

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500043, Telangana

ELECTRICAL AND ELECTRONICS ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:

Ms. V BINDU SREE

Department:

Electrical and Electronics Engineering

Regulation:

IARE - R20

Batch:

2020-2024

Course Name:

Principles of Signals and Systems

Course Code:

Semester:

AEEC26

۷I

Target Value:

60% (1.8)

Attainment of COs:

	Course Outcome	Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Describe the concept of signals and signal properties for performing mathematical operations on signals	1.00	2.30	1.3	Not Attained
CO2	Make use of Fourier transforms for calculating spectral characteristics of periodic and aperiodic signals	0.30	2.30	0.7	Not Attained
CO3	Utilize the concept of convolution and correlation to determine the response of an LTI system	0.90	2.30	1.2	Not Attained
CO4	Illustrate the ideal lowpass,high pass,bandpass,ban stop filters for obtaining the behaviour of linear time invarinat system	0.60	2.30	0.9	Not Attained
CO5	Describe the linear time invariant systems using linear constant coefficient differential equations and their impulse response	0.90	2.30	1.2	Not Attained
CO6	Compute discrete fourier transform and inverse discrete Fourier transform of a discrete signal using fast fourier transform algorithms	0.70	2.30	Ī	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: Extra classes on concept of signals and signal properties for performing mathematical operations on signals

CO2: Guest lecture will be conduct on Fourier transforms for calculating spectral characteristics of periodic and aperiodic signals

CO3: Assignments on the concept of convolution and correlation to determine the response of an LTI system.

CO4: Tutorial classes will be conduct on lowpass, high pass, bandpass, ban stop filters for obtaining the behaviour of linear time invarinat system

CO5: Guest lecture will be conduct on linear time invariant systems using linear constant coefficient differential equations and their impulse response

CO6: Solving more problems on discrete fourier transform and inverse discrete Fourier transform of a discrete signal using fast fourier transform algorithms.