

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

ELECTRICAL AND ELECTRONICS ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Ms. SINGAVARAPU SUJANI	Department:	Electrical and Electronics Engineering	
Regulation:	IARE - R20	Batch: 2020-2024		
Course Name:	Engineering Physics	Course Code:	AHSC03	
Semester:	1	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Apply the concepts of dual nature of matter and Schrodinger wave equation to a particle enclosed in simple systems	1.60	2.10	1.7	Not Attained
CO2	Demonstrate the classification of solids and important aspects of semiconductors in terms of carrier concentration and Fermi level	0.90	2.10	1.1	Not Attained
CO3	Compare the concepts of LASER and normal light in terms of mechanism and working principles for applications in various fields and scientific practices	0.90	2.00	1.1	Not Attained
CO4	Explain functionality of components in optical fiber communication system by using the basics of signal propagation, attenuation and dispersion	1.60	2.10	1.7	Not Attained
CO5	Interpret the phenomenon of interference and diffraction by using the principles of wave motion and superposition	0.90	2.10	1.1	Not Attained
CO6	Make use of the concept of simple harmonic motion and arrive at expressions for damped, forced harmonic oscillators and wave equations by using necessary mathematical formulations.	0.60	2.00	0.9	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: More problems should be practiced

CO2: Students are encouraged to do mooc courses

CO3: Students are encouraged to ELRV videos

CO4: Extra classes should be taken

CO5: Model based learning are planned

CO6: Students are encouraged to ELRV videos

Course Coordinator

Mentor

Head of the Department