

ELECTRICAL AND ELECTRONICS ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Ms. B PRAVEENA	Department:	Electrical and Electronics Engineering	
Regulation:	IARE - R20	Batch: 2020-2024		
Course Name:	Mathematical Transform Techniques	Course Code:	AHSC07	
Semester:	n .	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Explain the properties of Laplace and inverse transform to various functions such as continuous, piecewise continuous, step, impulsive and complex variable functions.	0.90	2.20	1.2	Not Attained
CO2	Make use of the integral transforms which converts operations of calculus to algebra in solving linear differential equations	1.60	2.20	1.7	Not Attained
CO3	Apply the Fourier transform as a mathematical function that transforms a signal from the time domain to the frequency domain, non-periodic function up to infinity.	0.90	2.20	1.2	Not Attained
CO4	Apply the definite integral calculus to a function of two or more variables in calculating the area of solid bounded regions	1.60	2.20	1.7	Not Attained
C05	Develop the differential calculus which transforms vector functions, gradients. Divergence, curl, and integral theorems to different bounded regions in calculating areas.	0.60	2.20	0.9	Not Attained
CO6	Solve Lagrange's linear equation related to dependent and independent variables the nonlinear partial differential equation by the method of Charpit concern to the engineering field	0.30	2.20	0.7	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: Explain the properties of Laplace and inverse transform to various functions such as continuous equations

CO2: Students are encouraged to ELRV videos

CO3: More problems should be practiced

CO4: Students are encouraged to do mooc courses

CO5: Develop the differential calculus which transforms vector functions

CO6: Solve Lagrange's linear equation related to dependent and independent variables

Course Coordinator

Mentor

Head of the Department