

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500043, Telangana

ELECTRICAL AND ELECTRONICS ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty: Dr. P SRIDHAR		Department:	Electrical and Electronics Engineering	
Regulation:	IARE - R18	Batch:	2019-2023	
Course Name:	CONTROL SYSTEMS	Course Code:	AEEB16	
Semester:	IV	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Relate the different physical and mechanical systems into equivalent electrical analogies using the mathematical form of complex physical systems.	3.00	2.30	2.9	Attained
CO2	Utilize various reduction techniques for developing the transfer function and steady state error with the standard input signals.	1.30	2.30	1.5	Not Attained
CO3	Make use of the time domain analysis to predict transient response specifications for analysing system's stability	3.00	2.20	2.8	Attained
CO4	Infer the stability of a first and second order systems using frequency domain specifications	3.00	2.30	2.9	Attained
CO5	Classify the types of compensators in time domain and frequency domains specifications for increasing the steady state accuracy of the system.	2.30	2.20	2.3	Attained
CO6	Interpret linear system equations in state-variable form for the analysis of system's dynamic behavior.	2.30	2.20	2.3	Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO2: provide assignments on reduction techniques for developing the transfer function and steady state error with the standard input signals.