

Dundigal, Hyderabad - 500043, Telangana

ELECTRICAL AND ELECTRONICS ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:

Dr. B PRASHANTH

Department:

Electrical and Electronics Engineering

Regulation:

IARE - R20

Batch:

2021-2025

Course Name:

Digital Electronics

Course Code:

AECC16

Semester:

Target Value:

60% (1.8)

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Understand the different forms of number representations and binary codes in digital logic circuits	0.30	2.20	0.7	Not Attained
CO2	Make use of Boolean postulates, theorems and k-map for obtaining minimized Boolean expressions	0.60	2.30	0.9	Not Attained
CO3	Utilize the functionality and characteristics of flip-flops and latches for designing sequential circuits	0.60	2.20	0.9	Not Attained
CO4	Construct the synchronous and asynchronous modules using flip- flops used for memory storing applications	0.00	2.30	0.5	Not Attained
CO5	Choose an appropriate A/D and D/A converters for signal processing applications	0.00	2.20	0.4	Not Attained
CO6	Extend the knowledge of memories and programmable logic devices for understanding the architectural blocks of FPGA	0.00	2.20	0.4	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: Understand the different forms of number representations and binary codes in digital logic circuits

CO2: Make use of Boolean postulates, theorems and k-map for obtaining minimized Boolean expressions

CO3: Utilize the functionality and characteristics of flip-flops and latches for designing

CO4: Construct the synchronous and asynchronous modules using flip-flops

CO5: Appropriate A/D and D/A converters for signal processing applications

CO6: More classes taken