
|------|----------------------------------------------------------------------------------|------|-----------------------------------|--|--|--|--|--|
|      | OBE DISCUSSION                                                                   |      |                                   |  |  |  |  |  |
| 1    | 1 Course Description on Outcome Based Education (OBE): Course Objectives, Course |      |                                   |  |  |  |  |  |
|      | Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping                           |      |                                   |  |  |  |  |  |
|      | CONTENT DELIVERY (THEORY)                                                        | 00.1 | <b>TD114</b>                      |  |  |  |  |  |
|      | Introduction to Image Processing                                                 |      | 11:1.4-<br>1.5                    |  |  |  |  |  |
| 2    | Digital Image Fundamentals                                                       | CO 1 | T1:1.4-<br>1.5                    |  |  |  |  |  |
| 3    | Analyze sampling and quantization                                                | CO 1 | T1:2.4-<br>2.5                    |  |  |  |  |  |
| 4    | Relationship between pixels                                                      | CO 1 | T1:2.4-<br>2.5                    |  |  |  |  |  |
| 5    | Introduction to Image transforms                                                 | CO 1 | T1:2.4-<br>2.5                    |  |  |  |  |  |
| 6    | 2D-FFT and properties                                                            | CO 2 | T1:2.6-<br>2.6.8; R2:<br>5.8-5.10 |  |  |  |  |  |
| 7    | Properties of 2D FFT                                                             | CO 2 | T1:2.6-<br>2.6.8; R2:<br>5.8-5.10 |  |  |  |  |  |
| 8    | Haar transform, Slant transform                                                  | CO 2 | T1:3.1-<br>3.6                    |  |  |  |  |  |
| 9    | Hoteling transform, Walsh transform                                              | CO 2 | T1:3.1-<br>3.6                    |  |  |  |  |  |
| 10   | Hoteling transform, Walsh transform                                              | CO 2 | T1:3.1-<br>3.6                    |  |  |  |  |  |
| 11   | Discrete cosine transform, Hadamard transform                                    | CO 2 | T1:3.1-<br>3.6                    |  |  |  |  |  |
| 12   | Introduction to image enhancement                                                | CO 3 | T1:3.1-<br>3.6                    |  |  |  |  |  |
| 13   | Image enhancement in spatial domain                                              | CO 3 | T1:3.1-<br>3.6                    |  |  |  |  |  |
| 14   | Understand enhancement through point processing                                  | CO 3 | T1:3.1-<br>3.8                    |  |  |  |  |  |
| 15   | Types of point processing                                                        | CO 3 | T1:3.1-<br>3.8                    |  |  |  |  |  |
| 16   | Histogram manipulation                                                           | CO 3 | T1:3.1-<br>3.8                    |  |  |  |  |  |

| 17   | Understand median filter processing                     | CO 3 | T1:3.1-<br>3.8; R2: |
|------|---------------------------------------------------------|------|---------------------|
|      |                                                         |      | 7.4-7.5             |
| 18   | Spatial domain high pass filtering                      | CO 3 | T1:3.1-             |
|      |                                                         |      | 3.8; R2:            |
|      |                                                         |      | 7.4-7.5             |
| 19   | Histogram equalization                                  | CO 3 | T1:3.1-             |
|      |                                                         |      | 3.8; R2:            |
|      |                                                         |      | 7.4-7.5             |
| 20   | Apply the Histogram processing technique for image      | CO 3 | T1:3.1-             |
|      | enhancement                                             |      | 3.8; R2:            |
| - 21 |                                                         |      | (.4-(.)<br>T1 (.1   |
| 21   | Understand filtering in frequency domain                | CO 4 | 11:4.1-             |
|      |                                                         |      | 4.0                 |
| 22   | Obtaining frequency domain filters from spatial filters | CO 4 | 11:4.1-             |
|      |                                                         |      | 4.0                 |
| 23   | Generating filters directly in the frequency domain     | CO 4 | 11:4.1-             |
| 2.1  |                                                         |      | 4.0                 |
| 24   | Low pass (smoothing) filter in frequency domain.        | CO 4 | 11:4.1-             |
|      |                                                         |      | 4.0                 |
| 25   | High pass (sharpening) filter in frequency domain       | CO 4 | T1:4.1-<br>4.6      |
| 26   | Introduction to Image segmentation                      | CO 5 | T1:10.1-            |
|      |                                                         |      | 10.6                |
| 27   | Detection of discontinuities                            | CO 5 | T1:10.1-            |
|      |                                                         |      | 10.6                |
| 28   | Edge linking and boundary detection                     | CO 5 | T1:10.1-            |
|      |                                                         |      | 10.6                |
| 29   | Threshold techniques for image segmentation             | CO 5 | T1:10.1-            |
|      |                                                         |      | 10.6                |
| 30   | Understand region oriented segmentation                 | CO 5 | T1:10.1-            |
|      |                                                         |      | 10.6;               |
|      |                                                         |      | T1:9.1-             |
|      |                                                         |      | 9.6                 |
| 31   | Morphological image processing, dilation and erosion    | CO 5 | T1:10.1-            |
|      |                                                         |      | 10.6;               |
|      |                                                         |      | T1:9.1-             |
|      |                                                         |      | 9.6                 |
| 32   | Understand structuring element decomposition, the Strel | CO 5 | T1:9.1-             |
|      | function, erosion;                                      |      | 9.6                 |
| 33   | Combining dilation and erosion: Opening and closing     | CO 5 | T1:9.1-             |
|      |                                                         |      | 9.6                 |
| 34   | The hit and miss transformation                         | CO 5 | T1:9.1-             |
|      |                                                         |      | 9.6                 |
| 35   | Introduction to Image compression                       | CO61 | T1:8.1-             |
|      |                                                         |      | 8.3 ; R2:           |
|      |                                                         |      | 7.4-7.5             |

| 36 | Redundancies and their removal methods                                                     | CO 6   | T1:8.1-                            |
|----|--------------------------------------------------------------------------------------------|--------|------------------------------------|
|    |                                                                                            |        | 8.3; R2:<br>7.4-7.5                |
| 37 | Fidelity criteria, image compression models                                                | CO 6   | T1:8.1-                            |
|    |                                                                                            |        | 8.3; R2:                           |
|    |                                                                                            |        | 7.4-7.5                            |
| 38 | Understand source encoder and decoder                                                      | CO 6   | T1-8.1-                            |
| 20 |                                                                                            | 2.00   | 8.1. <i>i</i>                      |
| 39 | Error free compression                                                                     | 006    | 8.1.7                              |
| 40 | Lossy compression & JPEG 2000 standard                                                     | CO 6   | T1-8.1-                            |
|    |                                                                                            |        | 8.1.7                              |
|    | PROBLEM SOLVING/ CASE STUDIES                                                              | 5      | 1                                  |
| 1  | Problem solving on 2-D FFT and it's properties                                             | CO 2   | T1:2.6-                            |
|    |                                                                                            |        | 2.6.8; R2:<br>5.8-5.10             |
| 2  | Problem solving on Walsh transform, Hadamard transform                                     | CO 3   | T1:3.1-                            |
| 3  | Problem solving on Haar Transform                                                          | $CO_2$ | T1·3 1-                            |
| 0  | Trobicin solving on maar mansionin                                                         | 002    | 3.6                                |
| 4  | Problem solving on Slant, Hoteling and discrete cosine                                     | CO 2   | T1:3.1-                            |
|    | transform                                                                                  |        | 3.6                                |
| 5  | Problem solving on image enhancement in spatial domain<br>and point processing             | CO 3   | T1:3.1-                            |
| 6  | Problem solving on histogram manipulation and equalization                                 | CO 3   | T1:3 1-                            |
|    |                                                                                            |        | 3.8                                |
| 7  | Problem solving on gray-level transformation and median                                    | CO 3   | T1:3.1-                            |
|    | filter processing                                                                          |        | 3.8                                |
| 8  | Problem solving on image enhancement using filtering                                       | CO 3   | T1:4.1-                            |
| 0  | methods<br>Duchlem solving on image enhancement using filtering                            | CO 2   | $\frac{4.0}{\mathbf{T}_{1\cdot4}}$ |
| 9  | methods                                                                                    | 003    | 4.6                                |
| 10 | Problem solving on image restoration using filtering                                       | CO 4   | T1:4.1-                            |
|    | techniques                                                                                 |        | 4.6                                |
| 11 | Problem solving on image segmentation using edge linking                                   | CO 5   | T1:10.1-                           |
|    | and boundary detection                                                                     |        | 10.6                               |
| 12 | Problem solving on image segmentation using region<br>orientation morphological processing | CO 5   | T1:10.1-<br>10.6                   |
| 13 | Problem solving on image segmentation using dilation and<br>erosion                        | CO5    | T1:10.1-<br>10.6                   |
| 14 | Problem solving on image compression using removal of                                      | CO 6   | T1:8.1-                            |
|    | redundancies                                                                               |        | 8.3; R2:                           |
|    |                                                                                            |        | 7.4-7.5                            |
| 15 | Problem solving on image compression using JPEG 2000                                       | CO 6   | T1:8.1-                            |
|    | standard                                                                                   |        | 8.3; K2:<br>7 4-7 5                |
|    |                                                                                            |        | 0.1 1.0                            |

|   | DISCUSSION OF DEFINITION AND TERMIN                          | OLOGY |          |
|---|--------------------------------------------------------------|-------|----------|
| 1 | Definitions and terminologies on Introduction to Digital     | CO 1  | T1:1.4-  |
|   | image processing                                             |       | 1.5      |
| 2 | Definitions and terminologies on image enhancement           | CO 3  | T1:3.1-  |
|   |                                                              |       | 3.8      |
| 3 | Definitions and terminologies on image restoration           | CO 4  | T1:4.1-  |
|   |                                                              |       | 4.6      |
| 4 | Definitions and terminologies on image segmentation          | CO 5  | T1:10.1- |
|   |                                                              |       | 10.6     |
| 5 | Definitions and terminologies on image compression           | CO 6  | T1:8.1-  |
|   |                                                              |       | 8.3; R2: |
|   |                                                              |       | 7.4-7.5  |
|   | DISCUSSION OF QUESTION BANK                                  |       |          |
| 1 | Discussion on question bank of introduction to digital image | CO 2  | T1:1.4-  |
|   | processing                                                   |       | 1.5      |
| 2 | Discussion on question bank of image enhancement             | CO 3  | T1:3.1-  |
|   |                                                              |       | 3.8      |
| 3 | Discussion on question bank of image restoration             | CO 4  | T1:3.1-  |
|   |                                                              |       | 3.8; R2: |
|   |                                                              |       | 7.4-7.5  |
| 4 | Discussion on question bank of image segmentation            | CO 5  | T1:10.1- |
|   |                                                              |       | 10.6     |
| 5 | Discussion on question bank of image compression             | CO 6  | T1:8.1-  |
|   |                                                              |       | 8.3; R2: |
|   |                                                              |       | 7.4-7.5  |

Signature of Course Coordinator Dr. B. Surekha Reddy, Assistant Professor HOD,ECE



# INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title     | ANTENNAS AND MICROWAVE ENGINEERING LABORATORY |           |         |            |           |  |  |
|------------------|-----------------------------------------------|-----------|---------|------------|-----------|--|--|
| Course Code      | AECB30                                        |           |         |            |           |  |  |
| Program          | B.Tech                                        | B.Tech    |         |            |           |  |  |
| Semester         | IV                                            | IV ECE    |         |            |           |  |  |
| Course Type      | Core                                          |           |         |            |           |  |  |
| Regulation       | IARE - R18                                    |           |         |            |           |  |  |
|                  |                                               | Theory    |         |            | Practical |  |  |
| Course Structure | Lecture                                       | Tutorials | Credits | Laboratory | Credits   |  |  |
|                  | -                                             | -         | -       | 3          | 1.5       |  |  |
| Course           | Dr.V.Kishen Ajay Kumar, Associate Professor   |           |         |            |           |  |  |
| Coordinator      |                                               |           |         |            |           |  |  |

# I COURSE OVERVIEW:

This course deals with the measurements of the signals at micro frequency range. This course introduces students to the broad area of RF microwave engineering. It involves measurement of frequency, wave length, VSWR, impedance and scattering parameters of various micro wave devices like circulator, directional coupler, and magic-tee. Microwave devices support larger bandwidth and hence higher data rates are transmitted. There are a wide variety of applications for microwaves like outdoor broadcasting transmissions and long distance telephone calls.

### **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites            |
|--------|-------------|----------|--------------------------|
| B.Tech | AEC011      | V        | Antennas and Propagation |
| B.Tech | AEC015      | VI       | Microwave Engineering    |

#### **III MARKS DISTRIBUTION:**

| Subject               | SEE Examination | CIE Examination | Total Marks |
|-----------------------|-----------------|-----------------|-------------|
| Microwave Engineering | 70 Marks        | 30 Marks        | 100         |
| Laboratory            |                 |                 |             |

### IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

|              | Demo Video |              | Lab Worksheets |              | Viva Questions |              | Probing further |
|--------------|------------|--------------|----------------|--------------|----------------|--------------|-----------------|
| $\checkmark$ |            | $\checkmark$ |                | $\checkmark$ |                | $\checkmark$ | Questions       |

# **V** EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

**Semester End Examination (SEE):**The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria.

|      | Experiment Based | Programming based |
|------|------------------|-------------------|
| 20 % | Objective        | Purpose           |
| 20 % | Analysis         | Algorithm         |
| 20 % | Design           | Programme         |
| 20 % | Conclusion       | Conclusion        |
| 20 % | Viva             | Viva              |

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Component  |             |                    | Total Marka |
|------------|-------------|--------------------|-------------|
| Type of    | Day to day  | Final internal lab | 10tai Marks |
| Assessment | performance | assessment         |             |
| CIA Marks  | 20          | 10                 | 30          |

#### **Continuous Internal Examination (CIE):**

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### 1. Experiment Based

| Objective | Analysis | Design | Conclusion | Viva | Total |  |
|-----------|----------|--------|------------|------|-------|--|
| 2         | 2        | 2      | 2          | 2    | 10    |  |

#### 2. Programming Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 2         | 2        | 2      | 2          | 2    | 10    |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι  | The experiments on microwave test equipment to make measurements of microwave |
|----|-------------------------------------------------------------------------------|
|    | parameters and devices.                                                       |
| II | The measurement of S-Parameters of microwave components to gain the practical |
|    | nands on experience on the incrowave test bench.                              |

| III | The simulation to plot the radiation pattern for an antenna using High Frequency |
|-----|----------------------------------------------------------------------------------|
|     | Software Simulator.                                                              |

# VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

| CO 1 | Summarize the Waveguide components and their specifications                | Understand |
|------|----------------------------------------------------------------------------|------------|
|      | using microwave test bench set-up                                          |            |
| CO 2 | Sketch the characteristics of Reflex klystron. to obtain the               | Apply      |
|      | electronic tuning range using Klystron bench set up.                       |            |
| CO 3 | Analyze the characteristics of Directional coupler, circulator and         | Analyze    |
|      | magic tee using microwave test bench setup.                                |            |
| CO 4 | <b>Distinguish</b> the low and high Voltage Standing Wave Ratio of         | Analyze    |
|      | unknown load load to find out the reflection coefficient using slotted     |            |
|      | line section.                                                              |            |
| CO 5 | <b>Identify</b> fundamental parameters of the antenna to measure far-field | Understand |
|      | radiation pattern using High Frequency Structure Simulator                 |            |
| CO 6 | <b>Design</b> various antennas to find out the antenna parameters using    | Create     |
|      | test setup and High Frequency Structure Simulator.                         |            |

### COURSE KNOWLEDGE COMPETENCY LEVEL



# VIII PROGRAM OUTCOMES:

|       | Program Outcomes                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/Development of Solutions:</b> Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations          |
| PO 4  | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | <b>Modern Tool Usage:</b> Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations                                                                 |
| PO 6  | <b>The engineer and society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                        |

# IX HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | Program                                                                                                                                                                                                                                                                                                                 | Strength | Proficiency<br>Assessed by        |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------|
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review<br>research literature, and analyze complex engineering<br>problems reaching substantiated conclusions using<br>first principles of mathematics, natural sciences, and<br>engineering sciences.                                                                    | 3        | Lab<br>Experiments /<br>CIE / SEE |
| PO 3  | <b>Design/development of solutions</b> : Design<br>solutions for complex engineering problems and<br>design system components or processes that meet<br>the specified needs with appropriate consideration<br>for the public health and safety, and the cultural,<br>societal, and environmental considerations.        | 3        | Lab<br>Experiments /<br>CIE / SEE |
| PO 5  | Modern tool usage: Create, select, and apply<br>appropriate techniques, resources, and modern<br>engineering and IT tools including prediction and<br>modeling to complex engineering activities with an<br>understanding of the limitations.                                                                           | 2        | Lab<br>Experiments /<br>CIE / SEE |
| PO 9  | <b>Individual and team work</b> : Function effectively<br>as an individual, and as a member or leader in<br>diverse teams, and in multidisciplinary settings.                                                                                                                                                           | 3        | Lab<br>Experiments /<br>CIE / SEE |
| PO 10 | <b>Communication:</b> Communicate effectively on<br>complex engineering activities with the engineering<br>community and with society at large, such as, being<br>able to comprehend and write effective reports and<br>design documentation, make effective presentations,<br>and give and receive clear instructions. | 1        | Lab<br>Experiments /<br>CIE / SEE |

3 = High; 2 = Medium; 1 = Low

# X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                             | Strength | Proficiency |
|-------|-----------------------------------------------------|----------|-------------|
|       |                                                     |          | Assessed    |
|       |                                                     |          | by          |
| PSO 3 | Make use of High frequency structure simulator      | 1        | Lab         |
|       | (HFSS) for modeling and evaluating the patch and    |          | Exercises   |
|       | smart antennas for wired and wireless communication |          |             |
|       | applications.                                       |          |             |

3 = High; 2 = Medium; 1 = Low

# XI MAPPING OF EACH CO WITH PO(s), PSO(s):

| COURSE   |   | PROGRAM OUTCOMES |   |   |   |   |   |   |   |    |    | ]  | PSO'S | 5 |   |
|----------|---|------------------|---|---|---|---|---|---|---|----|----|----|-------|---|---|
| OUTCOMES | 1 | 2                | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1     | 2 | 3 |
| CO 1     | - | $\checkmark$     | - | - | 1 | - | - | - | - | -  | -  |    | -     | - | - |

| CO 2 | - | $\checkmark$ | $\checkmark$ | - | - | - | - | - | $\checkmark$ | -                     | - | - | 1            | - | -            |
|------|---|--------------|--------------|---|---|---|---|---|--------------|-----------------------|---|---|--------------|---|--------------|
| CO 3 | - | $\checkmark$ | $\checkmark$ | - | - | - | - | - | -            | -                     | - | - | -            | - | -            |
| CO 4 | - | $\checkmark$ | ~            | - | - | - | - | - | -            | -                     | - |   | -            | - | -            |
| CO 5 | - | $\checkmark$ | ✓            | - | 1 | - | - | - | ✓            | <ul> <li>✓</li> </ul> | - | - | -            | - | -            |
| CO 6 | - | $\checkmark$ | $\checkmark$ | - | ✓ | - | - | - | $\checkmark$ | -                     | - |   | $\checkmark$ | - | $\checkmark$ |

# XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                         | No. of Key<br>Competencies |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 2          | <b>Identify</b> the Waveguide components and their<br>specifications using microwave test bench set-up, <b>analyze</b><br>complex <b>engineering problems</b> from the element, and<br>find out <b>conclusions</b> from the radiating components using<br>the <b>principles of mathematics</b> and <b>natural sciences</b> . | 6                          |
|                    | PO 5          | Summarize the Waveguide components and their<br>specifications using microwave test bench set-up by<br>applying modern Engineering and IT tools.                                                                                                                                                                             | 2                          |
| CO 2               | PO 2          | Identify the characteristics of Reflex klystron and<br>Gunn diode, formulate the modes using Klystron<br>bench set up, apply the principles of mathematics,<br>natural sciences, and engineering sciences .                                                                                                                  | 5                          |
|                    | PO 3          | <b>Examine (Design) the characteristics</b> of reflex<br>klystron and find out its tuning range using design<br>solutions for <b>complex engineering problems</b> that meet<br>the specified needs with appropriate consideration.                                                                                           | 2                          |
|                    | PO 9          | Use research-based knowledge and research<br>methods including design of experiments to analyze<br>the characteristics of reflex klystron and Gunn diode and<br>interpretation of data, function effectively as an<br>individual, and as a member to obtain the readings                                                     | 8                          |
| CO 3               | PO 2          | Identify the characteristics of Directional coupler,<br>circulator and magic tee using microwave test bench setup,<br>analyze the complex design considerations using<br>principles of mathematics and evaluate the<br>appropriate solution                                                                                  | 6                          |
|                    | PO 3          | <b>Understand</b> the characteristics of Directional coupler,<br>circulator and magic tee using various system components<br>and identify solutions that meet the specified needs for the<br><b>societal and environmental considerations</b> .                                                                              | 2                          |
| CO 4               | PO 2          | Understand the (Problem analysis) concept of<br>microwave junction and S-Parameters using review<br>research literature, and analyze complex engineering<br>problems reaching substantiated conclusions using first<br>principles engineering sciences                                                                       | 2                          |

|      | PO 3  | <b>Obtain</b> the S-parameters for different microwave<br>components to measure coupling factor, insertion and<br>isolation using microwave test bench to meet the specified<br>needs with appropriate consideration.                                                                                                                                                           | 1 |
|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| CO 5 | PO 2  | <b>Understand the (Problem analysis)</b> concept of VSWR<br>and reflection coefficient using review research literature,<br>and analyze complex engineering problems reaching<br>substantiated conclusions <b>using first principles</b><br><b>engineering sciences</b> .                                                                                                       | 2 |
|      | PO 3  | <b>Measure</b> low VSWR to find out reflection coefficient and<br>SWR using microwave test bench using design solutions for<br>complex engineering problems that meet the specified<br>needs with appropriate consideration .                                                                                                                                                   | 1 |
|      | PO 5  | <b>Analyze</b> the polar pattern of different Microwave antennas<br>to find out gain, beam width and level of the first side lobe<br>using Create, select, and apply <b>appropriate techniques</b><br>resources, and <b>modern Engineering and IT tools</b><br>including prediction and modeling to complex Engineering<br>activities with an understanding of the limitations. | 3 |
|      | PO 9  | (Team work)Individual and team work: Function<br>effectively as an individual, and as a member to<br>obtain the readings .                                                                                                                                                                                                                                                      | 6 |
|      | PO 10 | <b>Communication:</b> Communicate effectively on complex<br>engineering activities with the engineering community and<br>with society at large, such as, being able to comprehend<br>and write effective reports and design documentation,<br>make effective presentations, and give and receive clear<br>instructions.                                                         | 1 |
| CO 6 | PO 2  | Analyze the radiation pattern of dipole antenna to find<br>out the antenna parameters using test setup and High<br>Frequency Software Simulator                                                                                                                                                                                                                                 | 5 |
|      | PO 3  | <b>Obtain</b> the radiation pattern of various antennas to find<br>out the antenna parameters using High Frequency Software<br>Simulator for <b>complex engineering problems</b> that meet<br>the specified needs with appropriate consideration.                                                                                                                               | 2 |
|      | PO 5  | <ul> <li>Analyze the radiation pattern of microstrip feed antenna to find out the antenna parameters using modern</li> <li>Engineering and IT tools such as High Frequency Software Simulator.</li> </ul>                                                                                                                                                                       | 2 |
|      | PO 9  | (Team work) Individual and team work: Function<br>effectively as an individual, and as a member to obtain<br>the readings.                                                                                                                                                                                                                                                      | 8 |
|      | PSO 3 | Make use of High frequency structure simulator (HFSS) to analyze the radiation pattern of various antennas to find out the antenna parameters .                                                                                                                                                                                                                                 | 2 |

# XIII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| COURSE   | Pro | gram | ı Out | come | es/ N | o. of | ' Key | Con | ipete | ncies | Mat | ched | ] | PSO'S | 5 |
|----------|-----|------|-------|------|-------|-------|-------|-----|-------|-------|-----|------|---|-------|---|
| OUTCOMES | 1   | 2    | 3     | 4    | 5     | 6     | 7     | 8   | 9     | 10    | 11  | 12   | 1 | 2     | 3 |
| CO 1     | -   | 6    | -     | -    | 2     | -     | -     | -   | -     | -     | -   |      | - | -     | - |
| CO 2     | -   | 5    | 2     | -    | -     | -     | -     | -   | 8     | -     | -   | -    | - | -     | - |
| CO 3     | -   | 6    | 2     | -    | -     | -     | -     | -   | -     | -     | -   | -    | - | -     | - |
| CO 4     | -   | 2    | 1     | -    | -     | -     | -     | -   | -     | -     | -   |      | - | -     | - |
| CO 5     | -   | 2    | 1     | -    | 3     | -     | -     | -   | 6     | 1     | -   | -    | - | -     | - |
| CO 6     | -   | 5    | 2     | -    | 2     | -     | -     | -   | 8     | -     | -   |      | - | -     | 2 |

# XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

| COURSE   | Pro | gram | ı Out | come | es/ N | o. of | Key | Con | npete | ncies | Mat | ched | ] | PSO'S | 5   |
|----------|-----|------|-------|------|-------|-------|-----|-----|-------|-------|-----|------|---|-------|-----|
| OUTCOMES | 1   | 2    | 3     | 4    | 5     | 6     | 7   | 8   | 9     | 10    | 11  | 12   | 1 | 2     | 3   |
| CO 1     | -   | 60   | -     | -    | 20    | -     | -   | -   | -     | -     | -   |      | - | -     | -   |
| CO 2     | -   | 50   | -     | -    | -     | -     | -   | -   | 66.7  | -     | -   | -    | - | -     | -   |
| CO 3     | -   | 60   | 20    | -    | -     | -     | -   | -   | -     | -     | -   | -    | - | -     | -   |
| CO 4     | -   | 20   | 50    | -    | -     | -     | -   | -   | -     | -     | -   |      | - | -     | -   |
| CO 5     | -   | 20   | 50    | -    | 50    | -     | -   | -   | 50    | 20    | -   | -    | - | -     | -   |
| CO 6     | -   | 50   | 50    | -    | 50    | -     | -   | -   | 66.7  | -     | -   |      | - | -     | 100 |

# XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$  0  $\leq$  C  $\leq$  5% – No correlation
- $\pmb{2}$  40 % < C < 60% – Moderate

 $1-5 < C \le 40\% - Low/$  Slight

 $3 - 60\% \le C < 100\%$  – Substantial /High

| COURSE   |   | PROGRAM OUTCOMES |   |   |   |   |   |   |   | PSO'S |    |    |   |   |   |
|----------|---|------------------|---|---|---|---|---|---|---|-------|----|----|---|---|---|
| OUTCOMES | 1 | 2                | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10    | 11 | 12 | 1 | 2 | 3 |
| CO 1     | - | 3                | - | - | 1 | - | - | - | - | -     | -  |    | - | - | - |
| CO 2     | - | 2                | 2 | - | - | - | - | - | 3 | -     | -  | -  | - | - | - |
| CO 3     | - | 2                | 1 | - | - | - | - | - | - | -     | -  | -  | - | - | - |
| CO 4     | - | 1                | 2 | - | - | - | - | - | - | -     | -  |    | - | - | - |
| CO 5     | - | 1                | 2 | - | 2 | - | - | - | 2 | 1     | -  | -  | - | - | - |
| CO 6     | - | 2                | 2 | - | 2 | - | - | - | 3 | -     | -  |    | - | - | - |

# XVI ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams   | PO 1, PO 3, | SEE Exams    | PO 1,PO 3,  | Seminars      | - |
|-------------|-------------|--------------|-------------|---------------|---|
|             | PSO 3       |              | PO 5, PSO 3 |               |   |
| Laboratory  | PO 1,PO 3,  | Student Viva | PO 1, PO 5  | Certification | - |
| Practices   | PO 5, PSO 3 |              |             |               |   |
| Assignments | -           |              |             |               |   |

# XVII ASSESSMENT METHODOLOGY INDIRECT:

| <ul> <li>✓</li> </ul> | Early Semester Feedback             | ✓    | End Semester OBE Feedback |
|-----------------------|-------------------------------------|------|---------------------------|
| X                     | Assessment of Mini Projects by Expe | erts |                           |

# XVIII SYLLABUS:

| Week-1  | STUDY OF MICROWAVE COMPLONENTS                                                                                               |
|---------|------------------------------------------------------------------------------------------------------------------------------|
|         | To study the different wave guide components in the microwave bench setup.                                                   |
| Week-2  | MODE CHARACTERISTICS OF REFLEX KLYSTRON                                                                                      |
|         | To study the characteristics of Reflex Klystron oscillator, finding the mode<br>numbers and efficiencies of different modes. |
| Week-3  | GUNN DIODE CHARACTERISTICS                                                                                                   |
|         | To study the characteristics of Gunn diode oscillator                                                                        |
| Week-4  | DIRECTIONAL COUPLER CHARACTERISTICS                                                                                          |
|         | To measure coupling factor, insertion loss, isolation and directivity of a Directional coupler.                              |
| Week-5  | MEASUREMENT OF VSWR                                                                                                          |
|         | To measure the low and high VSWRs of matched terminals.                                                                      |
| Week-6  | CIRCULATOR CHARACTERISTICS                                                                                                   |
|         | To measure the isolation and insertion loss of a three port circulator                                                       |
| Week-7  | MEASURMENT OF SCATTERING PARAMETERS OF MAGIC<br>TEE                                                                          |
|         | To find the scattering parameters of a four port Magic Tee.                                                                  |
| Week-8  | INTRODUCTION TO HFSS                                                                                                         |
|         | Introduction To HFSS Tool.                                                                                                   |
| Week-9  | MONOPOLE ANTENNA DESIGN                                                                                                      |
|         | To find the gain of Monopole Antenna.                                                                                        |
| Week-10 | DIPOLE ANTENNA DESIGN                                                                                                        |
|         | To draw the Radiation Pattern of Dipole Antenna Design.                                                                      |
| Week-11 | MICROSTRIP FEED ANTENNA DESIGN                                                                                               |
|         | To find the gain and radiation pattern of Microstrip Feed Antenna Design.                                                    |
| Week-12 | PROBE FEED PATCH ANTENNA DESIGN                                                                                              |
|         | To draw the 3D polar plot of Probe Feed Patch Antenna Design.                                                                |

| Week-13 | MEASUREMENT OF PHASE SHIFT                                                       |
|---------|----------------------------------------------------------------------------------|
|         | To measure the Phase shift between two components in the microwave bench set up. |
| Week-14 | MICROSTRIP LINE DESIGN                                                           |
|         | To find the gain of Microstrip Line Design                                       |

#### **REFERENCE BOOKS**

- 1. Samuel Y. Liao, —Microwave Devices and Circuits ||, Pearson, 3 rd Edition, 2003.
- 2. . Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, —Microwave Principles || ,CBS Publishers and Distributors, New Delhi, 1st Edition, 2004.
- 3. . F.E. Terman, —Electronic and Radio Engineering ||, Tata McGraw-Hill Publications, 4 th Edition, 1955.

#### WEB REFERENCES:

1. http://www.ee.iitkgp.ac.in

2. http://www.citchennai.edu.in

#### XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                              | CO's | Reference |
|------|---------------------------------------------------|------|-----------|
| 1    | Study of Microwave Components.                    | CO 1 | R1        |
| 2    | Mode characteristics of reflex klystron           | CO 2 | R1,R2     |
| 3    | Gunn diode characteristics.                       | CO 3 | R1,R2     |
| 4    | Directional coupler characteristics               | CO 3 | R1,R2     |
| 5    | Measurement of VSWR                               | CO 3 | R1,R2     |
| 6    | Circulator characteristics                        | CO 3 | R1,R2     |
| 7    | Measurement of scattering parameters of magic tee | CO 3 | R1,R2     |
| 8    | Introduction to HFSS                              | CO 5 | R1,R3     |
| 9    | Monopole antenna design                           | CO 6 | R1,R3     |
| 10   | Dipole antenna design                             | CO 5 | R1,R3     |
| 11   | Microstrip feed antenna design.                   | CO 5 | T1-17.1   |
|      |                                                   |      | to 17.6   |
| 12   | Probe feed patch antenna design                   | CO 6 | R1,R3     |
| 13   | Slot coupled patch antenna.                       | CO 4 | R1,R2     |
| 14   | Microstrip line design.                           | CO 5 | R1,R2     |

# XX EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Design Oriented Experiments                                                                                               |
|------|---------------------------------------------------------------------------------------------------------------------------|
| 1    | Design microwave components such as: Directional couplers, circulators and<br>Hybrid junctions using Simulation software. |
| 2    | Design antenna arrays such as: Binomial, Chebyshev using Simulation                                                       |
| 3    | RF based Wireless Chatting.                                                                                               |
| 4    | RF Communication based Data Encryption and Decryption Wirelessly.                                                         |
| 5    | Electronic eye with Security System using RF with Message Broad Casting.                                                  |
| 6    | Secret code Enabled Secure communication using RF Communication.                                                          |
| 7    | Unique office communication system using RF.                                                                              |

Signature of Course Coordinator Dr.V.Kishen Ajay Kumar, Associate Professor HOD,ECE



#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

| Course Title       | VLSI DESIGN LABORATORY            |           |         |            |         |  |  |  |
|--------------------|-----------------------------------|-----------|---------|------------|---------|--|--|--|
| Course Code        | AECB29                            | AECB29    |         |            |         |  |  |  |
| Program            | B.Tech                            |           |         |            |         |  |  |  |
| Semester           | VII                               | ECE       |         |            |         |  |  |  |
| Course Type        | core                              |           |         |            |         |  |  |  |
| Regulation         | IARE - R18                        |           |         |            |         |  |  |  |
|                    |                                   | Theory    |         | Practi     | cal     |  |  |  |
| Course Structure   | Lecture                           | Tutorials | Credits | Laboratory | Credits |  |  |  |
|                    | -                                 | -         | -       | 3          | 1.5     |  |  |  |
| Course Coordinator | Ms M Saritha, Assistant Professor |           |         |            |         |  |  |  |

# I COURSE OVERVIEW:

The art of VLSI circuit design is dynamic with advances in process technology and innovations in the electronic design automation (EDA) industry. The objective of this laboratory course is to demonstrate the various stages in VLSI design flow using cadence software. Hands on training on logic and circuit simulations of MOSFETS, ring oscillators, multiplexers, analog amplifiers etc are included. The course also covers physical layout of complex logic gates for chip design.

#### **II COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites                    |
|--------|-------------|----------|----------------------------------|
| B.Tech | AEC002      | III      | Digital System Design            |
| B.Tech | AEC008      | v        | Integrated Circuits Applications |

#### **III MARKS DISTRIBUTION:**

| Subject                | SEE Examination | CIE Examination | Total<br>Marks |
|------------------------|-----------------|-----------------|----------------|
| VLSI Design Laboratory | 70 Marks        | 30 Marks        | 100            |

### IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

|              | Demo Video |              | Lab Worksheets |              | Viva Questions |              | Probing further |
|--------------|------------|--------------|----------------|--------------|----------------|--------------|-----------------|
| $\checkmark$ |            | $\checkmark$ |                | $\checkmark$ |                | $\checkmark$ | Questions       |

### **V EVALUATION METHODOLOGY:**

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

|      | Experiment Based | Programming based |
|------|------------------|-------------------|
| 20 % | Objective        | Purpose           |
| 20 % | Analysis         | Algorithm         |
| 20 % | Design           | Programme         |
| 20 % | Conclusion       | Conclusion        |
| 20 % | Viva             | Viva              |

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Component             |                           |                                  | Total Marks |
|-----------------------|---------------------------|----------------------------------|-------------|
| Type of<br>Assessment | Day to day<br>performance | Final internal lab<br>assessment |             |
| CIA Marks             | 20                        | 10                               | 30          |

#### Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

#### 1. Experiment Based

| Objective | Analysis | Design | Conclusion | Viva | Total |
|-----------|----------|--------|------------|------|-------|
| 2         | 2        | 2      | 2          | 2    | 10    |

#### 2. Programming Based

| Objective Analysis Design |   | Design | Conclusion | Viva | Total |  |
|---------------------------|---|--------|------------|------|-------|--|
| 2                         | 2 | 2      | 2          | 2    | 10    |  |

#### VI COURSE OBJECTIVES:

#### The students will try to learn:

| Ι   | Modern tools for functional level to physical layout with verification at intermediate stages in the VLSI design flow in top-down approach. |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| II  | Design and simulations of analog, digital and mixed circuits for optimum values of area over head, power and time delay.                    |
| III | The Chip design through a practical approach using advanced modern tools such as vivado and cadence for front end and back end.             |

# VII COURSE OUTCOMES:

| After successful | completion | of the | course, | students | should | be able to: |
|------------------|------------|--------|---------|----------|--------|-------------|
|------------------|------------|--------|---------|----------|--------|-------------|

| CO 1 | <b>Calculate</b> the static, dynamic and noise margin parameters of CMOS inverter using the output and transfer characteristics of MOSFETst        | Apply   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| CO 2 | <b>Build</b> the Ring oscillator for assessment of frequency and phase noise margin parameters.                                                    | Apply   |
| CO 3 | Analyze complex gates, switch logic and transmission gates for<br>performance optimization of distortion, power consumption and circuit<br>delays. | analyze |
| CO 4 | <b>Build</b> 4 X 1 multiplexer using 2 X 1 multiplexer basic building block and circuit symbols with necessary inter connections.                  | Apply   |
| CO 5 | <b>Examine</b> the conditions for optimum performance of lathes and registers with the knowledge of digital system design.                         | Analyze |
| CO 6 | <b>Calculate</b> bandwidth, gain, and common mode rejection ratio parameters for Differential, MOSFET and casode amplifiers.                       | Apply   |
| CO 7 | <b>Build</b> the stick diagrams, layouts of MOS circuits using design rule checks (DRC) and verifications.                                         | Apply   |
| CO 8 | <b>Construct</b> simulation, synthesis and design verification of data path sub systems using the key elements of VLSI design flow.                | Analyze |

#### COURSE KNOWLEDGE COMPETENCY LEVEL


### VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | Program                                              | Strength | Proficiency      |
|-------|------------------------------------------------------|----------|------------------|
|       |                                                      |          | Assessed by      |
| PO 1  | Engineering knowledge: Apply the knowledge of        | 3        | Lab Experiments  |
|       | mathematics, science, engineering fundamentals,      |          | / CIE / SEE      |
|       | and an engineering specialization to the solution of |          |                  |
|       | complex engineering problems.                        | 0        |                  |
| PO 2  | Problem Analysis: Identify, formulate, review        | 2        | Lab Experiments  |
|       | research literature, and analyse complex engineering |          | / CIE / SEE      |
|       | first principles of mathematics, natural sciences    |          |                  |
|       | and engineering sciences                             |          |                  |
| PO 5  | Modern Tool Ligage: Create solest and apply          | 2        | Lab Experimenta  |
| 105   | appropriate techniques resources and modern          | 5        | / CIE / SEE      |
|       | Engineering and IT tools including prediction and    |          |                  |
|       | modelling to complex Engineering activities with an  |          |                  |
|       | understanding of the limitations                     |          |                  |
| PO 9  | Individual and Teamwork: Function effectively        | 3        | Lab Experiments  |
| 100   | as an individual, and as a member or leader in       |          | and Discussions  |
|       | diverse teams, and in multidisciplinary settings.    |          |                  |
| PO 10 | <b>Communication:</b> Communicate effectively on     | 1        | Discussions      |
|       | complex Engineering activities with the Engineering  |          |                  |
|       | community and with society at large, such as, being  |          |                  |
|       | able to comprehend and write effective reports and   |          |                  |
|       | design documentation, make effective presentations,  |          |                  |
|       | and give and receive clear instructions              |          |                  |
| PO 12 | Life-Long learning: Recognize the need for and       | 2        | Research paper   |
|       | have the preparation and ability to engage in        |          | analysis / Short |
|       | independent and life-long learning in the broadest   |          | term courses     |
|       | context of technological change.                     |          |                  |

3 = High; 2 = Medium; 1 = Low

### IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program                                              | Strength | Proficiency<br>Assessed<br>by |
|-------|------------------------------------------------------|----------|-------------------------------|
| PSO 2 | Focus on the Application Specific Integrated Circuit | 2        | Lab Exper-                    |
|       | (ASIC) Prototype designs, Virtual Instrumentation    |          | iments /                      |
|       | and System on Chip (SOC) designs.                    |          | CIE / SEE                     |

3 = High; 2 = Medium; 1 = Low

# X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

| COURSE<br>OUTCOMES | PO'S<br>PSO'S | Justification for mapping (Students will be able to)                                                                                                                                                                                                                                                                              | No. of Key<br>Competencies |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CO 1               | PO 1          | Identify the conditions practically for improved<br>performance of inverters regarding symmetry of transfer<br>characteristics, rise and fall times (knowledge) by applying<br>the field effect transistor fundamentals with support from<br>other engineering disciplines, <b>mathematics</b> , and<br>scientific methodologies. | 2                          |
|                    | PO 2          | Understand the given <b>problem statement and</b><br><b>formulate</b> conditions for improved performance of inverter<br>from the provided information and data in reaching<br>substantiated conclusions by the <b>interpretation of</b><br><b>results</b> in the Laboratory.                                                     | 4                          |
| CO 2               | PO 1          | Identify the conditions practically for improved<br>performance of ring oscillators regarding frequency and<br>phase noise margin parameters (knowledge) by applying<br>the oscillation fundamentals with support from other<br>engineering disciplines, mathematics, and scientific<br>methodologies.                            | 2                          |
| CO 3               | PO 1          | Illustrate complex gates, switch logic and transmission<br>gates (knowledge) for performance optimization of<br>distortion, power consumption and circuit delays through<br>simulation by applying the principles of mathematics.                                                                                                 | 1                          |
|                    | PO 2          | Understand the given logic gates <b>problem statement</b> and<br>finding the <b>solution implementation</b> for performance<br>optimization by <b>analyzing complex engineering</b><br><b>problems</b> .                                                                                                                          | 3                          |
| CO 4               | PO 1          | Design multiplexers (knowledge) consisting of<br>transmission gates and pass gates with the support of<br>VLSI engineering tools such as stick diagrams and<br>layouts.                                                                                                                                                           | 1                          |
|                    | PO 2          | Formulate and analyze (Problem analysis) complex<br>Engineering problems for multiplexers<br>textbf(knowledge) consisting of transmission gates and<br>pass gates using first principles of mathematics and<br>Engineering sciences.                                                                                              | 5                          |
| CO 5               | PO 1          | Design latches <b>(knowledge)</b> consisting of multiplexers<br>with the support of VLSI engineering tools such as stick<br>diagrams and layouts.                                                                                                                                                                                 | 1                          |
|                    | PO 2          | Formulate and analyze ( <b>Problem analysis</b> ) complex<br>Engineering problems for latches ( <b>knowledge</b> ) consisting<br>of multiplexers using first principles of <b>mathematics and</b><br><b>Engineering sciences.</b>                                                                                                 | 5                          |

| CO 6 | PO 1  | Identify the conditions practically for improved<br>performance of Differential, MOSFET and casode<br>amplifiers regarding bandwidth, gain, and common mode<br>rejection ratio parameters (knowledge) by applying the<br>oscillation fundamentals with support from other<br>engineering disciplines, <b>mathematics</b> , and scientific<br><b>methodologies</b> . | 2 |
|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| CO 7 | PO 1  | Build the stick diagrams, layouts of MOS circuits<br>(knowledge) by following design rules with <b>engineering</b><br>sciences.                                                                                                                                                                                                                                     | 1 |
|      | PO 5  | Develop layouts of MOS circuits using <b>modern</b><br>Engineering and IT tools to reduce area overhead.                                                                                                                                                                                                                                                            | 1 |
|      | PO 9  | Focus on working as a <b>member or leader</b> in developing<br>the layouts for MOS circuits and perform analysis by<br><b>individual and team work.</b>                                                                                                                                                                                                             | 2 |
|      | PSO 2 | Build stick diagrams and layouts of MOS circuits by<br>experimentation and Understanding the performance<br>parameters of Application Specific Integrated Circuit<br>(ASIC) System on Chip (SOC) designs.                                                                                                                                                           | 2 |
| CO 8 | PO 1  | Develop data path subsystems (knowledge) consisting of<br>shifters, adders, multipliers, ALUs, parity generators,<br>counters and comparators with the support of <b>VLSI</b><br><b>engineering tools such as stick diagrams and</b><br><b>layouts.</b>                                                                                                             | 1 |
|      | PO 10 | Communicate effectively on <b>complex Engineering</b><br><b>activities</b> with the Engineering community and with<br>society at large, such as, being able to comprehend and<br><b>write effective reports</b> and design documentation, make<br><b>effective presentations</b> , and give and receive clear<br>instructions                                       | 3 |
|      | PO 12 | Recognize the need and have sufficient preparation in field<br>of VLSI design to enhance skill and additional efforts for<br><b>future advancement and lifelong learning.</b>                                                                                                                                                                                       | 2 |
|      | PSO 2 | Build data path sub systems using the key elements of<br>VLSI design flow with minimum hardware and delay by<br>experimentation and Understanding the performance<br>parameters of Application Specific Integrated Circuit<br>(ASIC) and System on Chip (SOC) designs.                                                                                              | 2 |

#### XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| COURSE   | PROGRAM OUTCOMES |  |       | PSO'S |
|----------|------------------|--|-------|-------|
| OUTCOMES | PO 1 PO 5 H      |  | PO 10 |       |
| CO 1     | 2                |  |       | 3     |
| CO 2     | 2                |  | 2     | 3     |

| CO 3 | 2 | 3 |   | 3 |
|------|---|---|---|---|
| CO 4 | 2 |   | 2 | 3 |
| CO 5 | 2 | 3 | 2 | 3 |
| CO 6 | 2 | 3 |   |   |
| CO 7 | 2 |   | 2 | 3 |

#### XII ASSESSMENT METHODOLOGY DIRECT:

| CIE Exams   | PO 1, PO 3,   | SEE Exams    | PO 1,PO 3,  | Seminars      | - |
|-------------|---------------|--------------|-------------|---------------|---|
|             | PSO 3         |              | PO 5, PSO 3 |               |   |
| Laboratory  | PO 1,PO 3,    | Student Viva | PO 1, PO 5  | Certification | - |
| Practices   | PO 5, PSO $3$ |              |             |               |   |
| Assignments | -             |              |             |               |   |

### XIII ASSESSMENT METHODOLOGY INDIRECT:

| $\checkmark$ | Early Semester Feedback             | $\checkmark$ | End Semester OBE Feedback |
|--------------|-------------------------------------|--------------|---------------------------|
| $\mathbf{X}$ | Assessment of Mini Projects by Expe | erts         |                           |

### XIV SYLLABUS:

| WEEK I   | MOSFET                                                                                                               |
|----------|----------------------------------------------------------------------------------------------------------------------|
|          | To plot the (i) Output characteristics (ii) Transfer characteristics of an N-channel and P-channel MOSFET.           |
| WEEK II  | CMOS INVERTER                                                                                                        |
|          | To design and plot the static (VTC) and dynamic characteristics of a digital CMOS inverter.                          |
| WEEK III | RING OSCILLATOR                                                                                                      |
|          | To design and plot the output characteristics of a 3-inverter ring oscillator.                                       |
| WEEK IV  | LOGIC GATES                                                                                                          |
|          | To design and plot the dynamic characteristics of 2-input NAND, NOR, XOR and XNOR logic gates using CMOS technology. |
| WEEK V   | 4X1 MULTIPLEXER                                                                                                      |
|          | To design and plot the characteristics of a 4X1 ditial multiplexer using pass transistor logic.                      |
| WEEK VI  | LATCHES                                                                                                              |
|          | To design and plot the characteristics of a positive and negative latch based<br>on multiplexers.                    |

| WEEK VII  | REGISTERS                                                                                                                      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|
|           | To design and plot the characteristics of a master-slave positive and negative edge triggered registers based on multiplexers. |
| WEEK VIII | DIFFERENTIAL AMPLIFIER                                                                                                         |
|           | Design and simulation of simple 5 transistor differential amplifier, Measure the values of Gain, ICMR and CMRR.                |
| WEEK IX   | NMOS INVERTER AND CMOS INVERTER                                                                                                |
|           | To design the layout of NMOS and CMOS inverter.                                                                                |
| WEEK X    | LAYOUT OF 2-INPUT NAND, NOR GATES                                                                                              |
|           | To design the layout of 2-input NAND, NOR gates.                                                                               |
| WEEK XI   | COMMON SOURCE AMPLIFIER                                                                                                        |
|           | Analysis of Frequency response of Common source amplifier.                                                                     |
| WEEK XII  | COMMON DRAIN AMPLIFIER                                                                                                         |
|           | Analysis of Frequency response of Common drain Amplifier.                                                                      |
| WEEK XIII | SINGLE STAGE CASCODE AMPLIFIER                                                                                                 |
|           | Design and Simulation of Single Stage Cascode Amplifier.                                                                       |
| WEEK XIV  | BASIC CURRENT MIRROR, CASCODE CURRENT MIRROR<br>AMPLIFIER                                                                      |
|           | Design and Simulation of Basic Current Mirror, Cascode Current Mirror<br>Amplifier.                                            |

#### **TEXT BOOKS:**

- 1. Razavi, Design of Analog CMOS Integrated Circuits, Tata McGraw Hill Publications, 2002.
- 2. Allen Holberg, CMOS Analog Circuit Design, Oxford Publications, 2002.
- 3. Baker, Li, Boyce, CMOS Mixed Circuit Design, Wiley Publications, 2002.

#### **REFERENCE BOOKS:**

- 1. Mohammad Rashid, "Electronic Devices and Circuits", Cengage learning, 1st Edition, 2014.
- 2. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2009.

#### Web References:

1. http://ee.usc.edu/ redekopp/ee209/virtuoso/setup/USCVLSI-VirtuosoTutorial.pdf

#### XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| S.No | Topics to be covered                                                                                          | CO's | Reference |
|------|---------------------------------------------------------------------------------------------------------------|------|-----------|
| 1    | To plot the (i) Output characteristics (ii) Transfer<br>characteristics of an N-channel and P-channel MOSFET. | CO 1 | T1: 3.1   |
| 2    | To design and plot the static (VTC) and dynamic characteristics of a digital CMOS inverter.                   | CO 1 | T1: 3.11  |
| 3    | To design and plot the output characteristics of a 3-inverter ring oscillator.                                | CO 2 | T1: 4.8   |

| 4  | To design and plot the dynamic characteristics of 2-input<br>NAND, NOR, XOR and XNOR logic gates using CMOS<br>technology.           | CO 3 | T1: 4.8  |
|----|--------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| 5  | To design and plot the characteristics of a 4X1 ditial<br>multiplexer using pass transistor logic.                                   | CO 4 | T1: 5.5  |
| 6  | To design and plot the characteristics of a positive and<br>negative latch based on multiplexers.                                    | CO 5 | T1: 5.6  |
| 7  | To design and plot the characteristics of a master-slave<br>positive and negative edge triggered registers based on<br>multiplexers. | CO 5 | T1: 8.3  |
| 8  | Design and simulation of simple 5 transistor differential amplifier, Measure the values of Gain, ICMR and CMRR.                      | CO 5 | T1: 8.3  |
| 9  | To design the layout of NMOS and CMOS inverter.                                                                                      | CO 7 | T1: 9.2  |
| 10 | To design the layout of 2-input NAND, NOR gates.                                                                                     | CO 7 | T1: 9.3  |
| 11 | Analysis of Frequency response of Common source amplifier.                                                                           | CO 6 | T1: 10.6 |
| 12 | Analysis of Frequency response of Common drain Amplifier.                                                                            | CO 6 | T1: 10.7 |
| 13 | Design and Simulation of Single Stage Cascode Amplifier.                                                                             | CO 6 | T1:10.7  |
| 14 | Design and Simulation of Basic Current Mirroe, Cascode<br>Current Mirror Amplifier                                                   | CO 6 | T1:10.7  |

## XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

| S.No | Design Oriented Experiments                                                                                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------|
| 1    | Design and plot the static (VTC) and dynamic characteristics of a digital nMOS inverter with different forms of pull up loads. |
| 2    | Design and plot the static (VTC) and dynamic characteristics of a digital Bi CMOS inverter.                                    |
| 3    | To design and plot the dynamic characteristics of Non-inverting Boolean Functions using CMOS Technology.                       |
| 4    | To design and plot the characteristics of a 8X1 digital multiplexer usng pass transistor logic.                                |
| 5    | To design the layout of 3-input NAND, NOR gates.                                                                               |

Prepared By: M Saritha, Assistant Professor HOD,ECE