INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous

Dundigal, Hyderabad - 500043, Telangana

ELECTRICAL AND ELECTRONICS ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:

Mr. T ANIL KUMAR

Department:

Electrical and Electronics Engineering

Regulation:

IARE - R18

Batch:

2018-2022

Course Name:

ELECTROMAGNETIC FIELDS

Course Code:

AEEB10

Semester:

Target Value:

60% (1.8)

Attainment of COs:

	Course Outcome	Direct attaiment	Indirect attaiment	Overall attaiment	Observation
CO1	Make use of Vector Calculus, Coulomb's Law and Gauss Law for obtaining electric field intensity, Potential and behavior of electrostatic field	3.00	2.60	2.9	Attained
CO2	Calculate the capacitance of different physical configuration based on the behavior of the conductors and dielectric materials.	0.60	2.60	1	Not Attained
CO3	Demonstrate Biot-Savart law and Ampere circuital law for derivation of magnetic field intensity due to different current carrying conductors.	0.60	2.60	1	Not Attained
CO4	Predict the force due to moving charge/current in the static magnetic field, thereby obtaining the inductance for different configurations of wires and energy stored in the coil	0.90	2.60	1.2	Not Attained
CO5	Apply the Faraday's law of Electromagnetic induction and Maxwell Equations to produce a wave equation for the free-space, insulators and conductors for propagation of electromagnetic waves.	0.90	2.60	1.2	Not Attained

Action taken report:

CO2:

Extra classes should be taken

CO3:

Students are encouraged to enroll for NPTEL video

CO4:

More problems should be practiced

CO5:

Students are encouraged to watch ELRV videos

Course Coordinator

Mentor

Head of the Department

Head of the Department
Electrical and Electronics Engineering
INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043