

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECT	ELECTRONICS AND COMMUNICATION ENGINEERING				
Course Title	ENGLIS	ENGLISH				
Course Code	AHSC01	AHSC01				
Program	B. Tech	B. Tech				
Semester	Ι					
Course Type	Foundation					
Regulation	UG-20					
		Theory		Pra	ctical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	2	-	2	-	-	
- Course Coordinator	Dr. M.Sailaja, Associate Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
_	-	-	-

II COURSE OVERVIEW:

The principle aim of the course is that the students will have awareness about the importance of English language in the contemporary times and also it emphasizes the students to learn this language as a skill (listening skill, speaking skill, reading skill and writing skill). Moreover, the course benefits the students how to solve their day-to-day problems in speaking English language. Besides, it assists the students to reduce the mother tongue influence and acquire the knowledge of neutral accent. The course provides theoretical and practical knowledge of English language and it enables students to participate in debates about informative, persuasive, didactic, and commercial purposes.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
English	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	LCD / PPT	x	Chalk & Talk	x	Assignments	x	MOOC
\checkmark	Open Ended Experiments	\checkmark	Seminars	x	Mini Project	\checkmark	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
37%	Remember
63 %	Understand
-	Apply
-	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks	
CIA	Continuous Internal Examination – 1 (Mid-term)	10		
	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
Total Marks			100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

I	Standard pronunciation, appropriate word stress, and necessary intonation patterns for effective communication towards achieving academic and professional targets.
II	Appropriate grammatical structures and also using the nuances of punctuation tools for practical purposes.
III	A critical aspect of speaking and reading for interpreting in-depth meaning between the sentences.
IV	A conceptual awareness on writing in terms of unity, content, coherence, and linguistic accuracy.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Discuss the prime necessities of listening skill for academic and	Remember
	non-academic purposes.	
CO 2	Illustrate appropriate speaking strategies to explain a topic in a	Understand
	clear-cut manner.	
CO 3	Choose acceptable language for developing life skills to overcome the	Understand
	challenges at professional platform.	
CO 4	Interpret the grammatical aspects effectively in speaking and writing	Understand
	at functional usage.	
CO 5	Describe the importance of reading skill and various strategies to	Remember
	enhance professional growth and success.	
CO 6	Summarize writing skills for fulfilling the academic and non-academic	Understand
	requirements of various written communicative functions.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations		
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations		
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 10	Communication : Communicate effectively on	5	Seminar/
	complex Engineering activities with the		Conferences/
	Engineering community and with society at		Research
	large, such as, being able to comprehend and		Papers
	write effective reports and design		IE/AAT /
	documentation, make effective presentations,		Discussion
	and give and receive clear instructions		
	(Communication). "Students should		
	demonstrate the ability to communicate		
	effectively in writing / Orally." 1. Clarity		
	(Writing); 2. Grammar/Punctuation (Writing);		
	3. References (Writing); 4. Speaking Style		
	(Oral); 5. Subject Matter (Oral).		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit	-	-
	Development platform for Robotics, Embedded		
	Systems and Signal Processing Applications.		
PSO 2	Focus on the Application Specific Integrated	-	-
	Circuit (ASIC) Prototype designs, Virtual		
	Instrumentation and System on Chip (SOC)		
	designs.		
PSO 3	Make use of High Frequency Structure Simulator	-	-
	(HFSS) for modeling and evaluating the Patch		
	and Smart Antennas for Wired and Wireless		
	Communication Applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	-	-	-	-	-	-	-	-	-	✓-	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 10	Discuss the heeds of functional grammar and punctuation tools in speaking and writing by generating the clarity of an audio text.	5
CO 2	PO 10	Illustrate essential aspects of grammar as well as punctuation marks for speaking or writing towards a discussion on a topic to give the clarity.	5
CO3	PO 10	Choose suitable grammatical structures and punctuation marks at speaking and writing areas maintaining clarity at professional platform.	5
CO4	PO 10	Interpret the grammatical knowledge and punctuation marks systematically towards providing the clarity in speaking and writing.	5
CO5	PO 10	Demonstrate the role of grammar and punctuation marks understanding the meaning between the sentences as well as paragraphs in speaking or writing for a clarity.	5
CO6	PO 10	Describe the clarity of grammatical usage and the obligation of punctuation marks in speaking and writing.	5

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 2	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 4	-	-	-	-		-	-	-	-	5	-		-	-	-
CO 5	-	-	-	-	-	-	-	-	-	5	-	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	5	-		-	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	-	-	-	-	-	-	-	100	-		-	-	-
CO 2	-	-	-	-	-	-	-	-	-	100	-	-	-	-	-
CO 3	-		-	-	-	-	-	-	-	100	-	-	-	-	-
CO 4	-	-	-	-		-	-	-	-	100	-	-	-	-	-
CO 5	-	-	-	-	-	-	-	-	-	100	-	-		-	-
CO 6	-	-	-	-		-	-	-	-	100	-		-	-	

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- **1** $-5 < C \le 40\% Low / Slight$
- $\pmb{2}$ 40 % < C < 60% Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	-	-	-	-	-	-	-	3	-	-	-	-	
CO 2	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 4	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 5	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
CO 6	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
TOTAL	-	-	-	-	-	-	-	-	-	18	-	-	-	-	-
AVERAGE	-	-	-	-	-	-	_	-	-	3	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	 ✓ 	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	\checkmark	Open Ended Experiments	~
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts \checkmark End Semester OBE Feedback

XVIII SYLLABUS:

MODULE I	GENERAL INTRODUCTION AND LISTENING SKILL
	Introduction to communication skills; Communication process; Elements of communication; Soft skills vs. hard skills; Importance of soft skills for engineers; Listening skills; Significance; Stages of listening; Barriers and effectiveness of listening; Listening comprehension.
MODULE II	SPEAKING SKILL
	Significance; Essentials; Barriers and effectiveness of speaking; Verbal and non-verbal communication. Generating talks based on visual prompts; Public speaking; Exposure to structured talks; Addressing a small group or a large formal gathering; Oral presentation; Power point presentation.
MODULE III	VOCABULARY AND GRAMMAR
	The concept of Word Formation; Root words from foreign languages and their use in English; Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives; Synonyms; Antonyms; Standard abbreviations; Idioms and phrases; One-word substitutes Sentence structure; Uses of phrases and clauses; Punctuation; Subject verb agreement; Modifiers; Articles; Prepositions.
MODULE IV	READING SKILL
	Significance, Techniques of reading, Skimming-Reading for the gist of a text, Scanning - Reading for specific information, Intensive, Extensive reading, Reading comprehension, Reading for information transfer, Text to diagram, Diagram to text.
MODULE V	WRITING SKILL
	Significance; Effectiveness of writing; Organizing principles of Paragraphs in documents; Writing Introduction and conclusion; Techniques for writing precisely, Letter writing; Formal and Informal letter writing, E-mail writing, Report Writing.

TEXTBOOKS

1. Handbook of English (Prepared by the faculty of English, IARE).

REFERENCE BOOKS:

- 1. 1. Norman Whitby, Business Benchmark: Pre-Intermediate to Intermediate BEC Preliminary, Cambridge University Press, 2nd Edition,2008.
- 2. Devaki Reddy, Shreesh Chaudhary, Technical English, Macmillan, 1st Edition, 2009.
- 3. Rutherford, Andrea J, Basic Communication Skills for Technology, Pearson Education, 2nd Edition, 2010.
- 4. Raymond Murphy, Essential English Grammar with Answers, Cambridge University Press, 2nd Edition, 2010.
- 5. Dr. N V Sudershan, President Kalam's Call to the Nation, Bala Bharathi Publications, Secunderabad, 1st Edition,2003

XIX COURSE PLAN:

The course plan is me	eant as a guideline.	Probably there	may be changes.
-----------------------	----------------------	----------------	-----------------

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	Discussion on mapping COs with POs. (0	OBE)	
	CONTENT DELIVERY (THEORY)		
2	Introduction to communication skills.	CO 1	T1:06.06
3	Communication process.	CO 1	T1:06.09
4	Soft skills vs hard skills.	CO 3	T1:09.10
5	Significance of LSRW skills.	CO 1	T1:10.11
6	Significance of listening skill.	CO 1	TI:12.16
7	Different stages of listening.	CO 1	T1:16.18
8	Barriers of listening skill.	CO 1	TI:18.21
9	Different types of listeners.	CO 1	TI:21.22
10	Effectiveness of listening skill.	CO 1	T1:22.24
11	Phonetics: Listening to the sounds of English language.	CO 1	T1:24.29
12	Introduction to speaking skills.	CO 2	T1:30.32
13	Effectiveness of speaking skills.	CO 2	T1:33.34
14	Verbal and non-verbal communication.	CO 2	T1:34.35
15	Generating talks based on visual or written prompts.	CO 2	T1:36.37
16	Developing public speaking skills.	CO 2	T1:38.39
17	Oral presentation with power-point.	CO 3	TI:39.42
18	The concept of word formation.	CO 4	T1:43.100
19	Antonyms and synonyms.	CO 4	TI:49.56
20	Idioms and phrases.	CO 4	TI:57.60
21	One-word substitutes.	CO 4	TI:60.62
22	Root words from foreign languages and their usage in English.	CO 4	TI:60.62
23	Sentence structure.	CO 4	T1:58.62
24	Punctuation tools and their role in a language.	CO 4	TI:63.66
25	Subject-verb agreement.	CO 4	TI:66.69
26	Usage of Adjectives.	CO 4	TI:70.73
27	Significance of articles and their usage.	CO 4	TI:74.75
28	The usage of prepositions.	CO 4	T1:76.77
29	Significance of reading skill.	CO 5	T1:78.79
30	Different techniques of reading skill.	CO 6	T1:80.82
31	How to Read Your Textbook More Efficiently.	CO 6	TI:83.85
32	Different types of reading comprehension.	CO 6	TI:85.86
33	Reading for information transfer.	CO 6	TI:85.96
34	Significance and effectiveness of writing skill.	CO 6	TI:96.98

35	Organizing principles of a paragraph in documents and types of paragraphs.	CO 5	T1:101.103
36	Writing introduction and conclusion.	CO 5	T1:103.103
37	Techniques for writing precis.	CO 8	T1:103.103
38	Introduction to informal letters.	CO 7	TI:105.108
39	Introduction to formal letters.	CO 7	TI:109.110
40	Introduction of email writing and formal and informal emails.	CO 7	TI:111.112
41	Significance of Report Writing.	CO 8	TI: 113. 114
	PROBLEM SOLVING/ CASE STUDIES	;	
42	The aspects to improve listening comprehension Discuss in detail.	CO 1	TI:10,11
43	Different types of listeners with examples.	CO 1	TI: 19,21
44	The sounds of English language	CO 1	TI:23,27
45	verbal communication or written communication.	CO 2	TI: 27,30
46	Various difficulties in public speaking.	CO 2	TI: 32,33
47	Different ways of greeting people in formal and informal situation and discuss how do they matter in communication?	CO 2	TI: 35,37
48	'Oral presentation requires a good planning'.	CO 2	TI:36,38
49	Power point presentation and the ways to make Power point presentation.	CO 2	TI: 37,38
50	Methods that are used to establish the process of building vocabulary with examples from the most used words in spoken English.	CO 4	TI:39,41
51	The usage of idioms and phrases in spoken English.	CO 4	TI: 47,50
52	'Structure proposition-evaluation' -Reading technique.	CO 5	TI:56,58
53	Active reading, detailed reading, and speed-reading techniques used in different situations.	CO 5	TI: 79,81
54	The elements of paragraph writing in detail.	CO 8	TI:100,102
55	Logical bridges and Verbal bridges in writing.	CO 8	TI:102,104
56	Soft skills and Interpersonal Communication.	CO 8	TI:102,104
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
57	Soft skills and Interpersonal Communication.	CO 1	TI 8,9
58	Language acquisition is a process.	CO 1	TI: 11,12
59	Communication.	CO 1	TI: 14,16
60	Time management.	CO 3	TI:9,10
61	Stress management.	CO 3	TI:9,10
	DISCUSSION OF QUESTION BANK		
62	Soft Skills for difficult situations in terms of reassurance and reliability.	CO 3	TI:9,10
63	Verbal and non-verbal communication.	CO_2	TI: 34,35
64	Honesty, Respect, Self-Control and Accountability their role in building long lasting interpersonal skills?	CO 3	TI: 9,10

65	Etiquette and manners. Its importance in social, personal and professional communication.	CO 23	TI: 9,10
66	Problem solving and decision making.	CO 3	TI: 9,10

Signature of Course Coordinator

HOD

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONOICS AND COMMUNICATION ENGINEERING								
Course Title	LINEA	LINEAR ALGEBRA AND CALCULUS							
Course Code	AHSC02	AHSC02							
Program	B.Tech	B.Tech							
Semester	Ι	Ι							
Course Type	Foundati	Foundation							
Regulation	UG - 20								
		Theory		Prac	tical				
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits				
	3	1	4	-	-				
Course Coordinator	Mr. P Shantan Kumar, Assistant Professor								

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10+2	-	-	Basic Principles of Algebra and Calculus

II COURSE OVERVIEW:

The Linear algebra is a sub-field of mathematics concerned with vectors, matrices, and linear transforms. Calculus is the branch of mathematics which majorly deals with derivatives and integrals. Linear algebra is a key foundation to the field of machine learning. The course includes types of Matrices, Rank, methods of finding rank, Eigen values and Eigen vectors, maxima and minima of functions of several variables, solutions of higher order ordinary differential equations and Fourier series. Matrices are used in computer animations, color image processing. Eigen values are used by engineers to discover new and better designs for the future. The laws of physics are generally written down as differential equations. So, differential equations and Fourier series expansions have wide applications in various engineering and science disciplines. This course enables the students to gain basic knowledge on the mathematics which is used in modeling the real time engineering problems very often.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Linear Algebra and Calculus	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	PPT	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
✓	Open Ended Experiments	х	Seminars	х	Mini Project	1	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

10 %	Remember
30 %	Understand
60 %	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

Table 1: The expected percentage of cognitive level of questions in SEE.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks	
CIA	Continuous Internal Examination – 1 (Mid-term)	10		
	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
Total Marks			100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The principles of Eigen value analysis and linear transformations, Matrix rank
	finding methods.
II	The calculus of functions of several variables and the concept of maxima-minima
	for a three-dimensional surface.
III	The analytical methods for solving higher order differential equations with constant coefficients.
IV	Fourier series expansions in standard intervals as well as arbitrary intervals.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Compute the rank and inverse of real and complex matrices with elementary transformation methods.	Apply
CO 2	Use the Eigen values, Eigen vectors for developing modal and Spectral matrices from the given matrix	Apply
CO 3	Make use of Cayley Hamilton theorem for finding positive and negative powers of the matrix.	Apply
CO 4	Utilize the mean–value theorems and partial derivatives in estimating the extreme values for functions of several variables	Apply
CO 5	Solve the Second and higher order linear differential equations with constant coefficients by using substitution and method of variation of parameters	Apply
CO 6	Apply the Fourier Series expansion of periodic, even and odd functions in analyzing the square wave, sine wave rectifiers.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.			
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.			
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations			
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.			
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations			
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.			
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.			

	Program Outcomes			
PO 8	Ethics: Apply ethical principles and commit to professional ethics and			
	responsibilities and norms of the engineering practice.			
PO 9	Individual and team work: Function effectively as an individual, and as a			
	member or leader in diverse teams, and in multidisciplinary settings.			
PO 10	Communication: Communicate effectively on complex engineering			
	activities with the engineering community and with society at large, such as,			
	being able to comprehend and write effective reports and design			
	documentation, make effective presentations, and give and receive clear			
	instructions.			
PO 11	Project management and finance: Demonstrate knowledge and			
	understanding of the engineering and management principles and apply these			
	to one's own work, as a member and leader in a team, to manage projects			
	and in multidisciplinary environments.			
PO 12	Life-Long Learning: Recognize the need for and having the preparation			
	and ability to engage in independent and life-long learning in the broadest			
	context of technological change			

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	CIE/Quiz/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency
			Assessed by
PSO 1	Build Embedded Software and Digital Circuit	-	-
	Development platform for Robotics, Embedded		
	Systems and Signal Processing Applications.		
PSO 2	Focus on the Application Specific Integrated	-	-
	Circuit (ASIC) Prototype designs, Virtual		
	Instrumentation and System on Chip (SOC)		
	designs.		
PSO 3	Make use of High Frequency Structure	-	-
	Simulator (HFSS) for modeling and evaluating		
	the Patch and Smart Antennas for Wired and		
	Wireless Communication Applications.		

3 =High; 2 =Medium; 1 =Low

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-		-	-	-

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Explain the role of rank and inverse of real and complex matrices in solving complex engineering problems by using elementary transformation methods (principles of mathematics).	2
CO 2	PO 1	Determine the Eigen values, Eigen vectors, Spectral matrix complex engineering problems modeled by matrices with help of Characterstic Equation (principles of mathematics).	2
	PO 2	Model the problem into matrices, prepare precise statement of the problem and apply the concepts of Eigen values and Eigen vectors to develop the solution and interpret, validate the results through proper documentation	6
CO 3	PO 1	Make use of Cayley Hamilton theorem for finding positive and negative powers of the matrix and apply them in the complex engineering problems modeled by matrices (principles of mathematics).	2
CO 4	PO 1	Explain the mean-value theorems for the single variable functions and the extreme values for functions of several variables apply them in the complex engineering problems Ordinary and Partial derivatives .	2
CO 5	PO 1	Determine the solution of complex engineering problems modeled by Second and higher order linear differential equations with constant coefficients by using substitution method and method of variation of parameters.	2

	PO 2	Model the problem with the help of ordinary differential equations, prepare precise statement of the problem and apply method of variation of parameters and other analytical methods to develop the solution and interpret, validate the results through proper documentation	6
CO 6	PO 1	Build the Fourier series expansion for the complex engineering problems modeled by given periodic, even and odd functions in various intervals with the help of Fourier coefficients formulae (principles of mathematics).	2
	PO 2	Model the problem with the help of suitable periodic functions, prepare precise statement of the problem and apply Fourier series expansions to develop the solution and interpret , validate the results through proper documentation	6

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE	Program Outcomes/No.of Key Competencies Matched											PSO'S			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	2	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	2	6	-	-	-	-	-	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	67	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	67	60	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	67	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	67	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	67	60	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	67	60	-	-	-	-	-	-	-	-	-	-	-	-	-

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - 0% \leq C \leq 5% – No correlation

 $1 - 5\% \leq C \leq 40\% - Low/$ Slight

 $\pmb{2}$ - 40 % < C < 60% – Moderate

 $\boldsymbol{3}$ - $60\% \leq C < 100\%$ – Substantial /High

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	18	9	-	-	-	-	-	-	-	-	-	-	-	-	-
AVERAGE	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	1	SEE Exams	1	Assign-	-	Seminars	-
LAGING						<u> </u>	
Labora-	-	Student	-	Mini	-	Certifica-	-
tory		Viva		Project		tion	
Practices							
Term	-	Tech - talk		Concept	PO 1,	-	-
Paper			\checkmark	Video	PO 2		

XVII ASSESSMENT METHODOLOGY-INDIRECT:

x	Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback

XVIII SYLLABUS:

MODULE I	THEORY OF MATRICES
	Real matrices: Symmetric, Skew-Symmetric and Orthogonal matrices;
	Complex matrices: Hermitian, Skew- Hermitian and Unitary matrices;
	Elementary row and column transformations, finding rank of a matrix
	by reducing to Echelon form and Normal form; Finding the inverse of a
	matrix using Gauss-Jordan method
MODULE II	LINEAR TRANSFORMATIONS

	Cayley-Hamilton theorem: Statement, verification, finding inverse and powers of a matrix; Linear dependence and independence of vectors; Linear transformation; Eigen values and Eigen vectors of a matrix; Diagonalization of matrix.
MODULE III	FUNCTIONS OF SINGLE AND SEVERAL VARIABLES
	Mean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem-without proof; Functions of several variables: Partial differentiation, Jacobian, functional dependence, maxima and minima of functions with two variables and three variables. Method of Lagrange multipliers.
MODULE IV	HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
	Linear differential equations of second and higher order with constant coefficients. Non-homogeneous term of the type $f(x) = e^{ax}$, sinax, cosax, x^n , $e^{ax}v(x)$ and Method of variation of parameters.
MODULE V	FOURIER SERIES
	Fourier expansion of periodic function in a given interval of length 2π ; Fourier series of even and odd functions; Fourier series in an arbitrary interval;

TEXT BOOKS

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
- 2. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 3. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint 2010.

REFERENCE BOOKS:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9^{th} Edition, John Wiley & Sons, 2006.
- 2. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 3. D. Poole, Linear Algebra: A Modern Introduction, 2^{nd} Edition, Brooks/Cole, 2005.

WEB REFERENCES:

1. https://nptel.ac.in/courses/111/108/111108157/

COURSE WEB PAGE:

1. lms.iare.ac.in

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer-
	OBE DISCUSSION		ence
1	Outcome based education		
	CONTENT DELIVEDY (THEODY)	-	-
	CONTENT DELIVERY (THEORY))	TTO 00 1
2	Theory of Matrices: Types of Real Matrices	CO I	T2:32.1
0		00.1	R1:4.1
3	Real Matrices: Symmetric, Skew-Symmetric Matrices	CO I	T2:32.1
-		00.1	R1:4.2
4	Real Matrices: Orthogonal Matrices	CO I	T2:32.1
			R1:4.3
5	Complex Matrices: Hermitian, Skew- Hermitian	CO 1	T2:32.1
			R1:4.3
6	Complex Matrices: Unitary Matrices	CO 1	T2:32.5
			R1:4.6
7	Elementary Operations: Elementary Row and Column	CO 1	T2:32.5
	Transformations		R1:4.6
8	Rank of a Matrix by Echelon Form	CO 1	T2:32.4
			R1:4.5
9	Rank of a Matrix by Normal Form	CO 1	T2:32.7
			R1:4.8
10	Inverse of a Matrix by Gauss-Jordan Method	CO 1	T2-7.1
			R1:7.4
11	Eigen Values of a Matrix	CO 2	T2-7.1
			R1:7.4
12	Eigen Vectors of a Matrix	CO 2	T2-7.1
			R1:7.4
13	Diagonalization of Matrix by Linear Transformation.	CO 2	T2:7.1
			R1:7.4
14	Cayley-Hamilton Theorem- Statement, Verification	CO 3	T2:7.1
			R1:7.4
15	Applications of Cayley – Hamilton: Finding Inverse	CO 3	T3-2.9
	and Powers of a Matrix		R1:2.1
16	Linear Dependence and Independence of Vectors	CO 2	T3-2.5
			R1:2.8
17	Mean Value Theorems:1: Rolle's Theorem	CO 4	T3-2.5
		-	R1:2.8
18	Mean Value Theorems:2: Lagrange's Theorem	CO 4	T3-2.5
_		-	R1:2.8

19	Mean Value Theorems:3: Cauchy's Theorem	CO 4	T3-2.5 B1·2.8
20	Functions of Several Variables: Partial Differentiation	CO 4	T3-2.5 R1:2.8
21	Jacobian Transformations	CO 4	T3-2.61 R1:2.10
22	Functional Dependence	CO 4	T1-7.1 R2:7.5
23	Maxima and Minima of Functions with Two Variables	CO 4	T3-2.61 R1:2.10
24	Maxima and Minima of Functions with Three Variables	CO 4	T1-7.1 R2:7.6
25	Application Method of Lagrange Multipliers	CO 4	T1-7.1 R2:7.7
26	Method of Lagrange Multipliers	CO 4	T3-2.5 R1:2.8
27	Linear Differential Equations of Second and Higher Order with Constant Coefficients	CO 5	T3-2.5 R1:2.8
28	Linear Differential Equations of Second and Higher Order with Constant Coefficients	CO 5	T3-2.5 R1:2.8
29	Non-Homogeneous term of the type $F(X) = e^{ax}$	CO 5	T3-2.5 R1:2.8
30	Non-Homogeneous term of the type $F(X) = Sinax$, Cosax	CO 5	T2-7.1 R1:7.4
31	Non-Homogeneous term of the type $F(X) = X^n$	CO 5	T2:7.1 R1:7.4
32	Non-Homogeneous term of the type $F(X) = e^{ax}v(X)$	CO 5	T2:7.1 R1:7.4
33	Method of Variation of Parameters	CO 5	T3-2.9 R1:2.1
34	Fourier Expansion of Periodic Function in a Given Interval of Length 2π	CO 6	T3-2.5 R1:2.8
35	Fourier Expansion of Periodic Function in a Given Interval of Length $(-\pi,\pi)$	CO 6	T3-2.5 R1:2.8
36	Fourier Series of Even Functions in a Given Interval of Length $(-\pi,\pi)$	CO 6	T2:7.1 R1:7.4
37	Fourier Series of Odd Functions in a Given Interval of Length $(-\pi,\pi)$	CO 6	T3-2.9 R1:2.1
38	Fourier Series in an Arbitrary Interval (0,21)	CO 6	T3-2.5 R1:2.8
39	Fourier Series in an Arbitrary Interval (-l,l)	CO 6	T2:7.1 R1:7.4
40	Half- Range Fourier Sine Expansions in a Given Interval of Length $(0,\pi)$	CO 6	T3-2.9 R1:2.1

41	Half- Range Fourier Cosine Expansions in a Given	CO 6	T3-2.5
	$\frac{1}{1} \frac{1}{1} \frac{1}$	IFS	K1:2.8
49	PROBLEM SOLVING/ CASE STOD	CO 1	T0.20-1
42	Rank of the Matrix by Echelon and Normal Form	001	12:52.1 R1·4 2
/13	Figon Values and Figon Vectors of The Matrix	CO 2	T_{2}
40	Ligen values and Ligen vectors of the Matrix	002	R1:4.3
44	Finding Powers of the Matrix by Cayley Hamilton	CO 3	T2:32.1
	Theorem		R1:4.3
45	Finding Spectral Matrix by Linear Transformation.	CO 2	T2-7.1
			R1:7.4
46	Jacobian Transformation in Cartesian and Polar Forms	CO 4	T2-7.1
			R1:7.4
47	Finding Functional Relationship.	CO 4	T2:7.1
			R1:7.4
48	Finding Critical Points.	CO 4	T2:7.1
			R1:7.4
49	Solving Non-Homogeneous Differential Equations.	CO 5	T3-2.5
			R1:2.8
50	Solving Second Order Non-Homogeneous Differential	CO 5	T3-2.5
	Equations by Method of Variation of Parameters.		R1:2.8
51	Finding Fourier Series	CO 6	T3-2.5
			R1:2.8
52	Fourier Expansion of Periodic Function in a Given	CO 6	T3-2.5
	Interval of Length 2π		R1:2.8
53	Fourier Expansion of Periodic Function in a Given	CO 6	T3-2.61
	Interval of Length $(-\pi,\pi)$		R1:2.10
54	Fourier Series in An Arbitrary Interval (-1,1)	CO 6	T2:7.1
		CO C	R1:7.4
55	Finding Fourier Sine Series in Interval (0,1)	00.6	T 3-2.9 D 1.9 1
FC	Finding Francisco Caring in Internal (01)	COG	T2.2.5
- 50	Finding Fourier Cosine Series in Interval (0,1)	000	15-2.5 B1·28
	DISCUSSION OF DEFINITION AND TERM	INOLOGY	1(1.2.0
57	Real Complex Matrices and Rank of a Matrix	CO 1	Т3-2 5
			R1:2.8
58	Eigen Values and Eigen Vectors Diagonalization	CO 2 CO 3	T3-2.5
			R1:2.8
59	Mean Value Theorems, Jacobian Transformations	CO 4	T3-2.5
	Functionally Dependent and Independent		R1:2.8
60	Higher Order Differential Equations	CO 5	T3-2.5
			R1:2.8
61	Fourier Series (Even, Odd, Neither Functions)	CO 6	T3-2.61
		-	R1:2.10

	DISCUSSION OF QUESTION BANK				
62	Theory of Matrices	CO 1	T2:7.1		
			R1:7.4		
63	Linear Transformations	CO 2,C0 3	T3-2.9		
			R1:2.1		
64	Functions of Several Variables	CO 4	T3-2.5		
			R1:2.8		
65	Higher Order Differential Equations	CO 5	T2:32.1		
			R1:4.3		
66	Fourier Series.	CO 6	T2-7.1		
			R1:7.4		

Signature of Course Coordinator ECE Mr. P Shantan Kumar, Assistant Professor HOD,

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING				
Course Title	ENGINEERING PHYSICS				
Course Code	AHSC03				
Program	B.Tech				
Semester	Ι				
Course Type	Foundation				
Regulation	UG-20				
		Theory		Pra	ctical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	4	3	1.5
Course Coordinator	Ms.Sujani Singavarapu, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10+2	-	-	Basic Principles of Physics

II COURSE OVERVIEW:

This course is structured specifically to make the students understand some of the core topics in physics essential for further studies in engineering. It focuses on illustrating and developing an understanding of the interplay between problem solving and their practical applications which include experimental techniques and modern equipment. The topics include quantum mechanics, semiconductors, LASER and fiber optics, light and optics, harmonic oscillations and waves in one dimension. At the end, this course helps students to appreciate the diverse real-time applications in technological fields in respective branches.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Engineering Physics	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
\checkmark	Open Ended Experiments	x	Seminars	x	Mini Project	\checkmark	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
66.7 %	Understand
33.3 %	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks		
	Continuous Internal Examination – 1 (Mid-term)	10			
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30		
	AAT-1	5	50		
	AAT-2	5			
SEE	Semester End Examination (SEE)	70	70		
	Total Marks				

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	_

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Basic formulations in wave mechanics for the evolution of energy levels and quantization of energies for a particle in a potential box with the help of mathematical description.
II	Fundamental properties of semiconductors including the band gap, charge carrier concentration, doping and charge carrier transport mechanisms.
III	Simple optical setups and experimental approaches of light and LASER using its interaction with matter.
IV	Basic comparative studies between different harmonic oscillators and different waves using such relationships on practical problems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Apply the concepts of dual nature of matter and Schrodinger wave equation to a particle enclosed in simple systems.	Understand
CO 2	Demonstrate the classification of solids and important aspects of semiconductors in terms of carrier concentration and Fermi	Apply
	level.	
CO 3	Compare the concepts of LASER and normal light in terms of mechanism and working principles for applications in various	Understand
	fields and scientific practices.	
CO 4	Explain functionality of components in optical fiber	Understand
	communication system by using the basics of signal propagation, attenuation and dispersion.	
CO 5	Interpret the phenomenon of interference and diffraction by	Understand
	using the principles of wave motion and superposition.	
CO 6	Make use of the concept of simple harmonic motion and arrive	Apply
	at expressions for damped, forced harmonic oscillators and wave	
	equations by using necessary mathematical formulations.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations		
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations		
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	CIE/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 4	Conduct Investigations of Complex	2	AAT
	Problems: Use research-based knowledge and		
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit	1	Laboratory
	Development platform for Robotics, Embedded		experiments
	Systems and Signal Processing Applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 3	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Outline drawbacks of classical mechanics, basic principles of dual nature of matter wave, derive mathematical equation of matter waves and come to conclusion of quantization of energy used in quantum dots.	3
	PO 2	Explain the given problem statement and formulate quantum confinement problems related to particle enclosed in small dimension from the provided information and data in reaching substantial conclusions by the interpretation of results	4
CO 2	PO 1	Illustrate the charge transport mechanism in intrinsic and extrinsic semiconductors using energy level diagrams,calculate their charge carrier concentration and use those expressions to integrate with other engineering disciplines.	3
	PO 2	Explain the given problem statement and formulate mobility and conductivity aspects of a material from the provided information and data in reaching substantial conclusions by the interpretation of Hall coefficient value.	4
	PO 4	Identify the use of semiconductors under study and their conduction mechanism for the research based knowledge and technological development .	2
	PSO 1	Make use of the knowledge of charge transport mechanism in semiconductors to build Embedded systems.	1
CO 3	PO 1	Compare the concepts of LASER and normal light in terms of mechanism and working principles for applications in different fields and scientific practices .	3
CO 4	PO 1	Explain functionality of components in optical fiber communication system by using the basics of signal propagation, attenuation and dispersion.	3
	PO 2	Identify the given problem and formulate expressions for acceptance angle and numerical aperture with the given information and data by applying principles of information propagation through optical wave guides.	4
CO 5	PO 1	Outline the scientific principles of light and its propagation evolution of different theories, and use the principles of wave motion and superposition using mathematical principles to understand the interference and diffraction phenomena in light	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 4	Explain from technical literature the knowledge of the equipment on which scientists performed experiments to understand the superposition of light and pattern formation by relating it to conditions for constructive and destructive interference.	2
CO 6	PO 1	Outline the basic scientific principles of force and characteristics of a simple harmonic oscillator to understand the forces acting on given oscillator to arrive at equations of damped,forced oscillators and wave equations using basic mathematical principles	3
	PO 2	Explain how damping and forced oscillations happen in a system and identify the problems and advantages for different conditions of damping.	4

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-**PING:**

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	4	-	2	-	-	-	-	-	-	-	-	1	-	-
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	-	-	2	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	100	40	-	18	-	-	-	-	-	-	-	-	35	-	-
CO 3	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	100	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	100	-	-	18	-	-	-	-	-	-	-	-	-	-	-
CO 6	100	40	-	-	-	-	-	-	-	-	-	-	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ 0 < C< 5% No correlation
- **1** $-5 < C \le 40\% Low/ Slight$
- $\pmb{2}$ 40 % < C < 60% Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	РО	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	3	-	2	-	-	-	-	-	-	-	-	1	-	-
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	-	-	2	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	18	12	-	4	-	-	-	-	-	-	-	-	1	-	-
AVERAGE	3	3	-	2	-	-	-	-	-	-	-	-	1	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	 ✓ 	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	_	Student Viva	-	Certification	-
Term Paper	_	5 Minutes Video	\checkmark	Open Ended Experiments	-
Assignments	-	Tech Talk	\checkmark		

XVII ASSESSMENT METHODOLOGY-INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback

XVIII SYLLABUS:

MODULE I	QUANTUM MECHANICS
	Introduction to quantum physics, De-broglie's hypothesis, Wave-particle duality, Davisson and Germer experiment, Time-independent Schrodinger equation for wave function, Physical significance of the wave function, Schrodinger equation for one dimensional problems-particle in a box.
MODULE II	INTRODUCTION TO SOLIDS AND SEMICONDUCTORS
	Introduction to classical free electron theory and quantum theory, Bloch's theorem for particles in a periodic potential (Qualitative treatment), Kronig-Penney model (Qualitative treatment), classification: metals, semiconductors, and insulators. Intrinsic and extrinsic semiconductors, Carrier concentration, Dependence of Fermi level on carrier-concentration and temperature, Hall effect
MODULE III	LASERS AND FIBER OPTICS
	Characteristics of lasers, Spontaneous and stimulated emission of radiation, Metastable state, Population inversion, Lasing action, Ruby laser, He-Ne laser and applications of lasers. Principle and construction of an optical fiber, Acceptance angle, Numerical aperture, Types of optical fibers (Single mode, multimode, step index, graded index), Optical fiber communication system with block diagram and Applications of optical fibers.

MODULE IV	LIGHT AND OPTICS
	Principle of superposition of waves, Young's double slit experiment, Fringe width, Newton's rings. Fraunhofer diffraction from a single slit, double slit (extension to N slits) and diffraction grating experiment.
MODULE V	HARMONIC OSCILLATIONS AND WAVES IN ONE DIMENSION
	Simple harmonic oscillator, Damped harmonic oscillator, Forced harmonic oscillator. Transverse waves and Longitudinal wave equation, Reflection and transmission of waves at a boundary, Harmonic waves.

TEXTBOOKS

- 1. P.K.Palanisamy, "Engineering Physics", SCITECH publications, 2nd Edition, 2010.
- 2. R. K. Gaur, S. L. Gupta, "Engineering Physics", Dhanpat Rai Publications, 8th Edition, 2001.
- 3. Dr. K. Vijaya Kumar, Dr. S. Chandralingam, "Modern Engineering Physics", Chand & Co. New Delhi, 1st Edition, 2010.
- 4. Manoj.K.Harbola, T.Vijaya Krishna, T. Madhu Mohan," Engineering Physics", Cengage Publications,1st Edition, 2010.

REFERENCE BOOKS:

- 1. H.J. Pain, "The Physics of Vibrations and Waves", Wiley, 2006.
- 2. Ghatak, "Optics", McGraw Hill Education, 2012.
- 3. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference		
OBE DISCUSSION					
1	Introduction to outcome based education.	-			
	CONTENT DELIVERY (THEORY)				
2	Introduction to quantum physics- Black body radiation, Planck's law, Photoelectric effect, Compton effect	CO 1	T1:6.1 R1:1.12.1.		
3	De-Broglie's hypothesis,	CO 1	T1:6.3 R1:1.16		
4	Wave-particle duality -Matter wave concept	CO 1	T1:6.2 R1:1.13.1		
5	Davisson and Germer experiment	CO 1	T1:6.4.1 R1:1.13.2		
6	Time-independent Schrodinger equation for wave function	CO 1	T1:6.6 R1:1.13.3		
7	Born interpretation of the wave function	CO 1	T1:6.6.1 R1:1.17.1		
8	Schrodinger equation for one -dimensional problems– particle in a box.	CO 1	T1:6.7 R1:1.17.3		

9	Introduction to classical free electron theory & quantum theory.	CO 2	T1:7.2 R1:1.17.3
10	Bloch's theorem for particles in a periodic potential,	CO 2	T1:7.4 R1:2.3
11	Kronig-Penney model (Qualitative treatment)	CO 2	T1:7.5 R1:2.3
12	Types of electronic materials: metals, semiconductors, and insulators	CO 2	T1:7.6,7.7 R1:2.6.2
13	Intrinsic semiconductors - concentration of electrons in conduction band.	CO 2	T1:8.3.1 R1:2.8
14	Intrinsic semiconductors - concentration of holes in valence band	CO 2	T1:8.3.2 R1:2.9.2
15	Extrinsic semiconductors- Carrier concentration in N-Type	CO 2	T2:8.5 R1:2.10
16	Extrinsic semiconductors- Carrier concentration in P- Type	CO 2	T1:8.6 R1:2.10
17	Dependence of Fermi level on carrier-concentration and temperature	CO 2	T1:8.5,8.6 R1:2.10.2
18	Hall effect	CO2	T1:8.9 R1:2.32
19	Introduction and characteristics of LASER	CO 3	T1:12.1. R1:8.2
20	Spontaneous and stimulated emission of radiation,Meta stable state, Population inversion, Lasing action	CO 3	T1:12.2 R1:8.3.3
21	Ruby laser,He-Ne laser	CO 3	T1:12.3, R1:8.7.2
22	Applications of LASER	CO 3	T1:12.8 R1:8.7.2
23	Principle and construction of an optical fiber	CO 4	T1:13.2 R2:12.24
24	Acceptance angle, Numerical aperture	CO 4	T1:13.2 R3:12.25
25	Types of optical fibers (Single mode, multimode, step index, graded index)	CO 4	T1:13.3 R3:3.2
26	Optical fiber communication system with block diagram	CO 4	T1:13.7 R3:3.2
27	Applications of optical fibers .	CO 4	T1:13.12 R1:8.10
28	Principle of Superposition of waves	CO 5	T4:4.3 R1:8.11.1
29	Young's double slit experiment	CO 5	T4:4.7 R1:8.11.2
30	Newton's rings	CO 5	T4:4.14 R1:8.12.1
31	Fraunhofer diffraction from a single slit	CO 5	T4:4.19 R1:8.12.2
32	Fraunhofer diffraction from a Double slit	CO 5	T4:4.21 R1:8.20

33	Fraunhofer diffraction from diffraction grating	CO 5	T4:4.22 R1:8.19
34	Simple Harmonic Oscillators	CO 6	T4.2.3
04	Shiple Harmonic Oscillators		R1:8.77
35	Damped harmonic oscillator	CO 6	T4:2.8.2.9
			R1:7.2
36	Forced mechanical oscillators	CO 6	T4:2.14
			R1:7.7
37	Impedance, Steady state motion of forced damped harmonic	CO 6	T4:2.17
	oscillator		R1:7.8
38	Transverse wave on a string, the wave equation on a string	CO 6	T4:3.3
			R1:7.9.2
39	Longitudinal waves and the wave equation	CO 6	T4:3.7
			R1:7.9.1
40	Reflection and transmission of waves at a boundary	CO 6	T4:3.4
			R1:7.10
41	Harmonic waves	CO 6	T4:3.6
			R1:7.11,
			11.1
	PROBLEM SOLVING/ CASE STUDIES	5	
1	Solving problems on De-Broglie wavelength	CO 1	T1:6.3
			R1:1.161
2	Solving problems on Schrödinger equation for one	CO 1	T1:6.6
	dimensional problems–particle in a box.		R1:1.161
3	Solving problems on Physical significance of the wave	CO 1	T1: 6.6.1
	function		R1:1.161.
4	Solving problems on Carrier concentration	CO 2	T1:8.3-6,
			R1:2.8,2.10
5	Solving problems on Fermi level	CO 2	T1:8.5,8.6
			R1: 2.10
6	Solving problems on Hall Effect	CO 2	T1:8.9,
			R1: 2.32
7	Solving problems on Lasers	CO 3	T1: 12.3
			R3:12.26
8	Solving problems on Acceptance angle & Numerical aperture	CO 4	T1: 13.2
			R3:12.26
9	Solving problems on Refractive indices of core and cladding	CO 4	T1· 13 3
	fractional refractive index change		R3:12.26
10	Solving problems on Youngs double-slit	CO 5	$T4 \cdot 47$
10			R1:8.12.1
11	Solving problems on Fringe width	CO 5	$T4 \cdot 47$
_ <u></u>			R1:8.12.1
19	Solving problems on Newton rings	CO 5	T4. 11
	Solving problems on Newton Hills		R1.8 12 1
12	Solving problems on Diffraction grating	COF	TA: 1 99
61	bowing problems on Dimaction grading		R1.8 19 1
1			101.0.12.1

14	Solving problems on Simple Harmonic Oscillator	CO 6	T4:2.3 R1: 8.78
15	Solving problems on Harmonic waves	CO 6	T4:3.6 R1: 7.9.3
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	Definitions and Terminology on Quantum mechanics	CO 1	T1:6.1- 6.7 R1:1.161.
2	Definitions and Terminology on Introduction to Solids and Semiconductors	CO 2	T1:7.2-7, 8.3-9, R1: 2.8, 2.10
3	Definitions and Terminology on Lasers and Fiber Optics	CO 3, CO 4	T1: 12.1- 12.9,13.2- 13.12 R3:12.26
4	Definitions and Terminology on Light and Optics.	CO 5	T4: 4.3-4.22 R1:8.12.1
5	Definitions and Terminology on Harmonic Oscillations and Waves in One Dimension	CO 6	T4:2.3- 3.7 R1: 8.78, 7.9.3
	DISCUSSION OF QUESTION BANK		
1	Discussion of questions in Quantum Mechanics.	CO 1	T1:6.1- 6.7 R1:1.161.
2	Discussion of questions in Solids and Semiconductors.	CO 2	T1:6.1- 6.7 R1: 2.8, 2.10
3	Discussion of questions in LASER and Fiber Optics.	CO 3, CO 4	T1: 12.1- 12.9,13.2- 13.12 R3:12.26
4	Discussion of questions in Light and Optics.	CO 5	T4: 4.3-4.22 R1:8.12.1
5	Discussion of questions in Harmonic oscillators and Waves in one dimension.	CO 6	T4:2.3- 3.7 R1: 8.78, 7.9.3

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering					
Course Title	Python Progra	Python Programming				
Course Code	ACSC01					
Program	B.Tech					
Semester	I ECE					
Course Type	Core					
Regulation	UG-20					
		Theory		Pract	tical	
Course Structure Lecture Tut			Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Coordinator	Mr. B Dilip chakravarthy, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSC01	Ι	NIL

II COURSE OVERVIEW:

This course introduces students to writing computer programs. This course presents the principles of structured programming using the Python language, one of the most increasingly preferred languages for programming today. Because of its ease of use, it is ideal as a first programming language and runs on both the PC and Macintosh platforms. However, the knowledge gained in the course can be applied later to other languages such as C and Java. The course uses iPython Notebook to afford a more interactive experience. Topics include fundamentals of computer programming in Python,object-oriented programming and graphical user interfaces.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Python Programming	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
33.3 %	Remember
50 %	Understand
16.66~%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component		Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
Total Marks			100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Acquire programming skills in core Python
II	Acquire Object-oriented programming skills in Python.
III	Develop the skill of designing graphical-user interfaces (GUI) in Python.
IV	Develop the ability to write database applications in Python.
V	Acquire Python programming skills to move into specific branches - Internet of Things (IoT), Data Science, Machine Learning (ML), Artificial Intelligence (AI) etc.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate the basic concepts of python programming with the	Understand
	help of data types, operators, expressions, and console input/output.	
CO 2	Make use of control statements for altering the sequential execution	Apply
	of programs in solving problems.	
CO 3	Demonstrate operations on built-in container data types (list, tuple,	Understand
	set, dictionary) and strings.	
CO 4	Illustrate operations and applications on strings with the help of built	Understand
	in functions.	
CO 5	Solve the problems by using modular programming concepts through	Apply
	functions.	
CO 6	Identify object oriented programming constructs for developing large,	Apply
	modular and reusable real-time programs.	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations		
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations		
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/SEE
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	CIE/SEE
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	3	CIE/SEE
	solutions for complex Engineering problems and		
	design system components or processes that		
	aconsideration for the public health and safety		
	and the cultural societal and Environmental		
	considerations		
PO 5	Modern Tool Usage: Create select and	3	CIE/SEE
100	apply appropriate techniques resources and	0	
	modern Engineering and IT tools including		
	prediction and modelling to complex		
	Engineering activities with an understanding of		
	the limitations.		
PO 10	Communication: Communicate effectively on	3	Tech
	complex engineering activities with the		Talk/Open
	engineering community and with society at		Ended Experi-
	large, such as, being able to comprehend and		ments/Concept
	write effective reports and design		Vedios
	documentation, make effective presentations, and		
	give and receive clear instructions		
PO 12	Life-Long Learning: Recognize the need for	3	CIE/SEE
	and having the preparation and ability to		
	engage in independent and life-long learning in		
	the broadest context of technological change.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

PSO 1	Build Embedded Software and Digital Circuit	3	Tech talk
	Development platform for Robotics, Embedded		/Open
	Systems and Signal Processing Applications.		ended
			experiments
PSO 3	Make use of High Frequency Structure Simulator	3	Tech talk
	(HFSS) for modeling and evaluating the Patch		/Open
	and Smart Antennas for Wired and Wireless		ended
	Communication Applications.		experiments

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	\checkmark	-	-	-	-	\checkmark	-	-	\checkmark		-
CO 2	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 3	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark
CO 4	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark
CO 5	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-
CO 6	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Understand (knowledge) the basic concept of operators, precedence of operators and associativity while evaluating mathematical expressions in program statements. These concepts provide an insight into expression evaluation by applying the principles of mathematics and science.	3
CO 1	PO 5	With the help of modern engineering tools we can easily Understand the basic concept of operators, precedence of operators and associativity while evaluating mathematical expressions in program statements These concepts provide an insight into expression evaluation by applying the principles of mathematics and science.	1
CO 1	PO 10	Extend the knowledge of Python programming to communicate effectively with the Engineering community and society at large.	3
CO 1	PSO 1	Understand features of procedural as well as object-oriented programming while writing and analyzing computer programs in the areas related to Machine Learning, Big data and Artificial Intelligence	3
CO 2	PO 1	By applying the knowledge of mathematics, science and engineering fundameentals we can effectively use control statements.	3
CO 2	PO 2	Apply control statements in problem indentification, statement and validation .	5
CO 2	PO 3	Apply control statements to investigate and understand different complex engineering problems complex problems efficiently.	8
CO 2	PO 5	By applying control statements to model complex engineering activities	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 2	PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	3
CO 2	PSO 1	Apply features of procedural as well as object-oriented programming while writing and analyzing computer programs in the areas related to Machine Learning, Big data and Artificial Intelligence	3
CO 2	PSO 3	Acquire sufficient knowledge of object-oriented concepts and apply it in real-time for building successful career and doing higher studies.	3
CO 3	PO 1	Summarize indexing and slicing mechanisms for extracting a portion of data in a sequence using principles of mathematics, and engineering fundamentals.	3
CO 3	PO 3	Demonstrate the importance of indexing mechanisms in sequences such as lists, strings, sets, tuple and dictionary while developing solutions for complex engineering problems and design system using principles of mathematics, science, and engineering fundamentals. Use creativity to develop more innovative solutions.	6
CO 3	PO 5	Demonstarte lists, tuples and dictionaries With the usage of modern tools	1
CO 3	PSO 1	Summarize indexing mechanisms to design and develop efficient real-time computational problems.	3
CO 3	PSO 3	Infer sufficient knowledge of container data types and apply it in real-time for building successful career and doing higher studies.	3
CO 4	PO 1	Demonstrate different modules/packages in Python while developing solutions using the fundamentals of mathematics, science, and engineering.	3
CO 4	PO 3	Understand the usage of modules/packages while developing solutions for complex engineering problems and design system using principles of mathematics, science, and engineering fundamentals. Use creativity to develop more innovative solutions.	8
CO 4	PO 5	Interpret different string functions by using modern tools	1
CO 4	PO 10	Extend the focus to understand the usage of modules/packages and communicate effectively with the Engineering community and with society at large.	3
CO 4	PO 12	Summarize string handling functions to implement in project management	7
CO 4	PSO 1	Demonstrate different modules to understand, design and analyze computer programs in reducing time and space complexities of various applications.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 4	PSO 3	Illustrate modern computer tools in implementing string handling mechanisms for various applications to become a successful professional in the domains.	3
CO 5	P0 1	Make use of parameter passing and different types of arguments in user-defined functions to design efficiently modular programs by applying the knowledge of mathematics, science, Engineering fundamentals.	3
CO 5	P0 2	Apply modular programming concepts for problem identification, formulation and data collection .	8
CO 5	PO 3	Select strong foundation of writing efficient modular programs using parameter passing mechanisms for career building by understanding the requirements and communicating effectively with engineering community.	7
CO 5	PO 5	Develop different functions by using modern tools	1
CO 5	PSO 1	Develop design and analyse python programming in the areas of concept of passing of parameters and arguments in functions to do modular programming.	3
CO 6	PO 1	Apply scientific principles and methodologies, Mathematical principles and other engineering disciplines for the procedural and object-oriented programming concepts used in Python.	3
CO 6	PO 2	Apply object oriented concepts in problem indentification, statement and validation .	7
CO 6	PO 3	Identify the need of object-oriented concepts while developing solutions for complex engineering problems and design system using principles of mathematics, science, and engineering fundamentals. Use creativity to develop more innovative solutions	7
CO 6	PO 5	Develop object oriented principles using modern tools	1
CO 6	PO 10	Apply the knowledge of Python programming to communicate effectively with the Engineering community and society at large.	3
CO 6	PO 12	Identify the need of object oriented principles for preparation ad ability to engage in independent and lifelong learning	6
CO 6	PSO 1	Focus on writing programs using procedural and object oriented concepts for applications such as computational geometry, machine learning, Big data and AI by understanding and applying the engineering principles learning	3
CO 6	PSO 3	Acquire sufficient knowledge of object-oriented concepts and apply it in real-time for building successful career and doing higher studies.	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-**PING**:

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	-	-	-	1	-	-	-		3	-		3	-	-		
CO 2	3	5	8	-	1	-	-	-	-	3	-	-	3	-	3		
CO 3	3		6		1	-	-	-	-	-	-	-	3	-	3		
CO 4	3	-	8	-	1	-	-	-	-	3	-	7	3		3		
CO 5	3	8	7	-	1	-	-	-	-	-	-	-	3	-	-		
CO 6	3	7	7	-	1	_	-	-	-	3	-	6	3	-	3		

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	12	1	3	2		
CO 1	100	0.0	0.0	0.0	100	0.0	0.0	0.0	0.0	60	0.0	0.0	100	0.0	0.0		
CO 2	100	50	80	0.0	100	0.0	0.0	0.0	0.0	60	0.0	0.0	100	0.0	100		
CO 3	100	0.0	60	0.0	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100	0.0	100		
CO 4	100	50	80	0.0	100	0.0	0.0	0.0	0.0	60	0.0	88	100	0.0	100		
CO 5	100	80	70	0.0	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100	0.0	0.0		
CO 6	100	80	70	0.0	100	0.0	0.0	0.0	0.0	60	0.0	75	100	0.0	100		

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 5 < C \le 40\% Low/$ Slight
- $\pmb{2}$ 40 % <C < 60% Moderate
- $3 60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	-	-	-	3	-	-	-	-	3	-	-	3	-	-	
CO 2	3	2	3	-	3	-	-	-	-	3	-	-	3	-	3	
CO 3	3	-	3	-	3	-	-	-	-	-	-	-	3	-	3	
CO 4	3	-	3	-	3	-	-	-	-	3	-	3	3	-	3	
CO 5	3	2	3	-	3	-	-	-	-	-	-	-	3	-	-	
CO 6	3	3	3	-	3	-	-	-	-	3	-	3	3	-	3	
TOTAL	18	7	15	-	18	-	-	-	-	12	-	6	18	-	12	
AVERAGE	3.0	2.3	3	-	3.0	-	-	-	-	3.0	-	3.0	3.0	-	3.0	

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	_	5 Minutes Video	~	case studies	-
Assignments	-	Open ended experiments	\checkmark		

XVII ASSESSMENT METHODOLOGY-INDIRECT:

XVIII SYLLABUS:

MODULE I	Introduction to Python
	Introduction to Python: Features of Python, History and Future of Python, Working with Python – interactive and script mode, Identifiers and Keywords, Comments, Indentation and Multi-lining, Data types – built-in data types, Operators and Expressions, Console Input/Output, Formatted printing,Built-in Functions, Library Functions.
MODULE II	DECISION CONTROL STATEMENTS
	Selection/Conditional Branching Statements: if, if-else, nested if, if-elif-else statement(s), Basic Loop Structures/ Iterative Statements – while and for loop, Nested loops, break and continue statement, pass Statement, else Statement used with loops
MODULE III	CONTAINER DATA TYPES
	Lists: Accessing List elements, List operations, List methods, List comprehension; Tuples: Accessing Tuple elements, Tuple operations, Tuple methods, Tuple comprehension, Conversion of List comprehension to Tuple, Iterators and Iterables, zip() function. Sets: Accessing Set elements, Set operations, Set functions, Set comprehension;Dictionaries: Accessing Dictionary elements, Dictionary operations, Dictionary Functions, Nested Dictionary, Dictionary comprehension.s.
MODULE IV	STRINGS AND FUNCTIONS
	Strings: Accessing string elements, string properties, string operations. Functions: Communicating with functions, Variable Scope and lifetime, return statement, Types of arguments, Lambda functions, Recursive functions
MODULE V	CLASSES AND OBJECTS
	Classes and Objects – Defining Classes, Creating Objects, Data Abstraction and Hiding through Classes, Class Method and self Argument, Class variables and Object variables, init() and de () method, Public and private data members, Built-in Class Attributes, Garbage Collection. OOPs Features:Abstraction, Encapsulation, Inheritance, and Polymorphism.

TEXTBOOKS:

- 1. Reema Thareja, "Python Programming Using Problem Solving Approach", Oxford Press, 1st Edition, 2017.
- 2. Dusty Philips, "Python 3 Object Oriented Programming", PACKT Publishing, 2nd Edition, 2015.

REFERENCE BOOKS:

- 1. Yashavant Kanetkar, Aditya Kanetkar, "Let Us Python", BPB Publications, 2nd Edition, 2019.
- 2. Martin C. Brown, "Python: The Complete Reference", Mc. Graw Hill, Indian Edition, 2018.
- 3. Michael H. Goldwasser, David Letscher, "Object Oriented Programming in Python", Prentice Hall, 1st Edition, 2007.
- 4. Taneja Sheetal, Kumar Naveen, "Python Programming A Modular Approach", Pearson, 1st Edition, 2017
- 5. Nageswar Rao, "Core Python Programming", Dreamtech Press, 2018.

COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION	1	
	Discussion on mapping COs with POs. (O	BE)	
	CONTENT DELIVERY (THEORY)		
1-2	Introduction to Python: Features of Python, History and Future of Python	CO 1	T1:3.1 -3.3
3-4	Working with Python – interactive and script mode, Identifiers and Keywords, Comments, Indentation and Multi-lining, Databtypes – built-in data types	CO 1	T1:3.4- 3.9
5-8	Operators and Expressions	CO 1	T1:3.12
9-10	Console Input/Output, Formatted printing, Built-in Functions, Library Functions	CO 1	T1:3.15
11-14	Control Statement(s)	CO 2	T1: 4.1 -4.8
15-17	Lists and Tuples	CO 3	T1:3.15
18-19	Conversion of List comprehension to Tuple, Iterators and Iterables, zip() function	CO 3	T1:3.15
20-21	Sets, Dictionaries:	CO 3	T1:3.15
22-23	Nested Dictionary, Dictionary comprehension	CO 3	T1:3.15
24-25	Strings: Accessing string elements, string properties, string operations	CO 4	T1: 6.1 -6.8
26-27	Functions: Communicating with functions, Variable Scope and lifetime, return statement	CO 5	T1:5.1 -5.5

28-29	Types of arguments, Lambda functions, Recursive functions	CO 5	T1:5.6 -5.8
30-31	Classes and Objects – Defining Classes, Creating Objects	CO 6	T1:9.1- 9.3
32-33	Data Abstraction and Hiding through Classes, Class Method and self Argument	CO 6	T1: 9.2 – 9.4
34-36	Class variables and Object variables, init() and del () method	CO 6	$\begin{array}{c} {\rm T1:}9.5-\\ 9.7\end{array}$
37-38	Public and private data members, Built-in Class Attributes, Garbage Collection	CO 6	T1:9.8 – 9.13
39-41	OOPs Features: Abstraction, Encapsulation, Inheritance, and Polymorphism	CO 6	T1:10.1- 10.3
	PROBLEM SOLVING/ CASE STUDIES	5	
1	Data Types	CO 1	T1:3.7.1- 3.7.4
2	Operators and Expressions	CO 1	T1:3.12.1- 3.12.10
3	Built-in Functions , Library functions	CO 1	T1:6.4- 6.10
4	Conditional branching Statements	CO 2	T1:4.1- 4.2
5	Iterative Statements	CO 2	T1:4.3- 4.8
6	Lists	CO 3	T1:8.2- 8.2.10
7	Tuples	CO 3	T1:8.4.1
8	Sets	CO 3	T1:8.5.1
9	Dictionaries	CO 3	T1:8.6.1- 8.6.12
10	Strings	CO 4	T1:6.1- 6.10
11	Functions	CO 5	T1:5.1:5.10
12	Classes and Objects	CO 6	T1:9.1- 9.15
13	$_$ _init() $_$ and $_$ del $_$ () method	CO 6	T1:9.4- 9.6
14	Inheritance	CO 6	T1:10.1- 10.4
15	Polymorphism	CO 6	T1:10.2.1
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	Define bound and unbound variable.	CO 1	T1:9.1
2	Define a control structure?	CO 2	T1:4.1- 4.8
3	How to slice lists in Python?	CO 3	T1:8.2- 8.6
4	Write the syntax of defining a function?	CO 5	T1:5.1- 5.2

5	List out the features of object oriented programming.	CO 6	T19.1-9.3			
	DISCUSSION OF QUESTION BANK					
1	Write the features and applications of Python programming language?	CO 1	T1:3.1- 3.3			
2	Write a program to calculate the roots of a quadratic equation?	CO 1	T1:3.5- 3.7			
3	Write a program to remove all duplicate elements from a list?	CO 3	T1:8.2- 8.6			
4	Write a program that accepts a string from user and redisplays the same string after removing vowels from it?	CO 4	T1:6.1- 6.3			
5	Write a program that has a class Person string name and date of birth (DOB) of a person. The program should subtract the DOB from today's date to find out whether a person is eligible for vote or not?	CO 6	T1:9.1- 9.3			

Course Coordinator B Dilip Chakravarty HOD CSE(CS)

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Course Title	ENGLISH LANGUAGE AND COMMUNICATION						
Course Thie	SKILLS LABORATORY						
Course Code	AHSC04						
Program	B.Tech						
Semester	I ECE						
Course Type	Foundation						
Regulation	UG-20						
		Theory		Prac	etical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	2	1		
Course Coordinator	Dr. M.Sailaja, Associate Professor						

I COURSE OVERVIEW:

This lab course is designed to introduce the students to create wide exposure on language learning techniques regarding the basic elements of Listening, Speaking, Reading and Writing. In this lab the students are trained in communicative English language skills, phonetics, word accent, word stress, rhythm and intonation, oral presentations, extempore and Prepared-seminars, group-discussions, presenting techniques of writing, participating role plays, telephonic etiquettes, asking and giving directions, information transfer, debates, description of persons, places, objects etc; . The lab encourages the students to work in a group, engage in peer-reviews and inculcate team spirit through various exercises on grammar, vocabulary, and pronunciation games etc. Students will make use of all these language skills in academic, professional and real time situations.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
English Language and Communication Skills Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab		Viva Questions		Probing further
\checkmark		\checkmark	Worksheets	\checkmark		\checkmark	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end laberamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Sofware based			
20 %	To test the perfection of primary tonic stress accent, pre-tonic secondary stress accent and post-tonic secondary stress accent.			
20 %	To test the performance to achieve neutralization of accent.			
20 %	To test the awareness while pronouncing gemination, elision and assimilation.			
20 %	To test the presentation skills in the ICS laboratory.			
20 %	To test the subject knowledge through viva.			

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of	Day to day performance	Final internal lab	
Assessment		assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Sofware based

Objective	Analysis	Design	Conclusion	Viva	Total
4	4	4	4	4	20

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Facilitate computer-assisted multi-media instructions to make possible individualized
	and independent language learning.
II	The critical aspect of speaking and reading for interpreting in-depth meaning of the
	sentences.
III	Use language appropriately for social interactions such as public speaking, group
	discussions and interviews.
IV	Habituate using English speech sounds, word accent, intonation and rhythm.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Discuss the prime necessities of listening skill for improving	Understand
	pronunciation in academic and non-academic purposes.	
CO 2	Summarize the knowledge of English phonetics for speaking accepted	Understand
	language and describe the procedure of phonemic transcriptions and	
	intonation patterns.	
CO 3	Express about necessity of stressed and unstressed syllables in a word	Understand
	with appropriate length and clarity.	
CO 4	Explain how writing skill fulfill the academic and non-academic	Understand
	requirements of various written communicative functions.	
CO 5	Generalize appropriate concepts and methods from a variety of	Understand
	disciplines to solve problems effectively and creatively.	
CO 6	Classify the roles of collaboration, risk-taking, multi-disciplinary	Understand
	awareness, and the imagination in achieving creative responses to	
	problems.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 9	Individual and team work: Function effectively	3	Day-to-day
	as an individual, and as a member or leader in		evaluation /
	diverse teams, and in multidisciplinary settings.		CIE/SEE
PO 10	Communicate: effectively on complex Engineering	5	Day-to-day
	activities with the Engineering community and with		evaluation $/$
	society at large, such as, being able to comprehend		CIE/SEE
	and write effective reports and design		
	documentation, make effective presentations, and		
	give and receive clear instructions		
	(Communication).		

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	-	-
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	-	-
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	-	-

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 10	Discuss the heeds of functional grammar and punctuation tools in speaking and writing by generating the clarity of an audio text.	5
CO 2	PO 9	Define the meaning of individual work and team work and also participate effectively to develop leadership qualities among the diverse teams in multidisciplinary settings.	5
CO 3	PO 10	Describe the clarity of grammatical usage and the obligation of punctuation marks in speaking and writing .	5
CO 4	PO 10	Choose suitable grammatical structures and punctuation marks at speaking and writing areas maintaining clarity at professional platform.	5
CO 5	PO 10	Interpret the grammatical knowledge and punctuation marks systematically towards providing the clarity in speaking and writing .	5
CO 6	PO 10	Demonstrate the role of grammar and punctuation marks understanding the meaning between the sentences as well as paragraphs in speaking or writing for a clarity .	5

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUTCOMES			PSO'S
OUTCOMES	PO 9	PO 10	-	PSO
CO 1	-	5	-	-
CO 2	3	-	-	-
CO 3	-	5	-	-
CO 4	-	5	-	-
CO 5	-	5	-	-
CO 6	-	5	-	

XII ASSESSMENT METHODOLOGY DIRECT:

Laboratory	PO 9, PO 10	Student Viva	PO 9, PO 10	Certification	-
Practices					
Assignments	-	-	-	-	

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	√	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XIV SYLLABUS:

WEEK I	INTRODUCTION ABOUT ELCS LAB
	Introducing Self and Introducing Others – feedback.
WEEK II	INTRODUCTION TO PHONETICS AND PRACTICING
	CONSONANTS
	Describing a person or place or a thing using relevant adjectives – feedback.
WEEK III	PRACTICING VOWEL SOUNDS.
	JAM Sessions using public address system.
WEEK IV	STRUCTURE OF SYLLABLES.
	Giving directions with help of using appropriate phrases – activities.
WEEK V	WORD ACCENT AND STRESS SHIFTS. – PRACTICE
	EXERCISES.
	Starting a conversation, developing and closing appropriately using fixed
	expressions
WEEK VI	PAST TENSE AND PLURAL MARKERS.
	Role Play activities.
WEEK VII	WEAK FORMS AND STRONG FORMS.
	Oral Presentation
WEEK VIII	INTRODUCTION TO INTONATION- USES OF INTONATION -
	TYPES OF INTONATION- PRACTICE EXERCISES.
	Expressions In Various Situations.
WEEK IX	NEUTRALIZATION OF MOTHER TONGUE INFLUENCE (MTI).
	Sharing Summaries Or Reviews On The Topics Of Students' Choice.
WEEK X	COMMON ERRORS IN PRONUNCIATION AND
	PRONUNCIATION PRACTICE THROUGH TONGUE
	TWISTERS.
	Interpretation Of Proverbs And Idioms.
WEEK XI	LISENING COMPREHENSION.
	Etiquettes.

WEEK XII	TECHNIQUES AND METHODS TO WRITE SUMMARIES AND REVIEWS OF VIDEOS.
	Writing Messages, Leaflets And Notices Etc.
WEEK XIII	COMMON ERRORS.
	Resume Writing.
WEEK XIV	INTRODUCTION TO WORD DICTIONARY.
	Group Discussions – Video Recording – Feedback.
WEEK XV	INTRODUCTION TO CONVERSATION SKILLS.
	Mock Interviews.

TEXTBOOKS

1. ENGLISH LANGUAGE AND COMMUNICATION SKILLS: LAB MANUAL

REFERENCE BOOKS:

- 1. . Meenakshi Raman, Sangeetha Sharma, "Technical Communication Principles and Practices", Oxford University Press, New Delhi, 3rd Edition, 2015.
- 2. Rhirdion, Daniel, "Technical Communication", Cengage Learning, New Delhi, 1st Edition, 2009.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Introduction About Elcs Lab, Introducing Self And Introducing Others – Feedback.	CO 2	R1: 1.2
2	Introduction To Phonetics And Practicing Consonants, Describing A Person Or Place Or A Thing Using Relevant Adjectives – Feedback.	CO 2	R2: 25-30
3	Practicing Vowel Sounds, Jam Sessions Using Public Address System.	CO 2	R1: 28- 29,49-54
4	Structure Of Syllables, Giving Directions With Help Of Using Appropriate Phrases – Activities.	CO 3	R1: 23-38
5	Word Accent And Stress Shifts. – Practice Exercises, Starting A Conversation, Developing And Closing Appropriately Using Fixed Expressions.	CO 3	R1: 2.4
6	Past Tense And Plural Markers,	CO 2	R3: 4.5
7	Weak Forms And Strong Forms, Oral Presentation.	CO 2	R3: 4.6
8	Introduction To Intonation- Uses Of Intonation - Types Of Intonation- Practice Exercises, Expressions In Various Situations.	CO 2	R2: 39-42
9	Neutralization Of Mother Tongue Influence (Mti), Sharing Summaries Or Reviews On The Topics Of Students' Choice.	CO 2	R2: 5.2
10	Common Errors In Pronunciation And Pronunciation Practice Through Tongue Twisters, Interpretation Of Proverbs And Idioms.	CO 2	R1:42-43
11	Lisening Comprehension, Etiquettes	CO 5	R1:44-48

12	Techniques And Methods To Write Summaries And Reviews Of	CO 4	R1:107-
	Videos, Writing Messages, Leaflets And Notices Etc.		110
13	Common Errors, Resume Writing.	CO 4	R1:7.3
14	Introduction To Word Dictionary, Group Discussions – Video	CO 5	R1:7.3
	Recording – Feedback.		
15	Introduction To Conversation Skills, Mock Interviews.	CO 6	R1: 54-58

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments.
1	Effective listening skills can be used in professional and personal platforms in future
2	By learning LSRW skills, students can enhance desired language skills to
	fulfill their needs.
3	Practicing presentation skills will boost confidence at work place.
4	The overall experiments of the laboratory will lead to be an effective
	communicator.
5	The Students will develop critical comprehensive skills to solve the career
	related problems in future.

Signature of Course Coordinator Dr. M.Sailaja, Associate Professor HOD

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	PHYSICS LABORATORY					
Course Code	AHSC05					
Program	B.Tech					
Semester	I ECE					
Course Type	FOUNDATION					
Regulation	IARE - UG 20					
		Theory		Prac	tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	1.5	
Course Coordinator	Mr. K Saibaba, Assistant Professor					

I COURSE OVERVIEW:

This lab course provides hands on experience in a number of experimental techniques and develops competenceintheinstrumentation ypically used in physics. This also develops student's expertise in applying physical concepts to practical problem and in learning about experimental techniques with advanced equipments. This laboratory includes experiments involving electromagnetism and optoelectronics.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	Basic principles of physics	1.5

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Physics laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab Worksheets		Viva Questions		Probing Further
\checkmark		\checkmark		\checkmark		\checkmark	Experiments

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day-to-day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the principal from the panel of experts recommended by Chairman, BOS.

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

The emphasis on the experiments is broadly based on the following criteria given in Table: 1

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Laboratory		Total Marks
Type of	Day to day	Final internal lab	
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

A. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

B. Programming Based

Purpose	Algorithm	Program	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	To familiarize with the lab facilities, equipment, standard operating procedures.
II	About the different kinds of functional electric and magnetic materials which paves a way for them to use in various technical and engineering applications.
III	The analytical techniques and graphical analysis to study the experimental data for optoelectronic devices.
IV	The applications of variation in the intensity of light due to natural phenomena like interference and diffraction.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Identify the type of semiconductor using the principle of Hall Effect and	Apply
	also determine the energy gap of a semiconductor diode.	
CO 2	Illustrate principle, working and application of wave propagation and	Understand
	compare results with theoretical harmonics and overtones.	
CO 3	Investigate the energy losses associated with a given Ferro magnetic	Apply
	material and also magnetic field induction produced at various points	
	along the axis of current carrying coil.	
CO 4	Examine launching of light through optical fiber from the concept of	Understand
	light gathering capacity of numerical aperture.	
CO 5	Utilize the phenomena of interference and diffraction for the	Apply
	determination of various parameters like radius of curvature of convex	
	lens, wavelength of laser light and width of single slit.	
CO 6	Investigate V-I/L-I characteristics of various optoelectronic devices like	Apply
	Light Emitting Diode, Photodiode to understand their basic principle of	
	functioning as well as to infer the value of Planck's constant.	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge	3	Laboratory
	of mathematics, science, engineering fundamentals,		experiments,
	and an engineering specialization to the solution of		internal and
	complex engineering problems.		external lab
			examinations.
PO 2	Problem analysis: Identify, formulate, review	2	Laboratory
	research literature, and analyze complex engineering		experiments,
	problems reaching substantiated conclusions using		internal and
	first principles of mathematics, natural sciences,		external lab
	and engineering sciences		examinations.
PO 4	Conduct investigations of complex problems:	1	Laboratory
	Use research-based knowledge and research methods		experiments,
	including design of experiments, analysis and		internal and
	interpretation of data, and synthesis of the		external lab
	information to provide valid conclusions.		examinations.

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	$\mathbf{Strength}$	Proficiency Assessed by
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications		

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Identify basic principle of Hall effect and make use of mathematical expression for Hall coefficient to deduce the type of semiconductor.	2
	PO 2	Understand the given problem statement of identification of type of semiconductor and formulate Hall coefficient from experimental collection of information and data in reaching substantial conclusions by the interpretation of results.	4
	PO 1	Determine the energy gap of a semiconductor diode by making use of graphical analysis of current versus temperature curve.	2

CO 2	PO 1	Recall the theory of propagation of longitudinal and transverse waves and make use of number of loops formation in string to determine frequency of an electronically maintained tuning fork.	2
	PO 2	Understand the given problem statement of stationary wave propagation and formulate harmonics and overtones of fundamental frequency from experimental collection of information and data in reaching substantial conclusions by the interpretation of results.	4
CO 3	PO 1	Explain the variation of magnetic field at various points along the axis of current carrying coil and make use of mathematical expression of Tangent's law using Stewart Gee's apparatus.	2
	PO 2	Understand the given problem statement of current loop and formulate magnetic field induction at various points along the axis of current loop from experimental collection of information and data in reaching substantial conclusions by the interpretation of results.	4
	PO 1	Investigate the energy losses associated with a given ferromagnetic material and make use of graphical representation of hysteresis loop exhibited by magnetic material.	2
	PO 2	Understand the given problem statement of energy losses associated with a given ferromagnetic material and formulate hysteresis loop from experimental collection of information and data in reaching substantial conclusions by the interpretation of results.	4
	PO 4	Apply simulation tool to get hysteresis curve of a ferromagnetic material and understand energy losses associated with material.	1
	PSO 3	Make use of modern simulation tool to get information about energy losses associated with a ferromagnetic material.	1
CO 4	PO 1	Interpret launching of light through optical fiber and make use of mathematical expression for analyzing light gathering capacity through numerical aperture.	2
	PO 4	Make use of optical fiber trainer kit and understand conversion of electrical to light energy	1
CO 5	PO 1	Explain the concept of interference in Newton's rings and make use of it to determine the radius of curvature of convex lens.	2
	PO 4	Make use of microscope to get Newton's rings and understand the phenomenon of interference in reflected light.	1
	PO 1	Recollect the phenomena of diffraction from N-slits and make use of it for the determination of wavelength of a given laser.	1

	PO 1	Understand the phenomenon of single slit diffraction and make use of it to determine the slit width by using laser light as monochromatic source.	1
CO 6	PO 1	Explain the V-I characteristics of light emitting diode and infer the value of planck's constant by plotting temperature versus current curve.	2
	PO 1	Understand the phenomenon of recombination of electron-hole pair and determine the value of threshold voltage of a given LED.	2
	PO 1	Illustrate the variation of photo current with light intensity in a photo diode.	1

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUT	PSO'S		
OUTCOMES	PO 1	PO 2	PO 4	PSO 3
CO 1	3	2	-	_
CO 2	3	2	1	_
CO 3	3	-	-	1
CO 4	3	2	1	_
CO 5	3	-	1	_
CO 6	3	2	1	-

3 = High; 2 = Medium; 1 = Low

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams		SEE Exams		Seminars	-
	✓		✓		
Laboratory		Student Viva		Certification	-
Practices	✓		✓		
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Exper	ts	

XIV SYLLABUS:

WEEK 1	HAL LEFFECT (LORENTZFORCE)
	Determination of charge carrier density.
WEEK 2	MELDE'S EXPERIMENT
	Determination of frequency of a given tuning fork
WEEK 3	STEWART GEE'S APPARATUS
	Magnetic field along the axis of current carrying coil – Stewart and Gee's method.
WEEK 4	B-H CURVE WITH CRO
	To determine the value of retentivity and coercivity of a given magnetic material.
WEEK 5	ENERGY GAP OF A SEMICONDUCTOR DIODE
	Determination of energy gap of a semiconductor diode.
WEEK 6	PHOTO DIODE
	Studying V-I characteristics of Photo Diode.
WEEK 7	OPTICAL FIBER
	Evaluation of numerical aperture of a given optical fiber.
WEEK 8	WAVELENGTH OF LASER LIGHT
	Determination of wavelength of a given laser light using diffraction grating.
WEEK 9	PLANK'S CONSTANT
	Determination of Plank's constant using LED.
WEEK 10	LIGHT EMITTING DIODE
	Studying V-I Characteristics of LED.
WEEK 11	NEWTONS RINGS
	Determination of radius of curvature of a given plano - convex lens.
WEEK 12	SINGLE SLIT DIFFRACTION
	Determination of width of a given single slit.

TEXTBOOKS

- 1. 1 CL Arora, "Practical Physics", S Chand and Co., New Delhi, 3rd Edition, 2012.
- 2. 2 Vijay Kumar, Dr. T. Radha krishna, "Practical Physics for Engineering Students", S M Enterprises, 2nd Edition, 2014.

REFERENCE BOOKS:

- 1. 1 CF Coombs,"Basic Electronic Instrument Handbook", McGraw HillBookCo.,1972.
- 2. 2 CH Bernardand CD Epp, John Wiley and Sons, " Laboratory Experiments in College Physics" Inc., NewYork, 1995.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Determination of charge carrier density.	CO 1	T1:13.5
2	Determination of frequency of a given tuning fork.	CO 2	T1:13.5
3	Determination of Magnetic field along the axis of current carrying coil – Stewart and Gee's method.	CO 3, CO 4	TT1:14.7
4	Determination of the energy loss per unit volume of a given magnetic material per cycle by tracing the Hysteresis loop.	CO 3	T1:15.7
5	Determination of energy gap of a semiconductor diode.	CO 1	T1:16.8
6	Studying V-I Characteristics of Photo Diode.	CO 6	T1:16.9
7	Evaluation of numerical aperture of a given optical fiber.	CO 4	T1:17.9
8	Determination of wavelength of a given laser light using diffraction grating.	CO 5	T1:18.10
9	Determination of Plank's constant using LED.	CO 6	T1:19.10
10	Studying V-I characteristics of LED	CO 6	T1:19.9
11	Determination of radius of curvature of a given Plano-convex lens.	CO 5	T1:23.10
12	Determination of width of a given single slit.	CO 5	T1:23.10

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments					
1	To determine the wavelength of different colored light using white light source by					
	Newton's ring method					
2	To study the bending losses and transmission losses of an optical Fiber					
3	To observe the dispersion of prism by using spectrometer.					
4	Study the characteristics of Laser diode.					
5	To illustrate the interference pattern produced from the air wedge.					
6	To determine the voltage current characteristics of solar cell					

Signature of Course Coordinator Mr.K Saibaba, Assistant Professor HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	PYTHON PROGRAMMING LABORATORY					
Course Code	ACAC02					
Program	B.Tech					
Semester	Ι	ECE				
Course Type	Core					
Regulation	IARE - UG 20					
		Theory		Pra	ctical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	1.5	
Course	Ms Jalaja Vishnubhotla, Assistant Professor CSE (AI&ML)					
Coordinator						

I COURSE OVERVIEW:

This course introduces students to writing computer programs. This course presents the principles of structured programming using the Python language, one of the most increasingly preferred languages for programming today. Because of its ease of use, it is ideal as a first programming language and runs on both the PC and Macintosh platforms. However, the knowledge gained in the course can be applied later to other languages such as C and Java. The course uses iPython Notebook to afford a more interactive experience. Topics include fundamentals of computer programming in Python, object-oriented programming and graphical user interfaces.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSC02	I	-

III MARKS DISTRIBUTION:

${f Subject}$	SEE Examination	CIE Examination	Total Marks
PYTHON PROGRAMMING	70 Marks	30 Marks	100
LABORATORY			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

X	Demo Video	Х	Lab	X	Viva	Х	Probing further
			Worksheets		Questions		Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of	Day to day	Final internal lab	
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Acquire programming skills in core Python.
II	Acquire Object-oriented programming skills in Python.
III	Develop the skill of designing graphical-user interfaces (GUI) in Python.
IV	Develop the ability to write database applications in Python
V	Acquire Python programming skills to move into specific branches - Internet of
	Things (IoT), Data Science, Machine Learning (ML), Artificial Intelligence (AI) etc.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate the basic concepts of python programming with the	Understand
	help of data types, operators and expressions, console input/output	
CO 2	Make use of control statements for altering the sequential execution	Apply
	of programs in solving problems.	
CO 3	Demonstrate operations on built-in container data types (list, tuple,	Understand
	set, dictionary) and strings.	

CO 4	Make use of operations and applications on strings with the help of built in functions	Apply
CO 5	Solve the problems by using modular programming concepts through functions.	Apply
CO 6	Identify object-oriented programming constructs for developing large, modular and reusable real-time programs	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	CIE / SEE/
	mathematics, science, engineering fundamentals,		Lab Exercises
	and an engineering specialization to the solution of		
	complex engineering problems.		
PO 3	Design/Development of Solutions: Design	3	CIE / SEE/
	solutions for complex Engineering problems and		Lab Exercises
	design system components or processes that meet		
	the specified needs with appropriate consideration		
	for the public health and safety, and the cultural,		
	societal, and Environmental considerations		
PO 5	Modern tool usage: Create, select, and apply	3	CIE / SEE/
	appropriate techniques, resources, and modern		Lab Exercises
	engineering and IT tools including prediction and		
	modeling to complex engineering activities with an		
	understanding of the limitations.		

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded	3	Lab Exercises
	Systems and Signal Processing Applications.		
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs		
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	3	Lab Exercises

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Demonstrate the data types of Python Programming by understating their importance and applicability (apply) in. solving (complex) engineering problems by applying the principles of Mathematics and Engineering.	3
	PO 2	Demonstrate the data types of Python Programming with provided information and data in reaching substantiated conclusions by the interpretation of results.	3

	PO 5	Demonstrate the data types, operators, expressions and console I/O of Python Programming for solving	3
		problems with the help of built in functions in Python programming.	
	PSO 3	Use datatypes,operators and expressions of Python Programming in solving mathematical and statistical problems	3
CO 2	PO 1	Illustrate the usage of control statements in solving real world problems by applying principles of Mathematics, Science and Engineering.	3
	PO 2	Illustrate the usage of control statements in solving real world problems for visualizing the distribution of data in solving analysis problems.	2
	PO 5	Illustrate the usage of control statements along with built in functions of Python programming for visualizing distribution of data with the help of built in function in Python programming language.	3
	PSO 3	Use real time data to implement machine learning basics with Python programming by analyzing the data and its relationships. .	3
CO 3	PO 1	Illustrate the operations on built in container data types and strings by applying the principles of Mathematics, Science and Engineering. .	3
	PO 2	Illustrate the operations on built in container data types and strings in solving (complex) data centric engineering problems from the provided information and substantiate with the interpretation of variations in the results.	3
	PSO 3	Implement the Python Programming basics by exploring data analysis to solve complex problems.	3
CO 4	PO 1	Conclude the insights of data using exploratory data analysis by applying the principles of Mathematics, Science and Engineering.	3
	PO 5	Define the list of operations on strings using built in functions Find the different ways to model data and understand the limitations.	2
	PSO 3	Implement all string related operations using Python Programming programming by exploring data limitations for generating predictions. .	3
CO 5	PO 1	Apply the Modular Approach real world problems by understanding the concepts of functions and code reusability.	3
	PO 3	Understand the given problem statement and formulate (complex) engineering system for developing a modular approach in solving problems that meet specified needs.	2
	PO 5	Make use of functions for creating the concept of code reusability.	3

	PSO 3	Understand the concept of modularity by implementing different user defined and built functions from real world problems to visualize the data to analyze the complexity.	3
CO 6	PO 1	Apply the knowledge of engineering fundamentals, and an Mathematics and Engineering fundamentals principles to create a object oriented model on real time problems.	3
	PO 3	Apply object oriented and modular concepts on solving real world problems reaching and reusable conclusions.	3
	PSO 3	Use built in functions in Python for solving modular and reusable real time problems.	3

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUTCOMES				PROGRAM OUTCOMES		
OUTCOMES	PO 1	PO 2	PO 3	PO 5	PSO 1	PSO 2	PSO 3
CO 1	2		2	3			3
CO 2	3		3				3
CO 3	3	2	3				3
CO 4	3		3				3
CO 5	3	2	3				3
CO 6	3	2	3				3

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-
Assignments	_				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XIV SYLLABUS:

WEEK 1	OPERATORS		
	 a.Read a list of numbers and write a program to check whether a particular element is present or not using membership operators. b. Read your name and age and write a program to display the year in which you will turn 100 years old c. Read radius and height of a cone and write a program to find the volume of the program to program to find the volume of the program to program to program to find the volume of the program to pro		
	a cone d.Write a program to compute distance between two points taking input from the user (Hint: use Pythagorean theorem)		
WEEK 2	CONTROL STRUCTURES		
	 a. Read your email id and write a program to display the no of vowels, consonants, digits and white spaces in it using ifelifelse statement. b. Write a program to create and display a dictionary by storing the antonyms of words. Find the antonym of a particular word given by the user from the dictionary using while loop c. Write a Program to find the sum of a Series 1/1! + 2/2! + 3/3! + 4/4! ++ n/n!. (Input :n = 5, Output : 2.70833) 		
WEEK 3	LIST		
	 a. Read a list of numbers and print the numbers divisible by x but not by y (Assume x = 4 and y = 5). b. Read a list of numbers and print the sum of odd integers and even integers from the list.(Ex: [23, 10, 15, 14, 63], odd numbers sum = 101, even numbers sum = 24) c. Read a list of numbers and print numbers present in odd index position. (Ex: [10, 25, 30, 47, 56, 84, 96], The numbers in odd index position: 25 47 84) d. Read a list of numbers and remove the duplicate numbers from it. (Ex: Enter a list with duplicate elements: 10 20 40 10 50 30 20 10 80, The unique list is: [10, 20, 30, 40, 50, 80]) 		
WEEK 4	TUPLE		
	 a. Given a list of tuples. Write a program to find tuples which have all elements divisible by K from a list of tuples. testlist = [(6, 24, 12), (60, 12, 6), (12, 18, 21)], K = 6, Output : [(6, 24, 12), (60, 12, 6)] b. Given a list of tuples. Write a program to filter all uppercase characters tuples from given list of tuples. (Input: testlist = [("GFG", "IS", "BEST"), ("GFg", "AVERAGE"), ("GfG",), ("Gfg", "CS")], Output : [(GFG, IS, BEST)]). c. Given a tuple and a list as input, write a program to count the occurrences of all items of the list in the tuple. (Input : tuple = ('a', 'a', 'c', 'b', 'd'), list = ['a', 'b'], Output : 3) 		
WEEK 5	SET		
	a. Write a program to generate and print a dictionary that contains a number (between 1 and n) in the form (x, x^*x)		
--------	--		
	b.Write a program to perform union, intersection and difference using Set A		
	and Set B. c.Write a program to count number of vowels using sets in given string (Input		
	: "Hello World", Output: No. of vowels : 3)		
	d.Write a program to form concatenated string by taking uncommon		
	"gafd", Output : "cbgf").		
WEEK 6	DICTIONARY		
	a. Write a program to do the following operations: i. Create a empty		
	dictionary with dict() method		
	ii. Add elements one at a time		
	111. Update existing keys value		
	iv. Access an element using a key and also $get()$ method		
	v. Deleting a key value using del() method		
	b. Write a program to create a dictionary and apply the following methods:		
	1. pop() method		
	iii. popitein() method		
	a Civen a distionary write a program to find the sum of all items in the		
	dictionary		
WFFK 7	STRINCS		
	a. Given a string, write a program to check if the string is symmetrical and		
	paindrome or not. A string is said to be symmetrical if both the halves of the		
	string are the same and a string is said to be a painforme string if one half of the string is the reverse of the other half or if a string appears some when		
	the string is the reverse of the other han of it a string appears same when		
	b. Write a program to read a string and count the number of yowal letters		
	and print all letters except 'e' and 's'		
	c. Write a program to read a line of text and remove the initial word from		
	given text. (Hint: Use split() method. Input : India is my country. Output :		
	is my country)		
	d. Write a program to read a string and count how many times each letter		
	appears. (Histogram)		
WEEK 8	USER DEFINED FUNCTIONS		
	a. A generator is a function that produces a sequence of results instead of a		
	single value. Write a generator function for Fibonacci numbers up to n.		
	b.Write a function mergedict(dict1, dict2) to merge two Python dictionaries.		
	c.Write a fact() function to compute the factorial of a given positive number.		
	d.Given a list of n elements, write a linearsearch() function to search a given		
	element x in a list.		

	 a. Write a program to demonstrate the working of built-in statistical functions mean(), mode(), median() by importing statistics library b. Write a program to demonstrate the working of built-in trignometric functions sin(), cos(), tan(), hypot(), degrees(), radians() by importing math module c. Write a program to demonstrate the working of built-in Logarithmic and Power functions exp(), log(), log2(), log10(), pow() by importing math module.
WEEK 10	CLASS AND OBJECTS
	 a.Write a program to create a BankAccount class. Your class should support the following methods for i) Deposit ii) Withdraw iii) GetBalanace iv) PinChange b.Create a SavingsAccount class that behaves just like a BankAccount, but also has an interest rate and a method that increases the balance by the appropriate amount of interest (Hint:use Inheritance). c.Write a program to create an employee class and store the employee name, id, age, and salary using the constructor. Display the employee details by invoking employeeinfo() method and also using dictionary dict. d.Access modifiers in Python are used to modify the default scope of variables. Write a program to demonstrate the 3 types of access modifiers: public, private and protected.
WEEK 11	MISCELLANEOUS PROGRAMS
	 Write a program to find the maximum and minimum K elements in Tuple using slicing and sorted() method (Input: testtup = (3, 7, 1, 18, 9), k = 2, Output: (3, 1, 9, 18)) b. Write a program to find the size of a tuple using getsizeof() method from sys module and built-in sizeof() method c.Write a program to check if a substring is present in a given string or not d. Write a program to find the length of a string using various methods: i. Using len() method ii. Using for loop and in operator iii. Using while loop and slicing
WEEK 12	ADDITIONAL PROGRAMS - FILE HANDLING
	 a. Write a program to read a filename from the user, open the file (say firstFile.txt) and then perform the following operations: i. Count the sentences in the file. ii. Count the words in the file. iii. Count the characters in the file. b. Create a new file (Hello.txt) and copy the text to other file called target.txt. The target.txt file should store only lower case alphabets and display the number of lines copied c.Write a Python program to store N students records containing name, roll number and branch. Print the given branch students details only.

TEXTBOOKS

- 1. Michael H Goldwasser, David Letscher, "Object Oriented Programming in Python", Prentice Hall, 1st Edition, 2007.
- 2. Yashavant Kanetkar, Aditya Kanetkar, "Let us Python", BPB publication, 1st Edition, 2019

- 3. Ashok Kamthane, Amit Kamthane, "Programming and Problem Solving with Python", McGraw Hill Education (India) Private Limited, 2018.
- 4. Taneja Sheetal, Kumar Naveen, "Python Programming A modular approach", Pearson, 2017

REFERENCE BOOKS:

- 1. www.oikostat.ch.
- 2. https://realpython.com/python3-object-oriented-programming//
- 3. https://python.swaroopch.com/oop.html#syllabus.
- 4. https://python-textbok.readthedocs.io/en/1.0/ObjectOrientedProgramming.html/

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Operators	CO 1	R1: 1
2	Control structures	CO 1	R3: 2
3	List	CO 2	R1: 7
4	Tuple	CO 2	R1: 8
5	Set	CO 3	R1: 2.4
6	Dictionary	CO 3	R1: 9
7	Strings	CO 4	R1: 10
8	User Defined Functions	CO 4	R3: 15
9	Built in Functions	CO 5	R1: 9
10	Class and Objects	CO5	R1: 10
11	Miscelaneous Programs	CO 6	R4:7
12	Additionaal programs - File Handling	CO 6	R4:10

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Python program to Right rotate a numpy array to n.
2	Python program to multiply all elements in a Dictionary.
3	Python Program to put positive and negative numbers in a seperate list.
4	Python program to remove given key from a Dictionary.

Signature of Course Coordinator Ms Jalaja Vishnubhotla, Assistant Professor

HOD, CSE(AI&ML)

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	CHEMISTRY				
Course Code	AHSC06	AHSC06			
Program	B.Tech	B.Tech			
Semester	II	ECE			
Course Type	FOUNDATION				
Regulation	IARE - UG20				
		Theory		Prac	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	2	-	2	-	-
Course Coordinator	Dr V N S R Venkateswararao, Associate Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10+2	-	-	Basic Principles of chemistry

II COURSE OVERVIEW:

The course discusses elements and compounds and their applied industrial applications. It deals with topics such as batteries, corrosion and control of metallic materials, water and its treatment for different purposes, engineering materials such as plastics, elastomers and biodegradable polymers, their preparation, properties and applications, energy sources and environmental science. Sustainable chemistry that focuses on the design of the products and processes that minimize or eliminate the use and generation of hazardous substances is also included.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Chemistry	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	PPT	\checkmark	Chalk & Talk	x	Assignments	x	MOOCs
x	Open Ended Experiments	x	Seminars	x	Mini Project	~	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with

"either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0 %	Remember
50 %	Understand
50 %	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
	Continuous Internal Examination – 2 (Mid-term)	10	30
CIA	AAT-1	5	50
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

I	The concepts of electrochemical principles and causes of corrosion in the new development and breakthroughs efficiently in engineering and technology.
II	The different parameters to remove causes of hardness of water and their reactions towards the complexometric method.
III	The polymerization reactions with respect to mechanisms and its significance in industrial applications.

IV	The significance of green chemistry to reduce pollution in environment by
	using natural resources.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the electrochemical principles, corrosion process in metals for protection of different metals from corrosion	Understand
CO 2	Utilize electrochemical cell parameters, electrochemical active surface area, current and over potential under given condition for calculating the electromotive force and electrode potential.	Apply
CO 3	Identify the hardness of water by different treatment methods for finding the hardness causing salts in water.	Apply
CO 4	Compare different types of polymerization reactions, mechanism of lubrication for utilizing in industries.	Understand
CO 5	Make use of green synthesis methods, different types of solid, liquid and gaseous fuels in terms of calorific value for utilizing in industries and automobiles.	Apply
CO 6	Outline the different types of natural resources and their applicability for understanding the effect of pollutants on air, water and soil that cause the environmental pollution.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/SEE/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	1	CIE/SEE/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 7	Environment and sustainability:	3	CIE/SEE/AAT
	understand the impact of the professional		
	engineering solutions in societal and		
	Environmental contexts, and demonstrate the		
	knowledge of, and need for sustainable		
	development		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications		-
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	-	-
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	-	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	

					PSO'S										
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 4	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-
CO 6	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

Course			
Outcomes (COs)	POs / PSOs	Justification for mapping (Students will be able to)	No. of key compe- tencies
CO 1	PO 1	Explain the operation of electrochemical systems in batteries, corrosion process in metals for protecting the metals from corrosion by using principles of science for solving engineering problems .	2
CO 2	PO 1	Choose different electrodes for finding pH of unknown solutions by applying mathematical expressions of cell potential by using principles of science and mathematics for solving engineering problems	3
	PO 2	Identify the problem formulation and abstraction for calculating electrode potential under non standard conditions by applying Nernst equation from the provided information .	2
CO 3	PO 1	Explain different treatment methods to produce soft water from raw water for solving engineering problems by applying the principles of science.	2
	PO 2	Identify the problem and formulate for finding the hardness of water in terms of CaCO3 equivalents with given information and data by applying principles of science .	2
CO 4	PO 1	Illustrate different types of polymerization reactions for synthesizing polymers from monomers, different types of lubricants to reduce friction in machines working under various temperature conditions by using principles of science for solving engineering problems	2
CO 5	PO 1	Explain the importance of green synthesis to minimize the generation of hazardous substances, different types of solid, liquid and gaseous fuels with their characteristics and calorific value by applying mathematical expressions for finding calorific value using principles of science and mathematics for solving engineering problems.	3

	PO 2	Identify the given problem and formulate for finding the calorific value of fuel with the given information and data by applying principles of science.	2
	PO 7	Make use of gaseous fuels like LPG, CNG to reduce the pollutants in atmosphere and know the impact in socio economic and environmental contexts for sustainable development.	2
CO 6	PO 1	Explain the concept of living and non living resources and the utility of these resources, effect of pollutants on air, water and soil that causes the environmental pollution for solving engineering problems by applying the principles of science	2
	PO 7	Make use of renewable and non renewable resources, control measures for air pollution, water pollution, soil pollution and noise pollution in socio economic an environmental contexts for sustainable development.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

				PRO	DGR.	AM	OUT	COI	MES				PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	2	-	-	-	-	2	-	-	-	-	-	-	-	-
CO 6	2	-	-	-	-	-	2	-	-	-	-	-	-	-	_

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

		PROGRAM OUTCOMES												PSO'S			
COURSE	PO	РО	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2		
CO 1	66.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 2	100	20	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 3	66.6	20	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 4	66.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 5	100	$2\overline{0}$	-	-	-	-	66.6	-	-	-	-	-	-	-	-		
CO 6	66.6	-	-	-	-	-	66.6	-	-	-	-	-	-	-	-		

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $1-5 < C \le 40\% Low/$ Slight

3	- 60%	< C	<	100% -	Substantial	/High
\mathbf{J}	- 0070	≥ 0		100/0 -	Substantial	/ mgn

COURSE		PROGRAM OUTCOMES]	PSO'S	5					
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	_	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	1	-	-	-	-	3	-	-	-	-	-	-	-	-
CO 6	3	-	-	-	-	-	3	-	-	-	-	-	-	-	-
TOTAL	18	3	-	-	-	-	6	-	-	-	-	-	-	-	-
AVERAGE	3	1	-	-	-	-	3	-	-	-	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO1,PO2,PO7	SEE Exams	PO1,PO2,PO7	Seminars	PO1,PO2,PO7
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	PO1,PO2,PO7	5 Minutes Video	PO1,PO2,PO7	Open Ended Ex- periments	PO1,PO2,PO7
Assignments	PO1,PO2,PO7				

XVII ASSESSMENT METHODOLOGY INDIRECT:

X	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Ex	perts	

XVIII SYLLABUS:

MODULE I	ELECTROCHEMISTRY AND BATTERIES
	Electro chemical cells: Electrode potential, standard electrode potential, Calomel electrode and Nernstequation; Electrochemical series and its applications; Numerical problems; Batteries: Primary (Dry cell) and secondary batteries (Lead-acid storage battery, Li-ion battery). Corrosion: Causes and effects of corrosion: Theories of chemical and electrochemical corrosion, mechanism of electrochemical corrosion; Corrosion control methods: Cathodic protection, sacrificial anode and impressed current Cathodic protection; Surface coatings: Metallic coatings- Methods of coating- Hot dipping- galvanization and tinning, electroplating
MODULE II	WATER TECHNOLOGY
	Introduction: Hardness of water, causes of hardness; types of hardness: temporary and permanent hardness, expression and units of hardness; estimation of hardness of water by complexometric method; potable water and its specifications, Steps involved in the treatment of water, disinfection of water by chlorination and ozonization; External treatment of water; Ion-exchange process; Desalination of water: Reverse osmosis, numerical problems
MODULE III	ENGINEERING MATERIALS
	Polymers-classification with examples, polymerization-addition, condensation and co-polymerization; Plastics: Thermoplastics and thermosetting plastics; Compounding of plastics; Preparation, properties and applications of polyvinyl chloride, Teflon, Bakelite and Nylon-6, 6; Biodegradable polymers. Elastomers: Natural rubber, processing of natural rubber, vulcanization; Buna-s and Thiokol rubber; Lubricants: characteristics of lubricants, mechanism of lubrication – thick film, thin film, extreme pressure lubrication, properties – flash and fire point, cloud and pour point, viscosity and oiliness of lubricants.
MODULE IV	GREEN CHEMISTRY AND FUELS
	Introduction: Definition of green chemistry, methods of green synthesis: aqueous phase, microwave method, phase transfer catalyst and ultra sound method. Fuels: definition, classification of fuels ; Solid fuels: coal; analysis of coal: proximate and ultimate analysis; Liquid fuels: Petroleum and its refining; Gaseous fuels: Composition, characteristics and applications of LPG and CNG; Calorific value: Gross Calorific value(GCV) and Net Calorific value(NCV), numerical problems.
MODULE V	NATURAL RESOURCES AND ENVIRONMENTAL POLLUTION
	Natural resources: Classification of resources, living and nonliving resources; Water resources: Use and over utilization of surface and ground water, floods and droughts, dams, benefits and problems; Land resources; Energy resources: renewable and non-renewable energy sources, use of alternate energy source. Environmental pollution: Causes, effects and control measures of air pollution, water pollution, soil pollution and noise pollution.

TEXTBOOKS

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company, 16th Edition, 2017.
- 2. Shashi Chawla, "Engineering Chemistry", Dhanat Rai and Company, 2011, 1st Edition.
- 3. Prashanth rath, B.Rama Devi, Ch.Venkata Ramana Reddy, Subhendu Chakroborty, Cengage Learning Publishers, 1st Edition, 2018
- 4. Anubha Kaushik, C.P.Kaushik, "Environmental Studies" New Age International publishers, 4th Edition, 2015.
- 5. Dr B.N.Srinivas, P.Kishore, K.Subba Rao "Engineering Chemistry" University Science Press,2015,1st Edition.

REFERENCE BOOKS:

- 1. 1. Dr.Bharathi Kumari, "A text book of Engineering Chemistry", VGS Book Links, 8th Edition,2016.
- 2. 2. B. Siva Shankar, "Engineering Chemistry", Tata McGraw Hill Publishing Limited, 3rd Edition, 2015.
- 3. 3. S. S. Dara, Mukkanti, "Text of Engineering Chemistry", S. Chand Co, New Delhi, 12thEdition, 2006.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference						
	OBE DISCUSSION								
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	W1						
	CONTENT DELIVERY (THEO	RY)							
1	Outcome Based Education.								
2	Recall the concept of electro chemical cells.	CO 1	T1:6.1,R1: 2.6						
3	Explain the electrode potential, standard electrode potential, electrochemical series and its applications.	CO 2	T1:6.2,R1: 2.9						
4	Derive Nernst equation , numerical problems on cell potential.	CO 2	T1:6.5,R1: 2.6.3						
5	Demonstate about calomel electrode. Batteries: primary (dry cell).	CO 1	T1: 6.7, R1:2.12						
6	Explain the secondary batteries (Lead-acid storage battery), Li-ion battery.	CO 1	T1:6.12,R1: 2.12						
7	Recognize the causes and effects of corrosion, chemical corrosion.	CO 1	T1:7.1, R1:2.14						
8	Explain the electrochemical corrosion, mechanism of electrochemical corrosion.	CO 1	T1:7.2, R1:2.17						
9	Explain about cathodic protection, sacrificial anode and impressed current.	CO 1	T1:7.14, R1:2.20						

10	Apply metallic coatings, methods of coatings, hot dipping, galvanizing, tinning and electroplating.	CO 1	T1:7.14,R1: 2.22
11	Recall the hardness of water, causes of hardness.	CO 3	T1:1.3,R1: 1.4
12	Explain the types of hardness, temporary and permanent, units of hardness.	CO 3	T1:1.3,1.5,
13	Estimation of hardness of water by complexometric method,	CO 3	T1:1.5,R1: 1.6.2
14	Estimation of hardness of water by complexometric method.	CO 3	T1:1.14,R1: 1.6.4
15	Define potable water and its specifications, steps involved in treatment of water, disinfection of water by chlorination and ozonization.	CO 3	T1:1.12,R1: 1.6.5
16	Explain about external treatment of water; ion-exchange process.	CO 3	T1:1.11, R1:1.8.1
17	Explain about desalination of water: reverse osmosis.	CO 3	T1:1.13, R1:1.10
	Recall polymers-classification with examples and		
18	Explain about the polymerization-addition, condensation and co- polymerization	CO 4	T1: 3.5,R1: 3.1
19	Explain the concept of compounding of plastics.	CO 4	T1:1.4, R1: 3.1.4
20	Expalin the preparation, properties and applications of polyvinyl chloride, teflon.	CO 4	T1:3.5,R1: 3.2
21	Explain the bakelite and nylon-6, 6.	CO 4	T1: 3.12,R1: 3.2.2
22	Define biodegradable polymers, synthetic biodegradable polymers.	CO 4	T1:3.14,R1: 3.2.3
23	Explain rubbers, natural rubber its process and vulcanization, Buna-s and thiokol rubber.	CO 4	T1: 3.15, R1:3.2.3
24	Elastomers: Synthetic rubbers, Buna-s and thiokol rubber.	CO 4	T1: 3.22, R1:3,3.4
25	Lubricants: characteristics of lubricants, mechanism of lubrication – thick film, thin film, extreme pressure lubrication.	CO 4	T1: 3.24,R1: 3.5
26	Properties–flash and fire point, cloud and pour point, viscosity and oiliness of lubricants.	CO 4	T1: 3.25,R1: 3.7
27	Definition and importance of green chemistry, methods of green synthesis: aqueous phase method.	CO 5	T5:6.8, T2:1.1
28	Explain the microwave method and phase transfer catalyst.	CO 5	T5: 6.8.3,T2: 8.1
29	Explain the ultra sound method.	CO 5	T5: 6.8.3, T2:9.2
30	Define fuels, classification of fuels and characteristics of a good fuels.	CO 5	T1:4.2, R1:6.2.1
31	Explain solid fuels, coal, Analysis of coal, proximate and ultimate analysis.	CO 5	T1:4.4.1, R1:7.1
32	Explain liquid fuels, petroleum and its refining.	CO 5	T1:4.5.2, R1:15.2
33	Explain the gaseous fuels, Composition, characteristics and applications of LPG and CNG.	CO 5	T1:4.6, R1:9.2

34	Apply the concept of calorific value, gross calorific	CO 5	T1:4.8, R1:5.2
	value (GCV) and Net calorific value(NCV) to find		,
	calorific value of fuel, numerical problems.		
35	Recall natural resources: classification of resources,	CO 6	T4:2.1
	living and nonliving resources.		
36	Explain the water resources: use and over	CO 6	T4:2.2
	utilization of surface and ground water, floods and droughts. Dama, bonofits and problems		
27	Define operative recourses, repeated and	COG	T 4.9.2
51	non-renewable energy sources	0.00	14:2.0
38	Explain the alternate energy sources land resources	CO 6	T4.2552
30	Define environmental pollution causes effects and		TA: A 2
0.0	control of air pollution.	000	14. 4.2
40	Explain the causes effects and control of water	CO 6	$T4\cdot 4.6$
	pollution.		
41	Explain the causes, effects and control of soil	CO 6	T4:4.12
	pollution and noise pollution.		
	PROBLEM SOLVING/ CASE ST	UDIES	
42	Problems on EMF of voltaic cell	CO 2	T1:6.2,R1: 2.9
43	Problems on EMF of a cell	CO 2	T1:6.5,R1: 2.6.3
44	Problems on electrode potential of the half cell by	CO 2	T1:6.2,R1: 2.9
	using Nernst equation		
45	Problems on electrode potential of EMF of the cell	CO 2	T1:6.5,R1: 2.6.3
	by using Nernst equation.		
46	Problems on temporary and permanent hardness in	CO 3	T1:1.5, R1: 1.6.2
	Degree French.	<u> </u>	
47	Problems on temporary, permanent and total	CO 3	T1:1.14,R1: 1.6.4
49	Problems on the temperature normanent and total	CO 2	T1.15 D1. 169
40	hardness of water in Degree Clark	00.5	11:1.5,K1: 1.0.2
49	Problems on the temporary permanent and total	CO 3	T1·1 1/ R1· 16/
10	hardness of water in Mg/L.	000	11.1.14,101. 1.0.4
50	Problems on the total hardness in terms of calcium	CO 3	T1:1.5.R1: 1.6.2
	carbonate equivalents by using EDTA method.		
51	Problems on the permanent hardness in terms of	CO 3	T1:1.14,R1: 1.6.4
	calcium carbonate equivalents by using EDTA		
	method.		
52	Problems on the temporary hardness in terms of	CO 3	T1:1.5,R1: 1.6.2
	calcium carbonate equivalents by using EDTA		
52	Problems on the higher and lower colorific values of	CO 5	T1.4 9 D1.5 9
 	the fuel.	00 5	11.4.0, n1:0.2
54	Problems on the gross and net calorific values of the	CO 5	T1.4.8 R1.5.2
	fuel.		11.1.0, 101.0.2
55	Problems on HCV and LCV	CO 5	T1:4.8, R1:5.2
56	Problems on GCV and NCV	CO 5	T1:4.8, R1:5.2

	DISCUSSION OF DEFINITION AND TERMINOLOGY							
57	Definitions & terminology discussion on electrochemistry and corrosion	CO 1	T1:1.3,R1: 1.4					
58	Definitions & terminology discussion on water technology	CO 3	T1: 3.5,R1: 3.1					
59	Definitions & terminology discussion on engineering	CO 4	T1: 3.5,R1: 3.1					
60	Definitions & terminology discussion on green chemistry and fuels	CO 5	T1:4.2, R1:6.2.1					
61	Definitions & terminology discussion on natural resources and environmental pollution	CO 1, CO 6	T4:2.1,2.8					
	DISCUSSION OF QUESTION B	ANK						
62	Question bank discussion on electrochemistry and Corrosion	CO 1	T1: 6.1, R1:2.12					
63	Question bank discussion on water technology	CO 3	T1:1.3, R1: 1.4					
64	Question bank discussion on engineering materials	CO 4	T1: 3.5,R1: 3.1					
65	Question bank discussion on green chemistry and fuels	CO5	T1:4.2, R1:6.2.1					
66	Question bank discussion on natural resources and environmental Pollution	CO 6	T4:2.1,2.8					

Course Coordinator: Dr V N S R Venkateswararao,Associate Professor HOD, ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING					
Course Title	MATHEMATICAL TRANSFORM TECHNIQUES					
Course Code	AHSC07	AHSC07				
Program	B.Tech	B.Tech				
Semester	II					
Course Type	Foundation					
Regulation	UG-20					
		Theory		Pra	ctical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Coordinator	Mr.Satyanarayana G, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSC02	Ι	Linear Algebra and Calculus
B.Tech	-	-	-
B.Tech	-	_	-

II COURSE OVERVIEW:

This course focuses on transformations from theoretical based mathematical laws to its practical applications in the domain of various branches of engineering field. The course includes the transformations such as Laplace, Fourier, applications of scalar and vector field over surface, volume and multiple integrals. The course is designed to extract the mathematical developments, skills, from basic concepts to advance level of engineering problems to meet the technological challenges.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Mathematical	70 Marks	30 Marks	100
Transform Techniques			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
\checkmark	Open Ended Experiments	x	Seminars	x	Mini Project	\checkmark	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with

"either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
30 %	Understand
60 %	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
	100		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving		
40%	40%	20%		

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The transformation of ordinary differential equations in Laplace field and its applications
II	The operation of non-periodic functions by Fourier transforms.
III	The concepts of multiple integration for finding areas and volumes of physical quantities.
IV	The Integration of several functions by transforming the co-ordinate system in scalar and Vector fields.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the properties of Laplace and inverse transform to various	Understand
	functions such as continuous, piecewise continuous, step, impulsive and	
	complex variable functions.	
CO 2	Make use of the integral transforms which converts operations of	Apply
	calculus to algebra in solving linear differential equations	
CO 3	Apply the Fourier transform as a mathematical function that	Apply
	transforms a signal from the time domain to the frequency domain,	
	non-periodic function up to infinity	
CO 4	Apply the definite integral calculus to a function of two or more	Apply
	variables in calculating the area of solid bounded regions	
CO 5	Develop the differential calculus which transforms vector functions,	Apply
	gradients. Divergence, curl, and integral theorems to different bounded	
	regions in calculating areas.	
CO 6	Solve Lagrange's linear equation related to dependent and independent	Apply
	variables the nonlinear partial differential equation by the method of	
	Charpit concern to the engineering field	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes					
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,				
	engineering fundamentals, and an engineering specialization to the solution				
	of complex engineering problems.				

Program Outcomes					
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.				
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations				
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.				
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations				
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.				
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.				
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.				
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.				
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.				
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.				
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change				

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated	2	
	conclusions using first principles of mathematics, natural sciences, and engineering sciences.		
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	PROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit	2	Seminar/
	Development platform for Robotics, Embedded		Confer-
	Systems and Signal Processing Applications.		ences/
			Research
			Papers
PSO 2	Focus on the Application Specific Integrated	-	-
	Circuit (ASIC) Prototype designs, Virtual		
	Instrumentation and System on Chip (SOC)		
	designs.		
PSO 3	Make use of High Frequency Structure Simulator	-	-
	(HFSS) for modeling and evaluating the Patch		
	and Smart Antennas for Wired and Wireless		
	Communication Applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	-	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 3	\checkmark	\checkmark	-	-		-	-	-	-	-	-		\checkmark	-	-
CO 4	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-		-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain the properties of Laplace and inverse transform to to complex engineering problems of various functions such as continuous, piecewise continuous, step, impulsive and complex variable functions with principle of mathematics .	2
CO2	PO 2	Describe the formulation of integral transforms (knowledge) which converts complex engineering problems using (apply) operations of calculus to algebra along with basic principles of mathematics reaching substantiated conclusions by the interpretation of results in solving linear differential equations	6
	PO4	Explain the integral transforms in solving ordinary differential equations will be quantitatively measured by using MATLAB computer software .	5
	PSO1	Describe the integral transforms concern Electrical Communication and Engineering (apply) which converts operations of calculus to algebra in solving linear differential equations in the design and implementation of complex systems	2
CO3	PO 1	Apply the Fourier transform as a mathematical function that transforms a signal from the time domain to the complex engineering problems by the frequency domain, non-periodic function up to infinity with Principle of Mathematics	2
	PO2	Apply the Fourier transform as a formulation of mathematical function in complex engineering problems which transforms a non-periodic function using principles of mathematics to attain conclusions by the interpretation of results	6
	PSO1	Identify the properties of complex Fourier transform concern Aeronautical Engineering which intensifies (apply) the boundary value problems in the design and implementation of complex systems.	2
CO4	PO2	Apply the formulation of definite integral calculus to a function of complex engineering problems of two or more variables using principle of mathematics in calculating the area of solid bounded regions by the interpretation of results .	6
CO5	PO2	Develop the statement and formulation differential calculus of complex engineering problems which transforms vector functions, gradients. Divergence, curl, and integral theorems using principle of mathematics to different bounded regions in calculating areas. by interpretation of results	6

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO6	PO1	Solve Lagrange's linear equation related to complex engineering problems such as dependent and independent variables the nonlinear partial differential equation by the method of Charpit concern to the engineering field Principle of Mathematics .	2
	PO2	Describe the statement and formulation of Lagrange's linear equation (understand) related to complex engineering problems , solutions are attained based on principles of mathematics to the physical problems of engineering by the interpretation of results .	6

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-**PING:**

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	-	6	-	5	-	-	-	-	-	-	-	-	2	-	-
CO 3	2	6	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 4	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	2	6	-	-	-	-	-	-	-	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	РО	PO	PSO	PSO	PSO									
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	-	-	-	-	-	-	-	-	-	-		-	-	-
CO 2	-	60	-	45	-	-	-	-	-	-	-	-	100	-	-
CO 3	66.7	60	-	-		-	-	-	-	-	-		100	-	-
CO 4	-	60	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	-	60	-	-		-	-	-	-	-	-		-	-	-
CO 6	66.7	60	-	-	-	-	-	-	-	-	-	-	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 5 < C \le 40\% Low/$ Slight
- $\pmb{2}$ 40 % <C < 60% –Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	COURSE PO									PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	-	3	-	2	-	-	-	-	-	-	-	-	3	-	-
CO 3	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO 4	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	3	-	-	-	-	-	-	-	-	-	-		-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	~	5 Minutes Video	~	Open Ended Experiments	-
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
--------------	-------------------------	--------------	---------------------------

XVIII SYLLABUS:

MODULE I	LAPLACE TRANSFORMS
	Definition of Laplace transform, linearity property, piecewise continuous function, existence of Laplace transform, function of exponential order, first and second shifting theorems, change of scale property, Laplace transforms of derivatives and integrals, multiplied by t, divided by t, Laplace transform of periodic functions. Inverse Laplace transform: Definition of Inverse Laplace transform, linearity property, first and second shifting theorems, change of scale property, multiplied by s, divided by s; Convolution theorem and applications to ordinary differential equations.
MODULE II	FOURIER TRANSFORMS
	Fourier integral theorem, Fourier sine and cosine integrals; Fourier transforms; Fourier sine and cosine transform, properties, inverse transforms, finite Fourier transforms.
MODULE III	MULTIPLE INTEGRALS
	Double Integrals: Evaluation of double integrals in Cartesian coordinates and Polar coordinates; Change of order of integration; Area as a double integral; Transformation of coordinate system. Triple Integrals: Evaluation of triple integrals in Cartesian coordinates; volume of a region using triple integration.

MODULE IV	VECTOR DIFFERENTIAL CALCULUS
	Scalar and vector point functions; Definitions of Gradient, divergent and curl with examples; Solenoidal and irrigational vector point functions; Scalar potential function. Line integral, surface integral and volume integral, Green's theorem in a plane, Stoke's theorem and Gauss divergence theorem without proofs.
MODULE V	PARTIAL DIFFERENTIAL EQUATIONS
	Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equations; Charpit's method;

TEXTBOOKS

- 1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 36thEdition, 2010.
- 2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008.
- 3. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint,2010.

REFERENCE BOOKS:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 9thEdition, 2006.
- 2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.
- 3. D. Poole, "Linear Algebra: A Modern Introduction", Brooks/Cole, 2ndEdition, 2005.
- 4. Dr. M Anita, "Engineering Mathematics-I", Everest Publishing House, Pune, First Edition, 2016

WEB REFERENCES:

- $1.\ http://www.efunda.com/math/math_home/math.cfm$
- 2. http://www.ocw.mit.edu/resourcs/#Mathematics
- 3. http://www.sosmath.com
- 4. http://www.mathworld.wolfram.com

COURSE WEB PAGE:

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1					
OBE DISCUSSION								
1	1 Introduction to outcome based education							
	CONTENT DELIVERY (THEORY)							

2	Introduction to Laplace transform	CO1	T1:21.1,
			21.4
			R1:5.1
3	First, second shifting theorems and change of scale property	CO1	T1:21.2
	of Laplace transforms		R1:5.1
4	Laplace transforms of Derivatives, Integrals, multiplication	CO1	T1:21.4
	and Division by t to a function		R1:5.1
5	Laplace transform of periodic functions	CO2	T1:21.7-
			21.10
			R1:5.2-
			5.4
6	First, second shifting theorems and change of scale property	CO1	T1:21.12
	of Inverse Laplace Transforms		R1:5.1,5.6
7	Inverse Laplace transforms of Derivatives, Integrals,	CO2	T1:21.13
	multiplication and Division by s to a function		R1:5.1,5.3
8	Convolution theorem	CO2	T1:21.13
			R1:5.4
9	Application of Laplace Transforms	CO2	T1:21.14
			R1:5.5
10	Fourier integrals	CO3	T1:22.1-
			22.2
			R1:10.8
11	Fourier transform	CO3	T1:22.3
			R1:10.8
12	Fourier sine transform	CO3	T1:22.4
			R1:10.9
13	Fourier Cosine Transforms	CO3	T1:22.5
			R1:10.9
14	Properties of Fourier Transforms	CO3	T1:22.4
			R1:10.9
15	Inverse Fourier Transform	CO3	T2:15.5
			R1:7.5
16	Finite Fourier Transform	CO3	T2:16.5
			R1:7.6
17	Infinite Fourier Transform	CO3	T2:16.5
			R1:7.6
18	Double integrals in Cartesian form	CO4	T2:10.1
			R1:16.1
19	Double integrals in Polar coordinates	CO4	T2:10.1
			R1:16.2
20	Change of order of integration	CO4	T2:10.3
			R1:16.4
21	Evaluation of Double Integrals for the Bounded Regions	CO4	T2:11.3
			R1:16.5
22	Transformation of coordinates system	CO4	T2:11.3
			R1:16.5
23	Triple integrals in Cartesian form	CO4	T2:11.3
			R1:16.5

24	Volume of a region using triple integration	CO4	T2:11.3 R1:16.5
25	Problems on double and triple integrals	CO4	T2:11.3 R1:16.5
26	Scalar and Vector Point Function(Definitions of Gradient, divergent, curl and Scalar Potential function)	CO5	T2: 11.3 R1:16.11
27	Solenoidal and irrotational vectors	CO5	T1:17.1- 17.2 R1:16.1- 16.2
28	Line integral	CO5	T2: 11.3 R1:16.11
29	surface integral	CO5	T2: 11.3 R1:16.9
30	volume integral	CO5	T2: 11.4 R1:16.18
31	Green's theorem	CO5	T2: 11.3 R1:16.11
32	Stoke's theorem	CO5	T2: 11.3 R1:16.9
33	Gauss divergence theorem	CO5	T2: 11.4 R1:16.18
34	Elimination of arbitrary constants (Formation of PDE)	CO6	T1:17.1- 17.2 R1:16.1- 16.2
35	Elimination of arbitrary functions(Formation of PDE)	CO6	T1:17.5- 17.6 R1:16.3.1
36	Non-Linear Partial differential equation of first order	CO6	T1:17.1- 17.2 R1:16.1- 16.2
37	Standard forms I, II ,III and IV	CO6	T1:17.1- 17.2 R1:16.1- 16.2
38	Non-Linear Partial differential equation of first order Standard forms V	CO6	T1:17.5- 17.6 R1:16.3.1
39	Non-Linear Partial differential equation of first order Standard forms VI	CO6	T1:17.1- 17.2 R1:16.1- 16.2
40	Lagrange's Linear equation- Method of grouping	CO6	T1:17.5- 17.6 R1:16.3.1

41	Lagrange's Linear Equation -Method of Multipliers	CO6	T1:17.1-
			17.2 D1.16 1
			16.2
	PROBLEM SOLVING/ CASE STUDIE	S	10.2
42	Solving problems on Laplace Transform of First, second	CO 1	T1:21.1,21.4
	shifting theorems and change of scale property		R1:5.1
43	Solving problems on Inverse Laplace transforms of	CO 2	T1:21.13
	derivatives, integrals, multiplied by s, divided by s		R1:5.1,5.3
44	Solving problems on Convolution theorem	CO 2	T1:21.14
			R1:5.5
45	Solving problems on Fourier sine and cosine integral	CO 3	T1:22.3
46	Solving problems on finite Fourier transforms	CO 2	T1.22.4
40	Solving problems on minte Fourier transforms		R1.10.9
47	Solving problems on Evaluation of double integrals in	CO 4	T2:10.1
	Cartesian coordinates		R1:16.1
48	Solving problems on Transformation of coordinates system	CO 4	T2:10.1
			R1:16.2
49	Solving problems on Evaluation of triple integrals in	CO 4	T2:10.1
	Cartesian coordinates		R1:16.2
50	Solving problems on Solenoidal and irrotational	CO 5	T2:11.3
			RI:16.5
51	Solving problems on Green's theorem	CO 5	12: 11.3
52	Solving problems on Creen's theorem	CO 5	1.10.11 T2: 11.2
52	Solving problems on Green's theorem		R1.16.11
53	Solving problems on Stokes theorem	CO 5	T2: 11.3
			R1:16.9
54	Gauss divergence theorem	CO 5	T2: 11.4
			R1:16.18
55	Solving problems on formation of partial differential	CO 6	T1:17.1-
	equations by elimination of arbitrary constants		17.2
			R1:16.1-
56	Solving problems on formation of partial differential	CO 6	T1.17 1-
50	equations by elimination of arbitrary functions		17.2
			R1:16.1-
			16.2
	DISCUSSION OF DEFINITION AND TERMIN	NOLOGY	
57	Definitions and terminology on Laplace transforms	CO 1,2	T1:21.1,21.
			R1:5.1
58	Definitions and terminology on Fourier transforms	CO 3	T1:22.1-
F O			22.2R1:10.8
59	Definitions and terminology on multiple integrals		12:15.5 B1.7 5
60	Definitions and terminology on vector colculus	CO 5	T9.10 2
	Deminions and terminology on vector calculus		R1:16.4

61	Definitions and terminology on partial differential equations.	CO 6	T1:17.1- 17.2 R1:16.1- 16.2
	DISCUSSION OF QUESTION BANK		
62	Disscussion of Laplace transforms	CO 1,2	T1:21.1,21. R1:5.1
63	Disscussion of Fourier transforms	CO 3	T1:22.1- 22.2 R1:10.8
64	Disscussion of multiple integrals	CO 4	T2:15.5 R1:7.5
65	Disscussion of vector calculus	CO 5	T2:10.3 R1:16.4
66	Disscussion of partial differential equations	CO 6	T1:17.1- 17.2 R1:16.1- 16.2

Signature of Course Coordinator

HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	Electrical Circuits				
Course Code	AEEC02				
Program	B.Tech				
Semester	II				
Course Type	Fundamental				
Regulation	R-20				
	Theory		Pract	tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	3	1.5
Course Coordinator	Ms. A Srikanth, Assistant Professor				

I COURSE OVERVIEW:

The course introduces the basic concepts of circuit analysis which is the foundation for all subjects of the electrical and electronics engineering. It includes the basic fundamental laws of electricity and magnetism with an emphasis on resistors, inductors and capacitors (RLC) circuits applied to alternating current (AC) or direct current (DC) of electrical networks. Further This course provides network theorems with different excitations, two-port network and network topology to solve for real-time applications.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHS006	Ι	Engineering Physics

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Electrical Circuits	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
	Presentations						
x	Open Ended	x	Seminars	x	Mini Project	x	Videos
	Experiments						
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
40%	Remember
60%	Understand
0%	Apply
0%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz / Alternative Assessment Tool (AAT).

Component		Theory		Total Marks
Type of Assessment	CIE Exam	Quiz	AAT	10tal Marks
CIA Marks	20	-	10	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen foor this course is given in table

Concept Video	Tech-talk	Complex Problem Sloving
50%	50%	-

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The network reduction techniques such as source transformation, mesh analysis, nodal analysis and network theorems to solve different networks.
II	The basic concept of AC circuits for optimization of household and industrial circuitry.
III	The various configurations of electromagnetic induction used in magnetic circuits helps in the winding of electrical machines.
IV	The characteristics of two-port networks and network topologies suitable in power system.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Identify the basic concepts of electrical quantities such as current, voltage, power, energy of simple DC circuits used in electrical and electronic devices.	Remember
CO 2	Define basic terminology of single-phase AC circuits for obtaining mean value, RMS value, form facto, peak facto, impedance, admittance, apparent, real power, reactive power and power factor of electrical circuits.	Understand
CO 3	Apply the different laws, series parallel combination of RLC circuits and indirect quantities associated with electrical circuit for determine voltage and currents in resistive circuits containing voltage and current sources.	Understand
CO 4	Apply the several theorems for simplify complex network into equivalent network and verify the current, voltage and power in linear bilateral network with the help of DC and AC excitation.	Understand
CO 5	Describe the basic fundamental of Electromagnetism, Faraday's laws of Electromagnetic induction, Lenz's law, types of induced emf, self and mutual inductance for notice the total magnetomotive force and ampere turns values.	Remember
CO 6	Understand the two port parameters, network topology and dual network for digital and graphical representation of complex circuits to be measure easily, without solving for all the internal voltages and currents in the different networks.	Understand

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes			
PO 1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of		
	complex engineering problems.		
	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions		
PO 2	using first principles of mathematics, natural sciences, and engineering sciences.		
	Design/Development of Solutions: Design solutions for complex		
	Engineering problems and design system components or processes that meet		
PU 3	the specified needs with appropriate consideration for the public health and		
	safety, and the cultural, societal, and Environmental considerations		
	Conduct Investigations of Complex Problems: Use research-based		
PO 4	knowledge and research methods including design of experiments, analysis and		
101	interpretation of data, and synthesis of the information to provide valid conclusions.		
	Modern Tool Usage: Create, select, and apply appropriate techniques,		
PO 5	resources, and modern Engineering and IT tools including prediction and		
100	modelling to complex Engineering activities with an understanding of the		
	limitations		
	The Engineer and Society: Apply reasoning informed by the contextual		
PO 6	knowledge to assess societal, health, safety, legal and cultural issues and the		
	consequent responsibilities relevant to the professional engineering practice.		
	Environment and Sustainability: Understand the impact of the		
PO 7	professional engineering solutions in societal and environmental contexts, and		
	demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and		
	responsibilities and norms of the engineering practice.		
PO 9	Individual and Team Work: Function effectively as an individual, and as a		
	member or leader in diverse teams, and in multidisciplinary settings.		

Program Outcomes			
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions		
PO 11	Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	CIE/Quiz/AAT
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignments

3 = High; 2 = Medium; 1 = Low

X MAPPING OF EACH CO WITH PO(s), PSO(s):

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-

XI JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Recall the basics of mathematics, engineering sciences and other sciences to understand the concept of DC and AC Circuits.	3
	PO 2	Validate the principles of different laws associated with electrical circuits from obtained principles using basics fundamentals of mathematics and engineering sciences.	5
CO 2	PO 1	Recall the basics of mathematics, engineering sciences and other sciences to understand the concept of Kirchhoff's laws	3
	PO 2	Analyze mesh analysis and nodal analysis technique using principles of mathematics, science and engineering fundamentals	5
CO 3	PO 1	Recollect the concept of Electrical circuits basics analysis.	3
	PO 2	Describes the different Theorems with AC and DC excitation from obtained principles using basics fundamentals of mathematics and engineering sciences.	5
	PO 4	Conduct Investigations of Complex Problems with AC and DC excitation Use research methods including design of experiments.	5
CO 4	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals to the solution of magnetic circuits	3
	PO 2	Describes the fundamental characteristics of electromagnetic induction, self and mutual inductance in the single coil and coupled coils magnetic circuits using basics fundamentals of mathematics and engineering sciences.	5
CO 5	PO 1	Recall the basics of mathematics, engineering sciences and other sciences to understand the concept of two port network and graph theory.	3
	PO 2	Validate the principles of different parameters and network topology from obtained principles using basics fundamentals of mathematics and engineering sciences.	5
CO 6	PO 1	Recall the basics of mathematics, engineering sciences and other sciences to understand the concept of duality.	3
	PO 2	Describes the fundamental characteristics of mesh analysis and nodal analysis technique using Teo Port Network.	5

XII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-**PING:**

			PSO(s)												
COURSE	PO	PO	РО	PO	PSO	PSO	PSO								
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	5	-	5	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	5	-	-	-	-	-	-	-	-	-	-	-	-	-

XIII PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

			PSO(s)												
COURSE	РО	РО	PO	PO	PO	PO	PO	РО	PO	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	50	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	100	50	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	100	50	-	45	-	-	-	-	-	-	-	-	-	-	-
CO 4	100	50	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	100	50	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	100	50	-	-	-	-	-	-	-	-	-	-	-	-	-

XIV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

1 -5 <C \leq 40% – Low/ Slight

 $\pmb{2}$ - 40 % < C < 60% – Moderate

 $\boldsymbol{3}$ - $60\% \leq C < 100\%$ – Substantial /High

			PSO(s)												
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	_	-	-
CO 3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	2	-	-	-	-	-	-	-	-	-	-	_	-	-
CO 6	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	33	10	-	1	-	-	-	-	-	-	-	-	-	-	-
AVERAGE	3	2	-	1	-	-	-	-	-	-	-	-	-	-	-
XV ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	 ✓ 	Assignments	~
Quiz	\checkmark	Tech - Talk	-	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory	-	5 Minutes Video	-	Open Ended	-
Practices		/ Concept Video		Experiments	
Micro	-	-	-	-	-
Projects					

XVI ASSESSMENT METHODOLOGY-INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities/ Modeling & I	Experim	ental Tools in Engineering by Experts

XVII SYLLABUS:

MODULE I	INTRODUCTION TO ELECTRICAL CIRCUITS
	Circuit concept: Basic definitions, Ohm's law at constant temperature, classifications of elements, independent and dependent sources, voltage and current relationships for passive elements, Single phase AC circuits: Representation of alternating quantities, properties of different periodic wave forms, phase and phase difference, concept of impedance and admittance, power in AC circuits.
MODULE II	ANALYSIS OF ELECTRICAL CIRCUITS
	Circuit analysis: Source transformation, Kirchhoff's laws, total resistance, inductance and capacitance of circuits, Star - delta transformation technique, mesh analysis and nodal analysis, inspection method, super mesh, super node analysis.
MODULE III	NETWORK THEOREMS (DC AND AC)
	Network Theorems: Tellegen's, superposition, reciprocity, Thevenin's, Norton's, maximum power transfer, Milliman's and compensation theorems for DC excitations, numerical problems. Network Theorems: Tellegen's, superposition, reciprocity, Thevenin's, Norton's, maximum power transfer, Milliman's and compensation theorems for AC excitations, numerical problems.
MODULE IV	MAGNETIC CIRCUITS
	Magnetic circuits: Faraday's laws of electromagnetic induction, concept of self and mutual inductance, dot convention, coefficient of coupling, composite magnetic circuit, analysis of series and parallel magnetic circuits.
MODULE V	TWO PORT NETWORK AND GRAPH THEORY
	Two Port Network: Two port parameters, interrelations, Two port Interconnections. Network topology: Definitions, incidence matrix, basic tie set and basic cut set matrices for planar networks, duality and dual networks.

TEXTBOOKS

- 1. A Sudhakar, Shyammohan S Palli, "Circuits and Networks", Tata McGraw-Hill, 4th Edition, 2010.
- 2. M E Van Valkenberg, "Network Analysis", PHI, 3rd Edition, 2014.

REFERENCE BOOKS:

- 1. John Bird, "Electrical Circuit Theory and Technology", Newnes, 2nd Edition, 2003.
- 2. C L Wadhwa, "Electrical Circuit Analysis including Passive Network Synthesis", New Age International, 2nd Edition, 2009.

WEB REFERENCES:

1. https://nptel.ac.in/courses/108/104/108104052/

COURSE WEB PAGE:

XVIII COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO(s)	Reference		
	OBE DISCUSSION				
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program	-	-		
	Outcomes (PO) and CO - PO Mapping				
	CONTENT DELIVERY (THEORY)				
2	Introduction to Electrical Circuits	CO 1	T1: 2.1		
3	Basic Definitions and Ohm's Law at Constant Temperature	CO 1	T1:2.4		
4	Classifications of Elements	CO 1	T1:2.4		
5	Voltage and current relationships for passive elements	CO 1	T1:2.5		
6	Introduction to Single phase AC circuits, Representation of alternating quantities	CO 1	T1: 2.1		
7	Properties of different periodic wave forms, Phase and phase difference	CO 1	T1:2.4		
8	Concept of Impedance, Admittance and Power in AC Circuits	CO 1	T1:2.4		
9	Source transformation	CO 2	T1:1.5- 1.6		
10	Kirchhoff's laws	CO 2	T1:1.8- 1.12		
11	Equivalent Values of Series, Parallel R, L & C Networks	CO 2	T1:1.13- 1.18		
12	Star to Delta or Delta to Star Transformation Technique	CO 2	T1:1.1- 1.18		
13	Mesh Analysis Solved Technique with simple example and Animation	CO 2	T1:5.1- 5.2		
14	Nodal analysis Solved Technique with simple example and Animation	CO 2	T1:5.3		

15	Inspection Method Solved Technique with simple example and Animation	CO 2	T1:5.7
16	Super mesh analysis Solved Technique with simple example and Animation	CO 2	T1:5.4- 5.6
17	Super node analysis Solved Technique with simple example and Animation	CO 2	T1:6.5- 6.11
18	Tellegen's theorem for DC excitations Solved Technique with simple example and Animation	CO 3	T1:7.1 -7.4
19	Superposition theorem for DC excitations Solved Technique with simple example and Animation	CO 3	T1:5.3
20	Reciprocity theorem for DC excitations Solved Technique with simple example and Animation	CO 3	T1:5.7
21	Thevenin's theorem for DC excitations Solved Technique with simple example and Animation	CO 3	T1:5.1- 5.2
22	Norton's theorem for DC excitations Solved Technique with simple example and Animation	CO 3	T1:5.3
23	Maximum power transfer theorem for DC excitations Solved Technique with simple example and Animation	CO 3	T1:5.7
24	Milliman's theorem for DC excitations Solved Technique with simple example and Animation	CO 3	T1:5.4- 5.6
25	Compensation theorem for DC excitations Solved Technique with simple example and Animation	CO 3	T1:6.5- 6.11
26	Tellegen's theorem for AC excitations	CO 3	T1:7.1 -7.4
27	Superposition theorem for AC excitations	CO 3	T1:8.4- 8.6
28	Reciprocity theorem for AC excitations	CO 3	T1: 8.12-8.15
29	Thevenin's theorem for AC excitations	CO 3	T1:8.4- 8.6
30	Norton's theorem for AC excitations	CO 3	T1: 8.12-8.15
31	Maximum power transfer theorem for AC excitations	CO 3	T1:8.4- 8.6
32	Milliman's and compensation theorems theorem for AC excitations	CO 3	T1: 8.12-8.15
33	Faraday's laws of electromagnetic induction	CO 4	T1:8.4- 8.6
34	Concept of self and mutual inductance	CO 4	T1: 8.12-8.15
35	Dot convention, coefficient of coupling, composite magnetic circuit	CO 4	T1:8.4- 8.6
36	Analysis of series magnetic circuits	CO 4	T1: 8.12-8.15
37	Analysis of parallel magnetic circuits	CO 4	T1:8.4- 8.6
38	Two port parameters (Z, Y, T, ABCD)	CO 5	T1: 8.12-8.15

39	Two port Interconnections	CO 5	T1.8 4-
			8.6
40	Incidence matrix, basic tie set and basic cut set matrices for	CO 5	T1:
	planar networks		8.12-8.15
41	Duality and dual networks	CO 5	T1:8.4-
			8.6
	PROBLEM SOLVING/ CASE STUDIES	5	
42	Total resistance, inductance and capacitance of circuits	CO 2	T1:10.8
43	Star - delta transformation technique	CO 2	T1:10.9-
		00.0	IU TU 10 10
44	Mesh analysis and Nodal analysis	CO 2	T4:10.10
45	Super mesh and Super node analysis.	CO 2	T1:8.2
46	Tellegen's and reciprocity theorems for DC excitations	CO 3	
47	Thevenin's and Norton's theorems for DC excitations	CO 3	T1:1.5- 1.6
48	maximum power transfer, Milliman's and compensation	CO 3	T1:1.8-
	theorems for DC excitations		1.12
49	Tellegen's and reciprocity theorems for excitations	CO 3	T1:1.13- 1.18
50	Thevenin's and Norton's theorems for AC excitations	CO 3	T1:1.19.1-
51	maximum power transfer Milliman's and compensation	CO 3	T1.13.2
01	theorems for AC excitations		1.19.2
52	Dot convention, coefficient of coupling, composite magnetic	CO 4	T1:1.193
	circuit		
53	analysis of series and parallel magnetic circuits	CO 4	T1:1.19.6
54	Two port parameters (Z, Y, T, ABCD)	CO 5	T1:1.19.
55	Incidence matrix, basic tie set and basic cut set matrices for planar networks	CO 5	T1:2.11.1-
56	Duality and dual networks	CO 5	T1:2.11.1-
F 77	DISCUSSION OF DEFINITION AND TERMIN	OLUGY	D401
57	Module 1	CO 1,2	R4:2.1
58	Module II	CO 3	14:7.3 D451
59	Module III	CO 4	R4:5.1
60	Module IV	CO 5	T1:7.5
61	Module V	CO 6	11: 4.1
	DISCUSSION OF QUESTION BANK	0015	Diai
62	Module 1	CO 1,2	R4:2.1
63	Module II	CO 3	T4:7.3
64	Module III	CO 4	R4:5.1
65	Module IV	CO 5	T1:7.5
66	Module V	CO 6	T1: 4.1

Course Coordinator Ms. A Srikanth, Assistant Professor HOD,EEE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF(s)
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10
	 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	

PO 4	Use research-based knowledge and research methods including design	11
	of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct	
	Investigations of Complex Broblems)	
	1 Knowledge of characteristics of particular materials, equipment	
	rocesses or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology	
	development, etc.)	
	4. Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and contractual	
	issues	
	5. Understanding of appropriate codes of practice and industry	
	standards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty	
	8. Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of	
	systems and components through the use of analytical methods and	
	modeling techniques	
	10. Ability to apply quantitative methods and computer software	
	problems	
	11 Understanding of and ability to apply a systems approach to	
	engineering problems.	
PO 5	Create select and apply appropriate techniques resources and	1
100	modern Engineering and IT tools including prediction and modelling	1
	to complex Engineering activities with an understanding of the	
	limitations (Modern Tool Usage).	
	1. Computer software / simulation packages / diagnostic equipment	
	/ technical library resources / literature search tools.	
PO 6	Apply reasoning informed by the contextual knowledge to assess	5
	societal, health, safety, legal and cultural issues and the consequent	
	responsibilities relevant to the professional engineering practice (The	
	Engineer and Society).	
	1. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	2. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	3. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	4. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and fisk (including environmental risk) issues	
	o. Understanding of the need for a high level of professional and	
1	connear conduct in engineering.	

PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12
	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	

PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing)	5
	 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral) 	
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12
PO 12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning – stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2-3 new significant skills 8. Have taken up to 80 hours (2 weeks) training per year 	8

ANNEXURE - II

KEY ATTRIBUTES FOR ASSESSING PROGRAM SPECIFIC OUTCOMES

PSO	PSO Statement / Key Competencies Features (KCF)	No.
Number		of
		KCF(s)

PSO 1	Design, develop, fabricate and commission the electrical systems involving power generation, transmission, distribution and utilization.	5
	1. Operate, control and protect electrical power system.	
	2. Validate the interconnected power system.	
	3. Ensure reliable, efficient and compliant operation of electrical	
	systems.	
	4. Familiarize the safety, legal and health norms in electrical system.	
	5. Adopt the engineering professional code and conduct.	
PSO 2	Focus on the components of electrical drives with its converter topologies for energy conversion, management and auditing in specific applications of industry and sustainable rural development.	11
	1. Control the electric drives for renewable and non-renewable energy sources.	
	2. Fabricate converters with various components and control	
	3 Synthesis systematic procedure to examine electrical	
	components/machines using software tools	
	A Inspect survey and analyze energy flow	
	5. Control and manage the power generation and utilization	
	6 Familiarize the safety legal and health norms in electrical system	
	7 Adopt the engineering professional code and conduct	
	8. Explore autonomous power	
	9. Evolve into green energy and assess results	
	10. Realize energy policies and education	
	11. Potential contribution of clean energy for rural development.	
PSO 3	Gain the hands-on competency skills in PLC automation process	7
1.000	controllers HMI and other computing tools necessary for entry level	•
	position to meet the requirements of the employer.	
	1. Explicit software and programming tools for electrical systems. 2.	
	Adopt technical library resources and literature search.	
	3. Model, program for operation and control of electrical systems.	
	4. Constitute the systems employed for motion control.	
	5. Interface automation tools.	
	6. Research, analysis, problem solving and presentation using	
	software aids.	
	7. Programming and hands-on skills to meet requirements of global environment.	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING					
Course Title	PROGRA	PROGRAMMING FOR PROBLEM SOLVING USING C				
Course Code	ACSC04	ACSC04				
Program	B.Tech					
Semester	II					
Course Type	FOUNDATION					
Regulation	UG-20					
		Theory		Prae	ctical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Dr. J Sirisha Devi, Associate Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	-	-	Basic Programming Concepts

II COURSE OVERVIEW:

The course emphasis on the problem-solving aspects in using C programming. It is the fundamental course and is interdisciplinary in nature for all engineering applications. The students will understand programming language, programming, concepts of loops, reading a set of data, step wise refinements, functions, control structures, arrays, dynamic memory allocations, enumerated data types, structures, unions, and file handling. This course provides adequate knowledge to solve problems in their respective domains.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
PPSC	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
\checkmark	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20%	Remember
30%	Understand
50%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
	Continuous Internal Examination – 2 (Mid-term)	10	30	
CIA	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
Total Marks			100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Problem-solving through programming.
II	Programming language, programming, reading a set of Data, stepwise refinement, concepts of Loops, Functions, Control structure, Arrays, Structure, Pointer and File concept.
III	To build efficient programs in C language essential for future programming and software engineering courses.
IV	Acquire programming skills in C Programming.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Define the algorithms and draw flowcharts for solving Mathematical	Remember
	and Engineering problems.	
CO 2	Construct programs for decision structures and loops.	Apply
CO 3	Interpret various types of functions, arrays, and strings for complex	Under-
	problem solving.	stand
CO 4	Illustrate he dynamic memory allocation, structures, unions and	Under-
	enumerations to solve problems.	stand
CO 5	Interpret file input and output functions to do integrated	Under-
	programming.	stand
CO 6	Utilize the algorithms in C language to real-life computational	Apply
	problems.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/SEE
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	CIE/SEE
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	2	CIE/SEE
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 5	Modern Tool Usage: Create, select, and	2	Open Ended
	apply appropriate techniques, resources, and		Experiments
	modern Engineering and IT tools including		
	prediction and modelling to complex		
	Engineering activities with an understanding of		
	the limitations		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	PROGRAM SPECIFIC OUTCOMES	Strength	Profi- ciency Assessed by
PSO 1	Build Embedded Software and Digital Circuit	2	Tech
	Contraction of the second seco		tark/Open
	Systems and Signal Processing Applications.		ended
			experiments
PSO 2	Focus on the Application Specific Integrated	2	Tech
	Circuit (ASIC) Prototype designs, Virtual		talk/Open
	Instrumentation and System on Chip (SOC)		ended
	designs.		experiments

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO								PSO	PSO	PSO					
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-		
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-		
CO 3	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-		
CO 4	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	-	-		-	-	-		
CO 5	\checkmark	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-		
CO 6	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-		

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Developing algorithms and draw flowcharts for solving mathematical and engineering problems related to areas of computer science.	3
	PO 2	Understand the various symbols to draw a flowchart, identify the appropriate symbols to solve a problem, then formulate the solution, and interpret the result for the improvement of the solution .	6
	PSO 1	Understand the features of procedural programming for designing and analyzing computer programs for problem-solving.	3
CO 2	PO 1	Understand branching statements, loop statements, and apply the fundamentals of mathematics , science and engineering .	3
	PO 2	Understand the problem statement , control the flow of data, design the solution and analyze the same to validate the results in a program to solve complex engineering problems.	6
	PO 3	Recognize an appropriate control structure to design and develop a solution for a real-time scenario, and communicating effectively with engineering community.	5
CO 3	PO 1	Recognize the importance of recursion for developing programs in real-time scenarios using principles of mathematics , and engineering fundamentals .	3
	PO 2	Understand the various kinds of functions , identify the suitable type of function to solve a problem, formulate the solution, and interpret the result for the improvement of the solution.	6
	PO 5	Apply techniques of structured decomposition to dividea problem into smaller pieces with an understanding of its limitations.	1
CO 4	PO 1	Extend the focus on the usage of heterogeneous data types as a basic building block in problem solving using principles of science , and engineering fundamentals.	3

	PO 2	Recognize the representation of the structure, assess in solving a problem, express the solution , and analyze the result for solution enhancement .	5
	PO 5	Understand pointers conceptually and apply them in modeling a complex engineering activity.	1
CO 5	PO 1	Make a use of an appropriate type of file to store a large volume of persistent data and give solution to engineering problems .	2
	PO 5	To identify appropriate mode to access a file and run the same program multiple times.	1
CO 6	PO 12	Realize the need and the desire to train and invest in autonomous and lifelong learning in the widest sense of technical transition to achieve employability expertise and excel advanced engineering concepts .	7
	PSO 2	Attain the knowledge and skills for employability and to succeed in national and international level competitive examinations .	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-PING:

	PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	6	-	-	-	-	-	-	-	-	-	-	3	-	-	
CO 2	3	6	5	-	-	-	-	-	-	-	-	-	-	-	-	
CO 3	3	6	-	-	1	-	-	-	-	-	-	-	-		-	
CO 4	3	5	-	-	1	-	-	-	-	-	-	-	-	-	-	
CO 5	2	-	-	-	1	-	-	-	-	-	-	-	-	-	-	
CO 6	-	-	-	-	-	-	-	-	-	-	-	7	-	3	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	100	60	-	-	-	-	-	-	-	-	-	-	50	-	-		
CO 2	100	60	50	-	-	-	-	-	-	-	-	-	-	-	-		
CO 3	100	60	-	-	100	-	-	-	-	-	-	-	-	-	-		
CO 4	100	50	-	-	100	-	-	-	-	-	-	-	-	-	-		
CO 5	66	-	-	-	100	-	-	-	-	-	-	-	-	-	-		
CO 6	-	-	-	-	-	-	-	-	-	-	-	58	-	50	-		

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation. $\boldsymbol{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

 $1 - 5 < C \le 40\% - Low/$ Slight

 $\pmb{2}$ - 40 % < C < 60% –Moderate $\pmb{3}$ - 60% \leq C < 100% – Substantial / High

		PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	3	-	-	-	-	-	I	-	-	-	-	2	-	-	
CO 2	3	3	2	-	-	-	-	I	-	-	-	-	-	-	-	
CO 3	3	3	-	-	3	-	-	I	-	-	-	-	-		-	
CO 4	3	2	-	-	3	-	-	-	-	-	-	-	-	-	-	
CO 5	3	-	-	-	3	-	-	-	-	-	-	-	-	-	-	
CO 6	-	-	-	-	-	-	-	-	-	-	-	2	-	2	-	
TOTAL	15	11	2	-	9	-	-	-	-	-	-	2	2	2	-	
AVER-	3	2.7	2.5	-	3	-	-	-	-	-	-	2	2	2	-	
AGE																

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	~	Open Ended Experiments	-
Assignments	-				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

- Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback
--	--------------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION									
	Introduction to components of a computer: Memory, processor, I/O									
	Devices, storage, operating system; Concept of assembler, compiler,									
	interpreter, loader and linker. Idea of Algorithms: Algorithms, Flowcharts,									
	Pseudo code with examples, From algorithms to Programs. Introduction to									
	C Programming Language: History of C, Basic structure of a C program,									
	Process of compiling and running a C program; C Tokens: Keywords,									
	Identifiers, Constants, Strings, Special symbols, Variables, Data types;									
	Operators, Precedence of Operators, Expression evaluation, Formatted									
	Input/Output functions, Type Conversion and type casting.									
MODULE II	CONTROL STRUCTRES									
	Decision Making Statements: Simple if, if-else, else if ladder, Nested if,									
	switch case statement; Loop control statements: for, while and do while									
	loops, nested loops; Unconditional Control Structures: break, continue									
	and goto statements.									

MODULE III	ARRAYS AND FUNCTIONS
	Arrays: Introduction, Single dimensional array and multi-dimensional array: declaration, initialization, accessing elements of an array; Operations on arrays: traversal, reverse, insertion, deletion, merge, search; Strings: Arrays of characters, Reading and writing strings, String handling functions, Operations on strings; array of strings. Functions: Concept of user defined functions, Function declaration, return statement, Function prototype, Types of functions, Inter function communication, Function calls, Parameter passing mechanisms; Recursion; Passing arrays to functions, passing strings to functions; Storage classes.
MODULE IV	POINTERS AND STRUCTURES
	Pointer: Basics of pointers, Pointer arithmetic, pointer to pointers, array of pointers, Generic pointers, Null pointers, Pointers as functions arguments, Functions returning pointers; Dynamic memory allocation. Structures: Structure definition, initialization, structure members, nested structures, arrays of structures, structures and functions, structures and pointers, self-referential structures; Unions: Union definition, initialization, accessing union members; bit fields, typedef, enumerations, Preprocessor directives.
MODULE V	FILE HANDLING AND APPLICATIONS IN C
	File Handling: Concept of a file, text files and binary files, streams, standard I/O, formatted I/O, file I/O operations, error handling, Line I/O, miscellaneous functions; Applications in C.

TEXTBOOKS

- 1. Byron Gottfried, "Programming with C", Schaum's Outlines Series, McGraw Hill Education, 3rd Edition, 2017
- 2. Reema Thareja, "Programming in C", Oxford university press, 2nd Edition, 2016.

REFERENCE BOOKS:

- 1. W. Kernighan Brian, Dennis M. Ritchie, "The C Programming Language", PHI Learning, 2nd Edition, 1988.
- 2. Yashavant Kanetkar, "Exploring C", BPB Publishers, 2nd Edition, 2003.
- 3. Schildt Herbert, "C: The Complete Reference", Tata McGraw Hill Education, 4th Edition, 2014.
- 4. R. S. Bichkar, "Programming with C", Universities Press, 2 nd Edition, 2012.
- 5. Dey Pradeep, Manas Ghosh, "Computer Fundamentals and Programming in C", Oxford University Press, 2nd Edition, 2006.
- 6. Stephen G. Kochan, "Programming in C", Addison-Wesley Professional, 4th Edition, 2014.

WEB REFERENCES:

- 1. https://www.nptel.ac.in/courses/108106073/
- 2. https://www.iare.ac.in

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Refer-
	OBE DISCUSSION		ence
1	Discussion on Outcome Based Education CO PO and	CO-PO Mar	ning
1	CONTENT DELIVERY (THEORY)		ping
2	Understand components of a computer	CO 1	T2: 1.1-1.2, R4: 1.1-1.3
3	Identify and apply algorithms and flowcharts for problem solving	CO 1	T2: 2.1-2.2, R4: 1.4
4	Understand pseudo code for a given problem	CO 1	T2: 2.1-2.2
5	Understand the basic structure, process of compiling and running a C program	CO 1	T2: 2.1-2.2,
6	Understand keywords, identifiers, constants, strings, special symbols, variables	CO 1	T2: 1.4 -1.5, R4: 2.1 - 2.4
7	Define the data types, and operators to write C Program	CO 1	T2: 2.1-2.2
8	Understand precedence of operators, expression evaluation	CO 1	T2: 2.3-2.6
9	Understand formatted input/output functions, Type Conversion and type casting in C Programming	CO 1	T2: 2.3-2.7
10	Identify and apply decision making statements in C programming	CO 2	T2: 3.1-3.5
11	Identify and apply loop control structures in C programming	CO 2	T2: 5.2-5.3
12	Identify and apply unconditional control structures in C programming	CO 2	T2: 6.1-6.6
13	Understand single dimensional array and multi-deimensional array: declaration, initialization, accessing	CO 3	T2: 6.7
14	Operations on arrays: traversal, reverse, insertion	CO 3	T2: 8.1-8.2, R4: 15.1
15	Operations on arrays: deletion, merge, search	CO 3	T2: 8.3, R4: 15.1
16	Arrays of characters, Reading and writing strings, String handling functions	CO 3	T2: 11.1-11.5
17	Operations on strings: array of strings	CO 3	T2: 4.1-4.5
18	Concept of user defined functions, Function declaration	CO 3	T1: 7
19	return statement, Function prototype	CO 3	T2: 6.9

20	Types of functions, Inter function communication	CO 3	T1: 10, T2:10.1- 10.2
21	Function calls, Parameter passing mechanisms, Recursion	CO 3	T2: 10.3-10.4, R4:8.3- 8.4
22	Passing arrays to functions, passing strings to functions	CO 3	T2:10.5
23	Storage classes	CO 3	T1: 8.9, R4:8.6.3
24	Basics of pointers, Pointer arithmetic	CO 4	T2: 3.1, R4:11.1
25	Pointer to pointers	CO 4	T2: 3.2
26	Array of pointers	CO 4	T2: 3.2
27	Generic pointer, Null pointers	CO 4	T2: 3.3
28	Pointers as function arguments, Functions returning pointers	CO 4	T2: 3.4-3.5
29	Dynamic memory allocation	CO 4	T2: 6.1-6.6
30	Structure definition, initialization, structure members	CO 4	T2: 12.3-12.4, R4:13.4
31	Nested structures	CO 4	T2: 12.3-12.4, R4:13.4
32	Arrays of structures, structures and functions	CO 4	T2: 2.1-2.2, R4:13.2
33	Structures and pointers, self-referential structures	CO 4	T2: 2.1-2.2
34	Union, bit fields, typedef	CO 4	T2: 12.4
35	Enumerations, Preprocessor directives	CO 4	T1: 8.9, T2: 2.3-2.5
36	Concept of a file, text files and binary files, streams	CO 5	T2: 10.4, R4:14.1- 14.4
37	Standard I/O, formatted I/O, file I/O operations	CO 5	T2: 10.4, R4:14.1- 14.4
38	Error handling	CO 5	R3: 12.1 - 12.3
39	Line I/O, miscellaneous functions	CO 5	R3: 12.1 - 12.3
40	Applications of C	CO 6	R4: 17
	PROBLEM SOLVING/ CASE STUDIES	5	
1	Write a program in C that takes minutes as input, and display the total number of hours and minutes.	CO 1	T2:2.3- 2.6

2	Write a program in C that reads a forename, surname and year of birth and display the names and the year one after another sequentially.	CO 1	T2:2.3- 2.7
3	Write a C program to find the third angle of a triangle if two angles are given.	CO 2	T2:3.1- 3.5
4	Write a program in C to display the such a pattern for n number of rows using a number which will start with the number 1 and the first and a last number of each row will be 1.	CO 2	T2:5.2- 5.3
5	Write a program in C to find the prime numbers within a range of numbers.	CO 2	T2:5.2- 5.3
6	Write a program in C to display the n terms of harmonic series and their sum.	CO 2	T2:6.1- 6.6
7	Write a program in C to display the pattern like right angle triangle using an asterisk.	CO 2	T2:5.2- 5.3
8	Program to accept N integer number and store them in an array AR. The odd elements in the AR are copied into OAR and other elements are copied into EAR. Display the contents of OAR and EAR	CO 3	T2: 6.7
9	Write a C program to illustrate how user authentication is made before allowing the user to access the secured resources. It asks for the user name and then the password. The password that you enter will not be displayed, instead that character is replaced by '*'	CO 3	T2: 8.3, R4:15.1
10	Write a C program to accept a matric and determine whether it is a sparse matrix. A sparse martix is matrix which has more zero elements than nonzero elements	CO 3	T2: 8.1-8.2, R4: 15.1
11	Write a C program to accept a amtric of order MxN and sort all rows of the matrix in ascending order and all columns in descending order	CO 3	T2: 6.7
12	Write a C program to accept a set of names and sort them in an alphabetical order, Use structures to store the names	CO 4	T2:12.3- 12.4, R4:13.4
13	Write a C program to find the sum of two one-dimensional arrays using Dynamic Memory Allocation	CO 4	T2:6.1- 6.6
14	Write a program in C to find the content of the file and number of lines in a Text File.	CO 5	T2:10.4, R4:14.1- 14.4
15	Write a program in C to replace a specific line with another text in a file.	CO 5	T2:10.4, R4:14.1- 14.4
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	Module I- Components of computers, C programming language	CO 1	T2:1.1- 2.6, R4:1.1- 2.4
2	Module II- Control structures	CO 2	T2:3.1- 6.6

3	Module III- Arrays, Strings and Functions	CO 3	T1:7, T2:6.7- 11.5
4	Module IV- Pointers and Structures	CO 4	T2:3.1- 6.6, R4:11.1- 13.4
5	Module V- File handling functions	CO 5	T2:10.4, R4:14.1- 14.4, R3:12.1- 12.3
	DISCUSSION OF QUESTION BANK		
1	Module I- Components of computers, C programming language	CO 1	T2:1.1- 2.6, R4:1.1- 2.4
2	Module II- Control structures	CO 2	T2:3.1- 6.6
3	Module III- Arrays, Strings and Functions	CO 3	T1:7, T2:6.7- 11.5
4	Module IV- Pointers and Structures	CO 4	T2:3.1- 6.6, R4:11.1- 13.4
5	Module V- File handling functions	CO 5	T2:10.4, R4:14.1- 14.4, R3:12.1- 12.3

Signature of Course Coordinator Dr. J Sirisha Devi, Associate Professor HOD,CSE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	ENGINEERING WORKSHOP PRACTICE						
Course Code	AMEC04						
Program	B.Tech						
Semester	II ECE						
Course Type	FOUNDATION						
Regulation	IARE - UG 20						
		Theory		Prac	tical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	2	1		
Course Coordinator	Mr. Gooty Rohan, Assistant Professor						

I COURSE OVERVIEW:

Engineering workshop Practice is intended to enhance the learning experience of the student about engineering tools for cutting and measuring used in a workshop. Students are expected to gain experience in hands on training as well as knowledge to carry out a particular process for making a product using the basic manufacturing devices used in Workshop.

II COURSE PRE-R'EQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	-	-

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Engineering Workshop Practice	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab Worksheets		Viva Questions		Probing Further
\checkmark		\checkmark		✓		\checkmark	Experiments

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day-to-day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the principal from the panel of experts recommended by Chairman, BOS.

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

The emphasis on the experiments is broadly based on the following criteria given in Table: 1

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Laboratory		Total Marks
Type of	Day to day	Final internal lab	
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

A. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

B. Programming Based

Purpose	Algorithm	Program	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The application of jigs and fixtures, measuring, marking and cutting tools in various types of manufacturing processes.
II	The preparation of different joints in carpentry and fitting and also familiarizes wood working machinery.
III	The concepts of forming processes by forging, black-smithy and tin-smithy with an application extracts of Engineering Drawing.
IV	The standard electrical wiring practices for domestic and industrial appliances.
V	The current advancements in developing the prototype models through digital manufacturing facilities.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Identify the conventional representation of materials and machine	Apply
	elements for making a desired product with given work piece.	
CO 2	Determine the ability to Produce Fitting jobs as per specified	Evaluate
	dimensions in addition to demonstrating proficiency with hand tools	
	common in fitting.	
CO 3	Create a desired shape with given metal rod by using fire and furnaceto	Create
	convert given shape into useable elements using basic blacksmith	
	techniques.	
	Organization to be in to be investigated along with switchle tools for	Annlar
	Organize the mounting techniques along with suitable tools for	Apply
	producing casting of different and complex shapes using various patterns.	
CO 5	Develop the various engineering and household products by using tin	Apply
	simthy instruments/machinesfor manufacturing the tin boxes, cans,	
	funnels, ducts etc., from a flat sheet of metal.	
CO 6	Compare various electrical circuits by using conduit system of wiring	Analyze
	to prepare different types of electrical connection on the given circuit	
	boards using appropriate electrical tools.	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Lab Exercises
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	CIA
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Lab Exercises
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	3	SEE

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 3	Make use of Advanced Structural Analysis and	2	Lab
	Project Management Software for creating Modern		Exercises
	Avenues to succeed as an Entrepreneur, Pursue		
	Higher Studies and Career Paths.		

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Apply the knowledge of engineering fundamentals to join	1
		given wooden pieces according to given sketch to develop	
		required joint.	

	PO 3	Conversion of given design into a practical output using design solution for complex engineering problems and design system components	2
	PO 5	Develop the given resources and engineering tools into proper fitment as given in the diagrammatical representation.	2
	PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	2
	PSO 3	Make use of Experimental tools for Building Career Paths towards Innovation Startups, Employability in different mechanical trades.	2
CO 2	PO 1	Apply the knowledge of engineering fundamentals to join given metal pieces according to given sketch to develop required joint.	1
	PO 5	Develop the given resources and engineering tools into proper fitment as given in the diagrammatical representation.	2
	PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	2
	PSO 3	Make use of Experimental tools for Building Career Paths towards Innovation Startups, Employability in different mechanical trades.	2
CO 3	PO 1	Apply the knowledge of engineering fundamentals to make metal rod into given required shape according to given sketch to develop required joint.	1
	PO 5	Develop the given resources and engineering tools into required shape as given in the diagrammatical representation.	2
	PSO 3	Make use of Experimental tools for Building Career Paths towards Innovation Startups, Employability in different mechanical trades.	2
CO 4	PO 1	Apply the knowledge of engineering fundamentals to make the casting product from given materials according to given sketch to develop required shape.	1
	PO 3	Conversion of given design into a practical output using design solution for complex engineering problems and design system components.	2
	PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	2
CO 5	PO 5	Develop the given resources and engineering tools into required shape as given in the diagrammatical representation.	2

	PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	2
CO 6	PO 1	Apply the knowledge of engineering fundamentals to make the required electrical connection according to given circuit diagram to develop connection.	1
	PO 5	Develop the given resources and engineering tools into proper fitment as given in the diagrammatical representation.	2
	PO 11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	2
	PSO 3	Make use of Experimental tools for Building Career Paths towards Innovation Startups, Employability in different mechanical trades.	2

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUTCOMES			PSO'S	
OUTCOMES	PO 1	PO 3	PO 5	PO 11	PSO 3
CO 1	1	2	2	2	2
CO 2	1	-	2	2	2
CO 3	1	-	2	-	2
CO 4	1	2	-	2	-
CO 5	-	-	2	2	-
CO 6	1	-	2	2	2

3 =High; 2 =Medium; 1 =Low

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1, PO 3,	SEE Exams	PO 1,PO 3,	Seminars	-
	PSO 3		PO 5, PSO 3		
Laboratory Practices	PO 1,PO 3, PO 5, PSO 3	Student Viva	PO 1, PO 5	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	√	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XIV SYLLABUS:

WEEK 1	CARPENTRY-I
	Batch I: Preparation of Tenon joint as per given dimensions.
	Batch II: Preparation of Mortise joint as per given taper angle.
WEEK 2	CARPENTRY-II
	Batch I: Preparation of dove tail joint as per given taper angle.
	Batch II: Preparation of lap joint as per given dimensions.
WEEK 3	FITTING - I
	Batch I: Make a straight fit for given dimensions.
	Batch II: Make a square fit for given dimensions.
WEEK 4	FITTING - II
	Batch I: Make a V fit for given dimensions.
	Batch II: Make a semicircular fit for given dimensions.
WEEK 5	BLACKSMITHY- I
	Batch I: Prepare S-bend for given MS rod using open hearth furnace.
	Batch II: Prepare J-bend for given MS rod using open hearth furnace.
WEEK 6	BLACKSMITHY- II
	Batch I: Prepare Fan hook for given dimensions.
	Batch II: Prepare Round to Square for given dimensions.
WEEK 7	MOULD PREPARATION-I
	Batch I: Prepare a wheel flange mould using a given wooden pattern.
	Batch II: Prepare a bearing housing using an aluminum pattern.
WEEK 8	MOULD PREPARATION-II
	Batch I: Prepare a bearing housing using an aluminum pattern.
	Batch II: Prepare a wheel flange mould using a given wooden pattern.
WEEK 9	TINSMITHY- I
	Batch I: Prepare the development of a surface and make a rectangular tray for given dimensions.
	Batch II: Prepare the development of a surface and make a round tin for given
	dimensions.
WEEK 10	TINSMITHY- II
	Batch I: Prepare the development of a surface and make a Square Tin, for given
	dimensions.
	siven dimensions
WEEK 11	ELECTRICAL WIRING-I
	Batch I: Make an electrical connection of two bulbs connected in series.
	Batch II: Make an electrical connection of two bulbs connected in parallel.
WEEK 12	ELECTRICAL WIRING-II
	Batch I: Make an electrical connection of one bulb controlled by two switches
	connected.
	Batch II: Make an electrical connection of tube light.

TEXTBOOKS

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., Elements of Workshop Technology, Media promoters and publishers private limited, Mumbai, Vol. I 2008 and Vol. II 2010.
- 2. Kalpakjian S, Steven S. Schmid, Manufacturing Engineering and Technology, Pearson Education India Edition, 4th Edition, 2002.
- 3. Gowri P. Hariharan, A. Suresh Babu, Manufacturing Technology I, Pearson Education, 2008.
- 4. Roy A. Lindberg, Processes and Materials of Manufacture, Prentice Hall India, 4 th Edition, 1998.
- 5. Rao P.N., Manufacturing Technology, Vol. I and Vol. II, Tata McGraw-Hill House, 2017

REFERENCE BOOKS:

- 1. Gowri P. Hariharan, A. Suresh Babu, Manufacturing Technology I, Pearson Education, 2008.
- 2. Roy A. Lindberg, Processes and Materials of Manufacture, Prentice Hall India, 4th Edition, 1998.
- 3. Rao P.N., Manufacturing Technology, Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Tenon joint and Mortise joint.	CO 1,	T1:1.4,
		CO 2	R1:1.2
2	Dove tail joint and Lap joint.	CO 1,	T1:1.5,
		CO 2	R1:1.3
3	Straight fit and Square fit.	CO 3,	T2:12.2,
		CO 4	R2:13.1
4	V fit and Semicircular fit.	CO 3,	T2:12.3,
		CO 4	R2:13.4
5	S-bend and J-bend.	CO 5,	T3:9.1,
		CO 6	R3:3
6	Fan and Round to Square shape.	CO 5,	T3:9.1,
		CO 6	R3:3
7	Wheel flange and bearing housing.	CO 7,	T4:1.9,
		CO 8	R2:1.8
8	Bearing housing and Wheel flange.	CO 7,	T4:2,
		CO 8	R2:1.9
9	Rectangular tray and Round tin.	CO 9,	T5:1.4,
		CO 10	R1:1.2
10	Make a Square Tin and Conical Funnel.	CO 9,	T5:1.7,
		CO 10	R2:1.3
11	Series connection and parallel Connection.	CO 11,	T4:1.4,
		CO 12	R1:1.2

12	One bulb controlled by two switches and tube light connection.	CO 11,	T5:7.1,
		CO 12	R3:3.8

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Divided Tenon Joint:
	It is the simplest form of Mortise and tenon joint and this joint is made by fitting a short tenon into a continuous groove. This joint has the advantage of being easy to cut and is often used to make cabinet doors and other light duty frame and panel assemblies.
2	Cross Fitting:
	It is the fundamental of type of fitting which are used fitting trade and it is formed by joining the two inclined shaped cut specimens together and is often used to join the universal bearings.
3	Hexagonal Headed Bolt:
	Hexagonal bolts are large bolts with a six-sided head used to fasten wood to wood, or metal to wood. These will have a tendency to spin as you tighten them.
4	Open scoop:
	Open scoop is used for accurately dispensing powders and granules hygienically. It is suitable for any hygienic application.
5	T-Pipe Joint:
	T-pipe is a type of fitting which is T-shaped having two outlets at 90 degrees to the main line. It is short piece of pipe with a lateral outlet.it is widely used as pipe fittings.
6	Grooved Pulley:
	Grooved pulley often used to for holding a belt, wire rope or rope and incorporated into a pulley. These sheave pins on a axle or bearing inside the frame of the pulley. This allows wire or rope to move freely, minimizing friction and wear on the cable.
7	Bell Indicator circuit:
	Bell indicator circuit is used where a bell and buzzers are needed to control from different locations. Bell indicator circuit is also known as hoteling circuit where an electric bell is controlled from more than one locations.

Signature of Course Coordinator Mr.Gooty Rohan, Assistant Professor HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	PROGRAM	PROGRAMMING FOR PROBLEM SOLVING LABORATORY				
Course Code	ACSC05	ACSC05				
Program	B.Tech	B.Tech				
Semester	II	II ECE				
Course Type	Foundation					
Regulation	IARE-R20					
		Theory			Practical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Mr. P Ravir	nder, Assista	ant Profess	sor		

I COURSE OVERVIEW:

The course covers the basics of programming and demonstrates fundamental programming techniques, customs and terms including the most common library functions and the usage of the preprocessor. This course helps the students in gaining the knowledge to write simple C language applications, mathematical and engineering problems. This course helps to undertake future courses that assume this programming language as a background in computer programming. Topics include variables, data types, functions, control structures, pointers, strings, arrays and dynamic allocation principles. This course in reached to student by power point presentations, lecture notes, and lab involve the problem solving in mathematical and engineering areas.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB02	Ι	-

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Computer	70 Marks	30 Marks	100
Programming Laboratory			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Demo Video	✓	Lab Worksheets	1	Viva Questions	\checkmark	Probing further Questions
---	------------	---	----------------	---	-------------------	--------------	---------------------------------

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20~%	Objective Purpose	
20 %	Analysis	Algorithm
20~%	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of	Day to day	Final internal lab	10tai Maiks
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The hands on experience in design, develop, implementation and evaluation by using Asymptotic notation.
II	The demonstration knowledge of basic abstract data types (ADT) and associated algorithms for organizing programs into modules using criteria that are based on the data structures of the program.
III	The practical implementation and usage of non linear data structures for solving problems of different domain.
IV	The knowledge of more sophisticated data structures to solve problems involving balanced binary search trees, AVL Trees, B-trees and B+ trees, hashing.
V	The graph traversals algorithms to solve real-world challenges such as finding shortest paths on huge maps and assembling genomes from millions of pieces

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate problem solving steps in terms of algorithms, pseudocode and flowcharts for Mathematical and Engineering	Understand
CO 2	Make use the concept of operators, precedence of operators,	Apply
	conditional statements and looping statements to solve real time applications.	
CO 3	Demonstrate the concept of pointers, arrays and perform pointer arithmetic, and use the pre-processor.m.	Understand
CO 4	Analyze the complexity of problems, modularize the problems into small modules and then convert them into programs.	Apply
CO 5	Implement the programs with concept of file handling functions and pointer with real time applications of C.	Apply
CO 6	Explore the concepts of searching and sorting methods with real time applications using c	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	2	Viva-
	mathematics, science, engineering fundamentals,		voce/Laboratory
	and an engineering specialization to the solution of		Practices
	complex engineering problems.		
PO 2	Problem analysis:Identify, formulate, review	2	Viva-
	research literature, and analyze complex engineering		voce/Laboratory
	problems reaching substantiated conclusions using		Practices
	first principles of mathematics, natural sciences,		
	and engineering sciences		
PO 3	Design/development of solutions: Design	2	Viva-
	solutions for complex engineering problems and		voce/Laboratory
	design system components or processes that meet		Practices
	the specified needs with appropriate consideration		
	for the public health and safety, and the cultural,		
	societal, and environmental considerations.		
PO 5	Modern Tool Usage:Create, select, and apply	2	Viva-
	appropriate techniques, resources, and modern		voce/Laboratory
	Engineering and IT tools including prediction and		Practices
	modeling to complex Engineering activities with an		
	understanding of the limitations.		

PO 10	Communication: Communicate effectively on	2	Viva-
	complex engineering activities with the engineering		voce/Laboratory
	community and with society at large, such as, being		Practices
	able to comprehend and write effective reports and		
	design documentation, make effective presentations,		
	and give and receive clear instructions.		
PO 12	Life-long learning: Recognize the need for, and	2	Viva-
	have the preparation and ability to engage in		voce/Laboratory
	independent and life-long learning in the broadest		Practices
	context of technological change.		

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed
			by
PSO 1	Build Embedded Software and Digital Circuit	2	Viva-voce
	Development platform for Robotics, Embedded		Laboratory
	Systems and Signal Processing Applications		Practices
PSO 2	Focus on the Application Specific Integrated Circuit	2	Viva-voce
	(ASIC) Prototype designs, Virtual Instrumentation		Laboratory
	and System on Chip (SOC) designs .		Practices
PSO 3	Make use of High Frequency Structure Simulator	2	Viva-voce
	(HFSS) for modeling and evaluating the Patch and		Laboratory
	Smart Antennas for Wired and Wireless		Practices
	Communication Applications		

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Understand (knowledge) the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insight into reasonable directions of search for efficient algorithms by applying the principles of mathematics and science	3
	PO 5	Understand the (given knowledge) appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	3
CO 2	PO 1	Understand (knowledge)the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insight into reasonable directions of search for efficient algorithms by applying the principles of mathematics and science .	3
------	-------	--	---
	PO 5	Understand the (knowledge) appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	2
CO 3	PO 1	Understand (knowledge) the basic concept of algorithm analysis which provides theoretical estimates for the resources needed by any algorithm for a given computational problem. These estimates provide an insight into reasonable directions of search for efficient algorithms by applying the principles of mathematics and science .	3
	PO 5	Understand the (knowledge) appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	3
CO 4	PO 1	Describe (knowledge) the use sorting techniques as a basic building block in algorithm design and problem solving using principles of mathematics, science, and engineering fundamentals.	3
	PO 5	Understand the knowledge appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	2
	PO 10	Apply (knowledge) concept of dimensional analysis and similarity parameters for predicting physical parameters (understanding) for the fluid flow analysis used in designing prototypes devices (apply) solving design problems by applying the communicating effectively with engineering community.	3
CO 5	PO 1	Outline the importance of searching algorithms to retrieve an element from any data structure where it is stored by understanding and applying the fundamentals of mathematics, science and engineering.	3
	PO 10	Understand the use of searching techniques that retrieve information stored within some data structure by communicating effectively with engineering community.	2
CO 6	PO 1	Outline the importance of searching algorithms to retrieve an element from any data structure where it is stored by understanding and applying the fundamentals of mathematics, science and engineering	2

PO 10	Understand the use of searching techniques that retrieve	3
	information stored within some data structure by	
	communicating effectively with engineering	
	communit.	

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUTCOMES				
OUTCOMES	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	4	2	
CO 2	3	4	5	2	
CO 3	3	3	4	2	3
CO 4	3	3	3	2	2
CO 5	2	4	5	4	2
CO 6	3	5	3	3	2

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	PO 1, ,PO 2,	SEE Exams	PO 1,PO 3,	Seminars	-
	PO 3, PSO 1		PO 5, PSO 1		
Laboratory	PO 1,PO 2,	Student Viva	PO 1, PO 5	Certification	-
Practices	PO 3, PO				
	5,PO 10,				
	PSO 1				
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

 ✓ 	Early Semester Feedback	✓	End Semester OBE Feedback	
X	Assessment of Mini Projects by Experts			

XIV SYLLABUS:

WEEK I	OPERATORS AND EVALUATION OF EXPRESSIONS
	a. Write a C program to check whether a number is even or odd using
	ternary operator.
	b. Write a C program to perform the addition of two numbers without using + operator.
	c. Write a C program to evaluate the arithmetic expression
	((a + b / c * d - e) * (f - g)).
	Read the values a, b, c, d, e, f, g from the standard input device.
	d. Write a C program to find the sum of individual digits of a 3 digit number.
	e. Write a C program to read the values of x and y and print the results of the following expressions in one line:
	i. $(x + y) / (x - y)$
	ii. $(x + y)(x - y)$
WEEK II	CONTROL STRUCTURES
	a. Write a C program to find the sum of individual digits of a positive integer. b. A Fibonacci sequence is defined as follows: The first and second terms in the sequence are 0 and 1.Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence. c. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user. d. A character is entered through keyboard. Write a C program to determine whether the character entered is a capital letter, a small case letter, a digit or a special symbol using if- else and switch case. The following table shows the range of ASCII values for various characters. Characters ASCII values A – Z 65 - 90 a - z 97 - 122 0 - 9 48 - 57 Special symbols $0 - 47, 58 - 64, 91 - 96,123 - 127$ If cost price and selling price of an item is input through the keyboard, write a program to determine whether the seller has made profit or incurred loss. Write a C program to determine how much profit or loss incurred in percentage.
WEEK III	CONTROL STRUCTURES
	a. Write a C program to find the roots of a quadratic equation.
	d. Write a C program to check whether a given 3 digit number is Armstrong number or not.
	e. Write a C program to print the numbers in triangular form 1 1 2 1 2 3
WEEK IV	ARRAYS
	a. Write a C program to find the second largest integer in a list of integers. b. Write a C program to perform the following: i. Addition of two matrices ii. Multiplication of two matrices c. Write a C program to count and display positive, negative, odd and even numbers in an array. d. Write a C program to merge two sorted arrays into another array in a sorted order. e. Write a C program to find the frequency of a particular number in a list of integer.
WEEK V	STRINGS

	a. Write a C program that uses functions to perform the following operations: i. To insert a sub string into a given main string from a given position. ii. To delete n characters from a given position in a given string. b. Write a C program to determine if the given string is a palindrome or not. c. Write a C program to find a string within a sentence and replace it with another string. d. Write a C program that reads a line of text and counts all occurrence of a particular word. e. Write a C program that displays the position or index in the string S where the string T begins, or 1 if S doesn't contain T.
WEEK VI	FUNCTIONS
	 a. Write C programs that use both recursive and non-recursive functions i. To find the factorial of a given integer. ii. To find the greatest common divisor of two given integers. b. Write C programs that use both recursive and non-recursive functions i. To print Fibonacci series. ii. To solve towers of Hanoi problem. c. Write a C program to print the transpose of a given matrix using function. d. Write a C program that uses a function to reverse a given string.
WEEK VII	POINTERS
	a. Write a C program to concatenate two strings using pointers. b. Write a C program to find the length of string using pointers. c. Write a C program to compare two strings using pointers. d. Write a C program to copy a string from source to destination using pointers. e. Write a C program to reverse a string using pointers.
WEEK VIII	STRUCTURES AND UNIONS
	a. Write a C program that uses functions to perform the following operations: i. Reading a complex number ii. Writing a complex number iii. Addition and subtraction of two complex numbers iv. Multiplication of two complex numbers. Note: represent complex number using a structure. b. Write a C program to compute the monthly pay of 100 employees using each employee's name, basic pay. Print the employees name and gross salary. c. Create a Book structure containing book id, title, author name and price. Write a C program to pass a structure as a function argument and print the book details. d. Create a union containing 6 strings: name, home address, hostel address, city, state and zip. Write a C program to display your present address. e. Write a C program to define a structure named DOB, which contains name, day, month and year. Using the concept of nested structures display your name and date of birth.
WEEK IX	ADDITIONAL PROGRAMS

	a. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: $1+x+x2+x3+\ldots +xn$. For example: if n is 3 and x is 5, then the program computes $1+5+25+125$. Print x, n, the sum. Perform error checking. For example, the formula does not make sense for negative exponents if n is less than 0. Have your program print an error message if n;0, then go back and read in the next pair of numbers of without computing the sum. Are any values of x also illegal? If so, test for them too. b. 2s complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2's complement of 11100 is 00100. Write a C program to find the 2s complement of a binary number. c. Write a C program to convert a Roman numeral to its decimal equivalent. E.g. Roman number CD is equivalent to 400
WEEK X	PREPROCESSOR DIRECTIVES
	a. Define a macro with one parameter to compute the volume of a sphere. Write a C program using this macro to compute the volume for spheres of radius 5, 10 and 15 meters. b. Define a macro that receives an array and the number of elements in the array as arguments. Write a C program for using this macro to print the elements of the array. c. Write symbolic constants for the binary arithmetic operators $+$, $-$, $*$, and $/$. Write a C program to illustrate the use of these symbolic constants.
WEEK XI	FILES
	a. Write a C program to display the contents of a file. b. Write a C program to copy the contents of one file to another. c. Write a C program to reverse the first n characters in a file, where n is given by the user. d. Two files DATA1 and DATA2 contain sorted lists of integers. Write a C program to merge the contents of two files into a third file DATA i.e., the contents of the first file followed by those of the second are put in the third file. e. Write a C program to count the no. of characters present in the file
WEEK XII	COMMAND LINE ARGUMENTS
	a. Write a C program to read arguments at the command line and display it. b. Write a C program to read two numbers at the command line and perform arithmetic operations on it. c. Write a C program to read a file name at the command line and display its contents.

TEXTBOOKS

- 1. Sutton, G.P., et al., —Rocket Propulsion Elements, John Wiley Sons Inc., New York, 1993
- 2. Martin J.L Turner, Rocket Space Craft Propulsion, Springers oraxis publishing, 2001

REFERENCE BOOKS:

- 1. Mathur, M., and Sharma, R.P., —Gas Turbines and Jet and Rocket Propulsion, Standard Publishers, New Delhi 1998
- 2. Cornelisse, J.W., Rocket Propulsion and Space Dynamics, J.W., Freeman & Co. Ltd., London, 1982.
- 3. Parker, E.R., Materials for Missiles and Spacecraft, McGraw-Hill Book Co. Inc., 1982.

XV COURSE PLAN:

S.No	Topics to be covered	CO's	Reference
1	Calibration of Venturimeter and Orifice meter.	CO 1	R1: 1.2
2	Determination of pipe flow losses in rectangular and circular pipes.	CO 2	R2: 3.5
3	Verification of Bernoulli's theorem	CO 3	R1: 3.4
4	Determination of Reynolds Number of fluid flow	CO 4	R1: 2.2
5	Determine the reaction forces produced by the change in momentum.	CO 5	R1: 2.4
6	Determine the efficiency and draw the performance curves of centrifugal pump.	CO 6	R3: 4.5
7	Determine the efficiency and draw the performance curves of reciprocating pump.	CO 6	R3: 4.6
8	Determine the performance characteristics of pelton wheel under constant head.	CO 6	R2: 5.1
9	Determine the performance characteristics of Francis turbine.	CO 6	R2: 5.2
10	Determine the rate of flow through weir.	CO 7	R1: 7.1
11	Determine the rate of flow through Nothches.	CO 7	R1:7.2
12	Determine the rate of flow through a Orifice meter	CO 7	R1:7.3

The course plan is meant as a guideline. Probably there may be changes.

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Twin vortex formation: Demonstration of twin vortex formation and calculation of vortex size for different geometries.
2	Open channel: Demonstration of streamline at different angle of attack and calculation of separation point for different Reynolds number.
3	Capillary action: By modeling capillary action using two cups of water and a paper towel, you'll gain a better understanding of the importance of this process in trees.
4	Buoyancy Calculation of meta center and displacement volume for various geometries and materials.
5	Flow through pipes: Encourage students to design and analyze flow through pipes using ANSYS

Signature of Course Coordinator Mr. P Ravinder, Assistant Professor

HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering					
Course Title	Electronic Devices and Circuits					
Course Code	AECC01					
Program	B.Tech					
Semester	III					
Course Type	Core					
Regulation	IARE-UG20					
	Theory Practical			ctical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Coordinator	Course Coordinator Mr. B Naresh, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSC03	Ι	Engineering Physics
B.Tech	AEEC02	II	Electrical Circuits

II COURSE OVERVIEW:

This course provides the constructional features and principle of operation of the basic semiconductor devices such as diodes, bipolar and unipolar transistors. It intended to provide the biasing configurations of the semiconductor devices to provide temperature stability. Analytical skills to configure semiconductor devices for the applications - rectifiers, clippers, voltage regulators, clampers and amplifiers.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Electronic Devices and Circuits	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50%	Understand
33%	Apply
17%	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
	100		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	_

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The operational principles, characteristics of semiconductor devices and circuits for rectification, amplification, conditioning and voltage regularization of signals.
II	The analytical skills needed to model analog and digital integrated circuits (IC) at discrete and micro circuit level.
III	The foundations of basic electronic circuits necessary for building complex electronic hardware.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate the characteristics of semiconductor devices for determining	Understand
	the device parameters such as resistances, current gain and voltage gain.	
CO 2	Apply the pn junction characteristics for the diode applications such	Apply
	as switch, rectifiers, Clippers and Clampers.	
CO 3	Examine DC and AC load line analysis of BJT and FET amplifiers for	Analyze
	optimal operating level regardless of input, load placed on the device.	
CO 4	Extend the biasing techniques for bipolar and uni-polar transistor	Understand
	amplifier circuits considering stability condition for establishing a	
	proper operating point.	
CO 5	Utilize low frequency model for estimation of the characteristic	Apply
	parameters of BJT, FET amplifier circuits.	
CO 6	Demonstrate the working principle of special purpose semiconductor	Understand
	diodes and transistors for triggering and voltage regulation	
	applications.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes					
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.				
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.				
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations				
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.				
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations				
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.				
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.				
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.				
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.				
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.				
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.				
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change				

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE/CIE/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE/CIE/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	2	SEE/CIE/AAT
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 10	Communication: Communicate effectively on	2	SEE/CIE/AAT
	complex engineering activities with the		
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded	2	AAT
	Systems and Signal Processing Applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 6	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Illustrate the volt-ampere characteristics (knowledge) of semiconductor devices to derive mathematical model for diode current, static and dynamic resistance by applying the principles of mathematics and scientific principles for solving complex engineering problems.	2
	PO 2	Understand the given problem statement and formulate the static and dynamic resistance from the volt-ampere characteristics of the semiconductor devices using experimental design	3
	PO 10	Communicate orally on semiconduction device functionalities and write effective reports on characteristics of diode,BJT and MOSFEts	2
CO 2	PO 1	Apply the pn junction characteristics for the diode applications of diode as switch, clippers, Clampers and rectifiers by analyzing complex engineering problems using the principles of mathematics , scintific principles and methodology	2
	PO 2	Understand the given the diode application problem statement and finding the implementation of rectifier, clipper and clamper circuits by using diode	2
	PO 3	Undertsnad the user needs, then define a problem and identify the constraints then manage the design process using diode as rectifiers for awareness of the framework of relevant engineering activities, safety issues	4
	PO 10	Communicate orally on appliactions of semiconductor diode and write effective reports on electronic circuits using diode	2
	PSO 1	Formulate and Evaluate the rectifier circuit applications in the field of Intelligent Embedded and robotics	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 3	PO 1	Understand DC and AC load line analysis of different amplifiers for optimal operating level by applying mathematical, science principles and methodology for solving the optimum operating point in amplifiers	2
	PO 2	Understand the given problem statement for DC and AC load line analysis using experimental design for validating the amplifier analysis.	3
	PO 10	Communicate orally on load line analysis of semiconductor devices and write effective reports on optimum operating point of amplifiers	2
CO 4	PO 1	Understand the mathematical principles for design the biasing techniques for BJT, JFET and MOSFETs amplifier circuits for stable operation by applying the methodology	2
	PO 2	Understand the problem statement of biasing techniques for BJT, JFET and MOSFETs amplifier and formulation of proper operating point for validating the amplifiers and interpret the results.	4
	PO 3	Define a problem and identify constraints of amplifier circuits to satisfy the user needs to develop the sustainable development in amplifiers.	3
	PO 10	Communicate orally on biasing methids for BJT and FETS and write effective reports on stability factors with biasing approaches for transistors	2
	PSO 1	Formulate the amplifier circuits using BJT and FET for developing real time problems and digital circuits	2
CO 5	PO 1	Estimate the characteristic parameters of BJT, FET amplifier circuits using mathematical principles for solving complex engineering problems using low frequency model by applying Scientific methodology .	2
	PO 2	Analyze small signal analysis problem statements of BJT, FET amplifier circuits for experimental design for validation and interpretation of results.	4
	PO 10	Effective presentation and speaking style on small signal analysis and write subject matter effectively on amplifiers using BJT and FETS.	2
CO 6	PO 1	undertand the working principle of special purpose semiconductor devices by applying Scientific principles and methodology.	1
	PO 10	Effective presentation and speaking style on zener diode, tunnel diode, SCR and UJT then write subject matter effectively on characteristics of special semiconductor devices.	2

*Note: Refer appendix-I for key competencies

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	2	3	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 2	2	2	4	-	-	-	-	-	-	2	-	-	2	-	-
CO 3	2	3	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 4	2	4	3	-	-	-	-	-	-	2	-	-	2	-	-
CO 5	2	4	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 6	1	-	-	-	-	-	-	-	-	2	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	РО	PO	РО	РО	PO	PSO	PSO	PSO						
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	66.7	30	-	-	-	-	-	-	-	40	-	-	-	-	-
CO 2	66.7	20	40	-	-	-	-	-	-	40	-	-	40	-	-
CO 3	66.7	30	-	-	-	-	-	-	-	40	-	-	-	-	-
CO 4	66.7	40	30	-	-	-	-	-	-	40	-	-	40	-	-
CO 5	66.7	40	-	-	-	-	-	-	-	40	-	-	-	-	-
CO 6	33.3	-	-	-	-	-	-	-	-	40	-	-	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\pmb{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

1 $-5 < C \le 40\% - Low/ Slight$

 $\pmb{2}$ - 40 % < C < 60% – Moderate

 $\boldsymbol{3}$ - 60% \leq C < 100% – Substantial /High

		PROGRAM OUTCOMES									PSO'S				
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	1	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 2	3	1	2	-	-	-	-	-	-	2	-	-	2	-	-
CO 3	3	1	-	-	-	-	-	-	-	2	-	-	-	-	_
CO 4	3	2	1	-	-	-	-	-	-	2	-	-	2	-	_
CO 5	3	2	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 6	1	-	-	-	-	-	-	-	-	2	-	-	-	-	-
TOTAL	16	7	3	-	-	-	-	-	-	12	-	-	4	-	-
AVERAGE	2.7	1.4	1.5	-	-	-	-	-	-	2	-	-	2	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	Concept Video	~	Open Ended Experiments	~
Assignments	-				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

X	Early Semester Feedback	\checkmark	End Semester OBE Feedback
~	Assessment of activities / Modeling and Experimental Tools in Engineering by Experts	_	-

XVIII SYLLABUS:

MODULE I	DIODE AND APPLICATIONS
	Diode - Static and Dynamic resistances, Equivalent circuit, Load line analysis, Diffusion and Transition Capacitances, Diode Applications: Switch-Switching times. Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, Rectifiers With Capacitive Filter, Clippers-Clipping at two independent levels, Clampers-Clamping Operation, types, Clamping Circuit Theorem, Comparators.
MODULE II	BIPOLAR JUNCTION TRANSISTOR (BJT)
	Principle of Operation and characteristics - Common Emitter, Common Base, Common Collector Configurations, Operating point, DC & AC load lines, Transistor Hybrid parameter model, Determination of h-parameters from transistor characteristics, Conversion of h-parameters.
MODULE III	TRANSISTOR BIASING AND STABILIZATION
	Bias Stability, Fixed Bias, Collector to Base bias, Self-Bias, Bias Compensation using Diodes and Transistors.
	Analysis and Design of Small Signal Low Frequency BJT Amplifiers: Analysis of CE, CC, CB Amplifiers and CE Amplifier with emitter resistance, low frequency response of BJT Amplifiers, effect of coupling and bypass capacitors on CE Amplifier.
MODULE IV	JUNCTION FIELD EFFECT TRANSISTOR
	Construction, Principle of Operation, Pinch-Off Voltage, Volt- Ampere Characteristic, comparison of BJT and FET, Biasing of FET, FET as Voltage Variable Resistor, MOSFET Construction and its Characteristics in Enhancement and Depletion modes.
MODULE V	FET AMPLIFIERS
	Small Signal Model, Analysis of CS, CD, CG JFET Amplifiers. Basic Concepts of MOSFET Amplifiers.
	Special Purpose Devices: Zener Diode - Characteristics, Voltage Regulator; Principle of Operation - SCR, Tunnel diode, UJT, Varactor Diode.

TEXTBOOKS

- 1. S Salivahanan, N Suresh Kumar " Electronic Devices and Circuits", 2nd Edition, 2018, McGraw Hill Education.
- 2. J. Millman and Christos C. Halkias, "Integrated Electronics", International Student Edition , 2008, Tata McGraw Hill Publications.
- 3. David A. Bell, "Electronic Devices and Circuits", 5th Edition, Oxford University Press.

REFERENCE BOOKS:

- 1. R.L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits", 9th Edition, 2006, PEI/PHI.
- 2. B.P.Singh, Rekha Singh, "Electronic Devices and Circuits", 2nd Edition, 2013, Pearson Publisher.
- 3. K. Lal Kishore, "Electronic Devices and Circuits", 2nd Edition, 2005, BS Publisher.
- 4. Anil K. Maini and Varsha Agarwal, "Electronic Devices and Circuits", 1stEdition, 2009, Wiley India Pvt. Ltd.

COURSE WEB PAGE:

https://lms.iare.ac.in/index?route=course/details&course id=350

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference							
	OBE DISCUSSION									
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping		-							
	CONTENT DELIVERY (THEORY)									
2	pn Junction Formation, Biasing of pn Junction and its characteristics	CO 1	T1: 2.1							
3	Diode Resistances, Equivalent circuit	CO 1	T1: 2.6							
5	Load line analysis , Diffusion and Transition Capacitances	CO 1	T1: 2.7							
6	Half Wave Rectifier	CO 2	T1: 3.2.1							
7	Full Wave Rectifier	CO 2	T1: 3.2.2.							
8	Bridge Rectifier	CO 2	T1: 3.2.3							
9	Rectifiers With Capacitive Filter	CO 2	T1: 3.6							
11	Positive peak and negative peak Clippers operation	CO 2	T1: 6.15							
12	Clipping at two independent levels	CO 2	T1:5.13-5.14 R5: 8.2							
14	Positive peak and negative peak Clampers	CO 2	R5: 8.5-8.6							
15	Clamping Circuit Theorem	CO 3	R5: 8.5-8.6							
17	Principle of Operation of BJT	CO 1	T1: 4.2							

19	Common Emitter Configuration with characteristics	CO 1	T1: 4.4
20	Common Base Configuration with characteristics	CO 1	T1: 4.4
21	Common Collector Configuration with	CO 1	T1: 4.4
	characteristics		
22	Transistor current components and relation among	CO 1	T1: 4.3
	current gains		
23	Operating point, DC & AC load lines		T1: 5.2, 5.3
25	Transistor Hybrid parameter model	CO 5	T1: 6.3
26	Transistor biasing and stabilization	CO 4	T1: 5.4, 5.5
27	Fixed Bias	CO 4	T1: 5.4.1
29	Collector to Base bias	CO 4	T1: 7.2-7.3
31	Self-Bias	CO 4	T1:5.4.3
33	Bias Compensation using Diodes and Transistors	CO 4	T1: 5.6
34	Exact Analysis of transistor amplifier using low frequency model	CO 5	T1: 6.6
35	Approximate Analysis of transistor amplifier using low frequency model	CO 5	T1:6.8
36	Analysis of CE amplifier with emitter resistance using low frequency model	CO 5	T1:6.9
39	Effect of coupling and bypass capacitors on CE Amplifier	CO 5	T1:6.13
40	Construction, Principle of Operation of JFET, Comparison of BJT and FET	CO 1	T1:4.12
42	Volt- Ampere Characteristic of JFET, Pinch-Off Voltage	CO 1	T1:4.13
43	Biasing of FET	CO 4	T1: 5.9
44	MOSFET Construction and its Characteristics in	CO 1	T1: 4 15
	Enhancement mode	001	111 1110
45	MOSFET Construction and its Characteristics in Depletion mode	CO 1	T1:4.16
46	Analysis of generalized JFET Amplifier	CO 5	T1: 6.15
47	Analysis of CS JFET Amplifier	CO 5	T1:6.16
49	Analysis of CD JFET Amplifier	CO 5	T1:6.17
51	Analysis of CG JFET Amplifier	CO 5	T1: 6.18
53	Zener Diode - Characteristics, Voltage Regulator	CO 6	T1: 2.9,2.11
54	Principle of Operation - SCR	CO 6	T1: 2.16
55	Tunnel diode	CO 6	T1: 2.12
56	UJT operation ,Varactor Diode operation	CO 6	T1: 2.19,2.18
	PROBLEM SOLVING/ CASE STU	UDIES	
4	Related to Diode current and its resistance calculation	CO 1	T1: 2.3
10	Rectifier parameters estimation	CO 2	T2:2.6
13	Clipper circuits	CO 2	T2:2.9
16	Clamper circuits	CO 2	T2:2.10
24	Load line analysis of BJT	CO 3	T2:5.3

18	Current gain of transistor configuration	CO 1	T1:4.3					
28	Transistor fixed biasing	CO 4	T2:5.4.1					
30	Transistor collector to base biasing	CO 4	T2:5.4.3					
32	Transistor self-biasing	CO 4	T1:5.4.5					
37	CE Transistor amplifier analysis	CO 5	T1:6.14					
38	CB Transistor amplifier analysis	CO 5	T1:6.14					
39	CC Transistor amplifier analysis	CO 5	T1:6.14					
47	CS Amplifier analysis	CO 5	T1:6.16					
49	CD Amplifier analysis	CO 5	T1: 6.17 R5:					
			4.4					
52	Zener diode regulator	CO 6	T1: 2.11					
DISCUSSION OF DEFINITION AND TERMINOLOGY								
57	Diode applications	CO 1,	DT					
		CO 2						
58	Bipolar Junction Transistor (BJT)	CO 1	DT					
59	Transistor biasing and stabilization	CO 3,	DT					
		CO 4						
60	Junction field effect transistor	CO 1	DT					
61	FET amplifiers	CO 5,	DT					
		CO 6						
	DISCUSSION OF QUESTION B	ANK						
57	Diode applications	CO 1,	DT					
		CO 2						
58	Bipolar Junction Transistor (BJT)	CO 1	DT					
59	Transistor biasing and stabilization	CO 3,	DT					
		CO 4						
60	Junction field effect transistor	CO 1	DT					
61	FET amplifiers	CO 5,	DT					
		CO 6						

Signature of Course Coordinator

HOD, ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design processes and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	10

PO 4.	Use research-based knowledge and research methods including	11
	design of experiments, analysis and interpretation of data, and	
	synthesis of the information to provide valid conclusions	
	(Conduct Investigations of Complex Problems).	
	1. Knowledge of characteristics of particular materials,	
	equipment, processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can	
	be applied (example, operations and management, technology	
	development, etc.)	
	4. Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and	
	contractual issues	
	5. Understanding of appropriate codes of practice and industry	
	standards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty	
	8. Understanding of engineering principles and the ability to	
	apply them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of	
	systems and components through the use of analytical methods	
	and modeling techniques	
	10. Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline, in order to solve	
	engineering problems	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems.	
PO 5	Create select and apply appropriate techniques resources and	1
100	modern Engineering and IT tools including prediction and	-
	modelling to complex Engineering activities with an	
	understanding of the limitations (Modern Tool Usage)	
	1 Computer software / simulation packages / diagnostic	
	equipment / technical library resources / literature search tools	
	A poly recommend by the contextual local day to come	<u>۲</u>
PU 0	Apply reasoning informed by the contextual knowledge to assess	Э
	societal, lieatti, salety, legal and cultural issues and the	
	consequent responsibilities relevant to the professional engineering	
	1. Knowledge and understanding of commercial and cooperation	
	1. Knowledge and understanding of commercial and economic context of opgingering processes	
	2. Knowledge of management techniques which may be used to	
	2. Knowledge of management techniques which may be used to achieve engineering objectives within that context	
	2 Understanding of the requirement for engineering activities to	
	5. Understanding of the requirement for engineering activities to	
	A Awaronoss of the framework of relevant level requirements	
	4. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, nearth,	
	5. Understanding of the need for a high level of professional and	
	a. Understanding of the need for a high level of professional and	
	etnical conduct in engineering.	

PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	12

PO 10	 Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" Clarity (Writing) Grammar/Punctuation (Writing) References (Writing) Speaking Style (Oral) Subject Matter (Oral) 	5
PO11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12
PO12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning – stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2-3 new significant skills 8. Have taken up to 80 hours (2 weeks) training per year 	8

KEY ATTRIBUTES FOR ASSESSING PROGRAM SPECIFIC OUTCOMES

PSO Number	Key Competencies Features (KCF)	No. of KCF's
PSO 1	 Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications 1. Analyze and solve real time problems in Robotics. 2. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications 3. Develop embedded systems modules using Real Time Operating System. 4. Undertake research and development projects in the field of Embedded Systems. 5. Adopt the engineering professional code and conduct. 	5
PSO 2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. 1.Inspect, survey and analyze types of ASIC chip designs. 2.Design ASIC prototypes using Verilog and VHDL languages. 3.Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs 4.Explore hardware components for designig SOC 5.Adopt the engineering professional code and conduct 6.Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7.Familiarize with the design flow of ASIC prototypes. 8.Realize SOC using Register-Transfer-Level designs 9.Analyse and develop models for system level descriptions for synthesis of SOC 10.Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 11.Programming and hands-on skills to meet requirements of global environment. 	11
PSO 3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications. 1.Explicit software and programming tools for antenna design. 2.Adopt technical library resources and literature search. 3.Explore smart antennas. 4.Model, program for operation and control of smart antennas for wireless communication applications. 5.Interface automation tools. 6.Research, analysis, problem solving and presentation using software aids. 7.Programming and hands-on skills to meet requirements of global environment. 	7

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering					
Course Title	Signals	Signals and Systems				
Course Code	AECC02					
Program	B. Tech					
Semester	III					
Course Type	CORE					
Regulation	R-20					
		Theory		Pract	tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Ms.V. Bindusree, Assistant Professor.					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSB11	III	Mathematical Transform Techniques

II COURSE OVERVIEW:

This course integrates the basic concepts of both continuous and discrete time signals and systems. It covers the linear time invariant systems and their analysis in time and frequency domain, mathematical tools, correlation and convolution of signals, sampling techniques. It provides the necessary background needed for understanding the signal processing and communications.

III MARKS DISTRIBUTION:

$\mathbf{Subject}$	SEE Examination	CIE Examination	Total Marks
Signals and Systems	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could

be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
20%	Remember
50~%	Understand
30 %	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	50
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	-

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The representation, classification and analysis of continuous, discrete time signals in time and frequency domains.
II	The Fourier transform, Laplace and Z- transforms and their properties to analyze the signals and systems
III	The temporal and spectral characteristics of Random process and the extraction of Signal from noise by filtering.
IV	The sampling, quantization and reconstruction requirements for digital signal processing applications

VII COURSE OUTCOMES:

Alter st	iccessful completion of the course, students should be able to.	
CO 1	Describe the concept of signals and signal properties for performing	Understand
	mathematical operations on signals.	
CO 2	Make use of Fourier series and Fourier transforms for calculating	Apply
	spectral characteristics of periodic and aperiodic signals.	
CO 3	Utilize the concept of convolution and correlation to determine the	Apply
	response of an LTI system.	
CO 4	Classify the ideal lowpass, high pass, bandpass, ban stop filters for	Remember
	obtaining the behaviour of linear time invariant system.	
CO 5	Apply the Laplace and Z-transforms . for analysing the frequency	Apply
	domain representation of continuous and discrete time signals and	
	systems respectively	
CO 6	Demonstrate the procedure for sampling and reconstruction of	Understand
	bandlimited signals by using various sampling techniques.	

After successful completion of the course, students should be able to:

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE / CIE /
	knowledge of mathematics, science, engineering		AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE / CIE /
	research literature, and analyze complex		AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 3	Design/Development of	2	SEE / CIE /
	Solutions: Design/development of solutions:		AAT
	Design solutions for complex engineering		
	problems and design system components or		
	processes that meet the specified needs with		
	appropriate consideration for the public health		
	and safety, and the cultural, societal, and		
	environmental considerations.		
PO 5	Conduct Investigations of Complex	2	Lab related
	Problems: Create, select, and apply		Exercises
	appropriate techniques, resources, and modern		
	engineering and IT tools including prediction		
	and modeling to complex engineering activities		
	with an understanding of the limitations.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	${f Strength}$	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit	2	Seminars
	Development platform for Robotics, Embedded		
	Systems and Signal Processing Applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-		-	-	-
CO 2	-	\checkmark	-	-	\checkmark	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	-	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-		\checkmark	-	-
CO 6	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Classify (knowledge) basic concepts of signals such as exponential, sinusoidal, impulse, unit step and signum for performing mathematical operations on signals mathematical operations on signals by applying the principles of science for engineering problems.	2
	PO 2	Understand the given problem statement and formulate the orthogonal signals from the vector algebra using principles of mathematics and engineering science.	4
	PO 10	Demonstrate the ablility to communicate effectively in writing design documentation and make effective presentation	1
CO 2	PO 2	Understand the given problem statement and identification of the Fourier transform and apply the problem formulation of spectral characteristics of continuous time aperiodic signals and design the frequency response of the given system.	4
	PO 5	Develop the Fourier transform of magnitude and phase using Modern tools and analyze to complex engineering problems.	1
	PO 10	Demonstrate the ablility to communicate effectively in writing design documentation and make effective presentation	1
	PSO 1	Develop the capability to analyze the Fourier transform properties of continuous time signals by implementing the frequency response.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 3	PO 1	Extend (knowledge, understand, apply) the linearity and time invariance concepts to linear time invariant system for analyzing the behavior of LTI system in both time and frequency domains by applying the principles of mathematics and science for engineering problems.	3
	PO 2	Demonstrate and develop the given problem statement, identification and formulate to design simple LTI system in both time and frequency domains. 5	2
	PO 10	Demonstrate the ablility to communicate effectively in writing design documentation and make effective presentation	1
CO 4	PO 2	Understand the given problem statement and formulate the (Complex) engineering problems of continuous time and discrete time systems such as Laplace and Z transform from the provided information and data.	2
	PO 5	Design various transform techniques like Laplace and Z transform using modern tools such as MATLAB software	1
	PO 10	Demonstrate the ablility to communicate effectively in writing design documentation and make effective presentation	1
	PSO 1	Develop the capability to analyze the continuous time and discrete signals by implementing the Region of convergence.	2
CO 5	PO 1	Understand the sampling theorem for band limited and bandpass signals and reconstruction of samples by filtering methods by applying the the principles of mathematics and science for engineering problems .	2
	PO 10	Demonstrate the ablility to communicate effectively in writing design documentation and make effective presentation	1
CO 6	PO 1	Understand the sampling theorem for band limited and bandpass signals and reconstruction of samples by filtering methods by applying the the principles of mathematics and science for engineering problems .	2
	PO 10	Demonstrate the ablility to communicate effectively in writing design documentation and make effective presentation	1

Note: For Key Attributes refer Annexure - ${\bf I}$

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - (PO, PSO) MAP-**PING:**

]	Prog	ram	Outc	ome	s					PSO'S	
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	2	4	-	-	-	-	_	_	-	1	_		-	-	_
CO 2	-	4	-	-	1	-	_	-	-	1	-	-	2	-	-
CO 3	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	2	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 5	-	2	2	-	1	-	-	-	-	1	-		2	-	-
CO 6	2	-	-	-	-	-	-	-	-	1	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

				I	Prog	ram	Outc	ome	s					PSO'S	
COURSE	PO	РО	PO	РО	PO	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	66.7	40	-	-	-	-	-	-	-	10	-		-	-	-
CO 2	-	40	-	-	20	-	-	-	-	10	-	-	100	-	-
CO 3	100	40	-	-	-	-	-	-	-	10	-	-	-	-	-
CO 4	66.7	-	-	I	-	-	-	-	-	10	-	-	-	-	-
CO 5	-	40	40	-	100	-	-	-	-	10	-		100	-	-
CO 6	40	-	-	-	-	-	-	-	-	10	-	-	-	-	_

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 5 < C \le 40\% Low/$ Slight
- $\pmb{2}$ 40 % < C < 60% Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

		Program Outcomes									PSO'S				
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	-	-	-	-	-	1	-	-	-	-	
CO 2	-	2	-	-	1	-	-	-	-	1	-	-	3	-	-
CO 3	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	1	_	-	-	-	-
CO 5	-	2	2	-	3	-	-	-	-	1	-	-	3	-	-
CO 6	2	-	-	-	-	-	-	-	-	1	-	-	-	-	-
TOTAL	8	8	2	-	4	-	-	-	-	6	-	-	6	-	-
AVERAGE	2.6	2	2	-	2	-	-	-	-	1	-	-	2	-	-

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	\checkmark
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	-	5 Minutes Video / Concept Video	~	Open Ended Experiments	 ✓
Micro Projects	-	-	_	-	-

XVI ASSESSMENT METHODOLOGY DIRECT:

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling a	and E	xperimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	SIGNAL ANALYSIS
	Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonally in Complex functions, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function.
MODULE II	FOURIER SERIES
	Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet's conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum. Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transform involving Impulse function and Signum function, Introduction to Hilbert Transforms.
MODULE III	SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS
	Linear System, Impulse response, Response of a Linear System, Linear Time Invariant (LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics. Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution.

MODULE IV	LAPLACE TRANSFORM AND Z-TRANSFORM	
	Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform,	
	Concept of Region of Convergence (ROC) for Laplace Transforms, Properties	
	of L.T, Relation between L.T and F.T of a signal, Laplace Transform of	
	certain signals using waveform synthesis. Z–Transforms: Concept of Z-	
	Transform of a Discrete Sequence, Distinction between Laplace, Fourier and	
	Z Transforms, Region of Convergence in Z-Transform, Constraints on ROC	
	for various classes of signals, Inverse Z-transform, Properties of Z-transforms	
MODULE V	SAMPLING THEOREM	
	Graphical and analytical proof for Band Limited Signals, Impulse Sampling,	
	Natural and Flat top Sampling, Reconstruction of signal from its samples,	
	Effect of under sampling – Aliasing, Introduction to Band Pass Sampling.	
	Correlation: Cross Correlation and Auto Correlation of Functions,	
	Properties of Correlation Functions, Energy Density Spectrum, Parseval's	
	Theorem, Power Density Spectrum, Relation between Autocorrelation	
	Function and Energy/Power Spectral Density Function, Relation between	
	Convolution and Correlation, Detection of Periodic Signals in the presence of	
	Noise by Correlation, Extraction of Signal from Noise by filtering	

TEXTBOOKS

- 1. Signals, Systems Communications, B.P. Lathi, BS Publications, 2009.
- 2. Signals and Systems, A.V. Oppenheim, A.S. Willsky and S.H. Nawab , PHI, 2nd Edition 2009.
- 3. Digital Signal Processing, Principles, Algorithms, and Applications, John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI. 2007.

REFERENCE BOOKS:

- 1. Signals and Systems, Simon Haykin and Van Veen, Wiley, 2nd Edition, 2009.
- 2. Signals and Signals, Iyer and K. Satya Prasad, Cengage Learning, 2 nd Edition, 2009.
- 3. Discrete Time Signal Processing, A. V. Oppenheim and R.W. Schaffer, PHI, 2009.
- 4. Fundamentals of Digital Signal Processing, Loney Ludeman. John Wiley, PHI, 2009.

WEB REFERENCES:

1. https://nptel.ac.in/courses/117/101/117101055/

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
OBE DISCUSSION			
0	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program	CO 1	T1:4.1
	Outcomes (PO) and CO-PO Mapping		

CONTENT DELIVERY (THEORY)			
1	Introduction to signals and systems	CO 1	T1:4.2
2	Concepts of Impulse function, Unit Step function, Signum function, in continuous time	CO 1	T1: 5.1
3	Concepts of Impulse function, Unit Step function, Signum function, in continuous time	CO 1	R3: 1.7
4	Analogy between Vectors and Signals.	CO 2	T1: 6.1-6.6
5	Orthogonal Signal Space, Signal approximation using Orthogonal functions.	CO 2	T1: 6.1-6.6
6	Mean Square Error.	CO 2	T1: 6.1-6.6
7	Closed or complete set of Orthogonal functions.	CO 2	T1: 6.1-6.6
11	Orthogonally in Complex functions	CO 3	T1: 7.5
12	Continuous time periodic signals.	CO 3	T1: 7.7-7.12
13	Continuous time periodic signals.	CO 3	T1: 7.8
14	Dirichlet's conditions, Trigonometric Fourier Series	CO 4	T1: 10.2
15	Exponential Fourier Series, Complex Fourier spectrum.	CO 4	T1:7.7
16	Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary signal.	CO 5	T1: 7.8-7.10
17	Fourier Transform of Periodic Signals, Properties of Fourier Transform	CO 5	T1: 7.12
20	Linear System, Impulse response, Response of a Linear System, Linear Time Invariant (LTI) System, Linear Time Variant (LTV) System.	CO 7	R4: 4.2
21	Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system .	CO 7	R4: 4.2
22	Signal bandwidth, System Bandwidth,	CO 8	T1: 10.4
23	Ideal LPF, HPF, and BPF characteristics.	CO 8	T1: 10.5
26	Causality and Paley-Wiener criterion for physical realization,	CO 9	T3: 1.5
27	Relationship between Bandwidth and rise time.	CO 9	T3: 1.6
28	Convolution and Correlation of Signals	CO 6	T3: 1.7
29	Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution	CO 9	T3:1.8
33	Laplace Transforms (L.T Inverse Laplace Transform,	CO 10	T3: 2.7 R3: 4.4
34	Concept of Region of Convergence (ROC) for Laplace Transforms.	CO 10	T3: 2.8 R3: 4.4
35	Properties of L.T, Relation between L.T and F.T of a signal	CO 10	T3: 2.7 R3: 4.4
36	Laplace Transform of certain signals using waveform synthesis.	CO 10	T3: 2.8 R3: 4.4
37	Concept of Z- Transform of a Discrete Sequence.	CO 11	T3: 8.9

38	Distinction between Laplace, Fourier and Z Transforms.	CO 10	T3: 2.7 R3: 4.4
39	Region of Convergence in Z-Transform,	CO 10	T3: 2.8 R3: 4.4
40	Constraints on ROC for various classes of signals, Inverse Z-transform.	CO 11	T3: 8.9
41	Properties of Z-transforms	CO 10	T3: 2.7 R3: 4.4
45	Graphical and analytical proof for Band Limited Signals, Impulse Sampling	CO 11	T3: 8.12-8.13
46	Natural and Flat top Sampling.	CO 11	T3: 9.1-9.2
47	Reconstruction of signal from its samples, Effect of under sampling – Aliasing, Introduction to Band Pass Sampling.	CO 11	T3: 9.3.
48	Cross Correlation and Auto Correlation of Functions, Properties of Correlation Functions	CO 11	T3: 8.12-8.13
49	Energy Density Spectrum, Parseval's Theorem, Power Density Spectrum	CO 11	T3: 9.1-9.2
50	Relation between Autocorrelation Function and Energy/Power Spectral Density Function,	CO 11	T3: 9.3.
51	Relation between Convolution and Correlation.	CO 11	T3: 8.12-8.13
52	Detection of Periodic Signals in the presence of Noise by Correlation, Extraction of Signal from Noise by filtering	CO 11	T3: 9.1-9.2
	PROBLEM SOLVING/ CASE STUDIES	5	
9	Concepts of Impulse function, Unit Step function, Signum function, in continuous time	CO 1	T1: 5.1
10	Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error.	CO 1	R3: 1.7
18	Exponential Fourier Series, Complex Fourier spectrum.	CO 2	T1: 6.1-6.6
19	Fourier Transform of Periodic Signals, Properties of Fourier Transform	CO 2	T1: 6.1-6.6
30	Linear System, Impulse response, Response of a Linear System, Linear Time Invariant (LTI) System, Linear Time Variant (LTV) System.	CO 3	T1: 7.7-7.12
31	Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics.	CO 4	T1: 7.7-7.12
32	Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution	CO 5	T1: 7.7-7.12
42	Properties of L.T, Relation between L.T and F.T of a signal, Laplace Transform of certain signals using waveform synthesis.	CO 5	T1: 7.7-7.12
43	Laplace Transforms (I T) Inverse Laplace Transform	COG	T2.17

44	Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse Z-transform, Properties	CO 6	T3: 1.7	
	of Z-transforms.			
51	Cross Correlation and Auto Correlation of Functions, Properties of Correlation Functions	CO 7	R4: 4.2	
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY		
56	Signal analysis	CO 1	T1:4.1	
57	Fourier series and Fourier transform	CO 2	T2:4.1	
58	signal transmission through linear systems	CO 3	T3:2.1	
59	Laplace and Z transform	CO 4	R4: 4.2	
60	sampling theorem and reconstruction of filters	CO 5	T2:6.1	
	DISCUSSION OF QUESTION BANK			
61	Derive the expression for component vector of approximating the function $f1(t)$ over $f2(t)$ and also prove that the component vector becomes zero if the $f1(t)$ and f2(t) are orthogonal.	CO 1	T1:4.1	
62	Find the Fourier transform of the signal $x(t) = 5\cos 5t+10$ sin 15t and sketch its magnitude and phase spectra.	CO 2	T2:4.1	
63	Compute the output $y(t)$ for a continuous LTI system whose impulse response $h(t)$ and the input $x(t)$ are given by $h(t)$ = e-at $u(t)$ and $x(t)$ = eat $u(-t)$.	CO 3	T3:2.1	
64	Determine the initial value and final value of Laplace transform of signal	CO 4	R4: 4.2	
65	A filter has an input $x(t) = u(t)$ and transfer function, H(w)=1/(1+jw). Find the ESD of the output?	CO 5	T2:6.1	

Signature of Course Coordinator Ms.V.Bindusree,Assistant Professor HOD,ECE
ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO	NBA Statement / Key Competencies Features (KCF)	No.
Num-		of
ber		KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and 	10

PO 4.	Use research-based knowledge and research methods including design of	11
	experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of	
	Complex Problems).	
	1. Knowledge of characteristics of particular materials, equipment,	
	processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology	
	development, etc.)	
	4. Understanding use of technical interature and other information sources Awareness of nature of intellectual property and contractual	
	issues	
	5. Understanding of appropriate codes of practice and industry	
	standards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty	
	8. Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of systems	
	and components through the use of analytical methods and modeling	
	10 Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline, in order to solve engineering	
	problems	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems.	
PO 5	Create, select, and apply appropriate techniques, resources, and modern	1
	Engineering and IT tools including prediction and modelling to	
	complex Engineering activities with an understanding of the limitations	
	(Modern Tool Usage).	
	technical library resources / literature search tools.	
PO 6	Apply reasoning informed by the contextual knowledge to assess	5
	societal, health, safety, legal and cultural issues and the consequent	
	responsibilities relevant to the professional engineering practice (The	
	Engineer and Society).	
	1. Knowledge and understanding of commercial and economic context	
	of engineering processes	
	2. Knowledge of management techniques which may be used to achieve	
	3 Understanding of the requirement for engineering activities to	
	promote sustainable development	
	4. Awareness of the framework of relevant legal requirements governing	
	engineering activities, including personnel, health, safety, and risk	
	(including environmental risk) issues	
	5. Understanding of the need for a high level of professional and ethical	
	conduct in onginooring	

PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	12
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5

PO11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12
PO12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). Project management professional certification / MBA Begin work on advanced degree Keeping current in CSE and advanced engineering concepts Personal continuing education efforts Ongoing learning – stays up with industry trends/ new technology Continued personal development Have learned at least 2-3 new significant skills Have taken up to 80 hours (2 weeks) training per year 	8

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	Digital Syst	em Design			
Course Code	AECC03				
Program	B.Tech				
Semester	III				
Course Type	Core				
Regulation	IARE - UG20)			
		Theory		Prac	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	1	4	-	-
Course Coordinator	S SUSHMA, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AEE002	II	Electrical circuits

II COURSE OVERVIEW:

This course introduces the fundamental concepts and basic building blocks of digital circuits. It focuses on number sytems , designing of optimized combinational and sequential circuits, memories, programmable logic devices and the key concepts of hardware description language(VHDL). The applications includes in the area of VLSI design, microprocessors, microcontrollers and embedded systems.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Digital System Design	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

 ✓ 	Power Point Presentation	x	Chalk & Talk	X	Assignments	x	MOOC
 ✓ 	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others	•				•	

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50%	Understand
50%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component		Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
Total Marks			100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	-

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Simplification of the logic functions using boolean algebraic theorems and techniques.
II	Implementation of conventional combinational and sequential circuits.
III	The exploration of the logic families and semiconductor memories.
IV	The realization of the micro and macro circuits using VHDL programming.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Outline binary arithmetic operations and optimize boolean	Understand
	functions using karnaugh and tabulation method.	
CO 2	Make use of basic logic gates to realize the combinational logic	Apply
	circuits used in conventional electronic circuits	
CO 3	Interpret the knowledge of flip-flops and latches in synchronous	Understand
	and asynchronous modules for memory storing applications.	
CO 4	Develop Mealy/Moore models and state diagrams for the	Apply
	complex sequential circuit applications.	
CO 5	Identify the different logic families, memories and programmable	Apply
	logic devices for understanding the architectural blocks of FPGA	
CO 6	Demonstrate the different modelling styles and data types in	Understand
	VHDL for implementing combinational and sequential circuits.	

COURSE KNOWLEDGE COMPETENCY LEVEL

Page 3

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	SEE / CIE / AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	SEE / CIE / AAT
PO 3	Design / development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	SEE / CIE / AAT
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	SEE / CIE / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	1	SEE / CIE / AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency
			Assessed
			by
PSO 1	Build Embedded Software and Digital Circuit	-	-
	Development platform for Robotics, Embedded		
	Systems and Signal Processing Applications.		
PSO 2	Focus on the practical experience of ASIC	2	SEE / CIE
	prototype designs, virtual instrumentation and		/ AAT
	SoC designs.		

PSO 3	Make use of High Frequency Structure Simulator	-	_
	(HFSS) for modeling and evaluating the Patch		
	and Smart Antennas for Wired and Wireless		
	Communication Applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES													PSO'S		
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-		-	-	-		
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-		
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-		
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-		
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-		
CO 6	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-		

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Understand the number systems, Boolean operations, code conversion code by applying its own engineering discipline, science principles and methodology.	2
	PO 2	Understand the given problem statement and formulate the design (complex) engineering problems in detecting and correcting errors in the received data in reaching substantiated conclusions by the interpretation of results.	4
	PO 10	Understand the given problem statement and communicate the novel implementation to get it published in the scientific community.	1
CO 2	PO 1	Demonstrate the design procedures of various adder circuits with own engineering discipline , science principles and methodology .	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems on adder circuit design translate the information into the model using type of adder from the provided information and data, develop solutions based on the functionality of the circuit, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	7

	DOO	TT 1 . 1 . 1 . 1 . 	2
	PO 3	Understand the customer needs, use creativity and manage design process in realization of combinational circuits using logic rates and evaluate	3
		outcomes.	
	PO 10	Understand the given problem statement and	1
		communicate the novel implementation to get it published in the scientific community.	
CO 3	PO 1	Apply the knowledge of flipflops and latches	3
		(engineering fundamentals) to understand	
		synchronous and asynchronous sequential circuits(own	
		science principles and methodology.) to design	
		registers, counters and memory applications.	
	PO 2	Understand the given problem statement and	6
		formulate the (complex) engineering problems on	
		adder circuit design translate the information into	
		information and data, develop solutions based on	
		the functionality of the circuit, validate the output of	
		the circuit in reaching substantiated conclusions by	
		the interpretation of results.	4
	FU 3	and define a problem, use creativity and	4
		establish innovative solutions in designing the	
		sequential circuits using flipflops and latches	
	PO 10	Understand the given problem statement and	1
		communicate the novel implementation to get it published in the scientific community	
CO 4	PO 1	Understand the mealy and moore machines	3
		(engineering knowledge) for complex sequential	-
		sircuits used in pulse train generator, psuedo random	
		binary sequence genrator and clock generation.(own	
		science principles and methodology.)	
	PO 2	Understand the given problem statement and	7
		formulate the (complex) engineering problems on	
		adder circuit design translate the information into	
		information and data, develop solutions based on	
		the functionality of the sequential circuit, validate	
		the output of the circuit in reaching substantiated	
	DO 2	conclusions by the interpretation of results.	K
	103	(understand the customer needs, investigate	Ð
		and define a problem, use creativity and	
		establish innovative solutions) for complex	
		sequential circuits like clock generation, psuedo random generator etc	
		Terretori Bonorator oto	

	PO 4	Implement (complex sequential applications psuedo random generator, clock generator and pulse train generator using mealy/moore FSMs	2
	PO 10	Understand the given problem statement and communicate the novel implementation to get it published in the scientific community.	1
	PSO 2	Design ASIC prototypes by adopting engineering professional code in VHDL for the implementation of FSM to familiarize with the ASIC design flow, realize RTL schematic and analyze the synthesis of SOC	5
CO 5	PO 1	Explore the concept of logic families, memories, programmable logic devices for understanding architectural blocks of FPGA using the own engineering discipline, science principles and methodology.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems on PLDs and logic families translate the information into the model using type of PLDs from the provided information and data , develop solutions based on the functionality of the circuit, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	7
	PO 3	Understand the customer needs, investigate and define a problem, use creativity and establish innovative solutions in designing PLDs and FPGA	3
	PO 10	Understand the given problem statement and communicate the novel implementation to get it published in the scientific community.	1
	PSO 2	Design ASIC prototypes by adopting engineering professional code in VHDL for the implementation of real time applications to familiarize with the ASIC design flow, realize RTL schematic and analyze the synthesis of SOC	5

CO 6	PO 1	Understand data types and objects, dataflow, behavioral and structural modeling for realizing the hardware modeling of the sequential, combinational blocks using the own engineering discipline , Science principles and methodology.	2
	PO 2	Understand the given problem statement and formulate the design (complex) engineering problems of digital logic design, translate the information into hardware circuit programming from provided information and data, develop solutions based on the simulation result, validate the results reaching substantiated conclusions by the interpretation of results.	7
	PO 3	Develop digital system design based on customer needs for design of combinational, sequential circuits to establish innovative solutions and evaluate outcomes of the designs.	5
	PO 4	Use the knowledge of VHDL design laboratory skillsto combinational and sequential circuits and analyze the output to synthesis of the information to provide valid conclusions to design complex digital circuits.	2
	PO 10	Understand the given problem statement and communicate the novel implementation to get it published in the scientific community.	1

Note: For Key Attributes refer Annexure - ${\bf I}$

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

COURSE	PROGRAM OUTCOMES												PSO'S		
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	2	4	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	2	7	3	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	3	6	4	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	2	7	5	2	-	-	-	-	-	1	-	-	-	5	-
CO 5	2	7	3	-	-	-	-	-	-	1	-	-	-	5	-
CO 6	2	7	5	2	-	-	-	-	-	1	-	-	-	-	-

COURSE		PROGRAM OUTCOMES												PSO'S		
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7	
CO 1	67	40	_	-	-	-	-	-	-	20	-	-	-	-	-	
CO 2	67	70	30	-	-	-	-	-	-	20	-	-	-	-	-	
CO 3	100	60	50	-	-	-	-	-	-	20	-	-	-	-	-	
CO 4	67	70	50	18	-	-	-	-	-	20	-	-	-	45.5	-	
CO 5	67	70	30	-	-	-	-	-	-	20	-	-	-	45.5	-	
CO 6	67	70	50	18	-	-	-	-	-	20	-	-	-	-	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\pmb{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

- 1 -5 <C \leq 40% Low/ Slight
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

COURSE]	PRO	GR	AM	OUI	CO.	MES	5				PSO'S	
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	3	1	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	3	3	2	-	-	-	-	-	I	1	I	-	I	-	-
CO 4	3	3	2	1	-	-	-	-	-	1	-	-	-	2	-
CO 5	3	3	1	-	-	-	-	-	-	1	-	-	-	2	-
CO 6	3	2	2	1	-	-	-	-	-	1	-	-	-	-	-
TOTAL	18	16	8	2	0	0	0	0	0	6	0	0	0	4	0
AVERAGE	3	$\overline{2.7}$	1.6	1	0	0	0	0	0	1	0	0	0	2	0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	-
Quiz	-	Tech - Talk	-	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	-	5 Minutes Video / Concept Video	√	Open Ended Experiments	√
Micro Projects	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling a	and E	Experimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	LOGIC SIMPLIFICATION AND COMBINATIONAL LOGICDESIGN
	Review of boolean algebra and De Morgan's theorem, SOP & POS forms, canonical forms, karnaughmaps up to 6 variables, binary codes, code conversion.
MODULE II	MSI DEVICES
	MSI devices like comparators, multiplexers, encoder, decoder, driver & multiplexed display, half and full adders, subtractors, serial and parallel adders, BCD adder, barrel shifter and ALU
MODULE III	SEQUENTIAL LOGIC DESIGN
	Building blocks like S-R, JK and Master-Slave JK FF, edge triggered FF, ripple and synchronous counters, shift registers. Finite state machines, design of synchronous FSM, algorithmic state machines charts. Designing synchronous circuits like pulse train generator, pseudo random binary sequence generator, clock generation
MODULE IV	LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES
	TTL NAND gate, specifications, noise margin, propagation delay, fan-in, fan-out, tristate TTL, ECL, CMOS families and their interfacing, memory elements, concept of programmable logic devices like FPGA. Logic implementation using programmable devices.
MODULE V	VLSI DESIGN FLOW
	Design entry: schematic, FSM & HDL, different modeling styles in VHDL, data types and objects, dataflow, behavioral and structural modeling, synthesis and simulation VHDL constructs and codes for combinational and sequential circuits.

TEXTBOOKS

- 1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th Edition, 2009.
- 2. Douglas Perry, "VHDL", Tata McGraw Hill, 4th Edition, 2002.
- 3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd Edition,2006.

REFERENCE BOOKS:

- 1. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989.
- 2. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd Edition 2012.

WEB REFERENCES:

1. http://www.igniteengineers.com

- 2. http://www.ocw.nthu.edu.tw
- 3. http://www.uotechnology.edu.iq

COURSE WEB PAGE:

1. lms.iare.ac.in/index?route=course/details&course_id=406

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
0	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	-	-
	CONTENT DELIVERY (THEO	RY)	
1	Introduction to number systems	CO 1	T1:1.1 to 1.5 R1:3.1 to 3.5
2	Base conversion methods	CO 1	T1:2.1 to 2.6 R2:2.8 to 3.5
	CONTENT DELIVERY (THEO	RY)	
3	Complements of numbers	CO 1	T1:4.1 to 4.9 R2:2.1 to 2.4
4	Codes- binary codes	CO 1	T1:6.1 to 6.5 R2:7.1 to 7.7
5	BCD code and its properties	CO 1	T1:8.1 to 8.4 R2:4.1 to 4.8
6	Unit distance code	CO 1	T1:8.8 to 8.9 R2:3.3 to 3.7
7	Alphanumeric codes	CO 1	T2:3.1 to 3.2 R2: 2.7 to 2.9
8	Error detecting and correcting codes	CO 1	T2:4.1 to 4.9
9	Basic theorems and its properties	CO 1	T2:5.1 to 5.2 R1:3.1 to 3.5
10	Switching functions	CO 1	T2:5.3 to 5.5 R2:5.1 to 5.8
11	Canonical form	CO 1	T2:3.1 to 3.5 R1:2.1 to 2.5
12	Standard form	CO 1	T2:3.1 to 3.6 R2:2.8 to 3.5
13	Algebraic simplification of digital logic gates	CO 1	T2:4.1 to 4.9 R2:2.1 to 2.4
14	Properties of XOR gates	CO 1	T2:6.1 to 6.5 R2:7.1 to 7.7

15	Universal gates	CO 2	T2:7.1 to 7.4
			R2:4.1 to 4.8
16	Multilevel NAND/NOR realizations	CO 2	T2:7.8 to 7.9
			R2:3.3 to 3.7
17	Combinational design	CO 2	T3:3.1 to 3.2
			R2: 2.7 to 2.9
18	Arithmetic circuits- adders	CO 2	T3:4.1 to 4.8
19	Subtractors	CO 2	T3:5.1 to 5.2
			R1:3.1 to 3.5
20	Serial adder	CO 2	T3:5.3 to 5.5
			R2:5.1 to 5.8
21	1's complement subtractor	CO 2	T3:6.1 to 6.5
			R1:3.1 to 3.5
22	2's complement subtractor	CO 2	T3:6.6 to 6.8
			R2:2.8 to 3.5
23	Combinational and sequential circuits	CO 2	T3:6.9 to 6.10
			R2:2.1 to 2.4
24	The binary cell	CO 3	T3:7.1 to 7.5
			R2:7.1 to 7.7
25	The fundamentals of sequential machine operation	CO 3	T3:7.6 to 7.7
		<u> </u>	R2:4.1 to 4.8
26	Flip-flop	CO 3	T3:7.8 to 7.10
		<u> </u>	R2:3.3 to 3.7
27	D-Latch Flip-flop	CO 3	T3:7.11 to 7.12
		<u> </u>	R2: 2.7 to 2.9
28	Clocked T Flip-flop	CO 3	T1:4.1 to 4.9
29	Clocked JK flip-flop	CO 4	T1:5.1 to 5.2
			R1:3.1 to 3.5
30	Design of a clocked flip-flop conversion from one	CO 4	T1:5.3 to 5.5
01	type of mp-nop to another	<u> </u>	R2:5.1 to 5.8
31	Registers and counters	CO 4	T1:1.1 to 1.5
32	Analyze TTL NAND gate, specifications	CO 4	11:2.1 to 2.0 P2:2.8 to 2.5
		CO F	$T_{1,2,2,0} = 0.000000000000000000000000000000000$
33	Noise margin, propagation delay	0.0 5	11:4.1 to 4.9 $R_{2}\cdot2.1 \text{ to } 2.4$
24	For in for out	COF	$T_{1,C,1} = 0$
34	Fan-in, ian-out	00.5	11:0.1 to 0.5 $R_{2}:7.1 \text{ to } 7.7$
25	Implement trictate TTL_ECI	CO 5	$T_{2.7.1} t_{0.7.1}$
50	Implement tristate 11L, ECL.	00.5	12:3.1 to 3.4 R2:4.1 to 4.8
26	CMOS families and their interfacing memory	COR	T1.9 Q D9.9 9
00	elements		to 3.7
37	Understand concept of programmable logic devices	CO 6	T3.2.7 to 2.8
01	like FPGA		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
			102. 2., 00 2.0

38	Logic implementation using programmable devices	CO 6	T3:4.1 to 4.9
39	Design entry: Schematic, FSM & HDL, different	CO 6	T3:5.1 to 5.2
	modeling styles in VHDL		R1:3.1 to 3.5
40	Understand data types and objects, dataflow,	CO 6	T $3:5.3$ to 5.5
	behavioral and structural modeling		R2:5.1 to 5.8
	PROBLEM SOLVING/ CASE ST	UDIES	
41	Multilevel NAND/NOR realizations	CO 1	T1:1.1 to 1.5
			R1:3.1 to 3.5
42	Combinational design	CO 1	T1:2.1 to 2.6
			R2:2.8 to 3.5
43	Arithmetic circuits-adders	CO 1	T1:4.1 to 4.9
			R2:2.1 to 2.4
44	1's complement subtractor	CO 2	T1:6.1 to 6.5
			R2:7.1 to 7.7
45	2's complement subtractor	CO 2	T2:5.1 to 5.4
			R2:4.1 to 4.8
46	Combinational and sequential circuits	CO 3	T1:2.8 to 2.9
			R2:3.3 to 3.7
47	Clocked T Flip-flop	CO 3	T3:3.7 to 3.8
			R2: 2.7 to 2.9
48	Clocked JK flip-flop	CO 4	T1:4.1 to 4.9
49	Design of a clocked flip-flop conversion	CO 4	T1:5.1 to 5.2
			R1:3.1 to 3.5
50	Registers and counters	CO 5	T1:5.3 to 5.5
			R2:5.1 to 5.8
51	Analyze TTL NAND gate, specifications	CO 5	T1:1.1 to 1.5
			R1:3.1 to 3.5
52	Implement tristate TTL, ECL	CO 5	T1:2.1 to 2.6
			R2:2.8 to 3.5
53	CMOS families, memory elements	CO 6	T1:4.1 to 4.9
			R2:2.1 to 2.4
54	Programmable logic devices.	CO 6	T1:6.1 to 6.5
			$R_2:7.1 \text{ to } 7.7$
55	Schematic, FSM & HDL, different modeling styles	CO 6	12:5.1 to 5.4 P2:4.1 to 4.8
	III VIIDL.		R2.4.1 to 4.6
50	DISCUSSION OF DEFINITION AND TE		
56	Universal gates	CO 1	T1:1.1 to 1.5
		00.9	$\pi_{1:3.1}$ to 3.3
) ⁵ (Multilevel NAND/NOR realizations		11:2.1 to 2.0
F 0	Cambinational design	00.4	$\frac{112.2.0 \ 100 \ 0.0}{11.4.1 \ 1.4.0}$
58	Combinational design	004	11:4.1 to 4.9
FO	Arithmatic circuita addorr		$\begin{array}{c} 112.2.1 & 10 & 2.4 \\ \hline \\ T1.6 & 1 & 4 & 6 & 5 \end{array}$
09	Antimietic circuits-adders	00.5	$\begin{array}{c c} 11.0.1 & 0 & 0.0 \\ \hline R 2.7 & 1 & to & 7.7 \end{array}$
			102.1.1 00 1.1

60	Logic implementation using programmable devices	CO 6	T2:5.1 to 5.4
			R2:4.1 to 4.8
	DISCUSSION OF QUESTION B	ANK	
61	Design of a clocked flip-flop conversion	CO 1	T1:1.1 to 1.5
			R1: 3.1 to 3.5
62	Registers and counters	CO 2	T1:2.1 to 2.6
			R2:2.8 to 3.5
63	Analyze TTL NAND gate, specifications	CO 3	T1:4.1 to 4.9
			R2:2.1 to 2.4
64	Implement tristate TTL, ECL.	CO 4	T1:6.1 to 6.5
			R2:7.1 to 7.7
65	CMOS families, memory elements	CO 5	T2:5.1 to 5.4
			R2:4.1 to 4.8

Course Coordinator S SUSHMA, Assistant Professor

HOD, ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10

	 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems.	11
PO 5	Create, select, and apply appropriate techniques, resources, and	1
	 modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. 	-

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, 	5
	and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering.	
PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

PO 12	Recognize the need for and have the preparation and ability to	8
	engage in independent and life-long learning in the broadest context	
	of technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

ANNEXURE - II

Key Competencies for Assessing Program Specific Outcomes

PSO Num- ber	NBA Statement / NBA statement / Vital features	No. of vi- talfea- tures
PSO 1	Build Embedded Software and Digital Circuit Development	5
	platform for Robotics, Embedded Systems and Signal Processing	
	Applications.	
	1. Analyze and solve real time problems in Robotics.	
	2. Evaluate the design and provide optimal solutions of the digital	
	circuits for signal processing applications.	
	3. Develop embedded systems modules using Real Time	
	Operating System.	
	4.Undertake research and development projects in the field of Em-	
	bedded Systems.	
	5. Adopt the engineering professional code and conduct.	

PSO 2	Focus on the Application Specific Integrated Circuit (ASIC)	11
	Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs	
	1 Inspect, survey and analyze types of ASIC chip designs	
	2. Design ASIC prototypes using Verilog and VHDL languages.	
	3. Analyze microprocessor subsystems with memories and I/O	
	inter- facs for SOC designs	
	4. Explore hardware components for designing SOC	
	5. Adopt the engineering professional code and conduct	
	6. Designing prototypes of SOC using programming tools like MAT- LAB, LabVIEW.	
	7. Familiarize with the design flow of ASIC prototypes.	
	8. Realize SOC using Register-Transfer-Level designs	
	9. Analyse and develop models for system level descriptions for	
	syn- thesis of SOC.	
	10.Inspect and survey the abstractions and principles for the	
	specifi- cation, simulation, verification, and synthesis of systems	
	on chip	
	(SOU).	
	requirements of skins to meet requirements of	
	M L CHILLE CHILLE CHILLE (HDCC) (-
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for	7
	Wired and Wireless Communication Applications	
	1 Explicit software and programming tools for antenna design	
	2 Adopt technical library resources and literature search	
	3. Explore smart antennas.	
	4. Model, program for operation and control of smart antennas	
	for wireless communication applications.	
	5. Interface automation tools.	
	6. Research, analysis, problem solving and presentation using	
	software aids.	
	7. Programming and hands-on skills to meet requirements of	
	global environment.	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	Probabi	lity Theory a	nd Stochastic	Process	
Course Code	AECC04				
Program	B.Tech				
Semester	III				
Course Type	Foundation				
Regulation	UG-20				
		Theory		Pract	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	Mrs G.Mary swarna latha, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSC07	II	Mathematical Transform Techniques

II COURSE OVERVIEW:

Stochastic processes are mathematical objects defined on probability space. The study of these processes is of primary importance in all science and engineering specializations. This course comprises two parts. The first part introduces the fundamental principles of probability theory and random variables necessary to understand the stochastic processes. The second part introduces the basic concepts of random processes, random signals, and their interaction with the electrical or electronic systems. The course forms the basis for the next level courses of an electronics engineer such as communications,digital signal processing, radar systems,machine learning and data science.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Probability Theory and Stochastic Process	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	х	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage

in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
58%	Understand
27%	Apply
15 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
	Continuous Internal Examination – 2 (Mid-term)	10	30
CIA	AAT-1	5	
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	-

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The fundamental concepts of the 1-dimensional and 2-dimensional random variables and their characterization in probability space.
II	The stationary random process, its framework and application for analyzing random signals and noises.
III	The characteristics of 1-dimensional stationary random signals in time and frequency domains.
IV	Analysis of the response of a linear time invariant (LTI) system driven by 1- dimensional stationary random signals useful for subsequent design and analysis of communication systems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

		TT 1 . 1
CO 1	Infer the concepts of the random experiment and probability for	Understand
	proving the Bayes theorem , computing complex event probabilities	
	and independence of multiple events.	
CO 2	Interpret the concept of random variable, the probability	Understand
	distribution function, probability density function and operations on	
	single random variable to derive the moments.	
CO 3	Utilize the joint distribution and density function for operations on	Apply
	multiple random variables.	
CO 4	Extend the random variable concept to random process and its	Understand
	sample functions for demonstrating the time domain and frequency	
	domain characteristics.	
CO 5	Develop the auto-power and cross- power spectral densities to	Apply
	solve the related problems of random processes using correlation	
	functions and the Fourier transform.	
CO 6	Analyze the response of a linear time invariant (LTI) system driven	Analyze
	by stationary random processes using the time domain and	
	frequency domain description of random processes.	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE/CIE/Quiz
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE/CIE/Quiz
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	2	SEE/CIE/Quiz
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 10	Communication: Communicate effectively on	1	SEE/CIE/Quiz
	complex engineering activities with the		
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	PROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	1	ААТ

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Make use of(knowledge) the concepts of the random experiment, sample space, and appreciate (understand) the meaning of event probability, joint event probability, and conditional event probability for (apply) proving the Bayes theorem and for demonstrating (understanding) the random variables using the mathematical principles and scientific methodology to support the study of next-level courses such as communications, digital signal processing, (own engineering discipline) etc.	3
	PO 2	Demonstrate(understand) the physical significance of the correlation and covariance functions, and identify , formulate,(apply)and state a(complex) problem , to develop (apply) solution using inversion of correlation/ covariance matrices in certain areas of communication (problems) and interpret and document the results .	6
	PO 3	Develop the solutions for complex Engineering problems and design system components using the Bayes theorem, understand customer and user needs and identify the cost limitations for the selection of parameters, use creativity in applying the methods of model analyses for innovative solutions for the use of Baye's theorem.	6
	PO 10	Demonstrate the ability to communicate effectively in writing design documentation and make effective presentations.	1
	PSO 3	Develop conditional event probability for the implementation of total probability and Bayes theorem in research to model, analyze and problem solving in wired and wireless communication applications.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 2	PO 1	Define (knowledge) a random variable using (knowledge) a real mapping function of outcomes of a random experiment into a random variable, define (knowledge) the probabilities and (understand) the continuous/discrete probability density function and distribution function for characterizing (knowledge, understand) various types of density functions such as Gaussian, Rayleigh, Poisson, etc. using the mathematical principles and scientific methodology to support(understand) their applications in next-level Courses of the program. (own engineering discipline).	3
	PO 2	Demonstrate(understand) the random variable as a statistical average operation to identify , formulate,(apply)and state a(complex) problem , to develop (apply)solution using appropriate expectation operations in certain areas of communication (problems).	3
	PO 3	Make use of distribution and density functions for customer and user needs and identify the cost limitations for the selection of parameters, use creativity in applying the methods of model analyses for innovative solutions for the analysis of noise in communications.	4
	PO 10	Demonstrate the ability to communicate effectively in writing design documentation and make effective presentations.	1
	PSO 3	Apply distribution and density functions of standard random variables in research to model , analyze and problem solving in wired and wireless communication applications .	2
CO 3	PO 1	Define (knowledge) the transformation and/or the expectation operation on random variables and their functions, to formulate the definition of moments of a random variable using mathematical principles and demonstrate (understand) the use of the characteristic and moment generating functions(knowledge) to analytically derive the standard moments(by means of scientific principles and methodology) useful for identifying (understand) various noises encountered in communication systems and electronic circuits to support the other courses of the program(own engineering discipline).	3
	PO 2	Demonstrate(understand) the physical significance of the characteristic and moment generating functions and develop (apply) the Nth order standard and central moments using the above functions to identify, formulate and state a problem, and develop solution that uses moments as features and interpret and document the results .	6

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	Develop the solutions for complex Engineering problems and design system components using the multiple random variables, understand customer and user needs and identify the cost limitations for the selection of parameters, use creativity in applying the methods of model analyses for the use of multiple random variables.	5
	PO 10	Demonstrate the ability to communicate effectively in writing design documentation and make effective presentations.	1
	PSO 3	Apply joint distribution and density functions of standard random variables in research to model,analyze and problem solving in wired and wireless communication applications.	2
CO 4	PO 1	Define (knowledge)the random process as the extension (understand) of scalar random variables using mathematical principles and explain (understand) the meaning of correlation and co variance using scientific principles and methodology and interpret (understand) them for supporting the study of interdisciplinary courses such as digital image processing (own engineering discipline) and data sciences (other engineering disciplines).	3
	PO 2	Demonstrate(understand) the physical significance of the random process and develop (apply) the Nth order distribution and density functions using the random variable concept to identify , formulate and state a problem , and develop solution that uses co-variance and correlation as features.	5
	PO 3	Develop the solutions for complex Engineering problems and design system components using the random process, understand customer and user needs and identify the cost limitations for the selection of parameters, use creativity in applying the methods of model analyses the use of random process.	5
	PO 10	Demonstrate the ability to communicate effectively in writing design documentation and make effective presentations.	1
	PSO 3	Apply random process for finding co variance and correlation in research to model , analyze and problem solving in wired and wireless communication applications .	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 5	PO 1	Relate (understand) the correlation and co-variance (knowledge) of random process to the linear and time invariant systems using the mathematical principles and demonstrate (understand) the system response and its physical significance using scientific methodology and integrate these concepts into the study of communication systems (own engineering discipline) and (complex) signal processing systems.	3
	PO 2	Demonstrate(understand) the physical significance of the random process and develop (apply) the reponse of LTI system using the random process concept to identify, formulate and state a problem, and develop solution that uses co-variance and correlation as features.	5
	PO 3	Develop solutions for complex Engineering problems and design system components using random process for customer and user needs and identify the cost limitations for the selection of parameters, use creativity in applying the methods of model analyses for the analysis of linear time invariant systems in time domain.	5
	PO 10	Demonstrate the ability to communicate effectively in writing design documentation and make effective presentations.	1
	PSO 3	Apply random process for finding co variance and correlation for response of an LTI system in research to model,analyze and problem solving in wired and wireless communication applications .	2
CO 6	PO 1	Define (knowledge) the auto power spectral density and cross power spectral density functions, to formulate the response of LTI systems using mathematical principles and demonstrate (understand) the use of the joint characteristic and joint moment generating functions(knowledge) to analytically derive the power spectral densities of the LTI system (by means of scientific principles and methodology and for supporting(own engineering discipline) some image processing algorithms.	3
	PO 2	Demonstrate(understand) the physical significance of the random process and develop (apply) the response of LTI system in frequency domain using the random process concept to identify and develop solution that uses Fourier transform properties.	2
	PO 3	Develop the solutions for complex Engineering problems and design system components using the power spectral density functions, understand customer and user needs	3
	PO 10	Demonstrate the ability to communicate effectively in writing design documentation and make effective presentations.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 3	Apply random process for finding power spectral density functions for the response of LTI systems in research to model, analyze and problem solving in wired and wireless communication applications.	2

Note: For Key Attributes refer Annexure - I

TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-XIII PING:

	PR	OGR	RAM	IES	PSO'S										
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	3	6	6	-	-	-	-	-	-	1	-		-	-	2
CO 2	3	3	4	-	-	-	-	-	-	1	-	-	-	-	2
CO 3	3	6	5	-	-	-	-	-	-	1	-	-	-	-	2
CO 4	3	5	5	-	-	-	-	-	-	1	-		-	-	2
CO 5	3	5	5	-	-	-	-	-	-	1	-	-	-	-	2
CO 6	3	2	3	-	-	-	-	-	-	1	-		-	-	2

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

					PSO'S										
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	100	60	60	-	-	-	-	-	-	20	-	-	-	-	29
CO 2	67	30	40	-	-	-	-	-	-	20	-	-	-	-	29
CO 3	67	60	50	-	-	-	-	-	-	20	-	-	-	-	29
CO 4	67	50	50	-		-	-	-	-	20	-		-	-	29
CO 5	67	50	50	-	-	-	-	-	-	20	-	-	-	-	29
CO 6	67	20	30	-	-	-	-	-	-	20	-	-	-	-	29

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - 0 < C< 5% – No correlation

1 -5 <C \leq 40% - Low/ Slight

 $\pmb{2}$ - 40 % <C < 60% – Moderate

 $\boldsymbol{3}$ - $60\% \leq C < 100\%$ – Substantial /High

	PROGRAM OUTCOMES							PSO'S							
COURSE	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	-	-	-	-	-	-	1	-	-	-	-	1
CO 2	3	1	1	-	-	-	-	-	-	1	-	-	-	-	1
CO 3	3	3	2	_	-	-	-	-	-	1	-	-	-	-	1
CO 4	3	2	2	-	-	-	-	-	-	1	-	-	-	-	1
CO 5	3	2	2	-	-	-	-	-	-	1	-	-	-	-	1
CO 6	3	1	1	-	-	-	-	-	-	1	-	-	-	-	1
TOTAL	36	11	14	-	-	-	-	-	-	-	-	-	-	-	6
AVERAGE	3	2.75	2.33	-	-	-	-	-	-	-	-	-	-	-	1

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	-
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory	-	5 Minutes Video	\checkmark	Open Ended	-
Practices		/ Concept Video		Experiments	
Micro	-	-	-	-	-
Projects					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

X	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling and E	xperime	ntal Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	PROBABILITY, RANDOM VARIABLES AND OPERATIONS
	ON RANDOM VARIABLES
	Random Experiments, Sample Spaces, Events, Probability, Axioms, Joint,
	Conditional and Total Probabilities, Bay's Theorem, Independent Events.
	Random Variables: Definition, Conditions for mapping function of a Random
	Variable, Types of Random Variable, Distribution and Density functions:
	Definition and Properties, Binomial, Poisson, Uniform, Gaussian,
	Exponential, Rayleigh, random variables, Methods of defining Conditioning
	Event, Conditional Distribution, Conditional Density and their Properties,
	Expected Value of a Random Variable, Function of a Random Variable,
	Standard and Central Moments, Variance and Skew, Chebychev's Inequality
MODULE II	SINGLE RANDOM VARIABLE
	TRANSFORMATIONS-MULTIPLE RANDOM VARIABLES
	Characteristic Function, Moment Generating Function, Monotonic and Non-monotonic Transformations of Single Random Variables (Continuous and Discrete), Vector Random Variables, Joint Distribution Function and its Properties, Marginal Distribution Functions, Joint Density Function and its Properties, Marginal Density Functions, Conditional Distribution and Density – Point Conditioning, Conditional Distribution and Density – Interval conditioning, Statistical Independence, Sum of Two and more Random Variables, Central Limit Theorem: Equal and Unequal Distribution.
------------	---
MODULE III	EXPECTATIONS ON MULTIPLE RANDOM VARIABLES – EXPECTATIONS
	PART:1 Expected value of a function of multiple random variables, Correlation and Covariance, Correlation Coefficient, Joint Moments about the origin, Joint Central moments, Joint characteristic function, Joint moment generating function. PART:2 Jointly Gaussian random variables: Two random variables case and N random variable case, Properties, Transformations of Multiple Random Variables, Jacobian Matrix, Linear Transformations of Gaussian Random Variables
MODULE IV	RANDOM PROCESSES – TEMPORAL CHARACTERISTICS
	Random Process: Definition and Classification, Distribution and Density Functions, Stationarity and Statistical Independence., First- Order, Second- Order, Wide-Sense Stationarities (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity, Mean-Ergodic and Correlation- Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and Its Properties, Covariance Functions, Gaussian and Poisson Random Processes. Response of Linear Systems to Random Process input, Mean and MS value of System Response, Autocorrelation Function of Response, Cross- Correlation between Input and Output.
MODULE V	RANDOM PROCESSES – SPECTRAL CHARACTERISTICS
	Power Density Spectrum: Definition and Properties, Relationship between Power Density Spectrum and Autocorrelation Function, Cross Power Spectral Density: Definition and Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function, System Evaluation using Random Noise, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectra of Input and Output, Noise Bandwidth, White and Colored Noises.

TEXTBOOKS

1. Peyton Z. Peebles, "Probability, Random Variables and Random Signal Principles", Tata McGraw Hill, 4th Edition, 2001.

REFERENCE BOOKS:

- 1. Y. Mallikarjuna Reddy, "1. Probability Theory and Stochastic Processes ", University Press, 4thEdition, 2013.
- 2. Athanasios Papoulis and S. Unnikrishna Pillai, "2. Probability, Random Variables and Stochastic Processes ",PHI, 4th Edition,2002.
- 3. K .Murugesan, P. Guruswamy, "3. Probability, Statistics and Random Processes", Anuradha Agencies, 3rd Edition,2003.
- 4. Bruce Hajck,"4. Random Processes for Engineers, Cambridge University Press, 2015Signals, Systems & Communications - B.P. Lathi, B.S. Publications, 2003.

WEB REFERENCES: 1. https://nptel.ac.in/courses/111/102/111102111/

2. https://lms.iare.ac.in/index?route=course/details&course_id=358

COURSE WEB PAGE:

https://www.iare.ac.in/?q=courses/r18-auto-ece/

probability-theory-and-stochastic-process

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE), Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	-
	CONTENT DELIVERY (THEORY)		
1	Probability, axioms, joint, conditional probabilities	CO 1	T1:1.1- 1.5, R1:1.1- 1.9
2	Total probabilities, Bay's theorem	CO 1	T1:1.1- 1.5, R1:1.1- 1.9
3	Random variables, types of random variable	CO 2	T1:2.0- 2.1
4	Distribution and density functions: definition and properties	CO 2	T1:2.2- 2.5, R1:2.3- 2.4
5	Binomial, Poisson, Uniform random variables	CO 2	T1:2.2- 2.5, R1:2.3- 2.4
6	Gaussian, Exponential, Rayleigh, random variables	CO 2	T1:2.2- 2.5, R1:2.3- 2.4
7	Conditional distribution, conditional density and their properties	CO 2	T1:2.6, R1:2.7
8	Expected Value of a Random Variable	CO 2	T1:3.0- 3.2, R1: 3.3-3.5
9	Standard and Central Moments, Variance and Skew	CO 2	T1:3.0- 3.2, R1: 3.3-3.5
10	Chebychev's Inequality	CO 2	T1:3.0- 3.2, R1: 3.3-3.5
11	Characteristic function, moment generating function properties	CO 2	T1:3.3, R1: 3.6

12	Monotonic transformations of Single random variables.	CO 2	T1:3.4, R1: 3.8
13	Non-monotonic transformations of single random variables (continuous and discrete)	CO 2	T1:3.4, R1: 3.8
14	Random Vector ,Joint distribution function and its properties, marginal distribution functions	CO 3	T1:4.0- 4.4, R2: 4.2-4.3
15	Joint density function and its properties, marginal density functions	CO 3	T1:4.0- 4.4, R2: 4.2-4.3
16	Conditional distribution and density – point conditioning, interval conditioning	CO 3	T1:4.5, R2: 4.4
17	Statistical independence, Sum of two and more random variables	CO 3	T1:4.5, R2: 4.4
18	Central limit theorem	CO 3	T1:4.6- 4.7, R1: 4.6-4.7
19	Expected value of a function of multiple random variables ,Correlation and covariance , correlation coefficient	CO 3	T1:5.0- 5.1, R1: 5.2-5.3
20	Joint moments about the origin, joint central moments	CO 3	T1:5.2, R1: 5.4-5.5
21	Joint characteristic function, Joint moment generating function	CO 3	T1:5.2, R1: 5.4-5.5
22	Jointly Gaussian random variables,2 and N random variable case	CO 3	T1:5.3, R1: 5.6
23	Transformations of multiple random variables	CO 3	T1:5.4- 5.5, R1: 5.7-5.9
24	Linear transformations of Gaussian random variables	CO 3	T1:5.4- 5.5, R1: 5.7-5.9
25	Random Process: Classification	CO 4	T1:5.4- 5.6, R1: 6.2-6.6
26	Stationarity and statistical independence of random process	CO 4	T1:6.1- 6.2, R1: 6.7-6.9
27	Wide-sense stationarities (N-Order) and Strict-sense stationarity	CO 4	T1:6.1- 6.2, R1: 6.7-6.9
28	Time Averages and Ergodicity	CO 4	T1:6.1- 6.2, R1: 6.7-6.9
29	Autocorrelation Function and Its Properties	CO 4	T1:6.3, R1: 6.10- 6.12

30	Covariance Functions, Cross-correlation function and its Properties	CO 4	T1:6.4, R1: 6.10- 6.12
31	Gaussian and Poisson random processes	CO 4	T1:6.5, R1: 6.10- 6.12
32	Mean and mean square value of system Response	CO 4	T1:6.6, R1: 6.10- 6.12
33	Autocorrelation Function of Response, Cross- Correlation between Input and Output	CO 6	T1:8.2 ,R1: 8.2-8.3
34	Power density spectrum and properties	CO 5	T1:7.1- 7.2, R1: 7.2-7.5
35	Cross Power spectral density: definition and properties	CO 5	T1:7.3- 7.4, R1: 7.5-7.6
36	Relationship between power density spectrum and autocorrelation function	CO 5	T1:7.1- 7.2, R1: 7.2-7.5
37	Relationship between Cross-power Spectrum and Cross-correlation function	CO 5	T1:7.3- 7.4, R1: 7.5-7.6
38	System evaluation using random noise	CO 6	T1:8.3- 8.4, R1: 8.3-8.4
39	Power density spectrum of response, Cross-power density spectra of input and output	CO 6	T1:8.3- 8.4, R1: 8.3-8.4
40	Noise Bandwidth, White and Colored Noises.	CO 6	T1:8.5- 8.7, R1: 8.8, 8.17
	PROBLEM SOLVING/ CASE STUDIES	8	
41	Numerical problems on Probability, Total probability, Posterior probability	CO 1	T1:1
42	Numerical problems on distribution and density function of random variable	CO 2	T1:2
43	Numerical problems on Mean ,variance and skew for the given random variable.	CO 2	T1:3
44	Numerical problems on characteristic function and moment generating function	CO 2	T1:3
45	Numerical problems on Transformation of random variables	CO 2	T1:3
46	Numerical problems on joint distribution and marginal distribution	CO 3	T1:4
47	Numerical problems on joint density and marginal density function	CO 3	T1:4
48	Numerical problems on density function of sum of 2 random variables	CO 3	T1:4

49	Numerical problems on joint characteristic function and joint moment generating function	CO 3	T1:5
50	Numerical problems on linear transformation of Gaussian random variables	CO 3	T1:5
51	Numerical problems on stationarity of random process	CO 4	T1:6
52	Numerical problems on Gaussian and Poisson random process	CO 4	T1:6
53	Numerical problems on correlation function and properties	CO 4	T1:6
54	Numerical problems on power spectral density calculation	CO 5	T1:7
55	Numerical problems on power spectral density of a system output	CO 6	T1:8
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
56	Probability and random variable	CO 1, CO 2	T1:1,2,3
57	Multiple random variables	CO 3	T1:4,5
58	Characteristic function and moment generating function for single and multiple random variables.	CO 2,CO 3	T1:3,5
59	Random process and auto correlation function	CO 4,CO 6	T1:6
60	Power spectral density, output of linear system	CO 5,CO 6	T1:7,8
	DISCUSSION OF QUESTION BANK	1	1
61	Probability and random variable	CO 1, CO 2	T1:1,2,3
62	Multiple random variables	CO 3	T1:4,5
63	Transformation of random variables	CO 2,CO 3	T1:3,5
64	Stationarity and auto correlation function	CO 4,CO 6	T1:6
65	Power spectral density	CO 5,CO 6	T1:7,8

Signature of Course Coordinator

HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO	NBA Statement / Key Competencies Features (KCF)	No.
Num-		
ber		
PO 1	Apply the knowledge of mathematics science. Engineering	3
	fundamentals and an Engineering specialization to the solution of	
	complex Engineering problems (Engineering Knowledge)	
	Knowledge understanding and application of	
	1 Scientific principles and methodology	
	2. Mathematical principles	
	2. Own and / or other engineering disciplines to integrate /	
	5. Own and / of other engineering disciplines to integrate /	
	support study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and analyse	10
	complex Engineering problems reaching substantiated conclusions	
	using first principles of mathematics natural sciences, and	
	Engineering sciences (Problem Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results	
	10. Documentation	
PO 3	Design solutions for complex Engineering problems and design	10
	system components or processes that meet the specified needs	
	with appropriate consideration for the public health and safety.	
	and the cultural societal and Environmental considerations	
	(Design/Development of Solutions).	
	1 Investigate and define a problem and identify constraints	
	including environmental and sustainability limitations health and	
	safety and risk assessment issues	
	2 Understand customer and user needs and the importance of	
	considerations such as aesthetics	
	3 Identify and manage cost drivers	
	4 Use creativity to establish innovative solutions	
	5. Ensure fitness for nurnose for all aspects of the problem	
	including production operation maintenance and dispessal	
	6. Manage the design process and evaluate outcomes	
	7 Knowledge and understanding of commercial and concerning	
	context of ongineering processos	
	Context of engineering processes	
	o. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	9. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	10. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health,	
	satety, and risk (including environmental risk) issues	

PO 4.	 Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems. 	11
PO 5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.	1
PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5

PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	12

PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as,	5
	being able to comprehend and write effective reports and design	
	documentation, make effective presentations, and give and receive	
	clear instructions (Communication).	
	"Students should demonstrate the ability to communicate	
	effectively in writing / Orally"	
	1. Clarity (Writing)	
	2. Grammar/Punctuation (Writing)	
	3. References (Writing)	
	4. Speaking Style (Oral)	
	5. Subject Matter (Oral)	
PO11	Demonstrate knowledge and understanding of the Engineering	12
	and management principles and apply these to one's own work, as	
	a member and leader in a team, to manage projects and in	
	multidisciplinary Environments (Project Management and	
	Finance).	
	1. Scope Statement	
	2. Critical Success Factors	
	3. Deliverables	
	4. Work Breakdown Structure	
	5. Schedule	
	6. Budget	
	7. Quality	
	8. Human Resources Plan	
	9. Stakeholder List	
	10. Communication	
	11. Risk Register	
	12. Procurement Plan	
PO12	Recognize the need for and have the preparation and ability to	8
	engage in independent and life-long learning in the broadest	
	context of technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new	
	technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

PO	NBA Statement / Key Competencies Features (KCF)	No.
Num-		
ber		KCF's
PSO1	 Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications 1. Analyze and solve real time problems in Robotics 2. Evaluate the design and provide optimal solutions of the digital 	5
	 circuits for signal processing applications 3. Develop embedded systems modules using Real Time Operating System 4. Undertake research and development projects in the field of 	
	Embedded Systems 5. Adopt the engineering professional code and conduct	
PSO2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs 2.Design ASIC prototypes using Verilog and VHDL languages 3. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6.Designing prototypes of SOC using programming tools like MATLAB, LabVIEW 7.Familiarize with the design flow of ASIC prototype 8.Realize SOC using Register-Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC 10. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 11. Programming and hands-on skills to meet requirements of global environment	11
PSO3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications 1. Explicit software and programming tools for antenna design 2. Adopt technical library resources and literature search 3. Explore smart antennas 4. Model, program for operation and control of smart antennas for wireless communication applications 5. Interface automation tools 6. Research, analysis, problem solving and presentation using software aids 7.Programming and hands-on skills to meet requirements of global environment 	7

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING				
Course Title	DATA STR	DATA STRUCTURES			
Course Code	ACSC08	ACSC08			
Program	B.Tech	B.Tech			
Semester	III				
Course Type	Core				
Regulation	UG.20				
Theory Pr			Pra	ctical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	3	1.5
Course Coordinator	Dr V Sitharamulu, Associate Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSC01	Ι	Python Programming

II COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics covered include managing complexity, analysis, static data structures, dynamic data structures and hashing mechanisms. The main objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter in real life. This course reaches to student by power point presentations, lecture notes, and lab which involve the problem solving in mathematical and engineering areas.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Data Structures	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	✓	whiteboard		Assignments	x	MOOC
\checkmark	Open Ended Experiments	х	Seminars	х	Mini Project	1	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
60%	Understand
20%	Apply
10%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component	Theo	Total Marks	
Type of Assessment	CIE Exam Quiz \AAT		
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 17^{th} week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course

is given in table.

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	To provide students with skills needed to understand and analyze performance trade-offs of different algorithms / implementations and asymptotic analysis of their running time and memory usage.
II	To provide knowledge of basic abstract data types (ADT) and associated algorithms: stacks, queues, lists, tree, graphs, hashing and sorting, selection and searching.
III	The fundamentals of how to store, retrieve, and process data efficiently
IV	To provide practice by specifying and implementing these data structures and algorithms in Python.
V	Understand essential for future programming and software engineering courses.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Interpret the complexity of algorithm using the asymptotic	Understand
	notations.	
CO 2	Select appropriate searching and sorting technique for a given	Apply
	problem.	
CO 3	Construct programs on performing operations on linear and	Apply
	nonlinear data structures for organization of a data	
CO 4	Make use of linear data structures and nonlinear data	Apply
	structures solving real time applications.	
CO 5	Describe hashing techniques and collision resolution methods	Understand
	for efficiently accessing data with respect to performance.	
CO 6	Compare various types of data structures ; in terms of	Analyze
	implementation, operations and performance.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes				
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.				
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.				
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations				
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.				
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations				
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.				
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.				

	Program Outcomes				
PO 8	Ethics: Apply ethical principles and commit to professional ethics and				
	responsibilities and norms of the engineering practice.				
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.				
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.				
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.				
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change				

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	2	CIA/SEE
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	CIA/SEE
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	1	CIA/SEE
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 4	Conduct Investigations of Complex	1	CIA/SEE
	Problems: Use research-based knowledge and		
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	CIA/SEE/Open ended Experiments
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	Tech Talk/Concept Videos/Open ended Experiments
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	1	Tech Talk/Concept Videos/Open ended Experiments

3 =High; 2 =Medium; 1 =Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency
			Assessed
			by
PSO 1	Build Embedded Software and Digital Circuit	3	CIA/ SEE/
	Development platform for Robotics, Embedded		Tech Talk/
	Systems and Signal Processing Applications.		Concept
			Videos
PSO 2	FFocus on the Application Specific Integrated	2	CIA/ SEE/
	Circuit (ASIC) Prototype designs, Virtual		Tech Talk/
	Instrumentation and System on Chip (SOC)		Concept
	designs.		Videos
PSO 3	Make use of High Frequency Structure Simulator	2	CIA/ SEE/
	(HFSS) for modeling and evaluating the Patch		Tech Talk/
	and Smart Antennas for Wired and Wireless		Concept
	Communication Applications.		Videos

3 = High; 2 = Medium; 1 = Low

COURSE				PRO	OGR.	AM	OUT	COI	MES					PSO'S	
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	-	\checkmark	\checkmark	\checkmark
CO 6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO1	PO 1	Understand (knowledge) the concept of conventional digital communication system and (understand) various types of pulse analog modulation techniques for signals analysis by applying the principles of mathematics, science, and engineering fundamentals .	3
	PO 2	Problem Analysis on different types of algorithms to analyze space and time complexities.	4
	PO 3	Design the Solutions for finding space and time complexities of a complex algorithm and representing it by asymptotic notations	2
	PO 10	Subject matter and speaking style assessed in explanation of various algorithms, algorithm complexity.	2
	PSO1	Design and analyze complex algorithms and specify its space and time complexities and representing it by asymptotic notations for faster processing of data.	3
	PSO3	Make use of modern computer tools for finding space and time complexities of a complex algorithm	1
CO 2	PO 1	Make use of broad knowledge of searching and sorting techniques for an efficient search from a data structure and optimize the efficiency of other algorithms by applying the knowledge of mathematics, science, Engineering fundamentals.	1
	PO 2	Problem Analysis on different types of search sort algorithms to analyze space and time complexities.	5

	PO 3	Design/Development of Solutions using appropriate searching and sorting techniques for designing a solution for complex Engineering problems.	2
	PO 5	Implementation of different sorting and searching techniques for given problem with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of searching and sorting along with efficiency of searching and sorting techniques in terms of space and time complexity	2
	PO 12	Keeping current in CSE and advanced engineering concepts of various searching, sorting and respective time and space complexity by tech talk, concept videos and open ended experiments.	3
	PSO1	Understand complex problems and analyzing it and apply appropriate sorting and searching techniques for data processing.	4
	PSO2	Applying various selecting and sorting techniques while designing and developing information retrieval systems and its applications	2
	PSO3	Make use of various selecting and sorting techniques and extend the knowledge for advance frame works and platforms which are necessary for engineering practices and higher studies or become an entrepreneur.	1
CO 3	PO 1	Make use of linear and nonlinear data structures to organize the data in a particular way so to use them in the most effective way by applying the basic knowledge of mathematics, science, engineering fundamentals	2
	PO 2	Problem analysis: Organizing the given data in particular way by performing the operations on linear and nonlinear data structures to use the data in the most effective way.	7
	PO 3	Recognize the need of linear and nonlinear data structures such as linked list, array, stack and queue by Designing solutions for complex Engineering.	5
	PO 4	Conduct Investigations Conduct Investigations of Complex Problems: Ability to apply operations on linear and nonlinear data structures in order to organize the given data in a particular way	4
	PO 5	Implementation of Implementation of different operations on linear and nonlinear data structures for given problem with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of linear and nonlinear data structures like linked lists, stacks and queues	2

L			
	PO 12	Keeping current in CSE and advanced engineering concepts of linear and nonlinear data structures like linked lists, stacks and queues by tech talk, concept videos and open-ended experiments	3
	PSO1	Understand complex problems and analyzing it and apply appropriate operations on linear or nonlinear data structures for Developing the solution.	5
	PSO2	Applying various linear or nonlinear data structures while designing and developing information retrieval systems and its applications	2
	PSO3	Make use of various linear or nonlinear data structures and extend the knowledge for advance frame works and platforms which are necessary for engineering practices and higher studies or become an entrepreneur.	1
CO 4	PO 1	Make use of linear and nonlinear data structures for solving real time applications by applying the basic knowledge of mathematics, science, engineering fundamentals	3
	PO 2	Problem analysis: Solving real time applications by performing the operations on linear or nonlinear data structures.	7
	PO 3	Recognize the need of linear and nonlinear data structures such as linked list, array, stack and queue for Designing real time applications.	2
	PO 4	Conduct Investigations of Complex Problems: Ability to apply operations on linear or nonlinear data structures in order to solve real time applications.	4
	PO 5	Implementation of different operations on linear and nonlinear data structures for solving real time applications with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of linear and nonlinear data structures like linked lists, stacks, queues, trees and graphs	2
	PO 12	Keeping current in CSE and advanced engineering concepts of linear and nonlinear data structures like linked lists, stacks, queues, trees and graphs by tech talk, concept videos and open-ended experiments for solving real time applications.	3
	PSO1	Understand complex problems and analyzing it and apply appropriate operations on linear or nonlinear data structures for solving real time applications.	5
	PSO2	Applying various linear or nonlinear data structures while designing and developing information retrieval systems and its applications	1

	PSO3	Make use of various linear or nonlinear data structures and extend the knowledge for advance frame works and platforms which are necessary for engineering practices and higher studies or become an entrepreneur.	1
CO 5	PO 1	Understand the knowledge of hashing techniques and collision resolution methods and implementing for specified problem domain using knowledge of mathematics, science and engineering fundamentals	1
	PO 3	Design the Solution for efficiently accessing data with respect to performance by using hashing techniques and collision resolution methods	2
	PO 5	Implementation of hashing techniques and collision resolution methods for efficiently accessing data with respect to performance with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of Hashing, Collision techniques	2
	PSO1	Understand complex problems and analyzing it and apply appropriate hashing techniques and collision resolution methods for efficiently accessing data with respect to performance.	4
	PSO2	Applying various hashing techniques and collision resolution methods while designing and developing information retrieval systems and its applications	1
	PSO3	Build sufficient knowledge hashing techniques and collision resolution methods so that new product can be developed, which leads to become successful entrepreneur in the present market.	1
CO 6	PO 1	Understand various types of data structures in terms of implementations and choose appropriate data structure for specified problem domain using knowledge of mathematics, science and engineering fundamentals	3
	PO 2	Problem Analysis: Recognize the importance of suitable data structures in checking the efficiency of algorithms used for complex engineering problems.	7
	PO 3	Design the Solution complex problems or efficiently accessing data with respect to performance by using hashing techniques and collision resolution methods	5
	PO 4	Conduct Investigations of Complex Problems: Ability to apply operations on linear or nonlinear data structures in order to solve real time applications.	4
	PO 5	Understand the Implementation of various types of data structures with the help of computer software	1
	PO 10	Subject matter and speaking style assessed in explanation of Implementation of various types of data structures.	2

PO 12	Keeping current in CSE and advanced engineering concepts of Implementation of various types of data structures by tech talk, concept videos and open ended experiments	3
PSO 1	Understand complex problems and analyzing it and apply Implementation of various types of data structures.	5
PSO 2	Applying Implementation of various types of data structures while designing and developing information retrieval systems and its applications	1
PSO 3	Build sufficient knowledge Implementation of various types of data structures so that new product can be developed, which leads to become successful entrepreneur in the present market.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

COURSE				PRO	OGR.	AM	OUT	COI	MES					PSO'S	
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2
CO 1	1	4	2	-	-	-	-	-	-	2	-	-	3	-	1
CO 2	1	5	2	-	1	-	-	-	-	2	-	3	4	2	1
CO 3	2	7	5	4	1	-	-	-	-	2	-	3	5	2	1
CO 4	3	7	2	4	1	-	-	-	-	2	-	3	5	1	1
CO 5	1	-	2	-	1	-	-	-	-	2	-	-	4	1	1
CO 6	3	7	5	4	1	-	-	-	-	2	-	3	5	1	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	33.3	40	20	-	-	-	-	-	-	40	-	-	50	-	50
CO 2	33.3	50	20	-	100	-	-	-	-	40	-	25	66.6	100	50
CO 3	66.6	70	50	36.3	100	-	-	-	-	40	-	25	83.3	100	50
CO 4	100	70	20	36.3	100	-	-	-	-	40	-	-	66.6	50	50
CO 5	33.3	-	20	-	100	-	-	-	-	40	-	-	66.6	50	50
CO 6	100	70	50	36.3	100	-	-	-	-	40	-	25	83.3	50	50

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

1 -5 <C \leq 40% – Low/ Slight

 $\pmb{2}$ - 40 % < C < 60% – Moderate

 $\boldsymbol{3}$ - 60% \leq C < 100% – Substantial /High

COURSE				PRC	G R ₄	AM (OUT	CON	AES					PSO'S	
OUTCOMES	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	1	1	-	-	-	-	-	-	1	-	-	2	-	2
CO 2	1	2	1	-	3	-	-	-	-	1	-	1	3	3	2
CO 3	3	3	2	1	3	-	-	-	-	1	-	1	3	3	2
CO 4	3	3	1	1	3	-	-	-	-	1	-	1	3	2	2
CO 5	1	-	1	-	3	_	-	-	-	1	-	-	3	2	2
CO 6	3	3	2	1	3	-	-	-	-	1	-	1	3	2	2
TOTAL	12	12	8	3	15	-	-	-	-	6	-	4	17	12	12
AVERAGE	2.0	$\overline{2.4}$	1.3	1.0	3.0	-	-	-	-	1	-	1	2.8	2.4	2.0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	1	SEE Exams	✓	Assignments	1
Seminars	-	Student Viva	-	Certification	-
Laboratory	_	5 Minutes Video		Open Ended	-
Practices			\checkmark	Experiments	
Term Paper	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Ex	perts	

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING
	Basic concepts: Introduction to data structures, classification of data structures, operations on data structures; Algorithms Specification ,Recursive algorithms ,Data Abstraction, Performance analysis-time complexity and space complexity, Asymptotic Notation-Big O ,Omega and Theta notations. Introduction to Linear and Non Linear data structures, Searching techniques: Linear search, Binary search; Sorting techniques: Bubble, Selection, Insertion, Quick and Merge Sort and comparison of sorting algorithms
MODULE II	LINEAR DATA STRUCTURES
	Stacks: Stack ADT, definition and operations, Implementations of stacks using array, applications of stacks, Arithmetic expression conversion and evaluation; Queues: Primitive operations; Implementation of queues using Arrays, applications of linear queue, circular queue and double ended queue (deque).
MODULE III	LINKED LISTS
	Linked lists: Introduction, singly linked list, representation of a linked list in memory, operations on a single linked list; Applications of linked lists: Polynomial representation and sparse matrix manipulation. Types of linked lists: Circular linked lists, doubly linked lists; Linked list representation and operations of Stack, linked list representation and operations of queue
MODULE IV	NON LINEAR DATA STRUCTURES
	Trees: Basic concept, binary tree, binary tree representation, array and linked representations, binary tree traversal, binary tree variants, application of trees; Graphs: Basic concept, graph terminology, Graph representations-Adjacency matrix, Adjacency lists, graph implementation, Graph traversals-BFS,DFS, Application of graphs, Minimum spanning trees-Prims and Kruskal algorithms
MODULE V	BINARY TREES AND HASHING
	Binary search trees: Binary search trees, properties and operations; Balanced search trees: AVL trees; Introduction to M-Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash functions, collisions, applications of hashing.

TEXTBOOKS

- 1. Rance D. Necaise, —Data Structures and Algorithms using Python, Wiley Student Edition.
- 2. Benjamin Baka, David Julian, —Python Data Structures and Algorithms, Packt Publishers, 2017.

REFERENCE BOOKS:

- 1. S. Lipschutz, —Data Structures, Tata McGraw Hill Education, 1st Edition, 2008.
- 2. D. Samanta, —Classic Data Structures, PHI Learning, 2nd Edition, 2004.

WEB REFERENCES:

- 1. http://www.tutorialspoint.com/data-structures-algorithms
- 2. https://www.geeksforgeeks.org/data-structures/
- 3. https://www.studytonight.com/data-structures/
- 4. https://www.coursera.org/specializations/data-structures-algorithms

COURSE WEB PAGE:

 $1.\ https://www.iare.ac.in/?q=courses/computer-science-and-engineering-autonomous/datastructures$

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO - PO Mapping	_	https: //www.iare.ac.in, q=courses /computer- science-and- engineering- autonomous/data
	CONTENT DELIVERY (THE	ORY)	
1	Basic concepts: Introduction to Data Structures	CO 3	T1:1.1.3 R2 : 1.2
2	Classification of data structures	CO 3	T1:1.1.3 R2 : 1.4
3	Operations on data Structures	CO 3	T1:1.2
4	Recursive algorithm, Performance Analysis	CO 1	T1:1.2 T1:5.1
5	Searching techniques: Linear search and binary search	CO 2, CO 6	T1:5.1
6	Searching techniques: Fibonacci search and comparison	CO 2, CO 6	T1:5.1
8	Sorting techniques: Bubble sort, selection sort and companding	$\begin{array}{c} \overline{\text{CO 2 CO}} \\ 6 \end{array}$	R1:14.5

9	Sorting techniques: Insertion sort, Quick sort	CO 2,	T1:5.2 R2 :
		CO 6,	10.2
10	Merge sort , comparison of sorting algorithms	CO 4,	T1:5.2 R2:
		CO 6	10.2
13	Stacks: Primitive operations, implementation of	CO 3,	T1:7.1
	stacks using Arrays	CO 4	
14	Applications of stacks arithmetic expression	CO 4,	T1:7.2
	conversion and evaluation	CO 6	
16	Queues: Primitive operations; Implementation of	CO 3,	T1:8.1
	queues using Array	CO 4	
17	Applications of linear queue, circular queue	CO 3,	T1:8.4
		CO 4	
18	Double ended queue (deque)l	CO 3,	R2: 5.4
		CO 4	
19	Linked lists: Introduction, singly linked list,	CO 3,	T1:9.1
	representation of a linked list in memory	CO 4	
20	Operations on a single linked list :creation,	CO 3,	T1:9.2
	insertion and deletion	CO 4	
21	Applications of linked lists	CO 4,	T1:9.3
22	Operations on a double linked lists :creation,	CO 3,	T1:9.4
	insertion and deletion	CO 4	
23	Operations on a double linked lists : deletion	CO 3,	T1:9.4
	,traversal.	CO 4	
24	single linked list :polynomial expression	CO 3,	T1:9.3
		CO 4	
25	single linked list :Sparse matrix manipulation.	CO 3,	T1:9.3
		CO 4	
26	Operations on a Circular linked lists: creation,	CO 3,	T1:9
	insertion and deletion	CO 4	
30	Operations on a Circular linked lists: deletion,	CO 3,	T1:9
	traversal	CO 4	
31	Linked list representation and operations of Stack	CO 3,	T1:9.7
		CO_4	
32	Linked list representation and operations of queue	CO 3,	T1:9.8
		CO_4	
37	Trees: Basic concept, Tree terminology	CO 3	T1:13.1

CONTENT DELIVERY (THEORY)					
38	Binary tree :Binary Tree properties	CO 3, CO 4	T1:13.1		
39	Binary tree representation using array	CO 3, CO 4	T1:13.2		
40	Binary tree representation using linked list	CO 3, CO 4	T1:13.2		
41	Binary tree traversal, binary tree variants	CO 3, CO 4	T1:13.2		
42	Application of trees	CO 4	T1:13.2.3		
44	Graphs: Basic concept, graph terminology	CO 3	R2: 8.2		
45	Types of graphs, Representation of graph	CO 3	R2: 8.2		
46	Graph traversals :DFS and BFS, Application of graphs	CO 3	T2:6.2		
48	Minimum Spanning Trees-Prims and Kruskal algorithms	CO 4	T1:6.1 T2:5.6		
50	Binary search trees, properties	CO 3	T1:13.2.3		
51	Binary search trees operations	CO 3	T1:13.2.3		
52	AVL trees	CO 3	T1:14.3		
53	M- Way search trees, B trees	CO 3	T1:14.3		
54	Hashing, Collision	CO 5	R2: 6.4		
7	Problems on linear search, binary search and Fibonacci search.	CO 2	T1:5.1		
11	Problems on bubble sort, selection and insertion sort	CO 3, CO 4	T1:5.2 R2 : 10.2		
12	Problems on quick and merge sort	CO 3, CO 4	T1:5.2 R2 : 10.2		
15	Problems on Arithmetic expression conversion and evaluation	CO 3, CO 4	T1:7.2		
27	Problems on single linked list to add, delete element	CO 3, CO 4	T1:9.8		
28	Problems on double linked list to add, delete element	CO 3, CO 4	T1:9.8		
33	Problems on circular linked list to add, delete element	CO 3, CO 4	T1:9.4		
34	Problems on double linked list to add, delete element	CO 3, CO 4	T1:9.3		
35	Problems on stack using linked list	CO 3, CO 4	T1:9.7		
36	Problems on queue using linked list	CO 3, CO 4	T1:9.8		
43	Problems on Binary tree :creation ,insertion and deletion of a node	CO 3, CO 4	T1:13.2		
47	Problems on Graph Traversal: DFS and BFS	CO 3, CO 4	T2:6.2		

49	Problems on MST: Prim's and Kruskal's	$\begin{array}{c} \text{CO } 3, \\ \text{CO } 4 \end{array}$	T1:6.1 T2:5.6				
			T 1 1 4 0				
55	Problems on Binary search tree	CO 4	T1:14.3				
56	Problems oh hashing	CO 5	R2: 6.4				
	DISCUSSION ON DEFINITION AND TERMINOLOGY						
57	Definitions on Data Structures, searching and	CO	T1:1 R1:14				
	sorting	1,CO2,CO					
		3					
58	Definitions on Linear Data Structures	CO 3	T1:7,.T1:8				
59	Definitions on Linked Lists	CO 3	T1:9				
60	Definitions on Non Linear data Structures	CO 3	T1:7.5				
61	Definitions on Binary Trees and Hashing	CO 3 CO	T1:14				
		5					
	DISCUSSION ON QUESTION	BANK					
62	Data Structures, searching and sorting	CO 1,	T1:1 R1:14				
		CO2,CO6					
63	Linear Data Structures	CO 3,CO	T1:9				
		4,CO 6					
64	Linked Lists	CO 3,CO	T1:2.5				
		4,CO 6					
65	Non Linear data Structures	CO 3,CO	T1: 4.1				
		4,CO 6					
66	Binary Trees and Hashings	CO 3,CO	T1: 5.1				
		5,CO 6					

Course Coordinator Dr V Sitharamulu, Associate Professor HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	ELECTRONIC DEVICES AND CIRCUITS LABORATORY				
Course Code	AECC05				
Program	B.Tech				
Semester	III ECE				
Course Type	Core				
Regulation	IARE - UG 20				
	Theory			Practical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	-	-	-	3	1.5
Course Coordinator	Mr. Seshagiri Rao V.R, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AEE102	II	Electrical Circuits Laboratory

II COURSE OVERVIEW:

This course provides the hands-on experience on designing circuits using Diodes, Bipolar Junction Transistors, Field Effect Transistors, UJTs and SCRs. Determine the gain, bandwidth and input output impedences of BJT and FET amplifiers. Provides the capability to extract the characteristics of semiconductor devices with simulation tools.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Electonic Devices and	70 Marks	30 Marks	100
Circuits Laboratory			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab	\checkmark	Viva	\checkmark	Probing further
			Worksheets		Questions		Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end laberamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	-
20 %	Analysis	-
20 %	Design	-
20 %	Conclusion	-
20 %	Viva	_

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of	Day to day	Final internal lab	
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The behavior and characteristics of semiconductor devices for designing the semiconductor circuits such as amplifier and rectifiers.
II	Estimation of device characteristics like gain, bandwidth, input and output resistance of bipolar junction transistors and field effect transistors amplifiers to derive appropriate small-signal model analysis of basic amplifier circuits.
III	The analytical skills to model analog and digital integrated circuits at discrete and micro circuit level.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate the electronic instruments for measuring voltage, current	Understand
	and phase parameters.	
CO 2	Experiment and determine the parameters of rectifiers and voltage	Apply
	regulators using the diode characteristics.	
CO 3	Examine the input and output characteristics of transistor (BJT and	Analyze
	FET) configurations for determining the input - output resistances.	
CO 4	Characterize BJT and FET amplifiers for estimating the voltage gain	Analyze
	and Current gain.	
CO 5	Calculate the intrinsic stand-off ratio of the uni junction transistor using	Apply
	volt – ampere characteristics.	
CO 6	Build and determine holding, latching current and break over voltage of	Apply
	silicon controlled rectifier using volt - ampere characteristics.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

	Program Outcomes
PO 9	Individual and team work: Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give
	and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of
	the engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	2	Lab
	mathematics, science, engineering fundamentals,		Experiments /
	and an engineering specialization to the solution of		CIE / SEE
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	Lab exer-
	research literature, and analyse complex engineering		$\operatorname{cises}/\operatorname{CIE}/\operatorname{SEE}$
	problems reaching substantiated conclusions using		
	first principles of mathematics, natural sciences,		
	and engineering sciences.		
PO 5	Modern Tool Usage: Create, select, and apply	2	Lab exer-
	appropriate techniques, resources, and modern		$\operatorname{cises}/\operatorname{CIE}/\operatorname{SEE}$
	Engineering and IT tools including prediction and		
	modelling to complex Engineering activities with an		
	understanding of the limitations		
PO 10	Communication: Communicate effectively on	1	day-to-day
	complex Engineering activities with the Engineering		evaluation
	community and with society at large, such as, being		
	able to comprehend and write effective reports and		
	design documentation, make effective presentations,		
	and give and receive clear instructions		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs	1	Lab exer- cises/CIE/SEE

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE					PSO'S										
OUTCOMES	РО	РО	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-

XII JUSTIFICATIONS FOR CO - (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Learn to use the Instruments knowledge for measuring the voltage, current and signal parameters with the information from other engineering disciplines, mathematics, and scientific methodologies.	2
	1		
CO 2	PO 1	Determine the parameters of rectifiers and voltage regulators using the diode characteristicswith support from other engineering disciplines , mathematics , and scientific methodologies .	2
	PO 10	Demonstrate the ability to analyze halfwave and full wave rectifiers for higher efficiency and voltage regulation	1
	PSO 2	Formulate and Evaluate the protection circuits applications in the field of Intelligent Embedded and Semiconductor technologies	3
CO 3	PO 1	Examine the input and output characteristics of transistor BJT and FET configurations knowledge with the support of Elecronic Circuit theory.	1

	PO 2	Formulate and analyze Problem for complex Engineering problems for power supplies knowledge consisting of rectifiers using first principles of	5
		mathematics and Engineering sciences.	
	PO 10	Explain forming half wave and full wave rectifiers with necessary interconnections.	1
CO 4	PO 1	Design amplifiers knowledge consisting of BJTs and FETs with the support of VLSI engineering tools such as stick diagrams and layouts.	1
	PO 2	Formulate and analyze Problem analysis and complex Engineering problems for amplfiers knowledge consisting of multiplexers using first principles of mathematics and Engineering sciences.	5
	PO 5	Develop amplifiers knowledge of Electronic circuits using modern Engineering and IT tools to high SNR.	1
	PO 10	Explain calculation of voltage and current gains for BJT and FET amplifiers with clarity.	1
CO 5	PO 1	Understand the structure and operation of uni-junction transistor knowledge by applying the oscillation fundamentals with support from other engineering disciplines, mathematics , and scientific methodologies .	3
	PO 2	Formulate and analyze Problem analysis and complex Engineering problems of UJT circuits knowledge using first principles of mathematics and Engineering sciences.	5
	PO 10	Explain calculation of intrinsic standoff ratio parameters for UJT with clarity	1
CO 6	PO 1	Examine and determine the holding, latching current and break over voltage of silicon controlled rectifier using volt - ampere characteristics knowledge with data from mathematics and engineering sciences.	2
	PO 2	Formulate and analyze Problem analysis and complex Engineering problems for protection circuits using SCRs knowledge using first principles of mathematics and Engineering sciences.	5
	PO 10	Focus on writing the lab reports and work sheets with clarity	1
	PSO 2	Formulate and Evaluate the protection circuits applications in the field of Intelligent Embedded and Semiconductor technologies	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE					PSO'S										
OUTCOMES	PO	PO	PO	PO	РО	РО	РО	РО	РО	РО	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	2	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	2	-	-	-	-	-	-	-	-	1	-	-	-	3	-
CO 3	1	5	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	1	5	-	-	1	-	-	-	-	1	-	-	-	-	-
CO 5	3	5	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	2	5	-	-	-	-	-	-	-	1	-	-	-	3	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE					PSO'S										
OUTCOMES	PO	РО	РО	PO	PO	РО	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	66	-	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 2	66	-	-	-	-	-	-	-	-	20	-	-	-	27	-
CO 3	33	50	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 4	33	50	-	-	100	-	-	-	-	20	-	-	-	-	-
CO 5	100	50	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 6	66	50	-	-	-	-	-	-	-	20	-	-	-	27	-

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\pmb{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

1 -5 <C \leq 40% – Low/ Slight

 ${\it 2}$ - 40 % < C < 60% – Moderate

 $\boldsymbol{3}$ - $60\% \leq C < 100\%$ – Substantial /High

COURSE		PROGRAM OUTCOMES													PSO'S			
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	PO	PSO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-			
CO 2	3	-	-	-	-	-	-	-	-	1	-	-	-	1	-			
CO 3	1	2	-	-	-	-	-	-	-	1	-	-	-	-	-			
CO 4	1	2	-	-	3	-	-	-	-	1	-	-	-	-	-			
CO 5	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-			

CO 6	3	2	-	-	-	-	-	-	-	1	-	-	-	1	-
TOTAL	14	8	0	0	3	0	0	0	0	6	0	0	0	2	0
AVERAGE	2.3	2	0	0	3	0	0	0	0	1	0	0	0	1	0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-
Assignments	-				

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	✓	End Semester OBE Feedback	
X	Assessment of Mini Projects by Experts			

XVIII SYLLABUS:

WEEK I	PN DIODE CHARACTERISTICS
	 (a) Plot volt-ampere characteristics of silicon and germanium p-n junction diodes. Find cut-in voltage, static and dynamic resistances in forward and reverse biased conditions using hardware. (b) Compare silicon and germanium diodes for cut-in voltage and magnitudes of diode currents from V-I characteristics using digital simulation.
WEEK II	ZENER DIODE CHARACTERISTICS AND VOLTAGE REGULATOR
	 (a) With experimental set up, determine knee voltage, breakdown voltage and line & load regulation characteristics for zener diode. (b) Design zener voltage regulator circuit with 6V output voltage using digital simulation. Choose the current limiting resistor and load resistor considering minimum break down current.
WEEK III	HALF WAVE RECTIFIER
	(a) Draw input and output characteristics of half wave rectifier and observe the effect of cut in voltage on the peak output voltage using hardware.(b) With capacitor and inductor filters observe the variation in ripple voltage for small, medium & high load currents for half wave rectifier using digital simulation.
WEEK IV	FULL WAVE RECTIFIER
	(a) For full wave rectifier with centre tapped transformer draw the input and output waveforms using hardware.(b) Design full wave rectifier with appropriate filter so that ripple voltage is independent of load current using digital simulation.
WEEK V	TRANSISTOR CB CHARACTERISTICS
-----------	---
	 (a) Determine the input and output characteristics of CB configuration and compute the following h – parameters. i) Input resistance (hib) Ohms ii) Reverse voltage transfer ratio (hrb) iii) Output admittance (hob) Mhos iv) Forward current gain (hfb) Also clearly identify active, cutoff and saturation regions on V-I characteristics using hardware. (b) Demonstrate the characteristics of pnp transistor in CB configuration, identifying active, cutoff and saturation regions with digital simulation. Mark the collector-emitter voltage (VCE) when transition from saturation to active region occurs.
WEEK VI	() E CE CHARACTERISTICS
	 (a) For CE configuration, compare the h – parameters 1) input resistance (hie) Ohms ii) reverse Voltage transfer Ratio (hre) iii)Output admittance (hoe) Mhos. iv) Forward current gain (hfe) with those of CB configuration using hardware. (b) Design an electronic switch using CE configuration using digital simulation.
WEEK VII	FREQUENCY RESPONSE OF CE AMPLIFIER
	(a) Assess the gain and bandwidth of CE amplifier using hardware.(b) Model CE amplifier with voltage gain of -24 and current gain -50 using digital simulation.
WEEK VIII	FREQUENCY RESPONSE OF CC AMPLIFIER
	(a) Construct CC amplifier and determine the gain and bandwidth using hardware.(b) Design a CC amplifier with current gain of 40 with suitable assumptions using digital simulation.
WEEK IX	FREQUENCY RESPONSE OF CB AMPLIFIER
	(a) Observe the frequency response of CB amplifier and determine the gain and bandwidth using hardware.(b) With appropriate selection of components, design a CB amplifier with voltage gain of 50 using digital simulation.
WEEK X	UJT CHARACTERISTICS
	(a) Verification of V-I Characteristics of uni- junction transistor and identify the negative resistance region using hardware. Also mark peak and valley points.(b) Design relaxation oscillator with uni -junction Transistor with digital simulation.
WEEK XI	SCR CHARACTERISTICS
	(a) Obtain the V-I Characteristics of SCR and determine the break down voltage and holding current using hardware.(b) Design battery charger circuit using silicon control rectifier using digital simulation.
WEEK XII	FET CHARACTERISTICS
	(a) From the observation table, draw the drain and transfer characteristics of field effect transistor using hardware. From the characteristics, calculate the values of dynamic resistance (rD) and trans-conductance (gm).(b) Demonstrate how FET can be used as voltage variable resistor (VVR) for small ac signals using digital simulation.

WEEK XIII	FREQUENCY RESPONSE OF CS AMPLIFIER					
	(a) Observe frequency response of common source FET amplifier using					
	hardware and determine the gain and bandwidth.(b) Design common source amplifier with voltage gain -10 and output					
	impedance of 7 k Ω using digital simulation.					
WEEK XIV	FREQUENCY RESPONSE OF CD AMPLIFIER					
	(a) For common drain FET amplifier, draw the gain vs frequency graph using					
	hardware and determine the bandwidth.					
	(b) Construct common source follower amplifier with output impedance of 300					
	$k\Omega$. Measure phase difference between input and output using digital					
	simulation.					

TEXTBOOKS

- 1. J. Millman, C.C.Halkias, Millman's, "Integrated Electronics", Tata McGraw Hill, 2nd Edition, 2001.
- 2. J.Millman, C.C.Halkias and satyabrata Jit, "Millman's Electronic Devices and circuits", Tata McGraw Hill, 2nd edition, 1998

REFERENCE BOOKS:

- 1. Mohammad Rashid, "Electronic Devices and Circuits", Cengage learning, 1st Edition, 2014.
- 2. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2009.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered		Reference
1	pn diode characteristics.	CO 2	T1: 3.1
2	Zener diode characteristics and voltage regulator	CO 2	T1: 3.11
3	Half wave rectifier	CO 3	T1: 4.6
4	Full wave rectifier.	CO 3	T1: 4.8
5	Transistor CB characteristics	CO 4	T1: 5.5
6	Transistor CE characteristics	CO 4	T1: 5.6
7	Frequency response of CE amplifier.	CO 5	T1: 8.3
		CO 9	
8	Frequency response of CC amplifier.	CO 5	T1: 8.3
		CO 9	
9	Frequency response of CB amplifier.	CO 5	T1: 8.3
		CO 9	
10	UJT characteristics.	CO 6	T1: 9.2
11	SCR characteristics	CO 7	T1:9.3
12	FET characteristics	CO 8	T1:10.6
13	Frequency response of CS amplifier	CO 5	T1: 10.7
		CO 9	
14	Frequency response of CD amplifier	CO 5	T1: 10.7
		CO 9	

XX EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Probing Further Experiments		
1	Design high pass filter using bipolar junction transistor to produce the gain of 150.		
2	Construct and verify the JFET's ability to behave as a voltage-controlled current regulator.		
3	Design and verify the functionality of waveform clipper using Zener diode.		
4	Construct and verify Battery Charger using SCR		
5	Design the relaxation oscillator using Uni Junction Transistor.		
6	Plot the V-I Characteristics of germanium diode and find the cut in voltage of diode.		
7	Design diode acts as switch and plot the switching times of diode.		
8	Design a zener voltage regulator circuit to drive a load of 6V, 100mW from an unregulated input supply of $V_{min} = 8V$, $V_{max} = 12V$ using a 6V zener diode?		
9	Design square wave generator using zener diode.		
10	Design for a Zener Transistor series voltage regulator circuit to drive a load of 6V, 1W, from a supply of 10V with a $\pm 3V$ ripple voltage		
11	Design half wave rectifier with an applied input a.c. power is 100 watts, and it is to deliver an output power is 40 watts.		
12	Design half wave rectifier with an a.c. supply of 230 V is applied through a transformer of turn ratio 10:1. Observe the output d.c. voltage, peak inverse voltage and identify dc output voltage if transformer turns ratio changed to 20:1.		
13	Design a full wave rectifier with step down transformer and center tapped transformer. Justify the operation.		
14	Design Full wave rectifier with capacitive filter using 10uF and 1uF. Observe the ripple factor.		
15	Describe, based on your observations, the I-V curves of npn transistor. At approximately what collector-emitter voltage (V_{CE}) does the transition from saturation to active region occur?		
16	Demonstrate the characteristics of Common base PNP transistor to determine the h parameters.		
17	Design a Sustainable Relay Driving Circuit Using BJT.		
18	Design an electronic switch using CE configuration.		
19	Measure the DC voltages to make sure the BJT is in the forward active region. If it's not in forward active, adjust your resistor values to compensate.		
20	Measure the voltage gain. Adjust the input signal from your wavetek to approximately 10mV amplitude, with a frequency of 100 kHz. What is the voltage swing?		
21	Connect the common collector amplifier circuit you designed. Set the values of capacitors C1, C2, and C3 to 1uF each. Set R_L to be 1 k Ω and the supply voltage to 15V DC. Measure the DC bias voltages on the base, emitter and the collector. Calculate the collector current. Compare the measured voltages with the design intent and calculation. Tabulate the measured versus the calculated bias voltages and current.		

22	Measure the frequency response of the amplifier starting from 100 Hz. change the test frequency to cover the upper cut-off frequency of the amplifier. Throughout the measurement of the frequency response, apply low input signal levels (in the order of few milli-Volts) to ensure that the output signal is not distorted. Monitor both input and output waveforms on the oscilloscope.
23	Design and observe the characteristics of relaxation oscillator using Uni-Junction Transistor.
24	Design Voltage sensing with a unijunction transistor and observe the characteristics.
25	Design battery charger circuit using silicon control rectifier.
26	Observe the characteristics of RC half wave and full wave Firing Circuit using silicon control rectifier.
27	Obtain the transistor drain characteristics in the saturated region, by applying the V_{MAX} is 40V, I_{MAX} is 20 mA and P_{MAX} is 0.4W.
28	Junction field-effect transistors (JFETs) are normally-on devices, the natural state of their channels being passable to electric currents. Thus, a state of cutoff will only occur on command from an external source. Explain what must be done to a JFET, specifically, to drive it into a state of cutoff.
29	Build the CS amplifier circuit using $V_{DD} = V_{SS} = 5$ V. Select 50 k Ω potentiometer and adjust it to obtain 250 µA bias current. Select $R_S = 10$ k Ω .
30	Obtain the frequency response of MOSFET amplifier in common source configuration.
31	Design and Plot the frequency response of single stage RC coupled amplifier using JFET.
32	Design a MOSFET amplifier and plot frequency response based on the given specifications. Both the input and the output should be AC coupled. Dual Supply Voltage = $\pm 5V$ Load Resistance, $R_L = 100\Omega$ 0-to-Peak Output Swing is gtreaterthan or equal to 2V Voltage Gain= 50 Input Resistance= $10k\Omega$

Signature of Course Coordinator Mr. Seshagiri Rao V.R, Associate Professor

HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

РО	NBA Statement / Key Competencies Features (KCF)	No.
Number		of
		KCF's
PO 1	Apply the knowledge of mathematics, science, Engineering	3
	fundamentals, and an Engineering specialization to the solution of	
	complex Engineering problems (Engineering Knowledge).	
	Knowledge, understanding and application of	
	1. Scientific principles and methodology.	
	2. Mathematical principles.	
	3. Own and / or other engineering disciplines to integrate / support	
	study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and analyse complex	10
	Engineering problems reaching substantiated conclusions using first	
	principles of mathematics natural sciences, and Engineering sciences	
	(Problem Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results	
	10. Documentation	

PO 3	Design solutions for complex Engineering problems and design system	10
	components or processes that meet the specified needs with	
	appropriate consideration for the public health and safety, and the	
	cultural, societal, and Environmental considerations	
	(Design/Development of Solutions).	
	1. Investigate and define a problem and identify constraints including	
	environmental and sustainability limitations, health and safety and	
	risk assessment issues	
	2. Understand customer and user needs and the importance of	
	considerations such as aesthetics	
	3. Identify and manage cost drivers	
	4. Use creativity to establish innovative solutions	
	5. Ensure fitness for purpose for all aspects of the problem including	
	production, operation, maintenance and disposal	
	6. Manage the design process and evaluate outcomes.	
	7. Knowledge and understanding of commercial and economic context	
	of engineering processes	
	8. Knowledge of management techniques which may be used to achieve	
	engineering objectives within that context	
	9. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	10. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
PO 4.	Use research-based knowledge and research methods including design	11
	of experiments, analysis and interpretation of data, and synthesis of	
	the information to provide valid conclusions (Conduct	
	Investigations of Complex Problems).	
	1. Knowledge of characteristics of particular materials, equipment,	
	processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology	
	development, etc.)	
	4. Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and contractual	
	issues	
	5. Understanding of appropriate codes of practice and industry	
	standards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty	
	8. Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of systems	
	and components through the use of analytical methods and modeling	
	techniques	
	10. Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline, in order to solve engineering	
	problems	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems.	

PO 5	 Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. 	1
PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3

PO 9	Function effectively as an individual, and as a member or leader in	12
	diverse teams, and in multidisciplinary settings (Individual and	
	Teamwork).	
	1. Independence	
	2. Maturity – requiring only the achievement of goals to drive their	
	performance	
	3. Self-direction (take a vaguely defined problem and systematically	
	work to resolution)	
	4. Teams are used during the classroom periods, in the hands-on labs,	
	and in the design projects.	
	5. Some teams change for eight-week industry oriented Mini-Project,	
	and for the seventeen -week design project.	
	6. Instruction on effective teamwork and project management is	
	provided along with an appropriate textbook for reference	
	7. Teamwork is important not only for helping the students know their	
	classmates but also in completing assignments.	
	8. Students also are responsible for evaluating each other's	
	performance, which is then reflected in the final grade.	
	9. Subjective evidence from senior students shows that the friendships	
	and teamwork extends into the Junior years, and for some of those	
	students, the friendships continue into the workplace after graduation	
	10. Ability to work with all levels of people in an organization	
	11. Ability to get along with others	
	12. Demonstrated ability to work well with a team	
PO 10	Communicate effectively on complex Engineering activities with the	5
	Engineering community and with society at large, such as, being able	
	to comprehend and write effective reports and design documentation,	
	make effective presentations, and give and receive clear instructions	
	(Communication).	
	"Students should demonstrate the ability to communicate effectively in	
	writing / Orally"	
	1. Clarity (Writing)	
	2. Grammar/Punctuation (Writing)	
	3. References (Writing)	
	4. Speaking Style (Oral)	
	5. Subject Matter (Oral)	

PO11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12
PO12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). Project management professional certification / MBA Begin work on advanced degree Keeping current in CSE and advanced engineering concepts Personal continuing education efforts Ongoing learning – stays up with industry trends/ new technology Continued personal development Have learned at least 2-3 new significant skills Have taken up to 80 hours (2 weeks) training per year 	8
PSO1	 Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications 1. Analyze and solve real time problems in Robotics 2. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications 3. Develop embedded systems modules using Real Time Operating System 4. Undertake research and development projects in the field of Embedded Systems 5. Adopt the engineering professional code and conduct 	5

DCOO	Focus on the Application Specific Internated Cinquit (ASIC) Prototyme	11
F 502	designs Virtual Instrumentation and System on Chin (SOC) designs	11
	1 Inspect survey and analyze types of ASIC chip designs	
	2 Design ASIC prototypes using Varilog and VHDL languages	
	2. Analyza microprocessor subsystems with memories and 1/O	
	j. Analyze increprocessor subsystems with memories and 1/O	
	4. Evalues hardware components for designing SOC	
	4. Explore hardware components for designing SOC	
	5. Adopt the engineering professional code and conduct	
	0. Designing prototypes of SOC using programming tools like	
	MAILAD, Laby IEW	
	A Participation of ASIC prototype	
	8. Realize SOC using Register-Transfer-Level designs	
	9. Analyse and develop models for system level descriptions for	
	synthesis of SOC	
	10. Inspect and survey the abstractions and principles for the	
	specification, simulation, verification, and synthesis of systems on chip	
	(SoC)	
	11. Programming and hands-on skills to meet requirements of global	
	environment	
PSO3	Make use of High Frequency Structure Simulator (HFSS) for modeling	7
	and evaluating the Patch and Smart Antennas for Wired and Wireless	
	Communication Applications	
	1. Explicit software and programming tools for antenna design	
	2. Adopt technical library resources and literature search	
	3. Explore smart antennas	
	4. Model, program for operation and control of smart antennas for	
	wireless communication applications	
	5. Interface automation tools	
	6. Research, analysis, problem solving and presentation using software	
	aids	
	7. Programming and hands-on skills to meet requirements of global	
	environment	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	DIGITAL SYSTEM DESIGN LABORATORY					
Course Code	AECC06					
Program	B.Tech					
Semester	III					
Course Type	Laboratory					
Regulation	UG-20					
	Theory			Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	2	1	
Course Coordinator	Mrs. S Swathi, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC03	III	Digital System Design

II COURSE OVERVIEW:

The digital system design laboratory introduces the hardware description language for the design and development of digital integrated circuits and field programmable devices. It provides VHDL language elements, synthesizable register transfer logic models in structuaral, dataflow, behavioral modeling of combinational and sequential circuits. Includes applications in the area of VLSI system design.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Virtual Instrumentation	70 Marks	30 Marks	100
Laboratory			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

1	Demo Video	✓	Lab Worksheets	~	Viva Questions	1	Probing further Questions
---	------------	---	-------------------	---	----------------	---	------------------------------

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end laberamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20~%	To test the preparedness for the experiment.	-
20 %	To test the performance in the laboratory.	-
20 %	To test the calculations and graphs related to the concern	-
	experiment.	
20~%	To test the results and the error analysis of the experiment.	_
20 %	To test the subject knowledge through viva – voce.	_

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Labo	Total Marks	
Type of	Day to day Final internal lab		
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

I	The fundamental principles of the VHDL and its constructs used in design implementation of digital logic systems.
II	The concepts of behavioral, dataflow and structural modeling of fundamental digital logic circuits using VHDL.
III	The exposure to various stages of a typical state of the art CAD VLSI tool for simulation, synthesis, place and route, layout and power and clock routing modules.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Utilize the concept of Boolean algebra to verify the truth table of Boolean expressions using logic gates in Hardware Description Language.	Apply
CO 2	Make use of dataflow, structural and behavioral modelling styles of HDL for simulating the combinational logic circuits.	Apply
CO 3	Analyze the truth tables and characteristic equations of flip flops for the functional simulation and timing analysis of sequential circuits.	Analyze
CO 4	Construct the synchronous and asynchronous sequential circuits using the flip flops.	Apply
CO 5	Model a finite state machine with melay and moore machines for detecting a given sequence.	Apply
CO 6	Examine the functionality of real time traffic light controller, chess clock controller FSM, elevator operations using HDL code.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.			
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.			
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations			
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.			
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations			
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.			
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.			
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.			
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.			
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.			
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.			
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change			

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Lab Experiments
	mathematics, science, engineering fundamentals, and		/ CIE / SEE
	an engineering specialization to the solution of		
	complex engineering problems.		

		-	
PO 2	Problem analysis: Identify, formulate, review	2	Lab Experiments
	research literature, and analyze complex engineering		/ CIE / SEE
	problems reaching substantiated conclusions using		
	first principles of mathematics, natural sciences, and		
	engineering sciences.		
PO 3	Design/Development of Solutions: Design	3	Lab Experiments
	solutions for complex Engineering problems and		/ CIE / SEE
	design system components or processes that meet		
	the specified needs with appropriate consideration		
	for the public health and safety, and the cultural,		
	societal, and Environmental considerations		
PO 5	Modern Tool Usage: Create, select, and apply	3	Lab Experiments
	appropriate techniques, resources, and modern		/ CIE / SEE
	Engineering and IT tools including prediction and		
	modelling to complex Engineering activities with an		
	understanding of the limitations		
PO 9	Individual and team work: Function effectively	2	Lab Experiments
	as an individual, and as a member or leader in		/ CIE / SEE
	diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on	2	Lab Experiments
	complex engineering activities with the engineering		/ CIE / SEE
	community and with society at large, such as, being		
	able to comprehend and write effective reports and		
	design documentation, make effective presentations,		
	and give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PSO 2	Focus on the Application Specific Integrated Circuit	1	Lab Experiments
	(ASIC) Prototype designs, Virtual Instrumentation and		/ CIE / SEE
	System on Chip (SOC) designs.		

3 =High; 2 =Medium; 1 =Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	PO	PO	РО	РО	РО	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	\checkmark	-	-	I	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-
CO 3	-	\checkmark	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	-	\checkmark	\checkmark	-	\checkmark	-	-	-	-	✓	-	-	-	✓	-
CO 6	-	\checkmark	\checkmark	-	\checkmark	-	-	-	\checkmark	\checkmark	-	-	-	\checkmark	-

XII JUSTIFICATIONS FOR CO – PO / PSO) MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
CO 1	PO 1	Apply the mathematical principles , scientific principles and methodology of boolean algebra to understand the function of logic gates	2
	PO 2	Understand the given problem statement and formulate the engineering problems related to minimization of boolean functions, translate the information into the model and prototype systems from the provided information and data , develop solutions based on the functionality of the data translation, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	5
	PO 5	Create a program for boolean expressions in VHDL and verify the outputs using modern engineering tool.	1
	PO 10	Describe the basic function of logic gates and implementation of boolean functions primitives by giving effective presentations and take clear instructions	2
CO 2	PO 1	Apply the mathematical principles , scientific principles and methodology of combinational circuits for simulating them in data flow, structural and behavioral modelling styles	2
	PO 2	Understand the given problem statement and formulate the engineering problems related to combinational logic circuits, translate the information into the model and prototype systems from the provided information and data , develop t the VHDL code and validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	5
	PO 3	Understand the customer needs, investigate and define a problem, use creativity and manage design process to model the complex combinational logic circuits making use of dataflow, behavioral and structural modeling styles in VHDL with the help of modern engineering tools.	5
	PO 5	Simulate the combinational circuits in VHDL using data flow or structural or behavioral models using modern engineering tool	1
	PO 10	Describe the implementation of combinational logic circuits using three modelling styles in VHDL by giving effective presentations and take clear instructions	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
CO 3	PO 2	Understand the given problem statement and formulate the engineering problems related to sequential logic circuits, translate the information into the model and prototype systems from the provided information and data , develop the VHDL code and validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	5
	PO 5	Verify the functional simulation and timing analysis sequential circuits using modern engineering tool .	1
	PO 10	Describe the implementation of sequential logic circuits using three modelling styles in VHDL by giving effective presentations and take clear instructions	2
CO 4	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals to design universal shift registers	2
	PO 2	Understand the given problem statement and formulate the engineering problems in shift registers and counters, translate the information into the model and prototype systems from the provided information and data , develop the VHDL code and validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	5
	PO 5	Analyze the functional simulation and timing analysis of shift registers using modern engineering tools .	1
	PO 10	Describe the implementation of shift registers in VHDL by giving effective presentations and take clear instructions	2
CO 5	PO 2	Understand the given problem statement and formulate the engineering problems in the design and implementation of finite state machines, translate the information into the model and prototype systems from the provided information and data , develop t the VHDL code and validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	5
	PO 3	Understand the customer needs, investigate and define a problem, use creativity and manage design process and establish innovative solutions in designing the finite state machines using VHDL with the help of modern engineering tools.	6
	PO 5	Model the finite state machines and verify functional simulation using modern engineering tool	1
	PO 10	Describe the implementation of FSM in VHDL by giving effective presentations and take clear instructions	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
	PSO 2	Design ASIC prototypes by adopting engineering professional code in VHDL for the implementation of FSM to familiarize with the ASIC design flow, realize RTL schematic and analyze the synthesis of SOC	5
CO 6	PO 2	Understand the given problem statement and formulate the engineering problems in the design and implementation of basic real time applications of the digital circuits, translate the information into the model and prototype systems from the provided information and data, develop t the VHDL code and validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	5
	PO 3	Understand the customer needs, investigate and define a problem, use creativity and manage design process and establish innovative solutions in basic real time applications of the digital circuits like traffic light controller ,chess clock controller, elevator using modern engineering tools.	6
	PO 5	Build the real time applications of digital circuits and simulate in VHDL using modern engineering tool.	1
	PO 9	improves the ability work with teams includes all levels of people, independently, maturely giving self directions while performing the lab experiments	5
	PO 10	Describe the implementation of real time applications as traffic light controller, chess clock controller and elevator in VHDL by giving effective presentations and take clear instructions	2
	PSO 2	Design ASIC prototypes by adopting engineering professional code in VHDL for the implementation of real time applications to familiarize with the ASIC design flow, realize RTL schematic and analyze the synthesis of SOC	5

Note: For Key Attributes refer Annexure - I

XIII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	PO	РО	РО	PO	РО	РО	РО	PO	PO	РО	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	2	5	-	-	1	-	-	-	-	2	-	-	-	-	-
CO 2	2	5	5	-	1	-	-	-	-	2	-	-	-	-	-
CO 3	-	5	-	-	1	-	-	-	-	2	-	-	-	-	-
CO 4	2	5	-	-	1	-	-	-	-	2	-	-	-	-	-

CO 5	-	5	6	-	1	-	-	-	-	2	-	-	-	5	-
CO 6	-	5	6	-	1	-	-	I	5	2	-	-	-	5	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO-(PO / PSO):

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	66.6	50	-	-	100	-	-	-	-	40	-	-	-	-	-
CO 2	66.6	50	-	-	100	-	-	-	-	40	-	-	-	-	-
CO 3	-	50	50	-	100	-	-	-	-	40	-	-	-	-	-
CO 4	66.6	50	-	-	100	-	-	-	-	40	-	-	-	-	-
CO 5	-	50	60	-	100	-	-	-	-	40	-	-	-	45.5	-
CO 6	-	50	60	-	100	-	-	-	41.6	40	-	-	-	45.5	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ 0 \leq C<5% – No correlation
- 1 5 < C < 40% Low/ Slight

 ${\it 2}$ - 40 % < C < 60% – Moderate

3 - 60% < C < 100% – Substantial /High

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	3	-	-	-	-	2	-	-	-	-	-
CO 2	3	2	-	-	3	-	-	-	-	2	-	-	-	-	-
CO 3	-	2	2	-	3	-	-	-	-	2	-	-	-	-	-
CO 4	3	2	-	-	3	-	-	-	-	2	-	-	-	-	-
CO 5	-	2	3	-	3	-	-	-	-	2	-	-	-	2	-
CO 6	-	2	3	-	3	-	-	-	2	2	-	-	-	2	-
TOTAL	18	14	6	6	9	0	0	0	0	6	0	0	0	3	0
AVERAGE	3	2.3	2	2	3	0	0	0	0	1	0	0	0	1	0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback				
X	Assessment of Mini Projects by Experts						

XVIII SYLLABUS:

WEEK-I	REALIZATION OF A BOOLEAN FUNCTION:
	(a) Realize three and four variable Boolean functions using VHDL code, verify its functionality by Zybo FPGA board.
	(b) Make use of universal logic gates to realize 3 variable boolean function and develop the VHDL code using Vivado tool.
WEEK-II	DESIGN OF DECODER AND ENCODER:
	(a) With the VHDL code verify the functionality of 3 to 8 decoder and 8 to 3 encoder (With priority and without priority).
	(b) Construct the 8 to 3 encoder using 2 to 4 encoder and develop the VHDL code in structural modeling.
WEEK-III	DESIGN OF MULTIPLEXER AND DE MULTIPLEXER:
	(a) Observe the functionality of 8x1 multiplexer and 1x8 de-multiplexer using VHDL code.
	(b) Build the 16x1 multiplexer using 2x1 multiplexers and simulate the VHDL code.
WEEK-IV	DESIGN OF CODE CONVERTERS:
	(a) Simulate the VHDL code for the 4- bit binary to gray, gray to binary code converter and comparator circuits.
	(b) Develop the VHDL code for gray code to self complementing code converter.
WEEK-V	FULL ADDER AND FULL SUBTRACTOR DESIGN MODELLING:
	(a) Verify the functionality of a full Adder and full subtractor using VHDL code in three modeling styles.
	(b) Extend the full adder to design the 4-bit ripple carry adder circuit and simulate the VHDL code.
WEEK-VI	DESIGN OF 8 BIT ALU:
	(a) Build a VHDL model to implement 8-bit ALU functionality.
	(b) Extend the HDL code to verify 16-bit arithmetic and logical shift operations using structural modelling.
WEEK-VII	HDL MODEL FOR FLIP FLOPS:
	(a) Examine the operation of SR, D, JK, T Flip flops by using VHDL code.
	(b) Realize the D flip – flop using JK Flip-flop, T flip – flop using D flip-flop and simulate the VHDL code.

WEEK-VIII	DESIGN OF COUNTERS:
	(a) Write VHDL code for binary counter, BCD counter with synchronous and asynchronous reset.
	(b) Verify the states of 4-bit ring and Johnson counter using VHDL code.
WEEK-IX	HDL CODE FOR UNIVERSAL SHIFT REGISTER:
	(a) Design and simulate the VHDL code for universal shift register.
	(b) Develop the VHDL code to implement shift register, verify its operation in SISO, SIPO, PISO and PIPO modes.
WEEK-X	HDL CODE FOR CARRY LOOK AHEAD ADDER:
	(a) Design and simulate the VHDL code for carry-look-ahead adder.
	(b) Compare the functionality, speed of ripple carry adder and carry-look-ahead adder. Justify the carry-look-ahead adders are faster than ripple carry adder.
WEEK-XI	HDL CODE TO DETECT A SEQUENCE:
	(a) Choose melay FSM model to detect the sequence 1010101 and develop the VHDL code.
	(b) Make use of moore FSM model to detect the sequence 1010101 and write the VHDL code.
WEEK-XII	CHESS CLOCK CONTROLLER FSM USING HDL:
	(a) Make use of FSM to design a chess clock controller using VHDL code.
	(b) Develop the VHDL code for a simple functional clock generator.
WEEK-XIII	TRAFFIC LIGHT CONTROLLER USING HDL:
	(a) Model the traffic light controller using VHDL code and simulate.
	(b) Extend the VHDL code for a traffic light controller which changes the green light time depending on the traffic in that specific lane.
WEEK-XIV	ELEVATOR DESIGN USING HDL CODE:
	(a) Write VHDL code to simulate Elevator operations.
	(b) Simulate the HDL code for a five-story elevator controller.

TEXT BOOKS:

- 1. Douglas Perry, "VHDL", Tata McGraw Hill, 4th Edition, 2002.
- 2. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd Edition,2006.

REFERENCE BOOKS

- 1. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989.
- 2. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd Edition 2012

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	(a) a. Realize three and four variable Boolean functions using VHDL code, verify its functionality by Zybo FPGA board.(b) Make use of universal logic gates to realize 3 variable boolean function and develop the VHDL code using Vivado tool.	CO 1	T1 13.2
2	 (a) With the VHDL code verify the functionality of 3 to 8 decoder and 8 to 3 encoder (With priority and without priority). (b) Construct the 8 to 3 encoder using 2 to 4 encoder and develop the VHDL code in structural modeling. 	CO 2	T1 14.5
3	 (a) Observe the functionality of 8x1 multiplexer and 1x8 de-multiplexer using VHDL code. (b) Build the 16x1 multiplexer using 2x1 multiplexers and simulate the VHDL code. 	CO 2	T1 14.8
4	(a) Simulate the VHDL code for the 4- bit binary to gray, gray to binary code converter and comparator circuits.(b) Develop the VHDL code for gray code to self complementing code converter.	CO 2	T1 15.5 -15.9
5	(a) Verify the functionality of a full Adder and full subtractor using VHDL code in three modeling styles.(b) Extend the full adder to design the 4-bit ripple carry adder circuit and simulate the VHDL code.	CO 2	T1 15.17
6	(a) Build a VHDL model to implement 8-bit ALU functionality.(b) Extend the HDL code to verify 16-bit arithmetic and logical shift operations using structural modelling.	CO 2	T1 15.16
7	 (a) Examine the operation of SR, D, JK, T Flip flops by using VHDL code. (b) Realize the D flip – flop using JK Flip-flop, T flip – flop using D flip-flop and simulate the VHDL code. 	CO 3	T1 16.1, T1 16.8
8	(a) Write VHDL code for binary counter, BCD counter with synchronous and asynchronous reset.(b) Verify the states of 4-bit ring and Johnson counter using VHDL code.	CO 4	R1 4.1
9	(a) a. Design and simulate the VHDL code for universal shift register.(b) Develop the VHDL code to implement shift register, verify its operation in SISO, SIPO, PISO and PIPO modes.	CO 4	R1 4.2
10	 (a) Design and simulate the VHDL code for carry-look-ahead adder. (b) Compare the functionality, speed of ripple carry adder and carry-look-ahead adder. Justify the carry-look-ahead adders are faster than ripple carry adder. 	CO 2	R1 4.3

11	(a) Choose melay FSM model to detect the sequence 1010101and develop the VHDL code.(b) Make use of moore FSM model to detect the sequence1010101 and write the VHDL code.	CO 5	R2 4.6
12	(a) Make use of FSM to design a chess clock controller using VHDL code.(b) Develop the VHDL code for a simple functional clock generator.	CO 6	R2 4.10
13	(a) Model the traffic light controller using VHDL code and simulate.(b) Extend the VHDL code for a traffic light controller which changes the green light time depending on the traffic in that specific lane.	CO 6	R2 5.6
14	(a) Write VHDL code to simulate Elevator operations.(b) Simulate the HDL code for a five-story elevator controller.	CO 6	R2 5.9

XX EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Implementation of binary multiplier and simulate using simulation tool
2	Design a stepper motor/lcd controller and implement
3	LabVIEW & Design and simulation of 8-bit Booth's multiplier.

Course Coordinator Mrs. S Swathi, Assistant Professor HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)			
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3		
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10		
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10		

		5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal	
		6 Manage the design process and evaluate outcomes	
		7. Knowledge and understanding of commercial and economic context of	
		engineering processes	
		8. Knowledge of management techniques which may be used to achieve	
		engineering objectives within that context	
		9. Understanding of the requirement for engineering activities to promote	
		sustainable development	
		10. Awareness of the framework of relevant legal requirements governing	
		engineering activities, including personnel, health, safety, and risk	
		(including environmental risk) issues	
	PO 4	Use research-based knowledge and research methods including design of	11
	104	experiments analysis and interpretation of data, and synthesis of the	11
		information to provide valid conclusions (Conduct Investigations of	
		Complex Problems)	
		1. Knowledge of characteristics of particular materials, equipment	
		1. Knowledge of characteristics of particular materials, equipment,	
		processes, or products	
		2. Workshop and laboratory skills	
		3. Understanding of contexts in which engineering knowledge can be	
		applied (example, operations and management, technology development,	
		etc.)	
		4. Understanding use of technical literature and other information sources	
		Awareness of nature of intellectual property and contractual issues	
		5. Understanding of appropriate codes of practice and industry standards	
		6. Awareness of quality issues	
		7. Ability to work with technical uncertainty	
		8. Understanding of engineering principles and the ability to apply them	
		to analyse key engineering processes	
		9. Ability to identify, classify and describe the performance of systems	
		and components through the use of analytical methods and modeling	
		techniques	
		10. Ability to apply quantitative methods and computer software relevant	
		to their engineering discipline, in order to solve engineering problems	
		11. Understanding of and ability to apply a systems approach to	
		engineering problems.	
	PO 5	Create select and apply appropriate techniques resources and modern	1
ļ	100	Engineering and IT tools including prediction and modelling to complex	×
ļ		Engineering activities with an understanding of the limitations (Modern	
ļ		Tool Usage)	
ļ		1 Computer software / simulation packages / diagnostic equipment /	
ļ		toohpical library recourses / literature coarch tools	
		technical norary resources / interature search tools.	

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

PO 12	Recognize the need for and have the preparation and ability to engage in	8
	independent and life-long learning in the broadest context of technological	
	change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

KEY ATTRIBUTES FOR ASSESSING PROGRAM SPECIFIC OUTCOMES

РО	NBA Statement / Key Competencies Features (KCF)		
Number		of	
		KCF's	
PSO1	Build Embedded Software and Digital Circuit Development platform for	5	
	Robotics, Embedded Systems and Signal Processing Applications		
	1. Analyze and solve real time problems in Robotics		
	2. Evaluate the design and provide optimal solutions of the digital circuits		
	for signal processing applications		
	3. Develop embedded systems modules using Real Time Operating		
	System		
	4. Undertake research and development projects in the field of Embedded		
	Systems		
	5. Adopt the engineering professional code and conduct		
PSO2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype	11	
	designs, Virtual Instrumentation and System on Chip (SOC) designs		
	1. Inspect, survey and analyze types of ASIC chip designs		
	2.Design ASIC prototypes using Verilog and VHDL languages		
	3. Analyze microprocessor subsystems with memories and I/O interface		
	for SOC designs		
	4. Explore hardware components for designing SOC		
	5. Adopt the engineering professional code and conduct		
	6.Designing prototypes of SOC using programming tools like MATLAB,		
	LabVIEW		
	7. Familiarize with the design flow of ASIC prototype		
	8. Realize SOC using Register-Transfer-Level designs		
	9. Analyse and develop models for system level descriptions for synthesis		
	of SOC		
	10. Inspect and survey the abstractions and principles for the		
	specification, simulation, verification, and synthesis of systems on chip		
	(SoC)		
	11. Programming and hands-on skills to meet requirements of global		
	environment		

PSO3	Make use of High Frequency Structure Simulator (HFSS) for modeling	7
	and evaluating the Patch and Smart Antennas for Wired and Wireless	
	Communication Applications	
	1. Explicit software and programming tools for antenna design	
	2. Adopt technical library resources and literature search	
	3. Explore smart antennas	
	4. Model, program for operation and control of smart antennas for	
	wireless communication applications	
	5. Interface automation tools	
	6. Research, analysis, problem solving and presentation using software	
	aids	
	7. Programming and hands-on skills to meet requirements of global	
	environment	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	DATA STRUCTURES LABORATORY				
Course Code	ACSC10	ACSC10			
Program	B.Tech	B.Tech			
Semester	III ECE				
Course Type	Core				
Regulation	IARE - UG 20				
	Theory			Practical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	-	-	-	3	1.5
Course Coordinator	Ms. K Laxminarayanamma, Assistant Professor				

I COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics covered include managing complexity, analysis, static data structures, dynamic data structures and hashing mechanisms. The main objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter in real life. This course reaches to student by power point presentations, lecture notes, and lab which involve the problem solving in mathematical and engineering areas

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSC02	Ι	Python Programming Laboratory
B.Tech	ACSC08	III	Data Structures

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Data Structures Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab		Viva		Probing further
\checkmark		\checkmark	Worksheets	\checkmark	Questions	\checkmark	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component		Total Marka		
Type of	Day to day	Final internal lab		
Assessment	performance	assessment		
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	To provide students with skills needed to understand and analyze performance
	trade-offs of different algorithms / implementations and asymptotic analysis of their
	running time and memory usage.

II	To provide knowledge of basic abstract data types (ADT) and associated algorithms:
	stacks, queues, lists, tree, graphs, hashing and sorting, selection and searching. $\ .$
III	The fundamentals of how to store, retrieve, and process data efficiently.
IV	To provide practice by specifying and implementing these data structures and
	algorithms in Python.
V	Understand essential for future programming and software engineering courses.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Identify appropriate searching technique for efficient retrieval of	Apply
	data stored location	
CO 2	choose sorting technique to represent data in specified format to	Apply
	to optimize data searching.	
CO 3	Make use of stacks and queues representation, operations and	Understand
	their applications to organize specified data	
CO 4	utilize linked lists to implement and perform operations for for	Apply
	organizing specified data	
CO 5	Construct tree to perform different traversal techniques	Apply
CO 6	Select Appropriate graph traversal techniques to visit the	Remember
	vertices of a graph	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Lab Exercises
PO 2	Problem Analysis: Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences	3	Lab Exercises
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	Lab Exercises
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions	2	Lab Exercises
PO 5	Modern Tool Usage:Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	1	Lab Exercises
PO 6	The Engineer and Society Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice	2	Lab Exercises
PO 8	Ethics Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3	Lab Exercises
PO 9	Individual and Teamwork Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	3	Lab Exercises
PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	4	Lab Exercises

PO 12	Life - Long Learning:Recognize the need for and	3	Lab Exercises
	have the preparation and ability to engage in		
	independent and life-long learning in the broadest		
	context of technological change		
	·		

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed
			by
PSO 1	Design, Develop, Fabricate and Commission the	2	Lab
	Electrical Systems involved in Power generation,		Exercises
	Transmission, Distribution and Utilization.		
PSO 2	Focus on the Components of Electrical Drives with	2	Lab
	its Converter Topologies for Energy Conversion,		Exercises
	Management and Auditing in Specific applications of		
	Industry and Sustainable Rural Development.		
PSO 3	Gain the Hands-On Competency Skills in PLC	2	Lab
	Automation, Process Controllers, HMI and other		Exercises
	Computing Tools necessary for entry level position to		
	meet the Requirements of the Employer.		

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Identify appropriate searching technique for efficient retrieval of data stored location by applying the principles of Mathematics and Engineering , Scientific principles and methodology, engineering disciplines to integrate / support study	3
	PO 2	Identify appropriate searching technique for efficient retrieval of data stored location by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3
	PO 3	Identify appropriate searching technique for efficient retrieval of data stored location by applying Design/Development of Solutions	3
	PO 4	Identify apply appropriate searching technique for efficient retrieval of data stored location by applying Conduct Investigations of Complex Problems	2
	PO 5	Identify apply appropriate searching technique for efficient retrieval of data stored location by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search toolsl	1

	PO 6	Identify apply appropriate searching technique for efficient retrieval of data stored location by applying reasoning informed by the contextual knowledge	2
	PO 8	Identify apply appropriate searching technique for efficient retrieval of data stored location by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3
	PO 9	Identify apply appropriate searching technique for efficient retrieval of data stored location by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
	PO 10	Identify apply appropriate searching technique for efficient retrieval of data stored location by Communicate effectively on complex Engineering activities	3
	PO 12	Identify apply appropriate searching technique for efficient retrieval of data stored location by Keeping current in CSE and advanced engineering concepts	3
	PSO 1	Identify appropriate searching technique for efficient retrieval of data stored location in search engines	2
	PSO 2	Identify appropriate searching technique for efficient retrieval of data stored location in mobile and web applications development	2
	PSO 3	Identify appropriate searching technique for efficient retrieval of data stored location in shipping real world software, using industry standard tools	3
CO 2	PO 1	choose sorting technique to represent data in specified format to optimize data searching by applying the principles of Mathematics and Engineering , Scientific principles and methodology, engineering disciplines to integrate / support study	3
	PO 2	choose sorting technique to represent data in specified format to optimize data searching by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3
	PO 3	Identify choose sorting technique to represent data in specified format to optimize data searching by applying Design/Development of Solutions	3
	PO 4	choose sorting technique to represent data in specifiedformat to optimize data searching by applyingConductInvestigations of Complex Problems	2
	PO 5	choose sorting technique to represent data in specified format to optimize data searching by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search toolsl	1
	PO 6	choose sorting technique to represent data in specified format to optimize data searching by applying reasoning informed by the contextual knowledge	2

	PO 8	 choose sorting technique to represent data in specified format to optimize data searching by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice 	3
	PO 9	choose sorting technique to represent data in specified format to optimize data searching by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
	PO 10	chooseApply sorting technique to represent data in specified format to optimize data searching by Communicate effectively on complex Engineering activities	3
	PO 12	choose sorting technique to represent data in specified format to optimize data searching by Keeping current in CSE and advanced engineering concepts	3
	PSO 1	chooseApply sorting technique to represent data in specified format to optimize data searching in search engines	2
	PSO 2	chooseApply sorting technique to represent data in specified format to optimize data searching in mobile and web applications development	2
	PSO 3	chooseApply sorting technique to represent data in specified format to optimize data searching in shipping real world software, using industry standard tools	3
CO 3	PO 1	Make use of stacks and queues representation, operations and their applications to organize specified data by applying the principles of Mathematics and Engineering , Scientific principles and methodology, engineering disciplines to integrate / support study	3
	PO 2	Make use of stacks and queues representation, operations and their applications to organize specified data by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3
	PO 3	Identify, Make use of stacks and queues representation, operations and their applications to organize specified data by applying Design/Development of Solutions	3
	PO 4	Make use of Apply stacks and queues representation, operations and their applications to organize specified data by applying Conduct Investigations of Complex Problems	2
	PO 5	Make use of stacks and queues representation, operations and their applications to organize specified data by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools	1
	PO 6	Make use of stacks and queues representation, operations and their applications to organize specified data by applying reasoning informed by the contextual knowledge	2
------	-------	--	---
	PO 8	Make use of stacks and queues representation , operations and their applications to organize specified data by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3
	PO 9	Make use of stacks and queues representation, operations and their applications to organize specified data by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
	PO 10	Make use of stacks and queues representation, operations and their applications to organize specified data by Communicate effectively on complex Engineering activities	3
	PO 12	Make use of stacks and queues representation , operations and their applications to organize specified data by Keeping current in CSE and advanced engineering concepts	3
	PSO 1	Make use of stacks and queues representation , operations and their applications to organize specified data in search engines	2
	PSO 2	Make use of stacks and queues representation , operations and their applications to organize specified data mobile and web applications development	2
	PSO 3	Make use of stacks and queues representation , operations and their applications to organize specified data in shipping real world software , using industry standard tools	2
CO 4	PO 1	utilize linked lists to implement and perform operations for organizing specified data by applying the principles of Mathematics and Engineering , Scientific principles and methodology, engineering disciplines to integrate / support study	3
	PO 2	utilize linked lists to implement and perform operations for organizing specified data by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3
	PO 3	utilize Apply linked lists to implement and perform operations for organizing specified data by applying Design/Development of Solutions	3
	PO 4	utilize linked lists to implement and perform operations for organizing specified data by applying Conduct Investigations of Complex Problems	2

	PO 5	utilize linked lists to implement and perform operations for organizing specified data by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search toolsl	1
	PO 6	utilize linked lists to implement and perform operations for organizing specified data by applying reasoning informed by the contextual knowledge	2
	PO 8	utilize linked lists to implement and perform operations for organizing specified data by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3
	PO 9	utilize Apply linked lists to implement and perform operations for organizing specified data by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
	PO 10	utilize linked lists to implement and perform operations for organizing specified data by Communicate effectively on complex Engineering activities	3
	PO 12	utilizeApply linked lists to implement and perform operations for organizing specified data by Keeping current in CSE and advanced engineering concepts	3
	PSO 1	utilize Apply linked lists to implement and perform operations for organizing specified in search engines	2
	PSO 2	utilizeApply linked lists to implement and perform operations for organizing specified in mobile and web applications development	2
	PSO 3	utilizeApply linked lists to implement and perform operations for organizing specified in shipping real world software, using industry standard tools	2
CO 5	PO 1	Construct tree to perform different traversal techniques by applying the principles of Mathematics and Engineering , Scientific principles and methodology, engineering disciplines to integrate / support study	3
	PO 2	Construct tree to perform different traversal techniques by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3
	PO 3	ConstructApply tree to perform different traversal techniques by applying Design/Development of Solutions	3
	PO 4	Construct tree to perform different traversal techniques by applying Conduct Investigations of Complex Problems	2

	PO 5	Construct tree to perform different traversal techniques by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools	1
	PO 6	Construct tree to perform different traversal techniquesby applying reasoning informed by the contextual knowledge	2
	PO 8	ConstructApply tree to perform different traversal techniques by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3
	PO 9	Construct tree to perform different traversal techniquesby applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
	PO 10	Construct tree to perform different traversal techniques by Communicate effectively on complex Engineering activities	3
	PO 12	Construct tree to perform different traversal techniques by Keeping current in CSE and advanced engineering concepts	3
	PSO 1	Construct tree to perform different traversal techniques in search engines	2
	PSO 2	Construct tree to perform different traversal techniques in mobile and web applications development	2
	PSO 3	Construct tree to perform different traversal techniques in shipping real world software, using industry standard tools	2
CO 6	PO 1	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying the principles of Mathematics and Engineering , Scientific principles and methodology,engineering disciplines to integrate / support study	3
	PO 2	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying Problem Analysis Problem statement and system definition,Information and data collection,Solution development or experimentation / Implementation	3
	PO 3	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying Design/Development of Solutions	3
	PO 4	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying Conduct Investigations of Complex Problems	2
	PO 5	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools	1

PO 6	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying reasoning informed by the contextual knowledge	2
PO 8	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice	3
PO 9	Select Appropriate graph traversal techniques to visit the vertices of a graph by applying Function effectively as an individual, and as a member or leader to get Ability to work with all levels of people in an organization	3
PO 10	Select Appropriate graph traversal techniques to visit the vertices of a graph by Communicate effectively on complex Engineering activities	3
PO 12	Select Appropriate graph traversal techniques to visit the vertices of a graph by Keeping current in CSE and advanced engineering concepts	3
PSO 1	Select Appropriate graph traversal techniques to visit the vertices of a graph in search engines	2
PSO 2	Select Appropriate graph traversal techniques to visit the vertices of a graph in mobile and web applications development	2
PSO 3	Select Appropriate graph traversal techniques to visit the vertices of a graph in shipping real world software, using industry standard tools	2

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	Pro	gram	ı Out	come	es/ N	o. of	Key	Con	ipete	ncies	Mat	ched]	PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	2	2	3	1	-	1	2	3	-	2	2	1	1
CO 2	1	2	2	2	3	1	-	2	3	3	-	2	1	1	1
CO 3	1	2	2	1	3	1	-	-	2	3	-	2	2	2	-
CO 4	1	2	1	1	3	1	-	-	2	3	-	2	2	1	1
CO 5	1	1	2	1	3	1	-	2	2	3	-	2	2	1	1
CO 6	1	1	2	1	3	1	-	1	3	3	-	2	2	1	1

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XIV SYLLABUS:

WEEK I	SEARCHING TECHNIQUES
	Write Python programs for implementing the following searching techniques.a. Linear search. b. Binary search. c. Fibonacci search.
WEEK II	SORTING TECHNIQUES
	Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order. a. Bubble sort. b. Insertion sort.c. Selection sort
WEEK III	SORTING TECHNIQUES
	Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order. a. Quick sort. b. Merge sort.
WEEK IV	IMPLEMENTATION OF STACK AND QUEUE
	Write Python programs to a. Design and implementation Stack and its operations using Arrays. b. Design and implementation Queue and its operations using Arrays
WEEK V	APPLICATIONS OF STACK
	Write Python programs for the following: a. Uses Stack operations to convert infix expression into postfix expression. b. Uses Stack operations for evaluating the postfix expression.
WEEK VI	IMPLEMENTATION OF SINGLE LINKED LIST
	Write Python programs for the following: a. Uses functions to perform the following operations on single linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal b. To store a polynomial expression in memory using linked list.
WEEK VII	IMPLEMENTATION OF CIRCULAR SINGLE LINKED LIST
	Write Python programs for the following: Uses functions to perform the following operations on Circular linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal
WEEK VIII	IMPLEMENTATION OF DOUBLE LINKED LIST
	Write Python programs for the following: Uses functions to perform the following operations on double linked list. (i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways.
WEEK IX	IMPLEMENTATION OF STACK USING LINKED LIST
	Write Python programs to implement stack using linked list.
WEEK X	IMPLEMENTATION OF QUEUE USING LINKED LIST
	Write Python programs to implement queue using linked list.
WEEK XI	GRAPH TRAVERSAL TECHNIQUES
	Write Python programs to implement the following graph traversal algorithms:a. Depth first search.b.Breadth first search.

WEEK XII	IMPLEMENTATION OF BINARY SEARCH TREE
	Write a Python program that uses functions to perform the following: a.
	Create a binary search tree. b. Traverse the above binary search tree
	recursively in pre-order, post-order and in-order. c. Count the number of
	nodes in the binary search tree.

TEXTBOOKS

- 1. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley Student Edition.
- 2. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017.

REFERENCE BOOKS:

- 1. Michael H Goldwasser, David Letscher, —Object Oriented Programming in Python ||, Prentice Hall, 1 st Edition, 2007.
- 2. Yashavant Kanetkar, Aditya Kanetkar, —Let us Python ||, BPB publication, 1st Edition, 2019.
- 3. Ashok Kamthane, Amit Kamthane, —Programming and Problem Solving with Python ||, McGraw Hill Education (India) Private Limited, 2018.
- 4. Taneja Sheetal, Kumar Naveen, —Python Programming A modular approach $\|,$ Pearson, 2017.
- 5. R Nageswara Rao, —Core Python Programming , Dreamtech Press, 2017 Edition.

WEB REFERENCES:

- 1. https://realpython.com/python3-object-oriented-programming
- 2. https://python.swaroopch.com/oop.html
- $3.\ https://python-textbok.readthedocs.io/en/1.0/Object-Oriented-Programming.html$
- 4. https://www.programiz.com/python-programming/
- 5. https://www.geeksforgeeks.org/python-programming-language

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Searching Techniques	CO 1	T1
2	Sorting Techniques.	CO 2	T1
3	Sorting Techniques	CO 2	T1,T2
4	Implementation of Stack and Queue	CO 3	T1,T2
5	Applications of Stack.	CO 3	T1, W1
6	Implementation of Single Linked List	CO 4	T1,W2
7	Implementation of Circular Single Linked List.	CO 4	T1,W3

8	Implementation of Double Linked List	CO 4	T2,W3
9	Implementation of Stack Using Linked List.	CO 3,CO	T2,W2
		4	
10	Implementation of Queue Using Linked List	CO 3,CO	T2,W5
		4	
11	Graph Traversal Techniques.	CO 6	T2,W2
12	Implementation of Binary Search Tree	CO 5	T1,W5

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Twin vortex formation: Design a Data Structure SpecialStack that supports all the stack operations like push(), pop(), isEmpty(), isFull() and an additional operation getMin() which should return minimum element from the SpecialStack. All these operations of SpecialStack must be O(1). To implement SpecialStack, you should only use standard Stack data structure and no other data structure like arrays, list, . etc.
2	Open channel: In class, we studied binary search trees that do not allow us to insert duplicate elements. However, sometimes we do need to store duplicates. For example, a database of student marks might contain one record for every mark by every student; so if you've taken two courses, there will be two records with the same key (your student number) and different data (your two marks). To accomplish this, we might use a data structure called a "BST with duplicates", or BSTD
3	Capillary action: The variable tos in the Stack class is the index of the array element that would be filled the next time push() is called. Modify the code so that tos is the index of the top element actually in use. In other words, tos is to be the index of the top array element occupied by a value that has been "pushed" onto the stack. Write your changes on the code above. Don't forget to fix the comments. You do not need to add preconditions as in part-a.
4	Buoyancy Given an adjacency matrix representation of a graph, describe with pseudo code an algorithm that finds a single path, if one exists, between any two different vertices.
5	Flow through pipes: There is a garage where the access road can accommodate any number of trucks at one time. The garage is building such a way that only the last truck entered can be moved out. Each of the trucks is identified by a positive integer (a truck-id). Write a program to handle truck moves, allowing for the following commands: a) On-road (truck-id); b) Enter-garage (truck- id); c) Exit-garage (truck-id); d) Show-trucks (garage or road); If an attempt is made to get out a truck which is not the closest to the garage entry, the error message Truck x not near garage door

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING				
Course Title	COMPI	COMPLEX ANALYSIS AND SPECIAL FUNCTIONS			
Course Code	AHSC12	AHSC12			
Program	B. Tech	B. Tech			
Semester	IV				
Course Type	Foundation				
Regulation	UG-20				
		Theory		Pra	ctical
Course Structure	Lecture Tutorials Credits Laborat		Laboratory	Credits	
	3	1	4	-	-
Course Coordinator	Ms. L Indira, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	Basic Principles of complex functions and
			probabilities

II COURSE OVERVIEW:

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes complex functions and differentiation, complex integration, power series expansion of complex function and special functions. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Complex Analysis and	70 Marks	30 Marks	100
probability			
distributions			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	x Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
25~%	Understand
75~%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
Total Marks			100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The applications of complex variable and conformal mapping in two dimensional complex potential theories.
II	The fundamental calculus theorems and criteria for the independent path on contour integral used in problems of engineering
III	The concepts of special functions and its application for solving the partial differential equation in mathematical physics and engineering.

IV	The Mathematics of combinatorial enumeration by using generating functions and
	Complex analysis for understanding the numerical growth rates.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Identify the fundamental concepts of analyticity and	Understand
	differentiability for finding complex conjugates, conformal mapping	
	of complex transformations.	
CO 2	Apply integral theorems of complex analysis and its consequences	Apply
	for the analytic function with derivatives of all orders in simple	
	connected region.	
CO 3	Extend the Taylor and Laurent series for expressing the function	Apply
	in terms of complex power series.	
CO 4	Apply Residue theorem for computing definite integrals by using	Apply
	the singularities and poles of real and complex analytic functions	
	over closed curves.	
CO 5	Determine the characteristics of special functions for obtaining the	Apply
	proper and improper integrals for obtaining the proper and	
	improper integrals.	
CO 6	Apply the role of Bessel functions in the process of obtaining the	Apply
	series solutions for second order differential equation	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations		
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations		
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	CIE/Quiz/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 4	Conduct Investigations of Complex	1	CIE/Quiz/AAT
	Problems: Use research-based knowledge and		
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Formulate and evaluate the applications in the	-	-
	field of Intelligent Embedded and Semiconductor		
	technologies.		
PSO 2	Focus on the practical experience of ASIC	-	-
	prototype designs, Virtual instrumentation and		
	SOC designs.		
PSO 3	Build the Embedded hardware design and	_	-
	software programming skills for entry level job		
	positions to meet the requirements of employers		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO									PSO	PSO	PSO			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-		-	-	-	
CO 2	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	\checkmark	-	-	\checkmark		-	-	-	-	-	-		-	-	-	
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 6	\checkmark	\checkmark	-	-		-	-	-	-	-	-	-	-	-		

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE	PO'S		No. of
OUT	PSO'S	Justification for mapping (Students will be	Key
COMES			Competencies
CO 1	PO 1	Identify the basic properties of analytic functions which are closed with respect to the fundamental operations of arithmetic (knowledge), algebra and applicability in solving majority of functions in various engineering problems by applying Mathematical principles.	2
CO 2	PO 1	Apply the integral theorem of complex analysis (knowledge) and its consequences to the analytic function for solving complex problems by applying the principal problems of mathematics.	2
	PO 2	Identify the problem statement to build extensions of Cauchy's theorem and application of necessary condition to vanish a contour integral around the simple connected regions from the provided information and data in reaching substantiated conclusions by using principles of mathematics.	4
	PO 4	Apply quantitative methods to simplify the calculation of certain contour integrals (knowledge) on simply connected regions in order to solve engineering problems.	2
CO 3	PO 1	Apply the knowledge of geometric series that enable us to use Cauchy's integral formula for understanding power series representations of analytic functions by applying the principles of mathematics.	2
	PO 2	IdeIdentify the problem formulation and abstraction of rational complex functions for expressing in negative or positive terms of power series (knowledge) using Laurent's series and Taylor's series by applying the principles of mathematics.	4
CO 4	PO 1	Apply the method of finding residues of given real or complex integrand (knowledge) the singular points and poles of complex functions and applicability of Residue theorem to solve definite and indefinite complex integrals by applying the principles of mathematics.	2
	PO 4	Make use of the quantitative methods of finding residues for evaluating line integrals (length of curve) of analytic functions over closed curves and applicability of Residue theorem by applying the principles of mathematics.	2

CO 5	PO 1	Identify the characteristics of beta and gamma functions as a generalization to the elementary factorial function (knowledge) and applicability for solving improper integrals by applying the principles of mathematics	3
	PO 2	Identify the given problem and formulate relationship between beta and gamma functions (knowledge) and their applicability for solving improper integrals by transforming by applying the principles of mathematics.	1
CO 6	PO 1	Recognize the Bessel functions as series solution of second order differential equation (knowledge) and find its generating function and use it to prove some useful standard results and recurrence relations by applying the principles of mathematics.	3
	PO 2	Identify the given problem and formulate relationship between beta and gamma functions (knowledge) and their applicability for solving improper integrals by transforming by applying the principles of mathematics.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

	PROGRAM OUTCOMES													PSO'S	
COURSE	PO	PO										PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-		-	2	-
CO 2	2	4	-	2	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	-	-	2		-	-	-	-	-	-		2	2	-
CO 5	2	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	2	4	-	-	-	-	-	-	-	-	-		-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

	PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	66.7	-	-	-	-	-	-	-	-	-	-		-	-	-	
CO 2	66.7	40.0	-	20	-	-	-	-	-	-	-	-	-	-	-	
CO 3	66.7	40.0	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	66.7	-	-	20		-	-	-	-	-	-		-	-	-	
CO 5	66.7	40.0	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 6	66.7	40.0	-	-		-	-	-	-	-	-		-	-	-	

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- **1** $-5 < C \le 40\% Low/$ Slight
- 2 40 % < C < 60% Moderate
- $3 60\% \leq C < 100\%$ Substantial /High

	PROGRAM OUTCOMES													PSO'S	
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	18	4	-	3	-	-	-	-	-	-	-	-	-	-	-
AVERAGE	3	2	-	1	-	-	-	-	-	-	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	~	Seminars	-
Laboratory	-	Student Viva	-	Certification	-
Practices					
Term Paper	-	Tech-talk	~	Concept video	\checkmark
Assignments	-				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

х	Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback

XVIII SYLLABUS:

MODULE I	COMPLEX FUNCTIONS DIFFERENTIATION AND INTEGRATION
	Complex functions and its representation on argand plane, concepts of limit, continuity, differentiability, analyticity, Cauchy-Riemann conditions and harmonic functions; Milne-Thomson method, Bilinear Transformation
MODULE II	COMPLEX INTEGRATION
	Line integral: Evaluation along a path and by indefinite integration; Cauchy's integral theorem; Cauchy's integral formula; Generalized integral formula; Power series expansions of complex functions And contour Integration: Radius of convergence.

MODULE III	POWER SERIES EXPANSION OF COMPLEX FUNCTION
	Expansion in Taylor's series, Maclaurin's series and Laurent series. Singular point; Isolated singular point; Pole of order m; Essential singularity; Residue: Cauchy Residue Theorem. Evaluation of Residue by Laurent Series and Residue Theorem. Evaluation of integrals of the type $\int_{0}^{2\pi} f(\cos\theta, \sin\theta)d\theta$ and $\int_{0}^{\infty} f(x)dx$
MODULE IV	
	SFECIAL FUNCTIONS-I
	Improper integrals; Beta and Gamma functions: Definitions; Properties of Beta and Gamma function; Standard forms of Beta functions; Relationship between Beta and Gamma functions
MODULE V	SPECIAL FUNCTIONS-II
	Bessel's Differential equation: Bessel function, properties of Bessel function, Recurrence relations of Bessel function, Generating function and Orthogonality of Bessel function, Trigonometric expansions involving Bessel function.

TEXTBOOKS

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons Publishers, 10th Edition,2010
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2015.

REFERENCE BOOKS:

- 1. T.K.V Iyengar, B. Krishna Gandhi, "Engineering Mathematics III", S. Chand and Co., 12th Edition, 2015.
- 2. Churchill, R.V. and Brown, J.W, "Complex Variables and Applications", Tata Mc Graw-Hill, 8th Edition, 2012.

WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

COURSE WEB PAGE:

1. https://www.youtube.com/watch?v=DUHEPRjezdE

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference T1: 4.1
	OBE DISCUSSION		
1	In Out Come Based Education student should Identify curves and regions in the complex planedefined by simple expressions. Describe basic properties of complex integration and having the ability to compute such integrals. Decide when and where a given function is analytic and be able to find it series developement. Describe conformal mappings between various plane regions.Present the central ideas in the solution of Dirichlets problem. Able to Classify Singularities and Poles of Complex functions. Relate improper integrals with beta and gamma functions. Idenatify the role of Bessel functions for solving differential equations.	_	
	CONTENT DELIVERY (THEORY)	1	
2	Understanding the complex function in Argand plane	CO 1	T1:12.4, R1:4.13
3	Apply the limit of a complex function	CO 1	T1:12.4, R1:4.13
4	Apply the continuity of a complex function	CO 1	T1:12.4, R1:4.13
5	Apply the differentiability and analyticity of a complex function	CO 1	T1:12.4, R1:4.13
6	Identify and Apply the of Cauchy-Riemann conditions in Cartesian and Polar forms	CO 1	T1:12.4, R1:4.13
7	Evaluate the Harmonic Conjugates	CO 1	T1:12.4, R1:4.13
8	Apply the Milne-Thomson method to find the Analytic function	CO 1	T1:12.4, R1:4.13
9	Apply the properties of Bilinear transformation for complex functions.	CO 1	T1:12.5, R1:8.8
10	Evaluate the Line Integral for a given path	CO 2	T1:13.1, R1:5.3
11	Apply the Cauchy's integral theorem in a given plane	CO 3	T1:13.1, R1:5.3
12	Apply the Cauchy's integral formula for evaluating contour integration	CO 3	T1:13.1, R1:5.3
. 13	Apply the Cauchy's general integral formula for evaluating contour integration.	CO 3	T1:13.1, R1:5.3
14	Define the Power series expansions of complex functions and contour Integration	CO 4	T1:14.1, R1:6.1
15	Evaluate the Radius of convergence of power series complex function	CO 4	T1:14.1, R1:6.1

16	Identify the types of power series expansions	CO 4	T1:14.1, R1:6.1
17	Define the types of Singularities and its nature	CO 4	T1:15.2 , R1:6.6
18	Define the concept of Residues	CO 4	T1:15.2 , R1:6.6
19	Evaluate the Residues of complex functions.	CO4	T1:15.2 , R1:6.6
20	Evaluate of contour integrals by Residue theorem.	CO4	T1:15.2 , R1:6.6
21	Definite integrals of the Type -I	CO 5	T2: 7.14, R1:1.6
22	Indefinite integrals of Type-II	CO5	T2: 7.14, R1:1.6
23	Improper integrals; Beta and Gamma functions	CO5	T2: 7.14, R1:1.6
24	Definitions; Properties of Beta	CO5	T2: 7.14, R1:1.6
25	Standard forms1,2,3 of Beta functions	CO 5	T2: 16.6, R1:7.36
26	Standard forms 4,5,6, ,of Beta functions;	CO 5	T2: 16.8, R1:7.41
27	Definitions; Properties Gamma function	CO 5	T2: 16.9, R1:7.42
28	Relationship between beta and gamma functions	CO 6	T2: 16.9, R1:7.42
29	Theorems of gamma functions	CO 6	T2: 16.9, R1:7.42
30	Complex functions differentiation and integration: Complex functions and its representation on argand plane	CO 2	T2: 16.9, R1:7.42
31	Concepts of limit, continuity	CO 1	T1:12.4, R1:4.13
32	Problems related to beta functions	CO5	T2: 7.14, R1:1.6
33	Problems related to gamma functions	CO5	T2: 7.15 , 1:16.5
34	Properties of Beta and Gamma function	CO 6	T2:11.3, R1:16.5
35	Bessel's Differential equation: Bessel function, properties of Bessel function	CO5	T2: 16.5, R1:7.32
36	Solutions of Bessel differential equation by power series method.	CO 6	T2: 16.6, R1:16.9
37	Generating function	CO 5	T2: 11.4, R1:16.18
38	Recurrence relations-I,II,III of Bessel function	CO6	T2: 16.8, R1:7.41

39	Recurrence relations IV,V,VI of Bessel function	CO 6	T1:17.5-			
			17.6,			
			R1:16.3.1			
40	Generating function	CO 6	T2: 16.9,			
			R1:7.422			
41	Orthogonality of Bessel function	CO 4	T1:13.4,			
			R1:5.10			
	PROBLEM SOLVING/ CASE STUDI	ES				
42	Problems on generalized integral formula	CO 2	T1:14.1,			
			R1:6.1			
43	Problems on generalized integral formula	CO 2	T1:14.1,			
			R1:6.1			
44	Problems on power series expansions of complex functions	CO 3	T1:14.1,			
	Expansion in Taylor's series		R1:6.1			
45	Problems on Maclaurin's series	CO 3	T1:15.2 ,			
			R1:6.6			
46	Problems on Laurent series	CO 3	T1:15.3,			
			R1:7.9			
47	Problems on types of singularities, pole of order m	CO 4	T1:15.3,			
			R1:7.9			
48	Problems on evaluation of residue by Laurent Series	CO 3	T1:15.3,			
			R1:7.9			
49	Problems on Residue Theorem.	CO 4	T1:14.1,			
			R1:6.1			
50	Problems on definite integrals of the type -I	CO 3	T1:15.3,			
			R1:7.9			
51	Problems on indefinite integrals of type-II	CO 4	T1:15.3,			
			R1:7.9			
52	PSolving problems on Cauchy's Residues Theorem	CO 5	T2: 16.9,			
			R1:7.42			
53	Solving problems on Definite integrals of the type -I,II	CO 5	T2: 16.9,			
			R1:7.42			
54	Solving problems on Trigonometric expansions involving	CO 6	T2: 16.9,			
	Bessel function		R1:7.42			
55	Solving problems on beta and gamma functions	CO 5	T2: 16.7,			
			R1:7.36			
56	Definitions and terminology Cauchy-Riemann conditions	CO 1,CO2	T1:12.4,			
	in Cartesian and Polar forms		R1:4.13			
	DISCUSSION OF DEFINITION AND TERMINOLOGY					
57	Definitions and terminology the differentiability and	CO 1,CO2	T1:12.4,			
	analyticity of a complex function		R1:4.13			
58	Definitions and terminology Milne-Thomson method to	CO 1,CO2	T1:12.4,			
	find the Analytic function		R1:4.13			
59	Definitions and terminology on Cauchy's general integral	CO 4	T1:13.4,			
	formula for evaluating contour integration, on types of		R1:5.10			
	singularities , pole of order m					
60	Definitions and Terminology on special functions-I	CO 5	T1:15.2,			
	module IV		R1:6.6			

61	Definitions and Terminology on special functions-II module V	CO 6	T1:12.4, R1:4.13
	DISCUSSION OF QUESTION BANK	K	
62	Discussion of Question Bank of Module II Complex functions and differentiation	CO 1,2	T1:12.3, R1:4.4
63	Discussion of Question Bank of Module II complex integration	CO 3	T1:12.5, R1:8.8
64	Discussion of Question Bank of Module III power series expansion of complex function	CO4	T1:15.1, R1:7.4
65	Discussion of Question Bank of Module IV special functions-I	CO 5	T2: 7.15, R1:1.65
66	Discussion of Question Bank of Module V special functions-I	CO 6	T2: 16.9, R1:7.42

Signature of Course Coordinator Ms. L Indira, Assistant Professor

HOD,FE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Pepartment Electronics and Communication Engineering				
Course Title Analog and Pulse Circuits					
Course Code	AECC09				
Program	B.Tech				
Semester	IV				
Course Type	Core				
Regulation	UG20				
		Theory		Pract	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	0	3	-	-
Course Coordinator	Mr. S Lakshmanachari, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AEEC02	II	Electrical Circuits
B.Tech	AECC01	III	Electronic Devices and Circuits

II COURSE OVERVIEW:

This course provides circuit analysis to design high frequency amplifiers and wave shaping circuits using discrete components. It covers on multistage amplifiers, power amplifiers, feedback concepts, sampling gates and multivibrators. Analog electronics are widely used in radio and audio equipment and in many applications where signals are derived from analog sensors and transducers.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Analog and Pulse Circuits	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
50 %	Understand
25 %	Apply
15 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks	
CIA	Continuous Internal Examination – 1 (Mid-term)	10		
	Continuous Internal Examination – 2 (Mid-term)	10	- 30	
	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
	100			

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table.

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The design and analysis of transistor amplifiers using low frequency and high frequency signals.
II	The response for a linear wave shaping circuits of low pass filter and high pass filters.
III	The generation of non-linear oscillations by using regenerative feedback circuit for multivibrators.

VII COURSE OUTCOMES:

CO 1	Illustrate Bipolar Junction Transistor (BJT) amplifier circuits and	Understand
	their frequency responses at low, mid and high frequencies for	
	determining amplifier characteristics.	
CO 2	Summarize the concept of feedback in amplifiers for the distinction	Understand
	between negative and positive feedback.	
CO 3	Obtain the expression to find frequency of oscillations for RC and	Understand
	LC type oscillator circuits.	
CO 4	Identify the suitable large signal amplifiers or power amplifiers for	Apply
	practical applications with given specifications.	
CO 5	Analyze the response of linear and non-linear wave shaping circuits	Analyze
	for impulse and pulse inputs with different time constants.	
CO 6	Build bistable, monostable and astable multivibrator circuits using	Apply
	transistors for real time applications.	

After successful completion of the course, students should be able to:

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes										
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,										
	engineering fundamentals, and an engineering specialization to the solution of										
	complex engineering problems.										
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze										
	complex engineering problems reaching substantiated conclusions using first										
	principles of mathematics, natural sciences, and engineering sciences.										

	Program Outcomes
PO 3	Design/Development of Solutions: Design solutions for complex
	Engineering problems and design system components or processes that meet the
	specified needs with appropriate consideration for the public health and safety,
	and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based
	knowledge and research methods including design of experiments, analysis and
	interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,
	resources, and modern Engineering and IT tools including prediction and
	modelling to complex Engineering activities with an understanding of the
	limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual
	knowledge to assess societal, health, safety, legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO 9	member or leader in diverse teams, and in multidisciplinary settings
DO 10	member of leader in diverse teams, and in mutual sciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities
	to comprehend and write effective reports and design documentation, make
	effective presentations, and give and receive clear instructions
PO 11	Project management and finance. Demonstrate knowledge and
1011	understanding of the engineering and management principles and apply these to
	one's own work as a member and leader in a team to manage projects and in
	multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and
	ability to engage in independent and life-long learning in the broadest context of
	technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

Г

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge	3	SEE / CIE /
	of mathematics, science, engineering		AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE / CIE /
	research literature, and analyze complex		AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		

-

PROGRAM OUTCOMES	Strength	Proficiency Assessed by
Design / Development of Solutions: Design	1	SEE / CIE /
solutions for complex engineering problems and		AAT
design system components or processes that meet		
the specified needs with appropriate consideration		
for the public health and safety, and the cultural,		
societal, and environmental considerations		
-	PROGRAM OUTCOMES Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations	PROGRAM OUTCOMESStrengthDesign / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	${f Strength}$	Proficiency Assessed by
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	3	_

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-

XII JUSTIFICATIONS FOR CO – PO / PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Illustrate Bipolar Junction Transistor (BJT) amplifier circuits and their frequency responses at low, mid and high frequencies for determining amplifier characteristics by applying engineering fundamentals to the solution of complex engineering problems.	1
	PO 2	Identify the problems in Bipolar Junction Transistor (BJT) amplifier circuits then formulate problem statement based on the Information provided to analyze complex engineering problems using first principles of mathematics, natural sciences, and engineering sciences.	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 2	PO 1	Describe various types of feedback amplifiers like voltage series, voltage shunt, current series and current shunt by applying knowledge of mathematics and engineering fundamentals to the solution of complex engineering problems.	2
	PO 2	Understand the given problem statement and formulate the complex engineering problems of feedback amplifiers from the provided information, develop solutions based on the functionality of the circuit, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results.	6
CO 3	PO 1	Obtain the expression to find frequency of oscillations for different oscillator circuits by applying knowledge of mathematics and engineering fundamentals to the solution of complex engineering problems.	2
	PO 2	Understand the problem statement of RC oscillators and formulate the complex engineering problems of RC oscillators from the provided information, develop solutions based on the functionality of the circuit, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	6
	PO 3	Design solutions for complex engineering problems and design system components of oscillators that meet the specified customer and user needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1
	PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) prototype designs using analog and pulse circuits in the field of analog electronics.	1
CO 4	PO 1	Identify the suitable large signal amplifiers for practical applications with given specifications by applying the knowledge of mathematics and engineering fundamentals to the solution of complex engineering problems.	2
	PO 2	Understand the problems of power amplifiers and formulate the solutions of power amplifiers for practical applications with given specifications to analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and engineering sciences.	4
CO 5	PO 1	Analyze the response of linear and non-linear wave shaping circuits for impulse and pulse inputs with different time constants by applying the knowledge of mathematics and engineering fundamentals , and an engineering specialization to the solution of complex engineering problems.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Understand the given problem statement and formulate the expression for percentage tilt from the response of high pass RC circuit for square input using principles of mathematics and engineering science.	4
	PO 3	Design solutions for complex engineering problems and design system components of linear and non-linear wave shaping circuit's applications that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	5
CO 6	PO 1	Design the basic electronic circuits using active transistors by applying mathematics , science and engineering fundamentals .	3
	PO 2	Identifying the real time problems in multivibrators then analyze the design process to solve the real time problems and to find the solution for various applications of multivibrators in real time using first principles of mathematics, and engineering sciences.	5
	PO 3	Design solutions for complex engineering problems and design system components of multivibrators that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	5
	PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) prototype designs and System on Chip (SOC) designs for multivibrator applications.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO / PSO MAPPING:

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	2	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	2	6	1	-	-	-	-	-	-	-	-	-	-	1	-
CO 4	2	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	4	5	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	5	5	-	-	-	-	-	-	-	-	-	-	2	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO / PSO

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	33.3	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	66.7	60	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	66.7	60	10	-	-	-	-	-	-	-	-	-	-	50	-
CO 4	66.7	40	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	66.7	40	50	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	100	50	50	-	-	-	-	-	-	-	-	-	-	100	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- **2** 40 % <C < 60% –Moderate
- ${\it 3}$ $60\% \le C < 100\%$ Substantial /High

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	3	1	-	-	-	-	-	-	-	-	-	-	2	_
CO 4	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	1	2	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	2	2	-	-	-	-	-	-	-	-	-	-	3	-
TOTAL	16	11	5	0	0	0	0	0	0	0	0	0	0	6	0
AVERAGE	2.66	1.83	1	0	0	0	0	0	0	0	0	0	0	2	0

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	~	Open Ended Experiments	~
Assignments	-				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

$\checkmark \qquad \text{Assessment of mini projects by experts}$	\checkmark	End Semester OBE Feedback
---	--------------	---------------------------

XVIII SYLLABUS:

MODULE I	MULTISTAGE AMPLIFIERS
	Charifordian of Amelifore Distortion in omelifore Different and line
	schemes used in amplifiers. Frequency response and Analysis of multistage
	amplifiers. Cascade amplifier. Darlington pair. Transistor at High Frequency:
	Hybrid - model of Common Emitter transistor model, f_{α} , β and unity gain
	bandwidth, Gain band width product.
MODULE II	FEEDBACK AMPLIFIERS
	Concepts of feedback – Classification of feedback amplifiers – General
	characteristics of Negative feedback amplifiers – Effect of Feedback on
	Amplifier characteristics – Voltage series, Voltage shunt, Current series and
	Current shunt Feedback configurations .
MODULE III	OSCILLATORS AND LARGE SIGNAL AMPLIFIERS
	Condition for Oscillations, RC type Oscillators-RC phase shift and
	Wien-bridge Oscillators, LC type Oscillators –Generalized analysis of LC
	Oscillators, Hartley and Colpitts Oscillators, Frequency and amplitude
	stability of Oscillators, Crystal Oscillator.
	Class - A Power Amplifier- Series fed and Transformer coupled, Conversion
	Efficiency, Class - B Power Amplifier- Push Pull and Complimentary
	Symmetry configurations, Conversion Efficiency, Principle of operation of
	Class - AB and Class - C Amplifiers. Tuned Amplifiers: Single Tuned
	Amplifiers – Q-factor, frequency response of tuned amplifiers, Concept of
	stagger tuning and synchronous tuning.
MODULE IV	LINEAR WAVE SHAPING AND SAMPLING GATES
	Linear wave shaping circuits: High pass RC and low pass RC circuits,
	response to step and square inputs with different time constants, high pass
	RC circuit as a differentiator, low pass RC circuit as an integrator. Sampling
	gates: basic operating principle of sampling gate, uni and bi directional
MODULE V	MULTIVIBRATORS
	Multivibrators: Bistable multivibrator, unsymmetrical triggering,
	symmetricaltriggering; Schmitt trigger; Monostable multivibrator, Astable
	multivibrator.

TEXT BOOKS

- 1. Jacob Millman, Christos C Halkias, "Integrated Electronics" McGraw Hill Education, 2ndEdition, 2010.
- 2. B.N.Yoganarasimhan, "Pulse and Digital Circuits", 2nd Edition, 2011.

REFERENCE BOOKS:

1. Robert L. Boylestead, Louis Nashelsky, "Electronic Devices and Circuits Theory", PearsonEducation, 11th Edition, 2009.

WEB REFERENCES:

1. https://nptel.ac.in/courses/108/108/108108111/

COURSE WEB PAGE:

1. https:://lms.iare.ac.in/index?route=course/details&course_id=192

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference					
OBE DISCUSSION								
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	_	https: //lms.iare. ac.in/index? route=course/ details& course_id=456					
	CONTENT DELIVERY (TH	IEORY)	1-3 <u>P</u>					
2	Classification of amplifiers	CO 1	T1:1.1-1.4					
3	Distortions in amplifiers	CO 1	T1:2.1					
4	Different coupling schemes used in amplifiers	CO 1	T1:2.4					
5	Frequency response of multistage amplifiers	CO 1	T1:2.4					
6	Analysis of multistage amplifiers	CO 1	T1:2.2					
7	Cascode amplifier	CO 1	T1:3.2					
8	Darlington pair	CO 1	T1:3.3					
9	Transistor at High Frequency: Hybrid - model of common emitter transistor model	CO 1	T1:4.1-4.3					
10	f_{α}, β and unity gain bandwidth, Gain band width product	CO 1	T1:4.4-4.7					
11	The CE current gain with Load, R_L	CO 1	T1:4.8-4.10					
12	Classification of feedback amplifiers	CO 2	T1:4.11,5.1-5.3					
13	General characteristics of negative feedback amplifiers	CO 2	T1:6.1-6.3					
14	Effect of feedback on amplifier characteristics	CO 2	T1:6.4					
15	Voltage series feedback amplifier	CO 2	T1:7.2					
16	Voltage shunt feedback amplifier	CO 2	T1:7.2					
17	Current series feedback amplifier	CO 2	T1:8.1-8.3					
18	Current shunt feedback amplifier	CO 2	T1:8.4-8.5					
19	Oscillations and condition for oscillations	CO 3	T1:9.1-9.3					
20	RC phase shift and wien-bridge oscillators	CO 3	T1:9.4-9.7					
21	LC type oscillators and generalized analysis of LC oscillators	CO 3	T1:10.1					
22	Hartley and Colpits oscillators	CO 3	T1:10.2					
23	Frequency and amplitude stability of oscillators	CO 3	T1:10.2					
24	Class A power amplifier- series fed and transformer coupled, conversion efficiency	CO 4	T1:10.3					
25	Class B power amplifier- push pull and complimentary symmetry configurations	CO 4	T1:10.3					
26	Principle of operation of Class AB and Class C amplifiers.	CO 4	T1:10.4					

S.No	Topics to be covered	CO's	Reference
27	Single tuned amplifiers – Q-factor, frequency response of tuned amplifiers	CO 4	T4:10.1
28	Concept of stagger tuning and synchronous tuning	CO 4	T4:10.2
29	Response of High pass RC circuit to step and square inputs with different time constants	CO 5	T4:10.4
30	Response of Low pass RC circuit to step and square inputs with different time constants	CO 5	T4:10.4
31	Sampling gates: basic operating principle of sampling gate.	CO 5	T4:10.5
32	High pass RC circuit as a differentiator and low pass RC circuit as an integrator	CO 5	T4:10.5
33	Uni and bi-directional sampling gates	CO 5	T4:10.6-10.7
34	Bistable multivibrator	CO 6	T4:10.8
35	Unsymmetrical triggering of Bistable multivibrator	CO 6	T4:10.8
36	Symmetrical triggering of Bistable multivibrator	CO 6	T3:3.12
37	Monostable multivibrator	CO 6	T3:3.12
38	Triggering of Monostable multivibrator	CO 6	T3:3.12
39	Astable multivibrator.	CO 6	T3:3.12
40	Schmitt trigger.	CO 6	T3:3.12
	PROBLEM SOLVING/ CASE	STUDIES	
41	Analysis of multistage amplifiers	CO 1	T1:2.2
42	Cascode amplifier and Darlington pair	CO 1	T2:1.12
43	Voltage series and voltage shunt feedback amplifiers	CO 2	T1:3.2
44	Current series and current shunt feedback amplifiers	CO 2	T1:3.6
45	Oscillators designing and condition for oscillations	CO 3	T1:3.6
46	Large signal amplifiers	CO 4	T1:4.1
47	Linear wave shaping circuits.	CO 4	T1:4.1-4.8
48	Sampling gates.	CO 5	T1:5.8
49	Designing of Bistable, Monostable and Astable multivibrators.	CO 6	T2:10.4 R2:7.2
50	Designing of Schmitt trigger circuit.	CO 6	T2:10.4 R2:7.2
	DISCUSSION ON DEFINITION AND	TERMINOLO	GY
51	Multistage amplifiers	CO 1	-
52	Feedback amplifiers	CO 2	-
53	Oscillators and large signal amplifiers	CO 3,CO 4	-
54	Linear wave shaping and sampling gates	CO 5	-
55	Multivibrators	CO 6	-
	DISCUSSION ON QUESTION	N BANK	
56	Multistage amplifiers	CO 1	-

S.No	Topics to be covered	CO's	Reference
57	Feedback amplifiers	CO 2	-
58	Oscillators and large signal amplifiers	CO 3, CO 4	-
59	Linear wave shaping and sampling gates	CO 5	-
60	Multivibrators	CO 6	-

Signature of Course Coordinator

HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING					
Course Title	ANALO	G AND DIGITA	AL COMMUNIC	CATION		
Course Code	AECC10					
Program	B.Tech					
Semester	IV					
Course Type	Core					
Regulation	IARE - R20					
	Theory Practical					
Course Structure	Lecture Tutorials Credits Laboratory Cred				Credits	
	3 - 3					
Course Coordinator	Mrs. G.Ajitha, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC02	III	Signals and Systems
B.Tech	AECC01	III	Electronics Devices and Circuits

II COURSE OVERVIEW:

Communications emphasize on generation, transmission and reception of audio, video and telephony signals. The course is intended to understand various analog and pulse modulation schemes. Further, it emphasis the knowledge on various digital modulation techniques and linear block codes. Communication system principles are used for real world applications of radio and TV broadcasting systems. systems.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Analog and Digital	70 Marks	30 Marks	100
Communication			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50%	Understand
33%	Apply
17%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks		
	Continuous Internal Examination – 1 (Mid-term)	10			
CIA	Continuous Internal Examination – 2 (Mid-term)	10	20		
	AAT-1	5	50		
	AAT-2	5			
SEE	Semester End Examination (SEE)	70	70		
	Total Marks				

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving	
40%	40%	20%	

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The need of modulation, generation and detection techniques of analog and pulse modulation systems.
II	Familiarize with digital systems like Pulse code modulation (PCM), Differential pulse code modulation (DPCM), Delta modulation (DM) and Adaptive DM.
III	The applications of spread spectrum techniques in secured digital communication systems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Outline the basic concepts of communication system, need of	Understand
	modulation and fundamental elements to realize amplitude	
	modulation systems.	
CO 2	Interpret the generation and detection techniques of frequency	Understand
	modulated waves used for audio signal transmission systems.	
CO 3	Illustrate the concept of pulse modulation schemes,	Understand
	demodulation, sampling, quantization and coding for obtaining of	
	digital data.	
CO 4	Analyze digital pass band communication schemes (ASK, PSK,	Analyze
	FSK) using modulation and demodulation process.	
CO 5	Identify the importance of spread spectrum techniques for	Apply
	secured digital communication systems	
CO 6	Build the block codes for error detection and error correction in	Apply
	noisy environment.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PRO	OGRAM OUTCOMES: Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	CIE/Quiz/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	2	CIE/Quiz/AAT
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations .		
PO 10	Communication: Communicate effectively on	1	SEE/CIE/
	complex engineering activities with the		Quiz/ AAT
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, makeeffective presentations, and		
	give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 3	Make use of High frequency structure simulator (HFSS) for modeling and evaluating the patch and smart antennas for wired and wireless communication applications.	2	_

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PRO	OGR.	AM	OUT	COL	MES				PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-		-	-	-
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-		-	-	\checkmark

				PRO)GR	$\mathbf{A}\mathbf{M}$	OUT	COL	MES				PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain the basic concepts, need of modulation and fundamental elements i.e transmitter, receiver, channel by applying the mathematical principles , science and engineering fundamentals	3
	PO 2	Identify, formulate, review research literature for generation and detection techniques of amplitude modulations and translate the information into the graphical form from the provided information and data, develop solutions for power, bandwidth requirements based on inputs of analog communication systems.	5
	PO 3	Design solutions for generation and detection of present generation modulation schemes for complex Engineering problems s by doing innovative solution and implementing them using modern tools such as cadence software, mentor graphics, synopsis with reduction in cost constraints .	3
	PO 10	Students to communicate effectively with the engineering community, write effective reports and documentation, make effective presentations, and give and receive clear instructions.	2
CO 2	PO 1	Interpret the generation and detection techniques of frequency modulated waves by using mathematical,science principles and engineering problems	3
	PO 2	Identify, formulate, review research literature for generation and detection techniques of frequency modulation techniques and translate the information into the graphical form from the provided information and data, develop solutions for power, bandwidth requirements based on inputs of analog communication systems.	5
	PO 3	Design modulations required for 5g,6g technologies for complex Engineering problems and customer needs design system components using creativity by innovative solutions, and implementing them with modern tools such as cadence software, mentor graphics, synopsis.	3
	PO 10	Students to communicate effectively with the engineering community, write effective reports and documentation, make effective presentations, and give and receive clear instructions.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 3	Develop modulator and demodulator for Wired and Wireless Communication Applications.	2
CO 3	PO 1	Interpret the generation and detection techniques of frequency modulated waves by using mathematical,science principles and engineering problems	3
	PO 2	Identify, formulate, review research literature for generation and detection techniques of frequency modulation techniques and translate the information into the graphical form from the provided information and data, develop solutions based on inputs of analog communication systems.	5
	PO 3	Design solutions for generation and detection of present generation modulation schemes for complex Engineering problems s by doing innovative solution and implementing them using modern tools such as cadence software, mentor graphics, synopsis with reduction in cost constraints .	3
	PO 10	Students to communicate effectively with the engineering community, write effective reports and documentation, make effective presentations, and give and receive clear instructions.	2
	PSO 3	Develop modulator and demodulator for Wired and Wireless Communication Applications.	2
CO 4	PO 1	Identify(knowledge) pulse digital modulation and demodulation techniques and(understand) signal space diagrams analysis by applying the principles of mathematics, science, engineering fundamentals	3
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of power, bandwidth requirements of various modulated waves translate the information into the required form from the provided information and data, develop solutions based on inputs	5
	PO 3	Develop pulse digital modulation and demodulation system components, understand customer and user needs and identify the cost limitations for the selection of parameters, use creativity in applying the methods of model analyses for innovative solutions for the analysis of modulation techniques	3
	PO 10	Students to communicate effectively with the engineering community, write effective reports and documentation, make effective presentations, and give and receive clear instructions.	2
	PSO 3	Solve the transmitter and receiver design considerations for modeling and evaluating the patch and smart antennas for wired and wireless communication applications.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 5	PO 1	Classify knowledge various spread spectrum modulation techniques by applying the principles of mathematics, science, bandwidth spectrum in communication engineering fundamentals.	3
	PO 2	Estimate bandwidth requirements in communication (problem statement) and formulate (complex) spread spectrum techniques to implementation (Solution development) narrow band to wide band spectrum conversion from the provided information and substantiate with the interpretation of variations in the results	5
	PO 10	Students to communicate effectively with the engineering community, write effective reports and documentation, make effective presentations, and give and receive clear instructions.	2
CO 6	PO 1	Determine error detection and error correction capabilities of linear block codes by applying the principles of mathematics , science, matrix description of linear block codes engineering fundamentals.	3
	PO 2	Analyze understand generator matrix problem statement) and formulate complex) check bit vectors to implementation Solution development code vectors from the provided information and substantiate with the interpretation of variations in the results.	5
	PO 3	Make use of encoder develop code rate for customer and user needs and identify the cost limitations for the selection of parameters, use creativity in applying the methods of model analyses for innovative solutions for the analysis of entropy.	3
	PO 10	Students to communicate effectively with the engineering community, write effective reports and documentation, make effective presentations, and give and receive clear instructions.	2
	PSO 3	Develop modulator and demodulator for Wired and Wireless Communication Applications.	2

Note: For Key Attributes refer Annexure - ${\bf I}$

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

				PRO	OGR.	AM	OUT	COL	MES				PSO'S		
COURSE	PO	O PO												PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	5	3	-	-	-	-	-	-	2	-		-	-	-
CO 2	3	5	3	-	-	-	-	-	-	2	-	-	-	-	2
CO 3	3	5	3	-	-	-	-	-	-	2	-	-	-	-	2
CO 4	3	5	3	-	-	-	-	-	-	2	-		-	-	2

CO 5	3	5	-	-	-	-	-	-	-	2	_	-	-	-	-
CO 6	3	5	3	-	-	-	-	-	-	2	-		-	-	2

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

				PRO)GR	AM	OUT	COI	MES				PSO'S			
COURSE	PO	O PO									PSO	PSO	PSO			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	100	50	30	-	-	-	-	-	-	40	-		-	-	-	
CO 2	100	50	30	-	-	-	-	-	-	40	-	-	-	-	100	
CO 3	100	50	30	-	-	-	-	-	-	40	-	-	-	-	100	
CO 4	100	50	30	-	-	-	-	-	-	40	-		-	-	100	
CO 5	100	50	-	-	-	-	-	-	-	40	-	-	-	-	-	
CO 6	100	50	30	-	-	-	-	-	-	40	-		-	-	100	

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- $\pmb{2}$ 40 % <C < 60% –Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

				PRO	OGR.	AM	OUT	COL	MES				PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	1	-	-	-	-	-	-	1	-	-	-	-	
CO 2	3	2	1	-	-	-	-	-	-	1	-	-	-	-	2
CO 3	3	2	1	-	-	-	-	-	-	1	-	-	-	-	2
CO 4	3	2	1	-	-	-	-	-	-	1	-	-	-	-	2
CO 5	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	3	2	1	-	-	-	-	-	-	1	-	-	-	-	2

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	\checkmark
Quiz	\checkmark	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory	-	5 Minutes Video	\checkmark	Open Ended	-
Practices		/ Concept Video		Experiments	
Micro Projects	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY-INDIRECT:

Assessment of mini projects by experts \checkmark End Semester OBE Feedback

XVIII SYLLABUS:

MODULE I	AMPLITUDE MODULATION
	Introduction to communication system, need for modulation, Frequency division multiplexing, Amplitude modulation - time and frequency domain description, single tone modulation, power relations in AM waves, generation of AM waves - switching modulator, detection of AM Waves - envelope detector, DSBSC modulation - time and frequency domain description, generation of DSBSC Waves - Balanced modulators, coherent detection of DSB-SC modulated waves, SSB modulation - time and frequency domain description, frequency discrimination and phase discrimination methods for generating SSB, demodulation of SSB Waves, principle of Vestigial side band modulation
MODULE II	ANGLE MODULATION
	Basic concepts of phase modulation, Frequency modulation: Single tone frequency modulation, Narrow band FM, Wide band FM, constant average power, transmission bandwidth of FM wave -generation of FM signal direct method and Armstrong method, detection of FM Signal: balanced slope detector, phase locked loop, comparison of FM and AM., concept of pre-emphasis and de-emphasis.
MODULE III	ANALOG AND DIGITAL PULSE MODULTAIONS
	 Pulse modulation: types of Pulse modulation- Pulse amplitude modulation (PAM), Pulse width modulation (PWM), Pulse position modulation (PPM), comparison of FDM and TDM. Elements of digital communications: Pulse code modulation, pulse code modulation (PCM) generation and reconstruction, quantization noise, uniform and non-uniform quantization and companding, Differential pulse code modulation (DPCM), Delta modulation (DM) and Adaptive DM, Noise in DM.
MODULE IV	DIGITAL MODULATION TECHNIQUES
	Amplitude shift keying (ASK)- modulator, coherent ASK detector, Frequency shift keying(FSK)- modulator, Non-coherent FSK detector, Binary phase shift keying(BPSK)- modulator, detector, principles of QPSK, Differential PSK, Probability of error for ASK,FSK, PSK.
MODULE V	SPREAD SPECTRUM MODULATION AND ERROR CONTROL CODES
	Spread spectrum modulation: Use of spread spectrum; Direct sequence spread spectrum (DSSS); Code division multiple access using DSSS, frequency hopping spread spectrum; PN-Sequences: Generation and characteristics. Linear Block Codes: Introduction to error control coding; Matrix description of linear block codes, error detection and error correction capabilities of linear block codes; Hamming code; Binary cyclic codes algebraic structure, encoding and decoding

TEXTBOOKS

- 1. Herbert Taub, Donald L. Schilling , "Principles of Communication Systems", TMH, 3rd edition,2008
- 2. K. Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley and Sons, 2nd Edition, 2005.
- 3. Simon Haykin, "Digital communications", John Wiley, 3rd Edition, 2005.

REFERENCE BOOKS:

- 1. B.P.Lathi, "Modern Analog and Digital Communication", Oxford reprint, 3rd Edition, 2004.
- 2. Singh, Sapre, "Communication Systems Analog and Digital", TMH, 2nd Edition, 2004.
- 3. Principles of Communication Systems Herbert Taub, Donald L Schilling, Goutam Saha, 3rd Edition, McGraw-Hill, 2008.

COURSE WEB PAGE:

1. https:://lms.iare.ac.in/index?route=course/details&course_id=467

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference			
	OBE DISCUSSION					
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms. iare.ac.in/ index?route= course/ details\$& \$course_id= 73			
	CONTENT DELIVERY (THEO	RY)				
2	Introduction to communication system and need for modulation	CO 1	T2 -2.1 to 2.2			
3	Time domain and frequency domain description of amplitude modulation	CO 1	TI –1.1 to 2.5			
4	Power relations in AM waves	CO 1	T3 -1.1 to 1.1.6			
5	Generation of AM waves, square law Modulator, Switching modulator	CO 1	T3 -3.2 to 3.3.4			
6	Detection of AM Waves; Square law detector, Envelope detector	CO 1	R1 -3.3, T3- 8.3 to 8.4			
7	DSBSC modulation and Generation of DSBSC Waves,Coherent detection of DSB-SC Modulated waves,	CO 1	T3 - 3.4			
8	SSB modulation Mathematical Description, Generation and detection of SSBSC Waves	CO 1	T3 -3.4.1 to3.4.2, T3 -8.2.			
9	Principles of Vestigial side band modulation	CO 1	T3 -3.5.1 to 3.5.2			
10	Basic concepts of phase Modulation, frequency Modulation	CO 2	T3 - 4.1 to 4.3.4			
11	Single tone frequency modulation	CO 2	T3 -4.4 to 4.4.5, T2 - 2.14			
12	Narrow band FM, Wide band FM	CO 2	T3 -9.1 to 9.5.2			

13	Constant Average Power, Transmission bandwidth of FM Wave	CO 2	R3 -6.1
14	Generation of FM Signal	CO 2	R3 -6.2 to 6.4.6
15	Detection of FM Signal	CO 2	T2 -6.2 to 6.3
16	Phase locked loop	CO 2	T3 - 1.2 to 1.2.3
17	Pre-emphasis and de-emphasis	CO 2	T3 -1.2.4 to 1.4.8
18	Pulse amplitude modulation (PAM)	CO 3	TI -1.1 to 2.5
19	Pulse width modulation (PWM)	CO 3	T3 -1.1 to 1.1.6
20	Pulse position modulation (PPM)	CO 3	T3 -3.2 to 3.3.4
21	comparison of FDM and TDM.	CO 3	R1 -3.3, T3- 8.3 to 8.4
22	Elements of digital communications: Pulse code modulation	CO 3	T3 - 3.4
23	pulse code modulation (PCM) generation	CO 3	T3 -3.4.1 to3.4.2, T3 -8.2.
24	pulse code modulation (PCM) reconstruction, quantization noise	CO 3	T3 -3.5.1 to 3.5.2
25	uniform and non-uniform quantization and companding Phase locked loop,	CO 3	T3 - 4.1 to $4.3.4$
26	Differential pulse code modulation (DPCM)	CO 3	$\begin{array}{c} T3 -4.4 \text{ to} \\ 4.4.5, T2 - 2.14 \end{array}$
27	Delta modulation (DM), Adaptive DM, Noise in DM.	CO 3	T3 -9.1 to 9.5.2
28	Amplitude shift keying (ASK)- modulator, coherent ASK detector	CO 4	R3 -6.1
29	Frequency shift keying(FSK)- modulator, Non-coherent FSK detector	CO 4	R3 -6.2 to 6.4.6
30	Binary phase shift keying(BPSK)- modulator, detector	CO 4	T2 -6.2 to 6.3
31	principles of QPSK	CO 4	T3 - 1.2 to 1.2.3
32	Differential PSK	CO 4	T3 -1.2.4 to 1.4.8
33	Probability of error for ASK,FSK.	CO 4	TI –1.1 to 2.5
34	Probability of error for PSK.	CO 4	T3 -1.1 to 1.1.6
35	Spread spectrum modulation: Use of spread spectrum; Direct sequence spreadspectrum (DSSS).	CO 5	TI –1.1 to 2.5
36	Code division multiple access using DSSS	CO 5	T3 -1.1 to 1.1.6
37	Frequency hopping spread spectrum	CO 5	TI -1.1 to 2.5

38	PN-Sequences: Generation and characteristics	CO 5	T3 -1.1 to 1.1.6
39	Linear Block Codes: Introduction to error control coding; Matrix description of linear block codes	CO 6	T3 -3.5.1 to 3.5.2
40	Error detection and error correction capabilities of linear block codes	CO 6	T3 - 4.1 to $4.3.4$
41	Hamming code; encoding and decoding	CO 6	T3 - 4.1 to $4.3.4$
42	Binary cyclic codes encoding and decoding	CO 6	T3 - 4.1 to $4.3.4$
	PROBLEM SOLVING/ CASE ST	UDIES	
43	Time domain and frequency domain equations of AM wave .	CO 1	TI –1.1 to 2.5
44	Design of envelope detector circuit Problem solving on Power, current, voltage relations in AM wave	CO 1	TI –1.1 to 2.5
45	Time domain and frequency domain equations of DSBSC	CO 1	T3 - 3.4
46	Time domain and frequency domain equations of SSBSC	CO 1	T3 -4.4 to 4.4.5, T2 - 2.14
47	Frequency modulation	CO 2	R3 - 6.2 to $6.4.6$
48	Frequency modulation	CO 3	T2 -6.2 to 6.3
49	TDMA.	CO 2	T2 -6.2 to 6.3
50	Pulse Code Modulation	CO 3	T3 -9.1 to 9.5.2
51	Delta Modulation.	CO 3	R3 -6.1
52	Digital modulation Schemes.	CO 4	TI –1.1 to 2.5
53	Digital modulation Schemes.	CO 4	T3 $-3.5.1$ to $3.5.2$
54	linear block codes.	CO 6	T3 - 4.1 to $4.3.4$
55	linear block codes.	CO 6	T3 - 4.1 to $4.3.4$
56	Problem solving on Hamming codes	CO 6	${ m T3-4.1\ to}\ 4.3.4$
57	Hamming codes	CO 6	T3 - 4.1 to $4.3.4$
	DISCUSSION OF DEFINITION AND TE	RMINOLO	OGY
58	Amplitude modulation	CO 1	T3 -9.1 to 9.5.2
59	Angle Modulation	CO 2	R3 -6.2 to 6.4.6
60	Digital pulse modulation	CO 3	$\begin{array}{c} {\rm T3} \ -3.5.1 \\ {\rm to} 3.5.2 \end{array}$
61	Digital modulation techniques	CO 4	$T3-\overline{4.1 ext{ to}} $ 4.3.4

62	Error control codes	CO 6	T3 – 4.1 to
			4.3.4
	DISCUSSION OF QUESTION B	ANK	
63	Amplitude modulation generation and detection	CO 1	R4:2.1
64	Angle Modulation	CO 2	T4:7.3
65	Digital pulse modulation	CO 3	R4:5.1
66	Digital modulation techniques	CO 4	T1:7.5
67	Error control codes	CO 6	T3 - 4.1 to
			4.3.4

Signature of Course Coordinator

HOD, ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

РО	NBA Statement / Key Competencies Features (KCF)	No.
Number		of
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	 Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation 	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10

	 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	
	 Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems 	11
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and	1
	 modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. 	Ŧ

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

PO 12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). Project management professional certification / MBA Begin work on advanced degree Keeping current in CSE and advanced engineering concepts Personal continuing education efforts Ongoing learning – stays up with industry trends/ new technology Continued personal development Have learned at least 2-3 new significant skills 	8
	8. Have taken up to 80 hours (2 weeks) training per year	

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING					
Course Title	IC APPLICATIONS					
Course Code	AECC12					
Program	B.Tech					
Semester	IV					
Course Type	Core					
Regulation	UG-20					
	Theory Practical					
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Mr. J Siva Ramakrishna, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC01	III	Electronic Devices and Circuits
B.Tech	AECC03	III	Digital System Design

II COURSE OVERVIEW:

This course deals with the fundamental concepts of operational amplifier, linear & non linear application of op-amp and digital Integrated circuits. It covers design and analysis of frequency selective and tuning circuits like oscillators, active filters, phase locked loops and its use for communication applications. Along with switching applications like that of comparators, learn IC based design of voltage regulators, digital IC's for combination and sequential circuit designs. This course forms the basis for the next level of course VLSI Design.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks		
IC Applications	70 Marks	30 Marks	100		

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	PPT		Chalk &	x	Assignments	x	MOOC
 ✓ 		\checkmark	Talk				
✓	Open Ended Experiments	Open Ended x xperiments x		x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
%	Remember
%	Understand
%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks	
CIA	Continuous Internal Examination – 1 (Mid-term)	10		
	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
	Total Marks		100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The basic building blocks, characteristics and applications of operational amplifier.
II	The functional details of logic families, combinational and sequential digital circuits (ICs) used in digital design.
III	Different IC models which are basic for mixed signal integrated circuits in future.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Describe the principles and characteristics of op-amp circuits	Understand
	to perform arithmetic operations	
CO 2	Distinguish linear and non-linear applications of op-amp	Understand
	circuits to measure the output characteristics	
CO 3	Design frequency selective circuitsusing OPAMP for audio	Analyze
	and radio frequency ranges.	
CO 4	Demonstrate the characteristics, operation and	Understand
	applications of Multi-vibrators using IC555 timer	
CO 5	Choose an appropriate A/D and D/A converterfor signal	Apply
	processing applications	
CO 6	Analyze the characteristics of sequential and combinational	Analyze
	digital integrated circuits for digital circuit design	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE / CIE /
	knowledge of mathematics, science, engineering		AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	SEE / CIE /
	research literature, and analyze complex		AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	1	SEE / CIE /
	solutions for complex engineering problems and		AAT
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and environmental		
	considerations		
PO 4	Conduct Investigations of Complex	2	SEE / CIE /
	Problems: Use research-based knowledge and		AAT/ QUIZ
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		
PO 10	Communication: Communicate effectively on	2	SEE /CIE/
	complex engineering activities with the		AAT/ QUIZ
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions.		

3 =High; 2 =Medium; 1 =Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	2	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-
CO 5	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark			-	\checkmark	-

XII JUSTIFICATIONS FOR CO – PO / PSO) MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
CO1	PO 1	Recall the basic function of transistor and to an extent appreciate the importance of differential amplifier and the characteristics by applying the own Engineering discipline, Science principles and methodology.	2
	PO 2	Understand the given problem statement and formulate the of improving DC, AC characteristics of an operational, translate the information into the model from the provided information and data, develop solutions as compensation techniques, validate the arithmetic operations by the interpretation of results	7
	PO 10	Design the differential amplifier circuit in different forms to Communicate effectively on complex engineering activities with engineering community	1
CO2	PO 1	Recall Discuss the drawback of using discrete components for design of circuit and appreciate the importance of Op-Amp IC ,its characteristics ,application of open loop Op-Amp by applying the own Engineering discipline , Science principles and methodology.	3
	PO 2	Understand the given problem statement and formulate the of improving DC, AC characteristics of an operational, translate the information into the model from the provided information and data, develop solutions as compensation techniques, validate the frequency response, stability of the circuit by the interpretation of results	7

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
	PO 10	Realize the DC and AC characteristic circuits of operational amplifier to Communicate effectively on complex engineering activities with engineering community	1
CO3	PO 1	Explain the importance of frequency selective circuits using op-amp and the application of frequency selective models using own Engineering discipline, scientific principles and methodology.	3
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems frequency selective op-amp models, translate the information into the model using IC741 from the provided information and data, develop solutions based on the functionality of the circuit, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results.	6
	PO3	Understand the customer needs, use creativity and manage design process in realization of audio and radio frequency range circuits using IC 741 op-amp and evaluate outcomes.	4
	PO10	Design frequency elective circuits using operational amplifier to Communicate effectively on complex engineering activities with engineering community	1
CO4	PO 1	Develop various multivibrator circuits; Astable, monostable, bi-stable multivibrators circuits using IC 555 timer by applying own Engineering discipline, Science principles and methodology.	3
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems on operation and applications of multivibrator using op-amp, translate the information into the model using IC 555 timer from the provided information and data, develop solutions based on the functionality of the circuit, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results.	7
	PO 3	Understand the customer needs, use creativity and manage design process in realization of multivibrator circuits using IC 555 timer and evaluate outcomes.	4
	PO 4	Distinguish different types multivibrator circuits such as mono stable, astable, and bi-stable multivibrators using design of experiments , analysis and interpretation of data .	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
	PO 10	Design different multivibrators using IC 555 timer to Communicate effectively on complex engineering activities with engineering community	1
	PSO 2	Make use of the basic concepts of nonlinear circuits of op-amp to apply them to various areas, like Communications, Signal processing, VLSI in the design and implementation of complex systems.	2
CO5	PO 1	Model different data converters such as A/D and D/A using the own Engineering discipline, Science principles and methodology.	3
	PO 2	Interpret the differen data converter using accuracy, time delay and error in the data conversion based on information and data collection, model translation and validate using experimental design	6
	PO 4	Examine different data converters such as A/D and D/A using design of experiments , analysis and interpretation of data.	5
	PO 10	Realize different data converters such as A/D and D/A to Communicate effectively on complex engineering activities with engineering community	1
CO6	PO 1	Outline the characteristics of different digital logic circuits by using own engineering discipline, science principles and methodology.	3
	PO 2	Determine response of sequential and combinational logic circuits using information , data collection and document the characteristics of filters using experimental design , validation and interpret the results .	6
	PO 3	Understand customer needs, use creativity, manage the design of digital logic circuits and evaluate outcomes of the circuit.	5
	PO 10	Design sequential and combinational logic circuits using transistor-transistor logic to Communicate effectively on complex engineering activities with engineering community	1
	PSO 2	Apply digital logic circuits in various field such as Application Specific Integrated Circuit (ASIC) Prototype designs, System on Chip (SOC) designs.	2

Note: For Key Attributes refer Annexure - ${\bf I}$

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO / PSO) MAPPING:

COURSE		PROGRAM OUTCOMES									PSO'S				
OUTCOMES	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	2	7	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 2	2	7	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 3	2	6	4	-	-	-	-	-	-	2	-	-	-	-	-
CO 4	2	7	4	3	-	-	-	-	-	2	-	-	-	2	-
CO 5	2	6	-	5	-	-	-	-	-	2	-	-	-	2	-
CO 6	2	6	5	-	-	-	-	-	-	2	-	-	-	2	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO-(PO / PSO):

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOMES	PO	PO	PO	РО	РО	PO	PO	РО	PO	PO	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	66.7	70	-	-	-	-	-	-	-	40	-	-	-	-	-
CO 2	66.7	70	-	-	-	-	-	-	-	40	-	-	-	-	-
CO 3	66.7	60	40	-	-	-	-	-	-	40	-	-	-	-	-
CO 4	66.7	70	40	27.2	-	-	-	-	-	40	-	-	-	50	-
CO 5	66.7	60	-	45.5	-	-	-	-	-	40	-	-	-	50	-
CO 6	66.7	60	50	-	-	-	-	-	-	40	-	-	-	50	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ 0 \leq C \leq 5% – No correlation
- ${\it 1}$ -5 <C \leq 40% – Low/ Slight
- $\pmb{2}$ 40 % <C < 60% –Moderate
- $3 60\% \le C < 100\%$ Substantial /High

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	3	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	3	3	1	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	3	3	1	1	-	-	-	-	-	1	-	-	-	2	-
CO 5	3	3	-	2	-	-	-	-	-	1	-	-	-	2	-

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	PO	PO	PO	РО	РО	РО	PO	РО	РО	РО	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 6	3	3	2	-	-	-	-	-	-	1	-	-	-	2	-
TOTAL	18	18	4	3	0	0	0	0	0	6	0	0	0	6	0
AVERAGE	3	2.6	1	0	0	0	0	0	0	1	0	0	0	1	0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	-
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	_	5 Minutes Video / Concept Video	\checkmark	Open Ended Experiments	\checkmark
Micro Projects	_	_	-	_	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling a	and E	Experimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	OPERATIONAL AMPLIFIER
	Operational Amplifier: Differential Amplifier, DC and AC analysis of dual input balanced output configuration, dual input unbalanced output. Characteristics of Op-amps, Op-amp block diagram, ideal and practical Op-amp specifications. DC characteristics: Input & output offset voltages & currents, drift. AC characteristics: Frequency response, slew rate, CMRR and PSRR.
MODULE II	APPLICATIONS OF OPERATIONAL AMPLIFIERS
	Linear applications of Op-amps: Inverting and non-inverting amplifier, integrator, differentiator, instrumentation amplifier, AC amplifier. Non-linear applications of Op-Amps: Comparators, multi vibrators, triangular, saw tooth, square wave generators, log and anti-log amplifiers. Introduction to voltage regulators, features of 723 Regulator, three terminal voltage regulators.

MODULE III	ACTIVE FILTERS AND TIMERS
	Active Filters: Classification of filters, 1st order low pass and high pass filters, 2nd order low pass, high pass, band pass, band reject and all pass filters. Timers: Introduction to 555 timer, functional diagram, mono-stable, astable operations and applications, schmitt trigger. PLL: Introduction, block schematic, principles and description of individual blocks,565 PLL.
MODULE IV	DATA CONVERTERS
	Data converters: Introduction, classification, need of data converters. DAC techniques: weighted resistor DAC, R2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC. ADC techniques: Flash converters, successive approximation, integrating ADC. DAC/ADC characteristics.
MODULE V	DIGITAL IC APPLICATIONS
	Study of digital logic families such as Resistor Transistor Logic (RTL), Diode Transistor Logic (DTL), Transistor Logic (TTL), Emitter Coupled Logic and CMOS. Characteristics of digital logic families containing fan-in, fan-out, power dissipation, propagation delay and noise margin, Familiarity with commonly available 74XX & CMOS 40XX series ICs-Flip Flops (IC 7474, IC 7473), Shift Registers, Universal Shift Register(IC 74194), Synchronous counters (74LS93,74HC163), Decade Counters, (74HC190).

TEXTBOOKS

- 1. D.RoyChowdhury,"Linear Integrated Circuits", New age international (p) Ltd, 2nd Edition, 2003, Third Edition, Prentice Hall of India, 2007.
- 2. Ramakanth A. Gayakwad, "Op-amps & linear ICs", PHI, 3rd Edition, 2003.
- 3. John F.Wakerly, "Digital Design Principles and Practices", Prentice Hall, 3rd Edition, 2005.
- M. Morris Mano, Michael D. Ciletti, "Digital Design, Pearson Education/PHI, 3rd Edition, 2008.

REFERENCE BOOKS:

1. Salivahanan, "Linear Integrated Circuits and Applications", TMH, 1st Edition, 2008.

WEB REFERENCES:

1. https://nptel.ac.in/courses/108/108/108108111/

COURSE WEB PAGE:

1. https:://lms.iare.ac.in/index?route=course/details&course_id=192

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https: //lms.iare. ac.in/index? route=course/ details&
	CONTENT DELIVEDY (TH		course_id=192
0	CONTENT DELIVERY (IH	CO 1	T1.1 1 1 4
	Design of an enotional emplifier		T1.9.1
3	Basics of operational amplifier		T 1:2.1
4	Differential amplifier		T1:2.4
<u> </u>	Analysis of differential amplifier-1		T1:2.4
8	Operational amplifier		T1:2.2
9	Dc characteristics of op-amps	CO I	T1:3.2
10	Ac characteristics of op-amps	CO 1	T1:3.3
11	Linear applications of op-amps:1	CO 2	T1:4.1-4.3
12	Linear applications of op-amps:2	CO 2	T1:4.4-4.7
13	Non-linear applications of op-amps:1	CO 2	T1:4.8-4.10
14	Non-linear applications of op-amps:2	CO 2	T1:4.11,5.1-5.3
20	Voltage regulators	CO 2	T1:6.1-6.3
21	Voltage regulators	CO 2	T1:6.4
22	Active filters-1	CO 3	T1:7.2
25	Active filters-2	CO 3	T1:7.2
26	555 Timers	CO 4	T1:8.1-8.3
27	555 Timer applications	CO 4	T1:8.4-8.5
28	Phase locked loops(565 PLL)	CO 4	T1:9.1-9.3
29	Phase locked loops (565 PLL) applications	CO 4	T1:9.4-9.7
32	Data converters	CO 5	T1:10.1
33	DAC techniques	CO 5	T1:10.2
34	DAC techniques	CO 5	T1:10.2
35	ADC techniques	CO 5	T1:10.3
36	ADC techniques	CO 5	T1:10.3
37	Data converter characteristics.	CO 5	T1:10.4
40	Logic families	CO 6	T4:10.1
41	Logic families characteristics	CO 6	T4:10.2

42	Resistor transistor logic (RTL), diode transistor logic (DTL)	CO 6	T4:10.4		
43	High threshold logic (HTL) family, transistor logic tristate logic (TTL).	CO 6	T4:10.5		
44	Emitter coupled logic family, CMOS logic family	CO 6	T4:10.6-10.7		
45	CMOS NAND and NOR gates	CO 6	T4:10.8		
46	CMOS sequential circuits	CO 6	T4:10.8		
47	CMOS combinational circuits	CO 6	T3:3.12		
48	CMOS 40XX series IC	CO 6	T3:3.12		
49	IC 7473, IC 7474.	CO 6	T3:3.12		
50	IC 74194.	CO 6	T3:3.12		
51	IC 74LS93, IC 74HC163.	CO 6	T3:3.12 R2:12.7		
52	IC74HC190	CO 6	T3:3.12 R2:12.7		
51	Asynchronous up / down counter	CO 6	T3:7.2		
52	3 bit & 4 bit up / down ripple counter	CO 6	T3:8.4		
	PROBLEM SOLVING/ CASE	STUDIES			
5	Differential amplifier	CO 1	T1:2.2		
6	Ac, dc analysis of differential amplifier	CO 1	T2:1.12		
15	Operational amplifier	CO 1	T1:3.2		
16	Linear applications of op-amps CO 2 T1:				
17	Linear applications of op-amps	CO 2	T1:3.6		
18	Non-linear applications of op-amps	CO 2	T1:4.1		
19	Non-linear applications of op-amps	CO 2	T1:4.1-4.8		
23	Active filters-1	CO 3	T1:5.8		
24	Active filters-2	CO 3	T1:5.8		
29	Phase locked loop	CO 4	T1:8.2-8.5		
30	555 Timer	CO 4	T2:10.4 R2:7.2		
31	555 Timer	CO 4	T2:10.4 R2:7.2		
38	Data converters	CO 5	T1:10.1-10.2		
39	Data converters	CO 5	T1:10.7-10.8		
33	Voltage regulators	CO 3	T1:12.1		
	DISCUSSION ON DEFINITION AND	TERMINOLO	GY		
56	Fundamental on op-amp	CO 1	-		
57	Linear and non-linear operations and application of op-amps	CO 2	-		
58	Active filters, timers and their IC's	CO 2,CO 3	-		
59	Analog to digital and digital to analog converters.	CO 5	_		
60	Logic families and digital IC's .	CO 6	_		
	DISCUSSION ON QUESTION	N BANK			
61	Basics of op-amps	CO 1	-		
62	Applications of op-amps	CO 2	-		

63	Timers, PLL, voltage regulators	CO 3	-
64	Data converters.	CO 5	_
65	Digital IC.	CO 6	-

Signature of Course Coordinator Mr J. Siva Ramakrishna, Assistant Professor

HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10

	 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems.	11
PO 5	Create, select, and apply appropriate techniques, resources, and	1
	 modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. 	-

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, 	5
	and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering.	
PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan	12

PO 12	Recognize the need for and have the preparation and ability to	8
	engage in independent and life-long learning in the broadest context	
	of technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department Electronics and Communication Engineering			ering			
Course Title	Electromagnetic Waves and Transmission Lines					
Course Code	AECC11					
Program	B.Tech					
Semester	IV					
Course Type	Core					
Regulation	UG-20					
	Theory			Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Coordinator Ms M Sreevani, Assistant Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSC02	1	Linear Algebra and Calculus
B.Tech	Tech AHSC03		Engineering Physics

II COURSE OVERVIEW:

Electromagnetic Waves and Transmission Lines gives the necessary information about the formation of magnetic fields when electric current flows and structures to conduct electromagnetic waves. It covers the fundamental concepts of electro-magnetic wave theory and introduces the basic laws of electromagnetic fields, time varying Maxwell's equations, wave propagation and transmission lines. It provides a platform for advanced courses such as antennas and wave propagation, microwave engineering, transmission via wired links and optical fiber networks.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Electromagnetic Waves and	70 Marks	30 Marks	100
Transmission Lines			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
	Presentations						
x	Open Ended	x	Seminars	x	Mini Project	x	Videos
	Experiments						
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIE examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
50%	Understand
25%	Apply
15%	Analyze
0%	Evaluate
0%	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz \Alternative Assessment Tool (AAT).

Component		Marks	Total Marks
CIA	Continuous Internal Examination – 1 (Mid-term)	10	- 30
	Continuous Internal Examination – 2 (Mid-term)	10	
	AAT-1	5	
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table.
Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The basic concepts required to understand various engineering applications involving electromagnetic fields.
II	The wave propagation characteristics of electromagnetic wave in bounded and unbounded media.
III	The basic theory of transmission lines, appropriate tools (smith chart) to analyze transmission lines.

VII **COURSE OUTCOMES:**

After successful completion of the course, students should be able to:

CO 1	Describe fundamental laws (Coulomb's and Gauss's) of	Understand
	electrostatic fields to evaluate the field intensity and flux density of	
	continuous charge distributions.	
CO 2	Demonstrate Biot-Savart's law and Ampere's circuit law to	Understand
	determine forces due to magnetic fields.	
CO 3	Apply Maxwell's equations and their applications to time varying	Apply
	fields and boundary conditions.	
CO 4	Construct the wave equations for both conducting and dielectric	Apply
	media to derive the relation between electric and magnetic field	
	intensities.	
CO 5	Understand the propagation of electromagnetic waves through	Understand
	different media using the concept of uniform plane waves.	
CO 6	Make use of the smith chart as a graphical tool to solve	Apply
	impedance matching issues in transmission lines.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE/CIE/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE/CIE/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	2	SEE/CIE/AAT
	solutions for complex engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and environmental		
	considerations.		
PO 10	Communication: Communicate effectively on	1	SEE/CIE/AAT
	complex engineering activities with the		
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations and		
	give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	PROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 3	Make use of high frequency structure simulator (HFSS) for modeling and evaluating the patch and smart antennas for wired and wireless communication applications.	2	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

			PSO'S												
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 3	\checkmark	\checkmark	>	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 4	\checkmark	\checkmark	>	-	-	-	-	-	-	\checkmark	-		-	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-		-	-	\checkmark

XII JUSTIFICATIONS FOR CO – PO / PSO MAPPING - DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Demonstrate the fundamental laws of static electric fields to evaluate the Field intensity and Flux density of various charge distributions by applying the knowledge of mathematics, Science and engineering fundamentals.	3
	PO 2	Identify and formulate the fundamental laws of static electric fields to evaluate the field intensity and flux density of various charge distributions by using principles of mathematics and engineering sciences.	4
	PO 10	Describe fundamental laws of electrostatic fields by giving effective presentations and take clear instructions to evaluate the field intensity and flux density of continuous charge distributions.	2
CO 2	PO 1	Apply the knowledge of mathematics, Science and engineering fundamentals to develop Biot-Savart's law and ampere's circuit law to determine forces due to magnetic fields.	3
	PO 2	Formulate and review Biot-Savart's law and Ampere's circuit law to determine forces due to magnetic fields by using the principles of mathematics and engineering sciences.	4
	PO 10	Describe fundamental laws of magnetostatic fields by giving effective presentations and take clear instructions to evaluate the forces due to magnetic fields.	2
CO 3	PO 1	Apply Maxwell's equations and their application to time varying fields and boundary conditions to solve complex engineering problems uing the knowledge of mathematics, Science and engineering fundamentals.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Identify and formulate the complex engineering problems to apply Maxwell's equations by using the principles of mathematics and engineering sciences.	4
	PO 3	Investigate and identify the knowlegde of complex engineering problems using Maxwell's equations to time varying fields and boundary conditions.	4
	PO 10	Analyze Maxwell's equations by giving effective presentations and take clear instructions to time varying fields and boundary conditions.	2
	PSO 3	Make use of high frequency structure simulator (HFSS) for modeling and evaluating the time varying fields and boundary conditions in wireless communication applications.	3
CO 4	PO 1	Construct the wave equations for both conducting and dielectric media to derive the relation between electric and magnetic field intensities by using knowledge of mathematics, Science and engineering fundamentals.	3
	PO 2	Identify and formulate the wave equations for both conducting and dielectric media to derive the relation between electric and magnetic field intensities by using the principles of mathematics and engineering sciences.	4
	PO 3	Investigate and identify the knowlegde of complex engineering problems the wave equations for both conducting and dielectric media to derive the relation between electric and magnetic field intensities	4
	PO 10	Relate the wave equations for both conducting and dielectric media by giving effective presentations and take clear instructions to derive the relation between electric and magnetic field intensities.	2
CO 5	PO 1	Examine the phenomena of wave propagation in different media and its interfaces by applying the knowledge of mathematics, science and engineering fundamentals.	3
	PO 2	Identify and review the phenomena of wave propagation in different media and its interfaces by using the principles of mathematics and engineering sciences .	4
	PO 10	Study the phenomena of wave propagation in different media and its interfaces by giving effective presentations and take clear instructions using the concept of uniform plane waves.	2
	PSO 3	Make use of high frequency structure simulator (HFSS) for modeling and evaluating wave propagation in different media and its interfaces in wireless communication applications.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 6	PO 1	Make use of Smith chart to calculate the	3
		characteristic parameters of transmission lines to solve	
		complex engineering problems using the knowledge	
		of mathematics, science and engineering	
		fundamentals.	
	PO 2	Identify and formulate to calculate the	4
		characteristic parameters of transmission lines by	
		using the principles of mathematics and	
		engineering sciences.	
	PO 10	Use the Smith chart to calculate the characteristic	2
		parameters of transmission lines by giving effective	
		presentations and take clear instructions to solve	
		impedance matching in transmission lines.	
	PSO 3	Make use of high frequency structure simulator	3
		(HFSS) for modeling and evaluating the	
		characteristic parameters of transmission lines in	
		wired communication applications.	

Note: For Key Attributes refer Annexure - I

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO / PSO MAP-PING:

		PROGRAM OUTCOMES													PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2			
CO 1	3	4	-	-	-	-	-	-	-	2	-	-	-	-	-			
CO 2	3	4	-	-	-	-	-	-	-	2	-	-	-	-	-			
CO 3	3	4	4	-	-	-	-	-	-	2	-	-	-	-	2			
CO 4	3	4	4	-	-	-	-	-	-	2	-	-	-	-	-			
CO 5	3	4	-	-	-	-	-	-	-	2	-	-	-	-	2			
CO 6	3	4	-	-	-	-	-	-	-	2	-	-	-	-	2			

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

			PSO'S												
COURSE	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	100	40	-	-	-	-	-	-	-	40	-	-	-	-	-
CO 2	100	40	-	-	-	-	-	-	-	40	-	-	-	-	-
CO 3	100	40	40	-	-	-	-	-	-	40	-	-	-	-	100
CO 4	100	40	40	-	-	-	-	-	-	40	-	-	-	-	-
CO 5	100	40	-	-	-	-	-	-	-	40	-	-	-	-	100
CO 6	100	40	-	-	-	-	-	-	-	40	-	-	-	-	100

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- $\pmb{\mathcal{2}}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ 60% \leq C < 100% Substantial /High

				PRO	OGR.	AM	OUT	COL	MES					PSO'S	
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	3	2	2	-	-	-	-	-	-	1	-	-	-	-	2
CO 4	3	2	1	-	-	-	-	-	-	1	-	-	-	-	-
CO 5	3	2	-	-	-	-	-	-	-	1	-	-	-	-	2
CO 6	3	2	-	-	-	-	-	-	-	1	-	-	-	-	2
TOTAL	18	12	3	0	0	0	0	0	0	6	0	0	0	0	6
AVERAGE	3	2	1	0	0	0	0	0	0	1	0	0	0	0	2

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	\checkmark
Quiz	✓	Tech - Talk	-	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory	-	5 Minutes Video	-	Open Ended	-
Practices		/ Concept Video		Experiments	
Micro	-	-	-	-	-
Projects					

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling a	nd Expe	erimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	ELECTROSTATICS
	Electrostatic fields: Coulomb's law, electric field intensity, fields due to different charge distributions; Electric flux density, gauss law and its applications; Scalar electric potential; Energy density, illustrative problems; Convection and conduction currents; Dielectric constant, isotropic and homogeneous dielectrics; Continuity equation and relaxation time, conductivity, power absorbed in conductor, Poisson's and laplace's equations: Capacitance: Method of images: Illustrative problems

MODULE II	MAGNETOSTATICS
	 Magneto statics: Biot-savart law; Ampere's circuital law and applications; Magnetic flux density; Magnetic scalar and vector potentials; Forces due to magnetic fields; Ampere's force law; Magnetic boundary conditions; Inductances and magnetic energy; Illustrative problems. Maxwell's Equations (Time Varying Fields): Faraday's law; Inconsistency of ampere's law for Time Varying Fields and definition for Displacement Current density; Maxwell's equations in differential form, integral form and word Statements; Conductors and dielectrics-characterization; Loss Tangent.
MODULE III	UNIFORM PLANE WAVES
	 Uniform plane waves: Wave equations for conducting and perfect dielectric media; Relation between E and H; Wave propagation in lossless and conducting media; Intrinsic Impedance; Skin Depth; Polarization, Illustrative Problems. Reflection/refraction of plane waves: Reflection and refraction at normal incidence, reflection and refraction at oblique incidence; Standing waves; Brewster angle, critical Angle, total internal reflection, surface impedance; Poynting vector & poynting theorem-applications; Power Loss in plane conductor; Illustrative problems.
MODULE IV	TRANSMISSION LINES CHARACTERISTICS
	Transmission lines characteristics: Types; Transmission line Parameters; Transmission line Equations; Characteristic Impedance, propagation constant; Phase and group velocities; Infinite line concepts, Loss less /low loss transmission line characterization; condition for distortion less and minimum attenuation in transmission lines; Loading- types of loading; Illustrative problems.
MODULE V	UHF TRANSMISSION LINES AND APPLICATIONS
	UHF Transmission Lines & Applications: Input impedance relations; SC and OC Lines; Reflection coefficient, VSWR; UHF Lines as Circuit Elements, $\lambda/4$, $\lambda/2$ and $\lambda/8$ Lines- impedance transformations, significance of Zmin and Zmax; Smith chart-configuration and applications; Single and double stub matching; Illustrative problems.

TEXTBOOKS

- 1. Matthew N.O. Sadiku, "Elements of Electromagnetic", Oxford University Press, 4th Edition, 2009.
- 2. E.C. Jordan, K.G. Balmain, "Electromagnetic waves and Radiating Systems", PHIlearning, 2nd Edition, 2000.
- 3. Umesh Sinha, Satya Prakashan, "Transmission lines and Networks", Tech IndiaPublications, 1st Edition, 2010.

REFERENCE BOOKS:

- 1. Nathan Ida, "Engineering Electromagnetic", Springer (India) Pvt. Ltd, 2nd Edition, 2005
- 2. William H. Hayt Jr., John A. Buck, "Engineering electromagnetic", Tata McGraw Hill, 7th Edition, 2006.
- 3. G. Sashibushana Rao, "Electromagnetic Field theory and Transmission Lines, Wiley India, 2013.

WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details&course_id=75

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms.iare.ac.in /in- dex?route=course /details & course _id=75
	CONTENT DELIVERY (TH	EORY)	I
2	Introduction to vector algebra and calculus.	CO 1	T1: 3.1 to 3.8
3	Introduction to coordinate systems.	CO 1	T1: 3.1 to 3.8
4	Introduction to electrostatics-Coulomb's law.	CO 1	T1: 3.1 to 3.8,
5	Electric field intensity due to line charge.	CO 1	T1: 4.3 to 4.4,4.6,4.7
6	Electric field intensity due to surface and volume charges.	CO 1	T1: 4.3 to 4.4,4.6,4.7
7	Electric flux density-Gauss law.	CO 1	T1: 3.1 to 3.8
8	Gauss law for volume charge.	CO 1	T1: 3.1 to 3.8
9	Energy density in electric fields.	CO 1	T1: 3.1 to 3.8
10	Boundary conditions in electric fields	CO 1	T1: 3.1 to 3.8
11	Convection and conduction currents.	CO 1	T1: 3.1 to 3.8 R2: 1.8 to 1.9
12	Resistance and capacitance-parallel plate capacitor.	CO 1	T1: 3.1 to 3.8 R2: 1.8 to 1.9
13	Cylindrical and spherical capacitors.	CO 1	T1: 4.3 to 4.4,4.6,4.7
14	Introduction to magnetostatics- Biot-Savart's law.	CO 1	T1: 3.1 to 3.8, R2: 1.8 to 1.9
15	Ampere's circuit law.	CO 1	T1: 4.3 to 4.7, R2: 7.1
16	Applications of ampere's law.	CO 1	T1: 4.3 to 4.4,4.6,4.7, R2-7.1
17	Forces due to magnetic fields.	CO 1	T1: 4.3 to 4.4,4.6,4.7
18	Maxwell's equations for magnetic fields.	CO 1	T1: 4.3 to 4.4,4.6,4.7
19	Magnetci boundary conditions.	CO 2	T1: 4.3 to 4.4,4.6,4.7 R2: 7.1

20	Inductors and magnetic energy.	CO 2	T1: 4.3 to
			4.4,4.6,4.7 R2: 7.1
21	Introduction to time varying fields-Faraday's law.	CO 2	T1: 4.3 to
			4.4,4.6,4.7 R2: 7.1
22	Inconsistancy of ampere's law.	CO 2	T1: 4.3 to 4.7
			R2:7.1
23	Introduction to wave characteristics.	CO 3	T1: 7.1 to
			7.2,4.8,7.6,7.8
24	Relation between E and H.	0 2	T1: 7.1 to 7.2,4.8,7.6,7.8
25	Wave propagation in dielectrics.	CO 3	T1: 7.1 to
			7.2,4.8,7.6,7.8
26	Wave propagation in lossy dielectrics.	CO 3	T1: 7.1 to
		<u> </u>	7.2,4.8,7.6,7.8
27	Wave propagation in good conductors.	CO 3	T1: 7.1 to 72487678
	Deflection and refrection of uniform plane waves	CO 2	7.2,4.8,7.0,7.8
20	Reflection and refraction of uniform plane waves.	CO_3	$\begin{array}{c} 11: \ 0.2 \ to \ 0.3 \\ \hline \\ \hline \\ \hline \end{array}$
29	Poynting vector and poynting theorem.	CO 4	11: 9.2 to 9.3
30	Normal incidence at a plane dielectric boundary.	CO 4	11: 9.3 to 9.4
31	Surface impedance and polarization.		T1: 9.4 to 9.5
32	Oblique incidence at a plane dielectric boundary.		T1: 9.5 to 9.6
33	Perpendicular polarization.	CO 5	T1: 9.6 to 9.7
34	Parallel polarization.	CO 5	T1: 9.7 to 9.8
35	Brewster angle.	CO 5	T1: 9.8 to 9.9
36	Introduction to transmission lines-types and parameters.	CO 5	T1: 9.9 to 9.10
37	Transmission line equation.	CO 6	T3: 1.9 to1.12
38	Reflection coefficient and standing wave ratio.	CO 6	T3: 1.9 to1.15
39	Attenuation and phase constants.	CO 6	T3: 1.9 to1.17
40	Condition for minimum attenuation.	CO 6	T3: 5.4 to 5.5
41	UHF lines as circuit elements.	CO 6	T3: 5.4 to 5.7
42	Single stub matching.	CO 1	T1: 4.2-4.13.
43	Double stub matching.	CO 1	T1: 4.2-4.13.
44	Smith chart configuration-1.	CO 1	T1: 7.1-7.13 B2: 4 1- 4 3
45	Smith chart configuration-2	CO 1	T1: 7 1_7 13
40	Shifti chart coniguration-2.		R2: 4.1- 4.3
	PROBLEM SOLVING/ CASE	STUDIES	
46	Problems on gauss law	CO 1	T1: 4.2-4.13.
47	Problems on coulombs' law and E	CO 1	T1: 4.2-4.13.
48	Problems on line charge	CO 1	T1: 7.1-7.13 R2: 4.1- 4.3
49	Problems on surface, volume charge	CO 1	T1: 7.1-7.13
F O		00.2	$\pi_2: 4.1-4.3$
50	Problems on magnetic energy		R2: 7.1-7.6

51	Problems on H and B	CO 2	T1: 11.2 R2: 10.4
52	Problems on displacement current density	CO 3	T1: 11.3 R2: 10.5
53	Problems on wave equations	CO 4	T1: 11.11-11.12
54	Problems on dielectrics	CO 3	T1: 11.13-11.14
55	Problems on intrinsic impedance	CO 4	T1: 11.18, R2:
56	Problems on reflection and refraction	CO 5	T1: 11.2 R2: 10.4
	DISCUSSION ON DEFINITION AND	TERMINO	DLOGY
57	Electostatics	CO 1, CO 3	T1: 1.1-19, 2.1-2.8, 3.1-3.8, 4.1-4.25
58	Magnetostatics	CO 2, CO 3	T1: 7.1-7.32
59	Uniform plane waves characteristics	CO 4, CO 5	T1: 8.1-8.10, 9.1-9.6
60	Transmission line characteristics	CO 6	T1: 11.1-11.18
61	UHF Transmission line and applications	CO 6	T1: 13.1-13.25
	DISCUSSION ON QUESTION	N BANK	
62	Electrostatics	CO 1, CO 3	T1:1.1-19, 2.1-2.8, 3.1-3.8, 4.1-4.25
63	Magnetostatics	CO 2, CO 3	T1: 7.1-7.32
64	Uniform plane waves	CO 4, CO 5	T1: 8.1-8.10, 9.1-9.6
65	Transmission line characteristics	CO 6	T1: 11.1-11.18
66	UHF Transmission line and applications	CO 6	T1: 13.1-13.25

Course Coordinator Ms M Sreevani, Assistant Professor HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	 Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation 	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10

	5. Ensure fitness for purpose for all aspects of the problem including	
	production, operation, maintenance and disposal	
	6. Manage the design process and evaluate outcomes.	
	7. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	8. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	9. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	10. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
PO 4	Use research-based knowledge and research methods including design	11
	of experiments analysis and interpretation of data and synthesis of	
	the information to provide valid conclusions (Conduct	
	Investigations of Complex Problems).	
	1 Knowledge of characteristics of particular materials equipment	
	processes, or products	
	2. Workshop and laboratory skills	
	3 Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology	
	development etc.)	
	4 Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and contractual	
	issues	
	5 Understanding of appropriate codes of practice and industry	
	standards	
	6 Awareness of quality issues	
	7 Ability to work with technical uncertainty	
	8 Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9 Ability to identify classify and describe the performance of	
	systems and components through the use of analytical methods and	
	modeling techniques	
	10 Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline in order to solve engineering	
	problems	
	11 Understanding of and ability to apply a systems approach to	
	engineering problems	
PO 5	Create select and apply appropriate techniques, resources, and	1
F U 9	modern Engineering and IT tools including prediction and modelling	T
	to complex Engineering activities with an understanding of the	
	limitations (Modern Tool Usage)	
	1 Computer software / simulation packages / discreastic equipment	
	1. Computer software / simulation packages / diagnostic equipment	
	/ technical indiary resources / interature search tools.	

PO 6	Apply reasoning informed by the contextual knowledge to assess	5
	societal, health, safety, legal and cultural issues and the consequent	
	responsibilities relevant to the professional engineering practice (The	
	Engineer and Society).	
	1. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	2. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	3. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	4. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
	5. Understanding of the need for a high level of professional and	
	ethical conduct in engineering.	
PO 7	Understand the impact of the professional Engineering solutions in	3
	societal and Environmental contexts, and demonstrate the	
	knowledge of, and need for sustainable development (Environment	
	and Sustainability).	
	Impact of the professional Engineering solutions (Not technical)	
	1. Socio economic	
	2. Political	
	3. Environmental	
PO 8	Apply ethical principles and commit to professional ethics and	3
	responsibilities and norms of the Engineering practice (Ethics).	
	1. Comprises four components: ability to make informed ethical	
	choices, knowledge of professional codes of ethics, evaluates the	
	ethical dimensions of professional practice, and demonstrates ethical	
	behavior.	
	2. Stood up for what they believed in	
	3. High degree of trust and integrity	
PO 9	Function effectively as an individual, and as a member or leader in	12
	diverse teams, and in multidisciplinary settings (Individual and	
	Teamwork).	
	1. Independence	
	2. Maturity – requiring only the achievement of goals to drive their	
	performance	
	3. Self-direction (take a vaguely defined problem and systematically	
	work to resolution)	
	4. Teams are used during the classroom periods, in the hands-on	
	labs, and in the design projects.	
	5. Some teams change for eight-week industry oriented Mini-Project,	
	and for the seventeen -week design project.	

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

PO 12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). Project management professional certification / MBA Begin work on advanced degree Keeping current in CSE and advanced engineering concepts Personal continuing education efforts Ongoing learning – stays up with industry trends/ new technology Continued personal development Have learned at least 2-3 new significant skills 	8
	8. Have taken up to 80 hours (2 weeks) training per year	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	ANALO	ANALOG AND DIGITAL COMMUNICATIONS LABORATORY						
Course Code	AECC14	AECC14						
Program	B.Tech							
Semester	IV	ECE						
Course Type	Core							
Regulation	UG-20							
		Theory			Practical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	-	-	-	3	1.5			
Course Coordinator	Dr.V Siv	a Nagaraju	Associate	e Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECB17	IV	Signals and systems laboratory

II COURSE OVERVIEW:

Communication engineering is the field of study concerned with the transmission of information either in analog or digital form. The objective of this course provides a platform to the students to understand the basics of analog and digital communication systems, modulation techniques, data transmission and multiplexing etc. The applications include digital signal processors in secured communication systems, multimedia and data storage applications.

III MARKS DISTRIBUTION:

${f Subject}$	SEE Examination	CIE Examination	Total Marks
Analog and Digital Communications Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab Worksheets	~	Viva Questions	~	Probing further Questions
V	EVALUATION N	MET	HODOLOGY:				

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of	Day to day performance	Final internal lab	
Assessment		assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The elements of analog communication system, modulation and demodulation.
II	The pulse analog modulation techniques, generation and detection of digital modulation techniques
III	The time and frequency domain analysis of the signals in communication system by using MATLAB tools

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Discriminate the generation and detection of amplitude	Analyze
	modulated and frequency modulated signals to calculate the	
	modulation index and frequency deviation	

CO 2	Make use of the balance modulator and synchronous detector for	Apply
	generating and detecting DSBSC modulated wave.	
CO 3	Analyze the analog pulse modulation and demodulation methods	Analyze
	for transmitting the information by pulses	
CO 4	Apply the concept of pulse code modulation and demodulation for	Apply
	encoded data in analog to digital conversion	
CO 5	Select the time division or frequency division multiplexing	Apply
	techniques for transmitting multiple signals at a time in the	
	communication system.	
CO 6	Examine the digital modulation techniques for convey more	Apply
	information, high quality and security	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 2	Problem analysis: Identify, formulate, review	2	Lab Exercises/ CIE/
	research literature, and analyze complex		SEE
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		

PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Lab Exercises/ CIE/ SEE
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2	Lab Exercises/ Projects
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	Lab Exercises/ Projects

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications	2	Lab Exercises/ CIE/ SEE

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
	PO 9	Formulate the given problem of the modulation	2
001	FU 2	index and frequency deviation from the amplitude	2
		modulated and frequency modulated waveforms	
		using principles of mathematics and	
		engineering science	
	PO 5	Use MATLAB tool to model the basic amplitude and	1
		frequency modulation techniques .	
	PO 9	Team work and as individual which will enable the	6
		student to become a productive member of a design	
		team for completion of assignments, achieving of	
		goals to drive their performance in the hands-on labs	
	PO 10	Communicate orally on modulation and write	2
		effective reports on modulation index and frequency	
		deviation.	

	PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the radio frequency communications for Wired and Wireless Communication Applications	1
CO 2	PO 2	Identify the problem and make use of balance modulator and synchronous detector to generate and detect DSBSC modulated waveforms and interpret the results for providing solution to the complex engineering problems	4
	PO 5	Make use of MATLAB software for writing, simulating the code to generate and detect SSBSC waveform to solve complex engineering activities.	1
	PO 10	Communicate orally on DSBSC and write effective reports on sideband suppression	2
CO 3	PO 2	Identify (Problem analysis) three different types of pulse width variations and analyse trailing edge, leading edge centre of the pulse using principles of mathematics, natural sciences, and engineering sciences	3
	PO 5	Make use of MATLAB software for writing, simulating the code to generate and detect pulse width variations to solve complex engineering activities.	1
	PO 9	Team work and as individual which will enable the student to become a productive member of a design team for completion of assignments, achieving of goals to drive their performance in the hands-on labs	6
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation	1
CO 4	PO 2	Identify (Problem analysis) sampling rate and sampling time interval in analog to digital signal conversion using principles of mathematics , natural sciences , and engineering sciences	3
	PO 5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction filter and modelling the pulse code modulation and demodulation using serial to parallel and parallel to serial data transmission (Modern Tool Usage) to complex Engineering activities with an understanding of the limitations in PCM.	1
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports on delta modulation	1

CO 5	PO 2	Identify and formulate the principle of	2
		multiplexing and de multiplexing analyze complex	
		engineering problems in the design of transmitter	
		and receiver of a communication system by	
		applying principles of mathematics, natural	
		sciences, and engineering sciences.	
	PO 5	Make use of MATLAB software to simulate the	1
		code to identify the differences between TDM and	
		FDM.	
	PO 10	Communicate effectively on complex Engineering	2
		activities with the Engineering community and with	
		society at large, such as, being able to comprehend	
		and write effective reports on delta modulation	
CO 6	PO 2	Identify the importance of digital modulation	2
		techniques and calculating the error probability (
		solution implementation) by using principles of	
		mathematics, natural sciences, and	
		engineering sciences	
	PO 10	Communicate effectively on complex Engineering	2
		activities with the Engineering community and with	
		society at large, such as, being able to comprehend	
		and write effective reports on probability of error	
	PSO 3	Make use of High Frequency Structure	1
		Simulator(HFSS) for modeling and evaluating the	
		radio frequency communications for Wired and	
1			
		Wireless Communication Applications	

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUTCOMES				PSO'S
OUTCOMES	PO 2	PO 5	PO 9	PO 10	PSO 3
CO 1	1	3	2	1	-
CO 2	2	3	-	1	2
CO 3	1	3	2	1	-
CO 4	1	3	-	1	-
CO 5	1	3	-	1	-
CO 6	1	-	-	1	2

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XIV SYLLABUS:

WEEK I	AMPLITUDE MODULATION AND DEMODULATION
	Generation of amplitude modulation and demodulation using hardware and MATLAB
WEEK II	DSB-SC MODULATOR and DETECTOR
	Generation of AM-Double Side Band Suppressed Carrier (DSB-SC) signal using Balanced Modulator
WEEK III	FREQUENCY MODULATION AND DEMODULATION
	Generation of frequency modulation and demodulation sing hardware and MATLAB
WEEK IV	SAMPLING THEOREM VERIFICATION
	Verification of sampling theorem for under, perfect, over sampling cases using hardware and MATLAB
WEEK V	PULSE WIDTH MODULATION AND DEMODULATION
	Generation of Pulse width modulation and demodulation using hardware and MATLAB
WEEK VI	PULSE POSITION MODULATION AND DEMODULATION
	Generation of pulse position modulation and demodulation using hardware and MATLAB
WEEK VII	PULSE CODE MODULATION GENERATION AND DETECTION
	Generation of pulse code modulation and demodulation using hardware and understanding the concept analog to digital conversion
WEEK VIII	DIFFERENTIAL PULSE CODE MODULATION
	Generation of differential pulse code modulation and demodulation using hardware
WEEK IX	DELTA MODULATION
	Generation of delta modulation and demodulation using hardware
WEEK X	TIME DIVISION MULTIPLEXING
	To study the operation of Time-Division multiplexing and demultiplexing
WEEK XI	FREQUENCY SHIFT KEYING GENERATION AND DETECTION
	Generation of Frequency shift keying modulation and demodulation using hardware
WEEK XII	BINARY PHASE SHIFT KEYING GENERATION AND DETECTION
	Generation of Phase shift keying modulation and demodulation using hardware
WEEK XIII	DIFFERENTIAL PHASE SHIFT KEYING GENERATION AND DETECTION
	Generation of Differential Phase shift keying modulation and demodulation using hardware
WEEK XIV	AMPLITUDE SHIFT KEYING GENERATION AND DETECTION
	Generation of Amplitude Shift Key modulation and demodulation using hardware

TEXTBOOKS

- 1. S. S. Haykin, "Communication Systems", Wiley Eastern, 3rd Edition, 2006.
- 2. Taub, Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 4th Edition, 2013.

REFERENCE BOOKS:

- 1. B.P. Lathi, "Communication Systems, BS Publication", 2nd Edition, 2006.
- 2. John G. Proakis, Masond, Salehi, "Fundamentals of Communication Systems", PEA, 1st Edition,2006
- 3. George Kennedy, Bernard Davis, "Electronics and Communication System", Tata McGraw Hill, 5th Edition, 2011.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Amplitude Modulation and Demodulation	CO 1	T1: 3.2
2	DSB-SC Modulator and Synchronous Detector	CO 2	T1: 3.4
3	Frequency modulation and demodulation	CO 1	T1: 3.11
4	Sampling Theorem verification	CO 3	T1: 6.2
5	Pulse width modulation and demodulation	CO 3	T1: 6.3
6	Pulse position modulation and demodulation	CO 3	T1: 6.5
7	Pulse code modulation generation and detection	CO 4	T1: 6.8
8	Differential Pulse code modulation	CO 4	T1: 6.12
9	Delta modulation	CO 4	T1: 6.11
10	Time division multiplexing and demultiplexing	CO 5	T1: 6.4
11	Frequency shift keying generation and detection	CO 6	T1 8.12
12	Binary phase shift keying generation and detection	CO 6	T1: 8.11
13	Differential phase shift keying generation and detection	CO 6	T1 8.17
14	Amplitude shift keying generation and detection	CO 6	T2: 5.9

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Implement the modulation and demodulation of Quadrature Amplitude Modulation
	(QAM).
2	Perform simple processes on speech signals (filtering, frequency translation), and examine
	their effect on the sound using MATLAB.
3	Design of FM receiver (90.4 MHz)
4	Design a sampling circuit with 5 V p-p amplitude and 100 Hz sine wave and remove
	aliasing effect
5	Design PAM transmission of voice signal with $W = 3kHZ$. Calculate transmission
	bandwidth if $fs = 8Khz$

6	Design adaptive delta modulator and find the maximum amplitude of a 1 KHz sinusoidal
	signal input to a delta modulator that will prevent slope overload, when the sampling rate
	is 10,000 samples/sec and the step size is $= 0.1$.
7	Design differential phase shift keying modulator using XOR gate with bit stream
	11011100101. Draw the encoded sequence and the transmitted phase sequence

Signature of Course Coordinator Dr.V Siva Nagaraju, Associate Professor of ECE HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	IC APPLICATIONS LABORATORY						
Course Code	AECC15						
Program	B.Tech						
Semester	IV ECE						
Course Type	Core						
Regulation	UG-20	0					
		Theory		Practi	cal		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	_	-	-	2	1		
Chief Coordinator	Ms S Swathi, Assistant Professor						

I COURSE OVERVIEW:

Linear and digital IC applications lab enables to learn design, testing and describing of circuit performance with digital and analog integrated circuits. It focuses on applications of special ICs and apply the techniques for the design of 741 ICs, applications of 555 timers, data converters and digital IC's for combination and sequential circuits design. This course provides practical hands-on experiments to analyze characteristics of commercially available digital integrated circuits.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	$\operatorname{Credits}$
B.Tech	AECC12	IV	IC Applications	3

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Linear and Digital IC Applications Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	Demo	\checkmark	Lab Worksheets	✓	Viva Questions	1	Probing Further
	Video						Experiments

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pa	attern for CIA
------------------------	----------------

Component	Labor		
Type of Assessment	Day to day PerformanceFinal Internal Lab Assessment		Total Marks
CIA Marks	20 Marks	10 Marks	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

A. Experiment Based:

Preparation	Performance	Calculations and Graph	Results and Er- ror Analysis	Viva	Total
2	2	2	2	2	10

VI HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Lab Experiments / CIE / SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Lab Experiments / CIE / SEE

PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Lab Experiments / CIE / SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations.	3	Lab Experiments / CIE / SEE
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	3	Lab Experiments / CIE / SEE

3 = High; 2 = Medium; 1 = Low

VII HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	1	Lab Experiments / CIE / SEE

3 =High; 2 =Medium; 1 =Low

VIII COURSE OBJECTIVES:

The students will try to perform:

Ι	The experiments on design of Linear and Digital Integrated circuits using operational amplifier and digital ICs.
II	The design and implementation of analog circuits and gain the hands-on experience on the various building blocks of digital circuits.
III	The IC based real-time applications in the fields of communication systems and home-based automation systems.

IX COURSE OUTCOMES:

CO	Course Outcomes	Knowledge
No		Level
		(Bloom's
		Taxonomy)
CO 1	Design linear Integrated circuits to perform mathematical	Create
	operations and voltage gain calculations using IC741.	
CO 2	Plot the frequency response of second order active filters using	Apply
	IC 741	
CO 3	Determine the frequency of oscillations of multi-vibrators	Apply
	using IC741 and IC555 timer.	
CO 4	Obtain the capture range and lock-in range of phase locked loop	Apply
	circuit using IC565.	
CO 5	Construct the low and high voltage regulators to find the	Apply
	percentage of regulation using IC723.	
CO 6	Implement combinational and sequential circuits using digital	Apply
	ICs to verify their functionality.	

After successful completion of the course, students should be able to:

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

COURSE				PR	OGR	AM	OUT	COM	IES					PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	-	\checkmark	-	-	-	-	-	-
CO 2	\checkmark	✓	-	\checkmark	\checkmark	-	-	-	\checkmark	-	-	-	-	\checkmark	-
CO 3	\checkmark	 ✓ 	-	\checkmark	\checkmark	-	-	-	\checkmark	-	-	-	-	 ✓ 	-
CO 4	✓	✓	-	\checkmark	\checkmark	-	-	-	\checkmark	-	-	-	-	✓	-
CO 5	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	-	\checkmark	-	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-	\checkmark	-	-	-	\checkmark	-	-	-	-	\checkmark	-

X MAPPING OF EACH CO WITH PO(s), PSO(s):

XI JUSTIFICATIONS FOR CO – PO / PSO) MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
CO 1	PO 1	(Recall) the basic function of transistor, importance of differential amplifier and the characteristics by applying the own engineering discipline, science principles and methodology.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of improving dc, ac characteristics of an operational, translate the information into the model from the provided information and data, develop solutions as compensation techniques ,validate the frequency response , stability of the circuit by the interpretation of results.	7
	PO 4	Analyze and interpret the design of linear Integrated circuits to perform mathematical operations and voltage gain calculations.	2
	PO5	Create, select and apply appropriate techniques to design the linear Integrated circuits to perform mathematical operations and voltage gain calculations.	3
	PO9	To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects to design linear integrated circuits .	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
CO 2	PO 1	Explain the importance of feedback and realize linear and non linear circuits using op-amp and the application of that model using own engineering discipline, scientific principles and methodology.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of applications of op-amp, translate the information into the model using IC741 from the provided information and data, develop solutions based on the functionality of the circuit, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	7
	PO 4	Analyze and interpret the frequency response of active filter circuits to calculate different time constants.	2
	PO5	Create, select and apply appropriate techniques to find the frequency response of active filter circuits to calculate different time constants.	3
	PO9	To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects by Analyzing the frequency selective circuits.	2
	PSO 2	Speaks fluently about the importance of feeback and applications of operational amplifier(Subject matter).	2
CO 3	PO 1	Explain the importance of IC 555 timer,voltage regulators and realize multivibrator circuits using IC 555 and the application of that model using own engineering discipline, scientific principles and methodology.	2
	PO 2	Interpret frequency of oscillations, pulse width and able to change these parameters based on information and data collection, model translation and validate using experimental design.	4
	PO 4	Analyze and interpret the frequency of oscillations of multi-vibrators using IC741 and IC555 timer circuits.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
CO 3	PO5	Create, select and apply appropriate techniques to calculate the frequency of oscillations of multi-vibrators using IC741 and IC555 timer circuits.	3
	PO9	To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects to calculate the frequency of oscillations of multi-vibrators using IC741 and IC555 timer circuits.	2
	PSO 2	Apply data converters in the field of application specific integrated circuit (ASIC) prototype designs and system on chip (SOC) designs.	1
CO 4	PO 1	Demonstrate different data converters for converting analog data to digital data and vice versa applying basic knowledge of science and engineering fundamentals.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of data converters, translate the information into the model and prototype systems from the provided information and data, develop solutions based on the functionality of the data translation, validate the data converters in reaching substantiated conclusions by the interpretation of results .	7
	PO 4	Analyze ans interpret the capture range and lock-in range of phase locked loop circuit using IC565.	2
	PO5	Create, select and apply appropriate techniques to find the capture range and lock-in range of phase locked loop circuit using IC565.	3
	PO9	To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects to find the capture range and lock-in range of phase locked loop circuit using IC565.	2
	PSO 2	Apply data converters in the field of application specific integrated circuit (ASIC) prototype designs and system on chip (SOC) designs.	1
CO 5	PO 1	Build digital logical design using digital ICs with the knowledge of mathematics , science and engineering fundamentals .	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
CO 5	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of digital system design , translate the information into the model and prototype systems from the provided information and data, develop solutions digital design using equipment, validate the design in reaching substantiated conclusions by the interpretation of results .	7
	PO 4	Analyze and interpret the low and high voltage regulators to find the percentage of regulation using IC723.	2
	PO5	Create, select and apply appropriate techniques to design the low and high voltage regulators to find the percentage of regulation using IC723.	3
	PO9	To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects to design the low and high voltage regulators to find the percentage of regulation using IC723.	3
CO 6	PO 1	Build digital logical design using digital ICs with the knowledge of mathematics , science and engineering fundamentals.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of digital system design , translate the information into the model and prototype systems from the provided information and data, develop solutions digital design using equipment, validate the design in reaching substantiated conclusions by the interpretation of results .	7
	PO5	Create, select and apply appropriate techniques to verify the functionality of digital logic circuits.	3
	PO9	To improve the performance of team effectively in the classroom periods, in the hands-on labs and in the design projects to verify the functionality of digital logic circuits.	3
	PSO 2	Design , various digital circuits in application secific integrated circuit (ASIC) and system on chip (SOC) designs.	1

XII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

COURSE				PR	OGR	AM	OUT	COM	IES]	PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	7	-	2	3	-	-	-	2	-	-	-	-	-	-
CO 2	2	7	-	3	3	-	-	-	2	-	-	-	-	2	-
CO 3	2	4	-	2	5	-	-	-	2	-	-	-	-	1	-
CO 4	2	7	-	2	3	-	-	-	2	-	-	-	-	1	-
CO 5	2	7	-	2	3	-	-	-	3	-	-	-	-	-	-
CO 6	2	7	-	-	3	-	-	-	3	-	-	-	-	-	-

XIII PERCENTAGE OF KEY COMPETENCIES FOR CO-(PO / PSO):

COURSE				\mathbf{PR}	OGR	AM (OUTC	COM	ES]	PSO'S	
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSC) PSC) PSC
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	66.6	70	-	18.2	100	-	-	-	16.7	′ –	-	-	-	-	-
CO 2	66.6	70	-	27.3	100	-	-	-	16.7	′ –	-	-	-	100	-
CO 3	66.6	70	-	18.2	100	-	-	-	16.7	′ –	-	-	-	50	-
CO 4	66.6	70	-	18.2	100	-	-	-	16.7	′ –	-	-	-	50	-
CO 5	66.6	70	-	18.2	100	-	-	-	25	-	-	-	-	-	-
CO 6	66.6	70	-	-	100	-	-	-	25	-	-	-	-	-	-

XIV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ 0 \leq C \leq 5% – No correlation
- 1 -5 <C< 40% Low/ Slight
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ 60% \leq C < 100% Substantial /High

COURSE				\mathbf{PR}	OGR	AM (OUTC	COMI	ES					PSO'S	
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	-	1	3	_	-	-	1	-	-	-	-	-	-
CO 2	3	3	-	1	3	-	-	-	1	-	-	-	-	3	-
CO 3	3	3	-	1	3	_	-	-	1	-	-	-	-	2	-
CO 4	3	3	-	1	3	-	-	-	1	-	-	-	-	2	-
CO 5	3	3	-	1	3	-	-	-	1	-	-	-	-	-	-
CO 6	3	3	-	-	-	-	-	-	1	-	-	-	-	-	-
TOTAL	18	18	0	5	15	0	0	0	6	0	0	0	0	7	0
AVERAGE	3	3	0	1	3	0	0	0	1	0	0	0	0	2	0

XV ASSESSMENT METHODOLOGY DIRECT:

CIE	✓	SEE	✓	Seminars	✓	Assignments	-
Exams		Exams					
Laboratory	✓	Student		Mini	-	Certification	
Practices		Viva		Project			
Term	-	5 Minutes	-	Open	-	-	-
Paper		Video		Ended			
				Experi-			
				ments			

XVI ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts	5	
XVII SYLLABUS:

Week-1	INVERTING, NON-INVERTING AND DIFFERENTIAL AMPLI-
	FIERS
	To construct and test the performance of an Inverting, Non-inverting amplifier
	and Differential amplifier using IC 741.
Week-2	INTEGRATOR AND DIFFERENTIATOR
	To construct and test the performance of an Integrator and Differentiator
	using IC 741.
Week-3	SECOND ORDER ACTIVE LOWPASS, HIGHPASS AND BAND-
	PASS FILTERS
	To design and verify the operation of the Active low pass and High pass using
	IC 741.
Week-4	SECOND ORDER ACTIVE BAND PASS AND BANDREJECT
	FILTERS
	To design and verify the operation of the Band pass and Band reject filters
	using IC 741.
Week-5	ASTABLE MULTIVIBRATORS USING 555
	To design and construct an astablemultivibrator using IC 555.
Week-6	MONOSTABLE MULTIVIBRATORS 555
	To design and construct Monostable multivibrators using IC 555.
Week-7	SCHMITT TRIGGER USING 555
	To design and construct Schmitt trigger using NE555 Timer
Week-8	PLL USING IC 565
	Verifying characteristics of PLL.
Week-9	INSTRUMENTATION AMPLIFIER
	To design and verify the operation of instrumentation amplifier using IC 741.
Week-10	DIGITAL TO ANALOG CONVERTER
	To design and verify the operation of R-2R and Inverted R-2R DAC Converter
	using IC 741.
Week-11	IC 723
	To design and implement voltage regulator using IC 723.
Week-12	RTL LOGIC
	Verify Functionality of NOR and NAND gate using RTL Logic.
Week-13	DTL LOGIC
	Verify Functionality of NOR and NAND gate using DTL Logic

TEXTBOOKS

- 1. D. Roy Chowdhury, "Linear Integrated Circuits", New age international (p) Ltd, 2nd Edition,2003
- 2. Ramakanth A. Gayakwad, "Op-Amps linear ICs", PHI, 3rdEdition,2003.
- 3. John F. Wakerly, "Digital Design Principles and Practices", Prentice Hall, 3rdEdition,2005.

REFERENCE BOOKS:

1. Salivahanan, "Linear Integrated Circuits and Applications", TMH, 1st Edition, 2008

XVIII COURSE PLAN:

Week No	Topics to be covered	CO's	Reference
1	To find voltage gain of inverting, Non-inverting and Differential Amplifiers using IC 741.	CO 1	T1:11.1-11.5
2	To find the frequency response of integrator and differentiator for different inputs using IC741.	CO 1	T1:11.1-11.5
3	To find the frequency response of second order Active Lowpass, High-pass And Bandpass Filters using IC 741.	CO 2	T1:4.8 , T1:7.2
4	To find the frequency response of Second Order Active Band Pass and Band-reject Filters using IC 741.	CO 2	T1:4.8 , T1:7.2
5	To find the frequency of oscillations of Astable Multivibrators Using 555timer.	CO 3	T2:10.4 , R2:7.2
6	To find the frequency of oscillations of Monostable Multivibrators Using 555timer.	CO 3	T2:10.4 , R1:7.2
7	To find the hysteresis voltage of Schmitt Trigger Using 555 timer.	CO 7	T2:10.4 , R1:7.2
8	To find the capture range and lock-in range of PLL Using IC 565.	CO 4	T1:8.2-8.5
9	To find the voltage gain of Instrumentation Amplifier using IC 741.	CO 1	T1:11.1-11.5
10	To find the different analog outputs using Digital to Analog Converter.	CO 5	T1:10.1 , T1:10.2
11	To find the voltage regulation of small voltage regulator using IC 723.	CO 4	T1:11.1-11.5
12	To verify the truth tables of RTL Logic using NAND and NOR implementations.	CO 6	T3:3.12 , R1:12.7
13	To verify the truth tables of DTL Logic using NAND and NOR implementations.	CO 6	T3:3.12 , R1:12.7

The course plan is meant as a guideline. Probably there may be changes.

XIX EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Design an automatic Street Light using 555 timer and LDR.
2	Design an analog Temperature Sensor detector using IC 741.
3	Design an Electronic Eye controlled security system using LDR.
4	Design PWM Based DC Fan Controller using IC 555 timer.
5	Design an automatic Washroom Light Switch using IC741.

Signature of Course Coordinator

HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	ANALOG AND PULSE CIRCUITS						
Course Thie	LABORATORY						
Course Code	AECC13						
Program	B.Tech						
Semester	IV ECE						
Course Type	Core						
Regulation	IARE - UG20						
		Theory		Practi	cal		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	3	2		
Course Coordinator	Dr. V. Vijay, Associate Professor						

I COURSE OVERVIEW:

The objective of this course is to meet the requirements of practical work meant for circuit designing, analysis and provides hands-on experience by examining the pulse circuits and measuring instruments. This lab covers the analysis of the linear, non-linear wave shaping circuits, oscillators and multivibrators. Students will proficiency with the capability to use simulation tools for performing analysis of various amplifier circuits, wave shaping circuits and multivibrator applications.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
B.Tech	AEC001	III	Electronic Devices and Circuits	3

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Electronic Circuits and Pulse Circuits Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

√	Demo Video	~	Lab Worksheets	1	Viva Questions	~	Probing Further Experiments
---	---------------	---	----------------	---	----------------	---	--------------------------------

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

 Table 1: Assessment pattern for CIA

Component	Lab		
Type of Assessment	Day to day Performance	Final Internal Lab Assessment	Total Marks
CIA Marks	20 Marks	10 Marks	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

A. Experiment Based:

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems	2	Lab Experiments / CIE / SEE
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Lab Experiments / CIE / SEE
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Lab Experiments / CIE / SEE
PO 4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Lab Experiments / CIE / SEE

PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	2	Lab Experiments / CIE / SEE
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	1	Lab Experiments / CIE / SEE
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	Lab Experiments / CIE / SEE

3 = High; 2 = Medium; 1 = Low

VII HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	1	Lab Experiments / CIE / SEE

3 = High; 2 = Medium; 1 = Low

VIII COURSE OBJECTIVES:

The students will try to learn:

Ι	The basic amplifier circuits using common emitter and common base configurations.
II	The multivibrator circuits using transistors for real time applications.
III	The principle of oscillation and design of oscillators.
IV	The response of linear and non linear wave shaping circuits for sinusoidal, pulse and ramp inputs.

IX COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Analyze the single stage and multistage Bipolar Junction Transistor (BJT) amplifiers for determining the voltage gain and bandwidth.	Analyze
CO 2	Build linear and non-linear wave shaping circuits to obtain the response for sine and square wave inputs.	Apply
CO 3	Analyze Make use of voltage series and current shunt feedback amplifier circuits for determining amplifier characteristics.	Analyze
CO 4	Apply the barkhausen criteria to oscillators for generating sine wave.	Apply
CO 5	Examine Identify the suitable multivibrator to generate non-sinusoidal waveforms for real time applications.	Apply
CO 6	Examine the frequency response of class-A power amplifiers and single tuned voltage amplifier circuits using Bipolar Junction Transistor (BJT).	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

COURSE				PR	OGR	AM	OUT	COM	IES					PSO'S	
OUTCOMES	PO	ΡO	ΡO	ΡO	PO	PO	PO	ΡO	PO	PO	PO	ΡO	\mathbf{PS}	PS	PS
	1	$\frac{10}{2}$	3	4	5	6	7	8	9	10	11	$10 \\ 12$	01	O2	O3
CO 1	✓	-	-	✓	✓	-	-	-	-	✓	-	-	\checkmark	-	-
CO 2	\checkmark	\checkmark	✓	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 3	\checkmark	-	-	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	-	-	-	-	-
CO 4	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	\checkmark	-	✓	\checkmark	-	-	-	-	\checkmark	\checkmark	-	-	-	-	-
CO 6	✓	✓	-	✓	✓	-	-	-	-	\checkmark	-	-	-	-	-

X MAPPING OF EACH CO WITH PO(s), PSO(s):

XI JUSTIFICATIONS FOR CO – PO / PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Analyze the single stage and multistage Bipolar Junction Transistor (BJT) amplifiers for determining the voltage gain and bandwidth by applying knowledge of mathematics and engineering fundamentals .	2
	PO 4	Understand the single stage and multistage Bipolar Junction Transistor (BJT) amplifiers for analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	4
	PO 5	Create , select, and apply appropriate techniques to obtain the frequency response of single and multi stage amplifier circuits using NI Multisim software and calculate gain bandwidth.	1
	PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations , and give and receive clear instructions.	2
	PSO 1	Formulate and Evaluate the amplifier applications in the field of Intelligent Embedded and Semiconductor technologies.	1
CO 2	PO 1	Build wave shaping circuits to obtain the response for sine and square wave inputs by applying knowledge of mathematics and engineering fundamentals .	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Understand the given the wave shaping circuit application problem statement and finding the solution implementation of wave shaping circuits by analyzing complex engineering problems .	4
	PO 3	Design solutions for linear and non-linear wave shaping circuits to complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	4
	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information of the basic embedded modules using different electronic circuits to provide valid conclusions.	3
	PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations , and give and receive clear instructions.	2
CO 3	PO 1	Make use of voltage series and current shunt feedback amplifier circuits for determining amplifier characteristics by applying knowledge of mathematics and engineering fundamentals.	2
	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information of the basic embedded modules using different electronic circuits to provide valid conclusions.	4
	PO 5	Create , select, and apply appropriate techniques to obtain the frequency response of single and multi stage amplifier circuits using NI Multisim software and calculate gain bandwidth.	1
	PO 9	Individual and team work : Function effectively as an individual, and as a member to obtain the readings.	3
	PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations , and give and receive clear instructions.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 4	PO 1	Apply the barkhausen criteria to oscillators for generating sine wave by applying knowledge of science, mathematics and engineering fundamentals.	3
	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information of the basic embedded modules using different electronic circuits to provide valid conclusions.	4
	PO 5	Create , select, and apply appropriate techniques to obtain the frequency response of single and multi stage amplifier circuits using NI Multisim software and calculate gain bandwidth.	1
	PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations , and give and receive clear instructions.	2
CO 5	PO 1	Identify the suitable multivibrator to generate non-sinusoidal waveforms for real time applications by applying knowledge of mathematics and engineering fundamentals.	2
	PO 3	Design solutions for multivibrator circuits to complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	4
	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information of the basic embedded modules using different electronic circuits to provide valid conclusions.	4
	PO 9	Individual and team work : Function effectively as an individual, and as a member to obtain the readings.	4
	PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations , and give and receive clear instructions.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 6	PO 1	Examine the frequency response of class-A power amplifiers and single tuned voltage amplifier circuits using Bipolar Junction Transistor (BJT) by applying knowledge of mathematics and engineering fundamentals .	2
	PO 2	Identify, formulate and analyze complex engineering problems of power amplifiers reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	4
	PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information of the basic embedded modules using different electronic circuits to provide valid conclusions.	3
	PO 5	Create , select, and apply appropriate techniques to obtain the frequency response of single and multi stage amplifier circuits using NI Multisim software and calculate gain bandwidth.	1
	PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations , and give and receive clear instructions.	2

XII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	PO	ΡO	ΡO	ΡO	ΡO	PO	ΡO	ΡO	PO	PO	ΡO	ΡO	\mathbf{PS}	PS	PS
	1	$\frac{10}{2}$	$\frac{1}{3}$	4	5	6	1 U 7	8	9	10	11	12	O1	O2	O3
CO 1	3	-	-	1	3	-	-	-	-	1	-	-	3	-	-
CO 2	3	2	2	1	-	-	-	-	-	1	-	-	-	-	-
CO 3	3	-	-	1	3	-	-	-	1	1	-	-	-	-	-
CO 4	3	-	-	1	3	-	-	-	-	1	-	-	-	-	-
CO 5	3	-	2	1	-	-	-	-	1	1	-	-	-	-	-
CO 6	3	2	-	1	3	-	-	-	-	1	-	-	-	-	-

XIII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark	Assignments	-
Laboratory Practices	\checkmark	Student Viva		Mini Project	-	Certification	
Term Paper	-	5 Minutes Video	-	Open Ended Experiments	-	-	-

XIV ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	-	Seminars	-
Laboratory Practices	1	Student Viva	\checkmark	Mini Project	1	Certification	-

XV ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	✓	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	rts	

XVI SYLLABUS:

WEEK - 1	BASIC AMPLIFIERS/ LINEAR WAVESHAPING
	a. Simulate frequency response of common emitter amplifier and common
	base amplifier.
	b. Design RC low pass and high pass circuit for different time constants.
WEEK - 2	BASIC AMPLIFIERS/ LINEAR WAVESHAPING
	a. Design RC low pass and high pass circuit for different time constants.
	b. Simulate frequency response of common emitter amplifier and common
	base amplifier.
WEEK - 3	TWO STAGE RC COUPLED AMPLIFIER / NON-LINEAR
	WAVESHAPING
	a. Simulate frequency response of two stage RC coupled amplifier.
	b. Design transfer characteristics of clippers and clampers.
WEEK - 4	TWO STAGE RC COUPLED AMPLIFIER / NON-LINEAR
	WAVESHAPING
	a. Design transfer characteristics of clippers and clampers.
	b. Simulate frequency response of two stage RC coupled amplifier.
WEEK - 5	SINGLE TUNED AMPLIFIERS / TRANSISTOR AS A SWITCH

	a. Simulate a single tuned amplifier.b. Design of transistor as a switch
WEEK - 6	SINGLE TUNED AMPLIFIERS / TRANSISTOR AS A SWITCH
	a. Design of transistor as a switch.b. Simulate a single tuned amplifier.
WEEK - 7	FEEDBACK AMPLIFIERS / COMPARATOR
	a. Simulate voltage series feedback amplifier and current shunt feedback amplifier.b. Design of comparator circuit.
WEEK - 8	FEEDBACK AMPLIFIERS / COMPARATOR
	a. Design of comparator circuit.b. Simulate voltage series feedback amplifier and current shunt feedback amplifier.
WEEK - 9	RC PHASE SHIFT OSCILLATOR USING TRANSISTOR / MULTIVIBRATORS
	a. Simulate sine wave generated for a particular frequency by an RC phase shift oscillator.b. Design different types of multivibrators and plot its waveforms.
WEEK - 10	RC PHASE SHIFT OSCILLATOR USING TRANSISTOR / MULTIVIBRATORS
	a. Design different types of multivibrators and plot its waveforms.b. Simulate sine wave generated for a particular frequency by an RC phase shift oscillator.
WEEK - 11	OSCILLATORS / SCHMIT TRIGGER
	a. Simulate sine wave generated for a particular frequency by Colpitts and Hartley oscillator.b. Design a Schmitt trigger circuit.
WEEK - 12	OSCILLATORS / SCHMIT TRIGGER
	a. Design a Schmitt trigger circuit.b. Simulate sine wave generated for a particular frequency by Colpitts and Hartley oscillator.
WEEK - 13	POWER AMPLIFIERS/ UJT AS A RELAXATION OSCILLATOR
	a. Simulate class A power amplifier (transformer less) and class B power amplifier.b. Design of UJT as a relaxation oscillator.
WEEK - 14	POWER AMPLIFIERS/ UJT AS A RELAXATION OSCILLATOR
	a. Design of UJT as a relaxation oscillator.b. Simulate class A power amplifier (transformer less) and class B power amplifier.

TEXT BOOKS

- 1. Douglas Perry, "VHDL", Tata McGraw Hill, 4th Edition, 2002.
- 2. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd Edition,2006.

REFERENCE BOOKS

- 1. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989.
- 2. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd Edition 2012.

XVII COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No	Topics to be covered	CO's	Reference
1	Simulate frequency response of common emitter amplifier and common base amplifier.	CO 1	T1-2.1 to 2.7
2	Design RC low pass and high pass circuit for different time constants.	CO 2	T1-20.1 to 20.2
3	Simulate frequency response of two stage RC coupled amplifier.	CO 1	T1-8.1 to 8.2
4	Design transfer characteristics of clippers and clampers.	CO 2	T1–8.3 to 8.7
5	Simulate a single tuned amplifier.	CO 6	T1-10.1 to 10.10
6	Design of transistor as a switch.	CO 5	T1-10.11 to 10.13
7	Simulate voltage series feedback amplifier and current shunt feedback amplifier.	CO 3	T1-11.1 to 11.5
8	Design of comparator circuit.	CO 5	T1 - 11.12
9	Simulate sine wave generated for a particular frequency by an RC phase shift oscillator.	CO 4	T1–17.1 to 17.6
10	Design different types of multivibrators and plot its waveforms.	CO 5	T1–14.1 to 4.3
11	Simulate sine wave generated for a particular frequency by Colpitts and Hartley oscillator.	CO 4	T1-14.9
12	Design a Schmitt trigger circuit.	CO 5	T1-19.1 to 19.3
13	Simulate class A power amplifier (transformer less) and class B power amplifier.	CO 6	T1–6.1 to 6.5
14	Design of UJT as a relaxation oscillator.	CO 4	T1–7.1 to 7.3

XVIII EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Design a Bootstrap sweep circuit
2	Design a schmitt trigger circuit.
3	Design a UJT relaxation oscillator.

Signature of Course Coordinator Dr. V. Vijay, Associate Professor HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	Antenna	s and wave p	ropagation		
Course Code	AECC18				
Program	B.Tech				
Semester	V	V			
Course Type	Core	Core			
Regulation	UG-20				
		Theory		Prac	etical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	1	4		
Course Coordinator	Dr. V.Kishen Ajay Kumar, Associate Professor				

I COURSE OVERVIEW:

Antennas are devices used to transform an RF signal, travelling on a conductor, into electromagnetic waves in free space. This course will cover the fundamentals of antenna, radiation phenomenon, types of antennas, antenna arrays, antenna measurements and wave propagation (influence of earth's atmosphere on radio waves). Antennas had wide range of application in government and commercial fields and able to design the antennas like wire antennas, aperture antennas, reflector antennas, lens antennas, micro strip antennas, and smart antennas.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC11	IV	Electromagnetic waves and transmission lines

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Antennas and Wave Propagation	70 Marks	30 Marks	100

_	Power Point Presentations	_	Chalk & Talk	_X	Assignments	×	MOOCs
_X	Open Ended Experiments	_X	Tech talk	×	Mini Project	_X	Videos
×	Others					-	

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0 %	Remember
33.33 %	Understand
33.33~%	Apply
33.33 %	Analyze
0%	Evaluate
0%	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE) and 10 marks for Quiz / Alternative Assessment Tool (AAT).

Component	The	Total Marks	
Type of Assessment CIE Exam		AAT	10tai Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams

Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

Concept Video	Tech-talk	Open Ended Experiment
50%	50%	0%

Table 3: Assessment pattern for AAT

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Principles of radiation, antenna parameters and working principle of VHF, UHF and microwave antennas used in communications, broad casting, radar, navigation and similar systems.
II	Antenna types and common structures, measurement of antenna characteristics and application of antennas over the radio frequency (RF) to micro wave (MW) frequency range.
III	The applications of smart, wideband and ultra wideband antennas for wireless communications, satellite communication, and radar systems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate the radiation mechanism in wire antennas and	Understand
	retarded potentials using Maxwell's equations.	
CO 2	Interpret the radiation characteristics of yagi-uda, horn and	Understand
	helical antennas using radiation pattern in far field region.	
CO3	Analyze the radiation characteristics of micro strip and micro	Analyze
	wave antennas using electric and magnetic field distribution.	
CO 4	Identify the radiation patterns of arrays using principle of	Apply
	multiplication pattern.	
CO 5	Examine the performance of antennas using the radiation	Analyze
	pattern, directivity and gain.	
CO 6	Select the modes of wave propagation in the atmosphere at	Apply
	micro wave frequencies using refraction and reflection concepts.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes							
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,							
	engineering fundamentals, and an engineering specialization to the solution of							
	complex engineering problems.							
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze							
	complex engineering problems reaching substantiated conclusions using first							
	principles of mathematics, natural sciences, and engineering sciences.							
PO 3	Design/Development of Solutions: Design solutions for complex Engineering							
	problems and design system components or processes that meet the specified needs							
	with appropriate consideration for the public health and safety, and the cultural,							
	societal, and Environmental considerations							
PO 4	Conduct Investigations of Complex Problems: Use research-based							
	knowledge and research methods including design of experiments, analysis and							
	interpretation of data, and synthesis of the information to provide valid							
	conclusions.							
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,							
	resources, and modern Engineering and IT tools including prediction and modelling							
	to complex Engineering activities with an understanding of the limitations							
PO 6	The engineer and society: Apply reasoning informed by the contextual							
	knowledge to assess societal, health, safety, legal and cultural issues and the							
	consequent responsibilities relevant to the professional engineering practice.							

	Program Outcomes						
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.						
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.						
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.						
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.						
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.						
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change						

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency
			Assessed by
PO1	Engineering knowledge: Apply the knowledge of	3	SEE / CIE /
	mathematics, science, engineering fundamentals, and		AAT
	an engineering specialization to the solution of		
	complex engineering problems.		
PO2	Problem analysis: Identify, formulate, review	3	SEE / CIE /
	research literature, and analyze complex engineering		AAT
	problems reaching substantiated conclusions using		
	first principles of mathematics, natural sciences, and		
	engineering sciences		
PO3	Design/development of solutions: Design	2	SEE / CIE /
	solutions for complex engineering problems and		AAT
	design system components or processes that meet the		
	specified needs with appropriate consideration for the		
	public health and safety, and the cultural, societal,		
	and environmental considerations.		

PO 10	Communicate effectively on complex engineering	1	AAT
	activities with the engineering community and with		
	society at large, such as, being able to comprehend		
	and write effective reports and design		
	documentation, make effective presentations, and		
	give and receive clear instructions		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency Assessed by
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the patch and smart antennas for wired and wireless communication applications.	2	_

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 4	\checkmark	✓	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-

XII JUSTIFICATIONS FOR CO - (PO, PSO) MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Understand the basic parameters of an antenna by applying the mathematical principles and own engineering discipline.	3
	PO 2	Identify and formulate the retarded potentials in radiation fields and analyze the (potentials) complex engineering problems using principles of mathematics and engineering science.	5
	PO 10	Communicate effectively and write effective reports on radiation fields for public health, safety and environment conditions	2

CO 2	PO 1	Understand the radiation pattern of Yagi-uda, horn and helical antennas in far field region by scientific principles and methodology	2			
	PO 2	Identify the given problem in direction finding and formulate field components of wire antennas using experimental design from the provided information and data collection in reaching substantiated conclusions by the interpretation of results into a new model translation and validation	7			
	PO 3	Investigate constraints of VHF antennas and design solutions for complex engineering problems in Yagi-uda and helical antenna, understand customer needs that meet the specified needs for the public health to promote sustainable development	5			
	PO 10	Communicate effectively and write effective reports on antenna design for public health, safety and environment conditions	2			
CO 3	PO 1	YO 1 Analyze the radiation properties of micro strip antennas using mathematical principles and own engineering discipline.				
	PO 2	Identify the given problem in direction finding and formulate field components of wire antennas using experimental design from the provided information and data collection in reaching substantiated conclusions by the interpretation of results into a new model translation and validation	7			
	PO 3	Investigate and define radiation problems in parabolic antennas and identify constraints including environmental, health and safety understand customer and user needs and the importance of considerations, use creativity to establish innovative solutions in dipole antennas design, manage the design process of dipole antennas and evaluate outcomes.	5			
	PO 10	Communicate orally on radiation properties of micro strip antennas and write effective reports on smart antennas	2			
	PSO 3	Explore and control VHF, UHF antennas using High Frequency Structure Simulator (HFSS) and explicit software tools for antenna design to meet requirements of global environment .	4			

CO 4	PO 1	Illustrate the multiplication of radiation patterns by understanding the knowledge in solving (complex) engineering problems related to antenna arrays by applying scientific, mathematical principles and own engineering discipline.	3
	PO 2	Identify the problems in antenna measurements and formulate field components of arrays using experimental design from the provided information and data collection in reaching substantiated conclusions by the interpretation of results into a new model translation and validation	7
	PO 3	Investigate and define radiation problems in parabolic antennas and identify constraints including environmental, health and safety understand customer and user needs and the importance of considerations, use creativity to establish innovative solutions in dipole antennas design, manage the design process of dipole antennas and evaluate outcomes.	5
	PO 10	Communicate orally on radiation properties of micro strip antennas and write effective reports on smart antennas	2
	PSO 3	Explore and control smart antennas using High Frequency Structure Simulator (HFSS) and explicit software tools for antenna design to meet requirements of global environment .	4
CO 5	PO 1	Understand engineering fundamentals of antennas and apply the knowledge to find the performance of antennas by measuring the parameters	2
	PO 2	Identify the problems in antenna measurements and formulate field components of arrays using experimental design from the provided information and data collection in reaching substantiated conclusions by the interpretation of results into a new model translation and validation	7
	PO 3	Understand the user needs of antennas for working, identify the cost limitations for the selection of parameters, use creativity in producing new antenna designs for innovative solutions and manage the design process of antennas and evaluate outcomes	5
	PO 10	Communicate orally on the performance of antennas and write effective reports on characteristics of antennas	2

CO 6	PO 1	Understand the modes of wave propagation through the earth's atmosphere by applying the scientific,	3
		mathematical principles and own engineering	
		discipline	
	PO 2	Identify the problems in atmospheric layers and	7
		formulate VHF antennas using experimental design	
		from the provided information and data collection	
		in reaching substantiated conclusions by the	
		interpretation of results into a new model	
		translation and validation	
	PO 10	Communicate effectively on the modes of wave	2
		propagation and write effective reports on parameters of	
		wave propagation.	
1	1		

Note: For Key Attributes refer Annexure - ${\bf I}$

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING:

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOMES	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	3	5	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 2	2	7	5	-	-	-	-	-	-	2	-	-	-	-	-
CO 3	2	7	5	-	-	-	-	-	-	2	-	-	-	-	4
CO 4	2	7	5	-	-	-	-	-	-	2	-	-	-	-	4
CO 5	2	7	5	-	-	-	-	-	-	2	-	-	-	-	-
CO 6	3	5	-	-	-	-	-	-	-	2	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES							PSO'S						
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	100	50	-	-	-	-	-	-	-	40	-		-	-	-
CO 2	66.6	70	50	-	-	-	-	-	-	40	-	-	-	-	-
CO 3	66.6	70	50	-	-	-	-	-	-	40	-	-	-	-	57
CO 4	66.6	70	50	-	-	-	-	-	-	40	-		-	-	57

CO 5	66.6	70	50	-	-	-	-	-	-	40	-	-	-	_	-
CO 6	100	50	-	-	-	-	-	-	-	40	-		-	-	-

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 5% < C< 40% – Low/ Slight
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

COURSE		PROGRAM OUTCOMES						PSO'S							
OUTCOME	s po	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	3	2	-	-	-	-	-	-	-	1	-		-	-	-
CO 2	3	3	2	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	3	3	2	-	-	-	-	-	-	1	-	-	-	-	2
CO 4	3	3	2	-	-	-	-	-	-	1	-		-	-	2
CO 5	3	3	2	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
TOTAL	18	16	8	-	-	-	-	-	-	6	-	-	-	-	4
AVERAGE	3.0	2.6	2.0	-	-	-	-	-	-	1.0	-	-	-	-	2.0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	-
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	-	5 Minutes Video / Concept Video	\checkmark	Open Ended Experiments	\checkmark
Micro Projects	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Model	ing and Expe	rimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	ANTENNA BASICS
	Antenna fundamentals: Introduction, basic antenna parameters-patterns, beam area, radiation intensity, beam efficiency, directivity-gain-resolution, antenna apertures, effective height, illustrative problems, fields from oscillating dipole, field zones, front-to-back ratio, antenna theorems, radiation, retarded potentials, radiation from small electric dipole, quarter wave monopole and half wave dipole, current distributions, field components, radiated power, radiation resistance, loop antennas- introduction, small circular loop, comparison of far fields of small loop and short dipole.
MODULE II	VHF,UHF AND MICROWAVE ANTENNAS-I
	Arrays with parasitic elements, Yagi-uda array, folded dipoles and their characteristics, helical antennas-helical geometry, helix modes, practical design considerations for monofilar helical antenna in axial and normal modes, horn antennas- types, Fermat's principle, optimum horns, design considerations of pyramidal horns, illustrative problems.
MODULE III	VHF, UHF AND MICROWAVE ANTENNAS-II
	 Micro strip Antennas-Introduction, basic characteristics of micro strip antennas, feeding methods, method of analysis, rectangular and circular micro strip antennas, basic concepts of Smart antennas, concepts and benefits of smart antennas, fixed weight beam forming, adaptive beam forming. Reflector Antennas- Introduction, paraboloidal reflectors- geometry, pattern characteristics, feed methods lens antennas: introduction, geometry of non-metallic dielectric lenses, zoning, tolerances, applications, slot antenna, Babinet's principle, applications.
MODULE IV	ANTENNA ARRAYS AND MEASUREMENTS
	 Antenna Arrays: Point sources- definition, patterns, arrays of 2 isotropic sources – different cases, principle of pattern multiplication, uniform linear arrays- broadside arrays, end-fire arrays, EFA with increased directivity, derivation of their characteristics and comparison, BSAs with Non-uniform amplitude distributions, general considerations and binomial arrays, illustrative problems Antenna Measurements: Introduction, concepts – Reciprocity, near and far fields, coordinate system, sources of errors patterns to be measured, pattern measurement arrangement directivity measurement, gain measurements (by Comparison, Absolute and 3-Antenna methods)

MODULE V	RADIO WAVE PROPAGATION
MODULE V	RADIO WAVE PROPAGATIONWave Propagation - I: Introduction, definitions, categorizations ,differentModes of Wave Propagation; Ground wave propagation: Introduction, planeearth reflections, , wave tilt, curved earth reflections; Space wave propagation:Introduction, field strength variation with distance and height, effect of earth'scurvature, absorption, super refraction, M-curves, duct propagation, scatteringphenomena, tropospheric propagation, fading and path loss calculations; Wavepropagation - II: Sky wave propagation: Introduction, structure of ionosphere,refraction and reflection of sky waves by ionosphere; ray path, criticalfrequency, MUF, LUF, OF, virtual height and skip distance; relation betweenMUF and skip distance; multi-hop propagation

TEXTBOOKS

- 1. John D. Kraus, Ronald J. Marhefka, Ahmad S. Khan, "Antennas and Wave Propagation", TMH, 4th Edition, 2010.
- 2. C.A. Balanis, "Antenna Theory", John Wiley and Sons, 2nd Edition, 2001.

REFERENCE BOOKS:

- 1. E.C. Jordan, K.G. Balmain, "Electromagnetic Waves and Radiating Systems", PHI, 2nd Edition, 2000.
- 2. E.V.D. Glazier, H.R.L. Lamont, "Transmission and Propagation", Her Majesty's Stationery Office, 1958.
- 3. F.E. Terman, "Electronic and Radio Engineering", McGraw-Hill, 4th Edition, 1955.
- 4. K.D. Prasad, SatyaPrakashan, "Antennas and Wave Propagation", Tech India Publications, 1st Edition, 2001.

WEB REFERENCES:

1. https://nptel.ac.in/courses/117/107/117107035/

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details &course_id=181

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping.	-	https://lms.iare. ac.in/index? route=course/ details&course _ id=181
	CONTENT DELIVERY (THEO	RY)	1
2	Antenna fundamentals: introduction	CO 1	T1: 2.1
3	Basic antenna parameters-patterns, beam area, radiation intensity, beam efficiency, directivity-gain-resolution	CO 1	T1: 2.2-2.8
4	Antenna apertures, effective height, fields from oscillating dipole	CO 1	T1: 2.9-2.10, 2.12
6	Field zones, front-to-back ratio, antenna theorems	CO 1	T1:2.13,21,22
7	Radiation, retarded potentials	CO 1	T1: 4.1-4.2
8	Radiation from small electric dipole	CO 1	T1: 4.3
9	Quarter wave monopole and half wave dipole, current distributions, field components	CO 1	T1: 6.5
11	Radiated power, radiation resistance	CO 1	T1: 6.6 R2-8.1
13	Loop Antennas- introduction, small circular loop, comparison of far fields of small loop and short dipole	CO 1	T1: 7.1-7.3
14	Arrays with parasitic elements, Yagi -uda array	CO 2	T1: 8.6
16	Folded dipoles and their characteristics	CO 2	T1: 8.7
17	Helical antennas-helical geometry, helix modes	CO 2	T1: 8.1-8.4
18	Practical design considerations for mono-filar helical antenna in axial and normal modes, horn antennas- types	CO 2	T1: 8.5-8.9
20	Fermat's principle, optimum horns, design considerations of pyramidal horns	CO 2	T1: 8.9-8.12
22	Micro strip antennas-introduction, basic characteristics of micro strip antennas	CO 3	T1: 14.1-14.4
23	Feeding methods, methods of analysis, rectangular and circular micro strip antennas	CO 3	T1: 14.5-14.6

24	Basic concepts of smart antennas, concepts and benefits of smart antennas, fixed weight beam forming, adaptive beam forming	CO 3	T1: 14.8
25	Reflector Antennas- introduction	CO 3	T1: 9.1-9.3
26	Paraboloidal reflectors- geometry, pattern characteristics, feed methods	CO 3	T1: 9.4-9.10
28	Lens antennas: introduction, geometry of non-metallic dielectric lenses, zoning, tolerances, applications	CO 3	T1: 10.1-10.3
30	Slot antenna, Babinet's principle, applications.	CO 3	T1: 10.4-10.6
31	Antenna arrays: point sources- definition, patterns	CO 4	R3: 7.1
32	Arrays of 2 isotropic sources – different cases	CO 4	R3: 7.2-7.3
33	Principle of pattern multiplication, uniform linear arrays- broadside arrays	CO 4	T1: 5.10-5.11
36	End-fire arrays, EFA with increased directivity, derivation of their characteristics and comparison	CO 4	T1: 5.13
38	BSAs with non-uniform amplitude distributions, general considerations and binomial arrays	CO 4	T1: 5.15
39	Antenna measurements: introduction, concepts –Reciprocity, near and far fields, coordinate system, sources of errors	CO 5	T1: 21.1-21.2
40	Errors patterns to be measured, pattern measurement arrangement, directivity measurement	CO 5	T1: 21.3, 21.5
41	Gain measurements (by comparison, absolute and 3-antenna methods)	CO 5	T1: 21.5
42	Wave propagation - I: introduction, definitions, categorizations, different modes of wave propagation	CO 6	R3:11.1-11.3
43	Ground wave propagation: Introduction, plane earth reflections	CO 6	R3:11.4
44	Wave tilt, curved earth reflections	CO 6	R3:11.5
45	Space wave propagation: introduction	CO 6	R3:11.19
46	Field strength variation with distance and height	CO 6	R3:11.19
48	Effect of earth's curvature, absorption, super refraction, M-curves	CO 6	R4:11.41
49	Duct propagation, scattering phenomena	CO 6	R4:11.31
50	Tropospheric propagation, fading and path loss calculations	CO 6	R4:11.32-33
51	Wave propagation – II: sky wave propagation: introduction, structure of ionosphere	CO 6	R4:11.34
52	Refraction and reflection of sky waves by ionosphere	CO 6	R4:11.34

53	Ray path, critical frequency	CO 6	R4:11.35
55	MUF, virtual height and skip distance	CO 6	R4:11.36
58	Relation between MUF and skip distance	CO 6	R4:11.37
59	LUF, OF, multi-hop propagation	CO 6	R4:11.38
	PROBLEM SOLVING/ CASE ST	UDIES	
5	Problems on effective aperture	CO 1	T1: 2.9-2.10
10	Problems on power radiated by half wave dipole	CO 1	T1:6.5
12	Problems on radiation resistance and radiated power	CO 1	T1:6.6
15	Problems on Yagi- uda antenna	CO 2	T1: 8.6
19	Problems on helical antenna	CO 2	T1:8.1-8.4
21	Problems on horn antenna	CO 2	T1: 9.4-9.10
27	Problems on parabolic reflector	CO 3	T1: 9.4-9.10
29	Problems on lens antenna	CO 3	T1: 10.1-10.3
34	Problems on multiplication pattern	CO 4	T1: 5.10-5.11
35	Problems on broadside array	CO 4	T1: 5.12
37	Problems on end fire array	CO 4	T1: 5.13
47	Problems on field strength	CO 6	R4:11.36
54	Problems on critical frequency	CO 6	R4:11.36
56	Problems on maximum usable frequency	CO 6	R4:11.36
57	Problems on skip distance	CO 6	R4:11.36
	DISCUSSION ON DEFINITION AND TE	RMINOLOG	Y
60	Definitions on antenna parameters	CO 1	T1: 2.2-2.8
61	Definitions on basic antennas	CO 2	T1: 7.1-7.3
62	Definitions on array antennas	CO 4	R4:11.1-11.3
63	Definitions on measurements of antenna	CO 5	T1: 2.9-2.10
64	Definitions on modes of radio wave propagation	CO 6	R4:11.7
	DISCUSSION ON QUESTION B	ANK	
65	Radiation intensity and half wave dipole antenna	CO 1	T1: 2.1-2.22, T1:4.1-4.3, T1:6.5-7.3
66	Helical and horn antenna	CO 2	T1:8.1 - 8.12
67	Microstrip and smart antennas	CO 3	T1: 14.1-14.6, T1:14.8, T1:9.1-9.10

68	Array and measurements	CO 4	T1:10.1-10.6,
			R3:7.1-7.3,
			T1:21.1-21.6
69	Space wave and ionospheric propagations	CO 5, CO	R3:11.1-11.38
		6	

Signature of Course Coordinator Dr.V.Kishen Ajay Kumar, Associate Professor.

HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

РО	NBA Statement / Key Competencies Features (KCF)	No. of
Number		$\mathbf{KCF's}$
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10

	 Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal Manage the design process and evaluate outcomes. Knowledge and understanding of commercial and economic context of engineering processes Knowledge of management techniques which may be used to achieve engineering objectives within that context Understanding of the requirement for engineering activities to promote sustainable development Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	
PO 4	 Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems. 	11

PO 5	 Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. 	1
PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	 Understand the impact of the professional Engineering solutions in so- cietal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustain- ability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3

PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 	12
	 Teamwork is important not only for helping the students know their classmates but also in completing assignments. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others Demonstrated ability to work well with a team 	
PO 10	 Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" Clarity (Writing) Grammar/Punctuation (Writing) References (Writing) Speaking Style (Oral) Subject Matter (Oral) 	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a mem- ber and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 	12
-------	---	----
	11. Risk Register	
PO 12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of tech- nological change (Life - Long Learning). Project management professional certification / MBA Begin work on advanced degree Keeping current in CSE and advanced engineering concepts Personal continuing education efforts Ongoing learning – stays up with industry trends/ new technology Continued personal development Have learned at least 2-3 new significant skills Have taken up to 80 hours (2 weeks) training per year 	8

ANNEXURE

KEY ATTRIBUTES FOR ASSESSING PROGRAM SPECIFIC OUTCOMES

PSO Number	NBA Statement / NBA statement / Vital features	No. of vitalfea- tures
PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	5
	 Analyze and solve real time problems in Robotics. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications. Develop embedded systems modules using Real Time Operating System. Undertake research and development projects in the field of Embedded Systems. Adopt the engineering professional code and conduct. 	
PSO 2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designing SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MAT-LAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register-Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC. 10.Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC). 11.Programming and hands-on skills to meet requirements of global environment. 	11

PSO 3	Make use of High Frequency Structure Simulator (HFSS) for	7
	modeling and evaluating the Patch and Smart Antennas for Wired	
	and Wireless Communication Applications.	
	1. Explicit software and programming tools for antenna design.	
	2. Adopt technical library resources and literature search.	
	3.Explore smart antennas.	
	4. Model, program for operation and control of smart antennas for	
	wireless communication applications.	
	5. Interface automation tools.	
	6. Research, analysis, problem solving and presentation using	
	software aids.	
	7. Programming and hands-on skills to meet requirements of global	
	environment.	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering						
Course Title	Microprocessors and Microcontrollers						
Course Code	AECC19						
Program	B.Tech						
Semester	V						
Course Type	Core						
Regulation	UG-20						
		Theory		Pract	tical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	1	4	-	-		
Course Coordinator	Dr S.Chi	na Venkateswar	lu, Professor				

I COURSE PRE-REQUISITES:

Level Course Code		Semester	Prerequisites
B.Tech	AECB07	III	Digital System Design
B.Tech	AECB32	V	Computer Architecture

II COURSE OVERVIEW:

Processor and controller cores are the key components in most of the modern embedded and systemon-chip designs. This course outlines the architecture and signal description of Intel microprocessor and microcontrollers. The instruction set and assembly language programming along with I/O and memory interfacing techniques are covered. The knowledge acquired from this course will enable the students in development of embedded hardware projects and models for engineering and scientific applications.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Microprocessors and Microcontrollers	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
\checkmark	Open Ended Experiments	\checkmark	Tech talk	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with either or choice will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50 %	Understand
50 %	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 10 marks for Alternative Assessment Tool (AAT).

Component	Theory	Total Marks	
Type of Assessment	CIE Exam	AAT	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours / classes, techtalk, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), concept video, MOOCs etc. The AAT chosen for this course is given in table .

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The signal descriptions along with functional architecture and hardware interfacing skills using microprocessors and micro controllers.
II	The instruction set and logic to build assembly language programs for arithmetic, logic and automated electronic systems.
III	The essential concepts of development through a practical hands-on approach on advanced ARM processors and Internet of Things based systems.

VII COURSE OUTCOMES:

After	successful	completion	of the	e course.	students	should	be	able to:
111001	Successiui	completion	01 0110		buddenus	Silouiu	DC	

CO 1	Describe the features of intel processors and micro controllers for	Understand
	signal description and architecture.	
CO 2	Make use of addressing modes and instruction set of target	Apply
	microprocessors and micro controllers for writing efficient assembly	
	language programs.	
CO 3	Demonstrate the internal architecture and modes of operation of	Understand
	peripheral devices for interfacing memory and I/O devices.	
CO 4	Illustrate the interrupt handling mechanism in microprocessors and	Understand
	micro controllers using interrupt controller.	
CO 5	Choose an appropriate data transfer scheme and hardware for data	Apply
	transfer between the devices.	
CO 6	Develop microprocessor and micro controller based applications using	Apply
	appropriate input and output devices.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes							
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,						
	engineering fundamentals, and an engineering specialization to the solution						
	of complex engineering problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and						
	analyze complex engineering problems reaching substantiated conclusions						
	using first principles of mathematics, natural sciences, and engineering						
	sciences.						

Program Outcomes							
PO 3	Design/Development of Solutions: Design solutions for complex						
	the specified needs with appropriate consideration for the public health and						
	safety and the cultural societal and Environmental considerations						
	Conduct Investigations of Complex Problems: Use research based						
104	knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.						
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,						
	resources, and modern Engineering and IT tools including prediction and						
	modelling to complex Engineering activities with an understanding of the						
PO 6	I ne engineer and society: Apply reasoning informed by the contextual knowledge to access accietal health, cafety legal and cultural issues and the						
	consequent responsibilities relevant to the professional engineering practice						
PO 7	Environment and sustainability: Understand the impact of the						
101	professional engineering solutions in societal and environmental contexts and						
	demonstrate the knowledge of, and need for sustainable development.						
PO 8	Ethics: Apply ethical principles and commit to professional ethics and						
	responsibilities and norms of the engineering practice.						
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.						
PO 10	Communication: Communicate effectively on complex engineering						
	activities with the engineering community and with society at large, such as,						
	being able to comprehend and write effective reports and design						
	documentation, make effective presentations, and give and receive clear						
DO 11	Instructions.						
POII	understanding of the engineering and management principles and apply these						
	to one's own work as a member and leader in a team to manage projects						
	and in multidisciplinary environments.						
PO 12	Life-Long Learning: Recognize the need for and having the preparation						
	and ability to engage in independent and life-long learning in the broadest						
	context of technological change						

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE, CIE, AAT
	knowledge of mathematics, science,		
	engineering fundamentals, and an engineering		
	specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate,	2	SEE, CIE, AAT
	review research literature, and analyze		
	complex engineering problems reaching		
	substantiated conclusions using first principles		
	of mathematics, natural sciences, and		
	engineering sciences.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	SEE, CIE, AAT
PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	SEE, CIE, AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build embedded software and digital circuit	3	AAT
	development platform for robotics, embedded		
	systems and signal processing applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7		
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-		-	-	-		
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-		
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-		
CO 4	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-		
CO 5	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-		
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-		

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Describe the features and architectures of Intel 8086 processor and Intel 8051 microcontroller (knowledge) by applying the knowledge of mathematics , Engineering fundamentals , and electronics engineering specialization for understanding the operation.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Explain the functional components of microprocessors and microcontrollers by giving effective presentations and clear instructions for understanding the operation of architectures.	1
CO 2	PO 1	Illustrate instructions from the set library (knowledge) for efficient assembly level programming by applying the knowledge of science, engineering fundamentals and mathematics.	3
	PO 2	Select proper instructions from the instruction set by Information and data collection for Solution development by writing assembly language level programming efficient and Interpretation of results	3
	PO 3	Manage the design process and make use of creativity to establish solutions by selecting proper mnemonics to write the assembly language level programming by Understanding of the requirement for engineering activities to promote sustainable development.	3
	PO 10	Utilize addressing modes and instruction set of target microprocessors and micro controllers micro controllers by with clarity .	1
	PSO 1	Develop software program skills to write efficient programs by understanding the performance parameters of software/ Hardware systems for robotics, embedded systems and signal processing applications	2
CO 3	PO 1	Illustrate the internal architecture and modes of operation of peripheral devices like PPI, DMA controller, PIC, USART by applying the principles of mathematics, engineering fundamentals, electronics engineering specialization for the solution of complex engineering problems.	3
	PO 2	Explain the Problem statement and system definition for interfacing devices with microprocessor and microcontroller by Information and data collection using peripheral devices like PPI, DMA controller, PIC, USART for Solution development and Interpret the results	4
	PO 3	Manage the design process and evaluate outcomes by interfacing devices with microprocessor and microcontroller using Programmable Peripheral Interface (PPI) and Interrupt Controllers to establish innovative solutions byUnderstanding of the requirement for engineering activities to promote sustainable development	3
	PO $\overline{10}$	Describe the internal architecture and modes of operation of peripheral devices by giving effective presentations. for interfacing memory and I/O devices.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 4	PO 2	Explain the functionality of various types of interrupts and their structure with Information and data collection for controlling the processor or controller with program execution flow and Interpret the results for solution development using interrupt controller.	3
	PO 3	Understand the requirement for engineering activities to promote sustainable development in Interrupt handling and use creativity to establish innovative solutions using interrupt controller by Managing the design process and evaluate outcomes	3
	PO 10	Explain the interrupt handling mechanism in microprocessors and micro controllers with clarity .	1
CO 5	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems by differentiating synchronous & asynchronous communication with Information and data collection for data transfer between the devices using first principles of mathematics and Engineering sciences and then Interpret the results	4
	PO 3	understand the customer and user needs and select an appropriate data transfer scheme and hardware by Managing the design process and evaluate outcomes to promote sustainable development for data transfer between the devices using creativity to establish innovative solutions	4
	PO 10	Select an appropriate data transfer scheme and hardware by giving effective presentations and receive clear instructions for data transfer between the devices.	1
CO 6	PO 1	Build (Apply)necessary hardware and software interface using microcomputer based systems to provide solution for real world problems by applying knowledge of mathematics, engineering fundamentals, engineering specialization.	3
	PO 2	Identify problem and Choose necessary hardware and software interface (information and data collection) and conduct experimental design with model translation to provide solution development for real world problems by interpreting results.	6

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	Organize necessary hardware and software interface based on user needs and importance of considerations for innovative solutions, of the problem including all aspects to manage design process, in microcomputer based systems by applying different techniques, to achieve required sustained development, with legal requirements governing engineering activities, including personnel, health, safety, and risk issues.	6
	PO 10	Build micro processor and micro controller based applications using necessary input and output devices and give effective oral presentations and instructions.	1
	PSO 1	Develop microprocessor and microcontroller based applications in the fields of robotics and embedded systems using embedded software and necessary input output devices.	2

Note: For Key Attributes refer Annexure - ${\bf I}$

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES												PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7		
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-		
CO 2	3	3	3	-	-	-	-	-	-	1		-	2	-	-		
CO 3	3	4	3	-	-	-	-	-	-	1	-	-	-	-	-		
CO 4	-	3	3	-	-	-	-	-	-	1	-	-	-	-	-		
CO 5	-	4	4	-	-	-	-	-	-	1	-	-	-	-	-		
CO 6	3	6	6	-	-	-	-	-	-	1	-	-	2	-	-		

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES								PSO'S					
COURSE	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	100	-	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 2	100	30	30	-	-	-	-	-	-	20	-	-	40	-	-
CO 3	100	40	30	-	-	-	-	-	-	20	-	-	-	-	-
CO 4	-	30	30	-	-	-	-	-	-	20	-	-	-	-	-

		PROGRAM OUTCOMES								PSO'S					
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 5	-	40	40	-	-	-	-	-	-	20	-	-	-	-	-
CO 6	40	60	60	-	-	-	-	-	-	20	-	-	40	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- $\pmb{\mathcal{2}}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ 60% \leq C < 100% Substantial /High

		PROGRAM OUTCOMES								PSO'S					
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	1	1	-	-	-	-	-	-	1	-	-	3	-	-
CO 3	3	2	1	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	-	1	1	-	-	-	-	-	-	1	-	-	-	-	-
CO 5	-	2	2	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	3	3	3	-	-	-	-	-	-	1	-	-	3	-	-
TOTAL	12	9	8	-	-	-	-	-	-	6	-	-	6	-	-
AVERAGE	3	1.8	1.6	-	-	-	-	-	-	1	-	-	3	-	-

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	 ✓ 	Assignments	-
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	-	5 Minutes Video / Concept Video	~	Open Ended Experiments	-
Micro Projects	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling	and E	Experimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	8086 MICROPROCESSORS
	8086 Architecture, Register Organization, Memory Segmentation, Signal descriptions of 8086, modes of operation with timing diagrams, interrupts Addressing modes and Instruction Set of 8086. Simple Programs involving arithmetical, Logical, Branch and Call Instructions, Sorting, String Manipulations
MODULE II	INTERFACING DEVICES
	PIO 8255 modes of operation of 8255, stepper motor interfacing, interfacing to D/A and A/D converters, Semiconductor memory interfacing, dynamic RAM interfacing, USART.
MODULE III	8051 MICROCONTROLLER
	8051 Microcontroller – Internal architecture and pin configuration, 8051 addressing modes, instruction set, Bit addressable features. I/O Port structures, assembly language programming using data transfer, arithmetic, logical and branch instructions.
MODULE IV	SYSTEM DESIGN USING MICROCONTROLLER
	8051 Timers/Counters, Serial data communication and its programming, 8051 interrupts, Interrupt programming. Real world interfacing of 8051 with external memory, expansion of I/O ports, stepper motor, ADC, DAC, LCD
MODULE V	ARM ARCHITECTURE
	ARM Processor fundamentals, ARM Architecture – Register, CPSR, Pipeline, exceptions and interrupts interrupt vector table, ARM instruction set – Data processing, Branch instructions, load store instructions, Software interrupt instructions, Program status register instructions, loading constants, Conditional execution, Introduction to Thumb instructions.

TEXTBOOKS

- 1. A.K Ray, K. M. Bhurchandani, "Advanced Microprocessors and Peripherals" Tata McGraw-Hill Education, 2nd Edition, 2006..
- 2. Kenneth. J. Ayala, "The 8051 Microcontroller", Cengage Learning, 3rd Edition, 2004..
- 3. Andrew N SLOSS, Dominic SYMES, Chris WRIGHT, "ARM System Developers guide", Elsevier, 1st Edition, 2012. .

REFERENCE BOOKS:

- 1. N. Senthil Kumar, M. Saravanan, S. Jeevanathan, S. K. Shah, "Microprocessors and Interfacing", Oxford University, 1st Edition, 2012.
- 2. Lyla B. Das, "The x86 Microprocessors", Pearson India, 2nd Edition, 2014.
- 3. D. V. Hall, "Microprocessors and Interfacing", Tata McGraw-Hill Education, 3rd Edition 2013.

WEB REFERENCES:

- 1. http://www.daenotes.com/electronics/digital-electronics/Intel-80858bitmicroprocessoraxzz2I9yUSe7I
- 2. https://www.smartzworld.com/notes/microprocessors-and-microcontrollers-mpmc/
- 3. http://www.iare.ac.in

COURSE WEB PAGE:

- $1.\ http://engineersevanigam.blogspot.in/2013/07/microprocessors-and-interfacing-by.html$

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference							
	OBE DISCUSSION									
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms. iare.ac.in/ index?route= course/details &course_id= 135							
	CONTENT DELIVERY (THEORY)									
2	Register organization of 8086 microprocessor and Flag Register of 8086 Microprocessor	CO 1	T1:1.1 R2:1.3							
3	Architecture and signal description of 8086 microprocessor and Physical memory organization of 8086 microprocessor	CO 1	T1:1.2 R2:1.1,6.1							
4	General bus operation, I/O addressing capability and special purpose activities	CO 1	T1:1.5,1.6,1.7							
5	Operation of 8086 microprocessor in minimum mode with read nd write timing diagrams and Operation of 8086 microprocessor in maximum mode with read nd write timing diagrams	CO 1	T1:1.8 R2:6.3							
7	Machine language instruction formats and Addressing modes of 8086 Microprocessor	CO 2	T1:2.1 R2:3.1							
8	Instruction Set Of 8086 Microprocessor: Data transfer instructions	CO 2	T1:2.3 R2:3.2							
9	Instruction Set Of 8086 Microprocessor: Arithmetic and Logical instructions, Program control transfer instructions	CO 2	T1: 2.3 R2:3.4,3.5							
10	Instruction Set Of 8086 Microprocessor: Machine Control Instructions and Flag manipulation instructions	CO 2	T1: 2.3 R2:3.7							
11	Instruction Set Of 8086 Microprocessor: Shift and rotate instructions	CO 2	T1: 2.3 R2:3.6							
12	Instruction Set Of 8086 Microprocessor: String instructions, Assembler Directives and operators and Machine level programs, programming with an assembler	CO 2	T1: 2.3 R2:4.1							
13	Introduction to stack and stack structure of 8086/8088 microprocessor	CO 1	T1:4.1,4.2							
14	Interfacing I/O ports, Pin diagram and Architecture 8255 PPI and Operating modes of 8255 PPI	CO 3	T1:5.3							
15	Interrupts and Interrupt service routines, Interrupt cycle of 8086 microprocessor, non- mask able interrupt and mask able interrupt and Interrupt programming	CO 4	T1:4.3 R2:8.1							

16	A/D and D/A converters	CO 6	$\begin{array}{c} {\rm T1:} 5.6, 5.7 \\ {\rm R2:} 9.8, 9.9 \end{array}$
17	Control of high power devices using 8255 PPI	CO 6	T1:5.9
18	Pin configuration of 8259 PIC and Architecture of 8259	CO 4	T1:6.2
	PIC		R2:10.3
19	Keyboard /display controller 8279	CO 6	T1:6.3
			R2:10.2
24	Programmable communication interface 8251 USART	CO 5	T1:6.4
			R2:11.3
25	DMA Controller 8257	CO 3	T1:7.1 D2:11.6
26	Internal architecture and pip configuration of 8051	<u> </u>	1.17.0
20	microcontroller	001	R2.201
27	Addressing modes of 8051 microcontroller and Instruction	CO_2	T1.17.3
21	set of 8051 microcontroller	002	11.11.5
28	Bit addressable features and I/O Port structures and 8051	CO 1	T1:17.4
	Timers/Counters		R2:19.10
29	Serial data communication and its programming	CO 5	T1:17.6
			R2:20.6
30	8051 interrupts, Interrupt vector table	CO 4	T1:17.7
			R2:20.5
31	Introduction to ARM Embedded Systems, ARM Processor	CO 1	T3:1.1 to 1.4
	fundamentals and ARM Architecture – Register		
33	CPSR, Pipeline, exceptions	CO 1	T3:2.1 to 2.4
34	Interrupts interrupt vector table	CO 1	T3:2.1 to 2.4
35	ARM instruction set – Data processing, Branch instructions	CO 1	T3:2.1 to 2.2
36	load store instructions and Software interrupt instructions,	CO 1	T3:2.3
			R2:10.3
38	load store instructions ,Software interrupt instructions and	CO 1	T3:2.4 to
	Conditional execution		13:2.8
40	Introduction to Thumb instructions-data processing	CO 1	T3:3.1 to
49	hearch and load store instructions	CO 1	13.3.2 T2.2.1.to
42	branch and load store instructions	001	13.3.1 to T3.3.3
43	software interrupt and program status register instructions	CO 1	T3.34 to
10	soloware meetupt and program status register monuterons	001	T3:3.5
44	loading constant ARMv5E Extensions	CO 1	T3:3.6 to
			T3:3.7
45	ARMv5E Extensions and conditional executions	CO 1	T3:3.7 to
			T3:3.8
46	Software abstract layers executing on hardware.	CO 1	T3:1.3 to 1.4
48	ARM Core dataflow and complete ARM register set	CO 1	T3: 2.1 to
			2.2
49	ARM 7 Three stage pipeline and Pipeline Execution	CO 1	T3: 2.3 to
	Characteristics		2.3.1

50	Single register load store addressing, word or unsigned byte	CO 1	T3:3.3 to 3.5
	PROBLEM SOLVING/ CASE STUDI	ES	
6	Physical address calculation	CO 1	T1:1.1 R2:1.1
20	Assembly language programs For Sorting of numbers using 8086 microprocessor	CO 2	T1:3.4 R2:4.7
21	Assembly language programs for multibyte addition and subtraction, sum of squares using 8086 microprocessor	CO 2	T1:3.4 R2:4.7
22	Assembly language programs for String manipulations using 8086 microprocessor	CO 2	T1:3.4 R2:4.1
23	Assembly language programs for Code conversions using 8086 microprocessor	CO 2	T1:3.4 R2:4.4,4.5
28	Memory interfacing to 8086 microprocessor (Static RAM)	CO 3	T1:5.1 R2:12.2,12.3
29	Memory interfacing to 8086 microprocessor (EPROM)	CO 3	T1:5.2 R2:12.4
32	Interfacing A/D and D/A converters with 8086 microprocessor	CO 6	T1:5.6,5.7 R2:9.8,9.9
34	Assembly language programs to rotate stepper motor in clockwise and anticlock wise direction	CO 2	T1:5.8 R2:9.11
37	Cascading of Interrupt Controller and its importance, interfacing 8259 PIC with 8086 microprocessor	CO 4	T1:6.2 R2:10.3,10.4
39	Interfacing keyboard /display controller 8279 to 8086 microprocessor	CO 6	T1:6.3 R2:10.2
41	Interfacing programmable communication interface 8251 USART to 8086 microprocessor	CO 5	T1:6.4 R2:11.3
47	Assembly language programming using data transfer, arithmetic, logical and branch instructions	CO 2	T1:17.8 R2:19.3
51	Real world interfacing of 8051 microcontroller with external memory	CO 6	T1:17.6 R2:20.2
52	Interfacing 8051 microcontroller with LCD	CO 6	T1:17.9 R2:21.3
53	Interfacing 8051 microcontroller with ADC and DAC	CO 6	T1:17.9 R2:21.1
	DISCUSSION OF DEFINITION AND TERMI	INOLOGY	Ζ
54	8086 Microprocessor	CO 1, CO 2	T1, R2
55	INTERFACING DEVICES	CO 1, CO 2, CO 4	T1, R2
56	8051 MICROCONTROLLER	CO 2, CO 3, CO 4, CO 5, CO 6	T1, R2
57	SYSTEM DESIGN USING MICROCONTROLLER	$\begin{array}{c} \text{CO 1,} \\ \text{CO 2,} \end{array}$	T1, R2

58	ARM ARCHITECTURE	CO 3, CO 4, CO 5, CO 6	T1, R2					
	DISCUSSION OF QUESTION BANK							
59	8086 Microprocessor	CO 1, CO 2	T1, R2					
60	INTERFACING DEVICES	CO 1, CO 2, CO 4	T1, R2					
61	8051 MICROCONTROLLER	CO 2, CO 3, CO 4, CO 5	T1, R2					
62	SYSTEM DESIGNUSING MICROCONTROLLER	CO 1, CO 2	T1, R2					
63	ARM ARCHITECTURE	CO 1, CO 4, CO 5	T1, R2					

Signature of Course Coordinator Dr. S.China Venkateswarlu, Professor

HOD, ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

PO	NBA Statement / Key Competencies Features (KCF)	No.
Number		of
		KCF's
PO 1	Apply the knowledge of mathematics, science, Engineering	3
	fundamentals, and an Engineering specialization to the solution of	
	complex Engineering problems (Engineering Knowledge).	
	Knowledge, understanding and application of	
	1. Scientific principles and methodology.	
	2. Mathematical principles.	
	3. Own and / or other engineering disciplines to integrate / support	
	study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and analyse complex	10
	Engineering problems reaching substantiated conclusions using first	
	principles of mathematics natural sciences, and Engineering sciences	
	(Problem Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results	
	10. Documentation	
PO 3	Design solutions for complex Engineering problems and design	10
	system components or processes that meet the specified needs with	
	appropriate consideration for the public health and safety, and the	
	cultural, societal, and Environmental considerations	
	(Design/Development of Solutions).	
	1. Investigate and define a problem and identify constraints	
	including environmental and sustainability limitations, health and	
	safety and risk assessment issues	
	2. Understand customer and user needs and the importance of	
	2 Identify and manage cost drivers	
	5. Identify and manage cost drivers	
	4. Use creativity to establish innovative solutions	

	5. Ensure fitness for purpose for all aspects of the problem including	
	production, operation, maintenance and disposal	
	6. Manage the design process and evaluate outcomes.	
	7 Knowledge and understanding of commercial and economic	
	context of engineering processes	
	8. Knowledge of management techniques which may be used to	
	o. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	9. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	10. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
PO 4	Use research-based knowledge and research methods including design	11
101	of experiments analysis and interpretation of data and synthesis of	
	the information to provide valid conclusions (Conduct	
	Investigations of Complex Problems)	
	Investigations of Complex Problems).	
	1. Knowledge of characteristics of particular materials, equipment,	
	processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology	
	development, etc.)	
	4. Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and contractual	
	issues	
	5 Understanding of appropriate codes of practice and industry	
	standards	
	6 Awaronoss of quality issues	
	7 Ability to work with technical uncertainty	
	7. Addity to work with technical uncertainty	
	8. Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of	
	systems and components through the use of analytical methods and	
	modeling techniques	
	10. Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline, in order to solve engineering	
	problems	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems.	
PO 5	Create select and apply appropriate techniques resources and	1
100	modern Engineering and IT tools including prodiction and modelling	Ŧ
	to complex Engineering activities with an understanding of the	
	to complex Engineering activities with an understanding of the	
	Infinitations (ivioderni 1001 Usage).	
	1. Computer software / simulation packages / diagnostic equipment	
	/ technical library resources / literature search tools.	

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan	12

PO 12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning – stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2-3 new significant skills 8. Have taken up to 80 hours (2 weeks) training per year 	8
PSO 1	 Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications 1. Analyze and solve real time problems in Robotics. 2. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications 3. Develop embedded systems modules using Real Time Operating System 4. Undertake research and development projects in the field of Embedded Systems. 5. Adopt the engineering professional code and conduct 	5
PSO 2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct/ new technology 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register-Transfer-Level designs. 9. Analyse and develop models for system level descriptions for synthesis of SOC. 10. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 11. Programming and hands-on skills to meet requirements of global environment. 	11

PSO 3	Make use of High Frequency Structure Simulator (HFSS) for	7
	modeling and evaluating the Patch and Smart Antennas for Wired	
	and Wireless Communication Applications	
	1. Explicit software and programming tools for antenna design.	
	2. Adopt technical library resources and literature search.	
	3. Explore smart antennas.	
	4. Model, program for operation and control of smart antennas for	
	wireless communication applications.	
	5. Interface automation tools.	
	6. Research, analysis, problem solving and presentation using	
	software aids.	
	7. Programming and hands-on skills to meet requirements of global	
	environment.	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	Electroni	c Measurements	s and Instrumer	ntation	
Course Code	AECC20				
Program	B.Tech				
Semester	V				
Course Type	Core				
Regulation	UG20				
		Theory		Pract	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	1	4	-	-
Course Coordinator	Ms.Ajitha G, Assistant Prfoessor, ECE				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AEEC02	II	Electrical Circuits
B.Tech	AECC01	III	Electronic Devices and Circuits

II COURSE OVERVIEW:

The purpose of this course is to design, realization and use of Electronic Systems for the measurement of electrical and non-electrical quantities. It gives an emphasis on analog and digital instruments, oscilloscopes, signal generators, signal analyzers, AC / DC bridges and transducers. The knowledge of measurements and instrumentation is used to test and analyze the performance of measuring instruments in the field of science, engineering and technology.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Electronic	70 Marks	30 Marks	100
Measurements and			
Instrumentation			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
33%	Understand
50 %	Apply
17 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component		Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	_

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The performance characteristics and working principle of analog and digital instruments for measuring electrical quantities.
II	The analysis of different signals by using oscilloscopes and signal analyzers which are generated by built in signal generators
III	The measurement of unknown resistive and reactive components by using AC and DC bridge circuits.
IV	The construction and working of transducers for the conversion of physical quantities into electrical quantities

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate the fundamentals and working principle of analog and	Understand
	digital instruments for measuring of electrical parameters.	
CO 2	Demonstrate the building blocks and functionality of oscilloscopes	Understand
	to display and measure the parameters of the signals.	
CO 3	Utilize the signal generators to produce various signals for design	Apply
	and test the signal processing applications.	
CO 4	Analyze the relative amplitude of the signal and its harmonic	Analyze
	components in frequency domain by using Signal Analyzers	
CO 5	Identify appropriate bridge circuits for the measurement of	Apply
	unknown electrical parameters.	
CO 6	Select the suitable transducers for measuring electrical and	Apply
	non-electrical parameters to resolve the real-world problem.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE / CIE /
	knowledge of mathematics, science, engineering		AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	SEE / CIE /
	research literature, and analyze complex		AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	2	SEE / CIE /
	solutions for complex Engineering problems and		AAT
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 10	Communication: Communicate effectively on	1	SEE / CIE /
	complex engineering activities with the		AAT
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions.		

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit	2	SEE/ CIE /
	Development platform for Robotics, Embedded		AAT
	Systems and Signal Processing Applications		
PSO 2	Focus on the Application Specific Integrated	2	AAT
	Circuit (ASIC) Prototype designs, Virtual		
	Instrumentation and System on Chip (SOC)		
	designs		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 5	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	\checkmark	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT :

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO1	PO 1	Examine the schematics of measuring systems and performance characteristics (knowledge) of an instrument using the principles of science and mathematics for the solution of complex engineering problems.	3
	PO 2	Understand the given problem statement and formulate the measurement of electrical parameters and translate the information into the model.	3
	PO 3	Understand the customer needs, use creativity and manage design process in realization of measuring instruments for measuring analog and digital values to establish innovative solutions	3
	PO 10	Effective presentation and speaking style on building blocks of an instrument and write subject matter effectively on working principle of D' Arsonvalmovement.	2
	PSO 1	Design and provide optimal solutions for signal processing using the concept analog and digital meters to measure voltage, current and resistance by using virtual instrumentation to solve real time applications by adopting the engineering professional code.	2
CO2	PO 1	Understand different blocks present in Oscilloscopes (knowledge) and combine all the blocks to get the appropriate output an engineering specialization to the solution of complex engineering problems.	3
	PO 2	Understand the given problem statement and formulate for the measurement using principles of electrostatic deflection sensitivity in Oscilloscopes translate the information into the model from the provided information and data to develop a solution and validate the output by the interpretation of results .	6
	PO 3	Understand customer needs, manage the design various Oscilloscopes for in realization of measuring signal parameters and establish innovative solutions	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Effective presentation and speaking style on building blocks of Oscilloscopes and write subject matter effectively on working functionality of Digital Oscilloscopes.	2
	PSO 1	Develop and design optimal solutions for signal processing applications using oscilloscopes to analyze the real time signals by adopt the engineering professional code	2
CO 3	PO 1	Understand concept of multi-function signal generators analyze the different blocks present in generator an engineering specialization to the solution of complex engineering problems.	3
	PO 2	Understand the given problem statement and formulate for the measurement using principles of electrostatic deflection sensitivity in Oscilloscopes translate the information into the model	4
	PO 3	Develop signal generator circuit based on customer needs for designg of multi-function signal generators and establish innovative solutions	2
	PO 10	Effective presentation and speaking style on working of AF, RFSignal Generator and write subject matter effectively on working functionality of different blocks present in Signal Generators.	2
	PSO 1	Develop the model of signal generators to perform the real time signals and design and provide optimal solutions for signal processing by adopting the engineering professional code	2
CO4	PO 1	Understand(knowledge) the concepts of analyzers such as spectrum and wave analyzers and analyze the blocks of wave analyzers an engineering specialization to the solution of complex engineering problems .	3
	PO 2	Understand the given problem statement and formulate for the working functionality of analyzers translate the information into the model from the provided information and data to develop a solution and validate the output by the interpretation of results.	6
	PO 10	Effective presentation and speaking style on concept of wave analyzer and write subject matter effectively on on analysis of various signal analyzers.	2
	PSO 1	Develop the model of signal analyzers to the real time signals with the harmonic components and to design and provide optimal solutions for signal processing applications by adopting the engineering professional code .	2
CO5	PO 1	Understand (knowledge) the concept of bridges in electronic measuring instruments an engineering specialization to the solution of complex engineering problems	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Understand the given problem statement and formulate for AC and DC bridge circuits and compare them translate the information into the model from the provided information and data to develop a solution and validate the output by the interpretation of results .	6
	PO 3	Understand customer needs, manage the design AC and DC bridge circuits on requirement and establish innovative solutions	3
	PO 10	Effective presentation and speaking style on concept of AC and DC bridges and write subject matter effectively on measurement of unknown parameter using bridges.	2
	PSO 1	Understand the performance of a bridge using practical experience to analyze Virtual Instrumentation by adopting the engineering professional code	2
CO 6	PO 1	Apply (understand) the knowledge of engineering fundamentals to define transducer and Understand the concepts of different types of Transducers (Engineering knowledge)	3
	PO 2	Understand the given problem statement and formulate for to convert physical quantities into electrical using transducers and classify them according to their application and translate the information into the model from the provided information and data to develop a solution and validate the output by the interpretation of results .	6
	PO 3	Develop (Design/development of solutions) an transducers like strain gauges, LVDT (in the design of system components to establish innovative solutions)to measure different electrical and non-electrical parameters.	3
	PO 10	Effective presentation and speaking style on working principles of all various types of Transducers and write subject matter effectively to measure different electrical and non-electrical parameters.	2
	PSO 1	Understand the concepts of measuring instrument systems to measure different electrical parameters using embedded hardware design by adopting the engineering professional code.	2
	PSO 2	Design sensors for measuring different physical quantities with the survey , analyze and design flow of ASIC prototypes , hardware components to design SOC using programming tools and hands-on skills.	5

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	3	3	3	-	-	-	-	-	-	2	-	-	2	-	-
CO 2	3	6	4	-	-	-	-	-	-	2	-	-	2	-	-
CO 3	3	4	3	-	-	-	-	-	-	2	-	-	2	-	-
CO 4	3	6	-	-		-	-	-	-	2	-		2	-	-
CO 5	3	6	3	-	-	-	-	-	-	2	-	-	2	-	-
CO 6	3	6	3	-	-	-	-	-	-	2	-	-	2	5	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

				PSO'S											
COURSE	PO	PO											PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	30	30	-	-	-	-	-	-	40	-		40	-	-
CO 2	100	60	40	-	-	-	-	-	-	40	-	-	40	-	-
CO 3	100	40	30	-	-	-	-	-	-	40	-	-	40	-	-
CO 4	100	60	-	-		-	-	-	-	40	-		40	-	-
CO 5	100	60	30	-	-	-	-	-	-	40	-	-	40	-	-
CO 6	100	60	30	-	-	-	-	-	-	40	-		40	45	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ $0 \leq C \leq 5\%$ No correlation
- ${\it 1}$ -5 <C \leq 40% – Low/ Slight
- $\pmb{2}$ 40 % < C < 60% – Moderate
- 3 $60\% \leq C < 100\%$ Substantial /High

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	1	1	0	0	0	0	0	0	2	0	0	2	0	0
CO 2	3	3	2	0	0	0	0	0	0	2	0	0	2	0	0
CO 3	3	2	1	0	0	0	0	0	0	2	0	0	2	0	0
CO 4	3	3	0	0	0	0	0	0	0	2	0	0	2	0	0
CO 5	3	3	1	0	0	0	0	0	0	2	0	0	2	0	0
CO 6	3	3	1	0	0	0	0	0	0	2	0	0	2	2	0
TOTAL	18	15	6	0	0	0	0	0	0	2	0	0	12	2	0
AVERAGE	3	2.5	1	0	0	0	0	0	0	2	0	0	2	2	0

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	 Image: A start of the start of	Assignments	-
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	_	5 Minutes Video / Concept Video	~	Open Ended Experiments	-
Micro Projects	_	_	_	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

-	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Mod	leling a	and Experimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO MEASURING INSTRUMENTS
	Block schematics of measuring systems, performance characteristics, Static characteristics: Accuracy, resolution, precision, gross error, types of errors, Dynamic characteristics : Repeatability, reproducibility, fidelity, lag; Analog measuring instruments: D' Arsonval movement, DC voltmeters and ammeter, AC voltmeters and current meters, ohmmeters, multimeters, meter protection, extension of range, digital voltmeters: Ramp type, staircase, dual slope integrating type, successive approximation type, specifications of instruments.
MODULE II	OSCILLOSCOPE
	Oscilloscopes: CRT, block schematic of CRO, time base circuits, delay lines, high frequency CRO considerations, applications, specifications, special purpose oscilloscopes: Dual trace, dual beam CROs, sampling oscilloscopes, storage oscilloscopes, digital storage CROs, Lissajous figures, frequency measurement, phase measurement, CRO probes.
MODULE III	SIGNAL GENERATOR AND SIGNAL ANALYZERS
	Signal Generators: AF and RF signal generators, sine and square wave generators, function generators arbitrary waveform generator, sweep frequency generators, video signal generators, and specifications. Signal Analyzers: AF, HF wave analyzers, heterodyne wave analyzers, harmonic distortion, spectrum analyzers, power analyzers
MODULE IV	AC AND DC BRIDGES
	Measurements using DC and AC bridges: Wheat stone bridge, Kelvin bridge, AC bridges, Maxwell, Hay, Schering, Wien, Anderson bridges, Wagner & ground connection.
MODULE V	TRANSDUCERS

Transducers: Classification, strain gauges, force and displacement,
transducers, resistance thermometers, hotwire anemometers, LVDT,
thermocouples, synchros; Piezoelectric transducers, variable capacitance
transducers; Magneto strictive transducers, measurement of physical
parameters: Flow measurement, displacement meters, liquid level
measurement, measurement of humidity and moisture, velocity, force,
pressure, high pressure, vacuum level, temperature measurements.

TEXTBOOKS

- 1. A.K.Sawhney, "Electrical and electronics measurements and instrumentation", 19th Edition, 2011.
- 2. H.S.Kalsi, "Electronic Instrumentation", TMH, 2nd Edition, 2004.
- 3. K. Lal Kishore, "Electronic Measurements and Instrumentation", Pearson Education,2nd Edition,2010

REFERENCE BOOKS:

- 1. David A. Bell, "Electronic Instrumentation and Measurements", Oxford University Press, 1st Edition, 2007
- 2. A.D. Helbincs, W.D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", PHI, 56th Edition, 2003.

WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/details course id=356

XIX COURSE PLAN

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference		
	OBE DISCUSSION				
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping		W 1		
CONTENT DELIVERY (THEORY)					
2	Block schematics of measuring systems, performance characteristics	CO 1	T1:1.1, 1.2. T2:1.2-1.7 R2:2.10		
3	Static and Dynamic characteristics, types of errors	CO 1	T1:1.2.,T2:1.2-1.7 R2:2.10		
4	D' Arsonval movement	CO 1	T1: 2.2., T2:2.3-2.7 R2:3.3		
5	DC voltmeters	CO 1	T1: 4.2,4.3. ,T2:4.3-4.7		
6	DC ammeters	CO 1	T1: 3.2,3.3. T2:3.3-3.4		
7	AC voltmeters	CO 1	T1: 4.7-4.17, T2:4.7-4.17		

8	AC current meters (Ammeters)	CO 1	T1: 3.5, 3.6., T2: 3.5-3.7
9	Ohmmeters ,Multimeters, meter protection,	CO 1	T1: 4.4,4.6,T2:4.7-4.17
	extension of range		
10	Digital voltmeters, Ramp type, staircase	CO 1	T1:5.1-5.10, R2:5.1
11	Digital voltmeters dual slope integrating type,	CO 1	T1:5.1-5.10, R2:5.3
	successive approximation type, specifications		
19	Or mistruments.	CO 2	T1.71712D9.4142
12	Time base circuits, dolay lines	CO 2	T1.7.1-7.13,N2.4.1-4.3
13	high fragmency CPO considerations	CO 2	T1.7.1.7.12 D2.4.1.4.2
14	applications, specifications		11:7.1-7.13,K2:4.1-4.3
15	special purpose oscilloscopes: Dual trace dual	CO 2	T1·7 14-7 18 B2·4 7-
10	beam CROs	002	4.13
16	sampling oscilloscopes, storage oscilloscopes	CO 2	T1:7.19-7.28,R2:4.7-
			4.13
17	Digital Storage CROs	CO 2	T1:7.19-7.28,R2:4.7-
			4.13
18	Lissajous figures, frequency measurement,	CO 2	T1:7.19-7.28,R2:4.7-
	phase measurement		4.13
19	CRO probes	CO 3	T1:7.19-7.28,R2:4.7-
		00.2	4.13
20	Signal Generators: standard signal generators	CO 3	T1:8.1-8.2,R2:6.1-6.13
21	AF sine and square wave generators	CO 3	T1:8.1-8.18,R2:6.1-6.13
22	function generators, arbitrary waveform	CO 3	T1:8.1-8.18,R2:6.1-6.13
	gween frequency generators, wideo signal	CO_{2}	T1.2 1 2 12 D2.6 1 6 12
2.3	generators	003	11.0.1-0.10,1(2.0.1-0.13
24	Signal Analyzers: AF, HF wave analyzers	CO 4	T1:9.1-9.8, R2:7.1-7.6
25	heterodyne wave analyzers, harmonic	CO 4	T1:9.1-9.8, R2:7.1-7.6
_	distortion wave analyzers		
26	spectrum analyzers, power analyzers	CO 4	T1:9.1-9.8, R2:7.1-7.6
27	Measurements using DC bridges: Wheat stone	CO 5	T1:11.2 R2:10.4
	bridge		
28	Measurements using DC bridges: Kelvin bridge	CO 5	T1:11.3 R2:10.5
29	AC bridges: Maxwell bridge, Hay bridge	CO 5	T1:11.11-11.12 R2:10.8
30	AC bridges: Schering bridge, Wien bridge	CO 5	T1:11.13-11.14
			R2:10.9-10.10
31	AC bridges: Anderson bridge	CO 5	T1:11.18,R2:10.13
32	Wagner & ground connection	CO 5	T1:11.15,R2:10.16
33	Transducers: Classification	CO 6	T1:13.1,R2:12.1
34	strain gauges	CO 6	T1:13.6,R2:12.6
S.No	Topics to be covered	CO's	Reference
35	resistance thermometers	CO 6	T1:13.7,R2:12.7
36	hotwire anemometers, thermocouples	CO 6	T1:13.8,R2:12.9
37	LVDT	CO 6	T1:13.11,R2:12.10
38	Piezoelectric transducers	CO 6	T1:13.15,R2:12.17

39	Magneto strictive transducers	CO 6	T1:13.16,R2:12.18	
40	measurement of physical parameters: force and displacement	CO 6	T1:13.23-13.27, R2:12.24-12.28	
41	measurement of physical parameters: Pressure, vacuum level, temperature measurements	CO 6	T1:13.23-13.27, R2:12.24-12.28	
42	Problem solving on Voltmeters and ammeters	CO 1	T1: 4.2-4.13.	
43	Problem solving on series and shunt ohmmeters, digital multimeters	CO 1	T1: 4.2-4.13.R2:4.13	
44	Problem solving on electrostatic deflection sensitivity, Velocity of electron beam	CO 2	T1:7.1-7.13,R2:4.1-4.3	
45	Problem solving on frequency and phase measurement	CO 2	T1:7.1-7.13,R2:4.1-4.3	
46	Problem solving on minimum detectable signal of spectrum analyzer	CO 4	T1:9.1-9.8, R2:7.1-7.6	
47	Problem solving on whetstone bridge	CO 5	T1:11.2 R2:10.4	
48	Problem solving on Kelvin bridge	CO 5	T1:11.3 R2:10.5	
49	Problem solving on wien bridge	CO 5	T1:11.11-11.12 R2:10.8	
50	Problem solving on Maxwell bridge	CO 5	T1:11.13-11.14 R2:10.9-10.10	
51	Problem solving on Schering bridge	CO 5	T1:11.18,R2:10.13	
52	Problem solving on Anderson bridge	CO 5	T1:11.2 R2:10.4	
53	Problem solving on hay's bridge	CO 5	T1:11.3 R2:10.5	
54	Problem solving on strain gauges	CO 6	T1:13.6,R2:12.6	
55	Problem solving on LVDT	CO 6	T1:13.11,R2:12.10	
56	Problem solving on Thermistor	CO 6	T1:13.15,R2:12.17	
	DISCUSSION OF DEFINITION AN	D TERMI	NOLOGY	
57	Module-I: Introduction to Measuring Instruments	CO 1	T1:1.1-19,2.1-2.8,3.1- 3.8,4.1-4.25,5.1-5.10	
58	Module-II: Oscilloscopes	CO 2	T1:7.1-7.32	
59	Module-III: Signal Generators and Wave Analyzers	CO 3,4	T1:8.1-8.10,9.1-9.6	
60	Module-IV: AC and DC Bridges	CO 5	T1:11.111.18	
61	Module-V: Transducers	CO 6	T1:13.1-13.25	
DISCUSSION OF QUESTION BANK				
62	Module-I: Introduction to Measuring Instruments	CO 1	T1:1.1-19,2.1-2.8,3.1- 3.8,4.1-4.25,5.1-5.10	
63	Module-II: Oscilloscopes	CO 2	T1:7.1-7.32	
64	Module-III: Signal Generators and Wave Analyzers	CO 3,4	T1:8.1-8.10,9.1-9.6	
65	Module-IV: AC and DC Bridges	CO 5	T1:11.111.18	
66	Module-V: Transducers	CO 6	T1:13.1-13.25	
ANNEXURE - I

KEY COMPETENCIES FOR ASSESSING PROGRAM OUTCOMES

PO Num- ber	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	10

PO 4.	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to avariance of systems approace.	11
PO 5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.	1
PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5

PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	12

PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12
PO12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning – stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2-3 new significant skills 8. Have taken up to 80 hours (2 weeks) training per year 	8

PSO	NBA Statement / Key Competencies Features (KCF)	
Num-		of
ber		KCF's
PSO 1	 Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications 1. Analyze and solve real time problems in Robotics. 2. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications 3. Develop embedded systems modules using Real Time Operating System. 4. Undertake research and development projects in the field of Embedded Systems. 5. Adopt the engineering professional code and conduct 	5
PSO 2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC. 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register-Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC 10. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 11. Programming and hands-on skills to meet requirements of global environment. 	11
PSO 3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications. 1. Explicit software and programming tools for antenna design. 2. Adopt technical library resources and literature search. 3. Explore smart antennas. 4. Model, program for operation and control of smart antennas for wireless communication applications. 5. Interface automation tools. 6. Research, analysis, problem solving and presentation using software aids. 7. Programming and hands-on skills to meet requirements of global environment. 	7

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING					
Course Title	CONTROL SYSTEMS					
Course Code	AECC21					
Program	B.Tech					
Semester	V					
Course Type	CORE					
Regulation UG20						
	Theory Practical			ctical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	dinator J. Siva Ramakrishna, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSC07	II	Mathematical Transform Techniques
B.Tech	AECC02	II	Electrical Circuits

II COURSE OVERVIEW:

This course deals with the basic concepts of block diagram reduction technique, time response analysis of first order and second order systems. It deals with time and frequency domain analysis. It elaborates the concept of stability and its assessment for linear time invariant systems. This course address the real time issues and control strategies, which are used in automation areas, associates with several engineering streams.

III MARKS DISTRIBUTION:

Subject SEE Examination		CIE Examination	Total Marks	
Control Systems	Control Systems 70 Marks		100	

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	x	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	х	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50 %	Understand
33.3%	Apply
16.6 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
CIA	Continuous Internal Examination – 2 (Mid-term)	10	20	
	AAT-1	5	50	
	AAT-2	5		
SEE Semester End Examination (SEE)		70	70	
	100			

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	-

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The mathematical models of dynamic systems using the concepts of basic sciences.
II	The system performance using time domain and frequency domain analysis for
	standard inputs.
III	Classification of controllers and compensators as per the desired dynamic response
	of the system.
IV	The system representation techniques such as transfer function and state space.

VII COURSE OUTCOMES:

	I /	
CO 1	Relate the physical and mechanical systems into equivalent	Understand
	electrical analogies using the mathematical form of physical	
	systems.	
CO 2	Utilize various reduction techniques for developing the transfer	Apply
	function, transient and steady state error with the standard input	
	signals.	
CO 3	Make use of the ROUTH-HOURITZ criterion to determine the	Apply
	stability of a system	
CO 4	Demonstrate the stability of a system using root locus technique	Understand
	for analysing the system performance	
CO 5	Illustrate the system using polar plot, Nyquist plot, and Bode	Analyze
	plot for determining the stability of the system.	
CO 6	Interpret linear system equations in state space form for the	Understand
	analysis of LTI system	

After successful completion of the course, students will be able to:

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes								
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.							
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.							

Program Outcomes						
PO 3	Design/Development of Solutions: Design solutions for complex					
	the specified needs with appropriate consideration for the public health and					
	safety and the cultural societal and Environmental considerations					
	Conduct Investigations of Complex Problems: Use research based					
104	knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.					
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,					
	resources, and modern Engineering and IT tools including prediction and					
	modelling to complex Engineering activities with an understanding of the					
PO 6	I ne engineer and society: Apply reasoning informed by the contextual knowledge to access accietal health, asfety legal and cultural issues and the					
	consequent responsibilities relevant to the professional engineering practice					
PO 7	Environment and sustainability: Understand the impact of the					
101	professional engineering solutions in societal and environmental contexts and					
	demonstrate the knowledge of, and need for sustainable development.					
PO 8	Ethics: Apply ethical principles and commit to professional ethics and					
	responsibilities and norms of the engineering practice.					
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.					
PO 10	Communication: Communicate effectively on complex engineering					
	activities with the engineering community and with society at large, such as,					
	being able to comprehend and write effective reports and design					
	documentation, make effective presentations, and give and receive clear					
DO 11	Instructions.					
POII	understanding of the engineering and management principles and apply these					
	to one's own work as a member and leader in a team to manage projects					
	and in multidisciplinary environments.					
PO 12	Life-Long Learning: Recognize the need for and having the preparation					
	and ability to engage in independent and life-long learning in the broadest					
	context of technological change					

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	3	CIE/Quiz/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 3	Design/Development of Solutions: Design	2	CIE/Quiz/AAT
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	and the cultural societal and Environmental		
	considerations		
PO 6	The engineer and society: Apply reasoning	1	CIE/Ouiz/AAT
100	informed by the contextual knowledge to assess	I	
	societal, health, safety, legal and cultural issues		
	and the consequent responsibilities relevant to		
	the professional engineering practice.		
PO 10	Communication: Communicate effectively on	1	CIE/Quiz/AAT
	complex engineering activities with the		
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Professional Skills: Build embedded software	1	Research
	and digital circuit development platform for		Paper /
	robotics, embedded systems and signal processing		Quiz / AAT
	applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-		\checkmark	-			
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark		-	-		
CO 3	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	-	-	\checkmark	-	-	-	-	-		
CO 4	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-		
CO 5	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	-	-	\checkmark	-	\checkmark	-	-	-		
CO 6	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	-	-	\checkmark	-	-	\checkmark	-	-		

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Understands the concept of control systems and its types with the knowledge of mathematics , science and engineering fundamentals .	3
	PO 2	Identify the mathematical models of complex systems by analyzing complex engineering problems using principles of mathematics and engineering sciences.	7
	PO 10	Understands the basics of control systems and should be able to communicate effectively on complex engineering activities	2
	PSO 1	Understands the operation of open and closed loop control systems to find the optimal solution for signal processing applications	1
CO 2	PO 1	Explain the different complex physical systems with the knowledge of mathematics , science and engineering fundamentals.	3
	PO 2	Identify the mathematical models for developing transfer function and steady state error analysis by analyzing complex engineering problems using principles of mathematics and engineering sciences .	6
	PO 10	Understands the basics of reduction techniques for developing the transfer function and steady state error analysis techniques, which are able to communicate effectively on engineering activities .	2
CO 3	PO 1	Understand the concept of stability of the system from the characteristic equation using principles of mathematics, science and engineering fundamentals .	3
	PO 2	Formulate the mathematical equations for a system's stability framed using basics of mathematics and engineering sciences.	5
	PO 3	Design the solution for a system of unity feedback by analyzing complex engineering problems and design system components using principles of mathematics and engineering sciences .	5
	PO 6	Understands the concept of stability of open and closed loop system and type of feedback from the contextual knowledge to assess societal engineering practice .	3
	PO 10	Understands the basics of time domain analysis and should be able to communicate effectively on engineering activities .	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 4	PO 1	Understand the concept of stability analysis of a system by applying principles of mathematics , science, and engineering fundamentals.	3
	PO 2	Determine the stability of complex systems using first principles of mathematics and engineering sciences .	4
	PO 3	Design solutions for complex engineering system performance and design system components using principles of mathematics and engineering sciences .	7
	PO 10	Understands the basics of requency domain analysis and various types of system should be able to communicate effectively on engineering activities .	2
CO 5	PO 1	Determine the stability of a system in frequency domain using the fundamentals of mathematics , science, and engineering fundamentals.	3
	PO 2	Identify, formulate appropriate frequency domain technique for analyzing complex system stability using basics of mathematics and engineering sciences .	5
	PO 3	Design the solutions for stability analysis of complex engineering systems using Nyquist plot, and Bode plot, that meet the societal needs .	6
	PO 6	Understands the concept of stability analysis techniques such as Nyquist plot, and Bode plot and their applicability to the contextual knowledge to assess societal engineering practice .	2
	PO 10	Understands the basics of stability analysis of a system in frequency domain, which should be able to communicate effectively on engineering activities.	2
CO 6	PO 1	Understands state space models of control system using its block diagram using basic knowledge of mathematics , science and engineering fundamentals.	3
	PO 2	Identify and formulate the state space models for the analysis of LTI system using first principles of mathematics and engineering sciences .	4
	PO 3	Determine the linear system equations in state space form for analyzing complex engineering problems that meet the specified needs with appropriate consideration for societal needs.	7
	PO 6	Understand the concept of state space models for LTI system analysis by the contextual knowledge to assess the societal issues .	2
	PO 10	Understands the basics of state space analysis, which are able to communicate effectively on engineering activities .	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 1	Understands the basics of state space analysis techniques for signal processing applications .	1

Note:Refer annexure to check the mapping of program outcomes.

TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-XIII PING:

COURSE		PROGRAM OUTCOMES											PSO'S		
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	3	7	-	-	-	-	-	-	-	2	-	-	1	-	-
CO 2	3	3	-	-	-	-	-	-	-	1	-	3	-	-	-
CO 3	3	5	5	-	-	3	-	-	-	1	-	-	-	-	-
CO 4	3	4	7	-	-	-	-	-	-	1	-	-	-	-	-
CO 5	3	5	7	-	-	2	-	-	-	1	-	2	-	-	-
CO 6	3	4	7	-	-	2	-	-	-	1	-	-	1	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

COURSE		PROGRAM OUTCOMES						PSO'S							
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	100	100	-	-	-	-	-	-	-	20	-	-	20	-	-
CO 2	100	100	-	-	-	-	-	-	-	20	-	37	-	-	-
CO 3	100	100	50	-	-	60	-	-	-	20	-	-	-	-	-
CO 4	100	66	66	-	-	-	-	-	-	20	-	-	-	-	-
CO 5	100	66	66	-	-	40	-	-	-	20	-	25	-	-	-
CO 6	100	66	66	-	-	-	-	-	-	20	-	-	20	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 5 < C \le 40\% Low / Slight$

 $\pmb{2}$ - 40 % < C < 60% – Moderate

 $3 - 60\% \leq C < 100\%$ – Substantial /High

		PROGRAM OUTCOMES							PSO'S						
COURSE	PO	PO						PSO	PSO	PSO					
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	-	-	-	-	-	-	-	1	-	-	1	-	-
CO 2	3	3	-	-	-	-	-	-	-	1	-	1	-	-	-

		PROGRAM OUTCOMES							PSO'S						
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 3	3	3	3	-	-	3	-	-	-	1	-	-	-	-	-
CO 4	3	2	2	-	-	_	_	-	-	1	_	-	-	-	-
CO 5	3	2	2	-	-	1	-	-	-	1	-	1	-	-	-
CO 6	3	2	2	-	-	-	-	-	-	1	-	-	1	-	-
TOTAL	18	15	9	-	-	4	-	-	-	6	-	2	2	-	-
AVERAGE	3	2.5	2.0	-	-	2	-	-	-	1	-	1	1	-	-

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	 ✓ 	SEE Exams	 ✓ 	Assignments	-
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory	-	5 Minutes Video	\checkmark	Open Ended	-
Practices		/ Concept Video		Experiments	
Micro	-	-	-	-	_
Projects					

XVII ASSESSMENT METHODOLOGY INDIRECT:

-	Early Semester Feedback	\checkmark	End Semester OBE Feedback
-	Assessment of activities / Modeling a	and E	xperimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	INTRODUCTION AND MODELING OF PHYSICAL SYSTEMS
	Control systems: Introduction, open loop and closed loop systems, examples, comparison, mathematical modelling and differential equations of physical
	systems, concept of transfer function, translational and rotational mechanical
	systems, electrical systems, force-voltage and force-current analogy.
MODULE II	BLOCK DIAGRAM REDUCTION AND TIME RESPONSE
	ANALYSIS
	Block Diagrams: Block diagram representation of various systems, block
	diagram algebra, characteristics of feedback systems, signal flow graph, time
	response analysis: standard test signals, impulse response, unit step response
	of second order systems, time response specifications, steady state errors and
	error constants, PID controllers.
MODULE III	CONCEPT OF STABILITY AND ROOT LOCUS TECHNIQUE
	Concept of stability: Necessary and sufficient conditions for stability, Routh Hurwitz stability criterions and limitations.
	Root locus technique: Introduction, root locus concept, construction of root loci, graphical determination of 'k' for specified damping ratio, effect of adding zeros and poles on stability.

MODULE IV	FREQUENCY DOMAIN ANALYSIS
	Frequency domain analysis: Introduction, frequency domain specifications, stability analysis from Bode plot, Nyquist plot, relative stability, calculation of gain margin and phase margin, determination of transfer function from Bode a plot, correlation between time and frequency responses.
MODULE V	STATE SPACE ANALYSIS AND COMPENSATORS
	State Space Analysis: Concept of state, state variables and state model, derivation of state models from block diagrams, solving the time invariant state equations, state transition matrix and properties, concept of controllability and observability; Compensators: Lag, lead, lag-lead networks.

TEXTBOOKS

- 1. I J Nagrath, M Gopal, "Control Systems Engineering", New Age International Publications, 3rd Edition, 2007.
- 2. K Ogata, "Modern Control Engineering", Prentice Hall, 4th Edition, 2003
- 3. N C Jagan, "Control Systems", BS Publications, 1st Edition, 2007.

REFERENCE BOOKS:

- 1. Anand Kumar, "Control Systems", PHI Learning, 1st Edition, 2007.
- 2. S Palani, "Control Systems Engineering", Tata McGraw-Hill Publications, 1st Edition, 2001.
- 3. N K Sinha, "Control Systems", New Age International Publishers, 1st Edition, 2002.

WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

COURSE WEB PAGE:

https://nptel.ac.in/courses/112105171/1

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference				
	OBE DISCUSSION						
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	_	-				
	CONTENT DELIVERY (THEORY)						
1	Introduction to Control systems	CO 1	T1:1.1				
2	Types of Control systems Open loop and Closed loop systems	CO 1	T1:1.1				
3	Examples of closed control system and open loop system	CO 1	T1:1.4- 1.6				
4	Concept of transfer function	CO 1	T1: 2.4				
5	Mechanical translational system, Force balance equations.	CO 1	T1:2.2				
6	Mechanical rotational system, Torque balance equations.	CO 1	T1:2.2				
7	Transfer function of Armature controlled and Field controlled of DC Motor.	CO 1	T1:2.4				

8	Force -Voltage and Force-Current Analogy	CO 1	T1:2.2
9	Block Diagrams: Block diagram representation of various	CO 2	T1:2.5
	control systems		
10	Block diagram reduction and Rules of block diagram	CO 2	T1:2.5
11	Characteristics of feedback systems	CO 2	T1:
			3.1-3.2
12	AC Servomotor working and characteristics	CO 2	T1: 12
13	Signal Flow Graph, properties and rules of signal flow graph	CO 2	T1 :2.6
14	Step by step procedure of transfer function from signal flow graph using Mason's Gain Formula	CO 2	T1 :2.6
15	Time response analysis, Standard test signals	CO 2	T1 :5.1-5.2
16	Impulse response	CO 2	T1 :5.1-5.2
17	Response of first order system for step input	CO 2	T1: 5.3
18	Response of Un damped second order system for step input	CO 2	T1: 5.3
19	Response of Under damped and Over damped second order	CO 2	T1: 5.3
	system for step input		
20	Time Domain specifications of second order system	CO 2	T1: 5.4
21	Steady state errors and error constants	CO 2	T1: 5.5
22	Error constants for various inputs and for different Types of	CO 2	T1: 5.5
	system		
23	PID Controllers	CO 2	T1:5.8
24	Concept of stability Necessary and sufficient conditions for stability	CO 3	T1: 6.1 -6.2
25	Conditions and special cases for stability using Routh's Hurwitz method.	CO 3	T1: 6.3 -6.5
26	Introduction to Root locus concept.	CO 3	T1: 7.1 -7.2
27	Step by step procedure for construction of root locus	CO 3	T1: 7.3
28	Effect of adding zeros and poles on stability.	CO 3	T1: 5.6
29	Frequency domain analysis Introduction	CO 4	T1: 8.1 -8.2
30	Frequency domain specifications, stability analysis	CO 4	T1: 8.2
31	Procedure of Bode Plot for magnitude and phase plot.	CO 4	T1: 8.4
32	Procedure for gain margin and phase margin	CO 4	T1: 8.4
33	Procedure of Nyquist plot for magnitude and phase plot.	CO 4	T1: 9.1- 9.4
34	Determination of transfer function, correlation between time and frequency responses	CO 4	T1: 8.1 -8.2
35	State Space Analysis: Concept of state, state variables and state model	CO 6	T1: 12.1-12.2
36	Derivation of state models from block diagrams	CO 6	T1: 12.3-12.4
37	State transition matrix and properties.	CO 6	T1: 12.4
38	Canonical Form of state variables	CO 6	T1: 12.6

39	Concept of controllability and observability	CO 6	T1:12.7
40	Compensators: Lag, lead, lead - lag networks.	CO 5	T1:10.3
	PROBLEM SOLVING/ CASE STUDIES	5	
41	Determine transfer function from mechanical systems	CO 1	R1: 2.6
42	Determine transfer function from electrical systems	CO 1	R1: 2.6
43	Transfer function from Block diagram using reduction technique	CO 2	R1: 3.2
44	Transfer function from Signal Flow Graph using masons gain formula	CO 2	R1: 3.2
45	Problems on Error constants	CO 2	R1: 4.4 Pg No 195-198
46	Problems on time domain specifications	CO 2	R1: 4.4 Pg No 198-209
47	Stability using Routh's Hurwitz method	CO 3	R1:5.3 Pg No 285-292
48	Problems on Root Locus for a given transfer function	CO 3	R1:6.4 Pg No 339-347
47	Problems on Routh's Hurwitz method to find K	CO 3	R1:5.6 Pg No 298-307
48	Problems on Frequency domain specifications	CO 4	R1:7.2 Pg No 413-416
49	Sketch Bode Plot for stability	CO 4	R1:7.3 Pg No 417-427
50	Sketch Bode Plot for gain and phase margin	CO 4	R1:7.4 Pg No 452-465
51	Sketch Polar Plot for gain and phase margin	CO 4	R1:7.3 Pg No 417-427
52	Problems on state model to the canonical form	CO 6	R1:10.3 Pg No 594-597
53	State controllability and observability of a system	CO 6	R1: 10.4 Pg No 661-671
54	Problems on Compensators	CO 5	R1: 9.2
55	Problems on State Transition Matrix	CO 6	R1: 10.7 Pg No 630-639
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	

56	Transfer function, components of feedback control system, Automatic Controllers.	CO 1	T1: 2.4				
57	Basic elements in Block Diagram, signal flow graph,	CO 2	T1:				
	transient response, transmittance, Masons Gain formula		3.1-3.2				
58	Stability, Routh stability criterion, Auxiliary polynomial,	CO 3	T1: 6.3				
	Relative stability		-6.5				
59	Frequency response, Resonant frequency, Corner frequency,	CO 4	T1: 8.1				
	Polar plot.		-8.2				
60	State variable, Controllability, Compensator, sampling	CO 5,	T1:				
	theorem	CO 6	12.3-12.4				
	DISCUSSION OF QUESTION BANK						
61	Mechanical Rotational System	CO 1	T1: 2.4				
62	Block Diagram, Signal flow graph	CO 2	T1:				
			3.1-3.2				
63	Root Locus and Routh's Hurwitz method	CO 3	T1: 6.3				
			-6.5				
64	Bode plots, polar plot and Nyquist plot	CO 4	T1: 8.1				
			-8.2				
65	State Transmission matrix and compensators	CO 5,	T1:				
		CO 6	12.3-12.4				

Signature of Course Coordinator

HOD,ECE

ANNEXURE

KEY ATTRIBUTES FOR ASSESSING POS AND PSOS

PO	NBA Statement / Key Competencies Features (KCF)	No. of
Number		KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	 Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation 	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design processes and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, 	10

PO 4.	Use research-based knowledge and research methods including design	11
	of experiments, analysis and interpretation of data, and synthesis of	
	the information to provide valid conclusions (Conduct	
	Investigations of Complex Problems).	
	1. Knowledge of characteristics of particular materials, equipment,	
	processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology	
	development, etc.)	
	4. Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and contractual	
	issues	
	5. Understanding of appropriate codes of practice and industry	
	standards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty	
	8. Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of	
	systems and components through the use of analytical methods and	
	modeling techniques	
	10. Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline, in order to solve engineering	
	problems	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems.	
PO 5	Create, select, and apply appropriate techniques, resources, and	1
	modern Engineering and IT tools including prediction and modelling	
	to complex Engineering activities with an understanding of the	
	limitations (Modern Tool Usage).	
	1. Computer software / simulation packages / diagnostic equipment	
	/ technical library resources / literature search tools.	
PO 6	Apply reasoning informed by the contextual knowledge to assess	5
	societal, health, safety, legal and cultural issues and the consequent	
	responsibilities relevant to the professional engineering practice (The	
	Engineer and Society).	
	1. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	2. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	3. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	4. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
	5. Understanding of the need for a high level of professional and	

PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	12

PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12
PO12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning – stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2-3 new significant skills 8. Have taken up to 80 hours (2 weeks) training per year 	8
PSO 1	 Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications 1. Analyze and solve real time problems in Robotics 2. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications. 3. Develop embedded systems modules using Real Time Operating System. 4. Undertake research and development projects in the field of Embedded Systems. 5. Adopt the engineering professional code and conduct. 	5

PSO 2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register-Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC 10. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 11. Programming and hands-on skills to meet requirements of global environment. 	11
PSO 3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications. 1. Explicit software and programming tools for antenna design. 2. Adopt technical library resources and literature search. 3. Explore smart antennas. 4. Model, program for operation and control of smart antennas for wireless communication applications. 5. Interface automation tools. 6. Research, analysis, problem solving and presentation using software aids. 7. Programming and hands-on skills to meet requirements of global environment. 	7

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	Cellular	and Mobile (Communicatio	ons	
Course Code	AECC22				
Program	B.Tech				
Semester	V				
Course Type	Professional Elective				
Regulation UG-20					
		Theory		Pract	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3		
Course Coordinator	Dr V Siva Nagaraju, Associate Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC10	IV	Analog and Digital Communications

II COURSE OVERVIEW:

The cellular mobile communication allows the users to communicate with others in different locations without the use of any physical connection. It covers the operation, performance criteria, handoff mechanism and channel assignments of the cellular system. The applications include Wi-Fi, Bluetooth, cell phones and wireless power transfer.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Cellular and Mobile Communications	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Tech talk	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
%	Remember
50%	Understand
33%	Apply
17 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	0%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The cellular mobile system, cell coverage, cell site and mobile antennas system for interference reduction.
II	The wireless system standard applications for the Global System for Mobile Communications, Code Division Multiple Access and Time Division Multiple Access technologies.
III	The advanced intelligent network for wireless communications and future public land mobile telecommunications.

VII COURSE OUTCOMES:

After successful completion of the course, students will be able to:

CO 1	Summarize the cellular mobile system concepts to improve the Signal	Understand
	to noise ratio and cell coverage.	
CO 2	Outline the co-channel and non co-channel interferences and their	Understand
	parameters to improve the system capacity.	
CO 3	Utilize the omni directional and directional antenna patterns to	Apply
	improve the channel capacity and interference reduction.	
CO 4	Identify the importance of Hand-off mechanism for preventing loss of	Apply
	interruption of services to a caller.	
CO 5	Analyze the wireless systems and its standards for the	Analyze
	implementation of multiple access schemes.	
CO 6	Infer the Intelligent cell concept and advanced intelligent network for	Understand
	advanced land mobile telecommunication system.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	CIE/Quiz/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	1	CIE/Quiz/AAT
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 10	Communication: Communicate effectively on	2	CIE/Quiz/AAT
	complex engineering activities with the		
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Build Embedded software and digital circuit	_	_
	development platform for robotics, embedded		
	systems and digital signal processing applications		
PSO 2	Focus on the Application specific Integrated	—	_
	circuits (ASIC) prototype designs, Virtual		
	Instrumentation and System on Chip (SOC)		
	designs.		
PSO 3	Make use of High frequency structure simulator	1	Research
	(HFSS) for modeling and evaluating the patch		papers
	and smart antennas for wired and wireless		/Project
	communication applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-		-	-	-		
CO 2	\checkmark	-	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-		
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	>		
CO 4	\checkmark	-	-	-		-	-	-	-	\checkmark	-		-	-	-		
CO 5	\checkmark	-	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark		
CO 6	\checkmark	\checkmark	-	-		-	-	-	-	\checkmark	-	-	-	-	\checkmark		

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO1	Identify the basic mobile telephone Systems by applying the mathematics , science and engineering fundamentals to solve the limitations of the conventional system.	3
	PO2	Understand the cellular mobile system design concepts (problem statement) and implementation (solution development) of the information and general description and interpretation of the problem.	4
	PO10	Communicate orally on cellular mobile systems and write effective reports on the telephone systems and limitations of the conventional system.	2
CO 2	PO1	Review the concept of frequency reuse channels, formulate the co-channel interference reduction factor and validate the results with the basics of engineering science.	3
	PO3	Investigate the signal reflections in flat and hilly terrain, identify constraints including fading effects and Co-Channel Interference	2
	PO10	Communicate orally on cellular mobile systems and write effective reports on the telephone systems and limitations of the conventional system.	2
CO 3	PO1	Understand the user needs of cell coverage for signal and space diversity antennas for working, identify the cost limitations for the selection of parameters, use creativity in producing new antenna designs for innovative solutions	2
	PO2	Identify the importance of omni-directional and directional antennas formulate their parameters by reviewing research literature , analyze complex engineering problems , interpret and validate the results with the basics of engineering science	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO10	Communicate orally on cellular mobile systems and write effective reports on the telephone systems and limitations of the conventional system.	2
	PSO3	Explore smart antennas to improve the channel capacity and reduction in interference	1
CO 4	PO1	Analyze the hand-off mechanism using mathematical principles and own engineering discipline.	2
	PO10	Communicate orally on cellular mobile systems and write effective reports on the telephone systems and limitations of the conventional system.	2
CO 5	PO1	Illustrate the concepts of wireless systems and standards by understanding the knowledge in solving (complex) engineering problems related to antenna arrays by applying scientific, mathematical principles and own engineering discipline	2
	PO3	Analyze various methodologies for sharing the channel to multiple users, innovative solutions and manage the design process of wireless standards	2
	PO10	Communicate orally on cellular mobile systems and write effective reports on the telephone systems and limitations of the conventional system.	2
	PSO3	Interface automation tools to analyze the wireless systems	1
CO 6	PO1	Model the public land mobile telecommunication system by applying the scientific, mathematical principles and own engineering discipline	3
	PO2	Review the advanced intelligent network by research literature, analyze complex engineering problems, interpret and validate the results with the basics of engineering science	5
	PO10	Communicate orally on cellular mobile systems and write effective reports on the telephone systems and limitations of the conventional system.	2
	PSO3	Adopt technical library resources and literature search in advanced research wireless and mobile cellular networks.	1

Note: For Key Attributes refer Annexure - I

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

				PRO)GR	$\mathbf{A}\mathbf{M}$	OUT	COL	MES				PSO'S		
COURSE	PO	O PO												PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	-	2	-	-	-	-	-	-	2	-	-	-	-	-

CO 3	2	5	-	-	-	-	-	-	-	2	-	-	-	-	1
CO 4	2	-	-	-	-	-	-	-	-	2	-		-	-	-
CO 5	2	-	2	-	-	-	-	-	-	2	-	-	-	-	1
CO 6	3	5	-	-	-	-	-	-	-	2	-		-	-	1

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

				PRO)GR	AM	OUT	COL	MES				PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	100	40	-	-	-	-	-	-	-	40	-	-	-	-	-
CO 2	100	-	20	-	-	-	-	-	-	40	-	-	-	-	-
CO 3	67	50	-	-	-	-	-	-	-	40	-	-	-	-	14
CO 4	67	-	-	-	-	-	-	-	-	40	-		-	-	-
CO 5	67	-	20	-	-	-	-	-	-	40	-	-	-	-	14
CO 6	100	50	-	-	-	-	-	-	-	40	-	-	-	-	14

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $0 0 \le C \le 5\%$ No correlation $1 5 < C \le 40\%$ Low/ Slight
- $\pmb{2}$ 40 % < C < 60% Moderate
- $\boldsymbol{3}$ 60% \leq C < 100% Substantial /High

				PRO)GR	$\mathbf{A}\mathbf{M}$	OUI	COI	MES				PSO'S				
COURSE	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7		
CO 1	3	2	-	-	-	-	-	-	-	2	-	-	-	-			
CO 2	3	-	1	-	-	-	-	-	-	2	-	-	-	-	-		
CO 3	3	2	-	-	-	-	-	-	-	2	-	-	-	-	1		
CO 4	3	-	-	-	-	-	-	-	-	2	-	-	-	-	-		
CO 5	3	-	1	-	-	-	-	-	-	2	-	-	-	-	1		
CO 6	3	2	-	-	-	-	-	-	-	2	-	-	-	-	1		
TOTAL	18	6	2	-	-	-	-	_	-	12	-	-	-	_	3		
AVERAGE	3.0	2.0	1.0	-	-	-	-	-	-	2.0	-	-	-	-	1.0		

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	 ✓ 	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	\checkmark	Open Ended Experiments	~
Assignments	-				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

\checkmark	Early Semester Feedback	>	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling a	and E	xperimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	CELLULAR MOBILE RADIO SYSTEMS
	Introduction to cellular mobile System, performance criteria, uniqueness of mobile radio environment, operation of cellular systems, hexagonal shaped cells, analog and digital Cellular systems, General description of the problem, concept of frequency channels, Co-channel Interference Reduction Factor, desired C/I from a normal case in a omni directional Antenna system, Cell splitting, consideration of the components of Cellular system.
MODULE II	INTERFERENCE AND CELL COVERAGE FOR SIGNAL AND TRAFFIC
	Introduction to Co-Channel Interference, real time Co-Channel interference, Co-Channel measurement, design of Antenna system, Antenna parameters and their effects, diversity receiver, non-cochannel interference-different types, Signal reflections in flat and hilly terrain, effect of human made structures, phase difference between direct and reflected paths, constant standard deviation, straight line path loss slope, general formula for mobile propagation over water and flat open area, near and long distance propagation antenna height gain, form of point to point model. Small-scale fading and multipath: Small scale multipath propagation, types of small - Scale fading; Fading effects due to multipath time delay spread, flat fading, frequency selective fading.
MODULE III	CELL SITE AND MOBILE ANTENNAS
MODULE IV	Sum and difference patterns and their synthesis, omni directional antennas, directional antennas for interference reduction, space diversity antennas, umbrella pattern antennas, minimum separation of cell site antennas, high gain antennas, Numbering and grouping, setup access and paging channels channel assignments to cell sites and mobile units, channel sharing and borrowing, sectorization, overlaid cells, non-fixed channel assignment, Handoff, dropped calls and cell splitting, types of handoff, handoff invitation, delaying handoff, forced handoff, mobile assigned handoff. Intersystem handoff, cell splitting, micro cells, vehicle locating methods, dropped call rates and their evaluation.channel planning for wireless systems, Indoor propagation models-partition losses (Same Floor), partition losses between floors, log- distance path loss model
MODULE IV	WIRELESS SYSTEMS AND STANDARDS
	Second generation and Third generation Wireless Networks and Standards, WLL, Bluetooth, GSM, IS95, DECT, GSM architecture, GSM channels, multiplex access scheme, TDMA, CDMA.
MODULE V	INTELLIGENT NETWORK FOR WIRELESS COMMUNICATIONS
	Intelligent cell concept, advanced intelligent network, SS7 network and ISDN for AIN, AIN for mobile communication, asynchronous transfer mode technology, future public land mobile telecommunication system, wireless information superhighway Gateway, TCP/IP Model and the OSI Network Model.

TEXTBOOKS

- 1. W.C.Y. Lee, "Mobile Cellular Telecommunications", Tata McGraw-Hill, 2nd Edition, 2006.
- 2. Gordon L. Stuber, "Principles of Mobile Communications", Springer International, 2nd Edition, 2007.
- 3. Yi-Bing Lin and Imrich chlantae, "Wireless and Mobile Network Architecture", John Wiley, 1st Edition, 2006.

REFERENCE BOOKS:

- 1. Theodore. S. Rapport, "Wireless Communications", 3rd Edition, Pearson Education, 2003.
- 2. Lee, "Wireless and Mobile Communications", McGraw Hill, 3rd Edition, 2006.
- 3. Jon W. Mark and Weihua Zhqung, "Wireless Communication and Networking", PHI, 1st Edition, 2005.
- 4. R. Blake, "Wireless Communication Technology", Thompson Asia Pvt. Ltd., 1st Edition 2004.

COURSE WEB PAGE:

https://lms.iare.ac.in/index?route=course/detailscourse id_127

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference	
	OBE DISCUSSION			
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms.iare.ac.in/ index? route=course/details& course id_127	
	CONTENT DELIVERY (TH	EORY)		
2	Introduction to cellular mobile System	CO 1	T1-3.2-3.3	
3	performance criteria, uniqueness of mobile radio environment	CO 1	T1-3.3-3.4	
4	operation of cellular systems, hexagonal shaped cells	CO 1	T1-3.3-3.4	
5	analog and digital Cellular systems, General description of the problem	CO 1	T1-3.5	
6	concept of frequency channels	CO 1	T1-4.2	
7	Frequency reuse, Co-channel Interference Reduction Factor	CO1	T1-4.4	
8	Cell splitting, consideration of the components of Cellular system	CO 1	T1-4.2	
9	Introduction to Co-Channel Interference, real time Co-Channel interference	CO 2	T1-4.6	
10	Co-Channel measurement, design of Antenna system,	CO 2	T1-4.7	
11	Antenna parameters and their effects, diversity receiver, non-co channel interference-different types	CO 2	T1-4.10	

12	Signal reflections in flat and hilly terrain, effect of human made structures, phase difference between direct and reflected paths	CO 2	T1-4.10.6
13	constant standard deviation, straight line path loss slope, general formula for mobile propagation over water and flat open area,	CO 2	T1-4.11
14	near and long distance propagation antenna height gain, form of point to point model.	CO 2	T1-4.2
15	Small-scale fading and multipath: Small scale multipath propagation	CO 2	T1-5.1.1
16	Types of small - Scale fading; Fading effects due to multipath time delay spread	CO 2	T1-5.1.1
17	Flat fading, frequency selective fading	CO 2	T1-5.1.1
18	Sum and difference patterns and their synthesis, omni directional antennas	CO 3	T1-5.2
19	Directional antennas for interference reduction, space diversity antennas	CO 3	T1-5.3
20	Umbrella pattern antennas, minimum separation of cell site antennas, high gain antennas	CO 3	T1-5.3.2
21	Numbering and grouping, setup access	CO 3	T1-5.3.3,5.4
21	paging channels channel assignments to cell sites and mobile units	CO 3	T1-5.4.2
22	channel sharing and borrowing, sectorization, overlaid cells, non-fixed channel assignment	CO 3	T1-5.5
23	Handoff, dropped calls and cell splitting	CO 4	T1-5.11
24	Types of handoff, handoff invitation, delaying handoff, forced handoff, mobile assigned handoff. Intersystem handoff,	CO 4	T1-5.11
25	cell splitting, micro cells, vehicle locating methods	CO 4	T1-5.11
26	dropped call rates and their evaluation	CO 4	T1-5.11
27	channel planning for wireless systems, Indoor propagation models-partition losses (Same Floor)	CO 4	T1-7.1,7.2
28	partition losses between floors, log- distance path loss model	CO 4	T1-7.3,7.4
29	Second generation and Third generation Wireless Networks and Standards	CO 5	T1-7.6,7.7
30	WLL, Bluetooth	CO 5	T1-7.7.2
31	GSM, IS95,	CO 5	T1-7.8
32	DECT, GSM architecture	CO 5	T1-7.8.1,8.2
33	GSM channels	CO 5	T1-7.10,11
34	Multiplex access scheme: TDMA	CO 5	T1-7.10.2-3
35	Multiplex access scheme: CDMA	CO5	T1-7.10.3
36	Intelligent cell concept, advanced intelligent network	CO 6	R3-P184
37	SS7 network and ISDN for AIN, AIN for mobile communication	CO 6	R3-P185
38	Common channel signaling, asynchronous transfer mode technology	CO 6	R3-P191

39	future public land mobile telecommunication system, wireless information superhighway	CO 6	R3-P190		
40	Gateway, TCP/IP Model and the OSI Network Model	CO 6	R3-P191		
	PROBLEM SOLVING/ CASE STUDIES				
41	Problems on Signal reflections in flat and hilly terrain	CO 2	T1-3.1-3.2		
42	Problems on probability of cell system	CO 3	T1-3.3-3.4		
43	Problems on effective aperture	CO 4	T1-4.6		
44	Problems on diffraction loss	CO 3	T1-4.7		
45	Problems on received power	CO 4	T1-5.1.1		
46	Problems on grade of service	CO 6	T1-4.6		
47	Problems on phase difference between direct and reflected paths	CO 4	T1-5.3.2		
48	Problems on path loss slope	CO 5	T1-5.1.1		
	DISCUSSION ON DEFINITION AND TERMINOLOGY				
49	The cellular concept system design fundamentals	CO 1	T1-3.1-3.24		
50	Mobile radio propagation	CO 3	T1-4.1 to 4.9		
51	Cellular system design fundamentals	CO 5	T1-5.1 to 5.16		
52	Equalization and diversity	CO 4	T1-7.1 to 7.17		
53	Asynchronous transfer mode technology	CO 3	R3 7.4-7.8		
	DISCUSSION ON QUESTION BANK				
54	The cellular concept system design fundamentals	CO 2	T1-3.1-3.24		
55	Mobile radio propagation	CO 3	T1-4.1 to 4.9		
56	Channel sharing, borrowing, sectorization and overlaid cells	CO 5	T1-5.1 to 5.16		
57	WLL, Bluetooth, GSM, IS95, DECT	CO 4	T1-7.1 to 7.14		
58	Wireless networks and standards	CO 5	R3-8.6-8.9		
59	SS7 network and ISDN for AIN, AIN for mobile communication	CO 6	T2-9.9 to 9.12		
60	Intelligent cell concept, advanced intelligent network	CO 6	T2-9.3 to 9.7		

Signature of Course Coordinator Dr. V Siva Nagaraju, Associate Professor

HOD

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES and PROGRAM SPECIFIC OUTCOMES

РО	NBA Statement / Key Competencies Features (KCF)		
Number			
		KCF's	
PO 1	Apply the knowledge of mathematics, science, Engineering	3	
	fundamentals, and an Engineering specialization to the solution of		
	complex Engineering problems (Engineering Knowledge).		
	Knowledge, understanding and application of		
	1. Scientific principles and methodology.		
	2. Mathematical principles.		
	3. Own and / or other engineering disciplines to integrate / support		
	study of their own engineering discipline.		
PO 2	Identify, formulate, review research literature, and analyse complex	10	
	Engineering problems reaching substantiated conclusions using first		
	principles of mathematics natural sciences, and Engineering sciences		
	(Problem Analysis).		
	1. Problem or opportunity identification		
	2. Problem statement and system definition		
	3. Problem formulation and abstraction		
	4. Information and data collection		
	5. Model translation		
	6. Validation		
	7. Experimental design		
	8. Solution development or experimentation / Implementation		
	9. Interpretation of results		
	10. Documentation		
PO 3	Design solutions for complex Engineering problems and design	10	
	system components or processes that meet the specified needs with		
	appropriate consideration for the public health and safety, and the		
	cultural, societal, and Environmental considerations		
	(Design/Development of Solutions).		
	1. Investigate and define a problem and identify constraints		
	including environmental and sustainability limitations, health and		
	satety and risk assessment issues		
	2. Understand customer and user needs and the importance of		
	considerations such as aesthetics		
	3. Identify and manage cost drivers		
	4. Use creativity to establish innovative solutions		
	 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		
------	--	----	
	 Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems 	11	
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and	1	
	 modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. 	Ŧ	

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

[T	
PO 12	Recognize the need for and have the preparation and ability to	8
	engage in independent and life-long learning in the broadest context	
	of technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	
DSO 1	Build Embedded Software and Digital Circuit Development platform	۲.
I SU I	for Debetical Embedded Systems and Signal Processing Applications	9
	1 Analyze and calve real time problems in Debatics	
	2. Evaluate the design and provide entired solutions of the digital	
	2. Evaluate the design and provide optimal solutions of the digital	
	circuits for signal processing applications	
	3. Develop embedded systems modules using Real Time Operating	
	System	
	4. Undertake research and development projects in the field of	
	Embedded Systems.	
	5. Adopt the engineering professional code and conduct	
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC)	11
	Prototype designs, Virtual Instrumentation and System on Chip	
	(SOC) designs.	
	1. Inspect, survey and analyze types of ASIC chip designs.	
	2. Design ASIC prototypes using Verilog and VHDL languages.	
	3. Analyze microprocessor subsystems with memories and I/O	
	interfaces for SOC designs	
	4. Explore hardware components for designing SOC	
	5. Adopt the engineering professional code and conduct.	
	6. Designing prototypes of SOC using programming tools like	
	MATLAB, LabVIEW.	
	7. Familiarize with the design flow of ASIC prototypes.	
	8. Realize SOC using Register-Transfer-Level designs.	
	9. Analyse and develop models for system level descriptions for	
	synthesis of SOC.	
	10. Inspect and survey the abstractions and principles for the	
	specification, simulation, verification, and synthesis of systems on	
	chip (SoC).	
	11 Programming and hands-on skills to meet requirements of global	
	11. I rogramming and names on skins to most requirements of grobar	
	 Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register-Transfer-Level designs. Analyse and develop models for system level descriptions for synthesis of SOC. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC). Programming and hands-on skills to meet requirements of global 	

 2.Adopt technical library resources and literature search. 3. Explore smart antennas. 4. Model, program for operation and control of smart antennas for wireless communication applications. 5. Interface automation tools. 6. Research, analysis, problem solving and presentation using software aids. 7. Programming and hands-on skills to meet requirements of global environment. 	PSO 3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications. 1. Explicit software and programming tools for antenna design. 2.Adopt technical library resources and literature search. 3. Explore smart antennas. 4. Model, program for operation and control of smart antennas for wireless communication applications. 5. Interface automation tools. 6. Research, analysis, problem solving and presentation using software aids. 7. Programming and hands-on skills to meet requirements of global environment. 	7
--	-------	---	---

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	Electronics and Communication Engineering					
Course Title	Wireles	Wireless Communications and Networks				
Course Code	AECC25	AECC25				
Program	B.Tech					
Semester	V					
Course Type	Professional Elective					
Regulation	Regulation UG-20					
	Theory		Prac	ractical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Mr A.Karthik, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC10	IV	Analog and Digital Communiations

II COURSE OVERVIEW:

This course is intended to provide an overview of transmitting information from one point to another without using any connection like wires, cables or any physical medium. It covers the fundamentals of cellular communications, radio propagation, equalization, diversity and wireless networks. It focuses on performance analysis and design of a wireless communication system such as mobile telephone, satellite communication, TV and radio transmissions.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Wireless Communications and Networks	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	x	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50%	Understand
33%	Apply
17 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component		Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	_

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The concepts of frequency reuse, handoff, multipath channels and multiple access techniques used in wireless communication systems.
II	The process of fading mechanism, types of equalizers and diversity techniques.
III	The wireless network standards together with network protocols.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate the functioning of a cellular system for	Understand
	implementing technical challenges.	
CO 2	Summarize the propagation mechanisms and radio wave	Understand
	propagation to know the behavior of radio waves	
CO 3	Apply the channel path loss models for the reduction in power	Apply
	density (attenuation) of an electromagnetic wave.	
CO 4	Identify the multiple access schemes and techniques for	Apply
	providing multiple users on a single channel.	
CO 5	Analyze the process of equalization and diversity schemes carried	Analyze
	out in mobile devices for reduced distortion of received signals.	
CO 6	Classify the types of wireless local area networks and networking	Understand
	standards for implementing the network of computing devices.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

	Program Outcomes
PO 8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering
	activities with the engineering community and with society at large, such as,
	being able to comprehend and write effective reports and design
	documentation, make effective presentations, and give and receive clear
	instructions.
PO 11	Project management and finance: Demonstrate knowledge and
	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects
	and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation
	and ability to engage in independent and life-long learning in the broadest
	context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the	2	SEE / CIE /
	knowledge of mathematics, science, engineering		QUIZ / AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	1	SEE / CIE /
	research literature, and analyze complex		QUIZ / AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 4	Conduct Investigations of Complex	2	SEE / CIE /
	Problems: Use research-based knowledge and		QUIZ / AAT
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		
PO 10	Communication: Communicate effectively on	1	SEE / CIE /
	complex engineering activities with the		QUIZ / AAT
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications	_	
PSO 2	Focus on the Application Specific Integrated Circuits (ASIC) prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	_	_
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the patch and smart antennas for wired and wireless communication applications.	2	Research papers /Project

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE				PSO'S											
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-		-	-	-
CO 2	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 3	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 4	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-		-	-	-
CO 5	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-		-	-	-

XII JUSTIFICATIONS FOR CO – PO / PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Understand the cell structure and handoff (knowledge) for wireless system by applying the mathematical principles .	1
	PO 10	Communicate orally on basics of cellualr communication	1
CO 2	PO 1	Understand the concept of channel capacity and co-channel interference for mathematical and scientific principles parameters.	2
	PO 2	The channel interfernce problem formulation and solution development the fading operations by analyzing interpretation of results	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 4	Knowledge of the channel interfernce characteristics and ability to apply modeling techniques of fading operations by analyzing engineering problems	5
	PO 10	Effictive presentation and speaking sytle on propagation mechanisms.	1
	PSO 3	Problem soving of channel capacity for wireless communication applications to meet requirements of global environment	3
CO 3	PO 1	The radio wave propagation scientific principles used in propagation mechanisms by applying the mathematics principles	2
	PO 2	Understand the radio wave propagation of problem formulation to the propagation mechanisms using principles of scientific methodology for Implementation	3
	PO 4	Knowledge of the wave propagation characteristics and ability to apply modeling techniques of fading operations by analyzing engineering problems	5
	PO 10	Effective presentation and speaking style on channel path loss models.	
	PSO 3	Research analysis of radio wave propagation for wireless communication applications to meet requirements of global environment	3
CO 4	PO 1	Analyze (knowledge) the channel path loss models and transmission operations by mathematical principles using the principles of scientific methodology	2
	PO 2	Understand the channel path loss models problem statement and finding the solution implementation of fading operations by analyzing experimental design	3
	PO 10	Effective presentation and speaking style on multiple ccess schems and techniques	1
CO 5	PO 1	Identify parameters of equalization of scientific methodology by using mathematical principles for engineering disipline	3
	PO 4	Knowledge of the multipath characteristics and ability to apply modeling techniques of fading operations by analyzing engineering problems	5
	PO 10	Effective presentation and speaking style on process of equalization and diversity schems.	1
CO 6	PO 1	Different types of wirelss local area networks for scientific methodlogy to specify multiple users over a single channel by analyze the engineering disipline	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Identify the parameters of wireless area networks problem statements using mathematics	2
		principles.	
	PO 10	Communicate orally on the performance of wireless	1
		local area network characteristics	

Note: For Key Competencies Refer Annexure

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE		PROGRAM OUTCOMES													PSO'S			
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7			
CO 1	1	-	-	-	-	-	-	-	-	1	I	-	-	I	I			
CO 2	2	3	-	5	-	-	-	-	-	1	-	-	-	-	3			
CO 3	2	3	-	5	-	-	-	-	-	1	-	-	-	-	3			
CO 4	2	3	-	5	-	-	-	-	-	1	-	-	-	-	-			
CO 5	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-			
CO 6	2	2	-	-	-	-	-	-	-	1	-	-	-	-	-			

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE	PROGRAM OUTCOMES													PSO'S			
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7		
CO 1	33.3	-	-	-	-	-	-	-	-	20	-		-	-	-		
CO 2	66.6	30.0	-	45.5	-	-	-	-	-	20	-	-	-	-	42		
CO 3	66.6	30.0	-	45.5	-	-	-	-	-	20	-	-	-	-	42		
CO 4	66.6	30.0	-	45.5	-	-	-	-	-	20	-		-	-			
CO 5	100	-	-	-	-	-	-	-	-	20	-	-	-	-	-		
CO 6	66.6	20.0	-	-	-	-	-	-	-	20	-		-	-	_		

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $1-5 < C \le 40\% Low/Slight$
- $\boldsymbol{3}$ 60% \leq C < 100% Substantial /High

COURSE				PRO	OGR	AM	OUT	COI	MES]	PSO'S	5
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	1	-		-	-	-
CO 2	2	1	-	2	-	-	-	-	-	1	-	-	-	-	2
CO 3	2	1	-	2	-	-	-	-	-	1	-	-	-	-	2
CO 4	2	1	-	2	-	-	-	-	-	1	-		-	-	-
CO 5	3		-	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	2	1	-	-	-	-	-	-	-	1	-		-	-	-
TOTAL	19	4	-	6	-	-	-	-	-	6	-	-	-	-	4
AVERAGE	1.9	1	-	2	-	-	-	-	-	1	-	-		-	2

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	\checkmark
Quiz	\checkmark	Tech - Talk	-	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	-	5 Minutes Video / Concept Video	-	Open Ended Experiments	-
Micro Projects	-	·			

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of activities / Modelin	g and	l Experimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	THE CELLULAR CONCEPT SYSTEM DESIGN FUNDAMENTALS
	Introduction, frequency reuse, channel assignment strategies, handoff strategies; Prioritizing handoffs, practical handoff considerations, interference and system capacity; Co-channel interference and system capacity, channel planning for wireless systems, adjacent channel interference, power control for reducing interference, trunking and grade of service, improving coverage and capacity in cellular systems; Cellsplitting, sectoring.

MODULE II	MOBILE RADIO PROPAGATION- LARGE SCALE
	Large-Scale Path Loss: Introduction to radio wave propagation, free space propagation model, relating power to electric field, the three basic propagation mechanisms; Reflection: Reflection from dielectrics, Brewster angle, reflection from prefect conductors, ground reflection (Two-Ray) mode; Diffraction Fresnel zone geometry, knife-edge diffraction model, multiple knife-edge diffraction, scattering, outdoor propagation models; Longley-Ryce model, Okumura Model, HataModel, PCS extension to hata Model, Walfisch and Bertoni model, wideband PCS microcell model, indoor propagation models-partition losses (Same Floor), partition losses between floors, log-distance path loss model, ericsson multiple breakpointmodel, attenuation factor model, signal penetration into buildings, ray tracing and site specific modeling.
MODULE III	MOBILE RADIO PROPAGATION- SMALL SCALE
	Small-scale fading and multipath: Small scale multipath propagation; Factors influencing small scale fading, Doppler shift, impulse response model of a multipath channel; Relationship between bandwidth and received power, small; Scale multipath measurements; Direct RF pulse system, spread spectrum sliding correlator channel sounding, frequency domain channels sounding, parameters of mobile multipath channels; Time dispersion parameters.
	Coherence Bandwidth, Doppler spread and coherence time, types of small - Scale fading; Fading effects due to multipath time delay spread, flat fading, frequency selective fading, fading effects due to Doppler Spread-Fast fading, slow fading, statistical models for multipath fading channels; Clarkes model for flatfading, spectral shape due to Doppler spread in Clarkes model, simulation of Clarke and Gans Fading model, level crossing and fading statistics, two-ray Rayleigh fading model.
MODULE IV	EQUALIZATION AND DIVERSITY
	Introduction, fundamentals of equalization, training a generic adaptive equalizer, equalizers in a communication receiver, linear equalizers, non-linear equalization; Decision feedback equalization (DFE), maximum likelihood sequence estimation (MLSE) equalizer, algorithms for adaptive equalization; Zero forcing algorithm, least mean square algorithm, recursive least squares algorithm; Diversity techniques; Derivation of selection diversity improvement, derivation of maximal ratio combining improvement, practical space diversity consideration; Selection diversity, feedback or scanning diversity, maximal ratio combining, equal gain combining, polarization diversity, frequencydiversity, time diversity, RAKE receiver.
MODULE V	WIRELESS NETWORKS
	Introduction to wireless networks, advantages and disadvantages of wireless local area networks, WLAN topologies, WLAN standard IEEE 802.11, IEEE 802.11 medium access control, comparison of IEEE802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, wireless PANs, Hipper LAN, WLL.

TEXTBOOKS

- 1. Theodore.S. Rapport, —Wireless Communications ||, Pearson Education, 2nd Edition, 2010.
- 2. UpenDalal, "Wireless communication", oxford University press.
- 3. KavehPahlvan, Prashant Krishnamurthy, "Principle of wireless networks", A United Approach^{||}, Pearson Education, 2004.
- 4. Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2005.

REFERENCE BOOKS:

- 1. P.Nicopolitidis, M.S. Obaidat, G.I.Papadimitria, A.S. Pomportsis,"Wireless Networks" John Wiley and sons, 1st Edition, 2003.
- 2. Vijay K Garg,"Wireless Communications and Networks", Morgan Kaufmann Publishers an Imprint of Elsevier, USA 2009 (Indian Reprint).
- 3. Mark Ciampa Jorge Olenewa, "wireless communication and Networking", IE, 2009.
- 4. X.Wang, H.V.Poor, Wireless communication system, Pearson Education, 2004.
- 5. JochenSchiller," Mobile Communication", Pearson Education, 2nd Edition, 2003.

COURSE WEB PAGE:

https://lms.iare.ac.in/index ?route=course/details& course id=137

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference					
	OBE DISCUSSION							
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	_	https://lms.iare.ac.in/index ?route=course/details& course id_137					
CONTENT DELIVERY (THEORY)								
2	Frequency reuse and channel assignment strategies.	CO 1	T1-3.1-3.2					
3	Handoff strategies: Prioritizing handoffs, practical handoff considerations.	CO 1	T1-3.3-3.4					
4	Co-channel interference and system capacity	CO 1	T1-3.3-3.4					
5	Trunking and grade of service	CO 1	T1-3.5					
6	Improving coverage and capacity in cellular systems: Cell splitting, sectoring.	CO 1	T1-4.2					
9	Introduction to radio wave propagation	CO2	T1-4.4					
10	Free space propagation model and relating power to electric field	CO 2	T15.1,4.5.2					

11	Reflection: Reflection from dielectrics	CO 2	T1-4.6
12	Diffraction Fresnel zone geometry and	CO 3	T1-4.7
19	knile-edge diffraction	CO 2	TT1 4 10
15	Scattering and outdoor propagation models	CO_3	T1 4 10 6
15	Longley-Ryce model and okumura Model,	CO 3	I 1-4.10.0
16	(Same Floor) and partition losses between floors	CO 3	11-4.11
18	Ericsson multiple break point model and attenuation factor model,	CO 3	T1-4.2
19	Small-scale fading and multipath	CO 3	T1-5.1.1
20	Factors influencing small scale fading	CO 4	T1-5.1.1
21	Relationship between bandwidth and received power	CO 4	T1-5.1.1
22	Spread spectrum sliding correlator channel sounding and parameters of mobile multipath channels	CO 3	T1-5.2
23	Coherence bandwidth and doppler spread and coherence time, types of small - Scale fading.	CO 3	T1-5.3
25	Fading effects due to multipath time delay spread	CO 4	T1-5.3.2
26	Slow fading, statistical models for multipath fading channels	CO 4	T1-5.3.3,5.4
27	Clarkes model for flat fading	CO 4	T1-5.4.2
28	Simulation of clarke and gans fading model	CO 4	T1-5.5
29	Level crossing and fading statistics, two-ray Rayleigh fading model.	CO 7	T1-5.11
30	Small scale multipath measurements	CO 3	T1-5.11
32	Fading effects due to Doppler Spread-Fast fading	CO 6	T1-5.11
33	Two-ray Rayleigh fading model	CO 3	T1-5.11
34	Fundamentals of equalization	CO 5	T1-7.1,7.2
37	Training a generic adaptive equalizer	CO 5	T1-7.3,7.4
39	Non-linear equalization	CO 5	T1-7.6,7.7
40	Decision feedback equalization (DFE) and maximum likelihood sequence estimation equalizer (MLSE)	CO 5	T1-7.7.2
41	Algorithms for adaptive equalization	CO 5	T1-7.8
42	Derivation of selection diversity improvement	CO 5	T1-7.8.1,8.2
43	Derivation of maximal ratio combining improvement, practical space diversity consideration	CO 5	T1-7.10,11

44	Diversity techniques	CO 5	T1-7.10.2-3
45	Polarization diversity and RAKE receiver.	CO 5	T1-7.10.3
46	Introduction to wireless networks	CO 6	R3-P184
47	WLAN topologies and WLAN standard IEEE 802.11	CO6	R3-P185
48	Comparison of IEEE802.11 a,b,g and n standards	CO 6	R3-P191
49	IEEE 802.16 and its enhancements	CO 6	R3-P190
50	Wireless PANs, Hipper LAN, WLL.	CO 6	R3-P191
	PROBLEM SOLVING/ C	ASE STU	DIES
7	Problems on grade of service	CO 1	T1-3.1-3.2
8	Problems on probability of cell system	CO 1	T1-3.3-3.4
14	Problems on effective aperture	CO 2	T1-4.6
17	Problems on diffraction loss	CO 2	T1-4.7
24	Problems on received power	CO 2	T1-5.1.1
31	Problems on Brewster angle	CO 2	T1-4.6
35	Problems on computation of rms delay	CO 2	T1-5.3.2
36	Problems on total power in the carrier	CO 2	T1-5.1.1
	DISCUSSION ON DEFINITION .	AND TER	RMINOLOGY
51	The cellular concept system design fundamentals	CO 1	T1-3.1-3.24
52	Mobile radio propagation	CO 2	T1-4.1 to 4.9
53	Mobile radio propagtion-small scale	CO 3	T1-5.1 to 5.16
54	Equalization and diversity	CO 5	T1-7.1 to 7.17
55	Wireless networks	CO 6	R3
	DISCUSSION ON QUES	STION BA	NK
56	The cellular concept system design fundamentals	CO 1	T1-3.1-3.24
57	Mobile radio propagation	CO 2	T1-4.1 to 4.9
58	Mobile radio propagtion-small scale	CO3	T1-5.1 to 5.16
59	Equalization and diversity	CO 5	T1-7.1 to 7.14
60	Wireless networks	CO 6	R3

Signature of Course Coordinator

HOD,ECE

ANNEXURE

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10

	 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems.	11
PO 5	Create, select, and apply appropriate techniques, resources, and	1
	 modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. 	-

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, 	5
	and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering.	
PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

PO 12	Recognize the need for and have the preparation and ability to	8
	engage in independent and life-long learning in the broadest context	
	of technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

KEY ATTRIBUTES FOR ASSESSING PROGRAM SPECIFIC OUTCOMES

PSO Number	Key Competencies Features (KCF)	No. of KCF's
PSO 1	 Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications 1. Analyze and solve real time problems in Robotics. 2. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications 3. Develop embedded systems modules using Real Time Operating System. 4. Undertake research and development projects in the field of Embedded Systems. 5. Adopt the engineering professional code and conduct. 	5
PSO 2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. 1.Inspect, survey and analyze types of ASIC chip designs. 2.Design ASIC prototypes using Verilog and VHDL languages. 3.Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4.Explore hardware components for designig SOC 5.Adopt the engineering professional code and conduct 6.Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7.Familiarize with the design flow of ASIC prototypes. 8.Realize SOC using Register-Transfer-Level designs 9.Analyse and develop models for system level descriptions for synthesis of SOC 10.Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 11.Programming and hands-on skills to meet requirements of global environment. 	11
PSO 3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications. 1.Explicit software and programming tools for antenna design. 2.Adopt technical library resources and literature search. 3.Explore smart antennas. 4.Model, program for operation and control of smart antennas for wireless communication applications. 5.Interface automation tools. 6.Research, analysis, problem solving and presentation using software aids. 7.Programming and hands-on skills to meet requirements of global environment. 	7

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	MICROPROCESSORS AND MICROCONTROLLERS							
Course Title	LABORATORY							
Course Code	AECC31							
Program	B.Tech							
Semester	V	ECE						
Course Type	Core							
Regulation	IARE - UG20							
		Theory		Prac	tical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits			
	-	-	-	3	2			
Course Coordinator	Mr.Mohd Khadir, Assistant Professor							

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AEC002	III	Digital System Design

II COURSE OVERVIEW:

This laboratory course will facilitates the students to program 8086 microprocessor and 8051 microcontroller. Win862 software will be used for writing and debugging assembly language programs. The course includes performing arithmetic and logical operations, string manipulations, code conversions and interfacing of I/O devices to processor/controller. The hands-on experience acquired by the student's during the course makes them to carry out processor/controller based projects and extend their knowledge on the latest trends and technologies in the field of embedded system.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Microprocessors and	70 Marks	30 Marks	100
Microcontrollers Laboratory			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	√	Lab Worksheets	\checkmark	Viva Questions	√	Probing further Questions
--------------	------------	---	----------------	--------------	----------------	----------	------------------------------

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, Experiments is broadily based on the following criteria given in Table: 1Experiment BasedProgramming based20 %Objective20 %Analysis20 %Design20 %Conclusion

both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Viva

Viva

Component			Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	10tal Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

20 %

Objective	Analysis	Design	Conclusion	Viva	Total
1	1	1	1	1	05

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
1	1	1	1	1	05

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Assembly language programming skills ranging from simple arithmetic operations to
	interfacing real time systems.
II	The usage of software tools to design, debug and test microprocessor/microcontroller based projects using assembly language programming.
III	The design of microcomputer and microcontroller based real-time applications in the fields of communication systems, home based automation systems, automobiles and unmanned applications.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of emulators and assemblers for writing, compiling and	Apply
	running an assembly language programs on training boards.	
CO 2	Develop Assembly language programs for accomplishing code	Apply
	conversions, string manipulations and sorting of numbers.	

CO 3	Choose serial or parallel communication for transmitting the data	Apply
	between microprocessor or microcontroller and peripherals.	
CO 4	Utilize Analog to Digital and Digital to Analog converters with processor	Apply
	or controller for data conversion.	
CO 5	Select suitable registers of microcontroller and write assembly language	Apply
	program to verify timer or counter operations.	
CO 6	Build an interface between processor or controller and peripherals to	Analyze
	provide solutions to the real world problems.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes				
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.				
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.				
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations				
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.				

	Program Outcomes					
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,					
	resources, and modern Engineering and IT tools including prediction and modelling					
	to complex Engineering activities with an understanding of the limitations					
PO 6	The engineer and society: Apply reasoning informed by the contextual					
	knowledge to assess societal, health, safety, legal and cultural issues and the					
	consequent responsibilities relevant to the professional engineering practice.					
PO 7	Environment and sustainability: Understand the impact of the professional					
	engineering solutions in societal and environmental contexts, and demonstrate the					
	knowledge of, and need for sustainable development.					
PO 8	Ethics: Apply ethical principles and commit to professional ethics and					
	responsibilities and norms of the engineering practice.					
PO 9	Individual and team work: Function effectively as an individual, and as a					
	member or leader in diverse teams, and in multidisciplinary settings.					
PO 10	Communication: Communicate effectively on complex engineering activities					
	with the engineering community and with society at large, such as, being able to					
	comprehend and write effective reports and design documentation, make effective					
	presentations, and give and receive clear instructions.					
PO 11	Project management and finance: Demonstrate knowledge and					
	understanding of the engineering and management principles and apply these to					
	one's own work, as a member and leader in a team, to manage projects and in					
	multidisciplinary environments.					
PO 12	Life-Long Learning: Recognize the need for and having the preparation and					
	ability to engage in independent and life-long learning in the broadest context of					
	technological change					

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering Knowledge: Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems.	3	Day to Day Evaluation/ CIE/SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Day to Day Evaluation/ CIE/SEE
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	Day to Day Evaluation/ CIE/SEE
PO 5	Modern Tool Usage:Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Day to Day Evaluation/ CIE/SEE

PO 9	Individual and Teamwork: Function effectively	2	Day to Day
	as an individual, and as a member or leader in		Evaluation/
	diverse teams, and in multidisciplinary settings		CIE/SEE
PO 10	Communication: Communicate effectively on	1	Day to Day
	complex engineering activities with the engineering		Evaluation/
	community and with society at large, such as, being		CIE/SEE
	able to comprehend and write effective reports and		
	design documentation, make effective presentations,		
	and give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Build embedded software and digital circuit	3	Day to Day
	development platform for robotics, embedded		Evaluation/
	systems and signal processing applications.		CIE/SEE

3 = High; 2 = Medium; 1 = Low

XI JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Make use of emulators and assemblers for writing, compiling and running an assembly language programs with the knowledge of science , Engineering fundamentals , and an Engineering specialization on training boards to the solution of complex Engineering problems.	3
	PO 2	Make use of emulators and assemblers for writing, compiling and running an assembly language programs with information and data collection for developing solutions on training boards and interpret the results .	3
	PO 3	Understand customer needs and make use of emulators and assemblers for managing design process and use creativity to establish innovative solutions by writing, compiling and running an assembly language programs on training boards	3
	PO 5	Make use of emulators and assemblers for writing, compiling and running an assembly language program on training boards using Computer software .	1
	PO 9	Make use of emulators and assemblers for writing, compiling and running an assembly language programs by referring textbooks on training boards in hands-on labs and build an ability to work with all levels of people in an organization	3

	PO 10	Make use of emulators and assemblers for writing, compiling and running an assembly language programs on training boards and write effective reports .	1
	PSO 1	Make use of emulators and assemblers(embedded system modules) for writing, compiling and running an assembly language programs on training boards for research and development projects in the field of embedded system.	2
CO 2	PO 1	write Assembly language programs for accomplishing code conversions, string manipulations and sorting of numbers by applying the knowledge of mathematics , Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems	3
	PO 2	Understand the given problem statement and develop assembly language program for accomplishing sorting of numbers, code conversions and string manipulation to provide processor/controller based solution and validate the obtained results.	4
	PO 3	Develop design process for accomplishing code conversions, string manipulations and sorting of numbers and establish innovative solutions to meet the requirements of user .	3
	PO 5	Use computer software and write Assembly language programs for accomplishing code conversions, string manipulations and sorting of numbers to provide solutions for complex Engineering activities with an understanding of the limitations.	1
	PO 9	Take a defined problem and refer appropriate textbook, use hands-on labs and develop the solutions for code conversions, string manipulations and sorting of numbers.	4
	PO 10	Develop Assembly language program for accomplishing code conversions, string manipulations and sorting of numbers and write effective reports and design documentation.	1
	PSO 1	Develop embedded system modules perform code conversions which are commonly used for research and development projects in the field of embedded system.	2
CO 3	PO 1	Perform serial or parallel communication by applying the knowledge of mathematics, Engineering fundamentals, and an Engineering specialization for transmitting the data between microprocessor or microcontroller and peripherals.	3
	PO 2	Understand the given data transfer schemes (problem statement) and interface microprocessor with serial I/O ports and developexperimental design to establish data transfer (solution) and validate the obtained results.	5

	PO 3	Develop processor or controller based systems by managing the designing process to establish serial/ parallel communication based on customer needs with appropriate consideration for the public health and safety, and Environmental considerations and provide the innovative solutions	4
	PO 5	Make use of software and hardware tools to perform data transfer between processor and I/O devices.	1
	PO 9	Focus on working as a member or leader in designing the processor based data transfer schemes in hands-on labs by referring appropriate textbooks and evaluate their performance.	4
	PO 10	Recognize the role of microprocessors and controllers in performing the data transfer by communicating effectively and write effective reports.	1
	PSO 1	choose peripherals and interfacing devices embedded system modules to perform serial and parallel communication for data transmitting which are commonly used in research and development projects in the field of embedded system.	2
CO 4	PO 1	Utilize Analog to Digital and Digital to Analog converters by the knowledge of mathematics,Engineering fundamentals, and an Engineering specialization with processor or controller for data conversion.	3
	PO 2	Identify the problem and conduct experimental design using Analog to Digital and Digital to Analog converters with processor or controller with Information and data collection for data conversion(Solution development) and Interpretation of results.	5
	PO 3	Design processor or controller based systems to perform analog to digital conversion or digital to analog conversion based on customer needs and use creativity in designing solution with appropriate consideration for the public health and safety, and Environmental considerations.	4
	PO 5	Utilize software and hardware tools to perform data conversion between processor and ADC/DAC.	1
	PO 9	Focus on working as a member or leader in designing the processor based data conversion techniques in hands-on labs by referring appropriate textbooks and evaluate their performance	4
	PO 10	Identify the role of microprocessors, ADC and DAC devices in performing the data conversion and write effective reports.	1
	PSO 1	Develop A/D and D/A embedded system modules to perform data conversions for development of projects in the field of embedded systems.	2

CO 5	PO 1	Make use of suitable registers of microcontroller and write assembly language program to verify timer or counter operations by applying the knowledge of mathematics, Engineering fundamentals, and an Engineering specialization.	3
	PO 2	Understand the requirements (opportunity) of timer/counters in industrial applications(problem statement) and design controller based solution(solution) to perform given job and validate the obtained results in real time environment.	5
	PO 3	Design microcontroller based systems to perform timer/counter operations which is necessary in automated industries based on customer needs and use creativity in designing solution with appropriate consideration for the public health and safety, and Environmental considerations	4
	PO 5	Make use of software and hardware tools for effective implementation of timer/counter applications.	1
	PO 9	Work effectively as a member or leader in designing the controller based timer/ counter operations in hands-on labs by referring appropriate textbooks and evaluate their performance	4
	PO 10	Identify the role of microcontrollers in performing the timer/ counter operations by writing effective reports.	1
	PSO 1	make use of registers and interfacing devices embedded system modules to solve the real time problems in robotics where timer/counter operations are required.	2
CO 6	PO 1	Develop an interface between processor or controller and peripherals by applying the knowledge of mathematics,Engineering fundamentals, and an Engineering specialization to provide solutions to the real world problems.	3
	PO 2	Understand the requirements (opportunity) of industrial applications (problem statement) and design processor or controller based solution (solution) to perform given job and validate the obtained results in real time environment.	5
	PO 3	Develop processor or controller based systems by managing the designing process to establish innovative solutions based oncustomer needs with appropriate consideration for the public health and safety, and Environmental considerations.	4
	PO 5	Make use of software and hardware tools for effective design of processor or controller based applications.	1
	PO 9	Focus on working as a member or leader in designing the processor and controller based solutions in hands-on labs by referring appropriate textbooks and evaluate their performance	4

PO 10	Recognize the role microprocessors and controllers in providing the solutions to real-time systems by writing effective reports.	1
PSO 1	Utilize embedded system modules to interface processor or controller to analyze and solve the real time problems in robotics .	2

XII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OUTCOMES				PSO'S		
OUTCOMES	PO 1	PO 2	PO 3	PO 5	PO 9	PO 10	PSO 1
CO 1	3	3	3	1	3	1	2
CO 2	3	4	3	1	4	1	2
CO 3	3	5	4	1	4	1	2
CO 4	3	5	4	1	4	1	2
CO 5	3	5	4	1	4	1	2
CO 6	3	5	4	1	4	1	2

XIII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-
Assignments	_				

XIV ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	√	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XV SYLLABUS:

WEEK I	DESIGN A PROGRAM USING WIN862(ORIENTATION LAB)
	 (a) Design and develop an Assembly language program using 8086 microprocessor and to show the following aspects. (i)Programming (ii)Execution (iii)Debugging To Demonstrate the win 862 software and Trainer kit for 8086 Microprocessor.
	(b) Programs to the students in order to practice building, downloading and running such as memory allocations, push and pop operations.

WEEK II BASIC PROGRAMS USING 8086 MICROPROCESSOR			
	 (a) Examine the output of 16 Bit arithmetic and logical operations using WIN862 software. (b) Examine the output of multi byte addition and subtraction using WIN862 software (c) Growth DCD to ACCH of the provide software 		
	(c) Convert BCD to ASCII of given number using W1N862 software (d) Convert Hexadecimal to ASCII using WIN862 software		
WEEK III	ROGRAMS TO SORT NUMBERS 8086 MICROPROCESSOR		
	 ((a) Develop a program and examine the results of sorting of given numbers in ascending order using WIN862 software (b) Develop a program and examine the results of sorting of given numbers in descending order using WIN862 software (c) Develop a program and examine the results of counting number of vowels in a given array using WIN862 software 		
WEEK IV	OGRAMS FOR STRING MANIPULATIONS OPERATIONS 36 MICROPROCESSOR		
	 Students develop assembly language program for following string manipulations, then build examine the results which are stored in segment memory of the microprocessor. (a) insert a byte in the given string (b) delete a byte in the given string (c) move a block of data from one memory location to the other memory location (d) Reverse of a given string. 		
WEEK V	INTERFACING STEPPER MOTOR USING 8086 MICROPROCESSOR		
	 (a) Develop a program to translate electrical pulses into mechanical movements by interfacing a stepper motor to 8086 microprocessor. in clockwise / anti clockwise direction (b) Develop a program to translate electrical pulses into mechanical movements by interfacing a stepper motor to 8086 microprocessor in different step angles 		
WEEK VI	INTERFACING ANALOG TO DIGITAL CONVETER WITH 8086 MICROPROCESSOR		
	 (a) (a) Develop a program to produce a digital output for 0V to 5V by interface A/D converter module (ADC) to the 8086 microprocessor. (b) Develop a program to produce a digital output for 0V to 12V by interface A/D converter module (ADC) to the 8086 microprocessor. 		
WEEK VII	INTERFACING DIGTAL TO ANALOG CONVERTER WITH 8086 MICROPROCESSOR		
	 (a) Develop a program to generate an analog output signals (triangular and square waveforms) by interface D/A converter module to one of to the 8086 microprocessor. (b) Develop a program to generate saw tooth wave with period of 200µs and address of output device is 55H for 8086 microprocessor. 		

WEEK VIII	EEK VIII INTERFACING KEYBOARD-DISPLAY WITH 8086		
	 ((a) Develop a program to display the data pattern output on the LCD by interfacing hex keypad module to 8086 microprocessor. (b) Develop a program to display the data pattern output on the LCD by interfacing matrix keypad module to 8086 microprocessor. 		
WEEK IX	SERIAL AND PARALLEL COMMUNICATION WITH 8086		
	 (a) Develop a program to implement an asynchronous serial communications port to operate full duplex mode using by interfacing Parallel communication between two microprocessors using 8255 (b) Develop a program to implement an asynchronous serial communications port to operate full duplex mode using by interfacing Serial communication between two microprocessor kits using 8251 		
WEEK X	INTERFACING TRAFFIC LIGHT CONTROLLER WITH 8086		
	Simulate the function of four way traffic light controller by interfacing I/O device to 8086 microprocessor		
WEEK XI	INTERFACING TONE GENERATOR WITH 8086		
	Generate the musical/audio tone by interfacing tone generator I/O device to 8086 microprocessor.		
WEEK XII	ARITHMETIC AND LOGICAL OPERATIONS USING 8051 MICROCONTROLLER		
	(a) Debugg the assembly language program and examine the results of 16 Bit arithmetic and logical operations using 8051 microcontroller.(b) Implement a program to generate a pulse signal and display the generated signal on an oscilloscope.		
WEEK XIII	TIMER/COUNTER WITH 8051 MICROCONTROLLER		
	 (a) Develop a Program for timer that counts from zero upwards for measuring time and counter is displays the number from 00 to FF in Timer 0 and Timer 1 in Counter Mode Operation (b) Develop a Program for timer that counts from zero upwards for measuring time and counter is displays the number from 00 to FF in Timer 0 and Timer 1 in Gated Mode Operation. 		
WEEK XIV	INTERFACING UART WITH 8051 MICROCONTROLLER		
	 (a) The Interfacing UART with 8051 program is display a text in PC from 8051 microcontroller through UART. Some delay is occurring when a single data is sent to PC. (b) Develop an ALP program to transfer the message "IARE" serially at 4800 baud rate in mode 1(8 bit UART) in 8051. 		
WEEK XV	INTERRUPT HANDLING WITH 8051 MICROCONTROLLER		
	 (a) Develop a program for Interrupts are the events that temporarily suspend by interfacing interrupt handling with 8051 microcontroller. (b) Interface an 8051 microcontroller trainer kit to pc and establish a communication between them through RS 232. 		

TEXTBOOKS

- 1. Ray A.K, Bhurchandi K.M, "Advanced Microprocessor and Peripherals", TMH, 2nd Edition, 2012
- 2. Muhammad Ali Mazidi, J.G. Mazidi, R.D McKinlay," The 8051 Microcontroller and Embedded systems using Assembly and C", Pearson education, 2nd Edition, 2009.
- 3. Douglas V. Hall, "Microprocessors and Interfacing Programming and Hardware", TMGH, 2nd Edition, 1994.

REFERENCE BOOKS:

- 1. Kenneth J. Ayala, "The 8051 Microcontroller", Thomson Learning, 3rd edition, 2005.
- 2. Manish K. Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 1st Edition, 2014.
- 3. Ajay V Deshmukh, "Microcontrollers", TATA McGraw Hill publications, 2nd Edition, 2012.

XVI COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Design a program using win862(orientation lab)	CO 1/ CO 2	T1: 3.3
2	Basic programs using 8086 microprocessor	CO1/ CO2	T1: 3.4
3	Programs to sort numbers 8086 microprocessor	CO1/ CO2	T1: 3.4
4	Programs for string manipulations operations 8086 microprocessor	CO1/ CO2	T1: 3.4
5	Interfacing stepper motor using 8086 microprocessor	CO1/ CO3/ CO4	T1: 3.4
6	Interfacing analog to digital conveter with 8086 microprocessor	CO1/ CO4	T1: 3.4
7	Interfacing digtal to analog converter with 8086 microprocessor	CO1/ CO4	T1: 5.8
8	Interfacing keyboard-display with 8086	CO1/ CO4/ CO6	T1: $5.6, 5.7$
9	Serial and parallel communication with 8086	CO1/ CO6	T1: 6.3
10	Interfacing traffic light controller with 8086	CO1/ CO3/ CO6	T1: 6.4
11	Interfacing tone generator with 8086	CO1/ CO6	T1: $6.5, 6.6$
12	Arithmetic and logical operations using 8051 microcontroller	CO1/ CO2	R1: 4,5
13	Timer/counter with 8051 microcontroller	CO1/ CO5/ CO6	R1: 2
14	Interfacing uart with 8051 microcontroller	CO1/ CO6	R1: 8
15	Interrupt handling with 8051 microcontroller	CO1/CO6	R1: 9.2
XVII EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Write an Assembly Language Program to rotate a 200 teeth, 4 phase stepper motor with 5 rotations clockwise and then 5 rotations anticlockwise, Rotate through angle 1350 in 2 sec, rotate the shaft at a speed of 10 rotations per minute.
2	Develop an Assembly Language program to interface 8251 with 8086 at an address 80H, initialize it in asynchronous transmit mode, with 7 bits character size, baud factor 16, one start bit and 1 stop bit, even parity enabled and then transmit a message "HAPPY NEW YEAR" in ASCII form to a modem.
3	Interface ADC 0808 with 8086 using 8255 ports. Use Port A of 8255 for transferring digital data output of ADC to the CPU and Port C for control signals. Assume that an analog input is present at I/P2 of the ADC and a clock input of suitable frequency is available for ADC. Draw the schematic and timing diagram of different signals of ADC0808.
4	Interface 12-bit DAC with 8086 and develop the Assembly Language program to generate the step waveform of duration 1sec, maximum voltage 3 volts and determine the duration of each step.
5	Write a program to initialize 8251 in synchronous mode with even parity, single SYNCH character, 7-bit data character. Then receive FFH bytes of data from a remote terminal and store it in the memory at address 5000H: 2000H.
6	A switch is connected to pin P1.2. Write an 8051 Assembly Language program to monitor SW and create the following frequencies on pin P1.7. SW=0: 500Hz, SW=1: 750Hz, use Timer 0, mode 1 for both of them.
7	Write an Assembly Language program for 8051 Microcontroller to count number of interrupts arriving on external interrupt pin INT1. Stop when counter overflows and disable the interrupt. Give the indication on pin P0.0

Signature of Course Coordinator Mr.Mohd Khadir, Assistant Professor HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	VIRTUAL INSTRUMENTATION LABORATORY						
Course Code	AECC30	AECC30					
Program	B.Tech						
Semester	Semester V						
Course Type	Core						
Regulation	IARE-UG20						
		Theory	Pract	Practical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	3	1.5		
Course Coordinator	Ms K.S.Indrani, Assistant Professor, ECE						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC03	III	Digital System Design

II COURSE OVERVIEW:

The Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a development environment designed by National Instruments that creates graphic-based programs and simulate actual laboratory instruments. The experimental objective of this lab is to design basic operations and data acquisition using myDAQ and myRIO's.Design,verify proto type models for electrical, electronic and mechanical applications using LabVIEW.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Virtual Instrumentation Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab	\checkmark	Viva Questions	\checkmark	Probing further
			Worksheets				Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end laberamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20~%	To test the preparedness for the experiment.	-
20 %	To test the performance in the laboratory.	-
20 %	To test the calculations and graphs related to the concern	-
	experiment.	
20~%	To test the results and the error analysis of the experiment.	_
20 %	To test the subject knowledge through viva – voce.	_

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Labo	Total Marks	
Type of	Day to day	Final internal lab	
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
-	-	-	-	-	-

VI COURSE OBJECTIVES:

Ι	The concept of virtual instrumentation used to develop basic VI programs using loops, case structures for image, signal processing and motion control applications.
II	LabVIEW tool to design basic operations and data acquisition using myDAQ and myRIO's.
III	Prototype model for distribute stand-alone applications using LabVIEW.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Demonstrate the LabVIEW graphical programming environment for	Understand
	virtual instrumentation applications.	
CO 2	Make use of single and nested -loop design patterns for implementing	Apply
	iterative operations in LabVIEW.	
CO 3	Apply cluster and frame based techniques on data for collective and	Analyze
	distributive data application .	
CO 4	Demonstrate the mathematical operations on waveforms using LabVIEW	Apply
	for signal processing and communication applications.	
CO 5	Build data acquisition system for measuring physical parameters from the	Understand
	transducers.	
CO 6	Test , control performance parameters of Electrical motors using My DAQ	Analyze
	and My RIO.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Lab Experiments
	mathematics, science, engineering fundamentals, and		/ CIE / SEE
	an engineering specialization to the solution of		
	complex engineering problems.		

PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Lab Experiments / CIE / SEE
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Lab Experiments / CIE / SEE
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Lab Experiments / CIE / SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations.	3	Lab Experiments / CIE / SEE
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	Lab Experiments / CIE / SEE

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PSO 2	Focus on the Application Specific Integrated Circuit	1	Lab Experiments
	(ASIC) Prototype designs, Virtual Instrumentation and		/ CIE / SEE
	System on Chip (SOC) designs.		

3 =High; 2 =Medium; 1 =Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE				PSO'S											
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSC
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-
CO 3	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	-	\checkmark	-
CO 5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	-	\checkmark	-
CO 6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	-	\checkmark	-

XII JUSTIFICATIONS FOR CO – PO / PSO) MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
CO 1	PO 1	(Recall) the basic arithmetic and logical operations apply them in virtual instrumentation with the knowledge of own engineering discipline, science principles and methodology.	2
	PO 2	Understand the given problem statement and implement electronic, mechanical and electrical model circuits in Labview graphical environment and validate the result of the circuit .	2
	PO 5	Use modern tools to implement basic arithmetic and logical operations using virtual instrumentation .	1
	PO 10	Summarize the basic of Labview to do arithmetic and logical operations(Subject matter).	1
CO 2	PO 1	Design the model using single loop and multiple loop with the knowledge of own engineering discipline , scientific principles and methodology.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems into model, translate the information and implement using loop designs based on the number of iterations required in order to perform repetition of functionality of the circuit, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	5
	PO 5	Make use of iteration loop operation in Labview to perform a function.	1
	PO 10	Outline fluently about the importance of single loop and multi loop designs based on the knowledge of circuit(Subject matter).	1
CO 3	PO 1	Develop the circuit models on data to implement cluster and frame based techniques in Labview environment with the knowledge of own engineering discipline , scientific principles and methodology.	2
	PO 2	Understand the given problem statement , translate the information into the system model in order to perform collective and distributive data applications and validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	4
	PO 5	Implement clustering and sequence operations on data using virtual instrumentation.	1
	PO 10	Explain fluently about the applications and techniques on data set of the system with(technical knowledge).	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
CO 4	PO 1	Summarize the mathematical operations on waveform in Labview virtual environment which are used for signal processing and communication applications with basic knowledge of science and engineering fundamentals.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems related to signal processing and image processing, translate the information into the prototype systems from the provided information and data , develop modulation techniques on the signal in Labview, validate the output by using various controlling operations.	7
	PO 3	Develop circuits , based on customer needs for design of models in virtual instrumentation workbench , to use in signal processing and communication fields and evaluate outcomes of the designs.	5
	PO 4	Use research based knowledge and research method including experimental design using Labview for proto type design of electrical and electronic circuits to do mathematical operations on waveform and (synthesize the information to validate conclusions).	5
	PO 5	Use Virtual instrumentation tools to perform mathematical operations on signals which are for signal processing and image processing applications.	1
	PO 10	Outline fluently about the importance of formulae node,modulation and discrete cosine transform techniques in Labview (Subject matter).	1
	PSO 2	Design proto type model for signal processing ,SOC and communication applications using virtual instrumentation .	1
CO 5	PO 1	Demonstrate the importance of data acquisition systems applying basic knowledge of science and engineering fundamentals.	2
	PO 2	Understand the given problem statement and formulate the engineering problems related to data acquisition translate the information into the model and prototype systems from the provided information and data, develop solutions by interfacing transducers, validate the performance parameters in reaching substantiated conclusions by the interpretation of results .	7
	PO 3	Develop solution from acquiring data by interfacing transducers and establishing innovative solutions to improve performance parameters .	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies matched.
	PO 4	Use research based knowledge and research method including experimental design using my RIO, my DAQ cards and interfacing various transducers (synthesize the information to validate conclusions).	5
	PO 5	Use latest tools of virtual instrumentation using data cards my RIO and my DAQ for home automation applications.	1
	PO 10	Communicate effectively about advantages and applications of data acquisition systems of my RIO and my DAQ cards.	1
	PSO 2	Inspect,Design,analyze various sensor based models using LabVIEW and by interfacing external hardware .	3
CO 6	PO 1	Build the models using electrical motors by interfacing with virtual instruments with the knowledge of mathematics , science and engineering fundamentals.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of improving the performance of electrical motors, translate the information into prototype systems from the provided information and data , develop solutions system using LabVIEW, data acquisition cards validate the design in reaching substantiated conclusions by the interpretation of results .	7
	PO 3	Design solutions for complex engineering problems such as mechanical, electrical and electronic system by doing innovative solution and implementing them using modern tools such as labview , my Rio amd my Daq.	5
	PO 4	Use research-based knowledge, research methods including design of multidisciplinary models using virtual instrumentation lab and data acquisition analyze the result (Subject matter).	5
	PO 5	Outline fluently about the importance of interfacing and procedure to improve physical quantities with the knowledge of (Subject matter) .	1
	PO 10	Explain orally the interfacing of electrical motors and verifying the physical quantities with the technical knowledge	1
	PSO 2	Inspect,Design,analyze various electric, mechanical models using LabVIEW and by interfacing external hardware .	3

Note: For Key Attributes refer Annexure - ${\bf I}$

XIII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

COURSE		PROGRAM OUTCOMES													PSO'S			
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7			
CO 1	2	2	-	-	1	-	-	-	-	1	-	-	-	-	-			
CO 2	2	5	-	-	1	-	-	-	-	1	-	-	-	-	-			
CO 3	2	5	-	-	1	-	-	-	-	1	-	-	-	-	-			
CO 4	2	7	5	5	1	-	-	-	-	1	-	-	-	1	-			
CO 5	2	7	5	5	1	-	-	-	-	1	-	-	-	3	-			
CO 6	2	7	5	5	1	-	-	-	-	1	-	-	-	3	-			

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO-(PO / PSO):

COURSE		PROGRAM OUTCOMES													PSO'S			
OUTCOMES	PO	РО	РО	РО	РО	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7			
CO 1	66.7	20	-	-	100	-	-	-	-	20	-	-	-	-	-			
CO 2	66.7	50	-	-	100	-	١	-	-	20	-	-	-	-	-			
CO 3	66.7	50	-	-	100	-	-	-	-	20	-	-	-	-	-			
CO 4	66.7	70	50	45	100	-	-	-	-	20	-	-	-	10	-			
CO 5	66.7	70	50	45	100	-	-	-	-	20	-	-	-	30	-			
CO 6	66.7	70	50	45	100	-	-	-	-	20	-	-	-	30	-			

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ 0 \leq C < 5% No correlation
- 1 -5 <C< 40% Low/ Slight
- $\pmb{\mathcal{2}}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ $60\% < \mathrm{C} < 100\%$ Substantial /High

COURSE				PSO'S											
OUTCOMES	PO	PO	РО	РО	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	1	-	-	3	-	-	-	-	1	-	-	-	-	-
CO 2	3	2	-	-	3	-	-	-	-	1	-	-	-	-	-
CO 3	3	2	-	-	3	-	-	-	-	1	-	-	-	-	-
CO 4	3	3	2	2	3	-	-	-	-	1	-	-	-	1	-
CO 5	3	3	2	2	3	-	-	-	-	1	-	-	-	1	-

COURSE				PSO'S											
OUTCOMES	PO	PO	РО	РО	РО	PO	РО	PO	РО	РО	PO	РО	PSO	PSO	PSC
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 6	3	3	2	2	3	-	-	-	-	1	-	-	-	1	-
TOTAL	18	14	6	6	9	0	0	0	0	6	0	0	0	3	0
AVERAGE	3	2.3	2	2	3	0	0	0	0	1	0	0	0	1	0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XVIII SYLLABUS:

WEEK-I	OPEN AND RUN A VIRTUAL INSTRUMENT
	(a) Build VI to implement arithmetic and boolean operations using graphical environment.
	(b) Build a VI to calculate the area and perimeter of the rectangle, and the area and circumference of the circle.
WEEK-II	SUM OF "n" NUMBERS USING "FOR" LOOP AND WHILE LOOP FACTORIAL OF A GIVE NUMBER USING FOR LOOP AND WHILE LOOP
	(a)Design sum and factorial of "n" numbers using FOR loop , WHILE loop in VI (Virtual Instrumentation) environment
	(b)Write a program in LabVIEW to generate a Fibonacci series of n numbers where n is defined by the programmer. Example for the Fibonacci series is: 1 1 2 3 5 8 13 21 34 and so on.
WEEK-III	BUNDLE AND UNBUNDLE CLUSTER
	(a) Develop VI to bundle and unbundle a cluster of objects based on properties and segregate
	(b) Build VI to display marks of a student , percentage obtained individual and over all subjects in that semester.
WEEK-IV	APPLICATION USING FORMULA NODE & DISCRETE COSINE TRANSFORM
	(a) Build a VI to create a sine wave using formula node and to perform discrete cosine transform on the given signal.
	(b) Build VI for seven segment display using case structure.

WEEK-V	FLAT AND STACKED SEQUENCE
	(a) Build a VI to perform using flat and stacked sequence on LabVIEW platform.
	(b)Design a traffic light controller using flat sequence on LabVIEW platform.
WEEK-VI	AMPLITUDE MODULATION
	(a) Build a VI to perform Amplitude modulation and demodulation using Labview.
	(b) Build a VI to perform Double side band suppressed carrier modulation on sinusoidal signal and estimate output power.
WEEK-VII	REAL TIME TEMPERATURE MONITORING USING VIRTUAL INSTRUMENTATION.
	(a) Develop a program for real time temperature monitoring by using LM35 temperature sensor.
	(b) Build a VI to convert Celsius to Fahrenheit heat and Fahrenheit heat to Celsius.
WEEK-VIII	MEASURE DISTANCE USING IR RANGER AND MYDAQ
	(a) Build VI to measure distance using IR RANGER and MYDAQ.
	(b) Build VI to detect obstacles using Ultrasonic sensor and myDAQ .
WEEK-IX	MEASUREMENT OF VIBRATIONS USING PIZEO ELECTRIC TRANSDUCER AND MYDAQ
	(a) Develop a program for measurement of vibrations using pizeo electric transducer and myDAQ.
	(b) Develop a program for measurement mechanical stress using pizeo electric transducer and myDAQ.
WEEK-X	MEASUREMENT OF VIBRATIONS USING PIZEO ELECTRIC TRANSDUCER AND MYRIO
	(a) Develop a program for measurement vibrations using pizeo electric transducer and myRIO using lab view
	(b) Develop a program for measurement mechanical stress using pizeo electric transducer and myRIO using lab view.
WEEK-XI	INTERFACE SERVO MOTOR AND DC MOTORS USING MYDAQ
	(a) Develop a program to control speed of servo motors by interfacing using myDAQ
	(b)Develop a program to control speed of dc motors by interfacing using myDAQ.
WEEK-XII	INTERFACE SERVO MOTOR AND DC MOTORS USING MYRIO
	(a) Develop a program to control speed of servo motors by interfacing using myRIO.
	(b) Develop a program to control speed of dc motors by interfacing using myRIO.
WEEK-XIII	MEASURE DISTANCE USING IR RANGER AND MYRIO
	(a) Develop a program for measure distance using IR ranger and myRIO.
	(b) Build a VI to detect obstacles using Ultrasonic sensor and myRIO .

WEEK-XIV	DEVELOPING SIGNAL GENERATOR USING DAQ CARDS.
	(a) Develop a program to develop square wave and triangular signals by using myDAQ cards.
	(b) Develop a program to develop square wave having 10KHZ and 10V signals by using myDAQ cards.

REFERENCE BOOKS:

- 1. Jim Kring, Jeffrey Travis , —LabVIEW for Everyone: Graphical Programming Made Easy and Fun Prentice Hall, 3rd Edition, 2006.
- 2. Richard Jennings Gary W.Johnson, —Labview Graphical Programming ||, McGraw-Hill Education, 4th Edition, 2011.
- 3. Rick Bitter, Taqi Mohiuddin,, Matt Nawrocki, —LabView: Advanced Programming Techniques , CRC Press, 2nd Edition, 2006.
- 4. Sanjay Gupta, —Virtual Instrumentation using LABVIEW ||, McGraw-Hill Education, 2nd edition, 2010.

WEB REFERENCE BOOKS::

- 1. http://www.ni.com/pdf/manuals/373427j.pdf
- 2. http://home.hit.no/ hansha/documents/labview/Introduction to LabVIEW.htm
- 3. https://www.pearsonhighered.com/samplechapter/0130153621.pdf
- 4. http://k12lab-support-pages.s3.amazonaws.com/lvbasichome1.html

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	(a) Build VI to implement arithmetic and boolean operations using graphical environment. (b) Build a VI to calculate the area and perimeter of the rectangle, and the area and circumference of the circle.	CO 1	R1:11.1- 11.5
2	 (a)Design sum and factorial of "n" numbers using FOR loop , WHILE loop in VI (Virtual Instrumentation) environment. (b)Write a program in LabVIEW to generate a Fibonacci series of n numbers where n is defined by the programmer. Example for the Fibonacci series is: 1 1 2 3 5 8 13 21 34 and so on. 	CO 2	R1:11.1- 11.5
3	(a) Develop VI to bundle and unbundle a cluster of objects based on properties and segregate (b) Build VI to display marks of a student , percentage obtained individual and over all subjects in that semester.	CO 3	R1:4.8 , R1:7.2
4	(a) Build a VI to create a sine wave using formula node and to perform discrete cosine transform on the given signal. (b) Build VI for seven segment display using case structure.	CO 4	R1:4.8 , R1:7.2

5	(a) Build a VI to perform using flat and stacked sequence on LabVIEW platform. (b)Design a traffic light controller using flat sequence on LabVIEW platform.	CO 3	R2:10.4 , R2:7.2
6	(a) Build a VI to perform Amplitude modulation and demodulation using Labview.(b) Build a VI to perform Double side band suppressed carrier modulation on sinusoidal signal and estimate output power.	CO 4	R2:10.4 , R1:7.2
7	(a) Develop a program for real time temperature monitoring by using LM35 temperature sensor.(b) Build a VI to convert Celsius to Fahrenheit heat and Fahrenheit heat to Celsius.	CO 4	R2:10.4 , R1:7.2
8	(a) Build VI to measure distance using IR RANGER and MYDAQ. (b) Build VI to detect obstacles using Ultrasonic sensor and myDAQ .	CO 5	R1:8.2-8.5
9	(a) Develop a program for measurement of vibrations using pizeo electric transducer and myDAQ. (b) Develop a program for measurement mechanical stress using pizeo electric transducer and myDAQ	CO 5	R1:11.1- 11.5
10	(a) Develop a program for measurement vibrations using pizeo electric transducer and myRIO using lab view. (b) Develop a program for measurement mechanical stress using pizeo electric transducer and myRIO using lab view.	CO 5	R1:10.1 , R1:10.2
11	(a) Develop a program to control speed of servo motors by interfacing using myDAQ. (b)Develop a program to control speed of dc motors by interfacing using myDAQ.	CO 6	R1:11.1- 11.5
12	(a) Develop a program to control speed of servo motors by interfacing using myRIO. (b) Develop a program to control speed of dc motors by interfacing using myRIO.	CO 6	R3:3.12 , R1:12.7
13	(a) Develop a program for measure distance using IR ranger and myRIO.(b) Build a VI to detect obstacles using Ultrasonic sensor and myRIO .	CO 6	R3:3.12 , .R1:12.7
14	(a) Develop a program to develop square wave and triangular signals by using myDAQ cards	CO 6	R3:3.12 , .R1:12.7
	(b) Develop a program to develop square wave having 10KHZ and 10V signals by using myDAQ cards.	CO 6	R3:3.12 , R1:12.7

XX EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Measurement & Controlling of Temperature through LabVIEW.
2	Speech Recognition Project using LabVIEW.
3	LabVIEW & DAQ based Data Monitoring in Real-Time for PV Solar Cell.
4	Home Automation with Energy Gentrification using LabVIEW.
5	LabVIEW based Security System of Railway Track & Gate.

Course Coordinator Mrs. K.S.Indrani, Assistant Professor

HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10

	 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing 	
	engineering activities, including personnel, health, safety, and risk (including environmental risk) issues	
PO 4	 Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems. 	11
PO 5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex	1
	 Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / 	
	technical library resources / literature search tools.	

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan	12

PO 12	Recognize the need for and have the preparation and ability to engage in	8
	independent and life-long learning in the broadest context of technological	
	change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

KEY ATTRIBUTES FOR ASSESSING PROGRAM SPECIFIC OUTCOMES

РО	NBA Statement / Key Competencies Features (KCF)	No.
Number		of
		KCF's
PSO1	Build Embedded Software and Digital Circuit Development platform for	5
	Robotics, Embedded Systems and Signal Processing Applications	
	1. Analyze and solve real time problems in Robotics	
	2. Evaluate the design and provide optimal solutions of the digital circuits	
	for signal processing applications	
	3. Develop embedded systems modules using Real Time Operating	
	System	
	4. Undertake research and development projects in the field of Embedded	
	Systems	
	5. Adopt the engineering professional code and conduct	
PSO2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype	11
	designs, Virtual Instrumentation and System on Chip (SOC) designs	
	1. Inspect, survey and analyze types of ASIC chip designs	
	2.Design ASIC prototypes using Verilog and VHDL languages	
	3. Analyze microprocessor subsystems with memories and I/O interface	
	for SOC designs	
	4. Explore hardware components for designing SOC	
	5. Adopt the engineering professional code and conduct	
	6.Designing prototypes of SOC using programming tools like MATLAB,	
	LabVIEW	
	7. Familiarize with the design flow of ASIC prototype	
	8. Realize SOC using Register-Transfer-Level designs	
	9. Analyse and develop models for system level descriptions for synthesis	
	of SOC	
	10. Inspect and survey the abstractions and principles for the	
	specification, simulation, verification, and synthesis of systems on chip	
	(SoC)	
	11. Programming and hands-on skills to meet requirements of global	
	environment	

PSO3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications 1. Explicit software and programming tools for antenna design 2. Adopt technical library resources and literature search 3. Explore smart antennas 4. Model, program for operation and control of smart antennas for wireless communication applications 5. Interface automation tools 6. Research, analysis, problem solving and presentation using software aids 7.Programming and hands-on skills to meet requirements of global 	7
	7.Programming and hands-on skills to meet requirements of global environment	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING					
Course Title	MICROWAVE AND RADAR ENGINEERING					
Course Code	AECC32					
Program	B.Tech					
Semester	VI					
Course Type	Core					
Regulation	UG-20					
		Theory		Pra	ctical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4			
Course Coordinator	Dr. V Siva Nagaraju, Associate Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC11	IV	Electromagnetic Waves and Transmission Lines
B.Tech	AECC18	V	Antennas and Wave Propagation

II COURSE OVERVIEW:

This course allows students to study and analyze microwave systems at high frequencies, typically in the MHz and GHz range where lumped elements (e.g., resistors, capacitors, inductors) are no longer appropriate. It also deals with the concepts of radar systems. The main applications such as electronic warfare, navigation system, missile terminal guidance and landing systems of air and space vehicles.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Fluid Dynamics	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	x	Tech talk	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
%	Remember
50 %	Understand
50 %	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	50
	AAT-2	5	
SEE Semester End Examination (SEE)		70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	0%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The concepts of wave guide components and electromagnetic wave propagation for microwave communication using Maxwell's equations.
II	The generation of microwave signals to measure different parameters using microwave test bench.
III	The principle and operation of radar systems and radar range equation for communication.
IV	The use of Doppler frequency shift to detect moving target in stationary clutter , continuous wave radar system in altimeter applications

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate the principle of waveguide components to couple microwave	Understand
	power and make the relation between input and output power	
CO 2	Demonstrate the operation of microwave tubes, solid state devices for	Understand
	the generation and transmission of the microwave frequencies.	
CO 3	Make use of microwave bench set-up for measuring the parameters	Apply
	of microwave signal	
CO 4	Outline the working principle and operation of radar using radar range	Understand
	equation to calculate transmitted power in CW radar	
CO 5	Identify the importance of avoiding blind speed phenomenon,	Apply
	staggered PRF MTI systems are used in modern radar for detection of	
	high-speed moving targets	
CO 6	Choose the appropriate solid state sources, amplifiers and mixers for	Apply
	employing the transmitters and receivers in radar	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE/ CIE,
	knowledge of mathematics, science, engineering		AAT, QUIZ
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE/CIE,
	research literature, and analyze complex		AAT, QUIZ
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 4	Conduct Investigations of Complex	2	SEE/CIE,
	Problems: Use research-based knowledge and		AAT, QUIZ
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		
PO 10	Communication: Communicate effectively on	2	SEE/CIE,
	complex engineering activities with the		AAT, QUIZ
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	PROGRAM SPECIFIC OUTCOMES	${f Strength}$	Proficiency Assessed by
PSO 3	Make use of High frequency structure simulator (HFSS) for modeling and evaluating the patch and smart antennas for wired and wireless communication applications.	2	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-		-	-	-
CO 2	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 3	\checkmark	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	\checkmark	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 6	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Recall the concepts of transmission lines and waveguides (knowledge) to derive the field components of wave equations i.e TE,TM and TEM by applying the scientific and mathematical principles to own engineering discipline .	3
	PO 2	Formulate and analyze (Problem analysis) the complex engineering problems for determining the mode analysis in waveguides using information and data collection with result analysis and experimental evaluation	5
	PO 4	Understanding the contexts of microwave components knowledge in evaluating the methods of s-parameters on power dividers including use of technical literature in design of experiments, analysis of complex problems	5
	PO 10	Communicate orally on the concepts of transmission lines and waveguides (knowledge) and write effective reports on the field components of wave equations i.e TE,TM and TEM modes	2
CO 2	PO 1	Understand the performance characteristics of a Reflex klystron and two-cavity (knowledge) for calculating the input and output power and efficiency by applying the scientific and mathematical principles to own engineering discipline .	3
	PO 2	Formulate and analyze (Problem analysis) the complex Engineering problems to evaluate the performance of microwave sources using Information and data collection with result analysis and experimental evaluation.	5
	PO 4	Analyze the microwave power sources (knowledge) including use of technical literature in design of experiments, analysis of complex problems	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Communicate orally on the concepts of microwave sources and write effective reports on types of sources	2
CO 3	PO 1	Apply the knowledge of Engineering fundamentals to the description of microwave bench setup for measurements of parameters of microwave signal by applying the scientific and mathematical principles to own engineering discipline.	3
	PO 4	Use research-based knowledge in design of experiments, analysis and interpretation of data by Knowledge of characteristics of particular equipment in laboratory for using microwave bench setup	5
	PO 10	Communicate orally on the concepts of microwave bench setup and write effective reports on measurements	2
CO 4	PO 1	Understand the principle of frequency modulated -continuous wave radar by applying the scientific and mathematical principles to own engineering discipline.	3
	PO 2	Analyze the concept FMCW and apply it for altimeter applications use research-based knowledge and of data to provide valid conclusions to measure short distances, high range accuracy, and low power requirements	3
	PO 10	Communicate orally on the concepts of Radar Range equation and write effective reports on Pulse Radar	2
CO 5	PO 1	Understand the principle of moving target indicator radar and Pulse Doppler radar by applying the scientific and mathematical principles to own engineering discipline .	3
	PO 4	Analyze the MTI radar for moving target indication and clutter rejection using the principle of Doppler effect engineering knowledge with design solutions for complex engineering problems with awareness of quality issues, intellectual property and contractual issues	6
	PO 10	Communicate orally on the concept of matched filters in Radar receivers and write effective reports on matched filters	2
	PSO 3	Analyze the concept of MF response characteristics using explicit software and programming tools for antenna design, adopt technical library resources and literature search for wireless communication applications	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 6	PO 1	Understand the methods for employing solid-state	2
		transmitters using the principles of mathematics ,	
		science to the solutions of complex engineering	
		problems.	
	PO 2	Review the concept of noise figure in mixers using	4
		research-based knowledge and interpretation of	
		data to provide valid conclusions	
	PO 10	Communicate orally on the concepts of display	2
		devices and and write effective reports on duplexers	
	PSO 3	Analyze the concept of display devices and duplexers	3
		using explicit software and programming tools	
		for antenna design, adopt technical library	
		resources and literature search for wireless	
		communication applications	

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	3	5	-	5	-	-	-	-	-	2	-		-	-	-
CO 2	3	5	-	5	-	-	-	-	-	2	-	-	-	-	-
CO 3	3	-	-	5	-	-	-	-	-	2	-	-	-	-	-
CO 4	3	3	-	-	-	-	-	I	-	2	-		-	-	-
CO 5	3	-	-	6	-	-	-	-	-	2	-	-	-	-	3
CO 6	2	4	-	-	-	-	-	-	-	2	-		-	-	3

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	РО	РО	РО	РО	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	100	50	-	45	-	-	-	-	-	40	-		-	-	-
CO 2	100	50	-	45	-	-	-	-	-	40	-	-	-	-	-
CO 3	100	-	-	45	-	-	-	-	-	40	-	-	-	-	-
CO 4	100	30	-	-		-	-	-	-	40	-		-	-	-
CO 5	100	-	-	54.5	-	-	-	-	-	40	-	-	-	-	42.8
CO 6	66.6	40	-	-	-	-	-	-	-	40	-		-	-	42.8

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- **1** $-5 < C \le 40\% Low/$ Slight
- 2 40 % < C < 60% Moderate
- $3 60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	2	-	-	-	-	-	2	-	-	-	-	
CO 2	3	2	-	2	-	-	-	-	-	2	-	-	-	-	-
CO 3	3	-	-	2	-	-	-	-	-	2	-	-	-	-	-
CO 4	3	1	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 5	3	-	-	2	-	-	-	-	-	2	-	-	-	-	2
CO 6	3	2	-	-	-	-	-	-	-	2	-	-	-	-	2
TOTAL	18	7	-	8	-	-	-	-	-	12	-	-	-	-	4
AVERAGE	3	1.75	-	2	-	-	-	-	-	2	-	-	-	-	2

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	 ✓ 	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Tech - Talk	~	Certification	-
Term Paper	-	Concept Video	\checkmark	Open Ended Experiments	~
Assignments	-				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

\checkmark	Early Semester Feedback		\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities /	Modeling and	d Ex	perimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	WAVE-GUIDES AND COMPONENTS
	Introduction, microwave spectrum and bands, applications of microwaves,
	types of waveguides, rectangular waveguides, field equations in rectangular
	waveguide, field components of TM and TE waves for rectangular
	waveguide, modes of TM and TE waves in rectangular waveguide,
	impossibility of TEM waves, cut off frequency of rectangular waveguide;
	Wave impedance in rectangular waveguide: Wave impedance for a TM and
	TE wave in rectangular waveguide, Dominant mode and degenerate modes,
	mode characteristics of phase velocity, group velocity, wavelength and
	impedance relations; waveguide multiport junctions: E plane Tee, H plane
	Tee, Magic Tee, applications of Magic Tee, hybrid ring; Ferrites: Faraday
	rotation principle, gyrator, isolator, circulator illustrative problems.

MODULE II	MICROWAVE LINEAR BEAM AND CROSS FIELD TUBES (O-TYPE AND M-TYPE)
	Microwave linear beam tubes (O type): Limitations of conventional tubes at microwave frequencies; Klystron: Velocity modulation process, bunching process, output power and beam loading; Multicavity Klystron amplifiers: Beam current density, output current and output power of two cavity Klystron; Reflex Klystron: Velocity modulation, power output and efficiency. Helix Traveling Wave tube: Slow wave structures, amplification process, conventional current; Microwave cross field tubes (M type): Introduction, cross-field effects; Magnetrons: Different types, 8- cavity cylindrical travelling wave Magnetron, Hull cut-off and Hartree conditions, modes of resonance and PI-mode operation.
MODULE III	MICROWAVE MEASUREMENTS, CW AND PULSE RADAR
	Description of microwave bench: Different blocks and their features, precautions; Microwave power measurement: Bolometer; Measurement of attenuation; Frequency standing wave measurements: measurement of low and high VSWR; Cavity Q; Impedance measurements. Radar Range equation; Pulse Radar: Block diagram and Operation; Maximum unambiguous range; Radar wave forms; Prediction of Target range; Integration of echo pulses, PRF and Range ambiguities; system losses. CW Radar: Introduction, Block Diagram, Isolation between transmitter and receiver, Non-zero IF receiver, Receiver bandwidth requirements, Applications; Frequency Modulated CW radar: Range and Doppler measurement, Mathematical Analysis, Block Diagram and characteristics, FM-CW altimeter, multiple frequency CW radar, Ambiguity Diagram & its application.
MODULE IV	RADAR DETECTION IN NOISE
	Moving target indication (MTI) on A scope, butterfly effect, MTI using delay line canceller (DLC), Doppler measurement using Pulse radar, MTI radar (with power amplifier transmitter), MTI radar (with power oscillator transmitter), filter characteristics of DLC, blind speeds, double DLCs, Blind speeds, Staggered PRFs. Matched Filter (MF) receiver, MF response characteristics; Correlation Receiver, Efficiency of non-matched filters, Matched filter with non-white noise, Automatic Detection of radar signals: Tapped Delay Line (TDL) detection, CFAR receiver, Radar Clutter: Land and Sea clutter (without mathematical treatment)
MODULE V	RADAR TRANSMITTERS & RECEIVERS
	Hybrid Linear-Beam Amplifier and Crossed-Field Amplifiers, Solid State Sources & Amplifiers, Methods for employing solid-state transmitters. Receiver Noise Figure (NF) - Noise Temperature; Measurement of NF, NF of Mixers, Basics of Radar Displays and Duplexers.

TEXTBOOKS

- 1. M. Kulkarni, "Microwave and radar engineering ", Umesh Publications,5th Edition,2016.
- 2. Samuel Y. Liao, "Microwave Devices and Circuits", Pearson, 3rd Edition, 2003.
- 3. Merrill I Skolnik, "Introduction to Radar Systems", TMH Special Indian Edition, 2nd Edition, 2007

REFERENCE BOOKS:

1. Herbert J. Reich, J.G. Skolnik, P.F. Ordung and H.L. Krauss, "Microwave Principles, CBS Publishers and Distributors, New Delhi, 1st Edition, 2004.

- 2. F.E. Terman, "Electronic and Radio Engineering", Tata McGraw-Hill Publications, 4th Edition, 1955.
- 3. Warren L. Stutzman, Gary A. Thiele, "Antenna Theory and Design", 3rd Edition, 2012.

WEB REFERENCES:

- $1.\ https://www.microwaves101.com/uploads/MESA-front.pdf$
- 2. https:// www.onlinecourses.nptel.ac.in/noc20_ee63/preview

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference	
	OBE DISCUSSION			
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms.iare.ac.in/ index? route=course/details& course id_127	
	CONTENT DELIVERY (TH	EORY)		
2	Introduction, microwave spectrum and bands, applications of microwaves	CO 1	T1-1.0-1.4	
3	types of waveguides, rectangular waveguides, field equations in rectangular waveguide	CO 1	T1-4.1.1-4.1.3	
4	field components of TM and TE waves for rectangular waveguide	CO 1	T1-4.1.1-4.1.3	
5	modes of TM and TE waves in rectangular waveguide	CO 1	T1-4.1.1-4.1.3	
6	Impossibility of TEM waves, cut off frequency of rectangular waveguide; Wave impedance in rectangular waveguide and Wave impedance for a TM and TE wave in rectangular waveguide	CO 1	T1-4.1.6-4.1.7	
7	Dominant mode and degenerate modes, mode characteristics of phase velocity, group velocity, wavelength and impedance relations	CO1	T1-4.1.8-4.1.11	
8	waveguide multiport junctions: E plane Tee, H plane Tee	CO 1	T1-5.4- 5.5	
9	Magic Tee, applications of Magic Tee, hybrid ring	CO 1	T1-5.4- 5.5	
10	Ferrites: Faraday rotation principle, gyrator, isolator, circulator illustrative problems.	CO 1	T1 -5.6	
11	Microwave linear beam tubes (O type): Limitations of conventional tubes at microwave frequencies	CO 2	T1 - 6.1	
12	Klystron: Velocity modulation process, bunching process	CO 2	T1 - 6.2- 6.3	
13	Output power and beam loading; Multicavity Klystron amplifiers	CO 2	T1 - 6.4.2-6.4.3	
14	Beam current density, output current and output power of two cavity Klystron	CO 2	T1 - 6.4.2-6.4.3	

15	Reflex Klystron: Velocity modulation, power output and efficiency	CO 2	T1 - 6.4.1
16	Helix Traveling Wave tube: Slow wave structures, amplification process, conventional current	CO 2	T1-7.5
17	Microwave cross field tubes (M type): Introduction, cross-field effects; Magnetrons: Different types	CO 2	T1-7.6
18	8- cavity cylindrical travelling wave Magnetron, Hull cut-off and Hartree conditions	CO 2	T1-7.1.1-7.1.2
19	modes of resonance and PI-mode operation.	CO 2	T1-7.1.1-7.1.2
20	Description of microwave bench: Different blocks and their features, precautions	CO 3	T1-9.1-9.2
21	Numbering and grouping, setup access	CO 3	T1-5.3.3,5.4
21	Microwave power measurement: Bolometer; Measurement of attenuation	CO 3	T1-9.1-9.2
22	Frequency measurements, measurement of low and high VSWR; Cavity Q; Impedance measurements.	CO 3	T1-9.1-9.2
23	Radar Range equation; Pulse Radar: Block diagram and Operation; Maximum unambiguous range	CO 4	T2: 1.3-1.6
24	Radar wave forms, Prediction of target range, integration of echo pulses, PRF and range ambiguities; system losses	CO 4	T2:2.7-2.12
25	cell splitting, micro cells, vehicle locating methods	CO 4	T1-5.11
26	CW Radar: Introduction, Block Diagram, Isolation between transmitter and receiver	CO 4	T2:3.3-3.4
27	Non-zero IF receiver, receiver bandwidth requirements, Applications	CO 4	T2:3.5-3.6
28	Frequency Modulated CW radar: Range and Doppler measurement, Mathematical Analysis	CO 4	T2:3.7-3.8
29	Block Diagram and characteristics, FM-CW altimeter	CO 4	T2:3.6-3.7
30	multiple frequency CW radar, Ambiguity Diagram & its application.	CO 4	T2:3.8-3.9
31	Moving target indication (MTI) on A scope, butterfly effect, MTI using delay line canceller (DLC), Doppler measurement using Pulse radar	CO 5	T2:4.1-4.8
32	MTI radar (with power amplifier transmitter), MTI radar (with power oscillator transmitter)	CO 5	T2:4.9-4.10
33	Filter characteristics of DLC, blind speeds, double DLCs, Blind speeds, Staggered PRFs	CO 5	T2:4.2-4.4
34	Matched Filter (MF) receiver, MF response characteristics; Correlation Receiver	CO 5	T2:10.1- 10.3
35	Efficiency of non-matched filters, Matched filter with non-white noise	CO 5	T2:10.4-10.7
36	Automatic Detection of radar signals: Tapped Delay Line (TDL) detection	CO 5	T1:10.8- 10.9
37	CFAR receiver, Radar Clutter: Land and Sea clutter (without mathematical treatment)	CO 5	T2: 13.1-13.4

38	Hybrid Linear-Beam Amplifier and Crossed-Field Amplifiers	CO 6	T2:6.1-6.2
39	Solid State Sources & amplifiers, Methods for employing solid-state transmitters	CO 6	T2:6.3-6.6
40	Receiver Noise Figure (NF) - Noise Temperature; Measurement of NF, NF of Mixers	CO 6	T2:9.1-9.3
41	Basics of Radar Displays and Duplexers	CO 6	T2:9.4-9.5
	PROBLEM SOLVING/ CASE S	STUDIES	
42	Problems on Phase velocity, group velocity, wavelength and impedance relations	CO 1	T1-4.3- 4.4
43	Problems on Cut off frequency of rectangular waveguide	CO 1	T1-4.6
44	Problems on Waveguide multiport junctions	CO 1	T1-7.1-7.3, 8.4
45	Problems on Klystrons	CO 2	T1-8.5-8.6
46	Problems on Helix Traveling Wave tube: Slow wave structures	CO 2	T1-8.6-8.7
47	Problems on Microwave cross field tubes (M type)- Magnetrons	CO 2	T1-9.1-9.3
48	Problems on Radar Range equation and Maximum unambiguous range	CO 4	T2-4.3.1-4.3.3
49	Problems on Pulse and CW Radar	CO 4	T2-4.4- 4.5
50	Problems on Doppler measurement using Pulse radar	CO 4	T2-8.1-8.3
51	Problems on MTI Radar	CO 5	T2:4.5-4.8
52	Problems on Pulse and CW Radar	CO 5	T2-4.4- 4.5
53	Problems on Delay line canceller (DLC)	CO 5	T2-7.13
54	Problems on Receiver Noise Figure (NF)	CO 6	T2-9.1-9.3
55	Problems on Microwave measurements	CO 3	T1-11.4
56	Problems on Duplexers	CO 6	T2-9.5
	DISCUSSION ON DEFINITION AND	TERMIN	OLOGY
57	Microwave Transmission lines	CO 1	T1-4.3.1
58	Microwave tubes	CO 2	T1- 7.13
59	Microwave measurements, CW and frequency modulated radar	CO 3, CO 4	T1-9.3
60	Moving Target Indication and Pulse Doppler radar	CO 5	T2- 7.13
61	Radar Displays and Duplexers	CO 6	T2-9.1-9.3

DISCUSSION ON QUESTION BANK			
62	Rectangular waveguides	CO 1	T1-4.3.1
63	Microwave linear beam and cross field tubes	CO 2	T1-5.4-5.5
64	Microwave measurements, Radar Range equation	CO 3,	T1-9.3
		CO 4	
65	Moving Target Indication and Pulse Doppler radar	CO 5	T2-4.3.1
66	Radar Transmitters and Receivers	CO 6	T2-9.1-9.3

Signature of Course Coordinator Dr. V Siva Nagaraju, Associate Professor HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES and PROGRAM SPECIFIC OUTCOMES

РО	NBA Statement / Key Competencies Features (KCF)	No.
Number		of
		KCF's
PO 1	Apply the knowledge of mathematics, science, Engineering	3
	fundamentals, and an Engineering specialization to the solution of	
	complex Engineering problems (Engineering Knowledge).	
	Knowledge, understanding and application of	
	1. Scientific principles and methodology.	
	2. Mathematical principles.	
	3. Own and / or other engineering disciplines to integrate / support	
	study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and analyse complex	10
	Engineering problems reaching substantiated conclusions using first	
	principles of mathematics natural sciences, and Engineering sciences	
	(Problem Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results	
	10. Documentation	
PO 3	Design solutions for complex Engineering problems and design	10
	system components or processes that meet the specified needs with	
	appropriate consideration for the public health and safety, and the	
	cultural, societal, and Environmental considerations	
	(Design/Development of Solutions).	
	1. Investigate and define a problem and identify constraints	
	including environmental and sustainability limitations, health and	
	satety and risk assessment issues	
	2. Understand customer and user needs and the importance of	
	considerations such as aesthetics	
	3. Identify and manage cost drivers	
	4. Use creativity to establish innovative solutions	
	 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	
------	--	----
	 Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems 	11
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and	1
	 modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. 	Ŧ

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

[T	
PO 12	Recognize the need for and have the preparation and ability to	8
	engage in independent and life-long learning in the broadest context	
	of technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	
DSO 1	Build Embedded Software and Digital Circuit Development platform	۲.
I SU I	for Debetical Embedded Systems and Signal Processing Applications	9
	1 Analyze and calve real time problems in Debatics	
	2. Evaluate the design and provide entired solutions of the digital	
	2. Evaluate the design and provide optimal solutions of the digital	
	circuits for signal processing applications	
	3. Develop embedded systems modules using Real Time Operating	
	System	
	4. Undertake research and development projects in the field of	
	Embedded Systems.	
	5. Adopt the engineering professional code and conduct	
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC)	11
	Prototype designs, Virtual Instrumentation and System on Chip	
	(SOC) designs.	
	1. Inspect, survey and analyze types of ASIC chip designs.	
	2. Design ASIC prototypes using Verilog and VHDL languages.	
	3. Analyze microprocessor subsystems with memories and I/O	
	interfaces for SOC designs	
	4. Explore hardware components for designing SOC	
	5. Adopt the engineering professional code and conduct.	
	6. Designing prototypes of SOC using programming tools like	
	MATLAB, LabVIEW.	
	7. Familiarize with the design flow of ASIC prototypes.	
	8. Realize SOC using Register-Transfer-Level designs.	
	9. Analyse and develop models for system level descriptions for	
	synthesis of SOC.	
	10. Inspect and survey the abstractions and principles for the	
	specification, simulation, verification, and synthesis of systems on	
	chip (SoC).	
	11 Programming and hands-on skills to meet requirements of global	
	11. I rogramming and names on skins to most requirements of grobar	
	 Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register-Transfer-Level designs. Analyse and develop models for system level descriptions for synthesis of SOC. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC). Programming and hands-on skills to meet requirements of global 	

 2.Adopt technical library resources and literature search. 3. Explore smart antennas. 4. Model, program for operation and control of smart antennas for wireless communication applications. 5. Interface automation tools. 6. Research, analysis, problem solving and presentation using software aids. 7. Programming and hands-on skills to meet requirements of global environment. 	PSO 3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications. 1. Explicit software and programming tools for antenna design. 2. Adopt technical library resources and literature search. 3. Explore smart antennas. 4. Model, program for operation and control of smart antennas for wireless communication applications. 5. Interface automation tools. 6. Research, analysis, problem solving and presentation using software aids. 7. Programming and hands-on skills to meet requirements of global environment. 	7
--	-------	--	---

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	Information Theroy and Coding Techniques				
Course Code	AECC34				
Program	B.Tech				
Semester	VI				
Course Type	Professional Elective-V				
Regulation	UG-20				
	Theory Practical				
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	Mr.Mohammad Khadir, Assistant Prfoessor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC10	IV	Analog and Digital Communications

II COURSE OVERVIEW:

Information theory and coding is the study of the quantification, storage and Communication of digital information with the properties of codes for specific applications. This course covers classifications of error control coding and source coding techniques, coding algorithms for audio, speech, image and video compression techniques. The applications include cryptography, error detection and correction in digital communication systems.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Information Theory and Coding	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
\checkmark	Open Ended Experiments	x	Seminars	x	Mini Project	\checkmark	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
00%	Remember
30%	Understand
60 %	Apply
10%	Analyze
0%	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
CIA	AAT-1	5	50
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table.

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	00%

VI COURSE OBJECTIVES:

The st	The students will try to learn:						
Ι	The concepts, principles and applications of information theory on communication						
	systems						
II	The data compression techniques with text, audio, speech, image and video for						
	real world applications						
III	The block codes and convolutional codes for coding and decoding of digital data						

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate source and channel coding techniques for error-free	Understand
	transmission of message over a noisy communication channel.	
CO 2	Makeuseof linear and cyclic block codes for the performance	Understand
	analysis of error detection and correction in terms of efficiency.	
CO 3	Outline the various types of convolutional codes for channel	Apply
	encoding processing data streaming.	
CO 4	Choose the Viterbi and turbo decoder algorithms for detection of	Apply
	the convolutional code sequence in error controlling.	
CO 5	Relate the various source coding techniques and algorithms for	Understand
	text, audio and speech processing	
CO 6	Categorize the image and video formats and compression methods	Analyze
	for data storage and compression.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes						
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,					
	engineering fundamentals, and an engineering specialization to the solution of					
	complex engineering problems.					
PO 2	Problem analysis: Identify, formulate, review research literature, and					
	analyze complex engineering problems reaching substantiated conclusions using					
	first principles of mathematics, natural sciences, and engineering sciences.					

	Program Outcomes						
PO 3	Design/Development of Solutions: Design solutions for complex						
	Engineering problems and design system components or processes that meet						
	the specified needs with appropriate consideration for the public health and						
	safety, and the cultural, societal, and Environmental considerations						
PO 4	Conduct Investigations of Complex Problems: Use research-based						
	knowledge and research methods including design of experiments, analysis and interpretation of data and supplied to provide valid						
	conclusions						
PO 5	Modern Tool Usage: Create select and apply appropriate techniques						
100	resources, and modern Engineering and IT tools including prediction and						
	modelling to complex Engineering activities with an understanding of the						
	limitations						
PO 6	The engineer and society: Apply reasoning informed by the contextual						
	knowledge to assess societal, health, safety, legal and cultural issues and the						
	consequent responsibilities relevant to the professional engineering practice.						
PO 7	Environment and sustainability: Understand the impact of the						
	professional engineering solutions in societal and environmental contexts, and						
	demonstrate the knowledge of, and need for sustainable development.						
PU 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice						
	Individual and team work: Function effectively as an individual and as a						
FO 9	member or leader in diverse teams, and in multidisciplinary settings						
PO 10	Communication: Communicate effectively on complex engineering activities						
1010	with the engineering community and with society at large, such as, being able						
	to comprehend and write effective reports and design documentation, make						
	effective presentations, and give and receive clear instructions.						
PO 11	Project management and finance: Demonstrate knowledge and						
	understanding of the engineering and management principles and apply these						
	to one's own work, as a member and leader in a team, to manage projects and						
	in multidisciplinary environments.						
PO 12	Life-Long Learning: Recognize the need for and having the preparation and						
	ability to engage in independent and life-long learning in the broadest context						
	or recumological change						

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge	3	SEE / CIE /
	of mathematics, science, engineering		AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE / CIE /
	research literature, and analyze complex		AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 3	Design/Development of Solutions: Design	2	SEE / CIE /
	solutions for complex Engineering problems and		AAT
	design system components or processes that meet		
	the specified needs with appropriate consideration		
	for the public health and safety, and the cultural,		
	societal, and Environmental considerations		
PO 10	Communication: Communicate effectively on	2	AAT
	complex engineering activities with the		
	engineering community and with society at large,		
	such as, being able to comprehend and write		
	effective reports and design documentation, make		
	effective presentations, and give and receive clear		
	instructions.		

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

F	PROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit	2	Research
	Development platform for Robotics, Embedded		papers
	Systems and Signal Processing Applications		/Project
PSO 3	Make use of High Frequency Structure Simulator	2	Research
	(HFSS) for modeling and evaluating the Patch		papers
	and Smart Antennas for Wired and Wireless		/Project
	Communication Applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES												PSO'S	
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOME	5 1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 4	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT :

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO1	PO 1	List out the coding techniques knowledge for	3
		information entropy and Channel capacity using the	
		principles of science and mathematics for the	
		solution of complex engineering problems .	

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Understand binary code words (problem statement) and formulate the various block codes and information theory for error correction and detection of information for a binary system (Solution development) the provided information and substantiate with the interpretation of variations in the results.	5
	PO 3	Develop various block codes and information theory procedures (identify) and understand the performance of error correction and detection for customer and user needs and identify the cost limitations for the selection of parameters by applying the methods (design process) for innovative solutions.	5
	PO 10	Effective presentation and speaking style various block codes and information theory procedures (identify) and and write subject matter effectively on basic the performance of error correction and detection.	2
	PSO 1	Understand the problem statement of one dimensional probability scheme to implement two dimensional cases for calculating different entropies.	2
	PSO 3	Understand the knowledge of information theory to Calculate amount of information for a binary system.	2
CO2	PO1	Interpret the process of block codes, Convolutional codes by applying (mathematics, science) and principles of engineering fundamentals	3
	PO 2	Illustrate the principles of linear and cyclic block codes Make use of linear and cyclic block codes for the performance analysis of error detection and correction.	5
	PO 3	Illustrate (knowledge) the concept of block codes, Convolutional codes and identify the various codes to reduce the errors using encoders and decoders (complex problem analysis) to implement (Solution development) required communication systems for data transmission from the provided information and validate the results	5
	PO 10	Effective presentation and speaking style on the process of block codes, Convolutional codes and and write subject matter effectively on Viterbi algorithm for decoding a bitstream that has been encoded using a convolutional code.	2
CO 3	PO 1	Outline the various types of convolutional codes for channel encoding process in data streaming using the principles of science and mathematics for the solution of complex engineering problems.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Understand the performance of the reliable transmission of digital data using systematic and non-systematic codes to solve engineering problems the provided information to interpretation of the results	4
	PO 3	Utilize the BCH & RS codes for Channel performance improvement and analyze the performance of channel improvement for customer and user needs and identify the cost limitations for the selection of parameters, use creativity in applying the methods of model for innovative solutions.	5
	PO 10	Effective presentation and speaking style various types of convolutional codes for channel encoding(identify) and and write subject matter effectively on the performance of the reliable transmission of digital data using systematic and non-systematic codes.	2
	PSO 1	Interpret (knowledge) the performance of different error control schemes using the principles of mathematics and engineering science.	2
	PSO 3	Understanding the performance of different error control schemes by formulating and evaluating in the field of embedded applications	2
CO4	PO 1	Identify the receptional source coding techniques and layers for audio, text and speech processing using the principles of science and mathematics for the solution of complex engineering problems .	3
	PO 2	Choose the Viterbi and turbo decoder algorithms for detection of the convolutional code sequence in error(problem statement) controllingto solve engineering problems the provided information to interpretation of the results.	4
	PO 3	Make use of the Viterbi algorithm for decoding a bitstream that has been encoded using a convolutional code or trellis code (complex problem analysis)for customer and user needs and identify the cost limitations for the selection of parameters, use creativity in applying the methods of model for innovative solutions.	5
	PO 10	Effective presentation and speaking style source coding techniques and layers for audio, text and speech processing(identify) and and write subject matter effectively on Viterbi algorithm for decoding a bitstream that has been encoded using a convolutional code.	2
	PSO3	Identify the Viterbi decoder examines an entire received sequence of a given length and the decoder computes a metric for each path and makes a decision based on this metric.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 5	PO 1	Relate the various source coding techniques and algorithms for text type data processing using the principles of science and mathematics for the solution of complex engineering problems .	3
	PO 2	Select encoder and decoder technique and Analyzethe data (problem statement) implement coding techniques for text ,speech and audio processing using modern tools engineering tools like MATLAB for image compression from the provided information to interpretation of the results.	5
	PO 10	Effective presentation and speaking style source coding techniques and algorithms for text type data processing and and write subject matter effectively on implement coding techniques for text ,speech and audio processing using modern tools.	2
CO 6	PO 1	Apply the source symbols can be exactly recovered from the binary bits (lossless source coding) or recovered within some distortion (lossy source coding) using the principles of science and mathematics for the solution of complex engineering problems .	3
	PO 3	Develop a image with various image transform properties types (lossy source coding) and its types using Scientific principles and methodology fundamental mathematics for the solution complex engineering problems of customer and user needs and identify the cost limitations for the selection of parameters, use creativity in applying the methods of model for innovative solutions .	5
	PO 10	Effective presentation and speaking style source symbols can be exactly recovered from the binary bits (lossless source coding)and and write subject matter effectively on image with various image transform properties types (lossy source coding) and its types.	2
	PSO 3	Understand the concepts of measuring instrument systems to measure different electrical parameters using embedded hardware design.	2

Note:For Key Competencies refer Annexure - I

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	3	5	5	-	-	-	-	-	-	2	-	-	2	-	2
CO 2	3	5	5	-	-	-	-	-	-	2	-	-	-	-	-
CO 3	3	4	5	-	-	-	-	-	-	2	-	-	2	-	2
CO 4	3	4	5	-	-	-	-	-	-	2	-	-	-	-	2
CO 5	3	5	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 6	3	-	5	-	-	-	-	-	-	2	-	-	2	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	100	50	50	-	-	-	-	-	-	10	-	-	100	-	100	
CO 2	100	50	50	-	-	-	-	-	-	40	-	-	-	-	-	
CO 3	100	40	50	-	-	-	-	-	-	40	-	-	100	-	100	
CO 4	100	40	50	-	-	-	-	-	-	40	-	-	-	-	100	
CO 5	100	50	-	-	-	-	-	-	-	40	-	-	-	-	-	
CO 6	100	-	50	-	-	-	-	-	-	40	-	-	100	-	-	

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\pmb{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

1 -5 <C \leq 40% – Low/ Slight

- $\pmb{2}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES										PSO'S			
COURSE	PO	PO								PSO	PSO	PSO			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	2	0	0	0	0	0	0	1	0	0	2	0	2
CO 2	3	2	2	0	0	0	0	0	0	1	0	0	0	0	0
CO 3	3	2	2	0	0	0	0	0	0	1	0	0	2	0	2
CO 4	3	2	2	0	0	0	0	0	0	1	0	0	0	0	0
CO 5	3	2	0	0	0	0	0	0	0	1	0	0	0	0	0
CO 6	3	0	2	0	0	0	0	0	0	1	0	0	2	0	0

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO PO PO PO PO PO PO					PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
TOTAL	18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	8	0	6				
AVERAGE	3	2	2	0	0	0	0	0	0	2	0	0	2	0	2

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	 ✓ 	SEE Exams	\checkmark	Assignments	-
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory	-	5 Minutes Video /	\checkmark	Open Ended	 ✓
Practices		Concept Video		Experiments	
Micro Projects	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Mo	deling a	and Experimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	INFORMATION THEORY
	Information – Entropy, Information rate, classification of codes, Kraft McMillan inequality, Source coding theorem, Shannon- Fano coding, Huffman coding, Extended Huffman coding – Joint and conditional entropies, Mutual information - Discrete memory less channels – BSC, BEC – Channel capacity, Shannon limit
MODULE II	ERROR CONTROL CODING: BLOCK CODES
	Definitions and Principles: Hamming weight, Hamming distance, Minimum distance decoding, Single parity codes, Hamming codes, Repetition codes - Linear block codes, Cyclic codes – Syndrome calculation, Encoder and decoder - CRC
MODULE III	ERROR CONTROL CODING: CONVOLUTIONAL CODES
	Convolutional codes – code tree, trellis, state diagram - Encoding Decoding: Sequential search and Viterbi algorithm – Principle of Turbo coding
MODULE IV	SOURCE CODING: TEXT, AUDIO AND SPEECH
	Text: Adaptive Huffman Coding, Arithmetic Coding, LZW algorithm – Audio: Perceptual coding, Masking techniques, Psychoacoustic model, MEG Audio layers I,II,III, Dolby AC3 - Speech: Channel Vocoder, Linear Predictive Coding
MODULE V	SOURCE CODING: IMAGE AND VIDEO
	Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF – Image compression: READ, JPEG – Video Compression: Principles-I,B,P frames, Motion estimation, Motion compensation, H.261, MPEG standard

TEXTBOOKS

1. R Bose, "Information Theory, Coding and Cryptography", TMH 2007

2. Fred Halsall, "Multidedia Communications: Applications, Networks, Protocols and Standards", Perason Education Asia, 2002

REFERENCE BOOKS:

- 1. K Sayood, "Introduction to Data Compression" 3/e, Elsevier 2006
- 2. S Gravano, "Introduction to Error Control Codes", Oxford University Press 2007
- 3. Amitabha Bhattacharya, "Digital Communication", TMH 2006

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

	OBE DISCUSSION		
Ι	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	_	-
	CONTENT DELIVERY (THEORY)		
1	Understand the concept of information theory and coding	CO 1	T2-9.2, R1-12.5-12.6
2	Illustrate the concepts of entropy	CO 1	T2-9.5, R3-10.2
3	List and illustrate the classification of codes	CO 1	T1-13.7, R3- 11.1 to 11.7
4	Understand the concept of Kraft McMillan inequality	CO 1	T2-10.7, R3-11.1-11.3
5	Understand the concept of source coding theorem.	CO 1	T1-14.5, R3- 12.3 to 12.5
6	Explain the mathematical model of information,	CO 1	T1-14.7, R3- 12.7 to 12.9
7	Demonstrate a logarithmic measure of information	CO 1	T2-11.5, R2-9.2
8	Explain with examples of Shannon-Fano coding, Huffman coding	CO 1	T2-12.9, R3-11.4
9	Illustrate the extended Huffman coding–Joint and conditional entropies	CO 1	T1-13.4, R3-11.6
10	Understand the concept of mutual information	CO 1	T2-10.5, R3-12.2
11	Understand the concept discrete memory less channels–BSC, BEC–Channel capacity, Shannon limit.	CO 1	T2-13.7, R3-13.1
12	Understand the concept discrete memory less channels–BSC, BEC–Channel capacity, Shannon limit.	CO 1	T2-13.7, R3-13.1
13	Definitions and Principles: Hamming weight, Hamming distance	CO 2	T1-9.5, R3-12.2
14	Definitions and Principles: Hamming weight, Hamming distance	CO 2	T1-9.5, R3-12.2
15	Illustrate the minimum distance decoding, single parity codes,	CO 2	T2-10.5, R3-12.2
16	Explain Hamming codes, repetition code	CO 2	T1-13.1, R1-8,4

18Expalin syndrome calculation, shortened cyclic codesCO 2R2-15.3-15.518Expalin syndrome calculation, shortened cyclic codesCO 2T1-11.9, R3-18.319majority logic decoding for cyclic codesCO 2T2-15.8, R1-10.7-10.920encoder and decoder, CRCCO 2T1-9.5, R2-16.321Understand Convolutional codes – code treeCO 3T2-16.9, R3-9.622Understand trellis, state diagramCO 3T2-10.5, R3-11.923Encoding Decoding: Sequential searchCO 3T1-13.1, R3-11.924Encoding Decoding: Viterbi algorithm.CO 3T1-13.1, R2-11.3, R3-11.924Encoding Decoding: Viterbi algorithm.CO 4T1-14.1, R2-15.3-15.526List out the types of errorsCO 4T1-10.9, R3-18.327List and explain the error control strategies.CO 4T2-10.1, R2-10.1, R2-16.3, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T2-16.2, R1-10.7-10.929Explain Text: Adaptive Huffman coding (LPC)CO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm –CO 5T2-16.2, R3-12.233Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-10.5, R3-12.236Video Compression: READ, JPEGCO 6T1-13.4, R2-15.5	17	Discuss linear block codes, cyclic codes with examples	CO 2	T2-14.4,
18Expalin syndrome calculation, shortened cyclic codesCO 2T1-11.9, R3-18.319majority logic decoding for cyclic codesCO 2T2-15.8, R1-10.7-10.920encoder and decoder, CRCCO 2T2-16.3, R2-16.321Understand Convolutional codes - code treeCO 3T2-16.9, R3-9.622Understand trellis, state diagramCO 3T2-10.5, R3-11.223Encoding Decoding: Sequential searchCO 3T2-11.3, R3-11.224Encoding Decoding: Viterbi algorithm.CO 3T1-11.9, R3-11.924Encoding Decoding: Viterbi algorithm.CO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T1-11.9, R3-18.327List and explain the error control strategies.CO 4T1-11.9, R3-18.328Source code: Definition, techniquesCO 5T1-0.5, R2-16.329Explain Text: Adaptive Huffman codingCO 5T1-15.7, R2-16.330Understand arithmetic coding, variable-length codesCO 5T1-13.4, R3-11.631Explain LZW-algorithm -CO 5R2-16.3, R2-16.332List and explain Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CF QCIF -CO 6T2-10.5, R3-12.236Understa				R2-15.3-15.5
Image: constraint of the second se	18	Expalin syndrome calculation, shortened cyclic codes	CO 2	T1-11.9,
19majority logic decoding for cyclic codesCO 2T2-15.8, R1-10.7-10.920encoder and decoder, CRCCO 2T1-9.5, R2-16.321Understand Convolutional codes – code treeCO 3T2-16.9, R3-9.622Understand trellis, state diagramCO 3T2-10.5, R3-12.223Encoding Decoding: Sequential searchCO 3T2-11.3, R3-11.924Encoding Decoding: Viterbi algorithm.CO 3T1-13.1, R1-13.1, R1-8.425Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.315.526List out the types of errorsCO 4T2-15.8, R1-10.7, 10.929Explain the error control strategies.CO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T1-9.5, R2-16.2, R1-12.1 to 12.331Explain LZW-algorithm -CO 5T2-11.3, R3-11.632List and explain Perceptual coding, masking techniquesCO 5T2-16.2, R3-11.633Explain LZW-algorithm -CO 5T1-13.4, R3-12.234Explain MEG audio layers 1,11,11,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-10.5, R3-12.236Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF -CO 6T2-10.5, R3-12.237Inderstand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF -CO 6T2-10.5, R3-18.338Video Compression: READ, JPEGCO 6T2-10.				R3-18.3
20encoder and decoder, CRCCC 2R1-10.7-10.921Understand Convolutional codes - code treeCC 3T2-16.9, R3-9.622Understand trellis, state diagramCC 3T2-10.5, R3-12.223Encoding Decoding: Sequential searchCC 3T2-11.3, R3-11.924Encoding Decoding: Viterbi algorithm.CC 3T2-14.4, R2-15.3-15.525Discuss about the Principle of turbo codingCC 4T2-14.4, R2-15.3-15.526List out the types of errorsCC 4T1-11.9, R3-18.327List and explain the error control strategies.CC 4T2-10.1, R2-17.3, R3-18.328Source code: Definition, techniquesCC 5T2-16.2, R2-16.330Understand arithmetic coding, variable-length codesCC 5T2-16.2, R1-12.1 to 12.331Explain Text: Adaptive Huffman coding, Understand about Audio: Lincar predictive coding (LPC)CC 5T2-16.2, R1-12.1 to 12.331List and explain Perceptual coding, masking techniquesCC 5T2-10.5, R3-12.233Explain psychoacoustic model,1CC 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CC 5T2-10.5, R3-12.235Speech: Channel vocoder, lincar predictive codingCC 5T2-10.5, R3-12.236Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CC 6T2-10.5, R3-12.237Image compression: READ, JPEGCC 6T2-10.5, R3-17.338Video Compression: Princ	19	majority logic decoding for cyclic codes	CO 2	T2-15.8,
20encoder and decoder, CRCCO 2T1-9.5, R2-16.9, R3-0.621Understand Convolutional codes – code treeCO 3T2-16.9, R3-0.622Understand trellis, state diagramCO 3T2-10.5, R3-12.223Encoding Decoding: Sequential searchCO 3T2-11.3, R3-11.924Encoding Decoding: Viterbi algorithm.CO 3T1-13.1, R1-13.1, R1-13.525Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T2-10.1, R2-17.327List and explain the error control strategies.CO 5T2-16.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithmCO 5T2-10.5, R3-12.232List and explain Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain in perceptual coding, masking techniquesCO 5T2-10.5, R3-12.234Explain psychoacoustic model,1CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF –CO 6T2-10.5, R3-12.236Understand the Image and Video FormatsGIF, TIFF, SIF, CO 6CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T2-10.5, R3-12.2T1-1.9, R3-18.338Vidco Compression: Principles-I,B,P frame <td></td> <td></td> <td></td> <td>R1-10.7-10.9</td>				R1-10.7-10.9
Image: constraint of the stand convolutional codes code treeImage: code treeImage: code code treeR2-16.3 R3-9.622Understand trellis, state diagramCO 3T2-10.5, R3-12.223Encoding Decoding: Sequential searchCO 3T2-11.3, R3-11.924Encoding Decoding: Viterbi algorithm.CO 3T1-13.1, R1-8.425Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T1-11.9, R3-18.327List and explain the error control strategies.CO 4T2-15.8, R1-10.1, R2-17.328Source code: Definition, techniquesCO 5T2-16.2, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T2-16.2, R1-10.7-10.930Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.331Explain LZW-algorithm -CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T2-10.1, R3-12.233Explain psychoacoustic model,1CO 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 6T2-10.5, R3-12.236Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T2-10.5, R3-18.338Video Compression: Principles-I,B,P frame	20	encoder and decoder, CRC	CO 2	T1-9.5,
21Understand Convolutional codes - code treeCO 3T2-16.9, R3-9.622Understand trellis, state diagramCO 3T2-10.5, R3-12.223Encoding Decoding: Sequential searchCO 3T2-11.3, R3-11.924Encoding Decoding: Viterbi algorithm.CO 3T1-13.1, R1-8.425Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T1-11.9, R3-18.327List and explain the error control strategies.CO 5T2-16.3, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T1-13.4, R3-11.631Explain LZW-algorithm -CO 5T2-11.5, R3-12.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and explain Perceptual coding, masking techniquesCO 5T1-13.4, R3-11.633Explain psychoacoustic model,1CO 5T1-13.4, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-10.5, R3-12.236Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R3-18.3 <td></td> <td></td> <td></td> <td>R2-16.3</td>				R2-16.3
111 <th< td=""><td>21</td><td>Understand Convolutional codes – code tree</td><td>CO 3</td><td>T2-16.9,</td></th<>	21	Understand Convolutional codes – code tree	CO 3	T2-16.9,
22Understand trellis, state diagramCO 3T2-10.5, R3-12.223Encoding Decoding: Sequential searchCO 3T2-11.3, R3-11.924Encoding Decoding: Viterbi algorithm.CO 3T1-13.1, R1-8.425Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T1-11.9, R3-18.327List and explain the error control strategies.CO 4T2-17.3, R2-17.328Source code: Definition, techniquesCO 5T2-15.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-12.2, R1-12.1 to 12.331Explain LZW-algorithm -CO 5T1-13.4, R3-11.632List and explain Perceptual coding, masking techniquesCO 5T1-13.4, R3-11.633Explain MEG audio layers 1,11,111,Dolby AC3CO 5T1-10.5, R3-12.234Explain MEG audio layers 1,11,111,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF -CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T2-10.5, R3-12.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R3-12.3				R3-9.6
R3-12.2R3-12.223Encoding Decoding: Sequential searchCO 3T2-11.3, R3-11.924Encoding Decoding: Viterbi algorithm.CO 3T1-13.1, R1-8.425Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T1-11.9, R3-18.327List and explain the error control strategies.CO 4T2-10.1, R2-17.328Source code: Definition, techniquesCO 5T2-15.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-16.2, R1-12.1 to 12.330Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm -CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and explain Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.4, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF -CO 6T2-10.4, R3-12.337Image compression: READ, JPEGCO 6T2-10.1, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R3-18.3	22	Understand trellis, state diagram	CO 3	T2-10.5.
23Encoding Decoding: Sequential searchCO 3T2-11.3, R3-11.924Encoding Decoding: Viterbi algorithm.CO 3T1-13.1, R1-8.425Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T1-11.9, R3-18.327List and explain the error control strategies.CO 4T2-10.1, R2-17.328Source code: Definition, techniquesCO 5T2-15.8, R1-10.7.10.929Explain Text: Adaptive Huffman codingCO 5T2-16.2, R1-12.1 to 12.330Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm -CO 5T2-10.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats - GIF, TIFF, SIF, CIF, QCIF -CO 6T2-10.4, R3-12.237Image compression: READ, JPEGCO 6T2-10.1, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R3-18.3		, 0		R3-12.2
R3-11.9R3-11.924Encoding Decoding: Viterbi algorithm.CO 3TI-13.1, R1-8.425Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T1-11.9, R3-18.327List and explain the error control strategies.CO 4T2-10.1, R2-17.328Source code: Definition, techniquesCO 5T2-15.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-11.2, R2-16.2, R1-12.1 to 12.331Explain LZW-algorithm -CO 5T2-11.5, R2-10.2, R3-11.632List and explain Perceptual coding, masking techniquesCO 5T1-13.4, R3-11.634Explain psychoacoustic model,1CO 5T1-19.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF -CO 5T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T2-10.1, R3-12.338Video Compression: Principles-I, B, P frameCO 6T1-11.9, R3-12.3	23	Encoding Decoding: Sequential search	CO 3	T2-11.3,
24Encoding Decoding: Viterbi algorithm.CO 3T1-13.1, R1-8.425Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T1-11.9, R3-18.327List and explain the error control strategies.CO 4T2-10.1, R2-17.328Source code: Definition, techniquesCO 5T2-15.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-19.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-11.6, R2-16.331Explain LZW-algorithm -CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and explain Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF -CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R3-17.3				R3-11.9
R1-8.4R1-8.425Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T2-10.1, R3-18.327List and explain the error control strategies.CO 4T2-10.1, R2-17.328Source code: Definition, techniquesCO 5T2-15.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T2-16.3, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm -CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and explain Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding Understand the Image and Video Formats - GIF, TIFF, SIF, CIF, QCIF -CO 6T2-10.4, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.3R3-12.238Video Compression: Principles-I,B,P frameCO 6T1-11.9, R3-12.3	24	Encoding Decoding: Viterbi algorithm.	CO 3	T1-13.1,
25Discuss about the Principle of turbo codingCO 4T2-14.4, R2-15.3-15.526List out the types of errorsCO 4T1-11.9, R3-18.327List and explain the error control strategies.CO 4T2-10.1, R2-17.328Source code: Definition, techniquesCO 5T2-15.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-11.2, R1-12.1 to 12.331Explain LZW-algorithm –CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T1-9.5, R3-12.233Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 6T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF –CO 6T2-10.5, R3-12.236Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R3-17.3				R1-8.4
InterfaceReline for the second se	25	Discuss about the Principle of turbo coding	CO 4	T2-14.4,
26List out the types of errorsCO 4T1-11.9, R3-18.327List and explain the error control strategies.CO 4T2-10.1, R2-17.328Source code: Definition, techniquesCO 5T2-15.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm -CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain IMEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats - GIF, TIFF, SIF, CIF, QCIF -CO 6T1-11.9, R3-18.338Video Compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R3-17.3				R2-15.3-15.5
R3-18.327List and explain the error control strategies.CO 4T2-10.1, R2-17.328Source code: Definition, techniquesCO 5T2-15.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T2-16.2, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm –CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and explain Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R3-17.3	26	List out the types of errors	CO 4	T1-11.9.
27List and explain the error control strategies.CO 4T2-10.1, R2-17.328Source code: Definition, techniquesCO 5T2-15.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm –CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and explain Perceptual coding, masking techniquesCO 5T1-10.5, R3-12.233Explain MEG audio layers I,II,III,Dolby AC3CO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R3-17.3				R3-18.3
International and the international data of the intern	27	List and explain the error control strategies.	CO 4	T2-10.1.
28Source code: Definition, techniquesCO 5T2-15.8, R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm –CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T1-19.5, R3-12.233Explain ISQueocoustic model,1CO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF –CO 5T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3				R2-17.3
111R1-10.7-10.929Explain Text: Adaptive Huffman codingCO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm –CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain MEG audio layers I,II,III,Dolby AC3CO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3	28	Source code: Definition, techniques	CO 5	T2-15.8.
29Explain Text: Adaptive Huffman codingCO 5T1-9.5, R2-16.330Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm –CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain MEG audio layers I,II,III,Dolby AC3CO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3	_			R1-10.7-10.9
Image of the second s	29	Explain Text: Adaptive Huffman coding	CO 5	T1-9.5.
30Understand arithmetic coding, variable-length codesCO 5T2-16.2, R1-12.1 to 12.331Explain LZW-algorithm –CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain psychoacoustic model,1CO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-10.5, R3-12.236Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, P2-17.3		I The second sec		R2-16.3
R1-12.1 to 12.3R1-12.1 to 12.331Explain LZW-algorithm –CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain psychoacoustic model,ICO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF –CO 6T2-10.5, R3-12.236Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3	30	Understand arithmetic coding, variable-length codes	CO 5	T2-16.2.
Image				R1-12.1 to
31Explain LZW-algorithm –CO 5T2-11.5, R2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain psychoacoustic model,lCO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3				12.3
Image compression: READ, JPEGR2-9.231Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain psychoacoustic model,lCO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3	31	Explain LZW-algorithm –	CO 5	T2-11.5,
31Understand about Audio: Linear predictive coding (LPC)CO 5T1-13.4, R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain psychoacoustic model,1CO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3				R2-9.2
R3-11.632List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain psychoacoustic model,1CO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive coding CIF, QCIF –CO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3	31	Understand about Audio: Linear predictive coding (LPC)	CO 5	T1-13.4,
32List and expalin Perceptual coding, masking techniquesCO 5T2-10.5, R3-12.233Explain psychoacoustic model,1CO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3				R3-11.6
R3-12.233Explain psychoacoustic model,lCO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17 3	32	List and expalin Perceptual coding, masking techniques	CO 5	T2-10.5,
33Explain psychoacoustic model,1CO 5T1-9.5, R3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3				R3-12.2
And Provide and Provide and Provide and Provide ActionR3-12.234Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2.17.3	33	Explain psychoacoustic model,	CO 5	T1-9.5,
34Explain MEG audio layers I,II,III,Dolby AC3CO 5T2-10.5, R3-12.235Speech: Channel vocoder, linear predictive codingCO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3				R3-12.2
Image compression: READ, JPEGCO 6T2-14.4, R2-15.3-15.538Video Compression: Principles-I,B,P frameCO 6T2-10.1, R3-12.2	34	Explain MEG audio layers I,II,III,Dolby AC3	CO 5	T2-10.5,
35Speech: Channel vocoder, linear predictive codingCO 5T2-14.4, R2-15.3-15.536Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2-17.3				R3-12.2
Image compression:READ, JPEGR2-15.3-15.538Video Compression:Principles-I,B,P frameCO 6T2-10.5, R3-12.237Image compression:READ, JPEGCO 6T1-11.9, R3-18.338Video Compression:Principles-I,B,P frameCO 6T2-10.1, R2-17.3	35	Speech: Channel vocoder, linear predictive coding	CO 5	T2-14.4,
36Understand the Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF –CO 6T2-10.5, R3-12.237Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, R2 17 3				R2-15.3-15.5
CIF, QCIF -R3-12.237Image compression: READ, JPEGCO 638Video Compression: Principles-I,B,P frameCO 671-11.9,R3-18.338Video Compression: Principles-I,B,P frameCO 672-10.1,R2 17 3	36	Understand the Image and Video Formats – GIF, TIFF, SIF,	CO 6	T2-10.5,
37Image compression: READ, JPEGCO 6T1-11.9, R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, B2 17 3		CIF, QCIF –		R3-12.2
R3-18.338Video Compression: Principles-I,B,P frameCO 6T2-10.1, B2 17 3	37	Image compression: READ, JPEG	CO 6	T1-11.9,
38Video Compression: Principles-I,B,P frameCO 6T2-10.1,B2 17 3				R3-18.3
B2 17 3	38	Video Compression: Principles-I,B,P frame	CO 6	T2-10.1,
112-11.5				R2-17.3

39	motion estimation, motion compensation	CO 6	T2-15.8,
			R1-10.7-10.9
40	H.261, MPEG standard, standards-based and nonstandard	CO 6	T1-9.5,
	approaches to coding.		R2-16.3
	PROBLEM SOLVING/CASE STUDIES		
41	Solve the problems on source coding theorem, mathematical	CO 1	T2-16.2,
	model of information		R1-12.1 to
		<u> </u>	12.3
42	Solve the problems on Shannon-Fano coding, Huffman coding, extended Huffman coding	CO 1	T2-10.1, R2-17.3
43	Solve the problems on Channel performance improvement by using the BCH and RS codes	CO 1	T1-13.1, R1-8.4
44	Solve the problems on discrete memory less channels–BSC, BEC–Channel capacity, Shannon limit.	CO 1	T1-13.7, R3- 11.1 to 11.7
45	Solve the problems on Hamming distance, minimum distance	CO 2	T2-16.2,
	decoding, single parity codes		R1-12.1 to
			12.3
46	Solve the problems on Hamming codes, repetition codes,	CO 2	T1:1.1-
	linear block codes, cyclic codes		19,2.1-
			2.8, 3.1-
			3.8, 4.1- 4.25.5.1-5.10
47	Solve the problems on majority logic decoding for cyclic	CO_2	T1.7 1 7 32
41	codes, encoder and decoder, CRC.	002	11.7.1-7.52
48	Solve the problems on Convolutional codes – code tree, trellis, state diagram	CO 3,	T1:8.1- 8.10,9.1-9.6
49	Solve the problems on Encoding Decoding: Sequential search and Viterbi algorithm.	CO 3	T1:11.1 11.18
50	Solve the problems on error control strategies.	CO 4	T1:13.1-
			13.25
51	Solve the problems on Adaptive Huffman coding, arithmetic	CO 5	T1:13.1-
	coding		13.25
52	Solve the problems on LZW algorithm	CO 5	T1:13.1-
			13.25
53	Solve the problems on : Linear predictive coding (LPC)	CO 5	T1:13.1-
			13.25
54	Solve the problems on Channel vocoder, linear predictive	CO 5	T1:13.1-
	coding.	00.0	13.25
55	Solve the problems on motion estimation, standards-based	CO 6	11:13.1-
	DISCUSSION OF DEFINITION AND TERMIN		13.23
FC	Module L Information Theory		TT1.1 1
06	Module-1: Information Theory	COT	
			2.831-
			3.8,4.1-
			4.25,5.1-5.10
57	Module-II: Error Control Coding: Block Codes	CO 2	T1:7.1-7.32

58	Module-III: Error Control Coding: Convolutional Codes	CO 3,4	T1:8.1- 8.10,9.1-9.6
59	Module-IV: Source Coding: Text, Audio and Speech	CO 5	T1:11.1 11.18
60	Module-V: Source Coding: Image And Video	CO 6	T1:13.1- 13.25
	DISCUSSION OF QUESTION BANK		
61	Module-I: Information Theory	CO 1	$\begin{array}{c} T1:1.1-\\ 19,2.1-\\ 2.8,3.1-\\ 3.8,4.1-\\ 4.25,5.1-5.10\end{array}$
62	Module-II: Error Control Coding: Block Codes	CO 2	T1:7.1-7.32
63	Module-III: Error Control Coding: Convolutional Codes	CO 3,4	T1:8.1- 8.10,9.1-9.6
64	Module-IV: Source Coding: Text, Audio and Speech	CO 5	T1:11.1 11.18
65	Module-V: Source Coding: Image And Video	CO 6	T1:13.1- 13.25

Signature of Course Coordinator Mr.Mohammad Khadir, Assistant Professor HOD,ECE

ANNEXURE - I

KEY COMPETENCIES FOR ASSESSING PROGRAM OUTCOMES

PO Num- ber	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	10

PO 4.	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to envineering problems	11
PO 5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.	1
PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5

PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	12

PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12
PO12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning – stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2-3 new significant skills 8. Have taken up to 80 hours (2 weeks) training per year 	8

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electron	Electronics and Communication Engineering				
Course Title	Comput	Computer Architecture				
Course Code	ACSC24	ACSC24				
Program	B.Tech					
Semester	VI					
Course Type	Open Elective					
Regulation	UG-20					
		Theory		Prac	tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Mrs P. Ganga Bhavani, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC03	III	Digital System Design

II COURSE OVERVIEW:

This course intended to provide the structure, internal working and implementation of a computer system. The fundamentals of various functional units of computer, computer instructions, addressing modes, computer arithmetic and logic unit, registers, data transfer, memory and input output system. It focuses on analysis of computer performance and functioning in modern computers.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Computer Architecture	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	x	Chalk & Talk	x	Assignments	x	MOOC
\checkmark	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
50.0%	Understand
33.3%	Apply
16.6%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5	50	
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
	Total Marks			

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	_

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The basic concepts of the various functional units and characteristics of computer systems.
II	The concepts of central processing unit design and perform basic operations with signed and unsigned integers in decimal and binary number systems.
III	The function of each element of a memory hierarchy and compare the different methods for computer input and output.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate the structure, characteristics of computer systems and	Understand
	the various functional units for understanding the components of	
	computers.	
CO 2	Demonstrate the computer languages, machine, symbolic and	Understand
	assembly levels for understanding execution of program.	

CO 3	Make use of the number system their representations and conver-	Apply
	sion for the usage of instructions in digital computers.	
CO 4	Summarize the register transfer language, represent memory and	Understand
	Arithmetic/ Logic/ Shift operations for implementation of micro	
	operations.	
CO 5	Identify the basics of hardwired and micro-programmed control of	Apply
	the CPU which generates the control signals to fetch and execute	
	instructions.	
CO 6	Compare different types of addressing modes for specifying the	Analyze
	location of an operand.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program	Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to the solution
	of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and
	analyze complex engineering problems reaching substantiated conclusions
	using first principles of mathematics, natural sciences, and engineering
	sciences.
PO 3	Design/Development of Solutions: Design solutions for complex
	Engineering problems and design system components or processes that meet
	the specified needs with appropriate consideration for the public health and
	safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based
	knowledge and research methods including design of experiments, analysis
	and interpretation of data, and synthesis of the information to provide valid
	conclusions.

Program	Outcomes
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the
	limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency			
			Assessed by			
PO 1	Engineering knowledge: Apply the knowledge	3	SEE / CIE /			
	of mathematics, science, engineering fundamen-		QUIZ / AAT			
	tals, and an engineering specialization to the so-					
	lution of complex engineering problems.					
PO 2	Problem analysis: Identify, formulate, review	1	SEE / CIE /			
	research literature, and analyze complex engi-		QUIZ / AAT			
	neering problems reaching substantiated conclu-					
	sions using first principles of mathematics, natu-					
	ral sciences, and engineering sciences.					
PO 10	Communication: Communicate effectively on	1	SEE / CIE /			
	complex engineering activities with the engineer-		QUIZ / AAT			
	ing community and with society at large, such as,					
	being able to comprehend and write effective re-					
	ports and design documentation, make effective					
	presentations, and give and receive clear instruc-					
	tions.					

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Build embedded software and digital circuit	2	Research
	development platform for robotics, embedded		papers
	systems and digital signal processing applications		/Project
PSO 2	Focus on the Application Specific Integrated	_	_
	Circuits (ASIC) prototype designs, Virtual		
	Instrumentation and System on Chip (SOC)		
	designs.		
PSO 3	Make use of High Frequency Structure	-	-
	Simulator (HFSS) for modeling and evaluating		
	the patch and smart antennas for wired and		
	wireless communication applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES													PSO'S			
OUTCOME	s PO	PO	PO	РО	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2			
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-			
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-			
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-			
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-			
CO 6	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-			

XII JUSTIFICATIONS FOR CO - (PO, PSO) MAPPING -DIRECT:

COURSE OUT COMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Understand the structure and characteristics of computer system (knowledge) for understand- ing components function of computer by applying the principles of science to engineering problems	1
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large.	1
CO 2	PO 1	Understand the concept (knowledge) of computer languages for execution of program.	2
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large.	1

CO 3	PO 1	Illustrate the arithmetic formulate (knowledge) of instructions used in digital computers by applying the principles of mathematics and science for solving complex engineering problems.	2
	PO 2	Understand the given arithmetic functions and for- mulate to the organization of computer using prin- ciples of mathematics and engineering science	3
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large.	1
	PSO1	Apply the concept of number system for obtaining of digital data to build the embedded system	1
CO 4	PO 1	Apply (knowledge) the register transfer language, bus and memory transfer characteristics for imple- ment the micro operations by analyzing complex en- gineering problems using the principles of mathemat- ics, engineering science.	2
	PO 2	Understand the register transfer language bus and memory transfer problem statement and finding the solution implementation of micro operations by analyzing complex engineering problems	2
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large.	1
	PSO1	Understanding the register transfer language for developing the processor in embedded technology	1
CO 5	PO 1	Illustrate characteristics of hardwired and micro- programmed control of the CPU for solving complex engineering problems generates control signals by ap- plying mathematics, science and engineering funda- mentals.	3
	PO 2	Analyze execute instruction problem statements con- trol signals using mathematics principles.	1
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large.	1
CO 6	PO 1	Discuss (Understand) different types of addressing modes (knowledge) for specifying the location of an operand.	2
	PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large.	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE				PSO'S											
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2
CO 1	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	2	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	2	3	-	-	-	-	-	-	-	1	-	-	1	-	-
CO 4	2	2	-	-	-	-	-	-	-	1	-	-	1	-	-
CO 5	3	1	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	2	-	-	-	-	-	-	-	-	1	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE		PROGRAM OUTCOMES													PSO'S			
OUTCOMES	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	РО	РО	PSO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2			
CO 1	33.3	-	-	-	-	-	-	-	-	20	-	-	-	-	-			
CO 2	66.6	-	-	-	-	-	-	-	-	20	-	-	-	-	-			
CO 3	66.6	30.0	-	-	-	-	-	-	-	20	-	-	100	-	-			
CO 4	66.6	20.0	-	-	-	-	-	-	-	20	-	-	100	-	-			
CO 5	100	10.0	-	-	-	-	-	-	-	$\overline{20}$	-	-	-	-	-			
CO 6	66.6	-	-	-	-	-	-	-	-	20	-	-	-	-	-			

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

 $\pmb{\mathcal{2}}$ - 40 % < C < 60% – Moderate

 $1-5 < C \le 40\% - Low/$ Slight

 $\boldsymbol{3}$ - 60% \leq C < 100% – Substantial /High

COURSE		PROGRAM OUTCOMES												PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	-	-	-	-	-	-	-	-	1	-	-	-	-	-	
CO 2	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-	
CO 3	1	1	-	-	-	-	-	-	-	1	-	-	-	-	-	
CO 4	3	1	-	-	-	-	-	-	-	1	-	-	2	-	-	
CO 5	3	1	-	-	-	-	-	-	-	1	-	-	-	-	-	
CO 6	3	-	-	-	-	-	-	-	-	1	-	-	2	-	-	
TOTAL	15	3	-	-	-	-	-	-	-	6	-	-	4	-	-	
AVERAGE	2.5	1	-	-	-	-	-	-	-	1	-	-	2	-	-	

CIE Exams	 ✓ 	SEE Exams	 ✓ 	Assignments	~
Quiz	\checkmark	Tech - Talk	-	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory	-	5 Minutes Video	-	Open Ended	-
Practices		/ Concept Video		Experiments	
Micro	-	·			
Projects					

XVI ASSESSMENT METHODOLOGY DIRECT:

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback		End Semester OBE Feedback	
X	Assessment of activities / Mode	eling	and Experimental Tools in Engineering by Experts	

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO COMPUTER ORGANIZATION
	Basic computer organization, CPU organization, memory subsystem organization and interfacing, input or output subsystem organization and interfacing, simple computer levels of programming languages, assembly language instructions, and a simple instruction set architecture.
MODULE II	ORGANIZATION OF A COMPUTER
	Register transfer: Register transfer language, register transfer, bus and memory transfers, arithmetic micro operations, logic micro operations, and shift micro operations; Control memory.
MODULE III	CPU AND COMPUTER ARITHMETIC
	CPU design: Instruction cycle, data representation, memory reference instructions, input- output, and interrupt, addressing modes, data transfer and manipulation, program control. Computer arithmetic: Addition and subtraction, floating point arithmetic operations, decimal arithmetic unit.
MODULE IV	INPUT-OUTPUT ORGANIZATION
	Input or output organization: Input or output Interface, asynchronous data transfer, modes of transfer, priority interrupt, direct memory access.
MODULE V	MEMORY ORGANIZATION
	Memory organization: Memory hierarchy, main memory, auxiliary memory, associative memory, cache memory, virtual memory; Pipeline: Parallel processing, Instruction pipeline

TEXTBOOKS

- 1. M. Morris Mano, "Computer Systems Architecture", Pearson, 3rd Edition, 2015
- 2. Patterson, Hennessy, "Computer Organization and Design: The Hardware/Software Interface", Morgan Kaufmann, 5th Edition, 2013.

REFERENCE BOOKS:

- 1. John. P. Hayes, "Computer System Architecture", McGraw-Hill, 3rd Edition, 1998.
- 2. Carl Hamacher, Zvonko G Vranesic, Safwat G Zaky, "Computer Organization", McGraw- Hill, 5 th Edition, 2002.

3. William Stallings, "Computer Organization and Architecture", Pearson Edition, 8th Edition,2010

COURSE WEB PAGE:

https://lms.iare.ac.in/index ?route=course/details& course id=137

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSS	ION	
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms.iare.ac.in/index ?route=course/details& course id_137
	CONTENT DELIVERY	(THEOF	XY)
2	Introduction to Computer Organization	CO 1	T1-3.1-3.2
3	Basic Computer Organization and Architecture	CO 1	T1-3.3-3.4
4	CPU Organization	CO 1	T1-3.3-3.4
5	Memory subsystem organization and Interfacing	CO 1	T1-3.5
6	Input or output subsystem organization and Interfacing	CO 1	T1-4.2
7	Simple computer levels of programming languages	CO 2	T1-4.4
8	Assembly language instructions	CO 2	T15.1,4.5.2
9	A simple instruction set architecture	CO 2	T1-4.6
10	Register transfer language	CO 3	T1-4.7
11	Register transfer	CO 3	T1-4.10
12	Bus and memory transfers	CO 3	T1-4.10.6
13	Arithmetic micro operations	CO 3	T1-4.11
14	CPU and Computer Arithmetic	CO 3	T1-4.2
15	Instruction Cycle	CO 3	T1-5.1.1
16	Data Representation	CO 4	T1-5.1.1
17	Memory Reference Instructions	CO 4	T1-5.1.1
18	Input- Output, and Interrupt	CO 3	T1-5.2
19	Addressing Modes	CO 3	T1-5.3
20	Data transfer and Manipulation	CO 4	T1-5.3.2
21	Program Control	CO 4	T1-5.3.3,5.4
22	Computer Arithmetic	CO 4	T1-5.4.2
23	Addition and Subtraction	CO 4	T1-5.5
24	Multiplication Algorithm	CO 3	T1-5.11
25	Decimal Arithmetic unit	CO 6	T1-5.11
26	Input or Output Organization	CO 3	T1-5.11
27	Input or output Interface	CO 5	T1-7.1,7.2
28	Problems on computation of rms delay	CO 2	T1-5.3.2

29	Problems on total power in the carrier	CO 2	T1-5.1.1
30	Asynchronous data transfer	CO 5	T1-7.3,7.4
31	Modes of transfer	CO 5	T1-7.6,7.7
32	Priority interrupt	CO 5	T1-7.7.2
33	Direct memory access	CO 5	T1-7.8
34	Memory Organization	CO 5	T1-7.8.1,8.2
35	Memory hierarchy	CO 5	T1-7.10,11
36	Pipeline: Parallel processing	CO 5	T1-7.10.2-3
37	Instruction pipeline	CO 5	T1-7.10.3
38	I/O Processor	CO 6	R3-P184
39	Characteristics of Multiprocessors	CO 6	R3-P185
40	Serial Communication	CO 6	R3-P191
41	RAM and its Organization	CO 6	R3-P190
42	Reduced Instruction Set Computer	CO 6	R3-P191
	PROBLEM SOLVING/ 0	CASE STU	DIES
43	Problems on BCD Conversions	CO 1	T1-3.1-3.2
44	Problems on Multiplication Algorithms	CO 1	T1-3.1-3.2
45	Problems on Restoring Division	CO 1	T1-3.3-3.4
46	Problems on Non- Restoring Division	CO 2	T1-4.6
47	Problems on BCD Addition	CO 2	T1-4.7
48	Problems on BCD Subtraction	CO 2	T1-5.1.1
49	Problems on BCD Multiplication	CO 2	T1-4.6
50	Problems on computation of rms delay	CO 2	T1-5.3.2
51	Problems on total power in the carrier	CO 2	T1-5.1.1
52	Problems on memory organization allocation and design	CO 3	T2:19.2,16.4.4
53	Problems on Booths Algorithm	CO 3	T2:13.3.2, 13.4.
54	Problems on Booths Algorithm	CO 3	T2:13.3.2, 13.4.
55	Problems on logic gate design and operations	CO 3	T2:19.2, 14.4.4
56	Problems on K maps and logic gate operations	CO 3	T2:19.2, 18.4.4
57	Problems on memory organization allocation and design	CO 3	T2:19.2, 16.4.4
	DISCUSSION ON DEFINITION	AND TER	MINOLOGY
58	Introduction to Computer Organization	CO 1, CO 2	T1-3.1-3.24
59	Organization of a Computer	CO 3, CO 4	T1-5.1 to 5.16
60	CPU and Computer Arithmetic	CO 5, CO 6	T1-4.1 to 4.9
61	Input-Output Organization	CO 5, CO 6	T1-7.1 to 7.14
62	Memory Organization	CO 5, CO 6	R3

DISCUSSION ON QUESTION BANK			
63	Introduction to Computer Organization	CO 1, CO 2	T1-3.1-3.24
64	Organization of a Computer	CO 3, CO 4	T1-5.1 to 5.16
65	CPU and Computer Arithmetic	CO 5, CO 6	T1-4.1 to 4.9
66	Input-Output Organization	CO 5, CO 6	T1-7.1 to 7.14
67	Memory Organization	CO 5, CO 6	R3

Signature of Course Coordinator

HOD,ECE

ANNEXURE

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of
		KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10

	 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	
PO 4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the ability to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems approach to engineering problems	11
PO 5	Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools.	1
PO 6	Apply reasoning informed by the contextual knowledge to assess	5
-------------	---	----------
	societal, health, safety, legal and cultural issues and the consequent	
	responsibilities relevant to the professional engineering practice (The	
	Engineer and Society).	
	1. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	2. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	3. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	4. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
	5. Understanding of the need for a high level of professional and	
	ethical conduct in engineering.	
PO 7	Understand the impact of the professional Engineering solutions in	3
	societal and Environmental contexts, and demonstrate the	
	knowledge of, and need for sustainable development (Environment	
	and Sustainability).	
	Impact of the professional Engineering solutions (Not technical)	
	1. Socio economic	
	2. Political	
	3. Environmental	
PO 8	Apply ethical principles and commit to professional ethics and	3
	responsibilities and norms of the Engineering practice (Ethics).	
	1. Comprises four components: ability to make informed ethical	
	choices, knowledge of professional codes of ethics, evaluates the	
	ethical dimensions of professional practice, and demonstrates ethical	
	behavior.	
	2. Stood up for what they believed in	
	3. High degree of trust and integrity	
PO 9	Function effectively as an individual, and as a member or leader in	12
	diverse teams, and in multidisciplinary settings (Individual and	
	Teamwork).	
	1. Independence	
	2. Maturity – requiring only the achievement of goals to drive their	
	performance	
	3. Self-direction (take a vaguely defined problem and systematically	
	work to resolution)	
	4. Teams are used during the classroom periods, in the hands-on	
	labs, and in the design projects.	
	5. Some teams change for eight-week industry oriented Mini-Project,	
	and for the seventeen -week design project.	

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

PO 12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). Project management professional certification / MBA Begin work on advanced degree Keeping current in CSE and advanced engineering concepts Personal continuing education efforts Ongoing learning – stays up with industry trends/ new technology Continued personal development Have learned at least 2-3 new significant skills Have taken up to 80 hours (2 weeks) training per year 	8
-------	---	---

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering					
Course Title	Digital	Digital Signal Processing				
Course Code	AECC33					
Program	B.Tech					
Semester	VI					
Course Type	Core					
Regulation	UG-20					
		Theory		Pract	tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Coordinator	Dr.S.China Venkateswarlu, Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AHSB11	III	Mathematical Transform Techniques
B.Tech	AECB14	IV	Signals and Systems

II COURSE OVERVIEW:

This course provides the design of discrete-time systems and analytical tools to analyze the discrete signals and systems. It focuses on the classification of discrete-time signals and systems, linear time invariant systems, discrete fourier transform, fast fourier transform algorithms, digital filter design and multi rate signal processing. Digital signal processing applications are used in speech processing, image processing, audio and video data compression, communication systems.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Digital Signal	70 Marks	30 Marks	100
Processing			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						•

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
%	Remember
%	Understand
%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	50
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
	100		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The classification and analysis of discrete time signals and systems in time and frequency domain tabularnewline
II	The design and realization structures of finite and infinite impulse response filters and multi rate filters
III	The implementation of digital filter algorithms using MATLAB tool

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate the concept of discrete time signals and systems for analysing the response of LTI system in time domain and frequency domain.	Understand
CO 2	Construct the Decimation-in-time fast fourier transform and decimation-in-frequency fast fourier transform for reducing computational complexity of DFT	Apply
CO 3	Implement the digital filters and their realization structures using various transformation technique	Apply
CO 4	Analyze the performance characteristics of digital filters to meet expected system specifications using MATLAB	Analyze
CO 5	Interpret the efficient implementation of sample rate conversion of digital signals to interface the digital systems with different sampling rates.	Understand
CO 6	Identify the errors in analog to digital conversion for tolerating finite word length effects.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/ AAT / SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	CIE/ AAT / SEE
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	CIE/ AAT / SEE
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	AAT / Projects
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations.	3	SEE / CIE
PO 10	Communication: : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	CIE/ AAT .

3 = High; 2 = Medium; 1 = Low

Р	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build embedded software and digital circuit	2	—
	development platform for robotics, embedded		
	systems and signal processing applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PRO)GR	AM	OUT	COI	MES				PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-		-		-
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	\checkmark		-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Explain(knowledge) the classification and properties of discrete time signals and systems to analyze the response of linear time invariant systems(complex) in time and frequency domain by applying the fundamental concepts of mathematical principles and engineering and science.	3
	PO 2	Understand the given problem statement and formulate (complex) to analyze the response of LTI system in the time domain and frequency domain from provided information and data .	6
	PO 10	Demonstrate the ability to communicate effectively on discrte signals and systems.	1
CO 2	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals to solve the fast fourier transform of discrete signals.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Formulate and analyze (problem analysis) complex engineering problems for fast fourier transform of discrete sigals using first principles of mathematics and engineering sciencesto analyze spectral characteristics of given signal and validate the results of decimation in time fast fourier transform and decimation in frequency fast fourier transform with discrete fourier transform in reaching substantiated conclusions by the interpretation of results.	7
	PO 3	Understand the customer needs, use creativity and manage design process to apply fast fourier transform algorithms for the given signal to evaluate outcomes.	5
	PO 10	Demonstrate the ability to communicate effectively on discrte fourier transform.	1
	PSO 1	Develop the capability to analyze and apply FFT on discrete signals and applications by its mathematical models.	1
CO 3	PO 1	Apply the knowledge of mathematics, science, engineering fundamentals to understand finite impulse response and infinite impulse filters.	3
	PO 2	Understand the given problem statement and formulate the design (complex) digital filters from the provided information and data in reaching substantiated conclusions by the interpretation of results.	7
	PO 3	Design IIR and FIR filters for determining magnitude and phase response by applying the principles of mathematics, science to the solutions of complex engineering problems and design system components.	6
	PO 4	Design FIR and IIR filters from the provided information and data in reaching substantiated conclusions by the interpretation of results .	5
	PO 10	Demonstrate the ability to communicate effectively on digital filters.	1
	PSO 1	Apply filter transformation methods to convert digital filters from analog filters	1
CO 4	PO 1	Simulate the FIR and IIR filters using MATLAB tool to analyze performance parameters the knowledge of mathematics, science, engineering fundamentals.	3
	PO 2	Understand the given problem statement and formulate the design (complex) digital filters from the provided information and data in reaching substantiated conclusions by the interpretation of results by simulating in MATLAB.	7

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	Develop the MATLAB program to design IIR and FIR filters for determining magnitude and phase response by applying the principles of mathematics , science to the solutions of complex engineering problems and design system components.	6
	PO 4	Apply (knowledge) MATLAB code for designing digital filers and properties corresponding context of the engineering knowledge to given signal for spectral analysis of given signal.	5
	PO 5	Analyze the performance parameters of IIR and FIR filters using MATLAB to meet system specifications including prediction and modeling to complex engineering activities with an understanding of the limitations.	1
	PO 10	Demonstrate the ability to communicate effectively on MATLAB programs.	1
	PSO 1	Understand the analog and digital filters and apply transformation formulas to convert digital filters in MATLAB tool.	1
CO 5	PO 1	Understand the concept of multi rate signal processing which by applying the fundamental concepts of mathematical principles and engineering and science	3
	PO 2	Illustrate multi rate signal processing which are important for design solutions for complex engineering problems.	5
	PO 10	Demonstrate the ability to communicate effectively on multi rate signal processing	1
CO 6	PO 1	Understand (knowledge) concept of finite word length effects which by applying the fundamental concepts of mathematical principles and engineering and science of mathematical principles.	3
	PO 2	Identify the finite word length effects while implementing signal processing techniques(analyze complex engineering problems) on digital signal processor(engineering sciences).	5
	PO 10	Demonstrate the ability to communicate effectively on multi rate signal processing	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	6	-	-	-	-	-	-	-	1	-	-	-	-	-		
CO 2	3	7	5	-	-	-	-	-	-	1	-	-	1	-	-		

CO 3	3	7	6	5	-	-	-	-	-	1	-	-	1	-	-
CO 4	3	7	6	5	1	-	-	-	-	1	-	-	1	-	-
CO 5	3	5	-	-	-	-	-	-	-	1	-	-	1	-	-
CO 6	3	5	-	-	-	-	-	-	-	1	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

				PSO'S											
COURSE	PO	PO												PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	60	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 2	100	70	50	-	-	-	-	-	-	20	-	-	50	-	-
CO 3	100	70	6	45	-	-	-	-	-	20	-	-	50	-	-
			0												
CO 4	100	70	60	45	100	-	-	-	-	20	-		50	-	-
CO 5	100	50	-	-	-	-	-	-	-	20	-	-	50	-	-
CO 6	100	50	-	-	-	-	-	-	-	20	-	-	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- $\pmb{2}$ 40 % < C < 60% Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

				PRC)GR	AM	OUT	COI	MES				PSO'S		
COURSE	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	-	-	-	-	-	-	-	1	-	-	-	-	
CO 2	3	3	-	-	-	-	-	-	-	1	-	-	2	-	-
CO 3	3	3	1	-	-	-	-	-	-	1	-	-	2	-	-
CO 4	3	3	2	1	3	-	-	-	-	1	-	-	2	-	-
CO 5	3	2	2	2	-	-	-	-	-	1	-	-	2	-	-
CO 6	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
TOTAL	18	14	5	3	3	-	-	-	-	6	-	-	8	-	-
AVERAGE	3	2.6'	71.66	51.5	3	-	-	-	-	1	-	-	2	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	-
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	-	5 Minutes Video / Concept Video	~	Open Ended Experiments	-
Micro Projects	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY-INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling and	Experime	ntal Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	REVIEW OF DISCRETE TIME SIGNALS AND SYSTEMS:				
	Discrete time signal definition; Signal classification; Elementary signals; Transformation of elementary signals; Concept of digital frequency; Discrete time system definition; System classification; Linear time invariant (LTI) system; Properties of the LTI system; Time domain analysis of discrete time systems; Impulse response; The convolution sum; Methods of evaluating the convolution sum; Filtering using overlap-save and overlap-add method; Realization of digital filters: Concept of IIR and FIR filters; Realization structures for IIR and FIR filters using direct form-I and direct form-II, cascade, lattice and parallel.				
MODULE II	DISCRETE FOURIER TRANSFORM AND EFFICIENT COMPUTATION:				
	Introduction to discrete time Fourier transform (DTFT); Discrete Fourier transform (DFT) definition; Properties of DFT; Linear and circular convolution using DFT; Fast-Fourier-Transform (FFT): Direct computation of DFT; Need for efficient computation of the DFT (FFT algorithms); Radix-2 FFT algorithm for the computation of DFT and IDFT using decimation-in-time and decimation-in-frequency algorithms; General Radix-N FFT.				
MODULE III	STRUCUTRE OF IIR FILTERS:				
	Analog filters: Butterworth filters; Chebyshev type-1 and type-2 filters; Analog transformation of prototype LPF to HPF/BPF/BSF. Transformation of analog filters into equivalent digital filters using impulse invariant method and bilinear transform method; Matlab programs of IIR filters.				
MODULE IV	SYMMETRIC AND ANTISYMMETRIC FIR FILTERS				
	Design of linear phase FIR filters windowing and frequency sampling methods; Equiripple linear phase FIR filters; Parks-McClellan algorithm and remez algorithm; Least-mean-square error filter design; Design of FIR differentiators; Matlab programs of FIR filters; Comparison of FIR and IIR.				
MODULE V	APPLICATIONS OF DSP:				
	Multirate signal processing; Decimation; Interpolation; Polyphase structures for decimation and interpolation filters; Structures for rational sampling rate conversion; Applications of multirate signal processing for design of phase shifters, interfacing of digital systems with different sampling rates, sub band coding of speech signals. Analysis of finite word length effects: Representation of numbers; ADC quantization noise, coefficient quantization error, product quantization error, truncation and rounding errors; Limit cycle due to product round-off error; Round-off noise power; Limit cycle oscillations due to overflow in digital filters; Principle of scaling; Dead band effects.				

TEXTBOOKS

- 1. John G. Proakis, Dimitris G. Manolakis, Digital signal processing, Principles, Algorithms and Applications, Prentice Hall, 4th Edition, 2007
- 2. Sanjit K Mitra, Digital signal processing, A computer base approach, McGraw-Hill Higher Education, 4th Edition, 2011.
- 3. Emmanuel C, Ifeacher, Barrie. W. Jervis, DSP-A Practical Approach, Pearson Education, 2nd Edition, 2002.
- 4. A.V. Oppenheim, R.W. Schaffer, Discrete Time Signal Processing, PHI, 2nd Edition, 2006.

REFERENCE BOOKS:

- 1. Li tan, Digital signal processing: fundamentals and applications, Elsevier Science and. Technology Books, 2nd Edition, 2008.
- 2. Robert J.schilling, Sandra. L.harris, Fundamentals of Digital signal processing using Matlab, Thomson Engineering, 2nd Edition, 2005.
- 3. Salivahanan, Vallavaraj, Gnanapriya, Digital signal processing ||, McGraw-Hill Higher Education, 2nd Edition, 2009.

WEB REFERENCES:

1.https://lms.iare.ac.in/index?route=course/details&course_id=128 2. https://nptel.ac.in/courses/117/102/117102060/ COURSE WEB PAGE: https://lms.iare.ac.in/index?route=course/details&course_id=128

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping.	-	-
	CONTENT DELIVERY (THEO	RY)	
2	Introduction to DSP	CO 1	T1:2.1-2.2
3	Discrete time signal definition; Elementary signals; Signal classification	CO 1	T1:2.1-2.2
4	Transformation of elementary signals;	CO 1	T1:2.1-2.2
5	Discrete time system definition; System classification;	CO 1	T1:2.3-2.4
6	Linear time invariant (LTI) system; Properties of the LTI system;Impulse response;	CO 1	T1:2.3-2.4
7	Time domain analysis of discrete time systems;	CO 1	T1: 2.3.3
8	The convolution sum; Methods of evaluating the convolution sum;	CO 2	T1: 2.3.4
9	Filtering using overlap-save method	CO 1	T1: 2.3.4
10	Filtering using overlap-add method	CO 1	T1: 2.3.4

11	Realization of digital filters: Concept of IIR and FIR filters;	CO 3	T1: 9.2-9.3		
12	Realization structures for IIR and FIR filters using direct form-I and direct form-II.	CO 3	T1: 9.2-9.3		
13	Realization structures for IIR and FIR filters using cascade, lattice and parallel.	CO 3	T1: 7.1		
14	Introduction to DTFT,DFT	CO 2	T1: 7.3		
15	Properties of DFT	CO 2	T1: 7.3		
16	Linear and circular convolution using DFTCO 2T1: 8.1				
17	Fast-Fourier-transform (FFT): Direct computation of DFT	CO 2	T1: 8.1		
18	DIT FFT Algorithm	CO 2	T1: 8.2		
19	DIF FFT Algorithm	CO 2	T1: 10.3		
20	IDFT using decimation-in-time and decimation-in-frequency algorithms; General Radix-N FFT.CO 2T1: 10.3				
21	Introduction to digital filters	CO 3	T1: 10.3		
22	Analog filters: Butterworth filters	CO 3	T1: 10.3		
23	Design Chebyshev type-1 and type-2 filters;	CO 3	T1: 10.3		
24	Analog transformation of prototype LPF to HPF/BPF/BSF.	CO 3	T1: 10.2		
25	Transformation of analog filters into equivalent digital filters using impulse invariant method	CO 3	T1: 10.2		
26	Bilinear transform method	CO 3	T1: 10.2		
27	Matlab programs of IIR filters.	CO 4	T1: 10.2		
28	Linear phase FIR filters	CO 3	T1: 10.2		
29	Symmetric and asymmetric FIR filters	CO 3	T1: 10.2		
30	Design of linear phase FIR filters using windowing method	CO 3	T1: 10.2		
31	Design of linear phase FIR filters using Frequency sampling method	CO 3	T1: 10.2		
32	Equiripple linear phase FIR filters	CO 3	T1: 10.2		
33	Parks-McClellan algorithm and remez algorithm;	CO 3	T3:6.6		
34	Least-mean-square error filter design	CO 3	T1: 11.1-11.3		
35	Design of FIR differentiators	CO 3	T1: 11.1-11.3		
36	Matlab programs of FIR filters; Comparison of FIR and IIR.	CO 4	T1: 11.6		
37	Multirate signal processing; Decimation; Interpolation	CO 5	T1: 11.6		
38	Polyphase structures for decimation and interpolation filters	CO 5	T1: 11.6		
39	Structures for rational sampling rate conversion	CO 5	T1: 11.6		
40	Applications of multirate signal processing for design of phase shifters	CO 5	T1: 11.6		
41	Interfacing of digital systems with different sampling rates Sub band coding of speech signals	CO 5	T1: 11.6		

42	Analysis of finite word length effects: Representation of numbers; ADC quantization noise	CO 6	T1: 11.7
43	coefficient quantization error, product quantization error, truncation and rounding errors	CO 6	T1: 11.7
44	Limit cycle due to product round-off error; Round-off noise power	CO 6	T1: 11.7
45	Limit cycle oscillations due to overflow in digital filters; Principle of scaling; Dead band effects.	CO 6	T1: 11.7
	PROBLEM SOLVING/ CASE STU	UDIES	
1	Operation on signals, System characteristics	CO 1	T2:1.12
2	Time domain analysis of discrete time systems	CO 1	T1:1.2
3	Linear convolution and circular convolution	CO 1	T1:3.2
4	Overlap add method, Overlap save method	CO 1	T1:3.2
5	Realization structures of digital filters direct form I and II	CO 3	T1: 9.2-9.3
6	Realization structures of digital filters cascade and paralle form	CO 3	T1: 9.2-9.3
7	DFT Properties problems	CO 2	T1: 8.1
8	DIT FFT	CO 2	T1: 8.1
9	DIF FFT	CO 2	T1: 8.1
10	IIR Filters-butterworth filters	CO 3	T1: 10.3
11	IIR Filters- Chebyshev type-1 filters	CO 36	T1: 10.3
12	Impulse invariant method and bilinear transformation	CO 3	T1: 10.3
13	FIR filters -windowing method	CO 3	T1: 10.2
14	FIR filters -frequency sampling method	CO 3	T1: 10.2
15	Finite word length effects	CO 6	T1: 9.4-9.5, T1:9.6
	DISCUSSION OF DEFINITION AND TE	RMINOLO	GY
1	System characteristics impulse response	CO 1	T2·1 12
2	DFT and FFT	CO 2	T1: 7.2. T1:
		001	8.1
3	IIR and FIR filters	CO 3	T1: 10.2, T1: 10.3
4	Multi rate signal processing	CO 5	T1: 11.6
5	Finite word length effects	CO 6	T1: 9.4-9.5, T1:9.6

	DISCUSSION OF QUESTION BANK				
1	System characteristics, Time domain analysis, convolution sum	CO1, CO2	T1:1.12		
2	Realization structures	CO 3	T1: 9.2-9.3		
3	DFT and FFT	CO 2	T1: 8.1		
4	IIR and FIR filters	CO 3	T1: 10.3, T1: 10.2		
5	Multirate signal processing	CO 5, CO6	T1: 9.4-9.5,		

HOD,ECE

Signature of Course Coordinator Dr. S China Venkateswarlu, Professor

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO	NBA Statement / Key Competencies Features (KCF)	No.
Num-		of
ber		KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and 	10

PO 4.	Use research-based knowledge and research methods including design of	11
	experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of	
	Complex Problems).	
	1. Knowledge of characteristics of particular materials, equipment,	
	processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology	
	development, etc.)	
	4. Understanding use of technical interature and other information sources Awareness of nature of intellectual property and contractual	
	issues	
	5. Understanding of appropriate codes of practice and industry	
	standards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty	
	8. Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of systems	
	and components through the use of analytical methods and modeling	
	10 Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline, in order to solve engineering	
	problems	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems.	
PO 5	Create, select, and apply appropriate techniques, resources, and modern	1
	Engineering and IT tools including prediction and modelling to	
	complex Engineering activities with an understanding of the limitations	
	(Modern Tool Usage).	
	technical library resources / literature search tools.	
PO 6	Apply reasoning informed by the contextual knowledge to assess	5
	societal, health, safety, legal and cultural issues and the consequent	
	responsibilities relevant to the professional engineering practice (The	
	Engineer and Society).	
	1. Knowledge and understanding of commercial and economic context	
	of engineering processes	
	2. Knowledge of management techniques which may be used to achieve	
	3 Understanding of the requirement for engineering activities to	
	promote sustainable development	
	4. Awareness of the framework of relevant legal requirements governing	
	engineering activities, including personnel, health, safety, and risk	
	(including environmental risk) issues	
	5. Understanding of the need for a high level of professional and ethical	
	conduct in onginooring	

PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	12
PO 10	 Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" Clarity (Writing) Grammar/Punctuation (Writing) References (Writing) Speaking Style (Oral) Subject Matter (Oral) 	5

PO11	Demonstrate knowledge and understanding of the Engineering and	12
	management principles and apply these to one's own work, as a member	
	and leader in a team, to manage projects and in multidisciplinary	
	Environments (Project Management and Finance).	
	1. Scope Statement	
	2. Critical Success Factors	
	3. Deliverables	
	4. Work Breakdown Structure	
	5. Schedule	
	6. Budget	
	7. Quality	
	8. Human Resources Plan	
	9. Stakeholder List	
	10. Communication	
	11. Risk Register	
	12. Procurement Plan	
PO12	Recognize the need for and have the preparation and ability to engage	8
	in independent and life-long learning in the broadest context of	
	technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication l Engineering					
Course Title	Business Economics and Financial Analysis					
Course Code	AHSC13					
Program B.Tech						
Semester VI						
Course Type Core						
Regulation	UG-20					
	Theory I		Pract	ractical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator Dr. K Jagannayaki, Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

II COURSE OVERVIEW:

The present course is designed in such a way that it gives an overview of concepts of Economics. Managerial Economics enables students to understand micro environment in which markets operate how price determination is done under different kinds of competitions. Financial Analysis gives clear idea about concepts, conventions and accounting procedures along with introducing students to fundamentals of ratio analysis and interpretation of financial statements. Break Even Analysis is very helpful to the Business Concern for Decision Making, controlling and forward Strategic Planning. Ratio analysis gives an idea about financial forecasting, financial planning, controlling the business and decision making.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks		
BEFA	70 Marks	30 Marks	100		

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
x	Open Ended Experiments	\checkmark	Seminars	x	Mini Project	\checkmark	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
16.67%	Remember
16.67%	Understand
16.67%	Apply
50 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
CIA	Continuous Internal Examination – 1 (Mid-term)	10	
	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
	Total Marks		100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The concepts of business economics and demand analysis helps in optimal decision making in business environment
II	The functional relationship between Production and factors of production and able to compute breakeven point to illustrate the various uses of breakeven analysis.
III	The features, merits and demerits of different forms of business organizations existing in the modern business environment and market structures.
IV	The concept of capital budgeting and allocations of the resources through capital budgeting methods and compute simple problems for project management.
V	Various accounting concepts and different types of financial ratios for knowing financial positions of business concern.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	List the basic concepts of managerial economics and analysis,	Remember
	measurement of demand and its forecasting to know the current status	
	of goods and services.	
CO 2	Examine to know the current status of goods and services. to know	Analyze
	the economies and diseconomies of scale in manufacturing sector.	
CO 3	Summarize the four basic market models like perfect competition,	Understand
	monopoly, monopolistic competition, and oligopoly to know the price	
	and quantity are determined in each model.	
CO 4	Compare various types of business organizations and discuss their	Analyze
	implications for resource allocation to strengthen the market	
	environment.	
CO 5	Analyze different project proposals by applying capital budgeting	Analyze
	techniques to interpret the solutions for real time problems in various	
	business projects.	
CO 6	Develop the ability to use a basic accounting system along with the	Apply
	application of ratios to create (record, classify, and summarize) the data	
	needed to know the financial position of the organization.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes						
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.						
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations						
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.						
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations						
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.						
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.						
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.						

	Program Outcomes								
PO 9	Individual and team work: Function effectively as an individual, and as a								
	member or leader in diverse teams, and in multidisciplinary settings.								
PO 10	Communication: Communicate effectively on complex engineering								
	activities with the engineering community and with society at large, such as,								
	being able to comprehend and write effective reports and design								
	documentation, make effective presentations, and give and receive clear								
	instructions.								
PO 11	Project management and finance: Demonstrate knowledge and								
	understanding of the engineering and management principles and apply these								
	to one's own work, as a member and leader in a team, to manage projects								
	and in multidisciplinary environments.								
PO 12	Life-Long Learning: Recognize the need for and having the preparation								
	and ability to engage in independent and life-long learning in the broadest								
	context of technological change								

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	2	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	CIE/Quiz/AAT
	research literature, and analyse complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 8	Ethics: Apply ethical principles and commit to	1	Seminar/
	professional ethics and responsibilities and		Conferences
	norms of the engineering practice		
PO 9	Individual and team work: Function	3	Assignments/
	effectively as an individual, and as a member or		Discussion
	leader in diverse teams, and in multidisciplinary		
	settings.		
PO 11	Project management and finance:	3	CIE/Quiz/AAT
	Demonstrate knowledge and understanding of		
	the engineering and management principles and		
	apply these to one's own work, as a member and		
	leader in a team, to manage projects and in		
	multidisciplinary environments.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build embedded software and digital circuit	-	-
	development platform for robotics, embedded		
	systems and signal processing applications.		
PSO 2	Focus on the Application Specific Integrated	-	-
	Circuit (ASIC) Prototype designs, Virtual		
	Instrumentation and System on Chip (SOC)		
	designs.		
PSO 3	Make use of High Frequency Structure Simulator	-	-
	(HFSS) for modeling and evaluating the Patch		
	and Smart Antennas for Wired and Wireless		
	Communication Applications		
A TTT 1		•	•

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	\checkmark	\checkmark	-	\checkmark	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	\checkmark	\checkmark	-	\checkmark	-	-	-	-
CO 3	-	-	-	-	-	-	-	\checkmark	\checkmark	-	-	-	-	-	-
CO 4	-	-	-	-	-	-	-	\checkmark	\checkmark	-	-	-	-	-	-
CO 5	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-
CO 6	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Recall (knowledge) the scientific fundamentals of economic activities performed by the businessmen in the business for profit earning.	2
	PO 2	Interpret and identify the demand and its analysis with the mathematical and natural principles of demand forecasting methods.	6
	PO 8	Define (knowledge) the responsibilities of the engineering practices by knowing the best economical practices.	1
	PO 9	Match (knowledge) the economical implication to effectively function as a team member, and as a member or leader in diverse teams.	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 11	Relate (knowledge) the knowledge and understanding of the economic principles and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	6
CO 2	PO 1	Recall (Knowledge) the knowledge of mathematics, science in the production function through Different Combination of variable inputs with Economies of Scale.	2
	PO 2	Demonstrate the different cost concepts and determine the significance of Break Even Analysis.	5
	PO 8	Relate (Knowledge) (Knowledge) the ethical principles and commit to professional ethics and responsibilities and norms of the production management	2
	PO 9	Show (Fundamentals) the production function implications for effective implementation of gang compositions in a team work and in multidisciplinary settings.	6
	PO 11	Define the economies of scale in production function and Break Even Analysis knowledge applied in one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	5
CO 3	PO 8	List (Knowledge) (Knowledge) different structures of market and how price is determined under different market structures commit to professional ethics and responsibilities and norms of the engineering practice.	2
	PO 9	Match the market structures and the market entry strategies as an individual, and as a member in diverse teams.	6
CO 4	PO 8	Categorize the ethical principles and commit to professional ethics and responsibilities belongs to different forms of business organizations existing in the modern business.	2
	PO 9	Classify various business organizations and their functioning as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	6
CO 5	PO 1	Explain the ethical issues involved in the allocation of funds under the concept of capital budgeting.	1
	PO 11	Summarize the concept of capital budgeting and allocations of the resources through capital budgeting methods of the management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	8
CO 6	PO 2	Explain the GAAP principles and ratios to analyse complex engineering problems reaching substantiated conclusions using first principles of accounts and profitability and efficiency of the organization.	6

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 11	Illustrate the accounting methods and procedures and	8
		accounting principles to manage the financial aspects	
		in a project.	

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-PING:

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	2	6	-	-	-	-	-	1	5	-	6	-	-	-	-		
CO 2	2	5	-	-	-	-	_	2	6	-	5	-	-	-	-		
CO 3	-	-	-	-	-	-	-	2	6	-	-	-	-	-	-		
CO 4	-	-	-	-	-	-	-	2	6	-	-	-	-	-	-		
CO 5	1	-	-	-	-	-	-	-	-	-	8	-	-	-	-		
CO 6	-	2	-	-	-	-	-	-	-	-	8	-	-	-	-		

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES												PSO'S		
COURSE	PO	РО	PO	PO	PO	PO	РО	PO	РО	PO	PO	РО	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	66.7	60.0	-	-	-	-	-	33.3	41.6	-	50.0	-	-	-	-	
CO 2	66.7	50.0	-	-	-	-	-	66.7	50.0	-	41.6	-	-	-	-	
CO 3	-	-	-	-	-	-	-	66.7	50.0	-	-	-	-	-	-	
CO 4	-	-	-	-	-	-	-	66.7	50.0	-	-	-	-	-	-	
CO 5	33.3	-	-	-	-	-	-	-	-	-	75.0	-	-	-	-	
CO 6	-	20.0	-	-	-	-	-	-	-	-	75.0	-	-	-	-	

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- **1** -5 <C \leq 40% Low/ Slight
- $\pmb{2}$ 40 % < C < 60% Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	3	-	-	-	-	-	1	2	-	2	-	-	-	-	
CO 2	3	2	-	-	-	-	-	3	2	-	2	-	-	-	-	
CO 3	-	-	-	-	-	-	-	3	2	-	-	-	-	-	-	
CO 4	-	-	-	-	-	-	-	3	2	-	-	-	-	-	-	
CO 5	1	-	-	-	-	-	-	-	-	-	3	-	-	-	-	

		PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 6	-	1	-	-	-	-	-	-	-	-	3	-	-	-	-	
TOTAL	7	7	-	-	-	-	-	10	8	-	-	-	-	-	-	
AVERAGE	2.3	2.3	-	-	-	-	-	2.5	2	-	2.5	-	-	-	-	

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	\checkmark
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	~	Open Ended Experiments	_
Assignments	\checkmark				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

X	Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback
---	--	--------------	---------------------------

XVIII SYLLABUS:

MODULE I	INTRODUCTION&DEMAND ANALYSIS
	Introduction to Business Economics: Definition, Nature and Scope of Managerial Economics – Demand Analysis: Demand Determinants, Law of Demand and its exceptions. Elasticity of Demand: Definition, Types, Measurement and Significance of Elasticity of Demand. Demand Forecasting, Factors governing demand forecasting, methods of demand forecasting
MODULE II	PRODUCTION & COST ANALYSIS
	Theory of Production and Cost Analysis: Production Function – Iso-quants and Iso-costs, MRTS, Least Cost Combination of Inputs, Cobb-Douglas Production function, Laws of Returns, Internal and External Economies of Scale. Cost Analysis: Cost concepts; Break-even analysis, Determination of Break – Even point (Simple Problems), Managerial Significance of BEA.
MODULE III	MARKETS & NEW ECONOMIC ENVIRONMENT
	LMarket structures: Types of competition, Features of perfect competition, Monopoly and monopolistic competition. Price determination & Price Statistics: Price Output determination in case of perfect competition and monopoly. Features and evaluation of different forms of Business organization: Sole proprietorship, partnership, Joint Stock Company, public enterprises and their types.
MODULE IV	CAPITAL BUDGETING
	Capital and its significance, types of capital, estimation of fixed and working capital requirements, methods and sources of raising capital- Trading Forecast, Capital budget, Cash Budget. Features of capital budgeting proposals, methods of capital budgeting – payback method, Accounting rate of return(ARR), Net Present Value Method (simple problems).

MODULE V	INTRODUCTION TO FINANCIAL ACCOUNTING AND
	FINANCIAL ANALYSIS
	Financial accounting objectives, functions, importance; Accounting concepts
	and accounting conventions - double-entry book keeping, journal, ledger, trial
	balance; Final accounts: Trading account, profit and loss account and balance
	sheet with simple adjustments; Financial analysis: Analysis and
	interpretation of liquidity ratios, activity ratios, capital structure ratios and
	profitability ratios (simple problems), Du Pont chart.

TEXTBOOKS

- 1. Aryasri, "Managerial Economics and Financial Analysis", TMH publications, 4thEdition,2012.
- 2. M. KasiReddy, Saraswathi, "Managerial Economics and Financial Analysis", PHI Publications, New Delhi, 2ndEdition, 2012.
- 3. Varshney, Maheswari, "Managerial Economics", Sultan Chand Publications, 11thEdition,2009.

- **REFERENCE BOOKS:** 1. D.N. Dwivedi, "Managerial Economics", Vikas Publication House Pvt.Ltd, 2ndEdition.2012.
 - 2. S.N. Maheshwari & S.K.Maheshwari, "Financial Accounting", Vikas Publication House Pvt.Ltd,4thEdition, 2012.
 - 3. R.NarayanaSwamy, "Financial Accounting- A managerial Perspective", Pearson publications, 1stIndian Reprint Edition, 2012.

- WEB REFERENCES: 1. https://courses.lumenlearning.com/boundless-marketing/chapter/demand-analysis/
 - 2. https://theintactone.com/2019/10/01/me-u3-topic-2-cost-output-relationship-in-shortrun-long-run-cost-curves/
 - 3. https://corporatefinanceinstitute.com/resources/knowledge/modeling/break-evenanalysis/
 - 4. https://corporatefinanceinstitute.com/resources/knowledge/economics/marketstructure/#::text=The%20four%20popular%20types%20of,monopoly%20market%2C%20and%20market%
 - 5. https://www.vedantu.com/commerce/various-forms-of-business-organisations
 - 6. https://courses.lumenlearning.com/boundless-finance/chapter/introduction-to-capitalbudgeting/
 - 7. https://jkbhardwaj.com/20-transactions-with-their-journal-entries-ledger-and-trialbalance/
 - 8. https://www.iedunote.com/write-accounting-ledger
 - 9. https://opentextbc.ca/principlesofaccountingv1openstax/chapter/prepare-a-trialbalance/
 - 10. https://caknowledge.com/how-to-prepare-final-accounts/
 - 11. https://corporatefinanceinstitute.com/resources/knowledge/finance/ratio-analysis/

COURSE WEB PAGE:

https://lms.iare.ac.in/index?route=publicprofile&id=5201

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Discussion on Course Outcomes and how these COs ma	apped with l	POs and PSOs.
	CONTENT DELIVERY (THEOR	(Y)	
2	Concept of managerial economics according to the	CO 1	T1- 1.3-1.8
	business		R1-1.5-1.7
3	Nature and scope of business economics.	CO 1	T1- 1.3-1.8 R1-1.5-1.7
4	Meaning of demand analysis, Demand determinants and demand Function.	CO 1	T1-2.2-2.11 R1-3.3-3.20
5	Law of Demand and Exceptions of Law of Demand.	CO 1	T1-2.2-2.11 R1-3.3-3.20
6	Understand elasticity of the demand of the product and different types of Elasticity of Demand.	CO 1	T1-3.3-3.20 R1- 5.29-6.8
7	Measurement of Elasticity of Demand and Factors influencing on Elasticity of Demand.	CO 1	T1-3.3-3.20 R1- 5.29-6.8
8	State different methods of Demand Forecasting and the factors governing Demand Forecasting.	CO 1	T1-4.6-4.19
9	Demonstrate the Production function, features of Iso-Quants and Iso-Costs.	CO 2	T1- 5.3-5.18 R1- 5.29-6.8
10	Cobb-Dougles production function.	CO 2	T1- 5.3-5.18 R1- 5.29-6.8
11	Economies of Scale and Types of Economes of Scale.	CO 2	T1- 5.3-5.18
12	External and Internal Economies with appropriate examples.	CO 2	T1- 5.3-5.18
13	Advantages and Disadvantages of Economies.	CO 2	T1- 5.3-5.18
14	Illustrate different types of costs	CO 2	T1- 5.29-6.8
15	Marginal cost equation	CO 2	T1- 5.29-6.8
16	Explain the Significance and Limitations of Break-Even Analysis	CO 2	T1- 7.13-7.14
17	Profit-Volume Ratio	CO 2	T1- 7.13-7.14
18	Calculate Break-Even Point (Simple Problems)	CO 2	T1- 7.1-7.12
19	Calculate Margin of safety and P/E Ratio (Simple Problems)	CO 2	T1- 7.1-7.12
20	Illustrate the features, price-output determination under Perfect Competition.	CO 3	T1- 8.4-8.16 R2- 5.29-6.8
21	Monopoly and Monopolistic competition Markets.	CO 3	T1- 8.4-8.16 R2- 5.29-6.8
22	Demonstrate the price-output determination under perfect competition.	CO 3	T1- 8.21-8.25
23	Price-output determination under monopoly business.	CO 3	T1- 8.21-8.25
24	Illustrate the concept of Oligopoly and Duopoly with suitable examples.	CO 3	T1- 8.21-8.25
25	Describe Features of business, Definitions of Various forms of Business Units.	CO 4	T1-9.3-9.15

26	Features of Partnership and types of partners.	CO 4	T1-9.3-9.15
27	State the Merits & Demerits of Sole Proprietorship.	CO 4	T1-9.2-10.23
			R1- 8.21-8.25
28	Features of Joint Stock Company.	CO 4	T1-9.2-10.23
			R1- 8.21-8.25
29	Importance of Cooperative societies .	CO 4	T1-9.2-10.23
20	Simifaanaa and tumaa of Capital	COF	$\begin{array}{c} \text{R1-} 0.21 - 0.23 \\ \text{T1} 0.2 10.22 \end{array}$
50	Significance and types of Capital.	00.5	11-9.2-10.25 B1- 8 21-8 25
31	Methods and Sources of Baising Finance	CO 5	T1-9 2-10 23
32	Estimation of fixed and working capital requirements	<u> </u>	T1-9 2-10 23
33	Demonstrate the concept of capital hudgeting and	CO 5	T1-11 3-11 5
00	allocations of the resources through capital budgeting methods.	00 5	R2-12.3-12.5
34	Illustrate the Significance of Financial Accounting,	CO 6	T1-11.3-11.5
25	Accounting Concents and Conventions	<u> </u>	$\begin{array}{c} \text{R2-12.3-12.3} \\ \text{T1} 12 1 12 26 \end{array}$
	Accounting Concepts and Conventions		T1-12.1-12.20
30 27	Journal Entries of business transactions		T1 12.1-12.20
- 37 - 20	Euglein the meaning adventories and Limitations of		$\begin{array}{c} 1 1 - 12.1 - 12.20 \\ \hline \\ T1 12 4 12 15 \end{array}$
38	Trial Balance and Final Accounts and Solve simple Problems.	006	R2-11.3-11.5
39	Describe Meaning, Definitions and Limitations of Ratio Analysis .	CO 6	T1-13.4-13.15 R2-11.3-11.5
40	Compute different types of Financial Ratios (Problems) .	CO 6	T1-13.4-13.15 R2-11.3-11.5
	PROBLEM SOLVING/ CASE STU	DIES	
41	Problems relating to Demand elasticity measurement and Forecasting	CO 1	T1: 1.1 - 2.8, R1:2.1
42	Problems relation to Break Even Point	CO 2	T2: 3.0 to 3.6, 5.0 to5.5 , R2:4.4
43	Problems in determining the price in different types of markets	CO 3,4	T3: 6.0 to 6.4, R1:5.1
44	Problems relating to Pay back period	CO 5	R2:7.5
45	Problems relating to Accounting Rate of Return	CO 5	R2:7.5
46	Problems relating to Net Present Value	CO 5	R2:7.5
47	Problems relating to Internal Rate of Return	CO 5	R2:7.5
48	Problems relating to Profitability Index	CO 5	R2:7.5
49	Problems relating to Journal Entries	CO 6	R3: 4.1
50	Problems relating to Ledger posting	CO 6	R3: 4.1
51	Problems relating to Trial Balance	CO 6	R3: 4.1
52	Problems relating to P& L Account	CO 6	R3: 4.1
53	Problems relating to Balance Sheet	CO 6	R3: 4.1
54	Problems relating to Profitability Ratios	CO 6	R3: 4.1
55	Problems relating to Liquidity Ratios	CO 6	R3: 4.1

	DISCUSSION OF DEFINITION AND TERMINOLOGY				
56	Demand Forecasting	CO 1	T1: 1.1 - 2.8, R1:2.1		
57	Production and Cost Analysis	CO 2	T2: 3.0 to 3.6, 5.0 to 5.5 , R2:4.4		
58	Markets and New Environment	CO 3,4	T3: 6.0 to 6.4, R1:5.1		
59	Capital Budgeting	CO 5	R2:7.5		
60	Introduciton to Financial Accounting and Financial Analysis	CO 6	R3: 4.1		
	DISCUSSION OF QUESTION BANK				
61	Introduction and Demand Analysis	CO 1	T1: 1.1 - 2.8, R1:2.1		
62	Production and Cost Analysis	CO 2	T2: 3.0 to 3.6, 5.0 to 5.5 , R2:4.4		
63	Markets and New Environment	CO 3,4	T3: 6.0 to 6.4, R1:5.1		
64	Capital Budgeting	CO 5	R2:7.5		
65	Introduciton to Financial Accounting and Financial Analysis	CO 6	R3: 4.1		

Signature of Course Coordinator Dr. K Jagannayaki, Professor

HOD,MBA

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Course Title	INTELLECTUAL PROPERTY RIGHTS					
Course Code	AHSC19	AHSC19				
Program	B.Tech					
Semester	VI	ECE				
Course Type	Open Elective					
Regulation	IARE - UG20					
		Theory		Practica	ıl	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Dr. B Ravi Kumar, Associate Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	-	-	-

II COURSE OVERVIEW:

This course provides the trade related intellectual property rights and investment measures. This course emphasis on how to avail the intellectual property rights of the inventors or owners for their assets like patents on innovative design, copy rights on literary and artistic works, trademark on goods & services and geographical indiactions on products famous for specific geographical areas. This course makes use of the potential future economic benefits to the intellectual property owner or authorized user.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Intellectual Property	70 Marks	30 Marks	100
Rights			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
85 %	Understand
15 %	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component	Theory			Total Marks
Type of Assessment	CIE Exam	Quiz	AAT	
CIA Marks	20	-	10	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	-

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The knowledge on world trade organization, trade agreements and investments.
II	The importance of intellectual property rights to develop trade mark law, copy right law and patent law.
III	The new developments in the law of intellectual property rights in order to bring progressive changes towards a free market society and international trade practices under the Trade Related Intellectual Property Rights Agreement (TRIPS)
VII COURSE OUTCOMES:

After successful completion of the course, students will be able to:

CO 1	Summerize the general agreement on tariffs and trade (GATT) eight rounds for the substantial reduction of tariffs and other barriers of trade.	Understand
CO 2	Relate the world trade organization agreements for trade related intellectual property rights and investments.	Understand
CO 3	Elaborate the involvement of World Intellectual Property Organization to promote the protection of intellectual property throughout the world.	Understand
CO 4	Demonstrate the legal procedure and document for claiming patent of invention.	Understand
CO 5	Illustrate the different geographical Indications of products which corresponding to specific location for aviling brand of location to products .	Understand
CO 6	Identify different types of intellectual properties, the right of ownership, scope of protection to create and extract value from IP.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes										
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,										
	engineering fundamentals, and an engineering specialization to the solution										
	of complex engineering problems.										
PO 2	Problem analysis: Identify, formulate, review research literature, and										
	analyze complex engineering problems reaching substantiated conclusions										
	using first principles of mathematics, natural sciences, and engineering										
	sciences.										

	Program Outcomes
PO 3	Design/Development of Solutions: Design solutions for complex
	the specified needs with appropriate consideration for the public health and
	safety and the cultural societal and Environmental considerations
	Conduct Investigations of Complex Problems: Use research based
104	knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,
	resources, and modern Engineering and IT tools including prediction and
	modelling to complex Engineering activities with an understanding of the
PO 6	I ne engineer and society: Apply reasoning informed by the contextual knowledge to access accietal health, asfety legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the
101	professional engineering solutions in societal and environmental contexts and
	demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering
	activities with the engineering community and with society at large, such as,
	being able to comprehend and write effective reports and design
	documentation, make effective presentations, and give and receive clear
DO 11	Instructions.
POII	understanding of the engineering and management principles and apply these
	to one's own work as a member and leader in a team to manage projects
	and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation
	and ability to engage in independent and life-long learning in the broadest
	context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 6	The engineer and society: Identify,	2	CIE/Quiz/AAT
	formulate, review research literature, and		
	analyze complex engineering problems reaching		
	substantiated conclusions using first principles		
	of mathematics, natural sciences, and		
	engineering sciences.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 8	Ethics: Apply ethical principles and commit to	3	Seminar
	professional ethics and responsibilities and		
	norms of the engineering practice.		
PO 10	Communication: Communicate effectively on	2	Seminar
	complex engineering activities with the		
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear.		
PO 12	Life-Long Learning: Recognize the need for	1	Seminar
	and having the preparation and ability to		
	engage in independent and life-long learning in		
	the broadest context of technological change		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	PROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit	-	-
	Development platform for Robotics, Embedded		
	Systems and Signal Processing Applications.		
PSO 2	Focus on the Application Specific Integrated	-	-
	Circuit (ASIC) prototype designs, Virtual		
	Instrumentation and System on Chip (SOC)		
	designs.		
PSO 3	Make use of High Frequency Structure	-	-
	Simulator (HFSS) for modeling and evaluating		
	the patch and smart antennas for wired and		
	wireless communication applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

			PSO'S												
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	-	-	-	-
CO 4	-	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	-	-	-
CO 5	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-	-	-
CO 6	\checkmark	-	-	-	-	\checkmark	-	<	-	\checkmark	-	\checkmark	-	-	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Identify different types of Intellectual Properties (IPs), the right of ownership in scientific principles and methodolgy , scope of protection as well as the ways to create and to extract value from IP	1
	PO 10	Describe the intellectual property rights of ownership and communicate effectivly(speaking style) in concept video or tech talk	1
CO 2	PO 6	Explain WTO agreements helpful for engineering activities to promot sustainable development and legal requirements in new product and service development.	2
	PO 10	Describe the importance of WTO agreements for trade related intellectual property rights communicate effectively(speaking style) in tech-talk	1
CO 3	PO 8	Demonstrate the ethical behaviour and responsibilities of world intellectual property organization and its degree of trust and integrity to protect intellectual property rights of the owner	3
	PO 10	Describe the support of WIPO in connection with intellectual property rights and communicate effectivly(speaking style) in tech-talk	1
CO 4	PO 6	Explore the knowledge and understanding of commercial management of IP and identify the highlevel of professional conduct of intellectual property management for claiming patent of invention	2
	PO 8	Explain how to prepare the ethical document for patent of invention by following legal belief and high degree of trust and integrity	3
	PO 10	Describe the steps involved in patent filing in india namely drafting, filing the patent application(writing) and communicate effectivly(speaking style) in concept video and tech-talk.	2
	PO 12	Understand the need of advanced engineering concepts interms of ongoing learning which is suitable to intellectual work.	2
CO 5	PO 1	Explore on the engineering scientific principles and mathematical principles which are helpful for availing geographical indication and procedure for applying geographical indications of products of specific locations	2
	PO 8	Extend on various IPR components to make ethical production and process of filing a document for geographical indication by following professional ethics and integrity of resourse of region .	3
	PO 10	Describe the geographical indiaction for famous products in a given location and communicate effectively(speaking style) in tech-talk.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 12	Understand the need of advanced engineering concepts interms of ongoing learning which is suitable to get permission for geographical indication of products.	2
CO 6	PO 1	Explore the engineering knowledge which is useful for preparing the trademark and then apply methodology for trade mark based on trademark and merchandise act 1958 which prevents misuse of marks.	2
	PO 6	Illustrate international copyright law with respect to ownership and registration of copyright by following the awareness of legal requirements . Understand the professional and ethical conduct to get copy right for literary and artistic works	2
	PO 8	Summarize the trade mark and trade secrets with knowledge of professional ethics and integrity protection before submitting application to trademark office. Demonstrate the ethical behaviourof stoping illegal trademark	3
	PO 10	Describe the IPR to get trademark for unique marks and copy right(for literature writing) for new artistic works and and communicate effectively(speaking style) in tech-talk.	2
	PO 12	Analyze the the project mangement for international developments in trademarks law , copyright law and patent law. Significant skills are applied to get intellectual property rights.	2

Note: For Key Attributes refer Annexure - I

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

			PSO'S												
COURSE	PO	PO	РО	PO	PSO	PSO	PSO								
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	-	-	-	-	-	2	-	-	-	1	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	3	-	1	-	-	-	-	-
CO 4	-	-	-	-	-	2	-	3	-	2	-	2	-	-	-
CO 5	2	-	-	-	-	-	-	3	-	2	-	2	-	-	-
CO 6	2	-	-	-	-	2	-	3	-	2	-	2	-	-	_

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

			PSO'S												
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	33.3	-	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 2	-	-	-	-	-	40	-	-	-	20	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	100	-	20	-	-	-	-	-
CO 4	-	-	-	-	-	40	-	100	-	40	-	25	-	-	-
CO 5	66.7	-	-	-	-	-	-	100	-	40	-	25	-	-	-
CO 6	66.7	-	-	-	-	40	-	100	-	40	-	25	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - 0 < C< 5% – No correlation

1 -5 <C \leq 40% – Low/ Slight

 $\pmb{2}$ - 40 % <C < 60% –Moderate

3 - 60% < C < 100% – Substantial /High

				PSO'S											
COURSE	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	-	-	-	-	-	2	-	-	-	1	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	3	-	1	-	-	-	-	-
CO 4	-	-	-	-	-	2	-	3	-	2	-	1	-	-	-
CO 5	3	-	-	-	-	-	-	3	-	2	-	1	-	-	-
CO 6	3	-	-	-	-	2	-	3	-	2	-	1	-	-	-
Total	7	-	-	-	-	6	-	12	-	9	-	3	-	-	-
Average	2.3	-	-	-	-	2	-	3	-	1.5	-	1	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory	-	Student Viva	-	Certification	-
Practices					
Term Paper	-	5 Minutes Video	✓	Open Ended	-
				Experiments	
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

 ✓ 	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of mini projects by experts		

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	General agreement on tariffs and trade (GATT) eight rounds: Uruguay round, world trade organization: structure, technology transfer, dispute resolution mechanism, Doha declaration world trade organization agreements including trade related intellectual properties rights and trade related investment measures.
MODULE II	WORLD INTELLECTUAL PROPERTY ORGANIZATION
	Paris convention, Bern convention, Budapest treaty, Madrid agreement, hague agreement.
MODULE III	INTELLECTUAL PROPERTY RIGHTS AND PROTECTIONS
	Patents, the patenting process, patent cooperation treaties: International treaties and conventions on IPRs. Patent act of India, patent amendment act, design act, trademark act, and geographical indication act. Digital innovations and developments as knowledge assets – IP laws, cyber law and digital content protection.
MODULE IV	ROLL OF PATENTS AND GEOGRAPHICAL INDICATIONS
	Patents, patentable and non-patentable inventions. Legal requirements for patents, types of patent applications, patent document: specification and claims, important procedural aspects. Geographical indication: definition, what can be registered, who can apply, rights, term, restrictions. Case studies of patent infringement, design and geographical indications.
MODULE V	TRADEMARK AND COPYRIGHTS
	Definition, classification of trademarks, classifications of goods and services, Vienna classification, trademarks procedure, trademarks enforcement: infringement and passing off, remedies, copyrights, term of copyrights, and procedure of copyright assignment of copyright, copyright infringement remedies. Case studies of trademark and copy rights.

TEXTBOOKS

- 1. P. K. Vasudeva, World Trade Organization: Implications on Indian Economy, Pearson Education, 2015.
- 2. P.KrishnaRao, WTO, Text and cases, Excel Books, 2015.
- 3. Carlos M.Correa- Intellectual property rights, The WTO and Developing countries-Zed books

REFERENCE BOOKS: 1. Yuan S W, "Foundations of fluid Mechanics", Prentice-Hall, 2nd Edition, 1987.

WEB REFERENCES:

- 1. Caves, Frankel, Jones, World Trade and Payments-An Introduction, Pearson4. Education, 2015.
- 2. Carlos M.Correa- Intellectual property rights, The WTO and Developing countries-Zed books.
- 3. Peter-Tobias stoll, Jan busche, Katrianarend- WTO- Trade --related aspects of IPR-Library of Congress

COURSE WEB PAGE:

https://lms.iare.ac.in/index?route=course/details&course_id=367

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Outcomes (CO) Brogram Outcomes (PO) and CO BO Many	rse Objecti [.]	ves, Course
	CONTENT DELIVERY (THEORY)	ning	
1	General agreement on tariffs and trade (GATT) eight rounds	CO 1	T1:1.4-
_		001	1.5
2	Uruguay round	CO 1	T1:1.4- 1.5
3	World trade organization: structure	CO 1	T1:2.4- 2.5
4	Technology transfer	CO 1	T1:2.4- 2.5
5	Dispute resolution mechanism	CO 1	T1:2.4- 2.5
6	Doha declaration	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10
7	world trade organization agreements	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10
8	Trade related intellectual properties rights	CO 2	T1:3.1- 3.6
9	Paris convention	CO 2	T1:3.1- 3.6
10	Bern convention	CO 2	T1:3.1- 3.6
11	Budapest treaty	CO 2	T1:3.1- 3.6
12	Madrid agreement	CO 3	T1:3.1- 3.6
13	Hague agreement	CO 3	T1:3.1- 3.6
14	Historical background of intellectual property rights	CO 3	T1:3.1- 3.8
15	introduction, definition and classification of intellectual property	CO 3	T1:3.1- 3.8
16	Patents, patentable and non-patentable inventions	CO 3	T1:3.1- 3.8
17	Legal requirements for patents	CO 3	T1:3.1- 3.8; R2: 7.4-7.5
18	Types of patent applications	CO 3	T1:3.1- 3.8; R2: 7.4-7.5

19	patent document: specification and claims	CO 3	T1:3.1- 3.8; R2: 7.4-7.5
20	important procedural aspects	CO 3	T1:3.1- 3.8; R2: 7.4-7.5
21	management of intellectual property rights assets	CO 4	T1:4.1- 4.6
22	intellectual property portfolio	CO 4	T1:4.1- 4.6
23	Commercial exploitation of intellectual property	CO 4	T1:4.1- 4.6
24	Designs: basic requirements	CO 4	T1:4.1- 4.6
25	Designs: Procedure	CO 4	T1:4.1- 4.6
26	Designs: Convention application term, date	CO 5	T1:10.1- 10.6
27	Geographical indication: definition	CO 5	T1:10.1- 10.6
28	What can be registered	CO 5	T1:10.1- 10.6
29	Who can apply	CO 5	T1:10.1- 10.6
30	Rights, term, restrictions	CO 5	T1:10.1- 10.6; T1:9.1- 9.6
31	TRADEMARK AND COPYRIGHTS: Definition, classification of trademarks	CO 5	T1:10.1- 10.6; T1:9.1- 9.6
32	Classifications of goods and services	CO 5	T1:9.1- 9.6
33	Vienna classification	CO 5	T1:9.1- 9.6
34	Trademarks procedure	CO 5	T1:9.1- 9.6
35	Trademarks enforcement: infringement and passing off , remedies	CO61	T1:8.1- 8.3 ; R2: 7.4-7.5
36	copyrights, term of copyrights	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
37	procedure of copyright	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
38	Assignment of copyright	CO 6	T1-8.1- 8.1.7

39	Copyright infringement remedies	CO 6	T1-8.1- 8.1.7
40	Copyright infringement remedies	CO 6	T1-8.1- 8.1.7
	PROBLEM SOLVING/ CASE STUDIES		<u> </u>
1	Trademarks	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10
2	Copyrights	CO 3	T1:3.1- 3.6
3	Which are the types of geographical indication/?	CO 2	T1:3.1- 3.6
4	How many geographical indications are there in India/?	CO 2	T1:3.1- 3.6
5	What means intellectual property/?	CO 3	T1:3.1- 3.6
6	What is IPR and its features/?	CO 3	T1:3.1- 3.8
7	What is a violation of intellectual property/?	CO 3	T1:3.1- 3.8
8	What is trademark with example/?	CO 3	T1:4.1- 4.6
9	What are the two categories of intellectual property/?	CO 3	T1:4.1- 4.6
10	What happened in the Uruguay Round/?	CO 4	T1:4.1- 4.6
11	What was a result of the Uruguay Round quizlet/?	CO 5	T1:10.1- 10.6
12	What is the purpose of WIPO/?	CO 5	T1:10.1- 10.6
13	How many countries are in WIPO/?	CO5	T1:10.1- 10.6
14	What is the difference between a geographical indication and a trademark/?	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
15	What trademark means/?	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	What is World Trade Organization (WTO)/?	CO 1	T1:1.4- 1.5
2	What is the purpose of WIPO/?	CO 3	T1:3.1- 3.8
3	What means intellectual property/?	CO 4	T1:4.1- 4.6
4	What do you mean by geographical indications/?	CO 5	T1:10.1- 10.6

5	What trademark means/?	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
	DISCUSSION OF QUESTION BANK		
1	Explain why agencies responsible for intellectual property registration with any two examples.	CO 2	T1:1.4- 1.5
2	What is patent/? How the patents are related with intellectual property rights/?	CO 3	T1:3.1- 3.8
3	Explain with one real time example the patentable and non-patentable inventions.	CO 4	T1:3.1- 3.8; R2: 7.4-7.5
4	How intellectual property is helpful to the society and what are the legal requirements are needed for patents/?	CO 5	T1:10.1- 10.6
5	What is the most important criteria for an applicant who seek to register a geographical indication/?	CO 6	T1:8.1- 8.3; R2: 7.4-7.5

Signature of Course Coordinator DR. B Ravi Kumar, Associate Professor HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES/ PROGRAM SPECIFIC OUTCOMES

PO	NBA Statement / Key Competencies Features (KCF)	No.
Number		of
		KCF's
PO 1	Apply the knowledge of mathematics, science, Engineering	3
	fundamentals, and an Engineering specialization to the solution of	
	complex Engineering problems (Engineering Knowledge).	
	Knowledge, understanding and application of	
	1. Scientific principles and methodology.	
	2. Mathematical principles.	
	3. Own and / or other engineering disciplines to integrate / support	
	study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and analyse complex	10
	Engineering problems reaching substantiated conclusions using first	
	principles of mathematics natural sciences, and Engineering sciences	
	(Problem Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results	
	10. Documentation	
PO 3	Design solutions for complex Engineering problems and design	10
	system components or processes that meet the specified needs with	
	appropriate consideration for the public health and safety, and the	
	cultural, societal, and Environmental considerations	
	(Design/Development of Solutions).	
	1. Investigate and define a problem and identify constraints	
	including environmental and sustainability limitations, health and	
	safety and risk assessment issues	
	2. Understand customer and user needs and the importance of	
	considerations such as aesthetics	
	5. Identify and manage cost drivers	
	4. Use creativity to establish innovative solutions	

	5. Ensure fitness for purpose for all aspects of the problem including	
	production, operation, maintenance and disposal	
	6. Manage the design process and evaluate outcomes.	
	7. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	8. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	9. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	10. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
PO 4	Use research-based knowledge and research methods including design	11
	of experiments analysis and interpretation of data and synthesis of	
	the information to provide valid conclusions (Conduct	
	Investigations of Complex Problems).	
	1 Knowledge of characteristics of particular materials equipment	
	processes, or products	
	2. Workshop and laboratory skills	
	3 Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology	
	development etc.)	
	4 Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and contractual	
	issues	
	5 Understanding of appropriate codes of practice and industry	
	standards	
	6 Awareness of quality issues	
	7 Ability to work with technical uncertainty	
	8 Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9 Ability to identify classify and describe the performance of	
	systems and components through the use of analytical methods and	
	modeling techniques	
	10 Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline in order to solve engineering	
	problems	
	11 Understanding of and ability to apply a systems approach to	
	engineering problems	
PO 5	Create select and apply appropriate techniques, resources, and	1
F U 9	modern Engineering and IT tools including prediction and modelling	T
	to complex Engineering activities with an understanding of the	
	limitations (Modern Tool Usage)	
	1 Computer software / simulation packages / discreastic equipment	
	1. Computer software / simulation packages / diagnostic equipment	
	/ technical indiary resources / interature search tools.	

PO 6	Apply reasoning informed by the contextual knowledge to assess	5
	societal, health, safety, legal and cultural issues and the consequent	
	responsibilities relevant to the professional engineering practice (The	
	Engineer and Society).	
	1. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	2. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	3. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	4. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
	5. Understanding of the need for a high level of professional and	
	ethical conduct in engineering.	
PO 7	Understand the impact of the professional Engineering solutions in	3
	societal and Environmental contexts, and demonstrate the	
	knowledge of, and need for sustainable development (Environment	
	and Sustainability).	
	Impact of the professional Engineering solutions (Not technical)	
	1. Socio economic	
	2. Political	
	3. Environmental	
PO 8	Apply ethical principles and commit to professional ethics and	3
	responsibilities and norms of the Engineering practice (Ethics).	
	1. Comprises four components: ability to make informed ethical	
	choices, knowledge of professional codes of ethics, evaluates the	
	ethical dimensions of professional practice, and demonstrates ethical	
	behavior.	
	2. Stood up for what they believed in	
	3. High degree of trust and integrity	
PO 9	Function effectively as an individual, and as a member or leader in	12
	diverse teams, and in multidisciplinary settings (Individual and	
	Teamwork).	
	1. Independence	
	2. Maturity – requiring only the achievement of goals to drive their	
	performance	
	3. Self-direction (take a vaguely defined problem and systematically	
	work to resolution)	
	4. Teams are used during the classroom periods, in the hands-on	
	labs, and in the design projects.	
	5. Some teams change for eight-week industry oriented Mini-Project,	
	and for the seventeen -week design project.	

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

		_
PO 12	Recognize the need for and have the preparation and ability to	8
	engage in independent and life-long learning in the broadest context	
	of technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2 Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	A Dersonal continuing education efforts	
	4. Tersonal continuing education enorts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year $(2 + 1)^{-1}$	
PSO 1	Build Embedded Software and Digital Circuit Development	5
	platform for Robotics, Embedded Systems and Signal Processing	
	Applications.	
	1. Analyze and solve real time problems in Robotics.	
	2 Evaluate the design and provide optimal solutions of the digital	
	circuits for signal processing applications	
	3 Develop embedded systems modules using Real Time Operating	
	5. Develop embedded systems modules using itear Time Operating	
	System.	
	4. Undertake research and development projects in the held of	
	Embedded Systems.	
	5. Adopt the engineering professional code and conduct	
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC)	11
	Prototypedesigns, Virtual Instrumentation and System on Chip	
	(SOC) designs	
	1. Inspect, survey and analyze types of ASIC chip designs.	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interface for SOC designs. 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs Explore hardware components for designing SOC 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs Explore hardware components for designig SOC Adopt the angineering professional code and conduct 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing professional code and conduct 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register Transfer-Level designs 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register Transfer-Level designs Analyse and develop models for system level descriptions for 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register Transfer-Level designs Analyse and develop models for system level descriptions for synthesis of SOC 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register Transfer-Level designs Analyse and develop models for system level descriptions for synthesis of SOC Inspect and survey the abstractions and principles for the 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register Transfer-Level designs Analyse and develop models for system level descriptions for synthesis of SOC Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register Transfer-Level designs Analyse and develop models for system level descriptions for synthesis of SOC Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register Transfer-Level designs Analyse and develop models for system level descriptions for synthesis of SOC Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) Programming and hands-on skills to meet requirements of global 	
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs Explore hardware components for designig SOC Adopt the engineering professional code and conduct Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. Familiarize with the design flow of ASIC prototypes. Realize SOC using Register Transfer-Level designs Analyse and develop models for system level descriptions for synthesis of SOC Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) Programming and hands-on skills to meet requirements of global environment. 	

PSO 3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications. 1. Explicit software and programming tools for antenna design. 2. Adopt technical library resources and literature search. 	7
	 Explore smart antennas. Model, program for operation and control of smart antennas for wireless communication applications. Interface automation tools. Research, analysis, problem solving and presentation using software aids. Programming and hands-on skills to meet requirements of global environment. 	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	DIGITAL SIGNAL PROCESSING LABORATORY						
Course Code	AECC42						
Program	B.Tech						
Semester	VI ECE						
Course Type	Core						
Regulation	IARE - UG20						
]	Theory		Practi	cal		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	-	-	-	2	1		
Course Coordinator	Ms. Mary swarna latha G, Assistant Professor						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC14	IV	Analog and Digital
			Communications Laboratory

II COURSE OVERVIEW:

This course is concerned with the implementation of digital signal processing algorithms using different computational platforms such as MATLAB and DSP tools that give core knowledge to develop the real time applications in the area of DSP. It focuses on the convolution, discrete Fourier transform, fast Fourier transform algorithms, digital filter design and multi rate signal processing. Digital signal processing applications are used in speech processing, image processing, audio and video data compression, communication systems.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Digital signal processig laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab Worksheets		Viva Questions		Probing further
\checkmark		\checkmark		\checkmark		\checkmark	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end laberamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of	Day to day performance	Final internal lab	
Assessment		assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
_	_	_	_	_	_

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The behavior of discrete time signals and systems in time and frequency domain.
II	The analysis of IIR, FIR digital filters and multi rate signal processing systems.
III	The implementation of real time digital signal processing algorithms using MATLAB tool and TI TMSC67XX target board.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of linear and circular convolution for analyzing the response of linear time invariant system.	Apply
CO 2	Apply discrete Fourier transform using direct method and fast Fourier transform algorithms for spectral analysis of discrete signals.	Apply
CO 3	Develop the various convolution sum methods for filtering long duration sequences efficiently in MATLAB.	Apply
CO 4	Compare the magnitude and phase characteristics of IIR digital filter using Butterworth method and Chebyshev methods.	Evaluate
CO 5	Build Nth order FIR digital filters using windows and frequency sampling methods.	Apply
CO 6	Apply multi-rate signal processing methods such as decimation and interpolation and Goertzel algorithm for interfacing the digital systems with different sampling rates and DTMF signalling.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab Exercises/ CIE/ SEE
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	3	Lab Exercises/ CIE/ SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Lab Exercises/ CIE/ SEE
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	1	Lab Exercises/ Projects

3 = High; 2 = Medium; 1 = Low

IX HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit	2	Lab Exercises/
	Development platform for Robotics, Embedded		CIE/ SEE
	Systems and Signal Processing Applications.		

3 = High; 2 = Medium; 1 = Low

X JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 2	Understand the given problem statement and formulate to analyze the response of LTI system in the time domain and frequency domain from provided information and data.	3
	PO 5	Apply the concept of convolution for finding the response of LTI system using MATLAB tool.	1
CO 2	PO 2	Understand the given problem statement and formulate the design (complex) engineering problems of spectral characteristics of discrete time signals from the provided information and data in reaching substantiated conclusions by the interpretation of results .	4

	PO 5	Select MATLAB tool for analyzing the discrete signals and systems in frequency domain to meet system specifications including prediction and modeling to complex engineering activities with an understanding of the limitations.	1
	PSO 1	Develop the capability to (analyze and apply DFT and their properties on discrete signals in applications by its mathematical models	1
CO 3	PO 2	Understand the given (problem statement and formulate)(complex) convolution sum by using overlap add and overlap save method from provided information and datain reaching substantiated conclusions by the interpretation of results.	4
	PO 5	Apply overlap add method and overlap save methods for filtering of long duration of sequences using MATLAB to meet system specifications including prediction and modeling to complex engineering activities with an understanding of the limitations.	1
CO 4	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for fast Fourier transform of discrete signals using first principles of mathematics and Engineering sciences.	3
	PO 5	Apply fast Fourier transform algorithms for reducing computational complexity using MATLAB to meet system specifications including prediction and modeling to complex engineering activities with an understanding of the limitations.	1
	PSO 1	Develop the capability to analyze the spectral characteristics by applying fast Fourier transform(FFT) algorithms on discrete signals and systems applications by its mathematical models .	1
CO 5	PO 2	Understand the given problem statement and formulate for designing the (complex) infinite impulse response(IIR)digital filters from the provided information and data in reaching substantiated conclusions by the interpretation of results.	4
	PO 3	Design infinite impulse response(IIR) digital filters using Butterworth and chebyshev for determining magnitude and phase response by applying the principles of mathematics, science to the solutions of complex engineering problems and design system components.	3
	PO 5	Analyze the performance parameters of IIR filters using chebyshev in MATLAB to meet system specifications including prediction and modeling to complex engineering activities with an understanding of the limitations.	1

PO 2	Understand the given problem statement and	4
	formulate for designing the (complex) engineering	
	problems of FIR filters from the provided information	
	and datain reaching substantiated conclusions by the	
	interpretation of results.	
PO 3	Design FIR filters using windows and frequency sampling	2
	methods using principles of mathematics and	
	engineering sciences.	
PO 5	Analyze the performance parameters of FIR filters using	1
	chebyshev in MATLAB to meet system specifications	
	including prediction and modeling to complex	
	engineering activities with an understanding of the	
	limitations.	
PSO 1	Develop the capability to analyze and apply windows	2
	and frequency sampling methods for designing of FIR	
	filters by its mathematical models.	
	PO 2 PO 3 PO 5 PSO 1	 PO 2 Understand the given problem statement and formulatefor designing the (complex) engineering problems of FIR filters from the provided information and datain reaching substantiated conclusions by the interpretation of results. PO 3 Design FIR filters using windows and frequency sampling methods using principles of mathematics and engineering sciences. PO 5 Analyze the performance parameters of FIR filters using chebyshev in MATLAB to meet system specifications including prediction and modeling to complex engineering activities with an understanding of the limitations. PSO 1 Develop the capability to analyze and apply windows and frequency sampling methods for designing of FIR filters by its mathematical models.

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM	PSO'S			
OUTCOMES	PO 2	PO 3	PO 5	PO 9	PSO 1
CO 1	1		3		
CO 2	1		3		2
CO 3	1		3		
CO 4	1		3		2
CO 5	1	1	3		
CO 6	1	1	3		3

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams		SEE Exams		Seminars	-
	\checkmark		\checkmark		
Laboratory Practices	✓	Student Viva	✓	Certification	-
Assignments	-				

XIII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	\checkmark	End Semester OBE Feedback	
X	Assessment of Mini Projects by Experts			

XIV SYLLABUS:

WEEK I	LINEAR CONVOLUTION VS CIRCULAR CONVOLUTION				
	Generate linear convolution and circular convolution without using built in function and the function conv in MATLAB .				
WEEK II	DFT AND IDFT				
	Compute the Discrete Fourier Transform and IDFT with and without fft and ifft in MATLAB. Solutions Expected:				
WEEK III	OVERLAPADD AND OVERLAP-SAVE METHODS				
	Implement Linear convolution using DFT (Overlapadd and				
WEEK IV	DIT-FFT ALGORITHM				
	ImplementDecimation-in-time radix-2 FFT algorithm.				
WEEK V	DIF-FFT ALGORITHM				
	Implement Decimation-in-frequency radix-2 FFT algorithm. Solutions Expected:				
WEEK VI	IIR DIGITAL FILTERUSING BUTTERWORTH METHOD AND BILINEAR TRANSFORMATION				
	Implement IIR digital filter using Butterworth method and bilinear transformation.				
WEEK VII	IIR Digital Filter Using Chebyshev (Type I And II) Method				
	Implement IIR digital filter using Chebyshev (Type I and II) method.				
WEEK VIII	FIR DIGITAL FILTER USING WINDOWS				
	Implement FIR digital filter using window (Rectangular, Hamming, Hanning, Bartlett) methods.				
WEEK IX	FIR DIGITAL FILTER USING FREQUENCY SAMPLING METHOD				
	Implement FIR digital filter using frequency sampling method.				
WEEK X	OPTIMUM EQUIRIPPLE FIR DIGITAL FILTER				
	Implement optimum equiripple FIR digital filter using window methods.				
WEEK XI	DTMF TONE GENERATION AND DETECTION				
	Generation and Detection of DTMF Tone Using Goertzel Algorithm.				
WEEK XII	SAMPLING RATE CONVERSION				
	Implement sampling rate conversion by decimation, interpolation and a rational factor using MATLAB.				
WEEK XIII	SINE WAVE GENERATION				
	a) Implement DFT b) Generate sine wave generation using lookup table with values generated from MATLAB.				
WEEK XIV	IIR AND FIR FILTERS USING DSP KITS				
	Implement IIR and FIR Filter using DSP Kits.				

TEXTBOOKS

- 1. John G. Proakis, Dimitris G. Manolakis, Digital signal processing, Principles, Algorithms and Applications, Prentice Hall, 4th Edition, 2007 .
- 2. Sanjit K Mitra, Digital signal processing, A computer base approach, McGraw-Hill Higher Education, 4th Edition, 2011.

- Emmanuel C, Ifeacher, Barrie. W. Jervis, DSP-A Practical Approach, Pearson Education, 2nd Edition, 2002.
- 4. A.V. Oppenheim, R.W. Schaffer, Discrete Time Signal Processing, PHI, 2nd Edition, 2006.

REFERENCE BOOKS:

- 1. RobertJ.schilling,Sandra.L.harris, "Fundamentals of Digital Signal Processing using MATlab" , Thomson Engineering, 2nd Edition,2005.
- 2. Vinay K. Ingle , John G. Proakis, "Digital Signal Processing Using MATlab", Cengage 4th Edition, 2009.
- 3. DSK Donald Reay, Rulph Chassaing, "Digital Signal Processing and Applications with the TMS 320C6713 and TMS 320C6416" Wiley 2nd Edition.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Linear convolution vs circular convolution	CO 1	T1: 2.3.3
2	DFT and IDFT	CO 2	T1: 7.2
3	Overlap-add and overlap-save methods	CO 3	T1: 2.3.4
4	DIT-FFT algorithm	CO 4	T1: 8.1
5	DIT-FFT algorithm	CO 4	T1: 8.2
6	IIR digital filter using Butterworth method and bilinear transformation	CO 4	T1: 10.3
7	IIR digital filter using Chebyshev (Type I and II) method	CO 4	T1: 10.3
8	FIR digital filter using windows	CO 5	T1: 10.2
9	FIR digital filter using frequency sampling method	CO 5	T1: 10.3
10	Optimum equiripple FIR digital filter	CO 5	T1: 10.4
11	DTMF tone generation and detection	CO 6	T3:6.6
12	Sampling rate conversion	CO 6	T1: 11.6
13	Sine wave generation	CO 6	T1:2.1-2.2
14	IIR and FIR filters using DSP kits	CO 5	T1: 10.3

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Design an audio application such as to plot a time and frequency display of microphone plus a cosine using DSP chip .
2	Develop compressors and expanders to decrease and increase the dynamic range of audio signals in computer music.
3	Converting CD DATA TO DVD DATA.
4	Design Vocoders (voice coder) to reduce the bandwidth requirements of normal voice signal using analysis-synthesis sections.
5	Noise removal: Add noise above 3 KHz and then remove interference suppression using 400 Hz tone.

Signature of Course Coordinator Ms. Mary swarna latha G, Assistant Professor HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	ANTENNAS AND MICROWAVE ENGINEERING LABORATORY					
Course Code	AECC41					
Program	B.Tech					
Semester	VI	ECE				
Course Type	Core					
Regulation	IARE - UG20					
	Theory			Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	2	
Course	Dr. V Kishen Ajay Kumar, Associate Professor					
Coordinator						

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC18	V	Antennas and Wave Propagation
B.Tech	AECC32	VI	Microwave And Radar Engineering

II COURSE OVERVIEW:

This course deals with the measurements of the signals at micro frequency range. This course introduces students to the broad area of RF microwave engineering. It involves measurement of frequency, wave length, VSWR, impedance and scattering parameters of various micro wave devices like circulator, directional coupler, and magic-tee. Microwave devices support larger bandwidth and hence higher data rates are transmitted. There are a wide variety of applications for microwaves like outdoor broadcasting transmissions and long distance telephone calls.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Microwave Engineering Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab Worksheets	\checkmark	Viva Questions	\checkmark	Probing further
							Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria.

	Experiment Based	Programming based
20 %	Objective	Purpose
$20 \ \%$	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component			Total Marks
Type of	Day to day	Final internal lab	
Assessment	periormance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total	
2	2	2	2	2	10	

2. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total	
-	-	-	-	-	-	

VI COURSE OBJECTIVES:

The students will try to learn:

I	The experiments on microwave test equipment to make measurements of microwave parameters and devices.
II	The measurement of S-Parameters of microwave components to gain the practical hands on experience on the microwave test bench.
III	The simulation to plot the radiation pattern for an antenna using High Frequency Software Simulator.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize the waveguide components and their specifications using	Understand
	microwave test bench set-up	
CO 2	Sketch the characteristics of reflex klystron. to obtain the electronic	Apply
	tuning range using klystron bench set up.	
CO 3	Analyze the characteristics of directional coupler, circulator and magic	Analyze
	tee using microwave test bench setup.	
CO 4	Distinguish the low and high voltage standing wave ratio of unknown	Analyze
	load load to find out the reflection coefficient using slotted line section.	
CO 5	Identify fundamental parameters of the antenna to measure far-field	Understand
	radiation pattern using High frequency Structure Simulator	
CO 6	Design various antennas to find out the antenna parameters using test	Create
	setup and High Frequency Structure Simulator.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes					
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.				
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.				
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations				
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.				
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations				
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.				
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.				
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.				
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.				
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.				
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.				
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change				

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency
			Assessed by
PO 2	Problem analysis: Identify, formulate, review	3	Lab
	research literature, and analyze complex engineering		Experiments /
	problems reaching substantiated conclusions using		CIE / SEE
	first principles of mathematics, natural sciences, and		
	engineering sciences.		
PO 3	Design/development of solutions : Design	3	Lab
	solutions for complex engineering problems and design		Experiments /
	system components or processes that meet the		CIE / SEE
	specified needs with appropriate consideration for the		
	public health and safety, and the cultural, societal,		
	and environmental considerations.		
PO 5	Modern tool usage: Create, select, and apply	2	Lab
	appropriate techniques, resources, and modern		Experiments /
	engineering and IT tools including prediction and		CIE / SEE
	modeling to complex engineering activities with an		
	understanding of the limitations.		
PO 9	Individual and team work: Function effectively as	3	Lab
	an individual, and as a member or leader in diverse		Experiments /
	teams, and in multidisciplinary settings.		CIE / SEE
PO 10	Communication: Communicate effectively on	1	Lab
	complex engineering activities with the engineering		Experiments /
	community and with society at large, such as, being		CIE / SEE
	able to comprehend and write effective reports and		
	design documentation, make effective presentations,		
	and give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 3	Make use of High frequency structure simulator (HFSS) for modeling and evaluating the patch and smart antennas for wired and wireless communication applications.	1	Lab Exercises

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES										PSO'S			
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	\checkmark	-	-	\checkmark	-	-	-	-	-	-		-	-	-
CO 2	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	✓	-	-
CO 3	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-		-	-	-

CO 5	-	 ✓ 	\checkmark	-	1	-	-	-	\checkmark	\checkmark	-	-	-	-	-
CO 6	-	\checkmark	\checkmark	-	\checkmark	-	-	-	\checkmark	-	-		\checkmark	-	\checkmark

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 2	Identify the Waveguide components and their specifications using microwave test bench set-up, analyze complex engineering problems from the element, and find out conclusions from the radiating components using the principles of mathematics and natural sciences .	6
	PO 5	Summarize the Waveguide components and their specifications using microwave test bench set-up by applying modern Engineering and IT tools.	2
CO 2	PO 2	Identify the characteristics of Reflex klystron and Gunn diode, formulate the modes using Klystron bench set up, apply the principles of mathematics, natural sciences, and engineering sciences .	5
	PO 3	Examine (Design) the characteristics of reflex klystron and find out its tuning range using design solutions for complex engineering problems that meet the specified needs with appropriate consideration.	2
	PO 9	Use research-based knowledge and research methods including design of experiments to analyze the characteristics of reflex klystron and Gunn diode and interpretation of data, function effectively as an individual, and as a member to obtain the readings	8
CO 3	PO 2	Identify the characteristics of Directional coupler, circulator and magic tee using microwave test bench setup, analyze the complex design considerations using principles of mathematics and evaluate the appropriate solution	6
	PO 3	Understand the characteristics of Directional coupler, circulator and magic tee using various system components and identify solutions that meet the specified needs for the societal and environmental considerations .	2
CO 4	PO 2	Understand the (Problem analysis) concept of microwave junction and S-Parameters using review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles engineering sciences	2
	PO 3	Obtain the S-parameters for different microwave components to measure coupling factor, insertion and isolation using microwave test bench to meet the specified needs with appropriate consideration.	1

CO 5	PO 2	Understand the (Problem analysis) concept of VSWR and reflection coefficient using review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles engineering sciences.	2
	PO 3	Measure low VSWR to find out reflection coefficient and SWR using microwave test bench using design solutions for complex engineering problems that meet the specified needs with appropriate consideration.	1
	PO 5	Analyze the polar pattern of different Microwave antennas to find out gain, beam width and level of the first side lobe using Create, select, and apply appropriate techniques resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.	3
	PO 9	(Team work)Individual and team work: Function effectively as an individual, and as a member to obtain the readings .	6
	PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1
CO 6	PO 2	Analyze the radiation pattern of dipole antenna to find out the antenna parameters using test setup and High Frequency Software Simulator	5
	PO 3	Obtain the radiation pattern of various antennas to find out the antenna parameters using High Frequency Software Simulator for complex engineering problems that meet the specified needs with appropriate consideration.	2
	PO 5	 Analyze the radiation pattern of microstrip feed antenna to find out the antenna parameters using modern Engineering and IT tools such as High Frequency Software Simulator. 	2
	PO 9	(Team work) Individual and team work: Function effectively as an individual, and as a member to obtain the readings.	8
	PSO 3	Make use of High frequency structure simulator (HFSS) to analyze the radiation pattern of various antennas to find out the antenna parameters .	2

XIII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

COURSE	Program Outcomes/ No. of Key Competencies Matched											ched	PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	-	6	-	-	2	-	-	-	-	-	-		-	-	-
CO 2	-	5	2	-	-	-	-	-	8	-	-	-	-	-	-
CO 3	-	6	2	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	-	2	1	-	-	-	-	-	-	-	-		-	-	-
CO 5	-	2	1	-	3	-	-	-	6	1	-	-	-	-	-
CO 6	-	5	2	-	2	-	-	-	8	-	-		-	-	2

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE	Pro	Program Outcomes/ No. of Key Competencies Matched										ched	PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	60	-	-	20	-	-	-	-	-	-		-	-	-
CO 2	-	50	-	-	-	-	-	-	66.7	-	-	-	-	-	-
CO 3	-	60	20	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	-	20	50	-	-	-	-	-	-	-	-		-	-	-
CO 5	-	20	50	-	50	-	-	-	50	20	-	-	-	-	-
CO 6	-	50	50	-	50	-	-	-	66.7	-	-		-	-	100

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 40 % <C < 60% –Moderate
- $\pmb{2}$ 5% <C $\leq 40\%$ Low/ Slight
- 3 60% \leq C < 100% Substantial /High

COURSE		PROGRAM OUTCOMES												PSO'S		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	-	3	-	-	1	-	-	-	-	-	-		-	-	-	
CO 2	-	2	2	-	-	-	-	-	3	-	-	-	-	-	-	
CO 3	-	2	1	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	-	1	2	-	-	-	-	-	-	-	-		-	-	-	
CO 5	-	1	2	-	2	-	-	-	2	1	-	-	-	-	-	
CO 6	-	2	2	-	2	-	-	-	3	-	-		-	-	-	

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-
Assignments	_				

XVII ASSESSMENT METHODOLOGY INDIRECT:

✓	Early Semester Feedback	✓	End Semester OBE Feedback				
X	Assessment of Mini Projects by Experts						

XVIII SYLLABUS:

Week-1	STUDY OF MICROWAVE COMPONENTS
	To study the different wave guide components in the microwave bench setup.
Week-2	MODE CHARACTERISTICS OF REFLEX KLYSTRON
	To study the characteristics of Reflex Klystron oscillator, finding the mode
	numbers and efficiencies of different modes.
Week-3	GUNN DIODE CHARACTERISTICS
	To study the characteristics of Gunn diode oscillator
Week-4	DIRECTIONAL COUPLER CHARACTERISTICS
	To measure coupling factor, insertion loss, isolation and directivity of a Directional coupler.
Week-5	MEASUREMENT OF VSWR
	To measure the low and high VSWRs of matched terminals.
Week-6	CIRCULATOR CHARACTERISTICS
	To measure the isolation and insertion loss of a three port circulator
Week-7	MEASURMENT OF SCATTERING PARAMETERS OF MAGIC TEE
	To find the scattering parameters of a four port Magic Tee.
Week-8	INTRODUCTION TO HFSS
	Introduction To HFSS Tool.
Week-9	MONOPOLE ANTENNA DESIGN
	To find the gain of Monopole Antenna.
Week-10	DIPOLE ANTENNA DESIGN
	To draw the Radiation Pattern of Dipole Antenna Design.
Week-11	MICROSTRIP FEED ANTENNA DESIGN
	To find the gain and radiation pattern of Microstrip Feed Antenna Design.
Week-12	PROBE FEED PATCH ANTENNA DESIGN
	To draw the 3D polar plot of Probe Feed Patch Antenna Design.
Week-13	SLOT COUPLED PATCH ANTENNA
	To draw the 3D rectangular plot of Slot Coupled Patch Antenna.
Week-14	MICROSTRIP LINE DESIGN
	To find the gain of Microstrip Line Design.

REFERENCE BOOKS

- 1. Samuel Y. Liao, —Microwave Devices and Circuits , Pearson, 3 rd Edition, 2003.
- 2. Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, —Microwave Principles ||, CBS Publishers and Distributors, New Delhi, 1st Edition, 2004.
- 3. F.E. Terman, —Electronic and Radio Engineering [], Tata McGraw-Hill Publications, 4 th Edition, 1955.

WEB REFERENCES:

- 1. http://www.ee.iitkgp.ac.in
- 2. http://www.citchennai.edu.in

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Study of Microwave Components.	CO 1	R1
2	Mode characteristics of reflex klystron	CO 2	R1,R2
3	Gunn diode characteristics.	CO 3	R1,R2
4	Directional coupler characteristics	CO 3	R1,R2
5	Measurement of VSWR	CO 3	R1,R2
6	Circulator characteristics	CO 3	R1,R2
7	Measurement of scattering parameters of magic tee	CO 3	R1,R2
8	Introduction to HFSS	CO 5	R1,R3
9	Monopole antenna design	CO 6	R1,R3
10	Dipole antenna design	CO 5	R1,R3
11	Microstrip feed antenna design.	CO 5	T1-17.1
			to 17.6
12	Probe feed patch antenna design	CO 6	R1,R3
13	Slot coupled patch antenna.	CO 4	R1,R2
14	Microstrip line design.	CO 5	R1,R2
XX EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Design microwave components such as: Directional couplers, circulators and Hybrid junctions using Simulation software.
2	Design antenna arrays such as: Binomial, Chebyshev using Simulation
3	RF based Wireless Chatting.
4	RF Communication based Data Encryption and Decryption Wirelessly.
5	Electronic eye with Security System using RF with Message Broad Casting.
6	Secret code Enabled Secure communication using RF Communication.
7	Unique office communication system using RF.

Signature of Course Coordinator Dr. V Kishen Ajay Kumar, Associate Professor HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	Digital	Design Throu	gh Verilog		
Course Code	AECC49				
Program	B.Tech				
Semester	VII				
Course Type	Professional Elective				
Regulation	UG20				
		Theory		Prac	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	Ms.Y.Meghamala , Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECB07	III	Digital System Design

II COURSE OVERVIEW:

This course introduces the hardware description language for design and development of digital integrated circuits and field programmable devices. Provides hardware description language elements, synthesizable register transfer logic models in gate level, dataflow, behavioral, switch level modeling of combinational and sequential circuits. Allows to use computer aided design tools at the levels of system design, logic design and IC design.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Digital Design Through Verilog	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

 ✓ 	Power Point	 ✓ 	Chalk & Talk	x	Assignments	x	MOOC
	Presentations						
x	Open Ended Experiments	1	Tech Talk	x	Mini Project	1	Concept Videos
x	Others	1	1	1		1	

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
10%	Remember
40 %	Understand
50 %	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
Total Marks			100

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The fundamental principles of the verilog hardware descriptive language and its constructs used in synthesizable register transfer level (RTL) design implementation of digital logic systems.
II	The concepts of gate level, behavioral, dataflow and switch level modeling of fundamental digital logic circuits using verilog hardware description language.
III	The exposure to various stages of a typical state of the art CAD VLSI tool for simulation, synthesis, place and route, layout and power and clock routing modules.
IV	The analytical skills needed to model finite state machines using field programmable gate arrays, fault-tolerant high-speed computer arithmetic circuits, built-in self-test circuit (BIST).

VII COURSE OUTCOMES: After successful completion of the course, students should be able to:

CO 1	Describe the basic language elements and data flow modelling	Understand
	circuits in Verilog.	
CO 2	Utilize the basic logic gate primitives and user defined	Apply
	primitives for implementing digital circuits in gate level	
	modelling.	
CO 3	Illustrate the significance of structured procedures in	Understand
	behavioral modeling using blocking and nonblocking procedural	
	assignments.	
CO 4	Make use of loop and conditional statements to describe the	Apply
	digital circuits in behavioral modeling.	
CO 5	Identify the methods to specify delays on switch primitives for	Apply
	designing modules with time delays in switch level modeling.	
CO 6	Distinguish the synchronous and asynchronous sequential state	Analyze
	machines for synthesizing the sequential circuits.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	PROGRAM OUTCOMES		
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.		
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.		
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.		
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		

PO 8	Ethics : Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities
	with the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make effective
	presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and
	understanding of the engineering and management principles and apply these to
	one's own work, as a member and leader in a team, to manage projects and in
	multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and
	ability to engage in independent and life-long learning in the broadest context of
	technological change.

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency
			Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE / CIE /
	knowledge of mathematics, science,		AAT
	engineering fundamentals, and an engineering		
	specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate,	2	SEE / CIE /
	review research literature, and analyze		AAT
	complex engineering problems reaching		
	substantiated conclusions using first principles		
	of mathematics, natural sciences, and		
	engineering sciences.		
PO 3	Design/development of solutions: Design	2	SEE / CIE /
	solutions for complex engineering problems		AAT
	and design system components or processes		
	that meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and environmental		
	considerations.		
PO 4	Conduct investigations of complex	2	SEE / CIE /
	problems: Use research-based knowledge and		AAT
	research methods including design of		
	experiments, analysis and interpretation of		
	data, and synthesis of the information to		
	provide valid conclusions.		

PO 5	Modern tool usage: Create, select, and	3	SEE / CIE
	apply appropriate techniques, resources, and		
	modern engineering and IT tools including		
	prediction and modeling to complex		
	engineering activities with an understanding		
	of the limitations.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	2	

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE		PROGRAM OUTCOMES												PSO'S		
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	
CO 3	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	
CO 4	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	
CO 5	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	
CO 6	-	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	

XII JUSTIFICATIONS FOR CO – PO / PSO MAPPING -DIRECT:

COURSE OUT COMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Recall the basic constructs and conventions in verilog and these constructs provide the necessary framework for verilog HDL by applying the own Engineering discipline, Science principles and methodology.	2

COURSE	PO'S		No. of
OUT	PSO'S	Justification for mapping (Students will be	Key
COMES	1505	able to)	Competencies
CO 2	PO 1	Explain the logic value set and strengths to model the functionality of real hardware supported by verilog HDL and data types such as nets, registers, vectors, numbers, simulation time, arrays, parameters, memories, and strings in verilog model actual data storage by applying the mathematical principles, Scientific principles and methodology	2
	PO 3	Understand the customer needs, use creativity and manage design process to model the complex digital circuits by using basic logic gate primitives and user defined primitives provided in verilog with the help of modern engineering tools.	4
	PO 4	Understand the complex engineering problems Use appropriate logic gate primitives and user defined primitives in the design of experiments for analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	5
CO 2	PO 5	Select and apply appropriate logic gate primitives and user defined primitives to model the complex digital circuits by making use of modern engineering tools .	1
	PSO 2	Using the basic logic gate primitives and user defined primitives can design a prototype of ASIC , such as PLDs, memory and processors.	1
CO 3	PO 1	Define the syntax of blocking and non blocking procedural constructs to build the digital circuits in behavioral modeling with the knowledge of mathematics, science and engineering fundamentals.	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of digital circuits, translate the information into the model and prototype systems from the provided information and data , develop solutions based on the functionality of the data translation, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	7

COURSE	PO'S		No. of
OUT	PSO'S	Justification for mapping (Students will be	Key
COMES			Competencies
	PO 4	Use appropriate procedural constructs in the design of combinational and sequential logic circuits in behavioral modeling for analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	4
	PO 5	Select and apply appropriate procedural constructs in behavioral modeling to model the complex digital circuits by making use of modern engineering tools .	1
	PSO 2	Using the loop, case and conditional statements can design a prototype of ASIC , such as PLDs, memory and processors.	1
CO 4	PO 1	Define the syntax of loop, case and conditional statements used to build the digital circuits in behavioral modeling with the knowledge of mathematics, science and engineering fundamentals .	2
CO 4	PO 2	Demonstrate the significance of loop, case and conditional statements in behavioral modeling and develop the verilog description for the hardware from the provided information and data , develop solutions based on the functionality of the data translation, validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	4
	PO 3	Understand the customer needs, use creativity and manage design process to model the complex digital circuits making use of loop, case and conditional statements provided in verilog with the help of modern engineering tools in the design of system components to establish innovative solutions in digital system design.	4
	PO 5	Select either loop or conditional statements and delays to model the complex digital circuits.	1
	PSO 2	Using the loop, case and conditional statements can design a prototype of ASIC , such as PLDs, memory and processors.	1
CO 5	PO 1	Define the types of delays on basic transistor switch and CMOS switch for implementing digital circuits in switch level modeling using knowledge of mathematics, science and engineering fundamentals.	2

COURSE			No. of
OUT	PO'S	Justification for mapping (Students will be	Key
COMES	PSO'S	able to)	Competencies
	PO 2	Demonstrate the methods to specify delays on basic MOS switches and bidirectional pass switches and develop the verilog description with delays for the hardware in switch level modeling to identify , formulate and state a problem.	3
	PO 3	Design solutions for complex Engineering problems and design system components using digital system by innovative solution and implementing them with modern tools such as Xilinx and Vivado.	2
	PO 5	Select and apply appropriate basic transistor and MOS switches to model the complex digital circuits by making use of modern engineering tools .	1
	PSO 2	Using the basic transistor and MOS switches can design a prototype of ASIC , such as PLDs, memory and processors.	1
CO 6	PO 2	Demonstrate the methods to synthesize asynchronous and synchronous circuits and compare the verilog description to identify , formulate and state a problem .	3
	PO 4	Understand the complex engineering problems , use appropriate verilog description in the synthesis of asynchronous and synchronous sequential circuits for analysis , interpretation of data , and synthesis of the information to provide valid conclusions.	5
CO 6	PO 5	Select and apply appropriate design style to model the complex synchronous and asynchronous sequential circuits by making use of modern engineering tools	1
	PSO 2	Using the synthesis of synchronous and asynchronous sequential machines can design a prototype of ASIC , such as PLDs, memory and processors.	1

TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO / PSO MAP-XIII **PING:**

COURSE		PROGRAM OUTCOMES												PSO'S		
OUTCOMES	PO	PO	PO	PO	PO	PO	РО	РО	PO	РО	PO	PO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2	
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	2	-	4	5	1	-	-	-	-	-	-	-	-	1	-	
CO 3	2	7	-	4	1	-	-	-	-	-	-	-	-	1	-	
CO 4	2	4	4	-	1	-	-	-	-	-	-	-	-	1	-	
CO 5	2	3	2	-	1	-	-	-	-	-	-	-	-	1	-	
CO 6	-	3	-	5	1	-	_	_	-	_	-	_	-	1	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO / PSO:

COURSE		PROGRAM OUTCOMES												PSO'S		
OUTCOMES	PO	PO	PO	PO	РО	РО	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	8	2	2	2	
CO 1	66.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	66.7	-	40	45.5	100	-	-	-	-	-	-	-	-	50	-	
CO 3	66.7	70	-	36.4	100	-	-	-	-	-	-	-	-	50	-	
CO 4	66.7	40	40	-	100	-	-	-	-	-	-	-	-	50	I	
CO 5	66.7	30	20	-	100	-	-	-	-	-	-	-	-	50	-	
CO 6	-	30	-	36.4	100	-	-	-	-	-	-	-	-	50	-	

XV COURSE ARTICULATION MATRIX PO / PSO MAPPING:

CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\theta - 0 \le C \le 5\%$ – No correlation

 $2-40 < C \le 60\%$ – Moderate.

0 - 0 - 0	$0 \ge 0/0$	110 00	
1 - 5 <c< th=""><th>$\leq 40\%$ –</th><th>Low/</th><th>Slight</th></c<>	$\leq 40\%$ –	Low/	Slight

 $3-60 < C \le 100\%$ –Substantial /High

COURSE		PROGRAM OUTCOMES												PSO'S		
OUTCOMES	PC	PO (PO	PO	PO	PC	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 2	3	-	2	2	3	-	-	-	-	-	-	-	-	2	-	
CO 3	3	3	-	1	3	-	-	-	-	-	-	-	-	2	-	
CO 4	3	2	2	-	3	-	-	-	-	-	-	-	-	2	-	
CO 5	3	1	1	-	3	-	-	-	-	-	-	-	-	2	-	

CO 6	-	1	-	1	3	-	-	-	-	-	-	-	-	2	-
TOTAL	27	7	5	4	15	0	0	0	0	0	0	0	0	10	0
AVERAGE	3	1.75	1.67	1.33	3	0	0	0	0	0	0	0	0	2	0

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	-
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	-	5 Minutes Video / Concept Video	\checkmark	Open Ended Experiments	-
Micro Projects	-	_	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	 ✓ 	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling and	l Experi	mental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO VERILOG HDL
	Popularity of Verilog HDL, Introduction to Verilog, Module Concept, Module Modeling Styles, Language Elements: Comments, Identifiers, Keywords, Value Set, Data Types, Memory Element, Constant, Parameter, Operators. Dataflow Modeling: Continuous Assignment, Implicit Continuous Assignment, Delays, Design examples using data flow modeling.
MODULE II	GATE LEVEL MODELING
	Multiple-Input Gates, Gate Delays, Design Examples, User-Defined Primitives: UDP Basics Combinational User-Defined Primitives, Sequential User-Defined Primitives, Combinational Logic Modules: Decoders, Encoders, Multiplexers, Demultiplexers, Magnitude Comparators
MODULE III	BEHAVIORAL MODELING
	Procedural Constructs, Procedural Assignments, Timing Control, Conditional Statements, Case Statement Design examples using behavioral modeling Loop Statements: For Loop, While Loop, Repeat Loop, Forever Loop, Block Statements Procedural Continuous Assignment, Design examples using behavioral modeling
MODULE IV	SWITCH LEVEL MODELLING

	Basic Transistor Switches, CMOS Switch, Bi – directional Gates, Time Delays with Switch Primitives, Instantiations with Strengths and Delays, Strength Contention with Trireg Nets.
MODULE V	SEQUENTIAL LOGIC
	Analysis of Synchronous Sequential Machines, Synthesis of Synchronous Sequential Machines, Analysis of Asynchronous Sequential Machines, Synthesis of Asynchronous Sequential Machines, Synthesis: Design flow of ASICs and FPGA-Based Systems, Design Environment and Constraints, Logic Synthesis.

TEXTBOOKS

- 1. Joseph Cavanagh, "Verilog HDL: Digital Design and Modeling", CRC Press, 1 st Edition, 2007.
- 2. Michael D. Ciletti, "Advanced Digital Design with Verilog HDL", PHI, 2005.
- 3. Joseph Cavanagh, "Digital Design and Verilog HDL Fundamentals", CRC Press, 1 st Edition, 2008

REFERENCE BOOKS:

- 1. Stephen Brown and Zvonko Vranesic, "Fundamentals of Digital Logic design with Verilog Design", TMH, 2nd Edition, 2010.
- 2. Sunggu Lee "Advanced Digital Logic Design using Verilog, State Machine & Synthesis for FPGA", Cengage Learning, 2012.
- 3. Samir Palnitkar, "Verilog HDL", Pearson Education, 2nd Edition, 2009.
- 4. T. R. Padmanabhan and B. Bala Tripura Sundari, "Design through Verilog HDL", Wiley, 2009.
- 5. Zainalabdien Navabi, "Verilog Digital System Design", TMH, 2nd Edition, 2009.

WEB REFERENCES:

1. https://nptel.ac.in/courses/108/108/108108111/

COURSE WEB PAGE:

 $https://lms.iare.ac.in/index?route=course/details\&course_id=184$

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference		
	OBE DISCUSSION				
1	Course description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https: //lms.iare.ac. in/index?route= course/details& course_id=184		
CONTENT DELIVERY (THEORY)					

S.No	Topics to be covered	CO's	Reference
2	Introduction to verilog HDL	CO 1	T1:1
3	Overview of digital design with verilog HDL.	CO 1	T1:2.1-2.2
4	Hierarchical modeling concepts	CO 1	T1: 2.3-2.10
5	Lexical conventions	CO 1	T1: 3.2 – 3.14
6	Data types	CO 1	T1: $4.1 - 4.4$
7	Modules and ports	CO 1	T1: 4.5
8	Gate-level modeling	CO 2	T1: $4.6 - 4.7$
9	Gate delays	CO 2	T1: 5.2
10	Dataflow modeling	CO 2	T1: 5.3- 5.5
11	Continuous dataflow modeling assignments	CO 2	T1: 5.6
12	Operator types	CO 2	T1: $6.2 - 6.5$
13	Dataflow modeling examples	CO 2	T1: 6.6
14	Gate-level modeling examples	CO 2	T1: $7.1 - 7.5$
15	Behavioral modeling	CO 3	T1: 7.6
16	Structured procedures	CO 3	T1: $7.7 - 7.9$
17	Procedural assignments	CO 3	T1: 7.10
18	Timing controls	CO 3	T1: 7.11
19	Conditional statements	CO 3	T1: 7.12
20	Multi way branching	CO 3	T1: $8.2 - 8.8$
21	Loops	CO 4	T1: 8.9 - 8.11
22	Sequential and parallel blocks	CO 4	T1: $10.2 - 10.7$
23	Generate blocks	CO 4	T1: 11.2 – 11.4
24	Tasks and functions	CO 4	T2: 5.1
25	Port connection rules	CO 4	T2: 5.2
26	Combinational user defined primitives	CO 4	T2: 5.3
27	Sequential user-defined primitives	CO 4	T2: 5.4
28	Behavioral modeling examples	CO 4	T1:1
29	Switch-level modeling	CO 5	T1:2.1-2.2
30	Switch-modeling elements	CO 5	T1: 2.3-2.10
31	Delay specification on switches	CO 5	T1: $3.2 - 3.14$
32	Switch-level modeling examples	CO 5	T1: $4.1 - 4.4$
33	Guidelines for UDP design	CO 5	T1: 4.5
34	Sequential logic	CO 6	T1: $4.6 - 4.7$
35	Mealy machine	CO 6	T1: 5.2
36	Moore machine	CO 6	T1: 5.3- 5.5
37	Linear feedback shift register (LFSR)	CO 6	T1: 5.6
38	Synthesis of synchronous sequential machines	CO 6	T1: $6.2 - 6.5$
39	Synthesis of asynchronous sequential machines	CO 6	T1: 6.6

S.No	Topics to be covered	CO's	Reference
40	Synchronous sequential machines examples	CO 6	T1: $7.1 - 7.5$
41	Asynchronous sequential machines examples	CO 6	T1: 7.6
	PROBLEM SOLVING		
42	8 to 1 multiplexer in dataflow modeling	CO 1	T1: 7.10
43	2 to 4 priority encoder dataflow modeling.	CO 1	T1: 7.11
44	1 to 8 de multiplexer using gate level modeling	CO 1	T1: 7.12
45	D flip flop using NAND gates in gate level modeling	CO 1	T1: 8.2 – 8.8
46	BCD adder module using gate level modeling	CO 2	T1: 8.9 - 8.11
47	Full adder using 2 half adders in gate level modeling	CO 2	T1: 10.2 – 10.7
48	8 to 3 encoder using gate level modeling.	CO 2	T1: 11.2 – 11.4
49	4-bit binary to gray code converter using gate level modeling.	CO 3	T2: 5.1
50	8-bit up-down counter using behavioral modeling	CO 3	T2: 5.2
51	3 to 8 decoder using behavioral modeling	CO 4	T2: 5.3
52	8 to 1 multiplexer using case statement.	CO 4	T2: 5.4
53	4-bit universal shift register in behavioral modeling using case statement.	CO 5	T1:1
54	16-to-1 multiplexer using function	CO 5	T1:2.1-2.2
55	Left/Right shifter.	CO 6	T1: 2.3-2.10
56	101 Moore detectors and also obtain its test bench.	CO 6	T1: 3.2 – 3.14
	DISCUSSION ON DEFINITIONS AND	TERMIN	IOLOGY
57	Introduction to verilog HDL.	CO 1	T1: 4.5
58	Gate level modeling	CO 2	T1: $4.6 - 4.7$
59	Behavioral modeling	CO 3	T1: 5.2
60	Switch level modelling	CO 4	T1: 5.3- 5.5
61	Sequential logic	CO 5	T1: 5.6
	DISCUSSION ON TUTORIAL QUE	STION B	ANK
62	Introduction to verilog HDL.	CO 1	T1: 6.6
63	Gate level modeling	CO 2	T1: 7.1 – 7.5
64	Behavioral modeling	CO 3	T1: 7.6
65	Switch level modelling	CO 4	T1: 7.7 – 7.9
66	Sequential logic	CO 5	T1: 7.10

Course Coordinator Ms.Y.Meghamala, Assistant Professor

HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO	NBA Statement / Key Competencies Features (KCF)	No.
Number		of
		KCF's
PO 1	Apply the knowledge of mathematics, science, Engineering	3
	fundamentals, and an Engineering specialization to the solution of	
	complex Engineering problems (Engineering Knowledge).	
	Knowledge, understanding and application of	
	1. Scientific principles and methodology.	
	2. Mathematical principles.	
	3. Own and / or other engineering disciplines to integrate /	
	support study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and analyse	10
	complex Engineering problems reaching substantiated conclusions	
	using first principles of mathematics natural sciences, and	
	Engineering sciences (Problem Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results	
	10. Documentation	

PO 3	Design solutions for complex Engineering problems and design	10
	system components or processes that meet the specified needs	
	with appropriate consideration for the public health and safety,	
	and the cultural, societal, and Environmental considerations	
	(Design/Development of Solutions).	
	1. Investigate and define a problem and identify constraints	
	including environmental and sustainability limitations, health and	
	safety and risk assessment issues	
	2. Understand customer and user needs and the importance of	
	considerations such as aesthetics	
	3. Identify and manage cost drivers	
	4. Use creativity to establish innovative solutions	
	5. Ensure fitness for purpose for all aspects of the problem	
	including production, operation, maintenance and disposal	
	6. Manage the design process and evaluate outcomes.	
	7. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	8. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	9. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	10. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health,	
	safety, and risk (including environmental risk) issues	

	Use research hased knowledge and research methods including	11
1 () 4.	design of experiments analysis and interpretation of data and	11
	support of experiments, analysis and interpretation of data, and	
	(Conduct Investigations of Complex Problems)	
	1. Knowledge of characteristics of particular materials	
	1. Knowledge of characteristics of particular materials,	
	2. Workshop and laboratory skills	
	2. Understanding of contexts in which angineering knowledge con	
	5. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology	
	development, etc.)	
	4. Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and	
	contractual issues	
	5 Understanding of appropriate codes of practice and industry	
	standards	
	6 Awareness of quality issues	
	7 Ability to work with technical uncertainty	
	8 Understanding of engineering principles and the ability to	
	apply them to analyse key engineering processes	
	9. Ability to identify classify and describe the performance of	
	systems and components through the use of analytical methods	
	and modeling techniques	
	10. Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline, in order to solve	
	engineering problems	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems.	
PO 5	Create, select, and apply appropriate techniques, resources, and	1
	modern Engineering and IT tools including prediction and	
	modelling to complex Engineering activities with an	
	understanding of the limitations (Modern Tool Usage).	
	1. Computer software / simulation packages / diagnostic	
	equipment / technical library resources / literature search tools.	
PO 6	Apply reasoning informed by the contextual knowledge to assess	5
	societal, health, safety, legal and cultural issues and the	
	consequent responsibilities relevant to the professional engineering	
	practice (The Engineer and Society).	
	1. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	2. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	3. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	4. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health,	
	safety, and risk (including environmental risk) issues	
	5. Understanding of the need for a high level of professional and	
	ethical conduct in engineering.	

PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	12

PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral)	5
	5. Subject Matter (Oral)	
PO11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12
PO12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning – stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2-3 new significant skills 8. Have taken up to 80 hours (2 weeks) training per year 	8

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING					
Course Title	DIGITA	DIGITAL IMAGE PROCESSING				
Course Code	AECC56	AECC56				
Program	B.Tech					
Semester	VII					
Course Type	PROFESSIONAL ELECTIVE - V					
Regulation	UG-20					
		Theory		Pra	ctical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Mr. Bala Thimmaiah N, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AECC02	III	Signals and Systems

II COURSE OVERVIEW:

The course is intended to provide image processing fundamentals, representation, sampling, quantization, image acquisition and imaging geometry. Transform techniques including two dimensional Fourier transforms, Walsh, Hotelling, Haar and Slant transforms. Analyze image processing filters and techniques for the applications of enhancement, segmentation and compression.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Image Processing	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
75%	Understand
25%	Apply
0 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
Total Marks			100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The 2D drawings of machine components and modify commands for simple geometric assemblies
II	The 2D Sectinal views for part drawing and assemblies, and generation of 2D, 3D models through different features
III	The Simulation software used for anlyse stresses in various beams and truss
IV	The fundamentals of CNC turning and milling, Part programming and interpolation techniques using CAM software.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Interpret the principles and terminology of digital image processing	Understand
	for describing the features of image.	
CO 2	Make use of image transform techniques for analyzing images in	Apply
	transformation domain for image pre-processing.	
CO 3	Construct image intensity transformation and filtering techniques for	Apply
	image enhancement in the spatial and frequency domain.	
CO 4	Apply region-based morphological operations and edge-based image	Apply
	segmentation techniques for detection of objects in images to remove	
	the imperfections in the structure of the image.	
CO5	Analyze the image restoration in the spatial and frequency domains	Analyze
	to deal with noise models for removing degradation from given image.	
CO 6	Compare the lossy and lossless compression models for achieving	Analyze
	image compression.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

Г

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	SEE/CIE/ Quiz/AAT
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	SEE/CIE, Quiz/AAT
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1	SEE/CIE, Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	SEE /CIE, Quiz/AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	TECH TALK/ CONCEPT VIDEOS
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	2	Projects/ Research on advanced technologies

_

3 = High; 2 = Medium; 1 = Low

Р	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build the Embedded software and digital circuit	2	SEE,
	development platform for robotics, embedded		PROJECTS
	systems and signal processing applications.		

٦

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Illustrate the principles of the Digital Image Processing terminology (knowledge) for understanding image and its representation, pixel, intensity, gray level, relationship between the pixels by applying the principles of engineering science to complex engineering problems	3
	PO 10	Effective presentation and Speaking Style on sampling and quantization and write Subject Matter Effectively the difference between analog and digital images.	1
CO 2	PO 1	Develop a image with various image transform properties types and its types using Scientific principles and methodology fundamental mathematics.	3
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for image transforms using first principles of mathematics and Engineering sciences.	2
	PO 10	Effective presentation and Speaking Style on properties of transforms and write Subject Matter Effectively on types of transforms.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 1	Design of experiments on image transforms with project development and execution process of modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO 3	PO 1	Illustrate the principles of an image find by using engineering techniques for image enhancement by using mathematical methods.	3
	PO 2	Illustrate the filter processing model translation for spatial domain and formulate the time domain filter.	2
	PO 3	Develop a histogram techniques complex engineering problem with appropriate considerations and environmental considerations for image enhancement.	1
	PO 4	Demonstrate the Use image enhancement analyze and interpretation and Ability to apply quantitative methods in frequency domain processing technique to provide valid digital image.	2
	PO 10	Effective presentation and Speaking Style on histogram processing Write Subject Matter Effectively on manipulation technique of an digital image.	1
	PO 12	Get aware of advancements of Image enhancement techniques that would happen from to time	2
	PSO 1	Design of experiments with project development and execution modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO 4	PO 1	Distinguish the image restoration in the spatial and frequency domains (knowledge) to remove the noise present the image by applying the principles of (mathematics, engineering science for complex engineering problems.	3
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for image restoration using first principles of mathematics and Engineering sciences	2
	PO 3	(Develop spatial and frequency domain techniques complex engineering problem with appropriate considerations and environmental considerations for image restoration.	1
	PO 4	Understand the image restoration in the spatial and frequency domains (knowledge) methods including design of experiments, analysis of complex problems.	2
	PO 10	Effective presentation and Speaking Style and write on degradation models and noise sources for image restoration of digital images	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 12	Get aware of advancements of Image segmentation techniques and morphological Image processing that would happen from to time	2
	PSO 1	Design of experiments with project development and execution image restoration with modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO 5	PO 1	Interpret Image Segmentation and formulate representation techniques to apply Mathematical principles fundamental mathematics.	3
	PO 2	Apply Problem statement the segmentation techniques for edge linking and boundaries by using principles of mathematics and formulate segmentation techniques.	2
	PO 10	Effective presentation and Speaking Style and write on image segmentation techniques.	1
	PO 12	Get aware of advancements of Image restoration techniques that would happen from to time	2
	PSO1	Design of experiments with project development and execution image segmentation with modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO6	PO 1	Understand the various source coding techniques and Interpret Image Compression standards using engineering science and mathematical models.	3
	PO 2	Identify and analyze fidelity criteria, image compression models implement using engineering science, design system components for source Encoder and decoder, error free compression and model translation using principal of mathematics.	2
	PO 10	Present effectively and Clarity source encoder and write effectively subject matter on decoder techniques.	1
	PO 12	Get aware of advancements of Image compression techniques and wavelet based Image compression techniques that would happen from to time	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	1	-	-	2	-	-
CO 3	3	1	1	2	-	-	-	-	-	1	-	2	2	-	-
CO 4	3	2	1	2	-	-	-	-	-	1	-	2	2	-	-

CO 5	3	2	-	-	-	-	_	-	-	1	-	2	2	_	_
CO 6	3	2	-	-	-	-	-	-	-	1	-	2	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.0
CO 2	100	66.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0	66.6	0.0	0.0
CO 3	100	33.3	33.3	66.6	0.0	0.0	0.0	0.0	0.0	33.3	0.0	66.6	66.6	0.0	0.0
CO 4	100	66.6	33.3	66.6	0.0	0.0	0.0	0.0	0.0	33.3	0.0	66.6	66.6	0.0	0.0
CO 5	100	66.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	66.6	66.6	0.0	0.0
CO 6	100	66.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	66.6	0.0	0.0	0.0

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 -5 < C \le 40\% Low/$ Slight
- $\pmb{2}$ 40 % <C < 60% Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	РО	РО	PO	РО	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	1	-	-	3	-	-
CO 3	3	1	1	2	-	-	-	-	-	1	-	2	3	-	-
CO 4	3	2	1	2	-	-	-	-	-	1	-	2	3	-	-
CO 5	3	2	-	-	-	-	-	-	-	1	-	2	3	-	-
CO 6	3	2	-	-	-	-	-	-	-	1	-	2	-	-	-
TOTAL	18	9	2	4	-	-	-	-	-	6	-	8	12	-	-
AVERAGE	3	1.8	1	2	-	-	-	-	-	1	-	2	3	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	\checkmark	Open Ended Experiments	-
Assignments	-	Tech-Talk	\checkmark		

XVII **ASSESSMENT METHODOLOGY-INDIRECT:**

_ Assessment of mini projects by experts \checkmark End Semester OBE Feedback

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	Digital image fundamentals and image transforms digital image fundamentals, sampling and quantization, relationship between pixels; Image transforms: 2-D FFT, properties, Walsh transform, Hadamard transform, discrete cosine transform, Haar transform, Slant transform, Hoteling transform.
MODULE II	IMAGE ENHANCEMENT
	Introduction, image enhancement in spatial domain, enhancement through point processing, types of point processing, histogram manipulation, linear and non-linear gray level transformation, local or neighborhood operation, median filter processing; Spatial domain high pass filtering, filtering in frequency domain, obtaining frequency domain filters from spatial filters, generating filters directly in the frequency domain, low pass (smoothing) and high pass (sharpening) filters in frequency domain.
MODULE III	IMAGE SEGMENTATION AND MORPHOLOGICAL IMAGE PROCESSING
	Image segmentation detection of discontinuities, edge linking and boundary detection, threshold, region oriented segmentation, Watershed transformation. Morphological image processing dilation and erosion, structuring element decomposition, the Strel function, erosion; Combining dilation and erosion: Opening and closing the hit and miss transformation, Boundary extraction ,Region filling, Extracted of connected components, convex hull ,skeletons, pruning, Thinning , Thickening.
MODULE IV	IMAGE RESTORATION
	Image restoration degradation model, Noise models, Restoration in the presence of noise only (Spatial Filtering), Estimating the degradation function, Inverse filtering, Least mean square filters, constrained least square restoration.
MODULE V	IMAGE COMPRESSION AND WAVELET BASED IMAGE PROCESSING
	Image compression: Redundancies and their removal methods, fidelity criteria, image compression models, source encoder and decoder, error free compression, lossy compression, Wavelet transform: Continuous wavelet transformation, 2D continuous wavelet transformation, Examples of wavelets, Wavelet based image compression.

- **TEXTBOOKS** 1. R.C. Gonzalez & R.E. Woods, —Digital Image Processing||, Addison Wesley/ Pearson education, 2nd Education, 2002.
 - 2. S. Jayaraman, S. Esakkirajan, T. Veerakumar, "Digital Image Processing", TMH, 3rd Edition, 2010.

REFERENCE BOOKS:

1. A.K.Jain, —Fundamentals of Digital Image Processing, PHI. 3RD Edition, 2003.

- 2. Rafael C. Gonzalez, Richard E Woods and Steven, —Digital Image Processing using MATLAB L. Edition, PEA, 2004.
- 3. William K. Pratt, John, —Digital Image Processing , Wilely, 3rd Edition, 2004.
- 4. Somka, Hlavac, Boyle, "Digital Image Processing and Computer Vision", Cengage Learning, 1st Edition, 2008.
- 5. Adrain Low, "Introductory Computer vision Imaging Techniques and Solutions", Tata McGraw-Hill, 2nd Edition, 2008.
- 6. John C. Russ, J. Christian Russ, "Introduction to Image Processing & Analysis", CRC Press, 1st Edition, 2010.

WEB REFERENCES:

- 1. https://nptel.ac.in/courses/117105135
- 2. https://onlinecourses.nptel.ac.in/noc22_ee116/preview

COURSE WEB PAGE:

1. https://akanksha.iare.ac.in/index?route=course/details&course_id=129

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Outcomes (CO), Program Outcomes (PO) and CO-PO Map	ırse Object ping	ives, Course
	CONTENT DELIVERY (THEORY)		
1	Introduction to Digital Image Processing	CO 1	T1:1.4-1.5
2	Digital Image Fundamentals	CO 1	T1:1.4-1.5
3	Analyze sampling and quantization	CO 1	T1:2.4-2.5
4	Relationship between pixels	CO 1	T1:2.4-2.5
5	Introduction to Image transforms	CO 2	T1:2.4-2.5
6	2D-FFT	CO 2	T1:2.6-
			2.6.8; R2:
			5.8-5.10
7	Properties of 2D-FF"1	CO 2	T1:2.6-
			5.8-5.10
8	Walsh transform	CO 2	T1:3.1-3.6
9	Hadamard transform ,Discrete cosine transform	CO 2	T1:3.1-3.6
10	Haar transform, Slant transform	CO 2	T1:3.1-3.6
11	Hoteling transform	CO 2	T1:3.1-3.6
12	Introduction to image enhancement	CO 3	T1:3.1-3.6
13	Image enhancement in spatial domain	CO 3	T1:3.1-3.6
14	Enhancement through point processing	CO 3	T1:3.1-3.8
15	Types of point processing	CO 3	T1:3.1-3.8

16	Histogram manipulation	CO 3	T1:3.1-3.8
17	Linear and non-linear gray level transformation	CO 3	T1:3.1-3.8;
			R2: 7.4-7.5
18	Local or neighbourhood operation	CO 3	T1:3.1-3.8;
			R2: 7.4-7.5
19	Median filter processing	CO 3	T1:3.1-3.8;
	Cratial damain high goog filtering		$\frac{R2: \ (.4-1.3)}{T1\cdot 2 \ 1 \ 2 \ 9}$
20	Spatial domain high pass nitering	003	11:3.1-3.8; B2: 7.4-7.5
	Histogram equalization	CO 3	T1.2. $1.4-1.5$
21			R2: 7.4-7.5
22	Apply the Histogram processing technique for image	CO 3	T1:3.1-3.8:
	enhancement		R2: 7.4-7.5
23	Understand filtering in frequency domain	CO 3	T1:4.1-4.6
24	Obtaining frequency domain filters from spatial filters	CO 3	T1:4.1-4.6
25	Generating filters directly in the frequency domain	CO 3	T1:4.1-4.6
26	Low pass (smoothing) filter in frequency domain.	CO 3	T1:4.1-4.6
27	High pass (sharpening) filter in frequency domain	CO 3	T1:4.1-4.6
28	Introduction to Image segmentation	CO 4	T1:10.1-
			10.6
29	Detection of discontinuities	CO 4	T1:10.1-
			10.6
30	Edge linking and boundary detection	CO 4	T1:10.1-
			10.6
30	Threshold techniques for image segmentation	CO 4	T1:10.1-
			10.6
31	Understand region oriented segmentation	CO 4	T1:10.1-
			T1.0,
32	Watershed transformation	CO 4	T1.0.1 -
02			10.6;
			T1:9.1-9.6
32	Morphological image processing, dilation and erosion	CO 4	T1:10.1-
			10.6;
			11:9.1-9.6
33	Understand structuring element decomposition, the Strel	CO 4	T1:9.1-9.6
24	Tunction, erosion;		T1010C
34	Combining dilation and erosion: Opening and closing	CO 4	П 1:9.1-9.0
35	The fit and miss transformation	CO 4	П1:9.1-9.6
30	Boundary extraction ,Region filling	CO 4	T1:9.1-9.6
37	Extracted of connected components, convex hull		T1:9.1-9.6
	skeletons, pruning	CO 4	TT:9.1-9.6
39	I ninning, I hickening		11:9.1-9.6
40	Introduction to Image restoration	CO5	11:8.1-8.3;
<u></u>	Degradation model Neise models	COF	$\frac{112. (.4-1.0)}{T1.0 + 0.9}$
41	Degradation model, Noise models		R2: $7.4-7.5$
L			

42	Restoration in the presence of noise only (Spatial Filtering)	CO5	T1:8.1-8.3 ; R2: 7.4-7.5
43	Estimating the degradation function	CO5	T1:8.1-8.3 ; R2: 7.4-7.5
44	Inverse filtering	CO5	T1:8.1-8.3 ; R2: 7.4-7.5
45	Least mean square filters	CO5	T1:8.1-8.3 ; R2: 7.4-7.5
46	Constrained least square restoration	CO5	T1:8.1-8.3 ; R2: 7.4-7.5
47	Introduction to Image compression	CO6	T1:8.1-8.3 ; R2: 7.4-7.5
48	Redundancies and their removal methods	CO 6	T1:8.1-8.3; R2: 7.4-7.5
49	Fidelity criteria, image compression models	CO 6	T1:8.1-8.3; R2: 7.4-7.5
50	Understand source encoder and decoder	CO 6	T1-8.1-8.1.7
51	Error free compression	CO 6	T1-8.1-8.1.7
52	Lossy compression & JPEG 2000 standard	CO 6	T1-8.1-8.1.7
53	Wavelet transform: Continuous wavelet transformation	CO 6	T1-8.1-8.1.7
54	2D continuous wavelet transformation	CO 6	T1-8.1-8.1.7
55	Examples of wavelets	CO 6	T1-8.1-8.1.7
56	Wavelet based image compression	CO 6	T1-8 1-8 1 7
00	riareice sasca initage compression	000	
00	PROBLEM SOLVING/ CASE STUDIES	5	11 0.1 0.1.1
1	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties	CO 2	T1:2.6-
1	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties	CO 2	T1:2.6- 2.6.8; R2:
1	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10
1	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform	CO 2 CO 3	T1:2.6- 2.6.8; R2: 5.8-5.10 T1:3.1-3.6
1 2 3	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform	CO 2 CO 3 CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6
$\begin{array}{c} 30\\ \hline 1\\ \hline 2\\ \hline 3\\ \hline 4\\ \end{array}$	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform	CO 2 CO 3 CO 2 CO 2 CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6
$\begin{array}{c} 30\\ \hline 1\\ \hline 2\\ \hline 3\\ \hline 4\\ \hline 5\\ \end{array}$	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing	CO 2 CO 3 CO 2 CO 2 CO 2 CO 3	T1:2.6- 2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6
	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization	CO 2 CO 2 CO 2 CO 2 CO 2 CO 3 CO 3	T1:2.6- 2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8
	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing	CO 2 CO 2 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3	T1:2.6- 2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:3.1-3.8
	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing Problem solving on image enhancement using filtering methods	CO 2 CO 2 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3	T1:2.6- 2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:3.1-3.8 T1:3.1-3.8
$ \begin{array}{c} 30 \\ 1 \\ 2 \\ $	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on processing Problem solving on gray-level transformation and equalization Problem solving on image enhancement using filtering methods	CO 2 CO 2 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3 CO 3	T1:2.6- 2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:3.1-3.8 T1:4.1-4.6 T1:4.1-4.6
$ \begin{array}{c} 1 \\ 2 \\ $	PROBLEM SOLVING/ CASE STUDIES PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing Problem solving on image enhancement using filtering methods Problem solving on image enhancement using filtering methods Problem solving on image restoration using filtering techniques	CO 2 CO 2 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	T1:2.6- 2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:3.1-3.8 T1:4.1-4.6 T1:4.1-4.6 T1:4.1-4.6
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \end{array} $	PROBLEM SOLVING/ CASE STUDIES Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing Problem solving on image enhancement using filtering methods Problem solving on image enhancement using filtering methods Problem solving on image enhancement using filtering methods Problem solving on image restoration using filtering methods Problem solving on image restoration using filtering methods Problem solving on image segmentation using edge linking and boundary detection Problem solving edge linking and boundary detection	CO 2 CO 2 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	T1:0.1 0.1.1 T1:2.6- 2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:4.1-4.6 T1:4.1-4.6 T1:4.1-4.6 T1:4.1-4.6 T1:4.1-4.6

13	Problem solving on image segmentation using dilation and erosion	CO5	T1:10.1- 10.6		
14	Problem solving on image compression using removal of redundancies	CO 6	T1:8.1-8.3; R2: 7.4-7.5		
15	Problem solving on image compression using JPEG 2000 standard	CO 6	T1:8.1-8.3; R2: 7.4-7.5		
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY			
1	Definitions and terminologies on Introduction to Digital image processing	CO 1	T1:1.4-1.5		
2	Definitions and terminologies on image enhancement	CO 3	T1:3.1-3.8		
3	Definitions and terminologies on image restoration	CO 4	T1:4.1-4.6		
4	Definitions and terminologies on image segmentation	CO 5	T1:10.1- 10.6		
5	Definitions and terminologies on image compression	CO 6	T1:8.1-8.3; R2: 7.4-7.5		
DISCUSSION OF QUESTION BANK					
1	Discussion on question bank of introduction to digital image processing	CO 2	T1:1.4-1.5		
2	Discussion on question bank of image enhancement	CO 3	T1:3.1-3.8		
3	Discussion on question bank of image restoration	CO 4	T1:3.1-3.8; R2: 7.4-7.5		
4	Discussion on question bank of image segmentation	CO 5	T1:10.1- 10.6		
5	Discussion on question bank of image compression	CO 6	T1:8.1-8.3; R2: 7.4-7.5		

Signature of Course Coordinator Bala Thimmaiah N, Assistant Professor HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	Embedded System Design				
Course Code	AECC43				
Program	B. Tech				
Semester	VII				
Course Type	Core				
Regulation	UG-20				
		Theory		Pract	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	Mr. B. Brahmaiah, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
B.Tech	ACSC24	VI	Computer Organization and Architecture	3
B.Tech	AECC19	V	Microprocessors and Microcontrollers	4

II COURSE OVERVIEW:

This course allows students to learn the fundamentals of embedded system hardware and firmware design. It focusses on embedded system design process, embedded C, interfacing modules, software development tools for debugging and testing of embedded applications, ARM and SHARC processor architectures and memory organization. It provides hands-on experience on implementation of embedded application prototype design using embedded C.

III MARKS DISTRIBUTION:

Subject SEE Examination		CIE Examination	Total Marks
Embedded Systems	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
66.6%	Understand
16.6 %	Apply
16.6~%	Analyze
0%	Evaluate
0%	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
	Continuous Internal Examination – 1 (Mid-term)	10	
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30
	AAT-1	5	
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
	100		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Videos	Tech-talk	Open Ended Experiment		
40%	50%	10		
VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The concepts of embedded computing, embedded C, RTOS and embedded software tools for implementing embedded systems.
II	Embedded software development tools for debugging and testing of embedded applications, architectures of ARM and SHARC processors.
III	Interfacing with external environments using sensors, actuators and communication in distributed embedded systems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize the concepts of Embedded Systems and formalisms for	Understand
	system design with examples.	
CO 2	Examine and write the Embedded Systems programming in C with	Analyze
	Keil Integrated Development Environment (IDE).	
CO 3	Demonstrate the principles of RTOS and the methods used for saving	Understand
	memory and power in real time environments.	
CO 4	Make use of embedded software development tools for debugging and	Apply
	testing of embedded applications.	
CO 5	Illustrate the architecture, memory organization and instruction level	Understand
	parallelism of ARM and SHARC processors used in Embedded	
	Systems.	
CO 6	Interpret the concepts of Internet of Things used in the embedded	Understand
	systems applications.	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE/CIE/AAT
	knowledge of mathematics, science, engineering fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE/CIE/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.	1	
PO 3	Design/Development of Solutions: Design	1	SEE/CIE/AAT
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations		
PO 5	Modern Tool Usage: Create, select, and	3	SEE/CIE/AAT
	apply appropriate techniques, resources, and		
	modern Engineering and IT tools including		
	prediction and modelling to complex		
	the limitations		
PO 10	Communication: Communicate effectively on	1	SEE/CIE/AAT
	complex engineering activities with the		
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear instructions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	${f Strength}$	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital	1	AAT /
	Circuit Development platform for		Projects
	Robotics, Embedded Systems and Signal		
	Processing Applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

			PSO'S												
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 2	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 3	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 4	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-
CO 5	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO1	PO 1	Illustrate the concepts (knowledge) of embedded systems using their architectures by using mathematics, science, engineering fundamentals to the solution of complex engineering problems.	3
	PO 10	Describe the concepts of Embedded Systems and formalisms by giving effective presentations and take clear instructions for system design with examples.	1
	PSO1	To Develop embedded systems modules using Real Time Operating System. and undertake research and development projects in the field of Embedded Systems.	2
CO2	PO 1	Apply the integration of sensors, actuators and on-chip peripherals of microcontroller architectures for prototype design by applying science and engineering fundamentals .	2
	PO 2	Understand the given embedded application problem statement and finding the solution implementation and select proper language for information and data collection for solution development by writing embedded C language programming efficient and interpretation of results . The prototype embedded system design by analyzing complex engineering problems.	4
	PO 3	Manage the design process and make use of creativity to establish solutions by selecting proper syntaxes to write the embedded C language programming by understanding of the requirement for engineering activities to promote sustainable development and design solutions for complex Engineering problems and design system components of embedded applications that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations.	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO2	PO 5	Select and apply appropriate techniques of (Modern Tool Usage) Keil Integrated Development Environment, for design of the basic embedded modules using different electronic circuits to provide valid conclusions.	1
	PO 10	Use Keil Integrated Development Environment by giving effective presentations and take clear instructions for analyzing the Embedded Systems programming in C.	1
	PSO1	To Develop embedded systems modules using Real Time Operating System. and undertake research and development projects in the field of Embedded Systems.	2
CO3	PO 1	Demonstrate (knowledge) the principles of RTOS such as interrupt latency and context switching in hard real time environments by applying the knowledge of mathematical model, science and engineering fundamentals	3
	PO 10	Describe the principles of RTOS and the methods used for saving memory and power with Keil Integrated Development Environment by giving effective presentations and take clear instructions in real time environments.	1
	PSO1	To Develop embedded systems modules using Real Time Operating System. and undertake research and development projects in the field of Embedded Systems.	2
CO4	PO 1	Make use of embedded software development tools (knowledge) for debugging and testing of embedded applications to the solution of complex engineering problems using mathematics , science , engineering fundamentals .	3
	PO 2	Identify the problem and understand the given embedded application and choose necessary hardware and software interface for information and data collection and conduct experimental design and finding the solution implementation of embedded applications using development tools by analyzing complex engineering problems.	4
	PO 3	Understand the customer and user needs and select an appropriate RTOS and Software development tools by managing the design process and evaluate outcomes to promote sustainable development for data transfer between the devices using creativity to establish innovative solutions.	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 5	Create, select, and apply appropriate techniques, resources, and modern Engineering tools including prediction and modelling the embedded circuits using Keil integrated development environment tool to complex Engineering activities with an understanding of the limitations.	1
	PO 10	Use embedded software development tools by giving effective presentations and take clear instructions for debugging and testing of embedded applications.	1
CO5	PO 1	Understand (knowledge) the architecture, memory management and application development using ARM and SHARC processors by applying science and engineering fundamentals.	2
	PO 10	Explain the architecture, memory organization and instruction level parallelism of ARM and SHARC processors by giving effective presentations and taking clear instructions .	1
CO6	PO 1	Model a embedded application prototype using embedded C by applying engineering fundamentals .	1
	PO 2	Understand the problem statement and solve embedded prototype implementation using the concepts of Internet Of Things (information and data collection) and interpret the results in global engineering applications in complex problem analysis using mathematics.	5
	PO 3	Using creativity to establish innovative solutions and understanding of the requirement for engineering activities to promote sustainable development for design a complex engineering problems and real time processes that meet the specified needs with appropriate consideration for the public health and environmental considerations.	3
	PO 10	Interpret the concepts of Internet of Things used in embedded systems applications by giving effective presentations and taking clear instructions .	1

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-PING:

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	2	-	-
CO 2	2	4	4	-	1	-	-	-	-	1	-	-	2	-	_
CO 3	3	-	-	-	-	-	-	-	-	1	-	-	2	-	-
CO 4	3	4	4	-	1	-	-	-	-	1	-	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	1	5	3	-	-	-	-	-	-	1	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

			PSO'S												
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	-	-	-	-	-	-	-	-	20	-	-	40	-	-
CO 2	66.6	40	40	-	100	-	-	-	-	20	-	-	40	-	-
CO 3	100	-	-	-	-	-	-	-	-	20	-	-	40	-	-
CO 4	100	40	40	-	100	-	-	-	-	20	-	-	-	-	-
CO 5	66.6	-	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 6	33.3	50	30	-	-	-	-	-	-	20	-	-	-	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- **1** -5 <C< 40% Low/ Slight
- $\pmb{2}$ 40 % <C < 60% –Moderate
- $3 60\% \leq C < 100\%$ Substantial /High

				PSO'S											
COURSE	PO	РО	РО	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	1	-	-
CO 2	3	1	1	-	3	-	-	-	-	1	-	-	1	-	-
CO 3	3	-	-	-	-	-	-	-	-	1	-	-	1	-	-
CO 4	3	1	1	-	3	-	_	-	-	1	-	-	-	-	-
CO 5	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	1	2	1	-	-	-	-	-	-	1	-	-	-	-	-
TOTAL	16	4	3	-	6	-	-	-	-	6	-	-	3	-	-
AVERAGE	2.66	1.33	1	-	3	-	-	-	-	1	-	-	1	-	-

CIE Exams	\checkmark	SEE Exams	\checkmark	AAT	\checkmark
Quiz	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	-	Open Ended Experiments	-
Seminars	-	Laboratory Practices	_		

XVI ASSESSMENT METHODOLOGY-DIRECT:

XVII ASSESSMENT METHODOLOGY-INDIRECT:

 ✓ 	Early Semester Feedback	\checkmark	End Semester OBE Feedback
X	Assessment of activities / Modelin	g and E	xperimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	EMBEDDED COMPUTING
	Definition of embedded system, embedded systems vs. general computing systems, history of embedded systems, complex systems and microprocessor, classification, major application areas, the embedded system design process, characteristics and quality attributes of embedded systems, formalisms for system design, design examples.
MODULE II	TYPICAL EMBEDDED SYSTEMS AND ITS APPLICATIONS
	Typical Embedded System: Core of the Embedded System, General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS). Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Communication Interface: Onboard and External Communication Interfaces. Applications: LED interfacing, LCD display, Seven segment display, DAC and ADC converters interfacing with 8051 Microcontroller.
MODULE III	RTOS FUNDAMENTALS AND PROGRAMMING
	Operating system basics, types of operating systems, tasks and task states, process and threads, multiprocessing and multitasking, how to choose an RTOS ,task scheduling, semaphores and queues, hard real-time scheduling considerations, saving memory and power. Task communication: Shared memory, message passing, remote procedure call and sockets; Task synchronization: Task communication synchronization issues, task synchronization techniques, device drivers.
MODULE IV	EMBEDDED SOFTWARE DEVELOPMENT TOOLS
	Host and target machines, linker/locators for embedded software, getting embedded software into the target system; Debugging techniques: Testing on host machine, using laboratory tools, an example system.
MODULE V	INTRODUCTION TO ADVANCED PROCESSOR
	Introduction to advanced architectures: ARM and SHARC, processor and memory organization and instruction level parallelism; Networked embedded systems: Bus protocols, I2C bus and CAN bus; Internet-Enabled systems, design example-Elevator controller.

TEXTBOOKS

- 1. Shibu K.V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2nd Edition, 2009.
- 2. Raj Kamal, "Embedded Systems: Architecture, Programming and Design", Tata McGraw-Hill Education, 2nd Edition, 2011.
- 3. Andrew Sloss, Dominic Symes, Wright, "ARM System Developer's Guide Designing and Optimizing System Software", 1st Edition, 2004.

REFERENCE BOOKS:

- 1. Wayne Wolf, Computers as Components, Principles of Embedded Computing Systems Design, Elsevier, 2 nd Edition, 2009
- 2. Dr. K. V. K. K. Prasad, Embedded / Real-Time Systems: Concepts, Design & Programming, dreamtech publishers, 1 st Edition, 2003.
- 3. Frank Vahid, Tony Givargis, —Embedded System Design
[], John Wiley & Sons, 3 rd Edition, 2006
- 4. Lyla B Das, "Embedded Systems", Pearson Education, 1st Edition, 2012.
- 5. David E. Simon, "An Embedded Software Primer", Addison-Wesley, 1st Edition, 1999.
- 6. Michael J.Pont, "Embedded C", Pearson Education, 2nd Edition, 2008.

WEB REFERENCES:

- 1. https://www.smartzworld.com/notes/embedded-systems-es/
- 2. http://notes.specworld.in/embedded-systems-es/
- 3. http://education.uandistar.net/jntu-study-materials
- 4. http://www.nptelvideos.in/2012/11/embedded-systems.html

COURSE WEB PAGE:

1. https://lms.iare.ac.in/index?route=course/playercourseid = 228sectionid = 729lessonid = 7135

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference		
	OBE DISCUSSION				
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms iare. ac.in/ index? route= course/ details& courseid =228		
	CONTENT DELIVERY (THEORY)				
2	Definition of embedded system, embedded systems vs. general computing systems.	CO 1	T1-1.1		
3	History of Embedded systems	CO 1	T1-1.		
4	Complex systems and microprocessor, classification, major application areas.	CO 1	T1-1.3		
5	The embedded system design process	CO 1	T2-1.4		
6	Characteristics and quality attributes of embedded systems	CO 1	T2-1.5		
7	Formalisms for system design, design examples.	CO1	R2-1.2		
10	Typical Embedded System	CO 1	T1-1.3		
11	Core of the Embedded System, General Purpose and Domain Specific Processors.	CO 1	T1-1.4		
12	ASICs, PLDs.	CO 1	T1-1.5		
13	Commercial Off-The-Shelf Components (COTS).	CO 1	T1-1.6		
14	Memory: ROM, RAM	CO 1	T1-1.7		
15	Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems.	CO 1	T2-2.1		
16	Embedded Systems, Communication Interface: Onboard and External Communication Interfaces.	CO 1	T1-2.3		
17	Applications: LED interfacing.	CO 2	R2-3.1		
18	LCD display, Seven segment display.	CO 2	R2-3.2		
19	DAC converters interfacing with 8051 Microcontroller.	CO 2	R2-3.3		
20	ADC converters interfacing with 8051 Microcontroller.	CO 2	R2-3.3		
28	RTOS Fundamentals, Operating system basics, types of operating systems	CO 3	R2-3.5		
29	Tasks and task states, process and threads	CO 3	R2-3.6		
30	Multiprocessing and multitasking, how to choose an RTOS	CO 3	R3-3.7		
31	Task scheduling, semaphores and queues	CO 3	R3-3.8		
32	Hard real-time scheduling considerations, saving memory and power.	CO 3	R3-4.1		
33	Task communication: Shared memory, message passing	CO 3	R3-4.1		

34	Remote procedure call and sockets	CO 3	R3-4.2
35	Task synchronization: Task communication synchronization issues	CO 3	R3-4.2
36	Task synchronization techniques, device drivers.	CO 3	R3-4.3
37	Host and target machines	CO 4	R3-4.3
38	Linker for embedded software	CO 4	R3-4.4
39	Locators for embedded software	CO 4	R3-4.4
40	Getting embedded software into the target system	CO 4	R3-4.5
41	Debugging techniques: Testing on host machine	CO 4	R3-4.5
44	Debugging techniques using laboratory tools, an example system.	CO 4	R3-4.5
47	Introduction to advanced architectures: ARM	CO 5	T2-8.1
48	Introduction to advanced architectures: SHARC	CO 5	T2-8.1
49	Processor and memory organization	CO 5	T2-8.2
50	Instruction level parallelism	CO 5	T2-8.2
51	Networked embedded systems: Bus protocols	CO 6	T2-8.3
52	Networked embedded systems: I2C bus and CAN bus	CO 6	T2-8.3
53	Internet-Enabled systems	CO 6	T2-8.4
54	Design example-Elevator controller.	CO 6	T2-8.4
	PROBLEM SOLVING/ CASE STUDIES	5	
8	BMW 850i brake and stability control system	CO 1	T2-1.4
9	Design example of model train controller	CO 1	T3-2.7
21	Embedded C program for Switch bounce	CO 2	R2-3.2
22	Embedded C program for LED interface	CO 2	R3-4.5
23	Embedded C program for Interfacing with keyboards	CO 2	T2-8.2
24	Embedded C program for Interfacing with displays	CO 2	T2-1.4
25	Embedded C program for 7 Segment Display Interfacing	CO 2	T3-2.7
26	Embedded C program for ADC Interfacing with 8051 microcontroller	CO 2	R2-3.2
27	Embedded C program for DAC Interfacing with 8051 microcontroller	CO 2	R3-4.5
45	Design of Digital camera	CO 4	T2-8.2
46	Design of Microwave oven	CO 4	T2-1.4
55	Design of Elevator controller	CO 6	T3-2.7
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
56	Embedded computing	CO 1	T1-1.3
57	Typical embedded system and its applications	CO 1,CO 2	T3-2.4
58	RTOS fundamentals and programming	CO 3	R3-4.2
59	Embedded software development tools	CO 4	R3-4.4
60	Introduction to advanced processors	CO 5,	T2-8.3
		CO 6	
	DISCUSSION OF QUESTION BANK		
61	Embedded computing	CO 1	T1-1.3

62	Typical embedded system and its applications	CO 1,CO	T3-2.4
		2	
63	RTOS fundamentals and programming	CO 3	R3-4.2
64	Embedded software development tools	CO 4	R3-4.4
65	Introduction to advanced processors	CO 5,	T2-8.3
		CO 6	

Course Coordinator Mr. B.Brahmaiah, Assistant Professor

HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated conclusions using first principles of mathematics natural sciences, and Engineering sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design processes 8. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	10

104	Use research-based knowledge and research methods including design	11
	of experiments, analysis and interpretation of data, and synthesis of	
	the information to provide valid conclusions (Conduct	
	Investigations of Complex Problems).	
	1. Knowledge of characteristics of particular materials, equipment,	
	processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology	
	development, etc.)	
	4. Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and contractual	
	issues	
	5. Understanding of appropriate codes of practice and industry	
	standards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty	
	8. Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of	
	systems and components through the use of analytical methods and	
	modeling techniques	
	10. Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline, in order to solve engineering	
	11 Understanding of and ability to apply a systems approach to	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems	
	engineering problems.	
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling	1
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the	1
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage)	1
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment	1
PO 5	 engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. 	1
PO 5 PO 6	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess	1
PO 5 PO 6	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent	1
PO 5 PO 6	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The	1
PO 5 PO 6	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).	1
PO 5 PO 6	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic	1
PO 5 PO 6	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes	1
PO 5 PO 6	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to	1
PO 5 PO 6	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context	1
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to	1
PO 5 PO 6	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development	1
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements	1
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety,	1
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues	1
PO 5	engineering problems. Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnostic equipment / technical library resources / literature search tools. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and	1

PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12
	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	

PO 10	Communicate effectively on complex Engineering activities with the	5
	Engineering community and with society at large, such as, being able	
	to comprehend and write effective reports and design documentation	
	make effective presentations, and give and receive clear instructions	
	(Communication)	
	"Students should demonstrate the ability to communicate effectively	
	in writing / Orolly?	
	1 Charita (Writing)	
	1. Clarity (writing) $2 - C = \sqrt{D} + \frac{1}{2} + \frac{1}{2}$	
	2. Grammar/Punctuation (Writing)	
	3. References (Writing)	
	4. Speaking Style (Oral)	
	5. Subject Matter (Oral)	
PO 11	Demonstrate knowledge and understanding of the Engineering and	12
	management principles and apply these to one's own work, as a	
	member and leader in a team, to manage projects and in	
	multidisciplinary Environments (Project Management and	
	Finance).	
	1. Scope Statement	
	2. Critical Success Factors	
	3. Deliverables	
	4. Work Breakdown Structure	
	5. Schedule	
	6 Budget	
	7 Quality	
	8 Human Resources Plan	
	9 Stakeholder List	
	10 Communication	
	11 Bisk Begister	
	12 Procurement Plan	
DO 19	December the model for and have the momentation and shill to the	0
PO 12	Recognize the need for and have the preparation and ability to	8
	engage in independent and life-long learning in the broadest context	
	of technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

KEY ATTRIBUTES FOR ASSESSING PROGRAM SPECIFIC OUTCOMES

PSO	NBA statement / Vital features (VF)	No.
Number		of VF's
PSO 1	 Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications. 1. Analyze and solve real time problems in Robotics. 2. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications. 3. Develop embedded systems modules using Real Time Operating System. 4. Undertake research and development projects in the field of Embedded Systems. 5. Adopt the engineering professional code and conduct. 	5
PSO 2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register-Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC 10. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 11. Programming and hands-on skills to meet requirements of global environment. 	11
PSO 3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications. 1. Explicit software and programming tools for antenna design. 2. Adopt technical library resources and literature search. 3. Explore smart antennas. 4. Model, program for operation and control of smart antennas for wireless communication applications. 5. Interface automation tools. 6. Research, analysis, problem solving and presentation using software aids. 7. Programming and hands-on skills to meet requirements of global environment. 	7

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Course Title	INTELLECTUAL PROPERTY RIGHTS					
Course Code	AHSC19					
Program	B.Tech					
Semester	VII ECE					
Course Type	Open Elective					
Regulation	IARE - UG20					
		Theory		Practica	ıl	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Prashant Bachanna, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	-	-	-

II COURSE OVERVIEW:

This course provides the trade related intellectual property rights and investment measures. This course emphasis on how to avail the intellectual property rights of the inventors or owners for their assets like patents on innovative design, copy rights on literary and artistic works, trademark on goods & services and geographical indiactions on products famous for specific geographical areas. This course makes use of the potential future economic benefits to the intellectual property owner or authorized user.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Intellectual Property	70 Marks	30 Marks	100
Rights			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50%	Understand
42 %	Apply
8 %	Analyze
0%	Evaluate
0%	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks	
CIA	Continuous Internal Examination – 1 (Mid-term)	10		
	Continuous Internal Examination – 2 (Mid-term)	10	- 30	
	AAT-1	5		
	AAT-2	5		
SEESemester End Examination (SEE)70			70	
Total Marks			100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The knowledge on world trade organization, trade agreements and investments.
II	The importance of intellectual property rights to develop trade mark law, copy right law and patent law.
III	The new developments in the law of intellectual property rights in order to bring progressive changes towards a free market society and international trade practices under the Trade Related Intellectual Property Rights Agreement (TRIPS)

VII **COURSE OUTCOMES:**

After successful completion of the course, students will be able to:

CO 1	Summerize the general agreement on tariffs and trade (GATT)	Understand
	eight rounds for the substantial reduction of tariffs and other	
	barriers of trade.	
CO 2	Relate the world trade organization agreements for trade related	Understand
	intellectual property rights and investments.	
CO 3	Elaborate the involvement of World Intellectual Property	Understand
	Organization to promote the protection of intellectual property	
	throughout the world.	
CO 4	Demonstrate the legal procedure and document for claiming	Understand
	patent of invention.	
CO 5	Illustrate the different geographical Indications of products	Understand
	which corresponding to specific location for aviling brand of	
	location to products .	
CO 6	Identify different types of intellectual properties, the right of	Apply
	ownership, scope of protection to create and extract value from IP.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,		
	engineering fundamentals, and an engineering specialization to the solution		
	of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and		
	analyze complex engineering problems reaching substantiated conclusions		
	using first principles of mathematics, natural sciences, and engineering		
	sciences.		

Program Outcomes			
PO 3	Design/Development of Solutions: Design solutions for complex		
	the specified needs with appropriate consideration for the public health and		
	safety and the cultural societal and Environmental considerations		
	Conduct Investigations of Complex Problems: Use research based		
104	knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,		
	resources, and modern Engineering and IT tools including prediction and		
	modelling to complex Engineering activities with an understanding of the		
PO 6	I ne engineer and society: Apply reasoning informed by the contextual knowledge to access accietal health, asfety legal and cultural issues and the		
	consequent responsibilities relevant to the professional engineering practice		
PO 7	Environment and sustainability: Understand the impact of the		
101	professional engineering solutions in societal and environmental contexts and		
	demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and		
	responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering		
	activities with the engineering community and with society at large, such as,		
	being able to comprehend and write effective reports and design		
	documentation, make effective presentations, and give and receive clear		
DO 11	Instructions.		
POII	understanding of the engineering and management principles and apply these		
	to one's own work as a member and leader in a team to manage projects		
	and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation		
	and ability to engage in independent and life-long learning in the broadest		
	context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	CIE/Quiz/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 6	The engineer and society: Identify,	2	CIE/Quiz/AAT
	formulate, review research literature, and		
	analyze complex engineering problems reaching		
	substantiated conclusions using first principles		
	of mathematics, natural sciences, and		
	engineering sciences.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 8	Ethics: Apply ethical principles and commit to	3	Seminar
	professional ethics and responsibilities and		
	norms of the engineering practice.		
PO 10	Communication: Communicate effectively on	2	Seminar
	complex engineering activities with the		
	engineering community and with society at		
	large, such as, being able to comprehend and		
	write effective reports and design		
	documentation, make effective presentations,		
	and give and receive clear.		
PO 12	Life-Long Learning: Recognize the need for	1	Seminar
	and having the preparation and ability to		
	engage in independent and life-long learning in		
	the broadest context of technological change		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	PROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit	-	-
	Development platform for Robotics, Embedded		
	Systems and Signal Processing Applications.		
PSO 2	Focus on the Application Specific Integrated	-	-
	Circuit (ASIC) prototype designs, Virtual		
	Instrumentation and System on Chip (SOC)		
	designs.		
PSO 3	Make use of High Frequency Structure	-	-
	Simulator (HFSS) for modeling and evaluating		
	the patch and smart antennas for wired and		
	wireless communication applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

			PSO'S												
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	-	-	-	-
CO 4	-	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	-	-	-
CO 5	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-	-	-
CO 6	\checkmark	-	-	-	-	\checkmark	-	<	-	\checkmark	-	\checkmark	-	-	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Identify different types of Intellectual Properties (IPs), the right of ownership in scientific principles and methodolgy , scope of protection as well as the ways to create and to extract value from IP	1
	PO 10	Describe the intellectual property rights of ownership and communicate effectivly(speaking style) in concept video or tech talk	1
CO 2	PO 6	Explain WTO agreements helpful for engineering activities to promot sustainable development and legal requirements in new product and service development.	2
	PO 10	Describe the importance of WTO agreements for trade related intellectual property rights communicate effectively(speaking style) in tech-talk	1
CO 3	PO 8	Demonstrate the ethical behaviour and responsibilities of world intellectual property organization and its degree of trust and integrity to protect intellectual property rights of the owner	3
	PO 10	Describe the support of WIPO in connection with intellectual property rights and communicate effectivly(speaking style) in tech-talk	1
CO 4	PO 6	Explore the knowledge and understanding of commercial management of IP and identify the highlevel of professional conduct of intellectual property management for claiming patent of invention	2
	PO 8	Explain how to prepare the ethical document for patent of invention by following legal belief and high degree of trust and integrity	3
	PO 10	Describe the steps involved in patent filing in india namely drafting, filing the patent application(writing) and communicate effectivly(speaking style) in concept video and tech-talk.	2
	PO 12	Understand the need of advanced engineering concepts interms of ongoing learning which is suitable to intellectual work.	2
CO 5	PO 1	Explore on the engineering scientific principles and mathematical principles which are helpful for availing geographical indication and procedure for applying geographical indications of products of specific locations	2
	PO 8	Extend on various IPR components to make ethical production and process of filing a document for geographical indication by following professional ethics and integrity of resourse of region .	3
	PO 10	Describe the geographical indiaction for famous products in a given location and communicate effectively(speaking style) in tech-talk.	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 12	Understand the need of advanced engineering concepts interms of ongoing learning which is suitable to get permission for geographical indication of products.	2
CO 6	PO 1	 Explore the engineering knowledge which is useful for preparing the trademark and then apply methodology for trade mark based on trademark and merchandise act 1958 which prevents misuse of marks. 	2
	PO 6	Illustrate international copyright law with respect to ownership and registration of copyright by following the awareness of legal requirements . Understand the professional and ethical conduct to get copy right for literary and artistic works	2
	PO 8	Summarize the trade mark and trade secrets with knowledge of professional ethics and integrity protection before submitting application to trademark office. Demonstrate the ethical behaviourof stoping illegal trademark	3
	PO 10	Describe the IPR to get trademark for unique marks and copy right(for literature writing) for new artistic works and and communicate effectively(speaking style) in tech-talk.	2
	PO 12	Analyze the the project mangement for international developments in trademarks law , copyright law and patent law. Significant skills are applied to get intellectual property rights.	2

Note: For Key Attributes refer Annexure - I

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAP-PING:

		PROGRAM OUTCOMES													
COURSE	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	-	-	-	-	-	2	-	-	-	1	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	3	-	1	-	-	-	-	-
CO 4	-	-	-	-	-	2	-	3	-	2	-	2	-	-	-
CO 5	2	-	-	-	-	-	-	3	-	2	-	2	-	-	-
CO 6	2	-	-	-	-	2	-	3	-	2	-	2	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7		
CO 1	33.3	-	-	-	-	-	-	-	-	20	-	-	-	-	-		
CO 2	-	-	-	-	-	40	-	-	-	20	-	-	-	-	-		
CO 3	-	-	-	-	-	-	-	100	-	20	-	-	-	-	-		
CO 4	-	-	-	-	-	40	-	100	-	40	-	25	-	-	-		
CO 5	66.7	-	-	-	-	-	-	100	-	40	-	25	-	-	-		
CO 6	66.7	-	-	-	-	40	-	100	-	40	-	25	-	-	-		

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\boldsymbol{\theta}$ - 0 < C< 5% – No correlation

1 -5 <C \leq 40% – Low/ Slight

 $\pmb{2}$ - 40 % <C < 60% –Moderate

3 - 60% < C < 100% – Substantial /High

			PSO'S												
COURSE	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	-	-	-	-	-	2	-	-	-	1	-	-	-	-	-
CO 3	-	-	-	-	-	-	-	3	-	1	-	-	-	-	-
CO 4	-	-	-	-	-	2	-	3	-	2	-	1	-	-	-
CO 5	3	-	-	-	-	-	-	3	-	2	-	1	-	-	-
CO 6	3	-	-	-	-	2	-	3	-	2	-	1	-	-	-
Total	7	-	-	-	-	6	-	12	-	9	-	3	-	-	-
Average	2.3	-	-	-	-	2	-	3	-	1.5	-	1	-	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory	-	Student Viva	-	Certification	-
Practices					
Term Paper	-	5 Minutes Video	✓	Open Ended	-
				Experiments	
Assignments					

XVII ASSESSMENT METHODOLOGY-INDIRECT:

 ✓ 	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of mini projects by experts		

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	General agreement on tariffs and trade (GATT) eight rounds: Uruguay round, world trade organization: structure, technology transfer, dispute resolution mechanism, Doha declaration world trade organization agreements including trade related intellectual properties rights and trade related investment measures.
MODULE II	WORLD INTELLECTUAL PROPERTY ORGANIZATION
	Paris convention, Bern convention, Budapest treaty, Madrid agreement, hague agreement.
MODULE III	INTELLECTUAL PROPERTY RIGHTS AND PROTECTIONS
	Patents, the patenting process, patent cooperation treaties: International treaties and conventions on IPRs. Patent act of India, patent amendment act, design act, trademark act, and geographical indication act. Digital innovations and developments as knowledge assets – IP laws, cyber law and digital content protection.
MODULE IV	ROLL OF PATENTS AND GEOGRAPHICAL INDICATIONS
	Patents, patentable and non-patentable inventions. Legal requirements for patents, types of patent applications, patent document: specification and claims, important procedural aspects. Geographical indication: definition, what can be registered, who can apply, rights, term, restrictions. Case studies of patent infringement, design and geographical indications.
MODULE V	TRADEMARK AND COPYRIGHTS
	Definition, classification of trademarks, classifications of goods and services, Vienna classification, trademarks procedure, trademarks enforcement: infringement and passing off, remedies, copyrights, term of copyrights, and procedure of copyright assignment of copyright, copyright infringement remedies. Case studies of trademark and copy rights.

TEXTBOOKS

- 1. P. K. Vasudeva, World Trade Organization: Implications on Indian Economy, Pearson Education, 2015.
- 2. P.KrishnaRao, WTO, Text and cases, Excel Books, 2015.
- 3. Carlos M.Correa- Intellectual property rights, The WTO and Developing countries-Zed books

REFERENCE BOOKS: 1. Yuan S W, "Foundations of fluid Mechanics", Prentice-Hall, 2nd Edition, 1987.

WEB REFERENCES:

- 1. Caves, Frankel, Jones, World Trade and Payments-An Introduction, Pearson4. Education, 2015.
- 2. Carlos M.Correa- Intellectual property rights, The WTO and Developing countries-Zed books.
- 3. Peter-Tobias stoll, Jan busche, Katrianarend- WTO- Trade --related aspects of IPR-Library of Congress

COURSE WEB PAGE:

https://lms.iare.ac.in/index?route=course/details&course_id=367

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Description on Outcome Based Education (OBE): Course Outcomes (CO) Brogram Outcomes (PO) and CO BO Many	rse Objecti [.]	ves, Course
	CONTENT DELIVERY (THEORY)	ning	
1	General agreement on tariffs and trade (GATT) eight rounds	CO 1	T1:1.4-
_		001	1.5
2	Uruguay round	CO 1	T1:1.4- 1.5
3	World trade organization: structure	CO 1	T1:2.4- 2.5
4	Technology transfer	CO 1	T1:2.4- 2.5
5	Dispute resolution mechanism	CO 1	T1:2.4- 2.5
6	Doha declaration	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10
7	world trade organization agreements	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10
8	Trade related intellectual properties rights	CO 2	T1:3.1- 3.6
9	Paris convention	CO 2	T1:3.1- 3.6
10	Bern convention	CO 2	T1:3.1- 3.6
11	Budapest treaty	CO 2	T1:3.1- 3.6
12	Madrid agreement	CO 3	T1:3.1- 3.6
13	Hague agreement	CO 3	T1:3.1- 3.6
14	Historical background of intellectual property rights	CO 3	T1:3.1- 3.8
15	introduction, definition and classification of intellectual property	CO 3	T1:3.1- 3.8
16	Patents, patentable and non-patentable inventions	CO 3	T1:3.1- 3.8
17	Legal requirements for patents	CO 3	T1:3.1- 3.8; R2: 7.4-7.5
18	Types of patent applications	CO 3	T1:3.1- 3.8; R2: 7.4-7.5

19	patent document: specification and claims	CO 3	T1:3.1- 3.8; R2: 7.4-7.5
20	important procedural aspects	CO 3	T1:3.1- 3.8; R2: 7.4-7.5
21	management of intellectual property rights assets	CO 4	T1:4.1- 4.6
22	intellectual property portfolio	CO 4	T1:4.1- 4.6
23	Commercial exploitation of intellectual property	CO 4	T1:4.1- 4.6
24	Designs: basic requirements	CO 4	T1:4.1- 4.6
25	Designs: Procedure	CO 4	T1:4.1- 4.6
26	Designs: Convention application term, date	CO 5	T1:10.1- 10.6
27	Geographical indication: definition	CO 5	T1:10.1- 10.6
28	What can be registered	CO 5	T1:10.1- 10.6
29	Who can apply	CO 5	T1:10.1- 10.6
30	Rights, term, restrictions	CO 5	T1:10.1- 10.6; T1:9.1- 9.6
31	TRADEMARK AND COPYRIGHTS: Definition, classification of trademarks	CO 5	T1:10.1- 10.6; T1:9.1- 9.6
32	Classifications of goods and services	CO 5	T1:9.1- 9.6
33	Vienna classification	CO 5	T1:9.1- 9.6
34	Trademarks procedure	CO 5	T1:9.1- 9.6
35	Trademarks enforcement: infringement and passing off , remedies	CO61	T1:8.1- 8.3 ; R2: 7.4-7.5
36	copyrights, term of copyrights	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
37	procedure of copyright	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
38	Assignment of copyright	CO 6	T1-8.1- 8.1.7

39	Copyright infringement remedies	CO 6	T1-8.1- 8.1.7
40	Copyright infringement remedies	CO 6	T1-8.1- 8.1.7
	PROBLEM SOLVING/ CASE STUDIES		<u> </u>
1	Trademarks	CO 2	T1:2.6- 2.6.8; R2: 5.8-5.10
2	Copyrights	CO 3	T1:3.1- 3.6
3	Which are the types of geographical indication/?	CO 2	T1:3.1- 3.6
4	How many geographical indications are there in India/?	CO 2	T1:3.1- 3.6
5	What means intellectual property/?	CO 3	T1:3.1- 3.6
6	What is IPR and its features/?	CO 3	T1:3.1- 3.8
7	What is a violation of intellectual property/?	CO 3	T1:3.1- 3.8
8	What is trademark with example/?	CO 3	T1:4.1- 4.6
9	What are the two categories of intellectual property/?	CO 3	T1:4.1- 4.6
10	What happened in the Uruguay Round/?	CO 4	T1:4.1- 4.6
11	What was a result of the Uruguay Round quizlet/?	CO 5	T1:10.1- 10.6
12	What is the purpose of WIPO/?	CO 5	T1:10.1- 10.6
13	How many countries are in WIPO/?	CO5	T1:10.1- 10.6
14	What is the difference between a geographical indication and a trademark/?	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
15	What trademark means/?	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY	
1	What is World Trade Organization (WTO)/?	CO 1	T1:1.4- 1.5
2	What is the purpose of WIPO/?	CO 3	T1:3.1- 3.8
3	What means intellectual property/?	CO 4	T1:4.1- 4.6
4	What do you mean by geographical indications/?	CO 5	T1:10.1- 10.6

5	What trademark means/?	CO 6	T1:8.1- 8.3; R2: 7.4-7.5
	DISCUSSION OF QUESTION BANK		
1	Explain why agencies responsible for intellectual property registration with any two examples.	CO 2	T1:1.4- 1.5
2	What is patent/? How the patents are related with intellectual property rights/?	CO 3	T1:3.1- 3.8
3	Explain with one real time example the patentable and non-patentable inventions.	CO 4	T1:3.1- 3.8; R2: 7.4-7.5
4	How intellectual property is helpful to the society and what are the legal requirements are needed for patents/?	CO 5	T1:10.1- 10.6
5	What is the most important criteria for an applicant who seek to register a geographical indication/?	CO 6	T1:8.1- 8.3; R2: 7.4-7.5

Signature of Course Coordinator Prashant Bachanna, Assistant Professor HOD,ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES/ PROGRAM SPECIFIC OUTCOMES

РО	NBA Statement / Key Competencies Features (KCF)	No.
Number		of
		KCF's
PO 1	Apply the knowledge of mathematics, science, Engineering	3
	fundamentals, and an Engineering specialization to the solution of	
	complex Engineering problems (Engineering Knowledge).	
	Knowledge, understanding and application of	
	1. Scientific principles and methodology.	
	2. Mathematical principles.	
	3. Own and / or other engineering disciplines to integrate / support	
	study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and analyse complex	10
	Engineering problems reaching substantiated conclusions using first	
	principles of mathematics natural sciences, and Engineering sciences	
	(Problem Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results	
	10. Documentation	
PO 3	Design solutions for complex Engineering problems and design	10
	system components or processes that meet the specified needs with	
	appropriate consideration for the public health and safety, and the	
	cultural, societal, and Environmental considerations	
	(Design/Development of Solutions).	
	1. Investigate and define a problem and identify constraints	
	including environmental and sustainability limitations, health and	
	safety and risk assessment issues	
	2. Understand customer and user needs and the importance of	
	considerations such as aesthetics	
	3. Identify and manage cost drivers	
	4. Use creativity to establish innovative solutions	

	5. Ensure fitness for purpose for all aspects of the problem including	
	production, operation, maintenance and disposal	
	6. Manage the design process and evaluate outcomes.	
	7. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	8. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	9. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	10. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
PO 4	Use research based knowledge and research methods including design	11
104	of experiments analysis and interpretation of data and synthesis of	11
	the information to provide valid conclusions (Conduct	
	Investigations of Complex Problems)	
	1 Knowledge of characteristics of particular materials equipment	
	processes or products	
	2 Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can be	
	applied (avample, operations and management, technology	
	development etc.)	
	4. Understanding use of technical literature and other information	
	4. Understanding use of technical interature and other information	
	sources Awareness of nature of intellectual property and contractual	
	5. Understanding of appropriate codes of practice and industry	
	stendarda	
	6 Awaranaga of quality ignor	
	7. Ability to work with technical uncertainty	
	7. Addity to work with technical uncertainty	
	berg to english her engineering principles and the ability to apply	
	0 Ability to identify classify and describe the performance of	
	9. Addity to identify, classify and describe the performance of analytical methods and	
	systems and components through the use of analytical methods and	
	10 Ability to apply quantitative methods and computer software	
	10. Ability to apply qualificative methods and computer software	
	problems	
	problems	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems.	
PO 5	Create, select, and apply appropriate techniques, resources, and	1
	modern Engineering and IT tools including prediction and modelling	
	to complex Engineering activities with an understanding of the	
	limitations (Modern Tool Usage).	
	1. Computer software / simulation packages / diagnostic equipment	
	/ technical library resources / literature search tools.	

PO 6	Apply reasoning informed by the contextual knowledge to assess	5
	societal, health, safety, legal and cultural issues and the consequent	
	responsibilities relevant to the professional engineering practice (The	
	Engineer and Society).	
	1. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	2. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	3. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	4. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
	5. Understanding of the need for a high level of professional and	
	ethical conduct in engineering.	
PO 7	Understand the impact of the professional Engineering solutions in	3
	societal and Environmental contexts, and demonstrate the	
	knowledge of, and need for sustainable development (Environment	
	and Sustainability).	
	Impact of the professional Engineering solutions (Not technical)	
	1. Socio economic	
	2. Political	
	3. Environmental	
PO 8	Apply ethical principles and commit to professional ethics and	3
	responsibilities and norms of the Engineering practice (Ethics).	
	1. Comprises four components: ability to make informed ethical	
	choices, knowledge of professional codes of ethics, evaluates the	
	ethical dimensions of professional practice, and demonstrates ethical	
	behavior.	
	2. Stood up for what they believed in	
	3. High degree of trust and integrity	
PO 9	Function effectively as an individual, and as a member or leader in	12
	diverse teams, and in multidisciplinary settings (Individual and	
	Teamwork).	
	1. Independence	
	2. Maturity – requiring only the achievement of goals to drive their	
	performance	
	3. Self-direction (take a vaguely defined problem and systematically	
	work to resolution)	
	4. Teams are used during the classroom periods, in the hands-on	
	labs, and in the design projects.	
	5. Some teams change for eight-week industry oriented Mini-Project,	
	and for the seventeen -week design project.	

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12

		_
PO 12	Recognize the need for and have the preparation and ability to	8
	engage in independent and life-long learning in the broadest context	
	of technological change (Life - Long Learning).	
	1. Project management professional certification / MBA	
	2 Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering concepts	
	A Personal continuing education efforts	
	4. Tersonal continuing education enorts	
	5. Ongoing learning – stays up with industry trends/ new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year $(2 + 1)^{-1}$	
PSO 1	Build Embedded Software and Digital Circuit Development	5
	platform for Robotics, Embedded Systems and Signal Processing	
	Applications.	
	1. Analyze and solve real time problems in Robotics.	
	2 Evaluate the design and provide optimal solutions of the digital	
	circuits for signal processing applications	
	3 Develop embedded systems modules using Real Time Operating	
	5. Develop embedded systems modules using itear Time Operating	
	System.	
	4. Undertake research and development projects in the field of	
	Embedded Systems.	
	5. Adopt the engineering professional code and conduct	
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC)	11
		T T
	Prototypedesigns, Virtual Instrumentation and System on Chip	11
	Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs.	11
	Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect. survey and analyze types of ASIC chip designs.	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interface for SOC designs. 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designing SOC 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designing SOC 5. Adopt the engineering professional code and conduct 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing professional code and conduct 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register Transfer-Level designs 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register Transfer-Level designs 9. Analyse and develop models for system level descriptions for 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC 10. Inspect and survey the abstractions and principles for the 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC 10. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC 10. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC 10. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 11. Programming and hands-on skills to meet requirements of global 	11
	 Prototypedesigns, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfacs for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register Transfer-Level designs 9. Analyse and develop models for system level descriptions for synthesis of SOC 10. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 11. Programming and hands-on skills to meet requirements of global environment. 	11

PSO 3	 Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications. 1. Explicit software and programming tools for antenna design. 2. Adopt technical library resources and literature search. 	7
	 3. Explore smart antennas. 4. Model, program for operation and control of smart antennas for wireless communication applications. 5. Interface automation tools. 6. Research, analysis, problem solving and presentation using software aids. 7. Programming and hands-on skills to meet requirements of global environment. 	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	Microcontrollers and Applications				
Course Code	AECC60	AECC60			
Program	B.Tech				
Semester	VII				
Course Type	Elective				
Regulation	UG-20				
		Theory		Pract	tical
Course Structure	re Lecture Tutorials		Credits	Laboratory	Credits
3 1 4					-
Course Coordinator	Mr. A.Prashanth, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECB07	III	Digital System Design
B.Tech	AECC19	V	Microprocessors and Microcontrollers

II COURSE OVERVIEW:

Microcontroller cores are the key components in most of the modern embedded and system on-chip designs. This course outlines the architecture and signal description of 8 bit and 16 bit microcontrollers and I/O devices interfacing with microcontrollers for real time applications. This course will enable the students in development of embedded hardware projects and models for engineering and scientific applications.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Microcontrollers and	70 Marks	30 Marks	100
Applications			

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
\checkmark	Open Ended Experiments	\checkmark	Tech talk	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
50%	Understand
50%	Apply
0%	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

Component		Marks	Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
Total Marks			100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The signal descriptions along with functional architecture and hardware interfacing skills using microprocessors and micro controllers.
II	The instruction set and logic to build assembly language programs for arithmetic, logic and automated electronic systems.
III	The essential concepts of development through a practical hands-on approach on advanced ARM processors and Internet of Things based systems.

VII COURSE OUTCOMES:

Alter st	iccessiti completion of the course, students should be able to.	
CO 1	Demonstrate the internal architecture and modes of operation of	Understand
	peripheral devices for interfacing memory and I/O devices.	
CO 2	Make use of addressing modes and instruction set of target	Apply
	microcontrollers for writing efficient assembly language programs.	
CO 3	Describe the features of intel processors and microcontrollers for	Understand
	signal description and architecture.	
CO 4	Illustrate the interrupt handling mechanism in microcontrollers using	Understand
	interrupt controller.	
CO 5	Choose an appropriate data transfer scheme and hardware for data	Apply
	transfer between the devices.	
CO 6	Develop micro controller based applications using appropriate input	Apply
	and output devices.	

After successful completion of the course students should be able to:

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,			
	engineering fundamentals, and an engineering specialization to the solution			
	of complex engineering problems.			
PO 2	Problem analysis: Identify, formulate, review research literature, and			
	analyze complex engineering problems reaching substantiated conclusions			
	using first principles of mathematics, natural sciences, and engineering			
	sciences.			
PO 3	Design/Development of Solutions: Design solutions for complex			
	Engineering problems and design system components or processes that meet			
	the specified needs with appropriate consideration for the public health and			
	safety, and the cultural, societal, and Environmental considerations			

Program Outcomes			
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis		
	and interpretation of data, and synthesis of the information to provide valid		
	conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations		
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE, CIE, AAT
	knowledge of mathematics, science,		
	engineering fundamentals, and an engineering		
	specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate,	2	SEE, CIE, AAT
	review research literature, and analyze		
	complex engineering problems reaching		
	substantiated conclusions using first principles		
	of mathematics, natural sciences, and		
	engineering sciences.		

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	2	SEE, CIE, AAT
PO 10	Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	SEE, CIE, AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 1	Build embedded software and digital circuit	3	AAT
	development platform for robotics, embedded		
	systems and signal processing applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7		
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-		-	-	-		
CO 2	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-		
CO 3	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-		
CO 4	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-		
CO 5	-	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	-		
CO 6	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-		

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Describe the features and architectures of Intel 8086 processor and Intel 8051 microcontroller (knowledge) by applying the knowledge of mathematics , Engineering fundamentals , and electronics engineering specialization for understanding the operation.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Explain the functional components of microprocessors and microcontrollers by giving effective presentations and clear instructions for understanding the operation of architectures.	1
CO 2	PO 1	Illustrate instructions from the set library (knowledge) for efficient assembly level programming by applying the knowledge of science, engineering fundamentals and mathematics.	3
	PO 2	Select proper instructions from the instruction set by Information and data collection for Solution development by writing assembly language level programming efficient and Interpretation of results	3
	PO 3	Manage the design process and make use of creativity to establish solutions by selecting proper mnemonics to write the assembly language level programming by Understanding of the requirement for engineering activities to promote sustainable development.	3
	PO 10	Utilize addressing modes and instruction set of target microprocessors and micro controllers micro controllers by with clarity.	1
	PSO 1	Develop software program skills to write efficient programs by understanding the performance parameters of software/ Hardware systems for robotics, embedded systems and signal processing applications	2
CO 3	PO 1	Illustrate the internal architecture and modes of operation of peripheral devices like PPI, DMA controller, PIC, USART by applying the principles of mathematics, engineering fundamentals, electronics engineering specialization for the solution of complex engineering problems.	3
	PO 2	Explain the Problem statement and system definition for interfacing devices with microprocessor and microcontroller by Information and data collection using peripheral devices like PPI, DMA controller, PIC, USART for Solution development and Interpret the results	4
	PO 3	Manage the design process and evaluate outcomes by interfacing devices with microprocessor and microcontroller using Programmable Peripheral Interface (PPI) and Interrupt Controllers to establish innovative solutions byUnderstanding of the requirement for engineering activities to promote sustainable development	3
	PO 10	Describe the internal architecture and modes of operation of peripheral devices by giving effective presentations. for interfacing memory and I/O devices.	1

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 4	PO 2	Explain the functionality of various types of interrupts and their structure with Information and data collection for controlling the processor or controller with program execution flow and Interpret the results for solution development using interrupt controller.	3
	PO 3	Understand the requirement for engineering activities to promote sustainable development in Interrupt handling and use creativity to establish innovative solutions using interrupt controller by Managing the design process and evaluate outcomes	3
	PO 10	Explain the interrupt handling mechanism in microprocessors and micro controllers with clarity .	1
CO 5	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems by differentiating synchronous & asynchronous communication with Information and data collection for data transfer between the devices using first principles of mathematics and Engineering sciences and then Interpret the results	4
	PO 3	understand the customer and user needs and select an appropriate data transfer scheme and hardware by Managing the design process and evaluate outcomes to promote sustainable development for data transfer between the devices using creativity to establish innovative solutions	4
	PO 10	Select an appropriate data transfer scheme and hardware by giving effective presentations and receive clear instructions for data transfer between the devices.	1
CO 6	PO 1	Build (Apply)necessary hardware and software interface using microcomputer based systems to provide solution for real world problems by applying knowledge of mathematics, engineering fundamentals, engineering specialization.	3
	PO 2	Identify problem and Choose necessary hardware and software interface (information and data collection) and conduct experimental design with model translation to provide solution development for real world problems by interpreting results.	6

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 3	Organize necessary hardware and software interface based on user needs and importance of considerations for innovative solutions, of the problem including all aspects to manage design process, in microcomputer based systems by applying different techniques, to achieve required sustained development, with legal requirements governing engineering activities, including personnel, health, safety, and risk issues.	6
	PO 10	Build micro processor and micro controller based applications using necessary input and output devices and give effective oral presentations and instructions.	1
	PSO 1	Develop microprocessor and microcontroller based applications in the fields of robotics and embedded systems using embedded software and necessary input output devices.	2

Note: For Key Attributes refer Annexure - ${\bf I}$

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7	
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-	
CO 2	3	3	3	-	-	-	-	-	-	1		-	2	-	-	
CO 3	3	4	3	-	-	-	-	-	-	1	-	-	-	-	-	
CO 4	-	3	3	-	-	-	-	-	-	1	-	-	-	-	-	
CO 5	-	4	4	-	-	-	-	-	-	1	-	-	-	-	-	
CO 6	3	6	6	-	-	-	-	-	-	1	-	-	2	-	-	

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

	PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	100	-	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 2	100	30	30	-	-	-	-	-	-	20	-	-	40	-	-
CO 3	100	40	30	-	-	-	-	-	-	20	-	-	-	-	-
CO 4	-	30	30	-	-	-	-	-	-	20	-	-	-	-	-

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 5	-	40	40	-	-	-	-	-	-	20	-	-	-	-	-
CO 6	40	60	60	-	-	-	-	-	-	20	-	-	40	-	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- $\pmb{\mathcal{2}}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ 60% \leq C < 100% Substantial /High

		PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-		
CO 2	3	1	1	-	-	-	-	-	-	1	-	-	3	-	-		
CO 3	3	2	1	-	-	-	-	-	-	1	-	-	-	-	-		
CO 4	-	1	1	-	-	-	-	-	-	1	-	-	-	-	-		
CO 5	-	2	2	-	-	-	-	-	-	1	-	-	-	-	-		
CO 6	3	3	3	-	-	-	-	-	-	1	-	-	3	-	-		
TOTAL	12	9	8	-	-	-	-	-	-	6	-	-	6	-	-		
AVERAGE	3	1.8	1.6	-	-	-	-	-	-	1	-	-	3	-	-		

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	 ✓ 	Assignments	-
Quiz	-	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	-	5 Minutes Video / Concept Video	~	Open Ended Experiments	-
Micro Projects	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling	and E	Experimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	OVERVIEW OF ARCHITECTURE AND MICROCONTROLLER RESOURCES
	Architecture of a microcontroller, Microcontroller resources, Resources in advanced and next generation microcontrollers, 8051 microcontroller –Internal and External memories, Counters and Timers, Synchronous and asynchronous serial communication, Interrupts, Instruction set of 8051 microcontroller, Basic assembly language programming.
MODULE II	REAL TIME CONTROL
	Interrupts: Interrupt handling structure of an MCU, Interrupt Latency and Interrupt deadline, Multiple sources of the interrupts, Non-maskable interrupt sources, Enabling or disabling of the sources, Polling to determine the interrupt source and assignment of the priorities among them, Interrupt structure in Intel 8051. TIMERS : Programmable Timers in the MCU's, Free running counter and real time control, Interrupt interval and density constraints.
MODULE III	SYSTEMS DESIGN
	Digital And Analog Interfacing Methods: Switch, Keypad and Keyboard interfacings, LED and Array of LEDs, Keyboard/ Display controller (8279), Alphanumeric Devices, Display Systems and its interfaces, Printer interfaces, Programmable instruments interface using IEEE 488 Bus, Interfacing with the Flash Memory. Interfaces – Interfacing to High Power Devices, Analog input interfacing, Analog output interfacing, Optical motor shaft encoders, Industrial control, Industrial process control system, Prototype MCU based Measuring instruments, Robotics and Embedded control, Digital Signal Processing and Digital Filters.
MODULE IV	REAL TIME OPERATING SYSTEM FOR MICROCONTROLLERS
	Real Time operating system, RTOS of Keil (RTX51), Use of RTOS in Design, Software development tools for Microcontrollers.
MODULE V	16-BIT MICROCONTROLLERS
	Hardware – Memory map in Intel 80196 family MCU system, IO ports, Programmable Timers and High-speed outputs and input captures, Interrupts – instructions.ARM 32 Bit MCUs : Introduction to 16/32 Bit processors, ARM architecture and organization, ARM / Thumb programming model, ARM / Thumb instruction set, Development tools.

TEXTBOOKS

- 1. Raj Kamal, "Microcontrollers Architecture, Programming, Interfacing and System Design", Pearson Education, 2005.
- 2. Mazidi and Mazidi, "The 8051 Microcontroller and Embedded Systems , PHI, 2000.

REFERENCE BOOKS:

- 1. A.V. Deshmuk, "Microcontrollers (Theory & Applications)", WTMH, 2005.
- 2. John B. Peatman, "Design with PIC Microcontrollers", Pearson Education, 2005.

WEB REFERENCES:

1. https://www.vectorindia.org 8051 microcontroller

2. https://www.digikey.in

COURSE WEB PAGE:

- 1. http://engineersevanigam.blogspot.in/2013/07/Microcontroller-by.html
- 2. https://www.scribd.com/doc/153593067/Microcontroller-by-A-P-Godse-D-A-Godse

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference	
OBE DISCUSSION				
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms. iare.ac.in/ index?route= course/details &course_id= 135	
	CONTENT DELIVERY (THEORY)			
2	Architecture of a microcontroller	CO 1	T1:1.1 R2:1.3	
3	Microcontroller resources	CO 1	T1:1.2 R2:1.1,6.1	
4	Resources in advanced and next generation microcontrollers,	CO 1	T1:1.5,1.6,1.7	
5	8051 microcontroller Internal and External memories	CO 1	T1:1.8 R2:6.3	
6	Counters and Timers	CO 2	T1:2.1 R2:3.1	
7	Synchronous serial communication	CO 2	T1:2.3 R2:3.2	
8	Asynchronous serial communication	CO 2	T1: 2.3 R2:3.4,3.5	
9	Interrupts	CO 2	T1: 2.3 R2:3.7	
11	Instruction set of 8051 microcontroller	CO 2	T1: 2.3 R2:3.6	
12	Basic assembly language programming	CO 2	T1: 2.3 R2:4.1	
13	Interrupts	CO 1	T1:4.1,4.2	
14	Interrupt handling structure of an MCU, Interrupt Latency and Interrupt deadline	CO 3	T1:5.3	
15	Multiple sources of the interrupts	CO 4	T1:4.3 R2:8.1	
16	Non-maskable interrupt sources	CO 6	T1:5.6,5.7 R2:9.8,9.9	
17	Enabling or disabling of the sources	CO 6	T1:5.9	

R2:10.3 T1:6.3 R2:10.2 T1:6.4 R2:11.3
T1:6.3 R2:10.2 T1:6.4 R2:11.3
T1:6.3 R2:10.2 T1:6.4 R2:11.3
R2:10.2 T1:6.4 R2:11.3
T1:6.4 R2:11.3
R2:11.3
T1:7.1
R2:11.6
Г1:17.2
R2:20.1
Г1:17.3
Г1:17.4
2:19.10
Г1:17.6
R2:20.6
Г1:17.7
R2:20.5
1.1 to 1.4
2.1 to 2.4
2.1 to 2.4
2.1 to 2.2
T3:2.3
R2:10.3
3:2.4 to
T3:2.8
3:3.1 to
T3:3.2
3:3.1 to
T3:3.3
3:3.1 to
T3:3.3
3:3.4 to
T3:3.5
3:3.6 to
T3:3.7
3:3.7 to
T3:3.8
1.3 to 1.4
1.3 to 1.4
3: 2.1 to
2.2
3: 2.3 to
2.3.1

PROBLEM SOLVING/ CASE STUDIES				
6	Physical address calculation	CO 1	T1:1.1 B2:1.1	
20	Assembly language programs For Sorting of numbers using 8086 microprocessor	CO 2	T1:3.4 R2:4.7	
21	Assembly language programs for multibyte addition and subtraction, sum of squares using 8086 microprocessor	CO 2	T1:3.4 R2:4.7	
22	Assembly language programs for String manipulations using 8086 microprocessor	CO 2	T1:3.4 R2:4.1	
23	Assembly language programs for Code conversions using 8086 microprocessor	CO 2	T1:3.4 R2:4.4,4.5	
28	Memory interfacing to 8086 microprocessor (Static RAM)	CO 3	T1:5.1 R2:12.2,12.3	
29	Memory interfacing to 8086 microprocessor (EPROM)	CO 3	T1:5.2 R2:12.4	
32	Interfacing A/D and D/A converters with 8086 microprocessor	CO 6	T1:5.6,5.7 R2:9.8,9.9	
34	Assembly language programs to rotate stepper motor in clockwise and anticlock wise direction	CO 2	T1:5.8 R2:9.11	
37	Cascading of Interrupt Controller and its importance, interfacing 8259 PIC with 8086 microprocessor	CO 4	T1:6.2 R2:10.3,10.4	
39	Interfacing keyboard /display controller 8279 to 8086 microprocessor	CO 6	T1:6.3 R2:10.2	
41	Interfacing programmable communication interface 8251 USART to 8086 microprocessor	CO 5	T1:6.4 R2:11.3	
47	Assembly language programming using data transfer, arithmetic, logical and branch instructions	CO 2	T1:17.8 R2:19.3	
51	Real world interfacing of 8051 microcontroller with external memory	CO 6	T1:17.6 R2:20.2	
52	Interfacing 8051 microcontroller with LCD	CO 6	T1:17.9 R2:21.3	
53	Interfacing 8051 microcontroller with ADC and DAC	CO 6	T1:17.9 R2:21.1	
	DISCUSSION OF DEFINITION AND TERMI	INOLOGY	<u> </u>	
54	8051 microcontroller	CO 1, CO 2	T1, R2	
55	Interfacing Devices	CO 1, CO 2, CO 4	T1, R2	
56	microcontroller Applications	CO 2, CO 3,	T1, R2	
57	System design using microcontroller	CO 1, CO 2,	T1, R2	
58	ARM Architecture	CO 3, CO 4,	T1, R2	

	DISCUSSION OF QUESTION BANK				
59	Architecture of a microcontroller	CO 1, CO 2	T1, R2		
60	Programmable Timers in the MCU	CO 2, CO 4	T1, R2		
61	Memory interfacing to 8086 microprocessor	CO 2, CO 5	T1, R2		
62	Interfacing programmable communication interface	CO 1, CO 2	T1, R2		
63	ARM Architecture and applications	CO 4, CO 5	T1, R2		

Signature of Course Coordinator Mr. A.Prashanth, Assistant Professor

HOD, ECE

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

PO	NBA Statement / Key Competencies Features (KCF)	No.
Number		of
		KCF's
PO 1	Apply the knowledge of mathematics, science, Engineering	3
	fundamentals, and an Engineering specialization to the solution of	
	complex Engineering problems (Engineering Knowledge).	
	Knowledge, understanding and application of	
	1. Scientific principles and methodology.	
	2. Mathematical principles.	
	3. Own and / or other engineering disciplines to integrate / support	
	study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and analyse complex	10
	Engineering problems reaching substantiated conclusions using first	
	principles of mathematics natural sciences, and Engineering sciences	
	(Problem Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Implementation	
	9. Interpretation of results	
	10. Documentation	
PO 3	Design solutions for complex Engineering problems and design	10
	system components or processes that meet the specified needs with	
	appropriate consideration for the public health and safety, and the	
	cultural, societal, and Environmental considerations	
	(Design/Development of Solutions).	
	1. Investigate and define a problem and identify constraints	
	including environmental and sustainability limitations, health and	
	safety and risk assessment issues	
	2. Understand customer and user needs and the importance of	
	2 Identify and manage cost drivers	
	5. Identify and manage cost drivers	
	4. Use creativity to establish innovative solutions	

	5. Ensure fitness for purpose for all aspects of the problem including	
	production, operation, maintenance and disposal	
	6. Manage the design process and evaluate outcomes.	
	7 Knowledge and understanding of commercial and economic	
	context of engineering processes	
	8. Knowledge of management techniques which may be used to	
	o. Knowledge of management techniques which may be used to	
	achieve engineering objectives within that context	
	9. Understanding of the requirement for engineering activities to	
	promote sustainable development	
	10. Awareness of the framework of relevant legal requirements	
	governing engineering activities, including personnel, health, safety,	
	and risk (including environmental risk) issues	
PO 4	Use research-based knowledge and research methods including design	11
101	of experiments analysis and interpretation of data and synthesis of	
	the information to provide valid conclusions (Conduct	
	Investigations of Complex Problems)	
	Investigations of Complex Problems).	
	1. Knowledge of characteristics of particular materials, equipment,	
	processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can be	
	applied (example, operations and management, technology	
	development, etc.)	
	4. Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and contractual	
	issues	
	5 Understanding of appropriate codes of practice and industry	
	standards	
	6 Awaronoss of quality issues	
	7 Ability to work with technical uncertainty	
	7. Addity to work with technical uncertainty	
	8. Understanding of engineering principles and the ability to apply	
	them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of	
	systems and components through the use of analytical methods and	
	modeling techniques	
	10. Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline, in order to solve engineering	
	problems	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems.	
PO 5	Create select and apply appropriate techniques resources and	1
100	modern Engineering and IT tools including prodiction and modelling	Ŧ
	to complex Engineering activities with an understanding of the	
	to complex Engineering activities with an understanding of the	
	Infinitations (ivioderni 1001 Usage).	
	1. Computer software / simulation packages / diagnostic equipment	
	/ technical library resources / literature search tools.	

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 	12

	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan	12

PO 12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning – stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2-3 new significant skills 8. Have taken up to 80 hours (2 weeks) training per year 	8
PSO 1	 Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications 1. Analyze and solve real time problems in Robotics. 2. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications 3. Develop embedded systems modules using Real Time Operating System 4. Undertake research and development projects in the field of Embedded Systems. 5. Adopt the engineering professional code and conduct 	5
PSO 2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O interfaces for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct/ new technology 6. Designing prototypes of SOC using programming tools like MATLAB, LabVIEW 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register-Transfer-Level designs. 9. Analyse and develop models for system level descriptions for synthesis of SOC. 10. Inspect and survey the abstractions and principles for the specification, simulation, verification, and synthesis of systems on chip (SoC) 11. Programming and hands-on skills to meet requirements of global environment. 	11

PSO 3	Make use of High Frequency Structure Simulator (HFSS) for	7
	modeling and evaluating the Patch and Smart Antennas for Wired	
	and Wireless Communication Applications	
	1. Explicit software and programming tools for antenna design.	
	2. Adopt technical library resources and literature search.	
	3. Explore smart antennas.	
	4. Model, program for operation and control of smart antennas for	
	wireless communication applications.	
	5. Interface automation tools.	
	6. Research, analysis, problem solving and presentation using	
	software aids.	
	7. Programming and hands-on skills to meet requirements of global	
	environment.	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING					
Course Title	VLSI D	VLSI Design				
Course Code	AECC44	AECC44				
Program	B.Tech	B.Tech				
Semester	VII					
Course Type	Core					
Regulation	IARE-R2	20				
		Theory		Pra	ctical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
3 - 3 -					-	
Course Coordinator	Mr V.R.Seshagiri Rao, Associate Professor, ECE					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC03	III	Digital System Design
B.Tech	AECC12	IV	Integrated Circuits Applications

II COURSE OVERVIEW:

This course introduces students about the fabrication techniques of design and implementation of very large scale (VLSI) circuits. Specific topics include: CMOS logic, MOSFET theory, design rules & layout procedures and logic and circuit simulations. The course further gives information on data path subsystems, PLD's performance parameters and testing approaches for the circuits.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
VLSI design	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage

in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
66.6%	Understand
16.6 %	Apply
16.6 %	Analyze
0%	Evaluate
0%	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component		Total Marks	
CIA	Continuous Internal Examination – 1 (Mid-term)	10		
	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5		
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
Total Marks			100	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Videos	Tech-talk	Open Ended Experiment
50%	50%	-

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The aspects of hierarchical VLSI design from the metal oxide semiconductor transistor up to the system level, fabrication and testing.
II	The subsystem design incorporating into a VLSI chip with contemporary techniques for achieving high-speed, low-power and low area overhead.
III	Advanced modern tools such as vivado and cadence for front end and back end for chip design through a practical approach.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Summarize the MOSFET fabrication process, electrical properties and scaling for understanding latest developments in VLSI.	Understand
CO 2	Make use of stick diagrams and layout designs to convey layer information in MOSFET circuits.	Apply
CO 3	Analyze inverters, complex gates and dynamic CMOS circuits to calculate power consumption, distortion and speed of operation	Analyze
CO 4	Illustrate data path subsystems and array subsystems using stick diagrams and layouts.	Apply
CO 5	Outline the role of Programmable logic devices for realization of complex boolean functions.	Understand
CO 6	Examine the test strategies, implementation approach on full custom and semi custom design for optimising speed, cost, reconfiguration and reliability parameters.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes			
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations		
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations		
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.		
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.		
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change		

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	${f Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE, CIE,
	knowledge of mathematics, science, engineering		AAT, QUIZ
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE, CIE,
	research literature, and analyze complex		AAT, QUIZ
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	1	SEE, CIE,
	solutions for complex engineering problems and		AAT, QUIZ
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and environmental		
		1	
PO 4	Conduct Investigations of Complex	1	AAT
	Problems: Use research-based knowledge and		
	research methods including design of		
	experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
DO 10	Concrusions.	1	Diamatica
PO 10	Communication: Communicate effectively on	1	Discussions
	Engineering community and with society at		
	large such as being able to comprehend and		
	write effective reports and design		
	documentation make effective presentations		
	and give and receive clear instructions		
PO 3 PO 4 PO 10	 conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Communication: Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions 	1	SEE, CIE, AAT, QUIZ AAT Discussions

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 2	Focus on the application specific integrated circuit (ASIC) prototype designs, virtual instrumentation and system on chip (SoC) designs.	3	SEE, CIE, AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	
CO 2	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-	
CO 3	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	
CO 4	\checkmark	\checkmark	\checkmark	\checkmark		-	-	-	-	\checkmark	-	-	-	\checkmark	-	
CO 5	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	
CO 6	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-	

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Relate the fabrication process (knowledge) ,occurrence of latch up by applying the principles of mathematics, science and engineering fundamentals	3
	PO 2	Formulate and analyze (problem analysis) complex Engineering problems for MOSFET scaling and its effect using the first principles of mathematics and engineering sciences	3
	PO 10	Describe the effects of scaling on MOS circuits for area, delay, power with clarity	1
CO 2	PO 1	Build the stick diagrams, layouts of MOS circuits (knowledge) by following design rules with mathematics, science and engineering fundamentals	3
	PO 2	Understand the given problem statement and formulate the circuit design, translate the information into the model using stick diagram and layout validate the output of the circuit in reaching substantiated conclusions by the interpretation of results .	5
	PO 4	Design layout of transistors from stick diagram using experimental design and analyze the characteristics of circuit	1
	PO 10	Explain the stick diagrams, layouts of MOS circuits using lambda, absolute and Euler physical design rules with clarity	1
	PSO 2	Design,Inspect and Analyze any type of ASIC , SOC designs using cadence tools to survey the speed, area and delay with the knowledge of layout to Familiarize with the design flow of ASIC prototypes using verilog and vhdl languages .	8

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 3	PO 1	Examine the conditions mathematically for improved performance of inverters, static and dynamic gates regarding symmetry of transfer characteristics, rise, fall times (knowledge) by applying the field effect transistor fundamentals with support from other engineering disciplines, mathematics, and scientific methodologies	2
	PO 2	Understand the given problem statement and formulate conditions for improved performance of inverters, static and dynamic gates from the given information and data in reaching substantiated conclusions by the interpretation of results	4
	PO 4	Design the circuit using various CMOS logics using experimental design and analyze the features of circuit in terms of area ,delay	1
	PO 10	Describe inverters, complex gates and dynamic CMOS circuits for power consumption, distortion and speed of operation with clarity	1
CO 4	PO 1	Describe data path subsystems (knowledge) consisting of shifters, adders, multipliers, ALUs, parity generators, counters and comparators with the support of VLSI engineering tools such as stick diagrams and layouts, mathematics, science and engineering fundamentals	3
	PO 2	Formulate and analyze (problem analysis) complex Engineering problems for data path subsystems consisting of shifters, adders, multipliers, ALUs, parity generators, counters and comparators using first principles of mathematics and engineering sciences	5
	PO 3	Design solutions using data path subsystems with innovative solution and implementing them using modern tools such as cadence software, verilog and VHDLtools.	3
	PO 4	Design various data path subsystems using research-based knowledge and research methods including design of experiments.	1
	PO 10	Explain data path subsystems containing arithmetic logic units, parity generators, comparators and memories using stick diagrams and layouts. with clarity	1
	PSO 2	Explore on the data path subsystems and array subsystems for design of ASIC and SOC system prototypes and Familiarize with the design flow of ASIC prototypes to Inspect and survey the abstractions and principles for the specifi- cation, simulation, verification, and synthesis of systems on chip(SoC).	8

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 5	PO 1	Design the boolean functions with the (knowledge) of programmable logic devices, choose appropriate logic device with the engineering fundamentals	3
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems, translate the information into the model using boolean function from the provided information and databased on the functionality of the circuit,validate the output of the circuit in reaching substantiated conclusions by the interpretation of results with help of CPLD and FPGA devices.	7
	PO 3	Design solutions using programmable logic devices with innovative solution and implementing them using modern tools such as cadence software, verilog and VHDLtools.	3
	PO 4	Examine any logic function using design of experiments, analysis and interpretation of data with cadence or verilog tools	1
	PO 10	Describe implementation approaches on boolean functions on FPGA with clarity	1
CO 6	PO 1	Discuss importance of full custom and semi custom designs with (knowledge) using scientific principles and methodology of VLSI design	2
	PO 2	Understand the given problem statement and formulate the (complex) engineering problems of VLSI systems, translate the information into the model using cadence software develop solutions based on the functionality of the circuit, validate the output of the circuit by applying various testing methods and interpret the results .	7
	PO 3	Design solutions for complex engineering problems and design system components using full custom or semi custom designs innovative solution and implementing them using modern tools and verify the results using testing methods	3
	PO 4	Examine sequential and combinational logic circuits with design of experiments , analysis and interpretation of data using various test procedures.	1
	PO 10	Prepare for Tech talks and concept video presentations keeping in view of latest trends in technology with clarity.	1
	PSO 2	Design, Analyze and Test application specific integrated circuit prototype designs using programming languages Focus on testing of application specific integrated circuit (ASIC) prototype designs, virtual instrumentation designs and system on chip (SOC) designs appropriate for entry level job positions in front end or back end to meet the requirements of employers.	8

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

		PO's / NO. OF VITAL FEATURES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7		
CO 1	3	3	-	-	-	-	-	-	-	1	-	-	-	-	-		
CO 2	3	5	-	1	-	-	-	-	-	1	-	-	-	8	-		
CO 3	3	4	-	1	-	-	-	-	-	1	-	-	-	-	-		
CO 4	3	5	2	1		-	-	-	-	1	-	-	-	8	-		
CO 5	3	7	3	1	-	-	-	-	-	1	-	-	-	-	-		
CO 6	2	7	3	1	-	-	-	-	-	1	-	-	-	8	-		

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

			PSO'S												
COURSE	PO	PO										PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	30	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 2	100	50	-	9	-	-	-	-	-	20	-	-	-	72	-
CO 3	100	40	-	9	-	-	-	-	-	20	-	-	-	-	-
CO 4	100	50	20	9	-	-	-	-	-	20	-	-	-	72	-
CO 5	100	70	30	9	-	-	-	-	-	20	-	-	-	-	-
CO 6	66	70	30	9	-	-	-	-	-	20	-	-	-	72	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ 60% \leq C < 100% Substantial /High

	PROGRAM OUTCOMES													PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	1	-	-	-	-	-	-	-	1	-	-	-	-	-	
CO 2	3	2	-	1	-	-	-	-	-	1	-	-	-	3	-	
CO 3	3	1	-	1	-	-	-	-	-	1	-	-	-	-	-	
CO 4	3	2	1	1	-	-	-	-	-	1	-	-	-	3	-	
CO 5	3	2	1	1	-	-	-	-	-	1	-	-	-	-	-	
CO 6	3	3	1	1	-	-	-	-	-	1	-	-	-	3	-	
TOTAL	18	11	3	5	-	-	_	-	-	6	_	-	-	9	-	
AVERAGE	3	1.8	1	1	-	-	-	-	-	1	-	-	-	3	-	

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Assignments	\checkmark
Quiz	\checkmark	Tech - Talk	\checkmark	Certification	-
Term Paper	-	Seminars	-	Student Viva	-
Laboratory Practices	-	5 Minutes Video / Concept Video	~	Open Ended Experiments	~
Micro Projects	-	-	-	-	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	\checkmark	End Semester OBE Feedback
\checkmark	Assessment of activities / Modeling a	and E	xperimental Tools in Engineering by Experts

XVIII SYLLABUS:

MODULE I	BASICS OF MOSFETS
	Introduction to IC Technology: MOS, PMOS, NMOS, CMOS & BiCMOS; Fabrication Flow; Basic Electrical Properties of MOS and BiCMOS Circuits: Ids-Vds relationships in saturation and ohmic regions, Weak & strong inversion conditions, Threshold voltage concept in MOSFETs, gm, gds, Figure of merit; Pass transistor; NMOS Inverter; Various pull ups; CMOS Inverter analysis and design; Simple form of Bi-CMOS Inverters and it's alternative forms.
MODULE II	MOS CIRCUIT DESIGN PROCESSES
	VLSI Design Flow; MOS Layers; Stick Diagrams; Physical design rules: 2 m and lambda CMOS design rules for wires, contacts and transistors; Euler's rule for physical design and Layout; Transistors Layout Diagrams for NMOS and CMOS Inverters; Scaling of MOS circuits; Trends & projections in VLSI design & technology CMOS nanotechnology; FINFET; CNTFET.

MODULE III	BASIC CIRCUIT CONCEPTS AND GATE LEVEL DESIGN
	Sheet Resistance and area capacitance of layers; Inverter Time delays; Driving large capacitive loads; Propagation Delays; Wiring capacitances; Fan-in and Fan-out; Choice of layers . VLSI Interconnects; Reliability issues in CMOS VLSI; Latching in VLSI, Electro migration. Gate Level Design: Series and Parallel equivalent circuits, Complex gates; Switch logic;Transmission gates; Other forms of CMOS logic such as Pseudo -nMOS, dynamic CMOS, clocked CMOS, CMOS domino, n-p CMOS and their comparisons.
MODULE IV	SUBSYSTEM DESIGN
	Data Path Sub Systems: Sub system design; Shifters, Ripple carry, Carry Look Ahead; Carry select Adders; Manchester carry chain; ALUs; Multipliers; Parity generators; Comparators; Zero/one detectors; Asynchronous and Synchronous; Counters Array Subsystems: SRAM, DRAM, ROM, Floating gate concepts and Flash Memories, Serial access Memories, Content Addressable Memories.
MODULE V	PROGRAMMABLE LOGIC DEVICES AND CMOS TESTING
	Programmable Logic Devices: Design Approach – PROM, PLA and PAL; FPGAs; CPLDs; FPGA building block architectures; FPGA interconnect routing procedures; Speed and area tradeoff. Implementation strategies full custom Page and semi custom design; CMOS Testing; Built-in Self –Test Strategies; Test pattern generation using LFSR.

TEXTBOOKS

- 1. A. Pucknell, Kamran Eshraghian, "BASIC VLSI Design," Third Edition, Prentice Hall of India, 2007. ISBN: 978-81-203-0986-9
- 2. R. Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation," Wiley-IEEE Press, USA, 2005. ISBN: 978-0-470-88132-3
- 3. Jan Rabaey, Anantha Chandrakasan, B.Nikolic, "Digital Integrated Circuits: A Design Perspective," Second Edition, Phi Learning, 2009. ISBN: 97881203225789

REFERENCE BOOKS:

- N. Weste, K. Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addision Wesley, 1993. ISBN: 978-81-317-1942-8
- 2. M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, First edition, 1997. ISBN-13: 978-0321602756
- John P. Uyemura, "CMOS Logic Circuit Design," Springer, USA, 2007. ISBN: 0-7923-8452-0 Yuan S W, "Foundations of fluid Mechanics", Prentice-Hall, 2nd Edition, 1987.

WEB REFERENCES:

1. https://https://lms.iare.ac.in/index?route=course/details &course_id=361

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
	OBE DISCUSSION		
1	Course Overview, Elaboration of Objectives and Outcomes.		https: //lms. iare.ac. in/ index? route= course/ details& course_ id=361
	CONTENT DELIVERY (THEORY)		
2	Importance of IC technology and basics of MOSFETs	CO1	T1-1.1- 1.3,1.4
3	NMOS, PMOS and CMOS fabrication Flow and twintub	CO1	T1- 1.7,1.8
4	Process flow of BiCMOS- Latch up problem in CMOS	CO1	R1-2.1- 2.2
5	Different Current - voltage characteristics of a MOSFET, Threshold voltage concept in MOSFETs.	CO 1	T1-2.2
5	Effect of transconductance, output conductance and figure of merit on performance characteristics of MOS.	CO 1	T1-2.12
6	PASS transistors , NMOS inverter design and impedance ratios of Nmos inverter.	CO 3	R1-4.7
7	Alternative forms of Pull –up's, CMOS inverter design and properties	CO 3	R1-2.5.3
8	Various forms of Bi-CMOS inverters	CO 3	T1-2.6
9	Processing steps of VLSI Design	CO 1	T1-3.1, 3.2.
10	Introduction to Stick Diagrams; Physical design rules	CO 2	T1- 3.4,3.5
11	Introduction to Lambda based design rules	CO 2	T1-3.3
12	Double metal MOS process rules, 2µm design rules, Contact cuts	CO 2	T1- 3.4,3.5
13	Euler's rule for physical design	CO 2	T1-3.3
14	Scaling in MOS circuits	CO 1	R1-4.8
15	Model and effects of scaling	CO 1	R1-4.8
16	VLSI Interconnects, Reliability issues in CMOS VLSI	CO 1	R1-4.5
17	Trends and projections in VLSI design and technology, CMOS Nano technology	CO 1	R1-4.7
18	Sheet Resistance and area capacitance of MOS layers	CO 3	T1-2.13,
19	Inverter Time delays, Driving large capacitive loads	CO 3	T1-6.3

20	Propagation Delays, Wiring capacitances; Fan-in and Fan-out	CO1	T1-6.2
21	Gate level design: complex gates, Switch logic-	CO 3	T1-4.11
22	Transmission gates ,Other forms of CMOS logic such as	CO 3	T1-4.10,
	Pseudo –nMOS		4.11
23	Architecture Dynamic CMOS, clocked CMOS	CO 3	R1-6.3.7
24	Architecture of CMOS domino; n-p CMOS	CO 3	R1-6.3.2
25	Design Approach – PROM, PLA and PAL	CO 5	T3 -7.7
26	Internal block description of FPGA	CO 5	Τ3
27	Internal block description of CPLD	CO 5	Τ3
28	Different types FPGA interconnect routing procedures; Performance tradeoff	CO4	R1-6.3.4
29	implementation strategies: full custom	CO 6	R1-6.6.7
30	implementation strategies: semi custom design	CO 6	R1- 8.1,8.2
31	Comparison of FPGA and CPLD	CO 5	Τ3
32	Comparison of Full custom and semi custom designs	CO 6	R1-6.6.7
33	Design modules in subsystems , basics of shifters	CO 4	R1-6.3.4
34	Architecture of Ripple carry, Carry Look Ahead, Carry select Adders	CO 4	R1-6.6.7
35	Architecture of Manchester carry chain ,ALUs.	CO 4	R1- 8.1,8.2
36	Architectures of Multipliers	CO 4	R1-8.9
37	Architectures of Parity generators; Comparators; Zero/one detectors;	CO 4	R1-8.4
38	Design of Asynchronous and Synchronous Counters	CO 4	R1- 8.3,8.5
39	Memory operation of SRAM, DRAM, ROM	CO 4	R1- 9.1,9.2, 9.3
40	Memory operation of Floating gate concepts and Flash Memories.CMOS Testing and BIST	CO 6	T3- 7.2,7.3
	PROBLEM SOLVING/ CASE STUDIES	5	
41	Finding drain current, drain to source resistance, transconductance	CO 1	R1-2.5.3
42	Finding electrical properties of MOS based on different parameters	CO 1	T1-2.6
43	Finding the shift in characteristics based on impedance ratio and beta ratios	CO 1	T1-2.10
44	Design of stick diagrams	CO 2	T1-3.1, 3.2.
45	Design of Layout of MOS transistor	CO 2	T1- 3.4,3.5
46	Design using Euler's physical design	CO 2	T1-3.3
47	Calculation of resistance and capacitance of layers	CO 3	T1-1.1- 1.3,1.4

48	Calculation of Delay with respect to circuit	CO 3	T1- 1.7,1.8		
49	Design of complex gate and transmission gate designs	CO 3	T1- 2.5,2.9		
50	Design of shifter circuits	CO 4	R1- 8.1,8.2		
51	Design of adders	CO 4	R1-8.9		
52	Design of multipliers	CO 4	R1-8.4		
53	Look up tables and FPGA design	CO 5	R1-6.3.2		
54	Design of PROM	CO 5	R1-6.3.4		
55	Design of PLA,PAL	CO 5	R1-6.6.7		
DISCUSSION OF DEFINITION AND TERMINOLOGY					
56	MOS transistor fundamental and basic electrical properties	CO 1	T1-1.1- 1.3,1.4		
57	Stick diagram ,layout, scaling of MOS circuits	CO 2	T1-3.1, 3.2		
58	Delay of MOS circuits, gate level circuit design	CO 3	T1-4.6		
59	Adders, multipliers, memory units	CO 4	R1- 8.1,8.2		
60	Architectures of Programmable logical devices and testing	CO 5, CO 6	R1-6.3.2		
DISCUSSION OF QUESTION BANK					
61	MOS transistor fundamental and basic electrical properties	CO 1	T1		
62	VLSI design styles, Stick diagram ,layout, scaling of MOS circuits	CO 2	T1		
63	Basic circuit concepts and gate level design	CO 3	R1		
64	Data path subsystems	CO 4	R2		
65	Programmable logical devices	CO 5	R1		

Signature of Course Coordinator V.R,Seshagiri Rao,Associate professor

HOD, ECE

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO	NBA Statement / Key Competencies Features	No. of
Number	(KCF)	KCF's
PO 1	Apply the knowledge of mathematics, science, Engineer- ing fundamentals, and an Engineering specialization to	3
	the solution of complex Engineering problems (Engi-	
	neering Knowledge).	
	Knowledge, understanding and application of	
	1. Scientific principles and methodology.	
	2. Mathematical principles.	
	3. Own and / or other engineering disciplines to inte-	
	grate / support study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and anal-	10
	yse complex Engineering problems reaching substanti-	
	natural sciences and Engineering sciences (Problem	
	Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Imple-	
	mentation	
	9. Interpretation of results	
	10. Documentation	

PO 3	Design solutions for complex Engineering problems and	10
	design system components or processes that meet the	
	specified needs with appropriate consideration for the	
	public health and safety, and the cultural, societal, and	
	Environmental considerations (Design/Development	
	of Solutions).	
	1. Investigate and define a problem and identify con-	
	straints including environmental and sustainability lim-	
	itations, health and safety and risk assessment issues	
	2. Understand customer and user needs and the impor-	
	tance of considerations such as aesthetics	
	3. Identify and manage cost drivers	
	4. Use creativity to establish innovative solutions	
	5. Ensure fitness for purpose for all aspects of the prob-	
	lem including production, operation, maintenance and	
	disposal	
	6. Manage the design process and evaluate outcomes.	
	7. Knowledge and understanding of commercial and eco-	
	nomic context of engineering processes	
	8. Knowledge of management techniques which may be	
	used to achieve engineering objectives within that con-	
	text	
	9. Understanding of the requirement for engineering ac-	
	tivities to promote sustainable development	
	10. Awareness of the framework of relevant legal re-	
	quirements governing engineering activities, including	
	personnel, health, safety, and risk (including environ-	
	mental risk) issues	
PO 4.	Use research-based knowledge and research methods in- cluding design of experiments, analysis and interpreta- tion of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Com- plex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the abil- ity to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the perfor- mance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems ap- proach to engineering problems.	11
-------	---	----
PO 5	Create, select, and apply appropriate techniques, re- sources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activ- ities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnos- tic equipment / technical library resources / literature search tools.	1

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3

PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activ- ities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effec- tive presentations, and give and receive clear instruc- tions (Communication). "Students should demonstrate the ability to communi- cate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5

PO11	Demonstrate knowledge and understanding of the Engi-	12
	neering and management principles and apply these to	
	one's own work, as a member and leader in a team, to	
	manage projects and in multidisciplinary Environments	
	(Project Management and Finance).	
	1. Scope Statement	
	2. Critical Success Factors	
	3. Deliverables	
	4. Work Breakdown Structure	
	5. Schedule	
	6. Budget	
	7. Quality	
	8. Human Resources Plan	
	9. Stakeholder List	
	10. Communication	
	11. Risk Register	
	12. Procurement Plan	
PO12	Recognize the need for and have the preparation and	8
	ability to engage in independent and life-long learning	
	in the broadest context of technological change (Life -	
	Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering	
	concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/	
	new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

ANNEXURE - II

Key Competencies for Assessing Program Specific Outcomes

PSO	NBA Statement / NBA statement / Vital fea-	No. of
Number	tures	vitalfeatures
PSO 1	Build Embedded Software and Digital Circuit Devel- opment platform for Robotics, Embedded Systems and Signal Processing Applications.	5
	 Analyze and solve real time problems in Robotics. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications. Develop embedded systems modules using Real Time Operating System. Undertake research and development projects in the field of Em- bedded Systems. Adopt the engineering professional code and conduct. 	
PSO 2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL languages. 3. Analyze microprocessor subsystems with memories and I/O inter- facs for SOC designs 4. Explore hardware components for designig SOC 5.Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MAT- LAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register-Transfer-Level designs 9. Analyse and develop models for system level descriptions for syn- thesis of SOC. 10.Inspect and survey the abstractions and principles for the specific cation, simulation, verification, and synthesis of systems on chip (SoC). 11.Programming and hands-on skills to meet requirements of global environment. 	11

PSO 3	Make use of High Frequency Structure Simulator	7
	(HFSS) for modeling and evaluating the Patch and	
	Smart Antennas for Wired and Wireless Communica-	
	tion Applications.	
	1. Explicit software and programming tools for antenna	
	design.	
	2. Adopt technical library resources and literature	
	search.	
	3.Explore smart antennas.	
	4. Model, program for operation and control of smart	
	antennas for wireless communication applications.	
	5. Interface automation tools.	
	6. Research, analysis, problem solving and presentation	
	using software aids.	
	7. Programming and hands-on skills to meet require-	
	ments of global environment.	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	Electronics and Communication Engineering				
Course Title	rse Title Wireless Sensor Networks				
Course Code	AECC47				
Program	B.Tech				
Semester	VII				
Course Type	Professional Elective				
Regulation	UG-20				
Theory Practical				tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator Mrs. P. Ganga Bhavani, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC25	V	Wireless Communications and Networks

II COURSE OVERVIEW:

Wireless Sensor Networks are beginning to be organized in an enhanced step. It is expected that in 10 to 15 years, the world will be protected with WSNs with entree to them via the Internet. This can be measured as the Internet becoming a physical n/w. This technology is thrilling with infinite potential for many application areas like medical, environmental, transportation, military, entertainment, homeland defense, crisis management and also smart spaces. The most common WSN architecture follows the OSI architecture Model. The architecture of the WSN includes five layers and three cross layers. Mostly in sensor network we require five layers, namely application, transport, network, data link and physical layer.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Wireless Sensor Networks	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), and 10 marks for Alternative Assessment Tool (AAT).

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
33.3%	Understand
33.3%	Apply
33.3 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5	50	
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
	100			

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
50%	50%	_

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The basic WSN technology and supporting protocols, with emphasis placed on standardization basic sensor systems and provide a survey of sensor technology.
II	The medium access control protocols and address physical layer issues.
III	The different routing protocols for sensor networks and main design issues.
IV	The transport layer protocols for sensor networks, and design requirements
V	The sensor management, sensor network middleware, operating systems.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Describe the overview of Wireless Sensor Networks, node ar-	Understand
	chitecture and operating systems for Wireless Sensor Networks.	
CO 2	Interpret various MAC protocols that are used for wireless	Understand
	communication.	
CO 3	Make use of a routing protocol for maintaining the routes in	Apply
	the network to ensure reliable communication.	
CO 4	Analyze the network management system for managing, mon-	Analyze
	itoring and controlling the behaviour of a network.	
CO 5	Utilize the localization methods to identify the current location	Apply
	of the sensor nodes.	
CO 6	Choose the protocols and mechanisms for security to meet the	Apply
	challenges of security in wireless sensor networks.	

VIII COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

IX PROGRAM OUTCOMES:

Program Outcomes						
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.					
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.					
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations					

Program Outcomes					
PO 4	Conduct Investigations of Complex Problems: Use research-based				
	and interpretation of data, and synthesis of the information to provide valid				
	conclusions.				
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations				
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.				
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.				
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.				
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.				
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.				
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.				
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change				

X HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the so-	3	SEE / CIE / QUIZ / AAT
	lution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	SEE / CIE / QUIZ / AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineer- ing community and with society at large, such as, being able to comprehend and write effective re- ports and design documentation, make effective presentations, and give and receive clear instruc- tions.	2	SEE / CIE / QUIZ / AAT

_

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to en- gage in independent and life-long learning in the broadest context of technological change.	2	SEE / CIE / QUIZ / AAT

3 = High; 2 = Medium; 1 = Low

XI HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	${f Strength}$	Proficiency Assessed by
PSO 1	Build embedded software and digital circuit	1	Quiz
	development platform for robotics, embedded		
	systems and digital signal processing applications.		

3 = High; 2 = Medium; 1 = Low

XII MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES								PSO'S						
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	-	-
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	-	-

XIII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Illustrate the principles of the Wireless Sensor Net- works terminology knowledge for understanding com- ponents of wireless sensor node, Classification of sensor networks, Characteristics of wireless sensor networks, design challenges of wireless sensor networks by applying the principles of engineering science to complex engineering problems	2
	PO 2	Identify and analyze architecture of Wireless Sensor Networks to interpret applications of Wireless Sensor Networks and model the operating systems using frst principles of mathematics natural sciences, and Engineering sciences	5
	PO 10	Effective presentation and Speaking Style on Applications of wireless sensor networks and write Subject Matter Effectively on the operating systems of WSN.	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 1	Design of experiments on Wireless Sensor Networks with project development and execution process of modern tools such as NS-2.	2
CO 2	PO 1	Understand the source encoding and channel encoding techniques and Interpret physical layer using engineer -ing science and mathematical models.	3
	PO 2	Identify and analyze wireless MAC protocols and im- plement using engineering science , design system components for source Encoding and channel encoding and model WSN using principles of mathematics .	5
	PO 10	Present effectively and Clarity source encoding, channel encoding and write effectively subject matter on wireless MAC protocols.	4
	PO 12	Recognize the ability of wireless MAC protocols for life-long learning in the broadest context of Wireless Sensor Networks and constant update with the recent trends.	3
CO 3	PO 1	Applying principles of mathematics, science and engineering to routing metrics of Wireless Sensor Net- works is understood to model network layer in Wireless Sensor Networks.	3
	PO 2	Define and analyze Flooding and Gossiping in Wireless Sensor Networks to model translation the network layer and implement it using principles of mathematics, science and engineering.	5
	PO 10	Communicate effectively and orally present on the different types of routing in sensor networks	2
	PO 12	Recognize the need to analyze Wireless MAC Pro- tocols and ability to improve analyzing routing met- rics and different types of routing in Sensor Networks to meet the technological needs with persistant learn- ing of ECE and engineerign concepts	4
	PSO 1	Design experiment on routing metrics using routing protocols and execute the process with modern tools like NS-2	2
CO 4	PO 1	Applying principles of mathematics, science and engineering different mechanisms for network manage- ment is explained	3
	PO 2	Identify various power management aspects for model translation using principles of mathmatics, science and engineering to define power management and analyze conceptual architecture	5
	PO 10	Communicate effectively and orally present on the power management of wireless sensor networks	2
	PO 12	Recognize the need to analyze network management of Wireless Sensor Networks and ability to improve analyzing power management aspects to meet the tech- nological needs with persistant learning of ECE and engineering concepts	4

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 5	PO 1	3	
	PO 2	Analyze ranging techniques to define various types of localization solve complex Clocks and the Synchronization Problems	3
	PO 10	Communicate effectively and orally present on the Time Synchronization Protocols of wireless sensor net- works	2
	PO 12	Recognize the need of time synchronization protocols and ability to improve the localization methods for wireless sensor networks and meet the technological needs with continuing education efforts in advanced engineering concepts	4
CO 6	PO 1	Utilize the principles of mathematics, science and engineering to solve the security problems of wireless sensor networks	3
	PO 2	Solve the aggregation functions by basic principles of mathematics, science and engineering to define Attacks on Data Aggregation and model translation of CIA model for secured wireless communication and validate with the Protocols and Mechanisms for Secu- rity	5
	PO 10	Communicate effectively and orally present on the Security Attacks in Sensor Networks	2
	PO 12	Recognize the need for Protocols and Mechanisms for Security and ability to improve security to meet the technological needs with constant learning of ECE and advanced engineering concepts	4

XIV TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

				PRO	OGR.	AM	OUT	COI	MES					PSO'S	
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	5	-	-	-	-	-	-	-	4	-	-	2	-	-
CO 2	3	5	-	-	-	-	-	-	-	4	-	3	-	-	-
CO 3	3	5	-	-	-	-	-	-	-	2	-	4	2	-	-
CO 4	3	5	-	-	-	-	-	-	-	2	-	4	-	-	-
CO 5	3	3	-	-	-	-	-	-	-	2	-	4	-	-	-
CO 6	3	5	-	-	-	-	-	-	-	2	-	4	-	-	-

XV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

				PRO)GR	AM	OUT	COI	MES					PSO'S	
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	66.6	50	-	-	-	-	-	-	-	80	-	-	25	-	-
CO 2	100	50	-	-	-	-	-	-	-	80	-	37.3	-	-	-
CO 3	100	50	-	-	-	-	-	-	-	40	-	50	40	-	-
CO 4	100	50	-	-	-	-	-	-	-	40	-	50	-	-	-
CO 5	100	30	-	-	-	-	-	-	-	40	-	50	-	-	-
CO 6	100	50	-	-	-	-	-	-	-	40	-	50	-	-	-

XVI COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 -5 <C \leq 40% Low/ Slight
- $\pmb{\mathcal{2}}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

				PRO)GR	$\mathbf{A}\mathbf{M}$	OUT	CON	MES					PSO'S	
COURSE	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	-	-	-	-	-	3	-	-	1	-	-
CO 2	3	2	-	-	-	-	-	-	-	3	-	1	-	-	-
CO 3	3	2	-	-	-	-	-	-	-	1	-	2	1	-	-
CO 4	3	2	-	-	-	-	-	-	-	1	-	2	-	-	-
CO 5	3	1	-	-	-	-	-	-	-	1	-	2	-	-	-
CO 6	3	2	-	-	-	-	-	-	-	1	-	2	-	-	-
TOTAL	18	11	-	-	-	-	-	-	-	10	-	9	2	-	-
AVERAGE	3	1.8	-	-	-	-	-	-	-	1.6	-	1.8	1	-	-

XVII ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	-	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	~	Open Ended Experiments	-
Assignments	-	Tech Talk	\checkmark		

XVIII ASSESSMENT METHODOLOGY-INDIRECT:

-	Assessment of mini projects by experts	\checkmark	End Semester OBE Feedback
---	--	--------------	---------------------------

XIX SYLLABUS:

MODULE I	OVERVIEW OF WIRELESS SENSOR NETWORKS
	Introduction: Components of a wireless sensor node, Motivation for a Network of Wireless Sensor Nodes, Classification of sensor networks, Characteristics of wireless sensor networks, Challenges of wireless sensor networks, Comparison between wireless sensor networks and wireless mesh networks, Limitations in wireless sensor networks, Design challenges, Hardware architecture, Applica- tions : Structural Health Monitoring, Traffic Control, Health Care, .Pipeline Monitoring, Precision Agriculture, Active Volcano, Underground Mining Node Architecture: The Sensing Subsystem, the Processor Subsystem, Communica- tion Interfaces, Prototypes. Operating Systems: Functional Aspects, Nonfunc- tional Aspects, Prototypes, Evaluation.
MODULE II	BASIC ARCHITECTURAL FRAMEWORK
	Physical Layer, Basic Components, Source Encoding, Channel Encoding, Modulation Medium Access Control: Wireless MAC Protocols, Characteris- tics of MAC Protocols in Sensor Networks, Contention-Free MAC Protocols, Contention-Based MAC Protocols, Hybrid MAC Protocols.
MODULE III	NETWORK LAYER
	Network Layer: Routing Metrics, Flooding and Gossiping, Data-Centric Rout- ing, Proactive Routing, On-Demand Routing, Hierarchical Routing, Location- Based Routing, QoS-Based Routing Protocols Node.
	Network Management: Power Management, Local Power Management aspects, Dynamic Power Management, Conceptual Architecture
MODULE IV	TIME SYNCHRONIZATION
	Time Synchronization: Clocks and the Synchronization Problem, Time Syn- chronization in Wireless Sensor Networks, Basics of Time Synchronization, Time Synchronization Protocols Localization: Ranging Techniques, Range- Based Localization, Range-Free Localization, Event Driven Localization.
MODULE V	SECURITY
	Fundamentals of Network Security, Challenges of Security in Wireless Sensor Networks , Security Attacks in Sensor Networks, Protocols and Mechanisms for Security, IEEE 802.15.4 and Zig Bee Security.

XX TEXT BOOKS:

- 1. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice", Wiley 2010.
- 2. Mohammad S. Obaidat, Sudip Misra, "Principles of Wireless Sensor Networks", Cambridge, 2014. Signals", Pearson Education, 2012

XXI REFERENCE BOOKS:

- 1. Ian F. Akyildiz, Mehmet Can Vuran , "Wireless Sensor Networks", Wiley 2010.
- 2. C S Raghavendra, K M Sivalingam, Taieb Znati, "Wireless Sensor Networks", Springer, 2010.
- 3. C. Sivarm murthy and B.S. Manoj, "Adhoc Wireless Networks", PHI-2004.
- 4. FEI HU., XIAOJUN CAO, "Wireless Sensor Networks", CRC Press, 2013.
- 5. Feng ZHAO, Leonidas GUIBAS, "Wireless Sensor Networks", ELSEVIER , 2004

XXII WEB REFERENCES:

- 1. https://www.geeksforgeeks.org/wireless-sensor-network-wsn/
- 2. https://www.intechopen.com/chapters/38793
- 3. https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications/

XXIII COURSE WEB PAGE:

XXIV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference					
	OBE DISCUSSION							
1	Course Description on Outcome Base Education (OBE): Cour	se Objecti	ves, Course					
	Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping							
	CONTENT DELIVERY (THEORY)							
1	Introduction: Components of a wireless sensor node,	CO 1	T2:1.2,					
	Motivation for a Network of Wireless Sensor		T1:1.1, T2:					
	Nodes, Classification of sensor fletworks	CO 1	1.5 T9.1 4 1 6					
	wireless sensor networks. Comparison between wireless		12:1.4-1.0					
	sensor networks and wireless mesh networks,							
3	Limitations in wireless sensor networks, Design challenges,	CO 1	T2: 2.1-2.3					
	Hardware architecture							
4	Applications : Structural Health Monitoring, Traffic Control	CO 1	T1:2.1- 2.2					
5	Health Care, Pipeline Monitoring, Precision Agriculture,	CO 1	T1:2.3-2.7					
	Active Volcano, Underground Mining							
6	Node Architecture: The Sensing Subsystem, the Processor	CO 1	T1:3.1- 3.4					
7	Operating Systems: Eulerical Aspects, Nonfunctional	CO 1	T1.4 1 4 9					
1	Aspects		1 1.4.1-4.2					
8	Prototypes, Evaluation.	CO 1	T1:4.3-4.4					
9	Physical Layer, Basic Components, Source Encoding	CO 2	T1:5.1- 5.2					
10	Channel Encoding, Modulation	CO 2	T1: 5.3-5.4					
11	Medium Access Control: Overview	CO 2	T1-6.1					
12	Wireless MAC Protocols,	CO 2	T1: 6.2					
13	Characteristics of MAC Protocols in Sensor Networks	CO 2	T1: 6.3					
14	Contention-Free MAC Protocols,	CO 2	T1: 6.4					
15	Contention-Based MAC Protocols,	CO 2	T1: 6.5					
16	Hybrid MAC Protocols.	CO 2	T1: 6.6					
17	Network Layer: Routing Metrics, Flooding and Gossiping	CO 3	T1:7.2-7.3					
18	Data-Centric Routing	CO 3	T1:7.4					
19	Proactive Routing, On-Demand Routing	CO 3	T1:7.5-7.6					
20	Hierarchical Routing, Location-Based Routing	CO 3	T1:7.7-7.8					
21	QoS-Based Routing Protocols Node.	CO 3	T1:7.9					

22	Network Management: Power Management, Local Power Management aspects	CO 4	T1:8.0-8.1
23	Dynamic Power Management	CO 4	T1:8.2
24	Conceptual Architecture	CO 4	T1:8.3
25	Time Synchronization: Clocks and the Synchronization Problem	CO 5	T1:9.0-9.1
26	Time Synchronization in Wireless Sensor Networks	CO 5	T1:9.2
27	Basics of Time Synchronization	CO 5	T1:9.3
28	Time Synchronization Protocols	CO 5	T1:9.4
29	Localization: Ranging Techniques	CO 5	T1: 10.1-10.2
30	Range-Based Localization	CO 5	T1:10.3
31	Range-Free Localization	CO 5	T1:10.4
32	Event Driven Localization	CO 5	T1:10.5
33	Fundamentals of Network Security	CO 6	T1: 11.1
34	Challenges of Security in Wireless Sensor Networks	CO 6	T1: 11.2
35	Security Attacks in Sensor Networks-Denial-of-Service, Attacks on Routing	CO 6	T1: 11.3
36	Security Attacks in Sensor Networks-Attacks on Transport Layer, Attacks on Data Aggregation, Privacy Attacks	CO 6	T1: 11.3
37	Protocols and Mechanisms for Security-Symmetric and Public Key Cryptography, Key Management, Defenses Against DoS Attacks, Defenses Against Aggregation Attacks	CO 6	T1: 11.4
38	Protocols and Mechanisms for Security-Defenses Against Routing Attacks, Security Protocols for Sensor Networks,	CO 6	T1: 11.4
39	TinySec, Localized Encryption and Authentication Protocol	CO 6	T1: 11.4
40	IEEE 802.15.4 and Zig Bee Security	CO 6	T1: 11.5
	PROBLEM SOLVING/ CASE STUDIE	S	
1	Problem solving on Calibration of sensor	CO 1	T1:1.1-4.4
2	Problem solving on Applications of sensors and node architecture	CO 1	T1:1.1-4.4
3	problem solving on operating systems	CO 1	T1:1.1-4.4
4	Problem solving on Physical layer	CO 2	T1:5.1-6.6
5	Problem solving on Medium Access Control	CO 2	T1:5.1-6.6
6	Problem solving on Contention-Free MAC Protocols	CO 2	T1:5.1-6.6
7	Problem solving on Network topologies	CO 3, 4	T1:7.1-8.3
8	Problem solving on forwarding strategies	CO 3, 4	T1:7.1-8.3
9	problem solving on network management	CO 3,4	T1:7.1-8.3
10	Problem solving on Time synchronization	CO 5	T1:9.1-10.5
11	Problem solving on Reference-Broadcast Synchronization	CO 5	T1:9.1-10.5
12	Problem solving on Localization	CO5	T1:9.1-10.5
13	Problem solving on Security	CO 6	T1:11.1-11.5
14	Problem solving on secure aggregration	CO 6	T1:11.1-11.5
15	Problem solving on PIKE scheme	CO 6	T1:11.1-11.5

	DISCUSSION OF DEFINITION AND TERMIN	IOLOGY				
1	Defnitions and terminologies on Overview of wireless sensor networks	CO 1	T1:1.1-4.4			
2	Defnitions and terminologies on Basic architectural framework	CO 2	T1:5.1-6.6			
3	Definitions and terminology on network layer	CO 3 , 4	T1:7.1-8.3			
4	Definitions and terminology on time synchronization	CO 5	T1:9.1-10.5			
5	Definitions and terminilogy on security	CO 6	T1:11.1-11.5			
	DISCUSSION OF QUESTION BANK					
1	Discussion on question bank of Overview of wireless sensor networks	CO 1	T1:1.1-4.4			
2	Discussion on question bank of Basic architectural framework	CO 2	T1:5.1-6.6			
3	Discussion on question bank of network layer	CO 3,4	T1:7.1-8.3			
4	Discussion on question bank of time synchronization	CO 5	T1:9.1-10.5			
5	Discussion on question bank of security	CO 6	T1:11.1-11.5			

Signature of Course Coordinator Mrs. P. Ganga Bhavani, Assistant Professor HOD, ECE

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO	NBA Statement / Key Competencies Features	No. of
Number	(KCF)	KCF's
PO 1	Apply the knowledge of mathematics, science, Engineer-	3
	ing fundamentals, and an Engineering specialization to	
	the solution of complex Engineering problems (Engi-	
	neering Knowledge).	
	Knowledge, understanding and application of	
	1. Scientific principles and methodology.	
	2. Mathematical principles.	
	3. Own and / or other engineering disciplines to inte-	
	grate / support study of their own engineering discipline.	
PO 2	Identify, formulate, review research literature, and anal-	10
	yse complex Engineering problems reaching substanti-	
	ated conclusions using first principles of mathematics	
	natural sciences, and Engineering sciences (Problem	
	Analysis).	
	1. Problem or opportunity identification	
	2. Problem statement and system definition	
	3. Problem formulation and abstraction	
	4. Information and data collection	
	5. Model translation	
	6. Validation	
	7. Experimental design	
	8. Solution development or experimentation / Imple-	
	mentation	
	9. Interpretation of results	
	10. Documentation	

Design solutions for complex Engineering problems and	10
design system components or processes that meet the	
specified needs with appropriate consideration for the	
public health and safety, and the cultural, societal, and	
Environmental considerations (Design/Development	
of Solutions).	
1. Investigate and define a problem and identify con-	
straints including environmental and sustainability lim-	
itations, health and safety and risk assessment issues	
2. Understand customer and user needs and the impor-	
tance of considerations such as aesthetics	
3. Identify and manage cost drivers	
4. Use creativity to establish innovative solutions	
5. Ensure fitness for purpose for all aspects of the prob-	
lem including production, operation, maintenance and	
disposal	
6. Manage the design process and evaluate outcomes.	
7. Knowledge and understanding of commercial and eco-	
nomic context of engineering processes	
8. Knowledge of management techniques which may be	
used to achieve engineering objectives within that con-	
text	
9. Understanding of the requirement for engineering ac-	
tivities to promote sustainable development	
10. Awareness of the framework of relevant legal re-	
quirements governing engineering activities, including	
personnel, health, safety, and risk (including environ-	
mental risk) issues	
	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues

PO 4.	Use research-based knowledge and research methods in- cluding design of experiments, analysis and interpreta- tion of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Com- plex Problems). 1. Knowledge of characteristics of particular materials, equipment, processes, or products 2. Workshop and laboratory skills 3. Understanding of contexts in which engineering knowledge can be applied (example, operations and management, technology development, etc.) 4. Understanding use of technical literature and other information sources Awareness of nature of intellectual property and contractual issues 5. Understanding of appropriate codes of practice and industry standards 6. Awareness of quality issues 7. Ability to work with technical uncertainty 8. Understanding of engineering principles and the abil- ity to apply them to analyse key engineering processes 9. Ability to identify, classify and describe the perfor- mance of systems and components through the use of analytical methods and modeling techniques 10. Ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems 11. Understanding of and ability to apply a systems ap- proach to engineering problems.	11
PO 5	Create, select, and apply appropriate techniques, re- sources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activ- ities with an understanding of the limitations (Modern Tool Usage). 1. Computer software / simulation packages / diagnos- tic equipment / technical library resources / literature search tools.	1

PO 6	 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society). 1. Knowledge and understanding of commercial and economic context of engineering processes 2. Knowledge of management techniques which may be used to achieve engineering objectives within that context 3. Understanding of the requirement for engineering activities to promote sustainable development 4. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 5. Understanding of the need for a high level of professional and ethical conduct in engineering. 	5
PO 7	 Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) Socio economic Political Environmental 	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3

PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to get along with others 12. Demonstrated ability to work well with a team 	
PO 10	Communicate effectively on complex Engineering activ- ities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effec- tive presentations, and give and receive clear instruc- tions (Communication). "Students should demonstrate the ability to communi- cate effectively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5

PO11	Demonstrate knowledge and understanding of the Engi-	12
	neering and management principles and apply these to	
	one's own work, as a member and leader in a team, to	
	manage projects and in multidisciplinary Environments	
	(Project Management and Finance).	
	1. Scope Statement	
	2. Critical Success Factors	
	3. Deliverables	
	4. Work Breakdown Structure	
	5. Schedule	
	6. Budget	
	7. Quality	
	8. Human Resources Plan	
	9. Stakeholder List	
	10. Communication	
	11. Risk Register	
	12. Procurement Plan	
PO12	Recognize the need for and have the preparation and	8
	ability to engage in independent and life-long learning	
	in the broadest context of technological change (Life -	
	Long Learning).	
	1. Project management professional certification / MBA	
	2. Begin work on advanced degree	
	3. Keeping current in CSE and advanced engineering	
	concepts	
	4. Personal continuing education efforts	
	5. Ongoing learning – stays up with industry trends/	
	new technology	
	6. Continued personal development	
	7. Have learned at least 2-3 new significant skills	
	8. Have taken up to 80 hours (2 weeks) training per year	

ANNEXURE - II

PSO Number	NBA Statement / NBA statement / Vital features	No. of vitalfeatures
PSO 1	Build skills to develop software applications in special- ized areas of Computer Science and Engineering such as Artificial Intelligence, Machine Learning, Data Science, Web Development, Gaming, Augmented Reality / Vir- tual Reality (AR/VR).	5
PSO 2	Focus on exploring supervised, unsupervised and rein- forcement learning and apply them to a range of AI problems.	11
PSO 3	Make use of AI and ML techniques for industrial applica- tions in the areas of Autonomous Systems, IOT, Cloud Computing, Robotics, Natural Language Processing and emerging areas.	7

Key Competencies for Assessing Program Specific Outcomes

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COURSE DESCRIPTION

Department	Electronics and Communication Engineering					
Course Title	VLSI D	VLSI Design Laboratory				
Course Code	AECC54					
Program	B.Tech					
Semester	VII					
Course Type	Laboratory					
Regulation	UG-20					
	Theory			Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	1.5	
Course Coordinator	Ms. K.S.Indrani, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECC03	III	Digital System Design
B.Tech	AECC12	IV	Integrated Circuits Applications

II COURSE OVERVIEW:

The art of VLSI circuit design is dynamic with advances in process technology and innovations in the electronic design automation (EDA) industry. The objective of this laboratory course is to demonstrate the various stages in VLSI design flow using cadence software. Hands on training on logic and circuit simulations of MOSFETS, ring oscillators, multiplexers, analog amplifiers etc are included. The course also covers physical layout of complex logic gates for chip design. VLSI designs are widely used in automobiles, mobiles and embedded processors.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
VLSI Design Laboratory	70 Marks	30 Marks	100

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Demo Video	\checkmark	Lab	\checkmark	Viva Questions	\checkmark	Probing further
			Worksheets				Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
20 %	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Labo	Total Marks		
Type of Assessment	Day to day performance	Final internal lab assessment	Iotal Marks	
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Experiment Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	Modern tools for functional level to physical layout with verification at intermediate stages in the VLSI design flow in top-down approach.
II	Design and simulations of analog, digital and mixed circuits for optimum values of area over head, power and time delay.
III	The chip design through a practical approach using advanced modern tools such as vivado and cadence for front end and back end.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of the static, dynamic and noise margin parameters of	Apply
	CMOS circuits for calculating figure of merit	
CO 2	Analyze complex gates, switch logic and transmission gates for	Analyze
	performance optimization of distortion, power consumption and circuit	
	delays.	
CO 3	Utilize existing small building block and circuit symbols with	Apply
	necessary inter connections to realize complex designs	

CO 4	Examine the conditions for optimum performance of lathes and	Analyze
	registers with the knowledge of digital system design	
CO 5	Identify bandwidth, gain, and common mode rejection ratio parameters for cascode amplifiers to protect amplifier from miller effect	Apply
CO 6	Apply the design rule check and Layout versus schematic check on layout of MOS circuits to verify spacing rules between layers.	Apply

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes							
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering						
	fundamentals, and an engineering specialization to the solution of complex engineering						
	problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex						
	engineering problems reaching substantiated conclusions using first principles of						
	mathematics, natural sciences, and engineering sciences.						
PO 3	Design/Development of Solutions: Design solutions for complex Engineering						
	problems and design system components or processes that meet the specified needs with						
	appropriate consideration for the public health and safety, and the cultural, societal, and						
	Environmental considerations						
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and						
	research methods including design of experiments, analysis and interpretation of data,						
	and synthesis of the information to provide valid conclusions.						

	Program Outcomes
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Lab Experiments / CIE / SEE
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab Experiments / CIE / SEE
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations	3	Lab Experiments / CIE / SEE
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2	Lab Experi- ments/Discussions

PO 10	Communication: Communicate effectively on	1	Lab
	complex engineering activities with the engineering		Experiments
	community and with society at large, such as, being		
	able to comprehend and write effective reports and		
	design documentation, make effective presentations, and		
	give and receive clear instructions.		
PO 12	Life-Long Learning: Recognize the need for and	2	Research paper
	having the preparation and ability to engage in		analysis/ Short
	independent and life-long learning in the broadest		term courses
	context of technological change		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	2	Lab Experiments

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

	PROGRAM OUTCOMES												PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 3	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 4	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 6	\checkmark	\checkmark	-	-	\checkmark	-	-	-	\checkmark	\checkmark	-	\checkmark	-	\checkmark	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Identify the conditions practically for improved performance of inverters regarding symmetry of transfer characteristics, rise and fall times (knowledge) by applying the field effect transistor fundamentals with support from other engineer- ing disciplines, mathematics, and scientific method- ologies.	2
	PO 2	Understand the given problem statement and formulate conditions for improved performance of inverter from the pro- vided information and data in reaching substantiated con- clusions by the interpretation of results in the Laboratory.	5

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 10	Communicate effectively on CMOS circuit design and write effective reports for procedure to calculate static and noise margins	1
	PSO 2	Design and analyze layout models for CMOS circuits using programming languages Verilog and cadence to calculate noise margins.	3
CO 2	PO 1	Identify the conditions practically for improved performance of complex gates, switch logic and transmission gates regard- ing performance optimization of distortion, power consump- tion and circuit delays (knowledge) by applying the digital sys- tem fundamentals with support from other engineering dis- ciplines , mathematics , and scientific methodologies .	2
	PO 2	Understand the given problem statement and formulate conditions for improved performance of complex logic and transmission gates from the provided information and data in reaching substantiated conclusions by the interpretation of results in the Laboratory.	3
	PO 10	Communicate effectively on complex gates, switch logic and transmission gates and write effective reports on power consumption, circuit delays	1
CO 3	PO 1	Design multiplexers (knowledge) consisting of transmission gates and pass gates with the support of VLSI engineering tools such as stick diagrams and layouts.	1
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for multiplexers (knowledge) con- sisting of transmission gates and pass gates using first princi- ples of mathematics and Engineering sciences.	5
	PO 10	Communicate effectively and write effective reports for designing 4×1 multiplexer from 2×1 multiplexer	1
CO 4	PO 1	Design latches b consisting of multiplexers with the support of VLSI engineering tools such as stick diagrams and layouts.	1
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for latches (knowledge) consisting of multiplexers using first principles of mathematics and En- gineering sciences.	5
	PO 10	Communicate effectively and write effective reports on optimum performance of lathes and registers	1
	PSO 2	Inspect and survey lathes and registers using program- ming language like cadence to understand conditions for optimmum performance of VLSI circuits .	3
CO 5	PO 1	Identify the conditions practically for improved performance of Differential, MOSFET and casode amplifiers regarding bandwidth, gain, and common mode rejection ratio parame- ters (knowledge) by applying the oscillation fundamentals with support from other engineering disciplines, mathemat- ics, and scientific methodologies.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for Differential, MOSFET and ca- sode amplifiers (knowledge) using first principles of math- ematics and Engineering sciences.	5
	PO 10	Communicate effectively on complex Engineering activi- ties with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	1
CO 6	PO 1	Build the stick diagrams, layouts of MOS circuits (knowl- edge) by following design rules with mathematics and en- gineering sciences.	2
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for MOS circuit layouts (knowl- edge) using first principles of mathematics and Engineer- ing sciences.	5
	PO 5	Develop layouts knowledge of MOS circuits using modern Engineering and IT tools to reduce area overhead.	1
	PO 9	Focus on working as a member or leader in developing the layouts for MOS circuits and perform analysis by individual and team work.	7
	PO 10	Communicate effectively and write effective reports on design procedure for obtaining parasitic values of MOSFET circuits.	1
	PO 12	Build the stick diagrams, layouts of MOS circuits and verify it (knowledge) by following design rules with engineering sciences.	4
	PSO 2	Design, analyze and develop layout models for MOS circuits using programming languages Verilog and cadence to explore hardware components of SOC.	5

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

	PROGRAM OUTCOMES											PSO'S			
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	5	-	-	-	-	-	-	-	1	-	-	-	3	-
CO 2	2	3	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	1	5	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	1	5	-	-	-	-	-	-	-	1	-	-	-	3	-
CO 5	3	5	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	2	5	-	-	1	-	-	-	7	1	-	4	-	5	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

		PROGRAM OUTCOMES											PSO'S		
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	66.6	50	-	-	-	-	-	-	-	20	-	-	-	28.2	-
CO 2	66.6	30	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 3	33.3	50	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 4	33.3	50	-	-	-	-	-	-	-	20	-	-	-	28.2	-
CO 5	100	50	-	-	-	-	-	-	-	20	-	-	-	-	-
CO 6	66.6	50	-	-	100	-	-	-	58.3	20	-	50	-	45.5	-

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\pmb{\theta}$ - $0 \leq C \leq 5\%$ – No correlation

1 -5 <C< 40% – Low/ Slight

 $\pmb{2}$ - 40 % < C < 60% – Moderate

 ${\it 3}$ - $60\% \le C < 100\%$ – Substantial /High

	PROGRAM OUTCOMES										PSO'S				
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	-	-	-	-	-	1	-	-	-	1	-
CO 2	3	1	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	3	2	-	-	-	-	-	-	-	1	-	-	-	1	-
CO 5	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 6	3	2	-	-	3	-	-	-	2	1	-	2	-	2	-
TOTAL	18	11	-	-	3	-	-	-	2	6	-	4	-	2	-
AVERAGE	3	1.8	-	-	3	-	-	-	2	1	-	2	-	2	-

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	\checkmark	Student Viva	\checkmark	Certification	-

XVII ASSESSMENT METHODOLOGY INDIRECT:

X	Early Semester Feedback	1	End Semester OBE Feedback
\mathbf{X}	Assessment of Mini Projects by Expe	erts	

XVIII SYLLABUS:

WEEK I	MOSFET
	To plot the (i) Output characteristics (ii) Transfer characteristics of an N-channel and P-channel MOSFET.
WEEK II	CMOS INVERTER
	To design and plot the static (VTC) and dynamic characteristics of a digital CMOS inverter.
WEEK III	RING OSCILLATOR
	To design and plot the output characteristics of a 3-inverter ring oscillator.
WEEK IV	LOGIC GATES
	To design and plot the dynamic characteristics of 2-input NAND, NOR, XOR and XNOR logic gates using CMOS technology.
WEEK V	4×1 MULTIPLEXER
	To design and plot the characteristics of a 4X1 ditial multiplexer using pass transistor logic.
WEEK VI	LATCHES
	To design and plot the characteristics of a positive and negative latch based on multiplexers.
WEEK VII	REGISTERS
	To design and plot the characteristics of a master-slave positive and negative edge triggered registers based on multiplexers.
WEEK VIII	DIFFERENTIAL AMPLIFIER
	Design and simulation of simple 5 transistor differential amplifier, Measure the values of Gain, ICMR and CMRR.
WEEK IX	NMOS INVERTER AND CMOS INVERTER
	To design the layout of NMOS and CMOS inverter.
WEEK X	LAYOUT OF 2-INPUT NAND, NOR GATES
	To design the layout of 2-input NAND, NOR gates.
WEEK XI	COMMON SOURCE AMPLIFIER
	Analysis of Frequency response of Common source amplifier.
WEEK XII	COMMON DRAIN AMPLIFIER
	Analysis of Frequency response of Common drain Amplifier.
WEEK XIII	SINGLE STAGE CASCODE AMPLIFIER
	Design and Simulation of Single Stage Cascode Amplifier
WEEK XIV	BASIC CURRENT MIRROR, CASCODE CURRENT MIRROR AM- PLIFIER
	Design and Simulation of Basic Current Mirror, Cascode Current Mirror Amplifier

TEXTBOOKS

- 1. Razavi, Design of Analog CMOS Integrated Circuits, Tata McGraw Hill Publications, 2002.
- 2. Allen Holberg, CMOS Analog Circuit Design, Oxford Publications, 2002.
- 3. Baker, Li, Boyce, CMOS Mixed Circuit Design, Wiley Publications, 2002.

REFERENCE BOOKS:

- 1. Mohammad Rashid, "Electronic Devices and Circuits", Cengage learning, 1st Edition, 2014.
- 2. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2009.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	To plot the (i) Output characteristics (ii) Transfer characterisctics of an N-channel and P-channel MOSFET.	CO 1	T1: 3.1
2	To design and plot the static (VTC) and dynamic characteristics of a digital CMOS inverter.	CO 1	T1: 3.11
3	To design and plot the output characteristics of a 3-inverter ring oscillator.	CO 2	T1: 4.8
4	To design and plot the dynamic characteristics of 2-input NAND, NOR, XOR and XNOR logic gates using CMOS technology.	CO 3	T1: 4.8
5	To design and plot the characteristics of a 4X1 ditial multiplexer using pass transistor logic.	CO 4	T1: 5.5
6	To design and plot the characteristics of a positive and negative latch based on multiplexers.	CO 5	T1: 5.6
7	To design and plot the characteristics of a master-slave positive and negative edge triggered registers based on multiplexers.	CO 5	T1: 8.3
8	Design and simulation of simple 5 transistor differential amplifier, Measure the values of Gain, ICMR and CMRR.	CO 5	T1: 8.3
9	Analysis of Frequency response of Common source amplifier.	CO 6	T1: 10.6
10	Analysis of Frequency response of Common drain Amplifier.	CO 6	T1: 10.7
11	Design and Simulation of Single Stage Cascode Amplifier.	CO 6	T1:10.7
12	Design and Simulation of Basic Current Mirroe, Cascode Current Mirror Amplifier	CO 6	T1:10.7

XX EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Design and plot the static (VTC) and dynamic characteristics of a digital nMOS inverter with different forms of pull up loads.
2	Design and plot the static (VTC) and dynamic characteristics of a digital Bi CMOS inverter
3	To design and plot the dynamic characteristics of Non-inverting Boolean Functions using CMOS Technology.
4	To design and plot the characteristics of a 8X1 digital multiplexer using pass transistor logic
5	To design the layout of 3-input NAND, NOR gates.

ANNEXURE - I

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF's	
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / 	3	
PO 2	Identify, formulate, review research literature, and analyse complex Engineering problems reaching substantiated con- clusions using first principles of mathematics natural sci- ences, and Engineering sciences (Problem Analysis).1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 	10	
PO 3Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions).101.Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues102.Understand customer and user needs and the importance of considerations such as aesthetics3.3.Identify and manage cost drivers4.Use creativity to establish innovative solutions5.Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal6.Manage the design processes8.Knowledge and understanding of commercial and economic context of engineering processes8.Knowledge of management techniques which may be used to achieve engineering objectives within that context9.Understanding of the requirement for engineering activities to promote sustainable development10.Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues			
---	------	--	----
 sign system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues Understand customer and user needs and the importance of considerations such as aesthetics Identify and manage cost drivers Use creativity to establish innovative solutions Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal Manage the design process and evaluate outcomes. Knowledge and understanding of commercial and economic context of engineering processes Knowledge of management techniques which may be used to achieve engineering objectives within that context Understanding of the requirement for engineering activities to promote sustainable development Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	PO 3	Design solutions for complex Engineering problems and de-	10
 needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		sign system components or processes that meet the specified	
 and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		needs with appropriate consideration for the public health	
 considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		and safety, and the cultural, societal, and Environmental	
 Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues Understand customer and user needs and the importance of considerations such as aesthetics Identify and manage cost drivers Use creativity to establish innovative solutions Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal Manage the design process and evaluate outcomes. Knowledge and understanding of commercial and economic context of engineering processes Knowledge of management techniques which may be used to achieve engineering objectives within that context Understanding of the requirement for engineering activities to promote sustainable development Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		considerations (Design/Development of Solutions).	
 straints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		1. Investigate and define a problem and identify con-	
 tions, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		straints including environmental and sustainability limita-	
 Understand customer and user needs and the importance of considerations such as aesthetics Identify and manage cost drivers Use creativity to establish innovative solutions Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal Manage the design process and evaluate outcomes. Knowledge and understanding of commercial and eco- nomic context of engineering processes Knowledge of management techniques which may be used to achieve engineering objectives within that context Understanding of the requirement for engineering activi- ties to promote sustainable development Awareness of the framework of relevant legal require- ments governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		tions, health and safety and risk assessment issues	
 of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		2. Understand customer and user needs and the importance	
 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		of considerations such as aesthetics	
 4. Use creativity to establish innovative solutions 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		3. Identify and manage cost drivers	
 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		4. Use creativity to establish innovative solutions	
 including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		5. Ensure fitness for purpose for all aspects of the problem	
 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		including production, operation, maintenance and disposal	
 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		6. Manage the design process and evaluate outcomes.	
 nomic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activi- ties to promote sustainable development 10. Awareness of the framework of relevant legal require- ments governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		7. Knowledge and understanding of commercial and eco-	
 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activi- ties to promote sustainable development 10. Awareness of the framework of relevant legal require- ments governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		nomic context of engineering processes	
 to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		8. Knowledge of management techniques which may be used	
 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 		to achieve engineering objectives within that context	
ties to promote sustainable development 10. Awareness of the framework of relevant legal require- ments governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues		9. Understanding of the requirement for engineering activi-	
10. Awareness of the framework of relevant legal require- ments governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues		ties to promote sustainable development	
ments governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues		10. Awareness of the framework of relevant legal require-	
health, safety, and risk (including environmental risk) issues		ments governing engineering activities, including personnel,	
		health, safety, and risk (including environmental risk) issues	

PO 4.	Use research-based knowledge and research methods includ-	11
	ing design of experiments, analysis and interpretation of	
	data, and synthesis of the information to provide valid con-	
	clusions (Conduct Investigations of Complex Prob-	
	lems).	
	1. Knowledge of characteristics of particular materials,	
	equipment, processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowl-	
	edge can be applied (example, operations and management,	
	technology development, etc.)	
	4. Understanding use of technical literature and other infor-	
	mation sources Awareness of nature of intellectual property	
	and contractual issues	
	5. Understanding of appropriate codes of practice and in-	
	dustry standards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty	
	8. Understanding of engineering principles and the ability	
	to apply them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance	
	of systems and components through the use of analytical	
	methods and modeling techniques	
	10. Ability to apply quantitative methods and computer	
	software relevant to their engineering discipline, in order to	
	solve engineering problems	
	11. Understanding of and ability to apply a systems ap-	
	proach to engineering problems.	
PO 5	Create, select, and apply appropriate techniques, resources,	1
	and modern Engineering and IT tools including prediction	
	and modelling to complex Engineering activities with an un-	
	derstanding of the limitations (Modern Tool Usage).	
	1. Computer software / simulation packages / diagnostic	
	equipment / technical library resources / literature search	
	tools.	
PO 6	Apply reasoning informed by the contextual knowledge to	5
100	assess societal health safety legal and cultural issues and	0
	the consequent responsibilities relevant to the professional	
	engineering practice (The Engineer and Society).	
	1. Knowledge and understanding of commercial and eco-	
	nomic context of engineering processes	
	2. Knowledge of management techniques which may be used	
	to achieve engineering objectives within that context	
	3. Understanding of the requirement for engineering activi-	
	ties to promote sustainable development	
	4. Awareness of the framework of relevant legal require-	
	ments governing engineering activities. including personnel.	
	health, safety, and risk (including environmental risk) issues	
	5. Understanding of the need for a high level of professional	
	and ethical conduct in engineering.	

PO 7	Understand the impact of the professional Engineering so- lutions in societal and Environmental contexts, and demon- strate the knowledge of, and need for sustainable develop- ment (Environment and Sustainability). Impact of the professional Engineering solutions (Not tech- nical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity – requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systematically work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini-Project, and for the seventeen -week design project. 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to get along with others 12. Demonstrated ability to work well with a team 	12

PO 10	 Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effectively in writing / Orally" Clarity (Writing) Grammar/Punctuation (Writing) References (Writing) Speaking Style (Oral) Subject Matter (Oral) 	5
PO11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Finance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12
PO12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning - stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2-3 new significant skills 8. Have taken up to 80 hours (2 weeks) training per year 	8

ANNEXURE - II

Key Competencies for Assessing Program Specific Outcomes

PSO Number	NBA Statement / NBA statement / Vital features	No. of vitalfeatures
PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	5
	 Analyze and solve real time problems in Robotics. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications. Develop embedded systems modules using Real Time Operating System. 	
	4. Ondertake research and development projects in the held of Em- bedded Systems.5. Adopt the engineering professional code and conduct.	
PSO 2	 Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs. 1. Inspect, survey and analyze types of ASIC chip designs. 2. Design ASIC prototypes using Verilog and VHDL lan- guages. 3. Analyze microprocessor subsystems with memories and I/O inter- facs for SOC designs 4. Explore hardware components for designig SOC 5. Adopt the engineering professional code and conduct 6. Designing prototypes of SOC using programming tools like MAT- LAB, LabVIEW. 7. Familiarize with the design flow of ASIC prototypes. 8. Realize SOC using Register-Transfer-Level designs 9. Analyse and develop models for system level descriptions for syn- thesis of SOC. 10.Inspect and survey the abstractions and principles for the specific cation, simulation, verification, and synthesis of sys- tems on chip (SoC). 11.Programming and hands-on skills to meet requirements of global environment 	11

PSO 3	Make use of High Frequency Structure Simulator (HFSS) for	7
	modeling and evaluating the Patch and Smart Antennas for	
	Wired and Wireless Communication Applications.	
	1. Explicit software and programming tools for antenna de-	
	sign.	
	2. Adopt technical library resources and literature search.	
	3.Explore smart antennas.	
	4. Model, program for operation and control of smart an-	
	tennas for wireless communication applications.	
	5. Interface automation tools.	
	6. Research, analysis, problem solving and presentation us-	
	ing software aids.	
	7. Programming and hands-on skills to meet requirements	
	of global environment.	

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING COURSE DESCRIPTION

Course Title	EMBEI	DED SYSTE	MS DESIGN	LABORATO	RY
Course Code	AECC53				
Program	B.Tech				
Semester	VII				
Course Type	Laboratory				
Regulation	UG-20				
	Theory Practical			tical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	-	-	-	3	1.5
Course Coordinator	Mrs.P.Annapurna, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECB24	V	Microprocessors and Microcontrollers

II COURSE OVERVIEW:

This course outlines the design and implementation of embedded systems using suitable hardware(ARM and PSOC) and Keil Embedded C software tools. The instruction set, Embedded C programming for I/O and memory interfacing techniques are covered. The hands-on experience acquired by the student's during the course makes them to carry out processor/controller based projects and extend their knowledge on the latest trends and technologies in the field of embedded system.

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
Embedded Systems Design	70 Marks	30 Marks	100
Laboratory			

IV DELIVERY / INSTRUCTIONAL METHODOLOGIES:

	Demo Video		Lab		Viva Questions		Probing further
\checkmark		\checkmark	Worksheets	\checkmark		\checkmark	Questions

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS. The emphasis on the experiments is broadly based on the following criteria given in Table: 1

	Experiment Based	Programming based
20 %	Objective	Purpose
20 %	Analysis	Algorithm
20 %	Design	Programme
$20 \ \%$	Conclusion	Conclusion
20 %	Viva	Viva

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Labo	Total Marks	
Type of	Day to day	Day to day Final internal lab	
Assessment	performance	assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

1. Programming Based

Objective	Analysis	Design	Conclusion	Viva	Total
2	2	2	2	2	10

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The embedded C for reading data from port pins.
II	The interfacing of data I/O devices with microcontroller.
III	The serial communication and port RTOS on microcontroller.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of emulators and cross-compilers for writing, compiling and running an embedded C language programs on ARM and PSoC training boards.	Apply
CO 2	Develop Embedded C language programs for accomplishing code to reading the data from ports, blinking the LED and interfacing of switch and buzzer, temperature sensors and other display units to the ARM processors.	Apply
CO 3	Select suitable RTOS of ARM and PSoC and write Embedded C language program to run 2 to 3 tasks simultaneously.	Apply
CO 4	Identify different filters and timers in PSoC for transmitting the data between PSOC and peripherals.	Apply
CO 5	Utilize Analog to Digital and Digital to Analog converters with PSoC for data conversion.	Apply
CO 6	Build an interface between PSoC and peripherals to provide solutions to the real world problems.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

Program Outcomes		
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science,	
	engineering fundamentals, and an engineering specialization to the solution of	
	complex engineering problems.	

	Program Outcomes
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze
	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering
	problems and design system components or processes that meet the specified needs
	with appropriate consideration for the public health and safety, and the cultural,
	societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based
	knowledge and research methods including design of experiments, analysis and
	interpretation of data, and synthesis of the information to provide valid
	Conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,
	to complex Engineering activities with an understanding of the limitations
PO 6	The orginaer and society. Apply reasoning informed by the contextual
100	knowledge to assess societal health safety legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional
101	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities
	with the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make effective
	presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and
	understanding of the engineering and management principles and apply these to
	one's own work, as a member and leader in a team, to manage projects and in
DO 10	multidisciplinary environments.
PO 12	LIE-LONG Learning: Recognize the need for and having the preparation and
	ability to engage in independent and me-long learning in the broadest context of technological change
	technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

Program		Strength	Proficiency
			Assessed by
PO1	Engineering knowledge: Apply the knowledge of	1	Day to Day
	mathematics, science, engineering fundamentals,		Evalua-
	and an engineering specialization to the solution of		tion/CIE/SEE
	complex engineering problems.		

PO3	Design/Development of Solutions: Design	3	Day to Day
	solutions for complex Engineering problems and		Evalua-
	design system components or processes that meet		tion/CIE/SEE
	the specified needs with appropriate consideration		
	for the public health and safety, and the cultural,		
	societal, and Environmental considerations		
PO4	Conduct Investigations of Complex	2	Day to Day
	Problems: Use research-based knowledge and		Evalua-
	research methods including design of experiments,		tion/CIE/SEE
	analysis and interpretation of data, and synthesis of		
	the information to provide valid conclusions.		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program		Strength	Proficiency
			Assessed
			by
PSO 1	Build embedded software and digital circuit	2	Project
	development platform for robotics, embedded		
	systems and signal processing applications.		

3 = High; 2 = Medium; 1 = Low

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COURSE	PROGRAM OU	PROGRAM OUTCOMES		
OUTCOMES	PO 1	PO 3	PO 4	PSO 1
CO 1		4	5	1
CO 2		6	5	2
CO 3		4	5	
CO 4	1	5	5	1
CO 5	1	6	5	3
CO 6	1	6	5	

XII ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory	\checkmark	Student Viva	\checkmark	Certification	-
Practices					

XIII ASSESSMENT METHODOLOGY INDIRECT:

\checkmark	Early Semester Feedback	√	End Semester OBE Feedback
X	Assessment of Mini Projects by Expe	erts	

XIV SYLLABUS:

WEEK I	DEVELOP PROGRAM USING KEIL IDE TOOL
	Design and develop a reprogrammable embedded computer using 8051 microcontrollers and to show thefollowing aspects. a. Programming b. Execution c. Debugging To Demonstrate the Tool Chain for Keil IDE (Embedded Systems Development Tool Chain) with the example of LED Blinking Program.
WEEK II	INTERFACING LED WITH DIFFERENT PORT PINS
	a) Program to toggle all the bits of port P1 continuously with 250 ms delay b) Program to toggle only the bit P1.5 continuously with some delay
WEEK III	INTERFACING BUZZER AND SWITCH
	Program to interface a switch and a buzzer to two different pins of a port such that the buzzer should sound as long as the switch is pressed.
WEEK IV	INTERFACING LCD DISPLAY
	Program to interface LCD data pins to port P1 and display a message on it using P89V51RD2
WEEK V	INTERFACE HEXA KEYPAD
	Program to 4*4 interface keypad. Whenever a key is pressed, it should be displayed on LCD
WEEK VI	INTERFACE SEVEN SEGMENT DISPLAY
	Program to interface seven segment display using 89V51RD2
WEEK VII	SERIAL COMMUNICATION INTEFACING
	Program for serial communication between Microcontroller to PC communication the data should betransfer from microcontroller to PC terminal window
WEEK VIII	SERIAL COMMUNICATION INTEFACING
	Program for serial communication between PC to Microcontroller communication the data should be transfer from PC 197 — P a g e to Microcontroller terminal window using 89V51 RD2
WEEK IX	INTERFACING WITH TEMPERATURE SENSOR
	Program to develop necessary interfacing circuit to read data from Temperature sensor and process using P89V51RD2, the data has to display terminal window
WEEK X	INTERFACING STEPPER MOTOR
	Program to interface Stepper Motor to rotate the motor in clockwise and anticlockwise directions
WEEK XI	INTERFACING MULTPLE DEVICES
	Program to verify run 2 to 3 tasks simultaneously on P89V51RD2 SDK. Use LCD interface, LED interface, Serial communication
WEEK XII	INTERFACE ADC DEVICE
	Program to interface ADC device with P89V51RD2 and display value on LCD
WEEK XIII	INTERFACE DAC DEVICE
	Program to interface DAC device with P89V51RD2 and observer the analog output in CRO
WEEK XIV	INTERFACE RELAY
	Program to interface Relay with P89V51RD2 using transistor

WEEK XV	INTERRUPT
	Program to toggle LEDS using simple INTERRUPT

TEXTBOOKS

- 1. Andrew Sloss, Dominic systems and Chris wright, ARM System Developers guide designing and optimizing system, Elsevier India private limited, New Delhi, 2009.
- 2. Andrew N. Sloss, Dominic Symes, Chris Wright, ARM Systems Developer's Guides Designing and Optimizing System Software, 2008, Elsevier.

REFERENCE BOOKS:

- 1. Michael J. Pont, —Embedded C $\|$, Pearson Education, 2 nd Edition, 2008.
- 2. Nigel Gardner, —The Microchip PIC in CCS C . CCS Inc, 2nd Revision Edition, 2002.

XV COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference
1	Develop Program Using Keil IDE Tool .	CO1,CO2,CO3	T1
2	Interfacing Led With Different Port Pins.	CO1,CO2,CO3	T1
3	Interfacing Buzzer and Switch.	CO1,CO2,CO3	T1
4	Interfacing LCD Display	CO1,CO2,CO3	T1
5	Interface HEXA Keypad.	CO1,CO2,CO3	T1
6	Interface Seven Segment Display.	CO1,CO2,CO3	T1
7	Serial Communication Intefacing.	CO1,CO3,CO4	R2
8	Serial Communication Intefacing .	CO1,CO3,CO4	R2
9	Interfacing with Temperature Sensor.	CO1,CO3,CO5	R2
10	Interfacing Stepper Motor	CO1,CO3,CO6	R2
11	Interfacing Multple Devices	CO1,CO3,CO6	R2
12	Interface ADC Device.	CO1,CO3,CO6	R2
13	Interface DAC Device.	CO1,CO3,CO6	R2
14	Interface Relay.	CO1,CO3,CO6	R2
15	Interrupt.	CO1,CO3,CO6	R2

XVI EXPERIMENTS FOR ENHANCED LEARNING (EEL):

S.No	Design Oriented Experiments
1	Program to read data from temperature sensor interfacing with ARM7
2	Program to interface a PIR sensor with ARM7.
3	Program to perform UART Communication using ARM7

Signature of Course Coordinator P.Annapurna, Assistant Professor

HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	eartment ELECTRONICS AND COMMUNICATION ENGINEER			GINEERING	
Course Title	DIGITAL IMAGE PROCESSING				
Course Code	AECC56				
Program	B.Tech				
Semester	VIII				
Course Type	PROFESSIONAL ELECTIVE				
Regulation	UG-20				
	Theory Practical			ctical	
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Course Coordinator	Mr. Bala Thimmaiah N, Assistant Professor				

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AECC02	III	Signals and Systems

II COURSE OVERVIEW:

The course is intended to provide image processing fundamentals, representation, sampling, quantization, image acquisition and imaging geometry. Transform techniques including two dimensional Fourier transforms, Walsh, Hotelling, Haar and Slant transforms. Analyze image processing filters and techniques for the applications of enhancement, segmentation and compression

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks	
Image Processing	70 Marks	30 Marks	100	

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	x	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Others						

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could

be a maximum of two sub divisions in a question. The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
16.7%	Understand
50%	Apply
33.3 %	Analyze

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks
CIA	Continuous Internal Examination 1 (Mid-term)	10	
	Continuous Internal Examination 2 (Mid-term)	10	20
	AAT-1	5	50
	AAT-2	5	
SEE	Semester End Examination (SEE)	70	70
	100		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The fundamental concepts of digital image processing methods and techniques.
II	The image enhancement, image segmentation and compression techniques in
	spatial and frequency domains.
III	The algorithms to solve image processing problems to meet design specifications of
	various applications of image processing in industry, medicine and defense.
IV	Fundamentals of image representation and processing in MATLAB.

VII COURSE OUTCOMES:

CO 1	Interpret the principles and terminology of digital image processing	Understand
	for describing the features of image.	
CO 2	Make use of image transform techniques for analyzing images in	Apply
	transformation domain for image pre-processing.	
CO 3	Construct image intensity transformation and filtering techniques for	Apply
	image enhancement in the spatial and frequency domain.	
CO 4	Apply region-based morphological operations and edge-based image	Apply
	segmentation techniques for detection of objects in images to remove	
	the imperfections in the structure of the image.	
CO5	Analyze the image restoration in the spatial and frequency domains	Analyze
	to deal with noise models for removing degradation from given image.	
CO 6	Compare the lossy and lossless compression models for achieving	Analyze
	image compression.	

COURSE KNOWLEDGE COMPETENCY LEVEL

BLOOMS TAXONOMY

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

	Program Outcomes
PO 3	Design/Development of Solutions: Design solutions for complex
	Engineering problems and design system components or processes that meet
	the specified needs with appropriate consideration for the public health and
	safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based
	knowledge and research methods including design of experiments, analysis
	and interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques,
	resources, and modern Engineering and IT tools including prediction and
	modelling to complex Engineering activities with an understanding of the
	The environment of the sector Angle recenting informed her the contextual
PU 0	knowledge to assess societal health, safety legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the
107	professional engineering solutions in societal and environmental contexts and
	demonstrate the knowledge of and need for sustainable development
PO 8	Ethics: Apply ethical principles and commit to professional ethics and
100	responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering
	activities with the engineering community and with society at large, such as,
	being able to comprehend and write effective reports and design
	documentation, make effective presentations, and give and receive clear
	instructions.
PO 11	Project management and finance: Demonstrate knowledge and
	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects
DO 10	and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation
	and ability to engage in independent and life-long learning in the broadest
	context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE/CIE/
	knowledge of mathematics, science, engineering		Quiz/AAT
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE/CIE,
	research literature, and analyze complex		Quiz/AAT
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations	1	SEE/CIE, Quiz/AAT
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	SEE /CIE, Quiz/AAT
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	1	TECH TALK/ CONCEPT VIDEOS
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	1	Projects/ Research on advanced technologies

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Р	ROGRAM SPECIFIC OUTCOMES	Strength	Proficiency Assessed by
PSO 1	Build the Embedded software and digital circuit development platform for robotics, embedded systems and signal processing applications.	1	SEE, PROJECTS

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

			PSO'S												
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CO 2	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-
CO 4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-
CO 6	\checkmark	\checkmark	-	-	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
CO 1	PO 1	Illustrate the principles of the Digital Image Processing terminology (knowledge) for understanding image and its representation, pixel, intensity, gray level, relationship between the pixels by applying the principles of engineering science to complex engineering problems	3
	PO 10	Effective presentation and Speaking Style on sampling and quantization and write Subject Matter Effectively the difference between analog and digital images.	2
CO 2	PO 1	Develop a image with various image transform properties types and its types using Scientific principles and methodology fundamental mathematics.	3
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for image transforms using first principles of mathematics and Engineering sciences.	5
	PO 10	Effective presentation and Speaking Style on properties of transforms and write Subject Matter Effectively on types of transforms.	2
	PSO 1	Design of experiments on image transforms with project development and execution process of modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO 3	PO 1	Illustrate the principles of an image find by using engineering techniques for image enhancement by using mathematical methods.	3
	PO 2	Illustrate the filter processing model translation for spatial domain and formulate the time domain filter.	5
	PO 3	Develop a histogram techniques complex engineering problem with appropriate considerations and environmental considerations for image enhancement.	2
	PO 4	Demonstrate the Use image enhancement analyze and interpretation and Ability to apply quantitative methods in frequency domain processing technique to provide valid digital image.	4
	PO 10	Effective presentation and Speaking Style on histogram processing Write Subject Matter Effectively on manipulation technique of an digital image.	2
	PO 12	Get aware of advancements of Image enhancement techniques that would happen from to time	2

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PSO 1	Design of experiments with project development and execution modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO 4	PO 1	Distinguish the image restoration in the spatial and frequency domains (knowledge) to remove the noise present the image by applying the principles of (mathematics, engineering science for complex engineering problems.	3
	PO 2	Formulate and analyze (Problem analysis) complex Engineering problems for image restoration using first principles of mathematics and Engineering sciences	5
	PO 3	(Develop spatial and frequency domain techniques complex engineering problem with appropriate considerations and environmental considerations for image restoration.	2
	PO 4	Understand the image restoration in the spatial and frequency domains (knowledge) methods including design of experiments, analysis of complex problems.	4
	PO 10	Effective presentation and Speaking Style and write on degradation models and noise sources for image restoration of digital images	2
	PO 12	Get aware of advancements of Image segmentation techniques and morphological Image processing that would happen from to time	2
	PSO 1	Design of experiments with project development and execution image restoration with modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO 5	PO 1	Interpret Image Segmentation and formulate representation techniques to apply Mathematical principles fundamental mathematics.	3
	PO 2	Apply Problem statement the segmentation techniques for edge linking and boundaries by using principles of mathematics and formulate segmentation techniques.	5
	PO 10	Effective presentation and Speaking Style and write on image segmentation techniques.	2
	PO 12	Get aware of advancements of Image restoration techniques that would happen from to time	2
	PSO1	Design of experiments with project development and execution image segmentation with modern tools such as MATLAB with image processing tool box, python, CV2.	2
CO6	PO 1	Understand the various source coding techniques and Interpret Image Compression standards using engineering science and mathematical models.	3

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 2	Identify and analyze fidelity criteria, image compression models implement using engineering science, design system components for source Encoder and decoder, error free compression and model translation using principles of mathematics.	5
	PO 10	Present effectively and Clarity source encoder and write effectively subject matter on decoder techniques.	2
	PO 12	Get aware of advancements of Image compression techniques and wavelet based Image compression techniques that would happen from to time	2
	PSO1	Design of experiments with project development and execution image compression with modern tools such as MATLAB with image processing tool box, python, CV2.	2

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – PO/ PSO MAPPING:

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	2	-	-	-	-	-
CO 2	3	5	-	-	-	-	-	-	-	2	-	-	2	-	-
CO 3	3	5	2	4	-	-	-	-	-	2	-	2	2	-	-
CO 4	3	5	2	4	-	-	-	-	-	2	-	2	2	-	-
CO 5	3	5	-	-	-	-	-	-	-	2	-	2	2	-	-
CO 6	3	5	-	-	-	-	-	-	-	2	-	2	2	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40	0.0	0.0	0.0	0.0	0.0
CO 2	100	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40	0.0	0.0	40	0.0	0.0
CO 3	100	50	20	36.3	0.0	0.0	0.0	0.0	0.0	40	0.0	25	40	0.0	0.0
CO 4	100	50	20	36.3	0.0	0.0	0.0	0.0	0.0	40	0.0	25	40	0.0	0.0
CO 5	100	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40	0.0	25	40	0.0	0.0
CO 6	100	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40	0.0	25	40	0.0	0.0

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\pmb{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 5 < C \le 40\% Low/ Slight$
- $\pmb{2}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ $60\% \leq C < 100\%$ Substantial /High

				PSO'S											
COURSE	PO	PO	PO	PO	РО	PO	PO	РО	PO	РО	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	1	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	1	-	-	1	-	-
CO 3	3	2	1	1	-	-	-	-	-	1	-	1	1	-	-
CO 4	3	2	1	1	-	-	-	-	-	1	-	1	1	-	-
CO 5	3	2	-	-	-	-	-	-	-	1	-	1	1	-	-
CO 6	3	2	-	-	-	-	-	-	-	1	-	1	1	-	-
TOTAL	18	10	2	2	-	-	-	-	-	6	-	4	5	-	-
AVERAGE	3	2	1	1	-	-	-	-	-	1	-	1	1	-	-

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Laboratory Practices	_	Student Viva	-	Certification	-
Term Paper	-	5 Minutes Video	~	Open Ended Experiments	-
Assignments	-	Tech-Talk	\checkmark		

XVII ASSESSMENT METHODOLOGY-INDIRECT:

XVIII SYLLABUS:

MODULE I	INTRODUCTION
	Digital image fundamentals and image transforms digital image fundamentals, sampling and quantization, relationship between pixels; Image transforms: 2-D FFT, properties, Walsh transform, Hadamard transform, discrete cosine transform, Haar transform, Slant transform, Hoteling transform.
MODULE II	IMAGE ENHANCEMENT
	Introduction, image enhancement in spatial domain, enhancement through point processing, types of point processing, histogram manipulation, linear and non-linear gray level transformation, local or neighborhood operation, median filter processing; Spatial domain high pass filtering, filtering in frequency domain, obtaining frequency domain filters from spatial filters, generating filters directly in the frequency domain, low pass (smoothing) and high pass (sharpening) filters in frequency domain.

MODULE III	IMAGE SEGMENTATION AND MORPHOLOGICAL IMAGE PROCESSING
	Image segmentation detection of discontinuities, edge linking and boundary detection, threshold, region oriented segmentation, Watershed transformation. Morphological image processing dilation and erosion, structuring element decomposition, the Strel function, erosion; Combining dilation and erosion: Opening and closing the hit and miss transformation, Boundary extraction ,Region filling, Extracted of connected components, convex hull ,skeletons, pruning, Thinning , Thickening.
MODULE IV	IMAGE RESTORATION
	Image restoration degradation model, Noise models, Restoration in the presence of noise only (Spatial Filtering), Estimating the degradation function, Inverse filtering, Least mean square filters, constrained least square restoration.
MODULE V	IMAGE COMPRESSION AND WAVELET BASED IMAGE PROCESSING
	Image compression: Redundancies and their removal methods, fidelity criteria, image compression models, source encoder and decoder, error free compression, lossy compression, Wavelet transform: Continuous wavelet transformation, 2D continuous wavelet transformation, Examples of wavelets, Wavelet based image compression.

TEXTBOOKS

- 1. R.C. Gonzalez & R.E. Woods, —Digital Image Processing ||, Addison Wesley/ Pearson education, 2nd Education, 2002.
- S. Jayaraman, S. Esakkirajan, T. Veerakumar, "Digital Image Processing", TMH, 3rd Edition, 2010.

REFERENCE BOOKS:

- 1. A.K.Jain, —Fundamentals of Digital Image Processing, PHI. 3RD Edition, 2003.
- 2. Rafael C. Gonzalez, Richard E Woods and Steven, —Digital Image Processing using MATLAB L. Edition, PEA, 2004.
- 3. William K. Pratt, John, —Digital Image Processing, Wilely, 3rd Edition, 2004.
- 4. Somka, Hlavac, Boyle, "Digital Image Processing and Computer Vision", Cengage Learning, 1st Edition, 2008.
- 5. Adrain Low, "Introductory Computer vision Imaging Techniques and Solutions", Tata McGraw-Hill, 2nd Edition, 2008.
- John C. Russ, J. Christian Russ, "Introduction to Image Processing & Analysis", CRC Press, 1st Edition, 2010.

WEB REFERENCES:

- 1. https://nptel.ac.in/courses/117105135
- 2. https://onlinecourses.nptel.ac.in/noc22_ee116/preview

COURSE WEB PAGE:

1. https://akanksha.iare.ac.in/index?route=course/details&course_id=129

XIX COURSE PLAN:

S.No Topics to be covered CO's Reference **OBE DISCUSSION** Course Description on Outcome Based Education (OBE): Course Objectives, Course 1 Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping CONTENT DELIVERY (THEORY) Introduction to Digital Image Processing 1 CO 1T1:1.4-1.5 2Digital Image Fundamentals, pixels CO 1T1:1.4-1.5 3 Analyze sampling and quantization CO 1T1:2.4-2.5 4 Introduction to Image transforms CO 2T1:2.4-2.5; R1:5.4-5.10 2D-FFT and Properties of 2D-FFT CO 2R1:5.4-5.10; 5R2: 5.8-5.10 Walsh transform and Hadamard transform CO 2R1:5.4-5.10 6 7 Discrete cosine transform , Haar transform CO 2R1:5.4-5.10 Slant transform, Hoteling transform 8 CO 2R1:5.4-5.10 9 Introduction to image enhancement, enhancement in CO_{3} T1:3.1-3.6 spatial domain 10 Enhancement through point processing and types CO 3T1:3.1-3.8 Linear and non-linear gray level transformation CO 3T1:3.1-3.8; 11 R2: 7.4-7.5 12Local or neighbourhood operation CO_{3} T1:3.1-3.8: R2: 7.4-7.5 Median filter processing, Spatial domain high pass T1:3.1-3.8; 13 CO_{3} R2: 7.4-7.5 filtering 14 Histogram equalization and processing CO 3T1:3.1-3.8: R2: 7.4-7.5 CO 315Obtaining frequency domain filters from spatial filters T1:4.1-4.6 16Low pass (smoothing) filter in frequency domain. CO 3T1:4.1-4.6 High pass (sharpening) filter in frequency domain CO_{3} T1:4.1-4.6 1719Introduction to Image segmentation CO 4T1:10.1-10.6 Detection of discontinuities, Edge linking and boundary CO 420T1:10.1-10.6 detection 21Threshold techniques for image segmentation, region CO 4T1:10.1-10.6 oriented segmentation Watershed transformation CO 4T1:10.1-10.6; 22T1:9.1-9.6 Morphological image processing, dilation and erosion CO 4T1:10.1-10.6; 23T1:9.1-9.6 Understand structuring element decomposition, the Strel 24CO 4T1:9.1-9.6 function, erosion; Combining dilation and erosion: Opening and closing, The T1:9.1-9.6 25CO 4hit and miss transformation Boundary extraction ,Region filling, Extracted of CO 426T1:9.1-9.6 connected components, convex hull

The course plan is meant as a guideline. Probably there may be changes.

27	skeletons, pruning, Thinning, Thickening	CO 4	T1:9.1-9.6
28	Introduction to Image restoration, Degradation model	CO5	T1:8.1-8.3;
			R2: 7.4-7.5
29	Noise models, Restoration in the presence of noise only	CO5	T1:8.1-8.3;
	(Spatial Filtering)		R2: 7.4-7.5
30	Estimating the degradation function, Inverse filtering	CO5	T1:8.1-8.3;
		COF	R2: 7.4-7.5
31	Least mean square filters	CO5	11:8.1-8.3; B2: 7475
20	Constrained least square restoration	CO5	$\begin{array}{c} 1(2, 7, 4^{-7}, 5) \\ \hline \\ T1.8 + 8.3 \end{array}$
52	Constrained least square restoration	005	R2: 7.4-7.5
33	Introduction to Image compression	CO6	T1.8 1-8 3 ·
		000	R2: 7.4-7.5
34	Redundancies and their removal methods	CO 6	T1:8.1-8.3;
			R2: 7.4-7.5
35	Fidelity criteria, image compression models	CO 6	T1:8.1-8.3;
			R2: 7.4-7.5
36	Understand source encoder and decoder, Error free	CO 6	T1-8.1-8.1.7
	compression		
37	Lossy compression & JPEG 2000 standard	CO 6	T1-8.1-8.1.7
38	Wavelet transform: Continuous wavelet transformation	CO 6	T1-8.1-8.1.7
39	2D continuous wavelet transformation ,Examples of	CO 6	T1-8.1-8.1.7
	wavelets		
40	Wavelet based image compression	CO 6	T1-8.1-8.1.7
40	Wavelet based image compression PROBLEM SOLVING/ CASE STUDI	CO 6 E S	T1-8.1-8.1.7
40	Wavelet based image compression PROBLEM SOLVING/ CASE STUDING Problem solving on 2-D FFT and it's properties	CO 6 ES CO 2	T1-8.1-8.1.7
40	Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties	CO 6 ES CO 2	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10
40 1 2	Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard	CO 6 ES CO 2 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6
40	Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform	CO 6 ES CO 2 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6
40 1 2 3	Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform	CO 6 ES CO 2 CO 3 CO 2	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6
40 1 2 3 4	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6
40 1 2 3 4	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on Slant, Hoteling and discrete cosine transform 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6
	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6
	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6
$ \begin{array}{c c} 40 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array} $	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDID Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2 CO 3 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8
	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on grav-level transformation and median 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2 CO 3 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8
$ \begin{array}{c c} 40 \\ \hline 1 \\ 2 \\ \hline 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array} $	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 3 CO 3 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8
$ \begin{array}{c c} 40 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \end{array} $	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDIN Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing Problem solving on image enhancement using filtering 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:3.1-3.8 T1:4.1-4.6
$ \begin{array}{c c} 40 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \end{array} $	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDII Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing Problem solving on image enhancement using filtering methods 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:3.1-3.8 T1:4.1-4.6
$ \begin{array}{c c} 40 \\ \hline 1 \\ 2 \\ \hline 3 \\ 4 \\ 5 \\ \hline 6 \\ 7 \\ \hline 8 \\ 9 \\ \end{array} $	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDII Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing Problem solving on image enhancement using filtering methods Problem solving on image enhancement using filtering 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:3.1-3.8 T1:4.1-4.6 T1:4.1-4.6
$ \begin{array}{c} 40 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ \end{array} $	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDII Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing Problem solving on image enhancement using filtering methods Problem solving on image enhancement using filtering methods 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:4.1-4.6 T1:4.1-4.6
$ \begin{array}{c} 40 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDII Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing Problem solving on image enhancement using filtering methods Problem solving on image enhancement using filtering Problem solving on image restoration using filtering 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:3.1-3.8 T1:4.1-4.6 T1:4.1-4.6
$ \begin{array}{c} 40 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDII Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing Problem solving on image enhancement using filtering methods Problem solving on image enhancement using filtering methods Problem solving on image restoration using filtering techniques 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:4.1-4.6 T1:4.1-4.6 T1:4.1-4.6
$ \begin{array}{c c} 40 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \end{array} $	 Wavelet based image compression PROBLEM SOLVING/ CASE STUDII Problem solving on 2-D FFT and it's properties Problem solving on Walsh transform, Hadamard transform Problem solving on Haar Transform Problem solving on Slant, Hoteling and discrete cosine transform Problem solving on image enhancement in spatial domain and point processing Problem solving on histogram manipulation and equalization Problem solving on gray-level transformation and median filter processing Problem solving on image enhancement using filtering methods Problem solving on image enhancement using filtering methods Problem solving on image restoration using filtering techniques Problem solving on image segmentation using edge 	CO 6 ES CO 2 CO 3 CO 2 CO 2 CO 2 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	T1-8.1-8.1.7 T1:2.6-2.6.8; R2: 5.8-5.10 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.6 T1:3.1-3.8 T1:3.1-3.8 T1:4.1-4.6 T1:4.1-4.6 T1:4.1-4.6 T1:4.1-4.6

12	Problem solving on image segmentation using region orientation morphological processing	CO 5	T1:10.1-10.6
13	Problem solving on image segmentation using dilation and erosion	CO5	T1:10.1-10.6
14	Problem solving on image compression using removal of redundancies	CO 6	T1:8.1-8.3; R2: 7.4-7.5
15	Problem solving on image compression using JPEG 2000 standard	CO 6	T1:8.1-8.3; R2: 7.4-7.5
	DISCUSSION OF DEFINITION AND TERM	INOLOG	Y
1	Definitions and terminologies on Introduction to Digital image processing	CO 1	T1:1.4-1.5
2	Definitions and terminologies on image enhancement	CO 3	T1:3.1-3.8
3	Definitions and terminologies on image restoration	CO 4	T1:4.1-4.6
4	Definitions and terminologies on image segmentation	CO 5	T1:10.1-10.6
5	Definitions and terminologies on image compression	CO 6	T1:8.1-8.3; R2: 7.4-7.5
	DISCUSSION OF QUESTION BANK	K	
1	Discussion on question bank of introduction to digital image processing	CO 2	T1:1.4-1.5
2	Discussion on question bank of image enhancement	CO 3	T1:3.1-3.8
3	Discussion on question bank of image restoration	CO 4	T1:3.1-3.8; R2: 7.4-7.5
4	Discussion on question bank of image segmentation	CO 5	T1:10.1-10.6
5	Discussion on question bank of image compression	CO 6	T1:8.1-8.3; R2: 7.4-7.5

Signature of Course Coordinator Mr. Bala Thimmaiah N, Assistant Professor

HOD,ECE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING						
Course Title	INTER	INTERNET OF THINGS					
Course Code	AECC62	AECC62					
Program	B.Tech						
Semester	VIII						
Course Type	Professional Elective -VI						
Regulation	UG-20						
	Theory Practical						
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	-	3	-	-		
Course Coordinator	Mr. Voo	Mr. Voodara Devender, Assistant Professor					

I COURSE OVERVIEW:

The Internet of things allows every device to connect the world for exchange of information among the associated devices. It focuses on the concepts of data communication, network protocols, cloud computing and network security fundamental techniques, customs and terms including the basic components of hardware and software. The applications of IoT include home automation, smart parking, smart lighting, and smart phone detection.

II COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	AECB24	VI	Microprocessors and Microcontrollers

III MARKS DISTRIBUTION:

Subject	SEE Examination	CIE Examination	Total Marks
IoT and Applications	70 Marks	30 Marks	100

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Power Point Presentations	\checkmark	Chalk & Talk	\checkmark	Assignments	x	MOOC
\checkmark	Open Ended Experiments	x	Seminars	x	Mini Project	x	Videos
x	Tech Talks	х	Concept	x	others		
			Videos				

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in below Table.

Percentage of Cognitive Level	Blooms Taxonomy Level
0%	Remember
33.3%	Understand
33.3%	Apply
33.3 %	Analyze
0 %	Evaluate
0%	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks	
	Continuous Internal Examination – 1 (Mid-term)	10		
CIA	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5	50	
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
	100			

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8^{th} and 16^{th} week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Tech-talk	Assignment	Complex Problem solving
50%	50%	_

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The principle and operation of software defined networking and network function
	virtualization.
II	The knowledge of IoT enabled technologies, security protocols and architectures.
III	Python programming skills to move into specific areas – deep learning (DL), data
	science, machine learning (ML), artificial intelligence (AI) etc.

VII COURSE OUTCOMES:

After successful completion of the course, students will be able to:

CO 1	Summarize the characteristics, physical design and logical design	Understand
	of Internet of things to define the components in IoT.	
CO 2	Distinguish the software defined networking with network function	Analyze
	virtualization to analyze the improvements in communication.	
CO 3	Utilize the knowledge of python programming to build successful	Apply
	internet of things associated devices.	
CO 4	Demonstrate the IoT architecture and reference model for con-	Understand
	necting the world through associated devices.	
CO 5	Make use of appropriate communication protocols to acquire the	Apply
	knowledge of programming with Raspberry PI.	
CO 6	Analyze the cloud storage models and application programming	Analyze
	interfaces to understand exchange of the data over the network.	

COURSE KNOWLEDGE COMPETENCY LEVEL

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the	3	SEE/CIE/AAT
	knowledge of mathematics, science, engineering		
	fundamentals, and an engineering specialization		
	to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review	2	SEE/CIE/AAT
	research literature, and analyze complex		
	engineering problems reaching substantiated		
	conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/Development of Solutions: Design	1	SEE/CIE/AAT
	solutions for complex Engineering problems and		
	design system components or processes that		
	meet the specified needs with appropriate		
	consideration for the public health and safety,		
	and the cultural, societal, and Environmental		
	considerations.		
PO 5	Modern Tool Usage: Create, select, and	3	SEE/CIE/AAT
	apply appropriate techniques, resources, and		
	modern Engineering and IT tools including		
	prediction and modelling to complex		
	Engineering activities with an understanding of		
	the limitations,		

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

P	ROGRAM SPECIFIC OUTCOMES	$\mathbf{Strength}$	Proficiency Assessed by
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	1	SEE/CIE/AAT

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

				PSO'S											
COURSE	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark
CO 3	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark
CO 4	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-
CO 5	-	-	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark
CO 6	-	-	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark

XII JUSTIFICATIONS FOR CO – PO/ PSO MAPPING -DIRECT:

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.					
CO 1	PO 1	Understand the basic characteristics of IoT along with their enabling technologies by applying the principles of science to engineering problems.	3					
	PO 3	Apply the knowledge of physical design and Logical design to appropriate consideration for the public health, safety, cultural, societal and environmental Considerations.	5					
	PSO 3	Apply the knowledge of physical design and Logical design to model, program for operation and control of smart antennas for wireless communication applications, explicit software for IoT devices.	2					
CO 2	PO 1	Understand the concept of the IoT levels by applying the principles of science to engineering problem .	2					
	PSO 3	Understand the knowledge of the IoT levels and deployment models to apply on wireless communication applications.	1					
CO 3	2O 3 PO 2 Understand the basic structure of Management system and can collect operational data from IoT devices to applying mathematics, science and engineering fundamentals.							
	PSO 3	Apply the knowledge of software defined networking to understand the research, analysis and presentation using software aids.	1					
CO 4	PO 5	Observe the differences between software defined networking and network function virtualization to Apply the knowledge of engineering fundamentals	1					
CO 5	PO 3	Understand the performance of different types of Components by applying mathematics, science and engineering fundamentals.	3					
	PO 5	Identify the different types of Components to design system components or processes that meet the specified needs with appropriate consideration for the public health , and environmental Considerations	1					
	PSO 3	Understand the knowledge of appropriate communication protocols to understand the programming and hands on skills to meet requirements of global environment.	1					
CO 6	PO 3	Discuss (Understand) different types of modules in python to write the programming by applying mathematics , science and engineering fundamentals.	3					

Course Outcomes	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key competencies matched.
	PO 5	Apply the programming knowledge to Design	1
		solutions for complex engineering problems and	
		design system components.	
	PSO 3	Apply the knowledge of cloud storage models and	2
		application programming interfaces to to interface	
		automation tools and program for operation	
		and control of smart antennas for wireless	
		communication applications	

TOTAL COUNT OF KEY COMPETENCIES FOR CO - PO/ PSO MAP-XIII **PING:**

				PSO'S											
COURSE	PO	PO	PO	PO	РО	PO	PO	РО	PO	PO	РО	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	3	-	5	-	-	-	-	-	-	-	-		-	-	2
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO 3	-	5	-	-	-	-	-	-	-	-	-	-	-	-	1
CO 4	-	-	-	-	1	-	-	-	-	-	-		-	-	-
CO 5	-	-	3	-	1	-	-	-	-	-	-	-	-	-	1
CO 6	-	-	3	-	1	-	-	-	-	-	-		-	-	2

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/ PSO

			PSO'S												
COURSE	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	5	11	7
CO 1	100	-	50	-	_	-	-	-	-	-	-		-	-	28.6
CO 2	66.6	-	-	-	-	-	-	-	-	-	-	-	-	-	14.2
CO 3	-	30	-	-	-	-	-	-	-	-	-	-	-	-	14.2
CO 4	-	-	-	-	100	-	-	-	-	-	-		-	-	-
CO 5	-	-	30	-	100	-	-	-	-	-	-	-	-	-	14.2
CO 6	-	-	30	-	100	-	-	-	-	-	-		_	-	28.6

XV COURSE ARTICULATION MATRIX (PO / PSO MAPPING): CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- $1 5 < C \le 40\% Low/$ Slight
- $\pmb{2}$ 40 % < C < 60% Moderate
- $3 60\% \leq C < 100\%$ Substantial /High

				PSO'S											
COURSE	PO	PO	PO	РО	PO	PSO	PSO	PSO							
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	2	-	-	-	-	-	-	-	-	-	-	-	1
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO 3	-	2	-	-	-	-	-	-	-	-	-	-	-	-	1
CO 4	-	-	-	-	3	-	-	-	-	-	-	-	-	-	-
CO 5	-	-	1	-	3	-	-	-	-	-	-	-	-	-	1
CO 6	-	-	1	-	3	-	-	-	-	-	-	-	-	-	1
TOTAL	6	2	4	0	9	0	0	0	0	0	0	0	0	0	5
AVERAGE	3	2	1.3	0	3	0	0	0	0	0	0	0	0	0	1

XVI ASSESSMENT METHODOLOGY-DIRECT:

CIE Exams	\checkmark	SEE Exams	 Image: A start of the start of	Laboratory	-
				Practices	
Assignments	-	Student Viva	-	Certification	-
Term Paper	-	Concept Videos	\checkmark	Open Ended	-
				Experiments	
Tech Talk	\checkmark				

XVII ASSESSMENT METHODOLOGY-INDIRECT:

$\frown \checkmark$	Early Semester	\checkmark	End Semester	\checkmark	Assessment of activities / model-	
OBE Feedback			OBE Feedback		ing and experimental tools in en-	
					gineering by experts	

XVIII SYLLABUS:

MODULE I	INTRODUCTION TO INTERNET OF THINGS (IoT)
	Definition and characteristics of IoT, physical design of IoT, logical design of IoT, IoT enabling technologies, IoT levels and deployment, domain specific IoTs.
MODULE II	IoT AND M2M
	Introduction, M2M, difference between IoT and M2M, software defined networking (SDN) and network function virtualization (NFV) for IoT, basics of IoT system management with NETCONF-YANG.
MODULE III	IoT ARCHITECTURE AND PYTHON
	IoT Architecture: State of the art introduction, state of the art; Architecture reference model: Introduction, reference model and architecture, IoT reference model. Logical design using Python: Installing Python, Python data types and data structures, control flow, functions, modules, packages, file handling
MODULE IV	IoT PHYSICAL DEVICES AND ENDPOINTS
	Introduction to Raspberry Pi interfaces (Serial, SPI, I2C), programming Raspberry PI with Python, other IoT devices, Implementation of IoT with Raspberry Pi

MODULE V	IoT PHYSICAL SERVERS AND CLOUD OFFERINGS
	Introduction to cloud storage models and communication APIs; WAMP: AutoBahn for IoT, Xively cloud for IoT; Case studies illustrating IoT design: Home automation, smart cities, and smart environment.

TEXTBOOKS

- 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands-on-Approach", VPT, 1st Edition, 2014.
- 2. Matt Richardson, Shawn Wallace, "Getting Started with Raspberry Pi", O Reilly (SPD), 3rd Edition, 2014.

REFERENCE BOOKS:

- 1. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", John Wiley and Sons, 1st Edition, 2014.
- 2. Francis Da Costa, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", Apress Publications, 1st Edition, 2013.

WEB REFERENCES:

1. https://nptel.ac.in/courses/112105171/1

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

S.No	Topics to be covered	CO's	Reference				
	OBE DISCUSSION						
1	Course Description on Outcome Based Education (OBE): Course Objectives, Course Outcomes (CO), Program Outcomes (PO) and CO-PO Mapping	-	https://lms.iare.ac.in/index ?route=course/details& course id_127				
CONTENT DELIVERY (THEORY)							
2	Pre requisites	CO1	T1-3.1-3.2				
3	Introduction to Internet of Things	CO1	T1-3.3-3.4				
4	Definition and Characteristics of IoT and application	CO1	T1-3.3-3.4				
5	IoT Levels and Templates	CO1	T1-3.7				
6	IoT communication models	CO1	T1-3.5				
7	IoT enabled Technologies	CO1	T1-3.6				
8	Introduction to IoT Architecture	CO1	T1-5.1.1				
9	State of the art introduction, state of the art	CO1	T11.1,5.1.2				
10	Architecture reference model: Introduction,	CO1	T1-5.2				
11	Cloud for IoT and Python web application framework	CO2	T1-7.10.2-3				
12	Physical Design of IoT – IoT Protocols	CO2	T1-3.5				
13	Domain Specific IoTs	CO2	T1-4.2				
14	IoT and machine 2 machine	CO2	T1-4.6				

15	Software defined networks and Network	CO3	T1-4.7			
	function virtualization					
16	Difference between SDN and NFV for IoT	CO3	T1-4.10.6			
17	Basics of IoT System Management with NETCOZF-YANG	CO3	T1-4.11			
18	NETCONF, YANG, SNMP Netopeer	CO3	T1-5.1.1			
19	IoT Architecture And Python	CO4	T1-5.1.1			
20	File handling in python	CO4	TT1-5.11			
21	Logical design using Python: Installing Python	CO 5	T1-5.3.2			
22	Python data types and data structures	CO 5	T1-5.3.3,5.4			
23	Control flow in python	CO 5	T1-5.4.2			
24	Functions, Modules, Packages in python.	CO 5	T1-5.5			
25	Introduction to Raspberry PI - Interfaces (serial, SPI,I2C)	CO 5	T1-7.1,7.2			
26	Programming – Python program with Raspberry PI and external interfacing	CO 5	T1-7.7.2			
27	IoT Physical Devices and Endpoints	CO 6	T1-7.3,7.4			
28	Serial peripheral interface bus and Inter integrated circuit	CO 6	T1-3.5			
29	Communication APIs	CO 6	T1-7.8			
30	Types of APIs	CO 6	T1-7.8.1,8.2			
31	Webserver – Web server for IoT	CO 6	T1-7.10,11			
32	Designing a RESTful web API	CO 6	T1 7.10.3.3			
33	Reference model and architecture,	CO 6	T1-5.3			
34	Polarization diversity, frequency diversity, time diversity, RAKE receiver.	CO 6	T1-7.10.			
35	Introduction to wireless networks, advantages and disadvantages of wireless local area networks	CO 6	R3-P184			
36	Wireless local area networks	CO 6	R3-P184			
37	WLAN topologies, WLAN standard IEEE 802.11	CO 6	R3-P185			
38	IEEE 802.11 medium access control,	CO 6	R3-P191			
39	Comparison of IEEE 802.11 a,b,g and n standards	CO 6	R3-P190			
40	IEEE 802.16 and its enhancements, Wireless PANs, Hipper LAN, WLL	CO 6	R3-P1911			
PROBLEM SOLVING/ CASE STUDIES						
41	SNMP Netopeer	CO 1	T1:5.1.1			
42	Serial peripheral interface bus	CO 1	T1:7.3,7.4			
43	Diversity techniques	CO 1	T1:5.1.1			
44	IoT Architecture and challengee	CO 1	T1:4.2			
45	Cloud Offerings	CO 2	T1:1-7.8			
46	Inter integrated circuit	CO 2	T1:7.4			
47	Raspberry PI - Interfaces (serial, SPI,I2C)	CO 4	T1:7.2			
48	Raspberry PI and external interfacing	CO 4	T17-7.2			
--	---	--------	----------	--	--	
49	Logical design using Python	CO 4	T1:5.3.2			
50	Reference model and architecture	CO 5	T1:4.2			
51	Python data types and data structures	CO 5	T1:5.3			
52	WLAN standards	CO 6	R3:P185			
53	Medium access control,	CO 6	R3-P191			
54	High Performance Radio LAN	CO 6	R3-P1911			
55	Wireless networks, advantages of wireless	CO 6	R1:184			
	local area network					
DISCUSSION OF DEFINITION AND TERMINOLOGY						
56	Interoperable characteristics of IoT	CO 1	T1:4.2			
57	Software defined networking	CO 2	T1:4.6			
58	Various Types Of loops in Python	CO 4	T1:5.11			
59	Class variables vs instance variables	CO 5	T1:7.1			
61	Infrastructure-as-a-Service	CO 6	T1:7.10			
	DISCUSSION OF QUEST	ION BA	NK			
62	Network configuration yang module	CO 2	T1:4.6			
63	IoT reference model with diagram	CO 3	T1:5.11			
64	64 IoT Physical Devices and Endpoints		T1:7.1			
65	Case studies in IoT design	CO 6	T1: 7.10			
66	Web-based communication models	CO 6	T1:4.2			

Course Coordinator: Mr. Voodara Devender, Assistant Professor

HOD, ECE

ANNEXURE

KEY ATTRIBUTES FOR ASSESSING PROGRAM OUTCOMES

PO Number	NBA Statement / Key Competencies Features (KCF)	No. of KCF's
PO 1	 Apply the knowledge of mathematics, science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems (Engineering Knowledge). Knowledge, understanding and application of Scientific principles and methodology. Mathematical principles. Own and / or other engineering disciplines to integrate / support study of their own engineering discipline. 	3
PO 2	Identify, formulate, review research literature, and analyse com- plex Engineering problems reaching substantiated conclusions us- ing first principles of mathematics natural sciences, and Engineer- ing sciences (Problem Analysis). 1. Problem or opportunity identification 2. Problem statement and system definition 3. Problem formulation and abstraction 4. Information and data collection 5. Model translation 6. Validation 7. Experimental design 8. Solution development or experimentation / Implementation 9. Interpretation of results 10. Documentation	10
PO 3	 Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations (Design/Development of Solutions). 1. Investigate and define a problem and identify constraints including environmental and sustainability limitations, health and safety and risk assessment issues 2. Understand customer and user needs and the importance of considerations such as aesthetics 3. Identify and manage cost drivers 4. Use creativity to establish innovative solutions 	10
	 5. Ensure fitness for purpose for all aspects of the problem including production, operation, maintenance and disposal 6. Manage the design process and evaluate outcomes. 7. Knowledge and understanding of commercial and economic context of engineering processes 8. Knowledge of management techniques which may be used to achieve engineering objectives within that context 9. Understanding of the requirement for engineering activities to promote sustainable development 10. Awareness of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety, and risk (including environmental risk) issues 	

PO 4	Use research-based knowledge and research methods including de-	11
	sign of experiments, analysis and interpretation of data, and syn-	
	thesis of the information to provide valid conclusions (Conduct	
	Investigations of Complex Problems).	
	1. Knowledge of characteristics of particular materials, equip-	
	ment, processes, or products	
	2. Workshop and laboratory skills	
	3. Understanding of contexts in which engineering knowledge can	
	be applied (example, operations and management, technology de-	
	velopment, etc.)	
	4. Understanding use of technical literature and other information	
	sources Awareness of nature of intellectual property and contrac-	
	tual issues	
	5. Understanding of appropriate codes of practice and industry	
	standards	
	6. Awareness of quality issues	
	7. Ability to work with technical uncertainty	
	8. Understanding of engineering principles and the ability to ap-	
	ply them to analyse key engineering processes	
	9. Ability to identify, classify and describe the performance of	
	systems and components through the use of analytical methods	
	and modeling techniques	
	10. Ability to apply quantitative methods and computer software	
	relevant to their engineering discipline, in order to solve engineer-	
	ing problems	
	11. Understanding of and ability to apply a systems approach to	
	engineering problems.	
PO 5	Create, select, and apply appropriate techniques, resources, and	1
	modern Engineering and IT tools including prediction and mod-	
	elling to complex Engineering activities with an understanding of	
	the limitations (Nodern Tool Usage).	
	1. Computer software / simulation packages / diagnostic equip-	
	ment / technical indrary resources / interature search tools.	
PO 6	Apply reasoning informed by the contextual knowledge to assess	5
	societal, health, safety, legal and cultural issues and the conse-	
	quent responsibilities relevant to the professional engineering prac-	
	tice (The Engineer and Society).	
	1. Knowledge and understanding of commercial and economic	
	context of engineering processes	
	2. Knowledge of management techniques which may be used to	
	3 Understanding of the requirement for anging activities to	
	promote sustainable development	
	A Awareness of the framework of relevant local requirements rev	
	arning angineering activities including personnal health safety	
	and risk (including environmental risk) issues	
	5. Understanding of the need for a high level of professional and	
	ethical conduct in engineering	
	contear contract in engineering.	

PO 7	Understand the impact of the professional Engineering solutions in societal and Environmental contexts, and demonstrate the knowl- edge of, and need for sustainable development (Environment and Sustainability). Impact of the professional Engineering solutions (Not technical) 1. Socio economic 2. Political 3. Environmental	3
PO 8	 Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice (Ethics). 1. Comprises four components: ability to make informed ethical choices, knowledge of professional codes of ethics, evaluates the ethical dimensions of professional practice, and demonstrates ethical behavior. 2. Stood up for what they believed in 3. High degree of trust and integrity 	3
PO 9	 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Teamwork). 1. Independence 2. Maturity - requiring only the achievement of goals to drive their performance 3. Self-direction (take a vaguely defined problem and systemati- cally work to resolution) 4. Teams are used during the classroom periods, in the hands-on labs, and in the design projects. 5. Some teams change for eight-week industry oriented Mini- Project, and for the seventeen -week design project. 	12
	 6. Instruction on effective teamwork and project management is provided along with an appropriate textbook for reference 7. Teamwork is important not only for helping the students know their classmates but also in completing assignments. 8. Students also are responsible for evaluating each other's performance, which is then reflected in the final grade. 9. Subjective evidence from senior students shows that the friendships and teamwork extends into the Junior years, and for some of those students, the friendships continue into the workplace after graduation 10. Ability to work with all levels of people in an organization 11. Ability to get along with others 12. Demonstrated ability to work well with a team 	

PO 10	Communicate effectively on complex Engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication). "Students should demonstrate the ability to communicate effec- tively in writing / Orally" 1. Clarity (Writing) 2. Grammar/Punctuation (Writing) 3. References (Writing) 4. Speaking Style (Oral) 5. Subject Matter (Oral)	5
PO 11	 Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary Environments (Project Management and Fi- nance). 1. Scope Statement 2. Critical Success Factors 3. Deliverables 4. Work Breakdown Structure 5. Schedule 6. Budget 7. Quality 8. Human Resources Plan 9. Stakeholder List 10. Communication 11. Risk Register 12. Procurement Plan 	12
PO 12	 Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life - Long Learning). 1. Project management professional certification / MBA 2. Begin work on advanced degree 3. Keeping current in CSE and advanced engineering concepts 4. Personal continuing education efforts 5. Ongoing learning – stays up with industry trends/ new technology 6. Continued personal development 7. Have learned at least 2-3 new significant skills 8. Have taken up to 80 hours (2 weeks) training per year 	8

ANNEXURE

KEY ATTRIBUTES FOR ASSESSING PROGRAM SPECIFIC OUTCOMES

	NDA Statement / NDA statement / Vital feature	
PS0 Number	NBA Statement / NBA statement / Vital features	No. of vitalfea-
		tures
PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	5
	 Analyze and solve real time problems in Robotics. Evaluate the design and provide optimal solutions of the digital circuits for signal processing applications. 	
	3. Develop embedded systems modules using Real Time Operating System.	
	4. Undertake research and development projects in the field of Em- bedded Systems.	
	5. Adopt the engineering professional code and conduct.	
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	11
	 Inspect, survey and analyze types of ASIC chip designs. Design ASIC prototypes using Verilog and VHDL languages. 	
	3. Analyze microprocessor subsystems with memories and I/O inter- facs for SOC designs	
	4. Explore hardware components for designing SOC 5. Adopt the engineering professional code and conduct	
	6. Designing prototypes of SOC using programming tools like MAT- LAB, LabVIEW.	
	 Familiarize with the design flow of ASIC prototypes. Realize SOC using Register-Transfer-Level designs 	
	9. Analyse and develop models for system level descriptions for syn- thesis of SOC.	
	10.Inspect and survey the abstractions and principles for the specification simulation verification and synthesis of systems	
	on chip (SoC)	
	(SoC). 11.Programming and hands-on skills to meet requirements of	
	global environment.	
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for	7
	modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications	
	1 Explicit software and programming tools for antenna design	
	2. Adopt technical library resources and literature search.	
	3.Explore smart antennas.	
	4. Model, program for operation and control of smart antennas	
	for wireless communication applications.	
	5. Interface automation tools.	
	b. Research, analysis, problem solving and presentation using software aids.	
	7. Programming and hands-on skills to meet requirements of	
	global environment.	

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COURSE DESCRIPTION

Department	ELECTRONICS AND COMMUNICATION ENGINEERING					
Course Title	DISAST	ER MANAGE	MENT			
Course Code	ACEC31					
Program	B.Tech					
Semester	VIII					
Course Type	Open Elective					
Regulation	Regulation IARE-UG20					
	Theory			Practical		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits	
	3	-	3	-	-	
Course Coordinator	Ms. Praveena Rao, Assistant Professor					

I COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
_	-	-	-

II COURSE OVERVIEW:

The Disaster management provides a fundamental understanding of different aspects. It deals with the concepts and functions of disaster management to build competencies of professionals and development practitioners. It provides effective supporting environment by the governmental locating substantial resources for effective mitigation of disasters. It helps learners to apply the disaster mitigation strategies, preparedness for reducing damage intensity, loss of life and property.

III MARKS DISTRIBUTION:

	${f Subject}$	SEE Examination	CIE Examination	Total Marks		
	Disaster Management	70 Marks	30 Marks	100		
TX 7	IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOCIES.					

IV CONTENT DELIVERY / INSTRUCTIONAL METHODOLOGIES:

 ✓ 	Power Point Presentations	\checkmark	Chalk & Talk	х	Assignments	x	MOOC
x	Open Ended Experiments	x	Seminars	х	Mini Project	x	Videos
x	Others					•	

V EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
17%	Remember
83 %	Understand
0%	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 20 marks for continuous internal examination (CIE) and 10 marks for Alternative Assessment Tool (AAT).

	Component	Marks	Total Marks	
CIA	Continuous Internal Examination – 1 (Mid-term)	10		
	Continuous Internal Examination – 2 (Mid-term)	10	30	
	AAT-1	5	50	
	AAT-2	5		
SEE	Semester End Examination (SEE)	70	70	
	100			

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively for 10 marks each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered. Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table

Concept Video	Tech-talk	Complex Problem Solving
40%	40%	20%

VI COURSE OBJECTIVES:

The students will try to learn:

Ι	The concept of environmental hazards, disasters and various approaches dealing
	with the mitigation of disasters.
II	The knowledge on various types of environmental disasters and their impacts on
	human beings and nature.
III	The Different types of endogenous and exogenous hazards and their influence on
	human life and nature.
IV	The immediate response and damage assessment with information reporting and
	monitoring tools.

VII COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Classify Environmental hazards for developing modern disaster	Remember
	management system.	
CO 2	Illustrate various approaches for reducing the level of risk	Understand
	associated with Disasters.	
CO 3	Compare natural and manmade disasters for finding out intensity	Understand
	of damage loss occurred by them.	
CO 4	List various hazards and their effects for evaluating their impact on	Remember
	society and Environment.	
CO 5	Outline human adjustments and perception towards hazards for	Understand
	mitigation of disasters.	
CO 6	Summarize disaster phenomenon and its different contextual	Understand
	aspects for implementing the Disaster Risk Reduction Strategy.	

COURSE KNOWLEDGE COMPETENCY LEVEL

Page 3

VIII PROGRAM OUTCOMES:

	Program Outcomes
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and Environmental considerations
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex Engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-Long Learning: Recognize the need for and having the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

IX HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/SEE/AAT
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	3	CIE/SEE/AAT
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	3	CIE/SEE/AAT
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	1	CIE/SEE/AAT

3 = High; 2 = Medium; 1 = Low

X HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program	Strength	Proficiency Assessed by
PSO 1	Build Embedded Software and Digital Circuit Development platform for Robotics, Embedded Systems and Signal Processing Applications.	-	-
PSO 2	Focus on the Application Specific Integrated Circuit (ASIC) Prototype designs, Virtual Instrumentation and System on Chip (SOC) designs.	-	-
PSO 3	Make use of High Frequency Structure Simulator (HFSS) for modeling and evaluating the Patch and Smart Antennas for Wired and Wireless Communication Applications.	-	-

3 = High; 2 = Medium; 1 = Low

XI MAPPING OF EACH CO WITH PO(s), PSO(s):

COURSE				PSO'S											
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-
CO 2	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-
CO 3	-	-	-	-	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-
CO 4	-	-	-	-	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-
CO 5	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	-

XII JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING -DIRECT:

COURSE OUTCOMES	PO'S PSO'S	Justification for mapping (Students will be able to)	No. of Key Competencies
CO 1	PO 1	Apply the knowledge and principals of mathematics to engineering problems in determining an area enclosed by irregular boundary line using the knowledge of mathematics and science fundamentals	2
	PO 7	Understand the disaster management by considering Environmental impacts on the livelihood and their effect on Socio economic issues for sustainable development.	2
CO 2	PO 1	Apply the knowledge on various disaster mitigation approaches in engineering disciplines and and use their application in geographical researches.	1
	PO 6	Apply the engineering knowledge in disaster management to promote sustainable development and build Awareness on health, safety, and risk issues associated with Disasters.	4
CO 3	PO 6	Identify engineering activities including personnel, health, safety, and risk and effective disaster management strategies for implementing, analyzing disaster impacts on human life and environment.	4
	PO 7	Understand intensity of disasters and their impact on environment and influence on socio economic parameter for assessment of intensity of risk.	2
CO 4	PO 6	Identify engineering activities including personnel, health, safety, and risk for analyzing hazard impacts on environment.	4
	PO 7	Identify the impact of various hazards in socio-economic and environmental aspects for developing modern disaster management system.	2

CO 5	PO 1	Understand the methodology and scientific principal towards hazards for human adjustments and perception by sharing technological knowledge from other engineering branches .	2
	PO 6	Understanding of the need for a high level of professional and ethical conduct in engineering for human adjustments, perception with effective management strategies for disaster mitigation.	4
CO 6	PO 1	Understand the knowledge of scientific principal and methodology in disaster phenomenon for minimizing impact by implementing the Disaster Risk Reduction Strategy.	2
	PO 6	Appropriate management strategies are to be applied to reduce the level of risk in disaster mitigation.	1
	PO 9	Apply disaster risk reduction strategy using various organizations and work effectively as an individual and as a member or a leader are to be applied to reduce the level of risk in disaster mitigation.	3

XIII TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAP-PING:

COURSE	Pro	gran	Matched	PSO'S											
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO 1	2	-	-	-	-	-	2	-	-	-	-		-	-	-
CO 2	1	-	-	-	-	4	-	-	-	-	-	-	-	-	-
CO 3	-	-	-	-	-	4	2	-	-	-	-		-	-	-
CO 4	-	-	-	-	-	4	2	-	-	-	-	-	-		-
CO 5	2	-	-	-	-	4	-	-	-	-	-	-	-	-	-
CO 6	2	-	-	-	-	1	-	-	3	-	-	-	-	-	-

XIV PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

COURSE				PSO'S											
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO 1	66.6	-	-	-	-	-	66.6	-	-	-	-	-	-	-	-
CO 2	33.3	-	-	-	-	80	-	-	-	-	-	-	-	-	-
CO 3	-	-	-	-	-	80	66.6	-	-	-	-	-	-		-
CO 4	-	-	-	-	-	80	66.6	-	-	-	-	-	-	-	-
CO 5	66.6	-	-	-	-	80	-	-	-	-	-	-	-	-	-
CO 6	66.6	-	-	-	-	20	-	-	25	-	-	-	-	-	-

XV COURSE ARTICULATION MATRIX (PO – PSO MAPPING):

CO'S and PO'S and CO'S and PSO'S on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\boldsymbol{\theta}$ $0 \leq C \leq 5\%$ No correlation
- 1 5
< C< 40% Low/ Slight
- $\pmb{\mathcal{2}}$ 40 % < C < 60% – Moderate
- $\boldsymbol{3}$ 60% \leq C < 100% Substantial /High

COURSE				PSO'S											
OUTCOMES	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	1	2	3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO 1	3	-	-	-	-	-	3	-	-	-	-	-	-	-	-
CO 2	1	-	-	-	-	3	-	-	-	-	-	-	-	-	-
CO 3	-	-	-	-	-	3	3	-	-	-	-	-	-	-	-
CO 4	-	-	-	-	-	3	3	-	-	-	-	-	-		-
CO 5	3	-	-	-	-	3	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	-	-	1	-	-	1	-	-	-	-	-	-
TOTAL	10	-	-	-	-	13	9	-	1	-	-	-	-	-	-
AVERAGE	3	-	-	-	-	3	3	-	1	-	-	-	-	-	-

XVI ASSESSMENT METHODOLOGY DIRECT:

CIE Exams	\checkmark	SEE Exams	\checkmark	Seminars	-
Term Paper	-	Concept Video	\checkmark	Open Ended Experiments	-
				Experiments	
Assignments	-	Mini project	-	Tech Talk	\checkmark

XVII ASSESSMENT METHODOLOGY INDIRECT:

x	Assessment of mini projects by	\checkmark	End Semester OBE Feedback
	Experts		

XVIII SYLLABUS:

MODULE I	ENVIRONMENTAL HAZARDS AND DISASTERS
	Environmental hazards and disasters: meaning of environmental hazards, environmental disasters and environmental stress; concept of environmental hazards, environmental stress and environmental disasters, different approaches and relation with human ecology, landscape approach, ecosystem approach, perception approach, human ecology and its application in geographical researches.
MODULE II	TYPES OF ENVIRONMENTAL HAZARDS AND DISASTERS
	Types of environmental hazards and disasters: Natural hazards and disasters, man induced hazards and disasters, natural hazards, planetary hazards/ disasters, extra planetary hazards/ disasters, planetary hazards, endogenous hazards, exogenous hazards.

MODULE III	ENDOGENOUS HAZARDS
	Endogenous hazards, volcanic eruption, earthquakes, landslides, volcanic hazards/ disasters, causes and distribution of volcanoes, hazardous effects of volcanic eruptions, environmental impacts of volcanic eruptions. Earthquake hazards/ disasters, causes of earthquakes, distribution of earthquakes, hazardous effects of, earthquakes, earthquake hazards in India,human adjustment, perception and mitigation of earthquake.
MODULE IV	EXOGENOUS HAZARDS
	Exogenous hazards/disasters, infrequent events, cumulative atmospheric hazards/disasters; Infrequent events: Cyclones, lightning, hailstorms; Cyclones: Tropical cyclones and local storms, destruction by tropical cyclones and local storms (causes, distribution human adjustment, perception and mitigation); Cumulative atmospheric hazards/ disasters: Floods, droughts, cold waves, heat waves floods; Causes of floods, flood hazards India, flood control measures (human adjustment, perception and mitigation); Droughts:Impacts of droughts, drought hazards in India, drought control measures, extra planetary hazards/ disasters, man induced hazards /disasters, physical hazards/ disasters, soil erosion, Soil erosion: Mechanics and forms of soil erosion, factors and causes of soil erosion, conservation measures of soil erosion; Chemical hazards/ disasters: Release of toxic chemicals, nuclear explosion, sedimentation processes; Sedimentation processes: Global sedimentation problems regional sedimentation problems, sedimentation and environmental problems, corrective measures of erosion and sedimentation, biological hazards/ disasters, population explosion.
MODULE V	EMERGING APPROACHES IN DISASTER MANAGEMENT
	Emerging approaches in Disaster Management, Three Stages 1. Pre, disaster stage(preparedness) 2. Emergency Stage 3. Post Disaster stage, Rehabilitation.

TEXTBOOKS

- 1. Pardeep Sahni, "Disaster Mitigation: Experiences and Reflections", PHI Learning Pvt. Ltd., 1 st Edition, 2001.
- 2. J.Glynn, GaryW.HeinKe, "Environmental Science and Engineering", Prentice Hall Publishers, 2 nd Edition, 1996.

REFERENCE BOOKS:

- 1. R.B.Singh (Ed), "Environmental Geography", 2nd Edition, 1990.
- 2. R.B. Singh (Ed), "Disaster Management", 2nd Edition, 2006.
- 3. Donald Hyndman "Natural Hazards and Disasters" 5th edition, 2017.

XIX COURSE PLAN:

The course plan is meant as a guideline. Probably there may be a changes.

S.No	Topics to be covered	CO's	Reference
			T1: 4.1

OBE DISCUSSION				
1 Course Objectives, Course Outcomes, Program Outcomes, CO-PO Mapping				
CONTENT DELIVERY (THEORY)				
2	Classify Environmental Hazards & Disasters	CO 1	T2:26.3, R2: 3.1	
3	Understand the Meaning of Environmental Hazards	CO 1	T2:2.2.2	
4	Understand Environmental Stress	CO 1	T2:2.2.2, R3:3.7	
5	Understand Environmental stress.	CO 2	T2:2.2.2	
6	Obtain knowledge on Concept of Environmental Hazards	CO 2	T1:8.1	
7	Capacity to analyze Environmental stress & Environmental Disasters	CO 2	T1:7.1, R2: 1.2	
8	Capacity to analyze Ecology concept	CO 2	T2:3.2.3, R2: 1.3	
9	Understand Different Approaches	CO 3	T2:4.2.3	
10	Understand Landscape Approach	CO 3	T2:4.5.2	
11	Explain Ecosystem approach -Perception approach.	CO 3	T2:4.7.9	
12	Understand Human ecology & its application in geographical researches	CO 4	T2:5.2.1, R2: 6.4	
13	Understand Human ecology & its application in geographical researches	CO 4	T2:5.2.1, R2: 6.4	
14	Understand Types of Environmental hazards & Disasters	CO 4	T2:5.4	
15	Capacity to analyze and evaluate Natural hazards and Disasters	CO 3	T2:5.5.3	
16	Capacity to analyze and evaluate Natural hazards and Disasters	CO 3	T2:5.5.3	
17	Understand Man induced hazards & Disasters	CO 3	T2:6.2.2	
18	Understand Man induced hazards & Disasters	CO 3	T2:6.2.2	
19	Obtain knowledge on Natural Hazards- Planetary Hazards/ Disasters	CO 4	R1:2.5, R2: 8.2	
20	Obtain knowledge on Natural Hazards- Planetary Hazards/ Disasters	CO 4	R1:2.5, R2: 8.2	
21	Analyze the Planetary Hazards-Endogenous Hazards - Exogenous Hazards	CO 4	R2:2.2.5, R2: 9.2	
22	Analyze the Planetary Hazards-Endogenous Hazards - Exogenous Hazards	CO 4	R2:2.2.5, R2: 9.2	
23	Understand Volcanic Eruption – Earthquakes – Landslides	CO 4	R3:5.4.8, R2: 9.6	
24	Understand Volcanic Eruption – Earthquakes – Landslides	CO 4	R3:5.4.8, R2: 9.6	
25	Volcanic Hazards/Disasters- Causes and distribution of Volcanoes	CO 4	T2:8.1.2	
26	Volcanic Hazards/Disasters- Causes and distribution of Volcanoes	CO 4	T2:8.1.2	

27	Explain the Hazardous effects of volcanic eruptions	CO 4	T2:8.3.5, R2: 5.3
28	Explain the Hazardous effects of volcanic eruptions	CO 4	T2:8.3.5, R2: 5.3
29	Understand Environmental impacts of volcanic eruptions - Earthquake Hazards/ disasters - Causes of Earthquakes	CO 4	T2:8.5
30	Understand Environmental impacts of volcanic eruptions - Earthquake Hazards/ disasters - Causes of Earthquakes	CO 4	T2:8.5
31	Distribution of earthquakes - Hazardous effects of - earthquakes - Earthquake Hazards in India	CO 4	T2:8.9.2
32	Explain the Droughts: Impacts of droughts, Drought hazards in India	CO 5	T2:9.2, R3: 4.6
33	Explain the Droughts: Impacts of droughts, Drought hazards in India	CO 5	T2:9.2, R3: 4.6
34	Understand Extra Planetary Hazards/ Disasters- Man induced Hazards /Disasters	CO 5	T2:9.2, R3: 4.7
35	Understand Extra Planetary Hazards/ Disasters- Man induced Hazards /Disasters	CO 5	T2:9.2, R3: 4.7
36	Understand the Infrequent events: Cyclones, Lightning, Hailstorms, Cyclones: Earthquake Hazards in India	CO 5	T2:9.5.3
37	Understand the Infrequent events: Cyclones, Lightning, Hailstorms, Cyclones: Earthquake Hazards in India	CO 5	T2:9.5.3
38	Analyze the Tropical cyclones and Local storms	CO 5	T2:9.6.2, R3: 8.5
39	Understand the Destruction by tropical cyclones and local storms (causes, distribution human adjustment, perception and mitigation)	CO 5	T2:9.7.5, R3: 8.12
40	Understand the Destruction by tropical cyclones and local storms (causes, distribution human adjustment, perception and mitigation)	CO 5	T2:9.7.5, R3: 8.12
41	Analyze the Cumulative atmospheric hazards/ disasters : Floods, Droughts, Cold waves, Heat waves Floods	CO 5	T2:9.5.4
42	Analyze the Cumulative atmospheric hazards/ disasters : Floods, Droughts, Cold waves, Heat waves Floods	CO 5	T2:9.5.4
43	Identification of Flood control measures (Human adjustment, perception and mitigation),	CO 6	T2:9.5.4
44	Identification of Flood control measures (Human adjustment, perception and mitigation),	CO 6	T2:9.5.4
45	Analyze the Exogenous hazards/ disasters - Infrequent events- Cumulative atmospheric hazards/ disasters	CO 6	T2:9.5.6
	PROBLEM SOLVING/ CASE STUDIES	5	
1	Case study on modern disaster management system	CO 1	T2:2.2.2
2	Case study on natural disaster	CO 2	T2:2.2.2
3	Case study on manmade disaster	CO 3	T2:2.2.2

2	Case study on Latur earthquake	CO 4	T2:2.2.2	
4	Case study on Fukushima Nuclear disaster	CO 4	T2:2.2.2,	
			R3:3.7	
5	Case study on tsunami occurred in Japan	CO 5	T2:2.2.2	
6	Case study on Hiroshima and Nagasaki	CO 4	T1:8.1	
7	Case study on Russian Siberia oil spill	CO 4	T1:7.1,	
			R2: 1.2	
8	Case study on Hudhud Cyclone 2014	CO 5	$\begin{array}{c} T2:3.2.3, \\ R2: \ 1.3 \end{array}$	
9	Case study on South India Floods 2015	CO 5	T2:4.2.3	
10	Case study on Bihar Heat Wave 2019	CO 5	T2:4.5.2	
11	Case study on Bihar Floods 2019	CO 5	T2:4.7.9	
12	Case study on Oil Spillage in Russia 2020	CO 4	T2:5.4	
13	Case study on Yellow River Flood in China	CO 4	T2:5.5.3	
14	Case study on Bhola Cyclone Bangladesh	CO 5	T2:6.2.2	
15	Causes of wild fires and effects	CO 4	T2:9.5.4	
16	pre-disaster activities to reduce the impact of cyclones	CO 5	T2:9.5.4	
17	Tectonic plate theory	CO 4	T2:9.5.6	
	DISCUSSION OF DEFINITION AND TERMIN	OLOGY		
1	Different approaches and relation with human ecology, landscape approach, ecosystem approach, perception	CO 1	T2:2.2.2	
	approach	00.0		
	planetary hazards, planetary hazards/ disasters, extra planetary hazards/ disasters, planetary hazards, endogenous hazards, exogenous hazards	002	R3:3.7	
3	Effects of volcanic eruptions, environmental impacts of volcanic eruptions	CO 3, CO 4	T2:2.2.2	
4	Lightning , hailstorms; Cyclones: Tropical cyclones and local storms, destruction by tropical cyclones and local storms (causes, distribution human adjustment, perception and mitigation); Cumulative atmospheric hazards/ disasters:	CO 5	T1:8.1	
5	Emerging approaches in Disaster Management, Three Stages 1. Pre, disaster stage(preparedness), 2. Emergency Stage ,3. Post Disaster stage, Rehabilitation.	CO 6	T1:7.1, R2: 1.2	
DISCUSSION OF QUESTION BANK				
1	Environmental hazards and disasters	CO 1	R1:2.1	
2	Types of environmental hazards and disasters	CO 2	T4:7.3	
3	Endemonant have not a value of a comption complete	CO_{2}	D9.51	

4	Global sedimentation problems regional sedimentation problems, sedimentation and environmental problems, corrective measures of erosion and sedimentation, biological hazards/ disasters, population explosion.	CO 5	T1:7.5
5	Emerging approaches in disaster management	CO 6	T1: 4.1

Signature of Course Coordinator

HOD,CE