

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

ELECTRICAL AND ELECTRONICS ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Mr. T ANIL KUMAR	Department:	Electrical and Electronics Engineering	
Regulation:	IARE - R18	Batch:	2019-2023	
Course Name:	ELECTROMAGNETIC FIELDS	Course Code:	AEEB10	
Semester:	ui .	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Make use of Vector Calculus, Coulomb's Law and Gauss Law for obtaining electric field intensity, Potential and behavior of electrostatic field	3.00	2.30	2.9	Attained
CO2	Calculate the capacitance of different physical configuration based on the behavior of the conductors and dielectric materials.	2.70	2.30	2.6	Attained
CO3	Demonstrate Biot-Savart law and Ampere circuital law for derivation of magnetic field intensity due to different current carrying conductors.	2.30	2.40	2.3	Attained
CO4	Predict the force due to moving charge/current in the static magnetic field, thereby obtaining the inductance for different configurations of wires and energy stored in the coil	1.60	2.30	1.7	Not Attained
CO5	Apply the Faraday's law of Electromagnetic induction and Maxwell Equations to produce a wave equation for the free-space, insulators and conductors for propagation of electromagnetic waves.	1.60	2.30	1.7	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO4: Giving assignments and conducting tutorials collaboratively

CO5: Delivering lectures using ICT tools

Course Coordinator

Mentor

Head of the Department