

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Mr. T Anil Kumar	Department:	EEE 2016 - 2020	
Regulation:	IARE - R16	Batch:		
Course Name:	Electromagnetic Field Theory	Course Code:	AEE006	
Semester:	III	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct attainment	Indirect attainment	Overall attainment	Observation
CO1	Make use of Vector Calculus, Coulomb's Law and Gauss Law for obtaining electric field intensity, Potential and behavior of electrostatic field	1.6	2.8	1.8	Attainment target reached
CO2	Calculate the capacitance of different physical configuration based on the behavior of the conductors and dielectric materials.	1.6	2.8	1.8	Attainment target reached
CO3	Demonstrate Biot-Savart law and Ampere circuital law for derivation of magnetic field intensity due to different current carrying conductors.	0.9	2.8	1.3	Attainment target is not yet reached.
CO4	Predict the force due to moving charge/current in the static magnetic field, thereby obtaining the inductance for different configurations of wires and energy stored in the coil.	1.6	2.8	1.8	Attainment target reached
CO5	Apply the Faraday's law of Electromagnetic induction and Maxwell's equations to produce a wave equation for the free- space, insulators and conductors for propagation of electromagnetic waves.	1.6	2.8	1.8	Attainment target reached

Action taken report:

CO 3: Need to provide more problems and assignments on Biot Savart's law, and also additional digital resources which enables the students to gain more problem-solving skills.

Course Coordinator

Mentor

Head of the Denothernt
Electrical and Electronics Engineering
INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043